1. Field of the Invention
The invention relates to the systems, devices and methods for creating and/or maintaining airway patency, for example, for treating snoring and/or sleep apnea.
2. Description of the Related Art
Snoring is very common among mammals including humans. Snoring is a noise produced while breathing during sleep causes vibration of the soft palate and uvula. Not all snoring is bad, except it bothers the bed partner or others near the person who is snoring. If the snoring gets worst overtime and goes untreated, it could lead to apnea.
Those with apnea stop breathing in their sleep, often hundreds of times during the night. Usually apnea occurs when the throat muscles and tongue relax during sleep and partially block the opening of the airway. When the muscles of the soft palate at the base of the tongue and the uvula relax and sag, the airway becomes blocked, making breathing labored and noisy and even stopping it altogether. Sleep apnea also can occur in obese people when an excess amount of tissue in the airway causes it to be narrowed.
In a given night, the number of involuntary breathing pauses or “apneic events” may be as high as 20 to 60 or more per hour. These breathing pauses are almost always accompanied by snoring between apnea episodes. Sleep apnea can also be characterized by choking sensations.
Sleep apnea is diagnosed and treated by primary care physician, pulmonologists, neurologists, or other physicians with specialty training in sleep disorders. Diagnosis of sleep apnea is not simple because there can be many different reasons for disturbed sleep.
The specific therapy for sleep apnea is tailored to the individual patient based on medical history, physical examination, and the results of polysomnography. Medications are generally not effective in the treatment of sleep apnea. Oxygen is sometimes used in patients with central apnea caused by heart failure. It is not used to treat obstructive sleep apnea.
Nasal continuous positive airway pressure (CPAP) is the most common treatment for sleep apnea. In this procedure, the patient wears a mask over the nose during sleep, and pressure from an air blower forces air through the nasal passages. The air pressure is adjusted so that it is just enough to prevent the throat from collapsing during sleep. The pressure is constant and continuous. Nasal CPAP prevents airway closure while in use, but apnea episodes return when CPAP is stopped or it is used improperly. Many variations of the CPAP devices are available and all have the same side effects such as nasal irritation and drying, facial skin irritation, abdominal bloating, mask leaks, sore eyes, and headaches. Some versions of CPAP vary the pressure to coincide with the person's breathing pattern, and other CPAPs start with low pressure, slowly increasing it to allow the person to fall asleep before the full prescribed pressure is applied.
Dental appliances that reposition the lower jaw and the tongue have been helpful to some patients with mild to moderate sleep apnea or who snore but do not have apnea. A dentist or orthodontist is often the one to fit the patient with such a device.
Some patients with sleep apnea may need surgery. Although several surgical procedures are used to increase the size of the airway, none of them is completely successful or without risks. More than one procedure may need to be tried before the patient realizes any benefits. Some of the more common procedures include removal of adenoids and tonsils (especially in children), nasal polyps or other growths, or other tissue in the airway and correction of structural deformities. Younger patients seem to benefit from these surgical procedures more than older patients.
Uvulopalatopharyngoplasty (UPPP) is a procedure used to remove excess tissue at the back of the throat (tonsils, uvula, and part of the soft palate). The success of this technique may range from 30 to 60 percent. The long-term side effects and benefits are not known, and it is difficult to predict which patients will do well with this procedure.
Laser-assisted uvulopalatoplasty (LAUP) is done to eliminate snoring but has not been shown to be effective in treating sleep apnea. This procedure involves using a laser device to eliminate tissue in the back of the throat. Like UPPP, LAUP may decrease or eliminate snoring but not eliminate sleep apnea itself. Elimination of snoring, the primary symptom of sleep apnea, without influencing the condition may carry the risk of delaying the diagnosis and possible treatment of sleep apnea in patients who elect to have LAUP. To identify possible underlying sleep apnea, sleep studies are usually required before LAUP is performed.
Somnoplasty is a procedure that uses RF to reduce the size of some airway structures such as the uvula and the back of the tongue. This technique helps in reducing snoring and is being investigated as a treatment for apnea.
Tracheostomy is used in persons with severe, life-threatening sleep apnea. In this procedure, a small hole is made in the windpipe and a tube is inserted into the opening. This tube stays closed during waking hours and the person breathes and speaks normally. It is opened for sleep so that air flows directly into the lungs, bypassing any upper airway obstruction. Although this procedure is highly effective, it is an extreme measure that is rarely used.
