Alkaline zinc-nickel bath

Information

  • Patent Grant
  • 8486235
  • Patent Number
    8,486,235
  • Date Filed
    Friday, October 1, 2010
    14 years ago
  • Date Issued
    Tuesday, July 16, 2013
    11 years ago
Abstract
The anode is separated from the alkaline electrode to avoid undesirable secondary reactions in an alkali zinc nickel electroplating bath.
Description
BACKGROUND OF THE INVENTION

The invention relates to an electroplating bath for plating zinc-nickel coatings, having an anode, a cathode and an alkaline electrolyte.


It is known to coat electrically conductive materials with zinc-nickel alloys in order to improve their resistance to corrosion. To do this, it is customary to use an acidic electrolyte bath, for example, with a sulfate, chloride, fluoropromate [sic] or sulfamate electrolyte. In these processes, it is very difficult and, in practice, generally impossible, in terms of control technology, to achieve a uniform thickness of the zinc-nickel coating on the material to be coated.


For this reason, the alkaline zinc-nickel electroplating baths which are disclosed in German Patent 37 12 511 have recently been used, having, for example, the following composition:















11.3
g/l ZnO


4.1
g/1 NiSO4*6H2O


120
g/l NaOH


5.1
g/l polyethyleneimine.









The amines contained in the electroplating bath serve as complex formers for the nickel ions, which are otherwise insoluble in the alkaline medium. The composition of the baths varies depending on the manufacturer.


The electroplating baths are usually operated with insoluble nickel anodes. The zinc concentration is kept constant by the addition of zinc and the nickel concentration is kept constant by the addition of a nickel solution, for example, a nickel sulfate solution. However, after they have been operating for a few hours, the color of these baths changes from what was originally blue-violet to brown. After a few days or weeks, this discoloration becomes more intense and it is possible to detect a separation of the bath into two phases, the upper phase being dark brown. This phase causes considerable disruption to the coating of the workpieces, such as, for example, nonuniform layer thickness or blistering. It is therefore imperative for the bath to be continuously cleaned, i.e., for this layer to be skimmed off continuously. However, this is time-consuming and expensive.


Furthermore, after a few weeks of operation it is possible to detect cyanide in the baths. Cyanide pollution requires regular cleaning of the bath and special wastewater treatment, which has a considerable effect on the operating costs of the bath. This applies all the more so if the wastewater has a very high concentration of organics and, with a COD value of approximately 15,000 to 20,000 mg/l, makes cyanide detoxification more difficult. It is then only possible to adhere to statutory wastewater parameters (nickel 0.5 ppm and zinc 2 ppm) by the extensive addition of chemicals.


The formation of the second phase is attributable to a reaction of the amines, which in alkaline solution are converted at the nickel anodes to form nitriles (including to form cyanide). Moreover, on account of the amines being broken down, fresh complex former has to be continuously added to the bath, which increases the costs of the process.


Anodes other than nickel anodes cannot be used, since they dissolve in the alkaline electrolyte, which also has adverse effects on the quality of the coating.


BRIEF SUMMARY OF THE INVENTION

In view of this background, the invention is based on the problem of providing an alkaline zinc-nickel electroplating bath which provides high-quality zinc-nickel coatings at low cost.


To solve this problem, the invention proposes separating the anode from the alkaline electrolyte by an ion exchange membrane.


This separation prevents the amines from reacting at the nickel anode, with the result that there are no undesirable secondary reactions which cause waste disposal problems or lead to a second phase of reaction products being deposited on the bath and adversely affect the quality of the zinc-nickel coating. The invention obviates the need for this layer to be skimmed off at high cost and to renew the bath. Furthermore, there is a considerable improvement in the quality of the coating.


The use of a cation exchange membrane made from a perfluorinated polymer has proven particularly advantageous, since such membranes have a negligible electrical resistance but a high chemical and mechanical resistance.


Furthermore, the cyanide poisoning of the wastewater no longer takes place, thus considerably simplifying the entire wastewater treatment. Furthermore, there is no need to top up the complex former in the electrolyte, since it is no longer broken down and its concentration in the bath remains approximately constant. As a result, the cost of the process becomes considerably less expensive.


In the solution according to the invention, the zinc-nickel bath functions as catholyte. The anolyte used may, for example, be sulfuric acid or phosphoric acid. In the electroplating cell according to the invention, customary anodes, such as, for example, platinum-coated titanium anodes, are suitable as anode material, since they are no longer exposed to the basic zinc-nickel bath.


