This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2011-274470 filed Dec. 15, 2011.
(i) Technical Field
The present invention relates to an air supply tube, an air supply device, and an image forming apparatus.
(ii) Related Art
An image forming apparatus which forms an image made of a developer on a recording sheet uses, for example, a corona discharger which performs corona discharge during a process in which a latent image holding member, such as a photoreceptor, is electrically charged or erased, a process in which an unfixed image is transferred to a recording sheet, or the like.
In a corona discharger, an air supply device is also provided to supply air to constituent components, thereby preventing unwanted substances, such as paper dust or corona products, from becoming attached to constituent components, such as a discharge wire or a grid electrode. In this case, the air supply device generally has an air supply which supplies air and a duct (air supply tube) which guides and sends air sent from the air supply to a target structure, such as a corona discharger.
In the related art, various improvements are made to an air supply device such that air is supplied uniformly relative to the longitudinal direction of constituent components, such as a discharge wire. In particular, an air supply device or the like uses the following configuration, not a configuration in which a channel space, through which air of a duct flows, has a special shape, a configuration in which a rectifier plate or the like is provided to regulate the direction in which air flows in the channel space of the duct, or the like.
According to an aspect of the invention, an air supply tube provided with an inlet port that takes in air, an outlet port that is arranged opposite a portion of an elongated target structure in a longitudinal direction, to which air taken in from the inlet port is to be supplied, and has an elongated opening shape in parallel to the portion of the target structure in the longitudinal direction and different from the inlet port, the air supply tube including: a channel portion in which a channel space for allowing air to flow between the inlet port and the outlet port is formed, and plural suppressing portions that are provided in different parts in an air flow direction in the channel space of the channel portion and suppress the flow of air, wherein the plural suppressing portions include at least a most downstream suppressing portion that is provided in a most downstream-side part in the air flow direction of the channel portion and is configured such that a channel space in the most downstream-side part is closed by a ventilating member with plural ventilation portions dotted therein, and a first upstream suppressing portion that is provided in a part initially located on the upstream side in the air flow direction relative to the most downstream suppressing portion in the channel portion, and is configured such that a portion of a channel space in the corresponding part is blocked along a direction parallel to the longitudinal direction of the outlet port and a gap in a shape extending in the direction parallel to the longitudinal direction of the outlet port is provided to allow air to pass therethrough, and a gap regulating portion that forms an extended gap at the same interval as the gap extended and connected in a state of being bent in a direction away from the most downstream suppressing portion from the gap of the first upstream suppressing portion is provided in a part between the most downstream suppressing portion and the first upstream suppressing portion in the channel portion.
Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
Hereinafter, the mode for carrying out the invention (simply referred to as “exemplary embodiment”) will be described with reference to the accompanying drawings.
As shown in
The imaging unit 20 uses, for example, the known electrophotographic system. The imaging unit 20 primarily has a photoreceptor drum 21 which is driven to rotate in a direction indicated by arrow A (in the drawing, a clockwise direction), a charging device 4 which charges the peripheral surface of the photoreceptor drum 21 as an image forming region with a suitable potential, an exposure device 23 which irradiates light (dotted line with arrow) onto the charged surface of the photoreceptor drum 21 on the basis of image information (signal) input from the outside to form an electrostatic latent image which has a potential difference, a developing device 24 which develops the electrostatic latent image to a toner image with toner, a transfer device 25 which transfers the toner image to the sheet 9, and a cleaning device 26 which remove toner or the like remaining on the surface of the photoreceptor drum 21 after transfer.
Of these, as the charging device 4, a corona discharger is used. As shown in
In the charging device 4, the two corona discharge wires 41A and 41B are provided opposite the peripheral surface of the photoreceptor drum 21 at a suitable interval (for example, a discharge gap) gap at least in a region, in which an image is to be formed, along the direction of the rotating axis of the photoreceptor drum 21. In the charging device 4, at the time of image formation, a voltage for charging is applied from a power supply device (not shown) to the discharge wires 41A and 41B (between the discharge wires 41A and 41B and the photoreceptor drum 21).