Patients in whom sleep apnea is due to deformities of the lower jaw may benefit from surgical reconstruction. Surgical procedures to treat obesity are sometimes recommended for sleep apnea patients who are morbidly obese. Behavioral changes are an important part of the treatment program, and in mild cases behavioral therapy may be all that is needed. Overweight persons can benefit from losing weight. Even a 10 percent weight loss can reduce the number of apneic events for most patients. Individuals with apnea should avoid the use of alcohol and sleeping pills, which make the airway more likely to collapse during sleep and prolong the apneic periods. In some patients with mild sleep apnea, breathing pauses occur only when they sleep on their backs. In such cases, using pillows and other devices that help them sleep in a side position may be helpful.
Recently, company—Restore Medical, Inc., Saint Paul, Minn. has developed a new treatment for snoring and apnea and the technique is called Pillar™ technique. Pillar™ System is a minimally invasive procedure where 2 or 3 small polyester rod type devices are placed in patient's soft palate. The Pillar™ System stiffens the palate and reduces the vibration of the tissue and prevents the possible airway collapse. Stiff implants in the soft palate could hinder patient's normal functions like speech, ability to swallow, coughing and sneezing. Protrusion in the airway is another long-term concern.
A new type of implant to treat patients with snoring and/or apnea is disclosed. An electroactive polymeric (EAP) device can be inserted in the soft palate and/or sidewalls of the patient's airway. The polymeric implant can have a very low stiffness under normal conditions. When the polymeric device is energized, the polymer can become stiff and tend to deform. The polymeric device, in its energized state, can have the ability to support the weight of the soft palate and sidewalls of the patient. When the charge is removed, the polymeric device can become soft and not interfere with the patient's normal activities like swallowing and speech.
Electroactive polymer (EAP) is a type of polymer that can respond to electrical stimulation by physical deformation, change in tensile properties and change in hardness. There are several types of electroactive polymers like dielectric electrostrictive polymer, ion exchange polymer and ion exchange polymer metal composite (IPMC). The particular type of EAP used in the making of the disclosed device can be any of the aforementioned electroactive polymers, such as IPMC.
IPMC is a polymer and metal composite that uses an ionomer as the base material. Ionomers are types of polymers that allow for ion movement through the membrane. There are several ionomers available in the market and some of the suited ionomers for this application are polyethylene, polystyrene, polytetrafluoroethylene, polyvinylidene fluoride, polyfluorosulfonic acid based membranes like NAFION® (from E.I. Du Pont de Nemours and Company, Wilmington, Del.), polyaniline, polyacrylonitrile, cellulose, cellulose acetates, regenerated cellulose, polysulfone, polyurethane, or combinations thereof. A conductive metal, for example gold, silver, platinum, palladium, copper, carbon, or combinations thereof, can be deposited on the ionomer to make the IPMC.
The IPMC element can be formed in many shapes, for example, a strip, rod, cylindrical tube, rectangular piece, triangular piece, trapezoidal shape, arch shapes, coil shapes, or combinations thereof. The IPMC element can have perforations or slots cut in them to allow tissue in growth.
One or more implants can be placed in the soft palate, sidewalls of the airway, around the trachea, in the tongue, in the uvula, or in combinations thereof. The implant can have lead wires (e.g., anode and cathode) attached to the surfaces. The lead wires can be connected to an induction coil. The induction coil can be implanted in the roof of the mouth. The patient can wear a specially fitted retainer type of device before going to bed every night. The retainer can have an induction coil, a circuit and a battery. When the patient wears the retainer, the induction coil in the retainer is aligned with the induction coil that is implanted in the roof of the mouth. The energy can be transmitted through the tissue and to the coil that is in the roof of the mouth. The IPMC implant can be energized, deform and stiffen to provide support. Patient can relax and sleep without the worry of the airway collapse in their sleep. In the morning when the patient wakes up, the patient can remove the retainer and place the retainer on a charging unit to recharge the battery.
The power supply 4 can be a power cell, a battery, a capacitor, a substantially infinite bus (e.g., a wall outlet leading to a power generator), a generator (e.g., a portable generator, a solar generator, an internal combustion generator), or combinations thereof. The power supply 4 can have a power output of from about 1 mA to about 5 A, for example about 500 mA.
