All-terrain vehicle

Abstract
An ATV is shown having a steering system comprised of a power steering unit having drive and driven pitman arms coupled to a drag link. The drive pitman arm is laterally offset from a vehicle centerline and is driven by the power steering unit. An alternate power steering system includes a pack and pinion subassembly coupled to a power steering motor, which then couples to steering arms of the ATV.
Description
BACKGROUND OF THE DISCLOSURE

The present disclosure generally relates to an ALL TERRAIN VEHICLE (ATV) and, more particularly, to an ATV having improved ergonomics and performance.


Generally, ATVs are used to carry one or two passengers and a small amount of cargo over a variety of terrains. Due to increasing recreational interest in ATVs, specialty ATVs, such as those used for trail riding, racing, and cargo hauling have entered the market place. Most ATVs include an engine including between one and three cylinders. Most ATVs include a straddle or saddle type seat positioned above the engine.


SUMMARY OF THE DISCLOSURE

In one example of the invention, a method of making multiple widths of all-wheel drive vehicles is described which includes the steps of providing a frame having a front portion and a rear portion; providing a power train and coupling the power train to the frame, the power train comprising a primary motive unit, a transmission, a front final drive, a rear final drive and couplings between the transmission and the front and rear final drives; providing a plurality of front and rear suspension components of different lengths; providing a plurality of front and rear half shafts of different lengths; selecting sets of front and rear suspension components and front and rear half shafts to define a measured distance from a longitudinal centerline of the vehicle; and providing front and rear wheels, where a distance measured from outside the front and rear wheels is different for the different sets.


In another illustrative embodiment, an all-terrain vehicle (ATV) comprises a frame; ground engaging members supporting the frame, including front and rear ground engaging members; front right and left suspensions; front wheel steering mechanisms including right and left knuckles pivotally coupled to the respective front right and left suspension; a power steering unit coupled to the frame, the power steering unit including an output shaft which is laterally offset from a vertical centerline of the vehicle; right and left steering arms coupled to respective right and left knuckles, and a linkage coupling the output shaft to the steering arms, where the right and left steering arms are substantially the same length.


In another illustrative embodiment, an all-terrain vehicle (ATV) comprises a frame; ground engaging members supporting the frame, including front and rear ground engaging members; front right and left suspensions; front wheel steering mechanisms including right and left knuckles pivotally coupled to the respective front right and left suspension; a first stop member positioned on each of the front right and left suspension; and a second stop member positioned on each of the right and left knuckles; wherein the first and second stop members cooperate to provide extreme rotational positions.


In another embodiment includes an all-terrain vehicle (ATV) comprising a frame; ground engaging members supporting the frame, including front and rear ground engaging members; front right and left suspensions; a power steering unit coupled to the frame; a steering post providing torsional input to the power steering unit; a steering system support bracket coupled to the frame for supporting the power steering unit; and a steering stop coupled between the steering shaft and the steering system support bracket, to provide extreme rotational positions of the steering shaft.


Finally, in another embodiment, an all-terrain vehicle (ATV) comprises a frame; ground engaging members supporting the frame, including front and rear ground engaging members; front right and left suspensions; a power steering unit coupled to the frame, the power steering unit comprising a power steering motor having an output shaft and a rack and pinion subassembly coupled to the power steering unit, the rack and pinion subassembly having a housing and a pinion gear driving coupled by the output shaft, and a rack drivingly coupled to the pinion gear; a steering post providing torsional input to the power steering unit; and steering arms coupled to the rack; wherein torsional input to the power steering unit causes rotation of the output shaft and pinion, and linear movement of the rack and steering arms.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described by way of reference to the drawing figures, where:



FIG. 1 is a front left perspective view of the ATV of the present disclosure;



FIG. 2 is a right rear perspective view of the ATV of FIG. 1;



FIG. 3 is a left side view of the ATV;



FIG. 4 is a right side view of the ATV;



FIG. 5 is a top view of the ATV;



FIG. 6 is a front view of the ATV;



FIG. 7 is a rear view of the ATV;



FIG. 8 is a front left perspective view of the frame for the ATV of FIGS. 1-7;



FIG. 9 is a right rear perspective view of the frame of FIG. 8;



FIG. 10 is a front left perspective view of a 55″ wide version of the ATV showing the front suspension and steering system;



FIG. 11 is a front view of the ATV front suspension and steering system of FIG. 10;



FIG. 12 is an enlarged rear view of the right-hand suspension system of FIG. 11;



FIG. 13 is a front left perspective view of the wheel hub shown in FIG. 12;



FIG. 14 is an exploded view of the wheel hub coupling to the lower A-arm of FIG. 13;



FIG. 15 is a right rear perspective view of the ATV shown in FIG. 10;



FIG. 16 is an underside perspective view of the suspension and steering system;



FIG. 17 is an underside perspective view showing the electric power steering unit mounting and the steering arm linkage;



FIG. 18 is an exploded view of the electric power steering unit mounting and steering linkage of FIG. 17;