The present invention is explained in more detail with reference to the exemplary embodiment illustrated in the drawing, in which:





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 shows the diagrammatic structure of an electroplating bath according to the invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows an electroplating cell 1 which has an anode 2 and a cathode 3, which is the workpiece to be coated. The catholyte 4 surrounding the cathode is alkaline and consists of a zinc-nickel electroplating bath of known composition, in which amines are added as complex formers for the nickel ions. The anolyte 5 surrounding the anode 2 may, for example, consist of sulfuric acid or phosphoric acid. Anolyte 5 and catholyte 4 are separated from one another by a perfluorinated cation exchange membrane 6. This membrane 6 allows unimpeded flux of current through the bath but prevents the catholyte 4, in particular the amines contained therein, from coming into contact with the anode 2, thus preventing the reactions which were extensively described in the introduction to the description, including the adverse effects of these reactions.

Claims
  • 1. Alkaline electroplating cell (1) for plating zinc-nickel coatings, having an anode (2) a cathode (3) and an alkaline electrolyte comprising amines, wherein the anode is separated from the alkaline electrolyte by an ion exchange membrane (6).
  • 2. Electroplating cell (1) according to claim 1, wherein the ion exchange membrane(6) comprises a perfluorinated cation ion exchange membrane.
  • 3. Electroplating cell (1) according to claims 1 or 2, characterized by sulfuric acid, phosphoric acid, methanesulfonic acid, amidosulfonic acid and/or phosphonic acid as anolyte (5).
  • 4. Electroplating cell (1) according to one of claims 1 or 2, wherein the anode comprises a platinum-coated titanium anode.
Priority Claims (1)
Number Date Country Kind
198 34 353 Jul 1998 DE national
US Referenced Citations (13)
Number Name Date Kind
3660170 Rampel May 1972 A
3718549 Du Rose et al. Feb 1973 A
4192908 Himy et al. Mar 1980 A
4469564 Okinaka et al. Sep 1984 A
4832812 Brown May 1989 A
4889602 Oshima et al. Dec 1989 A
5162079 Brown Nov 1992 A
5310465 Vaughan May 1994 A
5403460 Sala et al. Apr 1995 A
5405523 Eckles Apr 1995 A
5417840 Block et al. May 1995 A
5883762 Calhoun et al. Mar 1999 A
6602394 Hillebrand Aug 2003 B1
Foreign Referenced Citations (24)
Number Date Country
925 264 Mar 1955 DE
33 10 730 Mar 1984 DE
40 35 316 May 1992 DE
37 12 511 Jun 1995 DE
0410919 Jan 1991 EP
0483937 Oct 1991 EP
1 349 735 Apr 1974 GB
1 602 404 Nov 1981 GB
58093886 Jun 1983 JP
58093899 Jun 1983 JP
59193295 Nov 1984 JP
2175894 Jul 1990 JP
04-009493 Jan 1992 JP
4017693 Jan 1992 JP
04-052296 Feb 1992 JP
04-44374 Apr 1992 JP
4176893 Jun 1992 JP
04-259393 Sep 1992 JP
5009776 Jan 1993 JP
5009799 Jan 1993 JP
5128533 May 1993 JP
10130878 May 1998 JP
WO9840539 May 1998 JP
PCTEP9905443 Oct 2000 WO
Non-Patent Literature Citations (5)
Entry
Makoto Nonomura, Cyanide Formation in an Alkaline noncyanide Zinc Plating Bath, Jun. 1994.
A.V. Ryabchenkov, Electrodeposition of zinc-nickel Alloys from electrolytes Containing Polyethylenepolyamine as a Complexing Agent, Nov. 16, 1972.
A. Moebius, Maintenance of Electroplating and Pickling Baths—The Key for the Minimization of Waste, Jan. 1993.
Wayne Roberts, Inert Anode for Chloride Zinc Plating, Jan. 1997.
Von Andreas Zahl, Sulingen, Quo vadis Galvanotechnik, Mar. 4, 1998.
Related Publications (1)
Number Date Country
20110031127 A1 Feb 2011 US
Divisions (1)
Number Date Country
Parent 09744706 US
Child 10618352 US
Continuations (2)
Number Date Country
Parent 12030750 Feb 2008 US
Child 12896673 US
Parent 10618352 Jul 2003 US
Child 12030750 US