The present invention generally relates to coatings and coating processes, and more particularly to a process for depositing erosion-resistant coatings on gas turbine engine blade components having airfoil surfaces that are susceptible to erosion damage.
Gas turbines, including gas turbine engines, generally comprise a compressor, a combustor within which a mixture of fuel and air from the compressor is burned to generate combustion gases, and a turbine driven to rotate by the combustion gases leaving the combustor. Both the compressor and turbine utilize blades with airfoils against which air (compressor) or combustion gases (turbine) are directed during operation of the gas turbine engine, and whose surfaces are therefore subjected to impact and erosion damage from particles entrained in the air ingested by the engine. Gas turbine engines are particularly prone to ingesting significant amounts of particulates when operated under certain conditions, such as in desert environments where sand ingestion is likely.
Though both are attributable to ingested particles, impact damage can be distinguished from erosion damage. For the purpose of characterizing impact and erosion damage, reference will be made to the airfoil portion 12 of a compressor blade 10 depicted in
Erosion damage is primarily caused by glancing or oblique particle impacts on the concave surface 20 of the airfoil 12, and tends to be concentrated in an area forward of the trailing edge 16, and secondarily in an area aft or beyond the leading edge 14. Such glancing impacts tend to remove material from the concave surface 20, especially near the trailing edge 16. The result is that the airfoil 12 gradually thins and loses its effective surface area due to chord length loss, resulting in a decrease in compressor performance of the engine.
Due to their location near the entrance of the engine, compressor blades suffer from both impact and erosion damage along their flowpath surfaces, particularly impact damage along their leading edges and erosion damage on their pressure (concave) surfaces. Consequently, airfoil surfaces of compressor blades are typically protected with a coating that may be deposited using various techniques, typically with a thermal spray processes such as plasma spraying and high velocity oxy-fuel (HVOF) deposition, though the use of physical vapor deposition (PVD) and chemical vapor deposition (CVD) is also employed. As known in the art, thermal spray processes generally involve the entrainment of particles in a high temperature and high velocity stream directed at a surface to be coated. The particles are sufficiently softened and deposit as “splats” to produce a coating having noncolumnar, irregular flattened grains and a degree of inhomogeneity and porosity. PVD processes such as sputtering and electron beam physical vapor deposition (EB-PVD) deposit coatings are microstructurally different from thermal spray coatings in terms of being denser and/or having columnar microstructures instead of irregular flattened grains.
The effectiveness of a protective coating on a blade is important since the blade must be removed from the engine if sufficient erosion or impact damage has occurred. Coating materials widely used to protect compressor blades are generally hard, erosion-resistant materials such as nitrides and carbides. For example, see U.S. Pat. No. 4,904,528 to Gupta et al. (titanium nitride (TiN) coatings), U.S. Pat. No. 4,839,245 to Sue et al. (zirconium nitride (ZrN) coatings), and U.S. Pat. No. 4,741,975 to Naik et al. (tungsten carbide (WC) and tungsten carbide/tungsten (WC/W) coatings). Hard coatings such as TiN have been used to alleviate damage to the surfaces of compressor blade airfoils, but the ceramic nature of these coatings makes them less capable of resisting impact damage by especially large particles impacting the coating on trajectories that are nearly perpendicular to their surfaces. An example of this is the leading edge or nose of an airfoil, where TiN is less effective. Greater impact resistance has been achieved with relatively thick coatings formed of tungsten carbide and chromium carbide (CrC and/or Cr3C2) applied by HVOF deposition processes to thicknesses of about 0.003 inch (about 75 micrometers). However, particles impacting at high impact angles and high impact velocities can cause the coating on the nose of the airfoil to be eroded away, after which the remaining coating on either side of the airfoil, both concave and convex, tends to retard the erosion of the adjacent metal. This problem can be very severe with thick HVOF coatings, leading to what has been termed bird beak, fish mouth, or bird mouth, and result in very unfavorable aerodynamic conditions that reduce the efficiency of the compressor. Finally, the required thickness of HVOF coatings can result in excessive weight that may negatively affect blade fatigue life (for example, high-cycle fatigue (HCF)). For these reasons, erosion-resistant coatings deposited by HVOF are often applied to only the pressure side of a blade near the blade tip.