FIG. 19 shows a rear right perspective view of the steering linkage of FIG. 18;



FIG. 20 is a rear left perspective view of the linkage of FIG. 19;



FIG. 21 is a lower perspective view showing the driven pitman arm together with the steering stop;



FIG. 22 is an underside view showing the suspension of a 55″ wide ATV;



FIG. 23 shows a view similar to that of FIG. 22 showing the suspension of a 48″ wide ATV;



FIG. 24 shows a bottom view of the left side suspension of a 55″ wide ATV;



FIG. 25 shows a bottom view of the left side suspension of a 48″ wide ATV;



FIG. 26 shows a rear view of the rear suspension of a 55″ wide ATV;



FIG. 27 shows a bottom view of the suspension of FIG. 24;



FIG. 28 shows a rear view of the 48″ rear suspension;



FIG. 29 shows a bottom view of the suspension of FIG. 26;



FIG. 30 shows a right rear perspective view of the right rear wheel hub;



FIG. 31 shows a left rear perspective view of the mounting of the rear final drive and the frame of the ATV;



FIG. 32 shows a right rear perspective view showing the engine mounting together with the exhaust routing for the ATV frame;



FIG. 33 shows a front left perspective view of the ATV muffler of FIG. 32;



FIG. 34 shows a right rear view of the muffler of FIG. 31;



FIG. 35 shows a rear left perspective view of the hitch mount on the ATV;



FIG. 36 is a front view of an alternate rack and pinion steering system;



FIG. 37 is a left hand side view of the rack and pinion steering system of FIG. 36;



FIG. 38 is a bottom view of the rack and pinion steering system of FIG. 36;



FIG. 39 is a left rear view of a riser block assembly usable with the handle bars; and



FIG. 40 is an exploded view of the assembly of FIG. 39.





Corresponding reference characters indicate corresponding parts throughout the several views. Unless stated otherwise the drawings are proportional.


DETAILED DESCRIPTION OF THE DRAWINGS

With reference first to FIGS. 1-7, the ATV of the present disclosure will be described in greater detail. As shown, ATV is shown generally at 2 and comprises front wheels 4 and rear wheels 6. Front wheels 4 include rims 8 and tires 10, whereas rear wheels 6 include rims 12 and tires 14. Wheels 4 and 6 support a frame 20 which in turn supports a front body portion 22, a rear body portion 24 including a rack 26, a seat 28 and a mid-body portion 30 including a foot well 32. ATV 2 includes a steering system 36 including handlebars 38 for steering ATV 2, as described herein. A pod 40 is coupled to handlebars 38 and includes a headlight 42 (FIG. 1) and a control display 44 (FIG. 2). ATV 2 further comprises a powertrain 50 (FIG. 3) including an exhaust system 52 (FIG. 2). Finally, ATV 2 includes a front suspension system 56 (FIG. 6) and a rear suspension 58 (FIG. 7).


As will be disclosed herein, ATV 2 can be provided in two widths, that is a 48″ width and a 55″ width. In accordance with the present disclosure, the frame 20, body components 22, 24 and 30, and powertrain 50 are identical for the two vehicle widths. Rather, the front and rear suspensions 56, 58 interchange to provide the wider vehicle, as disclosed herein.


With reference now to FIGS. 8 and 9, frame 20 will be described in greater detail. As shown, frame 20 includes a front frame portion 70, a rear frame portion 72, a foot support portion 74 and a seat support portion 76. Frame 20 is generally defined by longitudinally extending tubes 80 having horizontal sections 80a, which turn upwardly and forwardly at portions 80b and turn upwardly and rearwardly at portions 80c. A removable forging 82 is provided on the driver's side of the vehicle, such that removal provides an access opening for installing or servicing components of the ATV. Foot support portion 74 is defined by a U-shaped tube 84 coupled to the two portions 80a and including mounting brackets 86. Seat support portion 76 is defined by longitudinally extending tubes 90 which couple at the top ends of frame tube portions 80b and 80c. Front ends of tubes 90 terminate in a cross brace 94, while tubes 90 support a rear cross brace 96.


Front frame portion 70 includes front tubes 96 extending upwardly from a cross brace 98 to couple to a front side of cross brace 94. Upright tubes 100 extend upwardly from cross brace 98 and couple with tubes 96. Tubes 102 extend longitudinally between tube portions 80b and tubes 100, and support a steering system support bracket 110, as described further herein. Bracket 110 includes a lower bracket portion 112 fixed to tubes 102, for example, by welding. Frame 20 further includes lower tubes 114 which couple between tubes 80 and a front brace 116, where brace 116 includes an upright portion 118 which couples to cross brace 98. Four attachment brackets are provided for mounting of the front suspension 56, namely, a front lower bracket 126, a lower rear bracket 128, an upper front bracket 130 and an upper rear bracket 132. These same brackets 126, 128, 130 and 132 are replicated on the right hand side in a mirror image configuration.