The connecting element can be the wire lead 6, an inductive energy transfer system, a conductive energy transfer system, a chemical energy transfer system, an acoustic or otherwise vibratory energy transfer system, a nerve or nerve pathway, other biological tissue, or combinations thereof. The connecting element can be made from one or more conductive materials, such as copper. The connecting element can be completely or partially insulated and or protected by an insulator, for example polytetrafluoroethylene (PTFE). The insulator can be biocompatible. The power supply 4 can be in electrical communication with the patency element 8 through the connecting element. The connecting element can be attached to an anode 10 and a cathode 12 on the power supply 4. The connecting element can be made from one or more sub-elements.
The patency element 8 can be made from an electro-active polymer. The electro-active polymer can have an ion exchange polymer metal composite (IPMC). The IPMC can have a base polymer embedded, or otherwise appropriately mixed, with a metal. The IPMC base polymer can be perfluoronated polymer, polytetrafluoroethylene, polyfluorosulfonic acid, perfluorosulfonate, polyvinylidene fluoride, hydrophilic polyvinylidene fluoride, polyethylene, polypropylene, polystyrene, polyaniline, polyacrylonitrile, cellophane, cellulose, regenerated cellulose, cellulose acetate, polysulfone, polyurethane, polyvinyl alcohol, polyvinyl acetate and polyvinyl pyrrolidone, or combinations thereof. The IPMC metal can be platinum, gold, silver, palladium, copper, carbon, or combinations thereof.
The non-implanted portion 22 can be a closed circuit. The non-implanted portion 22 can have a second inductor 16 that can be in series with a resistor 30, the power supply 4, and a second capacitor 32. The capacitors, resistors, and, in-part, the inductors can be representative of the electrical characteristics of the wire of the circuit and not necessarily representative of specific elements.
The implanted portion 20 can be within tissue and have a tissue surface 33 nearby. The non-implanted portion can be in insulation material 35. An air interface 37 can be between the tissue surface 33 and the insulation material 35.
Method of Making
The patency element 8, for example an IPMC strip, can be made from a base material of an ionomer sheet, film or membrane. The ionomer sheet can be formed using ionomer dispersion.
IPMC can be made from the base ionomer of, for example, polyethylene, polystyrene, polytetrafluoroethylene, polyvinylidene fluoride (PVDF) (e.g., KYNAR® and KYNAR Flex®, from ATOFINA, Paris, France, and SOLEF®, from Solvay Solexis S.A., Brussels, Belgium), hydrophilic-PVDF (h-PVDF), polyfluorosulfonic acid based membranes like NAFION® (from E.I. Du Pont de Nemours and Company, Wilmington, Del.), polyaniline, polyacrylonitrile, cellulose, cellulose acetates, regenerated cellulose, polysulfone, polyurethane, and combinations thereof. The conductive material that is deposited on the ionomer can be gold, platinum, silver, palladium, copper, graphite, conductive carbon, or combinations thereof. Conductive material can be deposited on the ionomer either by electrolysis process, vapor deposition, sputtering, electroplating, or combination of processes.
The IPMC can be cut into the desired implant shape, such as those shown in
The patency element 8 can be insulated with electrical insulation coatings. The patency element 8 can be insulated with coatings that promote cell growth and minimize fibrosis, stop cell growth, or kill nearby cells. The patency element 8 can be insulated with a biocompatible material. The patency element 8 can be coated with polymers such as polypropylene, poly-L-lysine, poly-D-lysine, polyethylene glycol, povinyl alcohol, polyvinyl acetate, polymethyl methacrylate, or combinations thereof. The patency element can be coated with hyaluronic acid. The coating can be applied to the device by standard coating techniques like spraying, electrostatic spraying, brushing, vapor deposition, dipping, etc.
In one example, a perfluorosulfonate ionomer, PVDF or h-PVDF sheet can be prepared for manufacturing the patency element 8. The sheet can be roughened on both sides using, for example, about 320 grit sand paper and then about 600 grit sand paper. The sheet can then be rinsed with deionized water. The sheet can then be submerged in isopropyl alcohol (IPA), and subjected to an ultrasonic bath for about 10 minutes. The sheet can then be rinsed with deionized water. The sheet can then be boiled for about 30 minutes in hydrochloric acid (HCL). The sheet can then be rinsed and then boiled in deionized water for about 30 minutes.