With use of the charging device 4, substances (unwanted substances), such as paper dust of the sheet 9, corona products which are generated by corona discharge, or external additives of toner, are attached to the corona discharge wires 41 or the grid electrode 42, and the corona discharge wire 41 or the grid electrode 42 is contaminated. Accordingly, corona discharge is not sufficiently or uniformly performed, causing the occurrence of defective charging, such as irregular charging. For this reason, the charging device 4 is also provided with an air supply device 5 which puts air into the discharge wires 41 and the grid electrode 42 to prevent or suppress attachment of unwanted substance to the discharge wires 41 and the grid electrode 42. An opening 43 is formed in an upper surface 40a of the shielding case 40 of the charging device 4 to take in air from the air supply device 5. The opening 43 is formed in a rectangular shape. The details of the air supply device 5 will be described below.
The sheet feeder 30 includes a tray-type or cassette-type sheet accommodating member 31 which accommodates plural sheets 9 of a suitable size, type, or the like for use in image formation in a stacked manner, and a sending device 32 which sends the sheets 9 accommodated in the sheet accommodating member 31 toward a transport path one by one. If a sheet feed time comes, the sheets 9 are sent one by one. The plural sheet accommodating members 31 are provided depending on the use mode. A one-dot-chain line with arrow in
Inside the housing 36 formed by an introduction port and a discharge port, through which the sheet 9 passes, the fixing device 35 includes a roller-type or belt-type heating rotating member 37 whose surface temperature is heated and maintained at a suitable temperature by a heating unit and a roller-type or belt-type pressing rotating member 38 which undergoes driven rotation in contact with the heating rotating member 37 at a suitable pressure substantially in the axial direction. The fixing device 35 performs fixing by introducing the sheet 9 after a toner image has been transferred to a contact portion (fixing processing portion) formed when the heating rotating member 37 and the pressing rotating member 38 are in contact with each other and allowing the sheet 9 to pass through the contact portion.
Image formation by the image forming apparatus 1 is performed as follows. Herein, a basic image forming operation when an image is formed on one surface of the sheet 9 will be described.
In the image forming apparatus 1, if the control device or the like receives a command to start an image forming operation, in the imaging unit 20, the peripheral surface of the photoreceptor drum 21 which starts to rotate is charged with a predetermined polarity and potential by the charging device 4. At this time, in the charging device 4, the voltage for charging is applied to the two corona discharge wires 41A and 41B and corona discharge is generated in a state where an electric field is formed between each of the discharge wires 41A and 41B and the peripheral surface of the photoreceptor drum 21, such that the peripheral surface of the photoreceptor drum 21 is charged with a suitable potential. At this time, the charge potential of the photoreceptor drum 21 is regulated by the grid electrode 42.
Subsequently, the charged peripheral surface of the photoreceptor drum 21 is exposed by the exposure device 23 on the basis of image information, such that an electrostatic latent image is formed with a suitable potential difference. Thereafter, when passing through the developing device 24, the electrostatic latent image formed on the photoreceptor drum 21 is developed by toner which is supplied from a developing roller 24a and charged with a suitable polarity, and visualized as a toner image.
Next, if transported to a transfer position opposite the transfer device 25 by rotation of the photoreceptor drum 21, the toner image formed on the photoreceptor drum 21 is transferred to the sheet 9 put from the sheet feeder 30 through the transport path at that timing by the transfer device 25. The peripheral surface of each photoreceptor drum 21 after transfer is cleaned by the cleaning device 26.
Subsequently, the sheet 9 to which the toner image is transferred in the imaging unit 2 is transported to be separated from the photoreceptor drum 21 and then put into the fixing device 35, and heated under a pressure when passing through the contact portion of the heating rotating member 37 and the pressing rotating member 38 in the fixing device 35. Thus, the toner image is molten and fixed to the sheet 9. The sheet 9 after the fixing has ended is discharged from the fixing device 35 and transported and accommodated to a discharged sheet accommodating portion (not shown) or the like formed outside the housing 10.
In this way, a monochrome image with toner of one color is formed on one surface of one sheet 9, and the basic image forming operation ends. When there is an instruction of an image forming operation for plural sheets, the sequence of operations described above is repeated in a similar way by the number of sheets.
Next, the air supply device 5 will be described.