Rear frame portion 72 includes lower tubes 140 coupled to tubes 80a which extend rearwardly, while longitudinal tubes 142 extend rearwardly from a cross tube 146. Vertical tubes 148 extend upwardly between tubes 142 and 90. Braces 150 extend upwardly between tubes 140 and 142 and provide a first attachment point 156 (FIG. 9) for a rear lower coupling for the rear suspension 58 and an upper coupling point 160 for the rear suspension 58. A front lower bracket 166 is coupled to each of the tubes 140 for a front lower coupling point of rear suspension 58, while an upper bracket 170 provides coupling for a front upper coupling point for rear suspension 58. A muffler support 172 is positioned at a rear of the frame 20 and straddles frame members 142, and includes apertures 174.


Finally and with respect to seat support portion 76, a forging 180 is provided, interrupting a length of the passenger side tube 90 which couples to cross braces 182 and which is removable for the assembly and/or servicing of the vehicle components, such as powertrain components.


With reference now to FIGS. 10-16, the front suspension 56 of the 55″ vehicle will be described. With reference first to FIG. 10, a front end of the vehicle is shown without the wheels and the front body 22 which exposes the front suspension 56 and frame 20. A front drive 190 is also shown to drive the front wheels 4 from the powertrain. As is known, at the front end of the vehicle, the steering system 36, the front suspension 56 and the front drive 190 all cooperate together.


As shown in FIG. 10, front suspension 56 includes a lower left A-arm 200, upper left A-arm 202, lower right A-arm 204 and upper right A-arm 206. Shock absorbers 208 and 210 couple between upper A-arms 202, 206 and upper brace 94, respectively. Inner ends of lower left A-arm 200 couple to coupling points 126, 128 (FIG. 8), while inner ends of upper left A-arm 202 couple to coupling points 130, 132 (FIG. 8). Right A-arms 204, 206 are likewise coupled to like coupling points of the frame 20 on the right-hand side. As shown best in FIG. 12, upper A-arms 202 and 206 have an upwardly directed bend at 220 which is profiled to provide clearance for steering arm 222. As will be discussed further herein, steering arm 222 is coupled at an inner end to a motor of the steering system 36, and is coupled at its outer end to knuckle 224. Knuckle 224 is coupled to A-arms 204, 206 by way of pins 230, 232. Knuckle 224 includes an extension 234 which couples to threaded posts 236 of steering arm 222. Wheel hubs 240 are provided having studs 242 for mounting wheels 4.


As shown best in FIG. 13, hub 240 includes a constant velocity joint 250 having an inner profiled geometry 252 which is suitable for driving by way of a half shaft (or constant velocity (CV) shaft) 256 (FIG. 10), as is known in the art. Inner ends of half shafts 256 likewise include drive portions to be driven by constant velocity couplings 260 (FIG. 10) from the drive unit 190. As shown best in FIGS. 13 and 14, knuckle 224 includes an integrated stop member 266 in the form of an arcuate slot having extreme contact surfaces 268 and 270 (FIG. 14). Meanwhile, lower right A-arm 204 includes a coupling 276 having an opening at 278 which is received over pin 230 to receive a castellated nut 280 (FIG. 13) to couple lower A-arm 204 to knuckle 224. As shown, coupling 276 includes an integrated stop member 284 defining an upstanding post having a shark fin geometry, whereby hub 224 can rotate about an axis defined by pins 230, 232 to the extreme positions where surface 268 or 270 contacts stop member 284.


The forging also makes contact at a 45° angle instead which increased the strength significantly. This design is lighter and gives greater control to the stop. The shark fin 284 is wider at the base 284a, as compared to the top 284b, (see FIG. 14) which allows a progressive steering stop and limits the steering angle as the wheel travels downward to protect the half shafts 256 (FIG. 10) at suspension full extension.


With reference now to FIGS. 15-21, steering system 36 will be described in greater detail. With reference first to FIG. 15, steering system 36 includes a steering post 300 extending downwardly from handlebars 38 (FIG. 1) to a power steering motor 302. As shown best in FIG. 17, steering system support bracket 110 further comprises an upper bracket portion 304. Steering motor 302 is coupled to bracket portion 304 (FIG. 16), which in turn couples to lower bracket portion bracket 112 (FIG. 15). With reference now to FIGS. 17 and 18, the mounting of steering motor 302 will be described in greater detail. As shown best in FIG. 18, power steering motor 302 includes a motor portion 310 and an output portion 312 having a splined drive shaft 314 extending through a bearing cap 316. Four threaded bosses 318 are provided for coupling to bracket 304. As shown, bracket 304 includes an upper plate 320 having a bracket tab 322 extending from one end thereof having apertures 324 and 326. At the opposite end, a bracket sidewall is provided at 330 having apertures at 332 (FIG. 17). Plate portion 320 includes an enlarged aperture at 336 (FIG. 19) which fits over bearing cap 316, as best shown in FIG. 17. Plate portion 320 further includes apertures 340 (FIG. 19) which align with the threaded bosses 318 to receive fasteners 344 therethrough coupling bracket 304 to a lower side of steering motor 302, as shown best in FIG. 18.


