Airbag inflator with external filter

Information

  • Patent Grant
  • 6341799
  • Patent Number
    6,341,799
  • Date Filed
    Friday, August 18, 2000
    24 years ago
  • Date Issued
    Tuesday, January 29, 2002
    22 years ago
Abstract
An airbag module (10) contains a gas generating inflator (18) containing a plurality of apertures (24) in radially spaced relation to an external annular filter (40) constrained by a retainer (42). The plurality of apertures (24) are each radially aligned with the filter (40). Gases produced from inflator (18) are thus cooled and dispersed with a minimum pressure drop, thereby providing a pressure sufficient to inflate an airbag (16).
Description




BACKGROUND OF THE INVENTION




Installation of inflatable occupant restraint systems, generally known as “airbags”, as standard equipment in all new vehicles, has intensified the search for smaller, lighter, less expensive restraint systems. Accordingly, since the inflator used in such systems is the heaviest and most expensive component of an inflatable occupant restraint system, there is a need for a lighter and less expensive inflator.




A typical inflator comprises a cylindrical steel or aluminum housing having a diameter and length related to the vehicle application and characteristics of the propellant contained therein. The inflator is generally provided with an internal filter comprising one or more layers of steel screen of varying mesh and wire diameter. Gas produced upon combustion of the propellant passes through the filter before exiting the inflator. Co-owned U.S. Pat. Nos. 5,628,528 and 5,622,380, herein incorporated by reference, exemplify inflators having internal filters.




However, known internal filters are, of necessity, relatively heavy due to their disposition in close proximity to the propellant. The high gas temperatures produced upon combustion of the propellant dictate the use of relatively heavy wire mesh to preclude burn through. In addition, since it is desirable to maximize the pressure and volume of the gas entering the airbag in relation to the size of the inflator, pressure attenuation upon passage of combustion gases through the filter must be minimized.




SUMMARY OF THE INVENTION




The solution to the problem of reducing airbag inflator size, weight, cost and efficiency, in accordance with the present invention, is predicated on the concept that it is possible to utilize a relatively small and lightweight filter if it is disposed externally of the inflator housing and properly orientated relative to the gas discharge apertures in the inflator housing. Moreover, external orientation of the filter in spaced relation to the gas discharge orifice of the inflator effects expansion and cooling of combustion gases, minimizes heating of the filter and minimizes pressure drop in the gases emanating from the inflator.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an elevational view, partially in section, of a driver side inflator.





FIG. 2

is an enlarged view taken with the circle 2 of FIG.


1


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)




As seen in

FIG. 1

of the drawing, a driver side airbag module


10


, comprises four major components, namely, a housing


12


having a rupturable frontal closure


14


, an airbag


16


and an inflator


18


having a propellant


20


therein. The inflator


18


comprises upper and lower cup-shaped sections


21


and


22


, respectively, that are welded together in inverted nested relationship. The upper housing section


21


of the inflator


18


contains a plurality of apertures


24


for effecting radial discharge of gas produced by the propellant


20


. The inflator


18


has a perforated and centrally disposed igniter support tube


30


welded therein for the support of an igniter


32


. The perforated tube allows a frame front generated by the igniter


32


to pass to the propellant


20


, thereby igniting propellant


20


and producing an inflating gas. The propellant


20


may be any known gas generant composition useful for airbag application and is exemplified by, but not limited to, compositions described in U.S. Pat. No. 5,035,757 herein incorporated by reference.




In accordance with the present invention, at least one annular filter


40


is disposed externally of the inflator


18


. The filter


40


comprises a fine wire mesh annulus that is retained by a combination filter retainer, airbag anchor, and combustion gas deflector


42


. A lower end portion


44


of the airbag


16


is folded radially inwardly under a radial flange


46


on the filter retainer


42


. A radially inwardly extending flange


48


on the filter retainer


42


secures the filter


40


in radially spaced relation to the upper wall section


21


of the inflator


18


. The filter


40


is readily obtainable by sources well known in the art.




In accordance with one feature of the invention, the gas discharge apertures


24


in the upper section


21


of the inflator


18


are radially aligned with the filter


40


. The high-velocity gas exiting the inflator


18


is volumetrically expanded and cooled in an annular space


50


between the upper wall section


21


of the inflator


18


and the filter


40


, prior to entering the filter


40


. Thus, given a reduction in velocity, the filter


40


can be fabricated from relatively fine, lightweight wire minimizing weight and maximizing its capability to filter fine particulates from the gas stream.




In one embodiment, for example, lightweight wire is exemplified but not limited to strands measuring from five to ten thousandths of an inch ({fraction (5/1000)} to {fraction (10/1000)} inches) in diameter, or less. The lightweight wire is then meshed together by methods well known in the art. Stated another way, lightweight wire filters are simply filters containing wires having a smaller diameter than those normally used in internal filters. Mesh filters are readily obtainable from companies such as Wayne Wire Cloth of Hillman, Mich. The filters can also be formed, for example, from sintered steel wool, or from loose metal fibers heated just below their melting point and then held at that temperature until the loose fibers are fused together.




As illustrated by the arrows in

FIG. 2

, the flange


48


on the filter retainer


42


redirects radial flow of the gas from the inflator


18


to axial flow into the airbag


16


.




In operation, gases generated by the propellant


20


exit apertures


24


and are cooled as they traverse annular space


50


and then radially impinge upon external filter


40


. As the gases migrate through the filter, the retainer


42


routes the inflating gases into the airbag


16


. In contrast to state-of-the-art inflators having an internal filter, the pressure drop of the gas leaving the filter is minimized while yet providing adequate filtration and cooling of the gas.




It will be understood that the foregoing description of the preferred embodiment of the present invention is for illustrative purposes only. As such, the various structural and operational features herein disclosed are susceptible to a number of modifications, none of which departs from the scope of the present invention as defined in the appended claims.



Claims
  • 1. An airbag module comprising:an inflator comprising a housing wherein said housing contains an upper section and a lower section but not a filter; a gas generating propellant contained within said housing; a plurality of apertures spaced about the periphery of said upper section; at least one annular filter in external and radially spaced relation to said housing thereby forming an annular space between said filter and said plurality of apertures, wherein said plurality of apertures are radially aligned with said filter; a filter retainer having a portion radially external of said filter for securing said filter; an airbag arranged to fluidly communicate with said plurality of apertures; and a radially inwardly extending flange integral to said filter retainer for directing a gas flow produced from said propellant to inflate an airbag.
  • 2. An airbag inflator comprising:a housing containing an upper section and a lower section but not a filter; a gas generating propellant contained within said housing; an igniter within said housing for igniting said propellant; a plurality of apertures spaced about the periphery of said upper section; at least one annular filter in external and radially spaced relation to said housing thereby forming an annular space between said filter and said plurality of apertures, wherein said plurality of apertures are radially aligned with said filter; a filter retainer having a portion radially external of said filter for securing said filter; and a radially inwardly extending flange integral to said filter retainer for directing gas flow produced from said propellant.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of provisional application Ser. No. 60/150,049 filed on Aug. 20, 1999.

US Referenced Citations (5)
Number Name Date Kind
5505488 Allard Apr 1996 A
5799973 Bauer, et al. Sep 1998 A
5806888 Adamini Sep 1998 A
6186541 Ruge et al. Feb 2001 B1
6189924 Hock Feb 2001 B1
Provisional Applications (1)
Number Date Country
60/150049 Aug 1999 US