If deposited by a PVD process such as sputtering or EB-PVD, hard erosion-resistant materials such as nitrides and carbides perform better in terms of erosion resistance when subjected to aggressive media such as crushed alumina and crushed quartz, which tend to have sharp corners and more irregular shapes than relatively round particles found in desert sands. In various tests, PVD coatings having thicknesses of about fifty micrometers and as little as about sixteen micrometers have performed favorably in comparison to HVOF coatings having thicknesses of about seventy-five micrometers. In contrast to the relatively heavy coatings deposited by HVOF, the PVD coatings are deposited on airfoil surfaces of compressor blades to have a uniform thickness. Thinner PVD coatings are less prone to the aforementioned bird beak, fish mouth, or bird mouth condition. However, the sensitivity of PVD coatings to the high impact erosion of large particles, impacting at high velocity and high impact angle, have been found to cause the degradation rate of these coatings to vary significantly in adjacent locations on the same airfoil. Nonuniform damage along the leading edge of a blade can lead to a condition called serrated leading edge, characterized by some areas of the leading edge being eroded at a rate similar to an uncoated airfoil, while adjacent areas of the leading edge appear to be in pristine condition.
A problem shared by both HVOF and PVD erosion-resistant coatings is the deterioration of the airfoil surface roughness due to erosion and particle ingestion, which if sufficiently severe can reduce the efficiency of the compressor. It is generally desirable to maintain a relatively low surface roughness, for example, about 16 microinches (about 0.4 micrometers) Ra or less.
The present invention provides a process for depositing coatings, and particularly erosion-resistant coatings suitable for protecting surfaces subjected to collisions with particles. The process is particularly well-suited for depositing a coating on a compressor blade of a gas turbine engine.
According to one aspect of the invention, a compressor blade of a gas turbine engine has an airfoil that comprises oppositely-disposed concave and convex surfaces, oppositely-disposed leading and trailing edges defining therebetween a chord length of the airfoil, a blade tip, and an erosion-resistant coating present on at least the concave surface but not on the convex surface within at least 20% of the chord length from the leading edge.
According to another aspect of the invention, a process is provided for depositing an erosion-resistant coating on a compressor blade of a gas turbine engine. The blade has an airfoil that comprises oppositely-disposed concave and convex surfaces, oppositely-disposed leading and trailing edges defining therebetween a chord length of the airfoil, and a blade tip, and the process involves placing the blade adjacent a coating material source in an apparatus configured to evaporate the coating material source and generate coating material vapors, and then depositing the erosion-resistant coating on at least the concave surface but not on the convex surface within at least 20% of the chord length from the leading edge.
A particular advantage of the process is the ability to selectively deposit a relatively thin coating on the concave (pressure) airfoil surface of a blade that is prone to erosion, while avoiding the convex (suction) surface of the blade at which particle impacts can lead to unfavorable aerodynamic surface conditions if the convex surface was protected by a hard erosion-resistant coating. The invention has the further advantage of being capable of depositing thinner PVD coatings as compared to coatings deposited by thermal spray processes such as HVOF. As a result, the coatings are well suited for use as protective coatings on compressor blades of gas turbine engines without contributing excessive weight or adversely affecting desirable properties of the blades.
Other aspects and advantages of this invention will be better appreciated from the following detailed description.
As previously described,
The blade 10 is formed of a material that can be formed to the desired shape and withstand the necessary operating loads at the intended operating temperatures of the gas turbine compressor in which the blades will be installed. Examples of such materials include metal alloys that include, but are not limited to, titanium-, aluminum-, cobalt-, nickel-, and steel-based alloys. When the blade 10 is installed in the compressor section of a gas turbine engine, the convex (suction) and concave (pressure) surfaces 18 and 20 of the blade 10 define what will be termed herein flowpath surfaces, in that they are directly exposed to the air drawn through the engine. The flowpath surfaces of the blade 10 are subject to impact and erosion damage from particles entrained in the ingested air. In particular, the leading edges 14 of the blade 10 are susceptible to impact damage from particles ingested into the engine, whereas the concave (pressure) surface 20 of the blade 10 is prone to erosion damage, particularly forward of the trailing edge 16, aft or beyond the leading edge 14, and near the blade tip 24. As will be explained below, a particular aspect of the invention is that impact and erosion damage can be minimized and aerodynamically favorable surface conditions can be better maintained by applying an erosion-resistant ceramic coating to only the concave surface 20 and nose 28 of the blade 10, and more preferably only the concave surface 20 of the blade 10.