As should be appreciated, when bracket 304 is coupled to the bottom of steering motor 302, splined shaft 314 protrudes through aperture 336. A drive pitman arm 350 is provided having a coupling 352 having an inner spline 356 (FIG. 19). Pitman arm 350 includes an arm portion 360 having an aperture 362 adjacent a free end of the arm 360 and an aperture 364 intermediate aperture 362 and shaft portion 370. Shaft portion 370 is received in a bearing assembly 376 having a plate portion 378 (FIG. 21) including a rotatable stop portion 380 having stop surfaces 380a and 380b with a bearing 384 extending therethrough. Bearing assembly 376 can be coupled to lower bracket 110 as described herein. Lower bracket 112 includes a plate portion 400 (FIG. 18) having an aperture at 402 to receive bearing portion 384. Plate portion 400 includes square apertures 404 which align with square apertures 406 on bearing assembly 376 which, as can be appreciated, receive carriage bolts therethrough to couple the bearing assembly 376 to the plate portion 400.


As shown best in FIG. 21, drive pitman arm 350 includes a stop member 410 which rotates between the extreme portions of surfaces 380a and 380b under the influence of splined shaft 314. Finally, drive pitman arm 350 includes a groove 416 (FIG. 21) to receive a snap ring 418 (FIG. 18), therein which retains the shaft portion 370 in the bearing 384, and the pitman arm 350 to the splined shaft 314. The steering stop 380, 410 on the post protect the CV shafts 256 primarily, the post stop protects the wheels 4 from contacting the bodywork during neutral suspension position. The plate 380 is interchangeable and allows adjustment of the stop position which is important at the neutral position when larger tires are desired.


As shown best in FIG. 18, a driven pitman arm is shown at 420 which is similarly constructed as pitman arm 350, however it does not have a splined shaft as it is driven by pitman arm 350. Rather, pitman arm 420 includes a cylindrical bearing portion 422 having a through opening at 424. Pitman arm 420 also includes an arm portion 428 having apertures 430 and 432. As shown best in FIG. 18, bracket 112 includes a portion 440 (FIGS. 18-19), which is coupled to tubes 102 having upper plate portion 442 having an aperture 444 aligned with aperture 446 of lower plate portion 400. Thus, as shown in FIGS. 19, 20, driven pitman arm 420 can be coupled between bracket portions 112, 304 by way of a fastener 450 extending through aperture 326 of tab portion 322 extending downwardly through aperture 424 of driven pitman arm 420 and through apertures 444, 446 of bracket portion 112. A complementary fastener 452 may be coupled to fastener 450 to retain driven pitman arm 420 in place.


With reference still to FIGS. 18 and 19, drive and driven pitman arms 350, 420 are coupled together by way of a drag link 460, where drag link 460 includes a bar portion 462 having couplings 464 at each end. Each coupling 464 includes an aperture 466 which align with apertures 362 and 430 to receive fasteners 470 therethrough. Fasteners 470 couple with fasteners 472 to retain drag link 460 in a coupling relationship with the drive pitman arm 350 and driven pitman arm 420, as shown best in FIG. 19.


Finally, with respect to FIG. 18, steering arms 222 each include a ball joint 500 having a threaded end 502, where each of the threaded ends 502 is received in one of the apertures 364 or 432. Thus, as should be appreciated, input from the splined shaft 314 to drive pitman arm 350 causes a like rotation of the driven pitman arm 420 by way of drag link 460, which in turn causes transverse movement of the steering arms 222 in a push-pull relationship with the pitman arms 350, 420 depending upon the direction of rotation.


With reference now to FIGS. 11 and 16, further features of the steering system will be described. As shown best in FIG. 11, the steering shaft 300 extends along a non-vertical axis 510 with respect to vertical axis 512 to provide an angular offset β1, where β1=approximately 8.5°, but could be in a range from 5°-12°, and more particularly from 7°-10°. This positions the center of the left inner ball joint 500 (FIG. 16) at a left vertical position 516. As shown in FIG. 11, vertical position 516 is offset from the vertical center line 520 and the vertical center 522 of the right inner ball joint 500 is laterally offset from vertical center line 520 as well. As shown, left inner ball joint 500 is offset from the vertical center line 520 by a distance of 526, whereas the right inner ball joint 500 is offset from the vertical center line 520 by a distance of 528, where distances 526 and 528 are equal, and are equal to 3.25″, but could be in a range from 2″-5. Thus, the laterally offset steering motor in combination with the drag link 460 eliminates the bump steer that is introduced into the suspension.


Furthermore, with reference to FIGS. 16 and 19, each of the arm portions 360 and 428 of respected pitman arms 350 and 420 include portions skewed at 360a and 428a relative to a horizontal axis 530 such that portions 462a and 462b of drag link 460 form angles β2 relative to horizontal axis 530, where β2=15°, but could be in range from 10°-20°.