The sheet can then be subject to ion-exchange (i.e., absorption). The sheet can be submerged into, or otherwise exposed to, a metal salt solution at room temperature for more than about three hours. Examples of the metal salt solution are tetraammineplatinum chloride solution, silver chloride solution, hydrogen tetrachloroaurate, tetraamminepalladium chloride monohydrate or other platinum, gold, silver, carbon, copper, or palladium salts in solution. The metal salt solution can have a concentration of greater than or equal to about 200 mg/100 ml water. 5% ammonium hydroxide solution can be added at a ratio of 2.5 ml/100 ml to the tetraammineplatinum chloride solution to neutralize the solution. The sheet can then be rinsed with deionized water.
A primary plating can then be applied to the sheet. The sheet can be submerged in water at about 40° C. A 5% solution by weight of sodium borohydride and deionized water can be added to the water submerging the sheet at 2 ml/180 ml of water. The solution can stir for 30 minutes at 40° C. The sodium borohydride solution can then be added to the water at 2 ml/180 ml of water and the solution can stir for 30 minutes at 40° C. This sodium borohydride adding and solution stirring can be performed six times total. The water temperature can then be gradually raised to 60° C. 20 ml of the sodium borohydride solution can then be added to the water. The solution can stir for about 90 minutes. The sheet can then be rinsed with deionized water, submerged into 0.1N HCl for an hour, and then rinsed with deionized water.
The sheet can then receive a second plating. The sheet can be submerged or otherwise exposed to a tetraammineplatinum chloride solution at a concentration of about 50 mg/100 ml deionized water. 5% ammonium hydroxide solution can be added at a rate of 2 ml/100 ml of tetraammineplatinum chloride solution. 5% by volume solution of hydroxylamine hydrochloride in deionized water can be added to the tetraammineplatinum chloride solution at a ratio of 0.1 of the volume of the tetraammineplatinum chloride solution. 20% by volume solution of hydrazine monohydrate in deionized water can be added to the tetraammineplatinum chloride solution at a ratio of 0.05 of the volume of the tetraammineplatinum chloride solution. The temperature can then be set to about 40° C. and the solution can be stirred.
A 5% solution of hydroxylamine hydrochloride can then be added at a ratio of 2.5 ml/100 ml of tetraammineplatinum chloride solution. A 20% solution of hydrazine monohydrate solution can then be added at a ratio of 1.25 ml/100 ml tetraammineplatinum chloride solution. The solution can be stirred for 30 minutes and the temperature set to 60° C. The above steps in this paragraph can then be repeated three additional times. The sheet can then be rinsed with deionized water, boiled in HCl for 10 minutes, rinsed with deionized water and dried.
The polymer base can be dissolved in solvents, for example dimethyl acetamide, acetone, methylethyle ketone, toluene, dimethyl carbonate, diethyl carbonate, and combinations thereof. The solvent can then be allowed to dry, producing a thin film. While the solution is wet, a low friction (e.g., glass, Teflon) plate can be dipped into the solution and removed. The coating on the plate can dry, creating a thin film. The plate can be repeatedly dipped into the solution to increase the thickness of the film.
Polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate or combinations thereof can be added to a PVDF solution before drying, thus contributing hydrophilic properties to PVDF and can improve ion migration through the polymer film during manufacture. Dye or other color pigments can be added to the polymer solution
Method of Using
The second inductor 16 can be worn by the patient in the mouth 82. The second inductor 16 can be connected to an integral or non-integral power supply. The second inductor 16 can be one or multiple induction coils. The second inductor 16 can inductively transmit RF energy to the first inductor 18. The first inductor 18 can change the RF energy into electricity. The first inductor 18 can send a charge or current along the wire leads 6 to the patency elements 8. The patency elements 8 can be energized by the charge or current. The energized patency elements 8 can increase the stiffness and/or alter the shape of the patency elements 8. The energized patency elements 8 can create and or maintain patency of the airway around which the patency elements 8 are implanted.
The non-energized patency elements 8 can be configured to conform to the airway around which the patency elements 8 are implanted. The non-energized patency elements 8 can be flexible and soft.