The coating may be entirely composed of one or more ceramic compositions, and may be bonded to the blade substrate with a metallic bond coat. For example, in accordance with the teachings of commonly-assigned U.S. patent application Ser. No. 12/201,566 to Bruce et al., the ceramic coating may contain one or more layers of TiAlN, multiple layers of CrN and TiAlN in combination (for example, alternating layers), and one or more layers of TiSiCN, without any metallic interlayers between the ceramic layers. Such ceramic coatings preferably have a thickness of greater than sixteen micrometers, for example, about twenty-five to about one hundred micrometers. Coating thicknesses exceeding one hundred micrometers are believed to be unnecessary in terms of protection, and undesirable in terms of additional weight. If the ceramic coating is made up of TiAlN, the entire coating thickness can consist of a single layer of TiAlN or multiple layers of TiAlN, and each layer may have a thickness of about twenty-five to about one hundred micrometers. If the ceramic coating is made up of multiple layers of CrN and TiAlN, each layer may have a thickness of about 0.2 to about 1.0 micrometers, for example, about 0.3 to about 0.6 micrometers, to yield a total coating thickness of at least about three micrometers. If the ceramic coating is made up of TiSiCN, the entire coating thickness can consist of a single layer of TiSiCN or multiple layers of TiSiCN, and each layer may have a thickness of about fifteen to about one hundred micrometers. Other coatings, coating compositions, and coating thicknesses are also within the scope of the invention.
If a metallic bond coat is employed, the bond coat may be made up of one or more metal layers, for example, one or more layers of titanium and/or titanium aluminum alloys, including titanium aluminide intermetallics. The bond coat can be limited to being located entirely between the ceramic coating and the substrate it protects for the purpose of promoting adhesion of the ceramic coating to the substrate.
Coatings of this invention are preferably deposited by a physical vapor deposition (PVD) technique, and therefore will generally have a columnar and/or dense microstructure, as opposed to the noncolumnar, irregular, and porous microstructure that would result if the coating were deposited by a thermal spray process such as HVOF. Particularly suitable PVD processes include EB-PVD, cathodic arc PVD, and sputtering, with cathodic arc believed to be preferred. Suitable sputtering techniques include but are not limited to direct current diode sputtering, radio frequency sputtering, ion beam sputtering, reactive sputtering, magnetron sputtering, plasma-enhanced magnetron sputtering, and steered arc sputtering. Cathodic arc PVD and plasma-enhanced magnetron sputtering are particularly preferred for producing coatings due to their high coating rates. Depending on the coating composition to be deposited, deposition can be carried out in an atmosphere containing a source of carbon (for example, methane), a source of nitrogen (for example, nitrogen gas), or a source of silicon and carbon (for example, trimethylsilane, (CH3)3SiH) to form carbide, silicon, and/or nitride constituents of the deposited coating. The metallic bond coat and any other metallic layers are preferably deposited by performing the coating process in an inert atmosphere, for example, argon.
The coating is preferably deposited to have a surface roughness in the airflow direction of about 16 microinches (about 0.4 micrometers) Ra or less. The blade may undergo polishing to achieve this surface finish. Polishing of the airfoil can be performed before coating deposition to promote the deposition of a smooth coating, with additional polishing performed after coating deposition to ensure the desired surface roughness is obtained. Polishing can also be performed as an intermediate step of the coating process.
According to a preferred aspect of the invention, the difficulty of maintaining a relatively low surface roughness, for example, about 20 microinches (about 0.5 micrometers) Ra or less, over an extended time during the operation of the gas turbine engine is addressed in part on the determination that certain airfoil regions suffer impact and/or erosion damage that is more detrimental to aerodynamic performance if the damage occurs to a hard erosion-resistant coating than to the blade substrate. In other words, the present invention proposes that certain airfoil regions of the blade 10 (
The types of damage of particular interest are blunting of the leading edge 14 and serration of the leading edge 14 and nose 28 of the blade. Typically blunting observed on the leading edge 14 of an airfoil 12 protected by a PVD erosion-resistant coating is represented in
The present invention addresses blunting of the leading edge 14 by avoiding the deposition of erosion-resistant coating on the convex surface 18 of the airfoil 12, and optionally addresses serration of the leading edge 14 by further avoiding the deposition of erosion-resistant coating on the nose 28 of the airfoil 12. As a result, the deterioration of the airfoil leading edge 14, convex surface 18, and nose 28 is similar to that of an uncoated airfoil, which progresses more rapidly than would occur if these surfaces were protected with an erosion-resistant coating, but progresses more uniformly to maintain a relative smooth leading edge profile during deterioration. These remedies were the result of experimentation described below, which evidenced the effects of different coating coverages on the erosion resistance of compressor blades of the CFM56-7 gas turbine engine, manufactured by the General Electric Company.