With reference now to FIGS. 22 and 23, the front suspension of the 48″ and 55″ vehicles will be distinguished. With reference first to FIG. 22, ATV 2 is in the form of the 55″ vehicle where a distance from outer faces of wheel hubs 240 is shown by a lateral distance X1, where X1=49″. In this way, the distance X1 plus the width dimensions of the tires would approximate the 55″ width vehicle. It should also be understood that the suspension as described with respect to FIGS. 10-16, depict the 55″ vehicle such that the upper and lower A-arms 200, 202; 204, 206 relate to the 55″ vehicle. The half shafts 256 are also of a different length to accommodate the wider vehicle. As shown in FIG. 22, the wheel hubs 240 are positioned further forward relative to the frame 20 such that the half shafts 256 sweep forward relative to a horizontal center line 540 through the couplings 260. As shown, the half shafts 256 are swept forward by an angle β3, where β3=2.8°, but could be in a range from 0°-5°.


With reference now to FIG. 23, the front suspension for the 48″ vehicle is shown at 56′, where the front suspension 56′ includes left A-arms 200′ and 202′ and right A-arms 204′ and 206′. The half shafts 256′ are also of a different length to accommodate the lateral difference between the couplings 260 and the hubs 240. As shown, the lateral distance between front faces of the hubs 240 is X2, such that the distance X2 plus the width of the wheels equates to the 48″ vehicle. As shown, X2=42″. As also shown in FIG. 23, the half shafts 256′ are swept rearwardly relative to the lateral center line 540 such that an angle β4 is defined which reduces the wheel base of the vehicle relative to the 55″ vehicle described in FIG. 22. As shown, the steering system 36 of the 48″ and 55″ vehicle are identical with the exception that the steering arms 22′ of the 48″ vehicle are somewhat shorter to accommodate the width difference of the vehicles. As also shown, β4=7.4°, but could be in a range from but could be in a range from 5°-10°.


With reference now to FIGS. 24 and 25, the front suspension of the 48″ and 55″ vehicles will be described. With reference first to FIG. 24, the 55 inch vehicle is shown where the front left wheel is turned to the maximum left position, to a rotation of β5=35°. Due to the fact that the half shafts 256 sweep forward on the 55″ vehicle (FIG. 22) the first contact between the CV joint 250 (FIG. 13) and the half shaft 256, would be at the rearward side of the CV joint 250. Thus the upstanding post 284 on the 55″ vehicle contacts the rear contact surface 270 to form the extreme position for the 55″ vehicle.


With reference now to FIG. 25, the 48 inch vehicle is shown where the front left wheel is turned to the maximum right position, to a rotation of β6=35°. Due to the fact that the half shafts 256′ sweep rearward on the 48″ vehicle (FIG. 23) the first contact between the CV joint 250 (FIG. 13) and the half shaft 256′, would be at the forward side of the CV joint 250. Thus the upstanding post 284 on the 48″ vehicle contacts the front contact surface 268 to form the extreme position for the 48″ vehicle.


It should also be understood that the knuckles 224, hubs 240 and the couplings 276 are identical for the 48″ and 55″ vehicles and that the stops 268, 270 are defined for providing the extreme position for both vehicles.


With reference now to FIGS. 26-31, the rear suspension 58 of the ATV 2 will be described. With reference first to FIGS. 24 and 25, the suspension of the 55″ vehicle will be described. As shown, the suspension 58 is comprised of a left lower A-arm 550, a left upper A-arm 552, a lower right A-arm 554 and a right upper A-arm 556. The left A-arms 550, 552 are coupled to a knuckle 560 which retains a left rear wheel hub 562. Wheel hub 562 is driven by a rear left half shaft 564. The right A-arms 554 and 556 are coupled to a right rear knuckle 570 and a right rear wheel hub 572 where wheel hub 572 is driven by a right rear half shaft 574. A torsion bar 580 couples the lower A-arms 550, 554 by way of vertical posts 582. As shown, half shafts 564, 574 are driven by couplings 586 of a final drive 590.


With reference now to FIGS. 28 and 29, the rear suspension 58′ for the 48″ vehicle will be described. As with the front suspension, the majority of the components of the vehicle remain the same, but the left A-arms 550′, 552′ and half shaft 564′ are replaced to compensate for the vehicle width. Similarly, the right-hand side suspension is also changed with lower A-arm 554′, upper A-arm 556′ and half shaft 574′ having the reduced dimensions like the left-hand side. The torsion bar 580′ is also different to accommodate the width of the vehicle.