It is apparent to one skilled in the art that various changes and modifications can be made to this disclosure, and equivalents employed, without departing from the spirit and scope of the invention. Elements shown with any embodiment are exemplary for the specific embodiment and can be used on other embodiments within this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4978323 | Freedman | Dec 1990 | A |
5015538 | Krause et al. | May 1991 | A |
5117816 | Shapiro et al. | Jun 1992 | A |
5176618 | Freedman | Jan 1993 | A |
5199424 | Sullivan et al. | Apr 1993 | A |
5245995 | Sullivan et al. | Sep 1993 | A |
5268082 | Oguro et al. | Dec 1993 | A |
5284161 | Karell | Feb 1994 | A |
5479944 | Petruson | Jan 1996 | A |
5509888 | Miller | Apr 1996 | A |
5520849 | Eiffler | May 1996 | A |
5522382 | Sullivan et al. | Jun 1996 | A |
5551418 | Estes et al. | Sep 1996 | A |
5823187 | Estes et al. | Oct 1998 | A |
5873363 | Esmailzadeh | Feb 1999 | A |
RE36120 | Karell | Mar 1999 | E |
5901704 | Estes et al. | May 1999 | A |
5904141 | Estes et al. | May 1999 | A |
5970975 | Estes et al. | Oct 1999 | A |
5979456 | Magovern | Nov 1999 | A |
5980998 | Sharma et al. | Nov 1999 | A |
5988171 | Sohn et al. | Nov 1999 | A |
6048383 | Breault et al. | Apr 2000 | A |
6092523 | Belfer et al. | Jul 2000 | A |
6098629 | Johnson et al. | Aug 2000 | A |
6109852 | Shahinpoor et al. | Aug 2000 | A |
6124965 | Doi et al. | Sep 2000 | A |
6190893 | Shastri et al. | Feb 2001 | B1 |
6212435 | Lattner et al. | Apr 2001 | B1 |
6250307 | Conrad et al. | Jun 2001 | B1 |
6257234 | Sun et al. | Jul 2001 | B1 |
6376971 | Pelrine et al. | Apr 2002 | B1 |
6379393 | Mavroidis et al. | Apr 2002 | B1 |
6390096 | Conrad et al. | May 2002 | B1 |
6401717 | Conrad et al. | Jun 2002 | B1 |
6408851 | Karell | Jun 2002 | B1 |
6415796 | Conrad et al. | Jul 2002 | B1 |
6431174 | Knudson et al. | Aug 2002 | B1 |
6439238 | Brenzel et al. | Aug 2002 | B1 |
6450169 | Conrad et al. | Sep 2002 | B1 |
6453905 | Conrad et al. | Sep 2002 | B1 |
6454803 | Romo, III | Sep 2002 | B1 |
6467485 | Schmidt et al. | Oct 2002 | B1 |
6475639 | Shahinpoor et al. | Nov 2002 | B2 |
6502574 | Stevens et al. | Jan 2003 | B2 |
6513530 | Knudson et al. | Feb 2003 | B2 |
6513531 | Knudson et al. | Feb 2003 | B2 |
6514237 | Maseda | Feb 2003 | B1 |
6516806 | Knudson et al. | Feb 2003 | B2 |
6523541 | Knudson et al. | Feb 2003 | B2 |
6523542 | Knudson et al. | Feb 2003 | B2 |
6523543 | Conrad et al. | Feb 2003 | B2 |
6524736 | Sompalli et al. | Feb 2003 | B1 |
6529777 | Holmstrom et al. | Mar 2003 | B1 |
6540860 | Suzuki | Apr 2003 | B1 |
6545384 | Pelrine et al. | Apr 2003 | B1 |
6546936 | Knudson et al. | Apr 2003 | B2 |
6569654 | Shastri et al. | May 2003 | B2 |
6578580 | Conrad et al. | Jun 2003 | B2 |
6583533 | Pelrine et al. | Jun 2003 | B2 |
6586859 | Kornbluh et al. | Jul 2003 | B2 |
6601584 | Knudson et al. | Aug 2003 | B2 |
6601585 | Conrad et al. | Aug 2003 | B1 |
6613203 | Hobson et al. | Sep 2003 | B1 |
6618627 | Lattner et al. | Sep 2003 | B2 |
6619290 | Zacco et al. | Sep 2003 | B1 |