The blade shown in
The blade shown in
The blade shown in
The “A” and “B” blades in
On the basis of the above results, it was concluded that a suitable thickness for a PVD erosion-resistant coating on the concave surface of a compressor airfoil is at least 16 micrometers, for example, 25 to 100 micrometers. A preferred coating thickness for the nose 28 of the airfoil 12 is believed to be less than 20 micrometers or less than 30% of the coating thickness on the concave surface 20 of the airfoil 12, whichever is less, and a preferred coating thickness for the convex surface 18 of the airfoil 12 is less than 10 micrometers or less than 20% of the coating thickness on the concave surface 20 of the airfoil 12, whichever is less. The selective deposition of the erosion-resistant coating can be achieved at least in part by exposing only the concave surface 20 of the airfoil 12 to the coating flux generated during a PVD process. Exposure of the convex surface 18 of the airfoil 12 to the coating flux is preferably avoided, and exposure of the nose 28 of the airfoil 12 to the coating flux is preferably minimized if not entirely avoided. In particular, it is preferred to prevent the deposition of coating on the portion of the convex surface 18 within at least 20% of the chord length from the nose 28. Though avoiding/minimizing the deposition of coating on the convex surface 18 and especially the nose 28 is expected to allow for leading edge erosion at a rate similar to that of an uncoated airfoil, better overall aerodynamic performance is believed to be maintained as a result of smoother transition from the coating-free nose 28 to the coating-free convex surface 18. The presence of the PVD erosion-resistant coating on the concave surface 20 and the trailing edge 16 of the airfoil 12 are believed to be sufficient to maintain an adequate chord length of the airfoil 12.
Selective deposition of the erosion-resistant coating can be accomplished by a motion arrangement during coating that minimizes exposure of the convex surface 18 and leading edge 14 of the airfoil 12 to the flux during the coating deposition process. For example,
Alternatively or in addition, physical shields or masks could be used to prevent deposition on the convex surfaces 18 of the airfoils 12 and optionally prevent or at least minimize deposition on the leading edges 14 of the airfoils 12. Also alternatively or in addition, the planetary unit 34 could provide cammed rotation of the airfoils 12 during coating to provide slow rotation when the concave surfaces 20 are exposed for coated, and fast rotation when the convex surfaces and noses of the airfoils 12 are exposed to the coating material sources 36. Still other options include locally stripping the coating from the convex surface 18 and nose 28 of the airfoils 12 after coating, and minimizing the adhesion of the coating at the convex surface 18 and nose 28 so that the coating will rapidly erode from the convex surface 18 and nose 28.
Preferably, the airfoil and coating are processed to obtain a surface roughness at 16 microinches (about 0.4 micrometer) Ra or less. The convex and concave surfaces 18 and 20 of the airfoil 12 can be polished before coating deposition, after coating deposition, and/or as an intermediate step of the coating process. The smoothness of the coating can be promoted by ensuring that the PVD coating chamber is clean to avoid the deposition of dust and particles during the evaporation process, and minimizing spits during the evaporation process, by which solid particles from the target are deposited on the airfoil surface as the result of an eruption of a molten region of the target. Other and additional surface preparations can be performed on the blade 10, including peening, degreasing, heat tinting, grit blasting, back sputtering, etc., to attain desirable surface conditions.
It is foreseeable that additional measures could be taken to reduce the deterioration rate of the erosion-resistant coating and the uncoated airfoil surfaces, and/or to ensure that the deterioration of the coating and airfoil surfaces progresses in a manner that maintains a relatively smooth surface finish. For example, coating chemistry and deposition parameters that affect coating density, strength, and elastic modulus could be effectively used for this purpose, as could be the choice of material for the airfoil substrate. Still other methods may be used to promote a low surface roughness for the coating and minimize the coating thickness and/or adhesion to the convex surface 18 and nose 28 of the airfoil 12.
While the invention has been described in terms of specific embodiments, it is apparent that other forms could be adopted by one skilled in the art. Therefore, the scope of the invention is to be limited only by the following claims.
This is a division patent application of co-pending U.S. patent application Ser. No. 12/547,066, filed Aug. 25, 2009. The contents of this prior application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12547066 | Aug 2009 | US |
Child | 14172435 | US |