With reference now to FIG. 28, the coupling between the A-arms and the knuckle will be described. As shown in FIG. 28, the right rear suspension is shown where A-arms 554 and 556 are coupled to knuckle 570. This is also the same knuckle and wheel hub used on the 48″ vehicle and mirror images of the left-hand side wheel hub. The knuckle 570 includes a single elongate coupling 590 at the upper end thereof for coupling to upper A-arm 556 and includes two lower couplings at 592 for attachment of A-arm couplings 594. Wheel hub 572 includes a constant velocity joint 600 extending through the knuckle 570 which includes a drive profile 602 for matching with a constant velocity joint on half shaft 574. As shown in FIG. 28, the coupling points 592 are raised relative to the constant velocity coupling 600 such that the top of the coupling points 594 are higher than the inner geometry 602.


With reference now to FIG. 31, the rear final drive 590 is shown mounted in the rear frame portion 72 positioned above frame tubes 140 and below frame tubes 142. Rear suspension mounts 150, 166 and 170 are shown in greater detail. Final drive 590 is shown positioned adjacent to forging 82 which may be removed to access the final drive 590.


With respect now to FIGS. 32-35, the exhaust system 52 will be described in greater detail. As shown, exhaust system 52 includes an exhaust pipe 610 coupled to engine 612 at a front end thereof, and extending rearwardly past continuously variable transmission (CVT) 614 to an elbow 616, and then to a front end of muffler 620. As shown, muffler is centered in the vehicle frame 20 above tube 146, intermediate tubes 80c and below tubes 90. As shown best in FIG. 32, muffler 620 includes a muffler mounting post 630, having post portions 632 extending into apertures 174 (FIG. 35) of muffler mount 172. The muffler 620 is centrally mounted because with the extended travel of suspension the muffler 620 cannot be packaged in the wheel well at full rebound/jounce.


It should be understood that the vehicle 2 includes front and rear drive shafts coupled between U-joint 634 of front drive 190 (FIG. 15) and output U-joint 635 (FIG. 32); and between U-joint 636 of rear drive 590 (FIG. 31) and output U-joint 638 (FIG. 32). The drive shafts are similar to those described in U.S. Pat. No. 9,873,316, the subject matter of which is incorporated herein by reference.


With reference now to FIGS. 36-38, an alternate steering system is shown as a rack and pinion system 640 which is an alternative to the steering system shown in FIG. 18. Rack and pinion system 640 utilizes the power steering motor 302 as disclosed in the embodiment of FIG. 18, but couples to it a rack and pinion subassembly 642. As shown, subassembly 642 includes a housing 644 having bearing covers 646 and 648 housing bearings 650, 652. Bearings 650 and 652 support a stub shaft 656 which includes a splined internal shaft which couples to splined drive shaft 314 of power steering motor 310. A pinion 660 is coupled to stub shaft 656, and as best shown in FIG. 38, pinion 660 has an arcuate shape at 662 having gear teeth which mesh with teeth 664 of a rack 666. The rack includes couplers 668 which couple to steering arms 222 (FIG. 18) as opposed to the utilization of pitman arms 350, 420. Thus, as shown in FIG. 38, when pinion 660 rotates in a clockwise direction, rack 666 moves linearly in the direction of arrow 670 and when pinion 660 rotates in a counterclockwise direction, rack 666 moves linearly in the direction of arrow 672.


With reference now to FIGS. 39 and 40, a steering riser block assembly 680 and an adjustable instrument cluster 682 will be described herein. As shown, riser block assembly 680 is coupled to an alternate steering arm 684 having a T-shaped post at 686. Riser block assembly 680 includes the main body portion 690, which in the disclosed embodiment is an aluminum block extruded in the direction of apertures 692 in post 694. Block 690 includes an upper surface 696 and a lower surface 698 which receives upper clamps 700 and lower clamps 702 respectively. Lower clamps 702 include an arcuate opening at 706 for placement against T-shaped post 686 whereby fasteners 708, 710 may be utilized to attach clamps 702 to bottom surface 698 trapping T-shaped post 686 therebetween. Lower end of main body portion 690 includes an arcuate opening at 712 to receive the T-shaped post 686. It should be appreciated that a lower end of aperture 692 is threaded, to receive threads on fasteners 708.


As shown best in FIG. 40, instrument cluster 682 includes a bracket 716 including a lower plate portion 718 having apertures 720. Apertures 720 align with apertures 722 of upper clamps 700. Thus, fasteners 726 may be received through apertures 720 of bracket 716, through apertures 722 of clamps 700 into the upper end of apertures 692. It should be appreciated that the upper ends of apertures 692 are also threaded to receive threads on fasteners 726. Thus, when bracket 716 is coupled to riser block 690, handlebar 740 is coupled therebetween and upper clamps 700 and riser block 690 grips a knurled surface 742 to retain the position of the handlebars 740. Upper end on main housing 690 includes an arcuate opening 744 and clamp 700 includes an arcuate opening 745 to grip knurled surface 742. Bracket 716 includes a plurality of bracket arms 746, 748, 750 which allows coupling of upper housing 760 of pod 682 by way of fasteners 762 to bracket 716.