6626181 | Knudson et al. | Sep 2003 | B2 |
6628040 | Pelrine et al. | Sep 2003 | B2 |
6629527 | Estes et al. | Oct 2003 | B1 |
6634362 | Conrad et al. | Oct 2003 | B2 |
6636767 | Knudson et al. | Oct 2003 | B1 |
6664718 | Pelrine et al. | Dec 2003 | B2 |
6667825 | Lu et al. | Dec 2003 | B2 |
6679836 | Couvillon, Jr. | Jan 2004 | B2 |
6707236 | Pelrine et al. | Mar 2004 | B2 |
6742524 | Knudson et al. | Jun 2004 | B2 |
6748951 | Schmidt | Jun 2004 | B1 |
6749556 | Banik | Jun 2004 | B2 |
6768246 | Pelrine et al. | Jul 2004 | B2 |
6770027 | Banik et al. | Aug 2004 | B2 |
6781284 | Pelrine et al. | Aug 2004 | B1 |
6812624 | Pei et al. | Nov 2004 | B1 |
6835173 | Couvillon, Jr. | Dec 2004 | B2 |
6955172 | Nelson et al. | Oct 2005 | B2 |
7073505 | Nelson et al. | Jul 2006 | B2 |
7188627 | Nelson et al. | Mar 2007 | B2 |
7216648 | Nelson et al. | May 2007 | B2 |
7360542 | Nelson et al. | Apr 2008 | B2 |
7367340 | Nelson et al. | May 2008 | B2 |
20020173848 | Sachs et al. | Nov 2002 | A1 |
20030015198 | Heeke et al. | Jan 2003 | A1 |
20030113535 | Sun et al. | Jun 2003 | A1 |
20030140930 | Knudson et al. | Jul 2003 | A1 |
20030149445 | Knudson et al. | Aug 2003 | A1 |
20030149488 | Metzger et al. | Aug 2003 | A1 |
20030192556 | Conrad et al. | Oct 2003 | A1 |
20030196669 | Conrad et al. | Oct 2003 | A1 |
20030212306 | Banik | Nov 2003 | A1 |
20030236531 | Couvillon, Jr. | Dec 2003 | A1 |
20040016433 | Estes et al. | Jan 2004 | A1 |
20040019368 | Lattner et al. | Jan 2004 | A1 |
20040020497 | Knudson et al. | Feb 2004 | A1 |
20040020498 | Knudson et al. | Feb 2004 | A1 |
20040045555 | Nelson et al. | Mar 2004 | A1 |
20040045556 | Nelson et al. | Mar 2004 | A1 |
20040049102 | Nelson et al. | Mar 2004 | A1 |
20040073272 | Knudson et al. | Apr 2004 | A1 |
20040112390 | Brooks et al. | Jun 2004 | A1 |
20040134491 | Pflueger et al. | Jul 2004 | A1 |
20040139975 | Nelson et al. | Jul 2004 | A1 |
20040149290 | Nelson et al. | Aug 2004 | A1 |
20040172054 | Metzger et al. | Sep 2004 | A1 |
20050004417 | Nelson et al. | Jan 2005 | A1 |
20050115572 | Brooks et al. | Jun 2005 | A1 |
20050121039 | Brooks et al. | Jun 2005 | A1 |
20050159637 | Nelson et al. | Jul 2005 | A9 |
20050199248 | Pflueger et al. | Sep 2005 | A1 |
20050268919 | Knudson et al. | Dec 2005 | A1 |
20050284485 | Nelson et al. | Dec 2005 | A9 |
20070186936 | Nelson et al. | Aug 2007 | A1 |
20080066764 | Paraschac et al. | Mar 2008 | A1 |
20080066765 | Paraschac et al. | Mar 2008 | A1 |
20080066766 | Paraschac et al. | Mar 2008 | A1 |
20080066767 | Paraschac et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
4412190 | Oct 1995 | DE |
0312368 | Apr 1989 | EP |
0743076 | Nov 1996 | EP |
1306104 | May 2003 | EP |
WO 8810108 | Dec 1988 | WO |
WO 9611653 | Apr 1996 | WO |
WO 9726039 | Jul 1997 | WO |
WO 0213738 | Feb 2002 | WO |
WO03030727 | Apr 2003 | WO |
WO 03041612 | May 2003 | WO |
WO 03065947 | Aug 2003 | WO |
WO 03107523 | Dec 2003 | WO |
WO 2004043288 | May 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060060207 A1 | Mar 2006 | US |