As shown in
As an air supply 50, for example, a radial-flow air supply fan is used. The air supply 50 is driven and controlled to send a suitable volume of air. As shown in
In the channel portion 54 of the air supply duct 51, one end portion is opened with the inlet port 52, and the other end portion is closed. As a whole, the channel portion 54 has a rectangular tube-shaped introduction channel portion 54A which is formed to extend along the longitudinal direction B of the charging device 4, a rectangular tube-shaped first bent channel portion 54B which is formed to be substantially bent at a right angle and extend in a horizontal direction (a direction substantially parallel to the coordinate axis X) with an increasing width of the channel space from a part close to the other end portion of the introduction channel portion 54A, and a second bent channel portion 54C which is formed to be finally bent and extend in a vertical direction (a direction substantially parallel to the coordinate axis Y) downward close to the charging device 4 with the same width of the channel space from one end portion of the first bent channel portion 54B. In the termination portion of the second bent channel portion 54C, the outlet port 53 is formed to have an opening shape slightly smaller than the sectional shape of the channel space of the termination portion (the length of the rectangle in the longitudinal direction is substantially equal). In the first bent channel portion 54B and the second bent channel portion 54C, the width (the dimension in the longitudinal direction B) of the channel space 54a is substantially equal.
The inlet port 52 of the air supply duct 51 is formed to substantially have a square opening shape. A connection duct 55 which connects the air supply 50 and the inlet port 52 to send air from the air supply 50 to the inlet port 52 of the air supply duct 51 is attached to the inlet port 52 (FIG. 3). The outlet port 53 of the air supply duct 51 is formed so that the opening shape of the outlet port 53 has an elongated shape (for example, a rectangular shape) parallel to the portion of the charging device 4 in the longitudinal direction B. For this reason, the air supply duct 51 has the relation that the inlet port 52 and the outlet port 53 have different opening shapes. Even if the inlet port 52 and the outlet port 53 have the same shape, when the opening area is different (an analogous shape), this is included in the relation that the opening shape is different.
As described above, in the air supply duct 51 in which the inlet port 52 and the outlet port 53 are formed in different opening shapes, there is a portion in which the sectional shape of the channel space 54a changes halfway in the channel portion between the inlet port 52 and the outlet port 53. Incidentally, in the air supply duct 51, the sectional shape of the channel space 54a substantially having a square shape in the introduction channel portion 54A is changed to the sectional shape of the channel space 54a having a rectangular shape widened only in the horizontal direction (the height is not changed) in the first bent channel portion 54B. In other words, the sectional shape of the channel space 54a in the introduction channel portion 54A becomes the sectional shape of the channel space 54a rapidly widened in the first bent channel portion 54B.
In the air supply duct 51 having a portion in which the sectional shape of the channel space 54a is changed, disturbance, such as separation or swirl, occurs in the flow of air in the portion in which the sectional shape is changed. For this reason, even when air is taken in from the inlet port 52 at a uniform air speed, air output from the outlet port 53 has a tendency to be ununiform. The tendency that the air speed of air output from the outlet port is finally ununiform occurs substantially in a similar way even when the air flow (travel) direction in the air supply duct 51 is changed, regardless of the presence/absence of a change in the sectional shape in the channel space 54a.
Accordingly, as shown in
The first upstream suppressing portion 61 is provided substantially at an intermediate position in the air flow direction in the channel space 54a of the first bent channel portion 54B. The first upstream suppressing portion 61 blocks a portion of the channel space 54a in a direction parallel to the longitudinal direction (the same direction as the longitudinal direction B of the charging device 4) of the opening shape of the outlet port 53, and has a gap 63 extending in the longitudinal direction of the opening shape of the outlet port 53.
In the first upstream suppressing portion 61 of Exemplary Embodiment 1, a plate-shaped partition member 64 is provided in the channel space 54a of the bent channel portion 54B without changing the exterior of the first bent channel portion 548. Specifically, the partition member 64 has a structure in which the upper space portion in the channel space 54a of the first bent channel portion 548 is closed, a lower end portion 64a of the partition member is arranged at a suitable interval H with respect to the bottom portion (inner wall) of the channel space 54a, and a gap 63 is provided in the lower portion of the channel space 54a. The partition member 64 is formed of the same material as the duct 51 through integral molding or a material different from the duct 51.
The height H of the gap 63, the path length M, and the width (the length in the longitudinal direction) W are selected and set from the viewpoint that the air speed of air flowing from the introduction channel portion 54A to the first bent channel portion 54B is as uniform as possible, and are set taking into consideration the dimension (capacity) of the duct 51, the flow rate per unit time of air which should flow to the duct 51 or the charging device 4, or the like. For example, the height H of the gap 63 is not limited to when the dimension is equal in the width direction, and may be set to dimension which is changed evenly or partially from the above-described viewpoint.