Thus, given the geometry of the riser block 690, the riser block 690 may rotate towards and away from the rider on T-shaped post 686 which moves handlebars 740 towards or away from the rider to accommodate the ergonomic feel for different sized riders. This also adjusts the pod 682 to accommodate different sized riders. Furthermore, the riser block 690 allows the handlebars 740 to be rotated downwardly in a stored or shipped position as shown in the phantom lines of FIG. 39.


While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

Claims
  • 1. A method of making multiple widths of all-wheel drive vehicles, comprising the steps of: providing a frame having a front portion and a rear portion;providing a power train and coupling the power train to the frame, the power train comprising a primary motive unit, a transmission, a front final drive, a rear final drive and couplings between the transmission and the front and rear final drives;providing a plurality of front and rear suspension components of different lengths;providing a plurality of front and rear half shafts of different lengths;selecting sets of front and rear suspension components and front and rear half shafts to define a measured distance from a longitudinal centerline of the vehicle;providing front and rear wheels, where a distance measured from outside the front and rear wheels is different for the different sets;providing front knuckles coupling the front wheels to the selected front suspension components; andproviding steering stops usable with all of the plurality of front suspension components of different lengths.
  • 2. The method of claim 1, further comprising the steps of: providing a power steering unit;providing a plurality of steering arms of different lengths; andselecting a steering arm to cooperate with the set of front and rear suspension components and front and rear half shafts.
  • 3. The method of claim 1, wherein: providing the plurality of front and rear suspension components of different lengths includes providing first front and rear suspension components having a first length and providing second front and rear suspension components having a second length; andproviding the plurality of front and rear half shafts of different lengths includes providing first front and rear half shafts having a first length and providing second front and rear half shafts having a second length, wherein, together, the first front and rear suspension components and the first front and rear half shafts provide a first width vehicle and, together, the second front and rear suspension components and the second front and rear half shafts provide a second width vehicle, where the first width is less than the second width.
  • 4. The method of claim 3, wherein on the first width vehicle, the first front and rear half shafts sweep rearwardly to define a first wheelbase of the first width vehicle.
  • 5. The method of claim 4, wherein on the second width vehicle, the second front and rear half shafts sweep forwardly to define a second wheelbase of the second width vehicle, wherein the first wheelbase is less than the second wheelbase.
  • 6. The method of claim 5, wherein the steering stops are comprised of a first stop member positioned on each of the front right and left suspension; and a second stop member positioned on each of the right and left knuckles; wherein the first and second stop members cooperate to provide extreme rotational positions.
  • 7. The method of claim 6, wherein one of the first and second stop members is defined as an upstanding post.
  • 8. The method of claim 7, wherein the other of the first and second stop members is defined as an arcuate slot in which the upstanding post rotates, the arcuate slot includes stop surfaces profiled for contacting sides of the upstanding post, wherein the upstanding post contacts different stop surfaces of the arcuate slot for the first and second vehicle.
  • 9. The method of claim 3, wherein the first width vehicle has a maximum width in the range of 45-51″.
  • 10. The method of claim 9, wherein the first width vehicle has a maximum width of 48″.
  • 11. The method of claim 3, wherein the second width vehicle has a maximum width in the range of 52-58″.
  • 12. The method of claim 11, wherein the second width vehicle has a maximum width of 55″.
  • 13. The method of claim 1, wherein the frame is defined by upper and lower longitudinally extending tubes.
  • 14. The method of claim 13, wherein the front and rear suspension components are defined by upper and lower A-arms extending generally transversely from the frame.
  • 15. An all-terrain vehicle (ATV), comprising: a frame;ground engaging members supporting the frame, including front and rear ground engaging members;front right and left suspension;a front wheel steering mechanism comprising right and left knuckles pivotally coupled to the respective front right and left suspension;a power steering unit coupled to the frame, the power steering unit including an output shaft which is laterally offset from a vertical centerline of the vehicle;right and left steering arms coupled to respective right and left knuckles, and a linkage coupling the output shaft to the steering arms, where the right and left steering arms are substantially the same length;the linkage comprising: a drive pitman arm coupled to the output shaft at a first end, and coupled to one of the front right or left steering arms at a second end;a driven pitman arm coupled to the drive pitman arm by way of a drag link;wherein the steering arms are coupled to the drive and driven pitman arms at a first location, and the drag link is coupled to the drive and driven pitman arms at a second location.