The most downstream suppressing portion 62 is formed such that the channel space (opening) at the termination (outlet port 53) of the second bent channel portion 54C is closed by a ventilating member 70 having plural ventilating portions 71.
As schematically shown in
The ventilating member 70 is formed of the same material as the duct 51 through integral molding or a material different from the duct 51, and is mounted at the outlet port 53. The opening shape, the opening dimension, the hole length, and the density of the ventilating portions (holes) 71 are selected and set from the viewpoint that the air speed of air flowing from the second bent channel portion 54C through the outlet port 53 is as uniform as possible, and are set taking into consideration the dimension (capacity) of the duct 51, the flow rate per unit time of air which should flow to the duct 51 or the charging device 4, or the like.
In the air supply duct 51 of the air supply device 5, even if a large volume of air is put from the inlet port 52 (for example, the volume is equal to or greater than 0.3 m3/second), air from the outlet port 53 is output with reduced irregularity in the air speed in both directions corresponding the longitudinal direction (the same direction as the longitudinal direction B of the charging device 4) and the transverse direction perpendicular to the longitudinal direction in the opening shape of the outlet port 53. For this reason, as shown in
That is, only if the two suppressing portions 61 and 62 are provided in the air supply duct 51 (see
The gap regulating portion 80 forms an extended gap 81 at the same interval S as the interval (height H) of the gap 63 extended and connected in a state of being bent in a direction J away from the most downstream suppressing portion 62 from the gap 63 in the first upstream suppressing portion 61 in a part between the most downstream suppressing portion 62 and the first upstream suppressing portion 61 in the first bent channel portion 54B. The direction J away from the most downstream suppressing portion 61 is the direction in which the distance from the most downstream suppressing portion 62 is maintained in the same state or the direction in which the distance keep increasing.
The gap regulating portion 80 of Exemplary Embodiment 1 is provided by arranging a plate-shaped member 82 to be erect substantially opposite and in parallel to the first upstream suppressing portion 61 at a suitable interval (S) in a part on the downstream side in an air flow direction E from the first upstream suppressing portion 61 in an inner wall portion 55a on the inner side of the first bent channel portion 54B in a bending direction K. That is, the plate-shaped member 82 is arranged in a state where an interval S1 in the end portion close to the inlet port relative to the partition member 64 of the first upstream suppressing portion 61 is substantially equal to an interval S2 in the opposing end portion.
Accordingly, the extended gap 81 which is connected to the gap 63 is formed between the gap regulating portion 80 and the first upstream suppressing portion 61. When regarded as a single gap along with the gap 63 of the first upstream suppressing portion 61, the extended gap 81 is configured such that the sectional shape in the air flow direction E is an L shape. In the gap regulating portion 80, the height of the plate-shaped member 82 is set such that the path length R of the extended gap 81 is substantially equal to the path length M of the gap 63. The regulating portion 80 of the plate-shaped member 82 is formed of the same material as the duct 51 through integral molding or a material different from the duct 51.
Hereinafter, the operation of the air supply device 5 will be described.
At the time of drive setting, such as an image forming operation, in the air supply device 5, the air supply 50 is driven to rotate and sends a suitable volume of air. Air (E) sent from the air supply 50 having started is taken in from the inlet port 52 of the air supply duct 51 to the channel space 54a of the channel portion 54 through the connection duct 55.
Subsequently, as shown in
At this time, in regard to air (E2) when passing through the gap 63 of the first upstream suppressing portion 61, the flow is suppressed by the gap 63 of the first upstream suppressing portion 61 (in a state where a pressure is increased), and air flows out from the gap 63 in a uniform state. In regard to air (E2) when flowing into the channel space 54a of the first bent channel portion 54B, the direction when flowing out from the gap 63 of the suppressing portion 61 is substantially uniformized in a direction perpendicular to the longitudinal direction (B) of the outlet port 53.
Next, as indicated by dotted-line arrow E2, air (E2) after passing through the gap 63 of the first upstream suppressing portion 61 continuously passes through the extended gap 81 in the gap regulating portion 80 and travels to flow into the channel space 54a of the second bent channel portion 54C.
At this time, in regard to air (E2) when passing through the extended gap 81 in the gap regulating portion 80, the flow is continuously suppressed by the extended gap 81 (in a state where a pressure is increased), and air is induced by the extended gap 81 and travels to flow in the direction (J) toward an inner wall portion 55b on the upstream side of the first bent channel portion 54B farther away from the most downstream suppressing portion 62 (outlet port 53). Finally, air flows from the extended gap 81 into the channel space 54a of the second bent channel portion 54C in a uniform state.
Subsequently, as indicated by dotted-line arrow E3, air (E3) flowing into the channel space 54a of the second bent channel portion 540 flows into the channel space 54a of the introduction channel portion 54A or the channel space 54a of the second bent channel portion 54C having capacity greater than the space of the gap 63 and the extended gap 81, and is retained to rotate in the channel space 54a of the second bent channel portion 540. Thus, irregularity in the air speed is reduced.
Finally, as shown in
At this time, air (E4) which is supplied from the outlet port 53 passes through the plural ventilating portions 71 of the ventilating member 70 relatively narrower than the opening area of the outlet port 53 and is sent in a state where the flow is suppressed (at the time, in a state where a pressure is increased). Air (E4) which is supplied from the outlet port 53 are dotted over the entire opening region of the outlet port 53 and passes through the plural ventilating portions 71 formed under the same condition, and is sent from the outlet port 53 in a uniform state to correspond to the surface of a region substantially close to the opening shape of the outlet port 53. Air (E4) which is supplied from the outlet port 53 is sent in a state where the travel direction is changed to the direction substantially perpendicular to the longitudinal direction of the outlet port 53.
In this way, air (E4) output from each of the plural ventilating portions 71 of the ventilating member 70 is sent in a state where the travel direction becomes the direction substantially perpendicular to the longitudinal direction of the outlet port 53, and the air speed is substantially uniformized. The air speed of air (E4) output from the outlet port 53 is substantially uniformized in the longitudinal direction (B) of the opening shape (rectangular shape) of the outlet port 53, and is also substantially uniformized in the transverse direction C.
As shown in
Accordingly, it is possible to avoid unwanted substances, such as paper dust, external additives of toner, or corona products, which will be attached to the two discharge wires 41A and 41B and the grid electrode 42. As a result, it is possible to prevent deterioration, such as irregularity or the like in charge performance, because unwanted substances are sparsely attached to the discharge wires 41A and 41B or the grid electrode 42 in the charging device 4, making it possible to charge the peripheral surface of the photoreceptor drum 21 uniformly (uniformly in both the axial direction and the peripheral direction in the rotation direction A). A toner image which is formed by the imaging unit 20 having the charging device 4 or an image which is finally formed on the sheet 9 is obtained as a satisfactory image in which defective image quality (density irregularity or the like) due to defective charging, such as charge irregularity, is reduced.
In the test, air is put from the air supply 50 with an average volume 0.33 m3/minute, and the air speed (the air speed over the entire region of the outlet port in the longitudinal direction B) of air supplied from the outlet port 53 of the air supply duct 51 at this time is measured. In the measurement, an air speedometer (manufactured by CAMBRIDGE ACCU SENSE INC.: F900) is used, and as shown in
As the air supply duct 51, an air supply duct is used in which the entire shape is as shown in
As shown in
The air supply duct 510 has the same configuration as the air supply duct 51 of Exemplary Embodiment 1, except that no gap regulating portion 80 is provided, and the path length M of the gap 63 of the first upstream suppressing portion 61 is set to 8 mm.
First, in the air supply duct 510 of the comparative example, when air is put from the inlet port 52 with the average volume of 0.25 m3/minute for the evaluation test of the performance characteristics, as shown in
However, in the air supply duct 510, if air is put from the inlet port 52 with the average volume of 0.33 m3/minute, as shown in
In regard to the air speed in the longitudinal direction B, the air speed at the Post position is increased compared to the air speed at the Pre position.
This is presumed to be because, as shown in
The air speed at the end portion of the outlet port 53 close to the inlet port 52 is relatively decreased.
Meanwhile, like the air supply duct 51 of Exemplary Embodiment 1, if a configuration is made in which the gap regulating portion 80 is provided, a satisfactory result shown in
In the air supply duct 51 at this time, the path length R of the gap regulating portion 80 is set to 8 mm. The result of the evaluation test at this time shows that the air speed of air (E4) output from the outlet port 53 is substantially uniformized in the longitudinal direction B of the opening shape (rectangular shape) of the outlet port 53, and is also uniformized in the transverse direction C. Thus, a satisfactory result is obtained. Incidentally, if the path length R of the gap regulating portion 80 is extended, the air speed in the end portion of the outlet port 53 away from the inlet port 52 (the right end of the horizontal axis in
The air supply duct 511 has the same configuration as the air supply duct 51 of Exemplary Embodiment 1, except that a gap regulating portion 800 is provided with an extended gap 810 in which the interval S gradually increases toward the downstream side in the air flow direction. The extended gap 810 is formed such that the interval S continuously increases from the minimum value of 1.5 mm on the upstream side in the air flow direction to the maximum value of 3 mm on the downstream side.
In the air supply device 5 to which the air supply duct 511 of the comparative reference example is applied, if the evaluation test (the average volume of air put from the inlet port 52=0.33 m3/minute) relating to the performance characteristics is performed, as shown in
In the air supply duct 51 of the air supply device 5 of Exemplary Embodiment 1, as the gap regulating portion 80, as shown in
The gap regulating portion 80B shown in
In the air supply duct 51 of the air supply device 5 of Exemplary Embodiment 1, as shown in
When the air supply duct 51C is applied, for example, as shown in
In the air supply device 5 to which the air supply duct 510 is applied, if the evaluation test relating to the performance characteristics is performed, a satisfactory result (
In the air supply duct 51C provided with the first upstream suppressing portion 61B, as shown in
When the gap regulating portion 80D having the plate-shaped member 82D is provided, there is no space 84 (
In the air supply duct 51 of the air supply device 5 of Exemplary Embodiment 1, an air supply duct 510 in which there is no second bent channel portion 54C (see
In the air supply duct 51D, a first upstream suppressing portion 61 and a most downstream suppressing portion 62 (see
In the air supply device 5 to which the air supply duct 51D is applied, if the evaluation test relating to the performance characteristics is performed, a satisfactory result (
In this case, in the air supply duct 51D, as shown in
In this way, air (E4) output from the outlet port 53 with the most downstream suppressing portion 62 of the air supply duct 51D is sent in a state where the travel direction is the direction substantially perpendicular to the longitudinal direction of the outlet port 53, and the air speed is substantially uniformized. The air speed of air (E4) output from the outlet port 53 is substantially uniformized in the longitudinal direction (B) of the opening shape (rectangular shape) of the outlet port 53, and is also substantially uniformized in the transverse direction C.
As shown in
Although in Exemplary embodiment 1, a case has been described where the two suppressing portions 61 and 62 are provided as a suppressing portion in the air supply duct 51 of the air supply device 5, three or more suppressing portions may be provided. It is preferable that all the suppressing portions including the most downstream suppressing portion are provided in the parts in which the sectional shape in the channel space 54a of the channel portion 54 of the duct 51 is changed, or in the parts after (immediately after or the like) the air flow direction in the channel space 54a is changed.
Although, in Exemplary Embodiment 1, a case has been described where the most downstream suppressing portion 62 has the ventilating member 70 in which plural ventilating portions (holes) 71 are substantially dotted evenly over the entire opening region of the outlet port 53, the most downstream suppressing portion 62 may be formed using the ventilating member 70 which is represented by a perforated member (the plural ventilating portions 71 are formed in an irregular form with penetrating gap), such as unwoven fabric, applied to a filter or the like.
The entire shape of the air supply duct 51 is not limited to that described in Exemplary Embodiment 1, and other shapes may be applied. For example, the air supply duct 510 (510A to 510C) shown in
In regard to the charging device 4 to which the air supply device 5 is applied, a charging device in which no grid electrode 24 is provided, a so-called corotron charging device may be used. The charging device 4 may use one corona discharge wire 41, or three or more corona discharge wires 41. As an elongated target structure to which the air supply device 5 is applied, a corona discharger which electrically erases the photoreceptor drum 21 or the like, or a corona discharger which electrically charges or erases a member to be charged other than a photoreceptor drum may be used. An elongated structure other than a corona discharger to which air should be supplied may be used.
In regard to the image forming apparatus 1, the configuration, such as an image forming system, is not particularly limited insofar as an elongated target structure to which the air supply device 5 should be applied is provided. If necessary, an image forming apparatus which forms an image made of a material other than a developer may be provided.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2011-274470 | Dec 2011 | JP | national |