  • 16. The ATV of claim 15, wherein the power steering unit output shaft is laterally offset on a left hand side of the vertical centerline of the vehicle.
  • 17. The ATV of claim 15, wherein the front right and left suspension each includes an upper and lower A-arm, and the upper A-arm is defined by front and rear tubular members, wherein the rear tubular member is jogged upwardly to prove clearance over the steering arms.
  • 18. The ATV of claim 15, wherein the front wheel steering mechanism further comprising a steering post coupled to the power steering unit, and further comprising a riser block coupled to the steering post and a steering actuation member coupled to the riser block, the riser block being movable forwardly and rearwardly to adjust the position of the steering actuation member.
  • 19. The ATV of claim 18, wherein the steering actuation member is a handle bar.
  • 20. The ATV of claim 15, wherein the first location is intermediate a point of rotation for the drive and driven pitman arms and the second location.
  • 21. An all-terrain vehicle (ATV), comprising: a frame;ground engaging members supporting the frame, including front and rear ground engaging members;front right and left suspensions;front wheel steering mechanisms including right and left knuckles pivotally coupled to the respective front right and left suspension;a power steering unit coupled to the frame, the power steering unit including an output shaft which is coupled to the right and left knuckles for steering;a first stop member positioned on each of the front right and left suspension; anda second stop member positioned on each of the right and left knuckles;wherein the first and second stop members cooperate to provide extreme rotational positions, and one of the first and second stop members is defined as an upstanding post and the other of the first and second stop members is defined as an arcuate slot in which the upstanding post rotates.
  • 22. The ATV of claim 21, wherein the arcuate slot includes stop surfaces profiled for contacting sides of the upstanding post.
  • 23. The ATV of claim 22, wherein the upstanding post is in the profile of a shark fin.
  • 24. The ATV of claim 23, wherein the front right and left suspension each include a first A-arm coupled to the right and left knuckles, and the upstanding post and arcuate slot are positioned adjacent to an intersection of the knuckle and the A-arm.
  • 25. The ATV of claim 24, wherein the upstanding post is positioned on the A-arm adjacent the knuckle.
  • 26. The ATV of claim 25, wherein the upstanding post is progressively thinner from a position adjacent the A-arm upwardly towards an end thereof.
  • 27. An all-terrain vehicle (ATV), comprising: a frame;ground engaging members supporting the frame, including front and rear ground engaging members;front right and left suspensions; anda power steering unit coupled to the frame at a position directly adjacent the front right and left suspensions, the power steering unit comprising: a power steering motor having an output shaft wherein the power steering motor is coupled to the frame at a position directly adjacent the front right and left suspensions;a rack and pinion subassembly having a housing and a pinion gear drivingly coupled by the output shaft, and a rack drivingly coupled to the pinion gear;wherein the pinion gear has an arcuate shape defined by a first linear side, a second linear side, and a curved end extending between the first and second linear sides;a steering post providing torsional input to the power steering unit; andsteering arms coupled to the rack;wherein torsional input to the power steering unit causes rotation of the output shaft and pinion gear, and linear movement of the rack and steering arms.
  • 28. The ATV of claim 27, wherein the power steering unit further comprises a stub shaft operably coupled to the output shaft, and the pinion gear is operably coupled with the stub shaft and the output shaft.
  • 29. The ATV of claim 28, wherein the housing of the rack and pinion subassembly includes at least one bearing, and the stub shaft is supported by the at least one bearing.
US Referenced Citations (416)
Number Name Date Kind
610132 Goodridge Aug 1898 A
2309432 Alden Jan 1943 A
2553795 Staude May 1951 A
2672103 Hohmes Mar 1954 A
2834608 Wixson May 1958 A
3259211 Ryskamp Jul 1966 A
3336074 Barnes Aug 1967 A
RE26775 Smieja Jan 1970 E
3688856 Boehm Sep 1972 A
3712398 Althaus Jan 1973 A
3712416 Swanson Jan 1973 A
3814201 O'Brien Jun 1974 A
3833253 Butler Sep 1974 A
3840082 Olson Oct 1974 A
3856323 Aming Dec 1974 A
3858902 Howells Jan 1975 A
3917310 Mitsuishi Nov 1975 A
3933213 Trowbridge Jan 1976 A
3966014 Gowing Jun 1976 A
3969895 Krizman Jul 1976 A
RE28922 Lloyd, III Aug 1976 E
3977493 Richardson Aug 1976 A
4027892 Parks Jun 1977 A
4045075 Pulver Aug 1977 A
4079807 Hornagold Mar 1978 A
4089542 Westerman May 1978 A
4098414 Abiera Jul 1978 A
4222453 Fixsen Sep 1980 A
4254746 Chiba Mar 1981 A
4314618 Tamura Feb 1982 A
4339156 Livesay Jul 1982 A
4340124 Leonard Jul 1982 A
4407386 Yasui Oct 1983 A
4442913 Grine Apr 1984 A
4561323 Stromberg Dec 1985 A
4577716 Norton Mar 1986 A
4626024 Swann Dec 1986 A
4627512 Clohessy Dec 1986 A
4657271 Salmon Apr 1987 A
4679450 Hayakawa Jul 1987 A
4686433 Shimizu Aug 1987 A
4695089 Fukutomi Sep 1987 A
4700982 Kuraoka Oct 1987 A
4782912 Wandless Nov 1988 A
4821825 Somerton-Rayner Apr 1989 A
4858722 Abe Aug 1989 A
4917207 Yasui Apr 1990 A
4934737 Nakatsuka Jun 1990 A
4987965 Bourret Jan 1991 A
5010970 Yamamoto Apr 1991 A
5020616 Yagi Jun 1991 A
5021721 Oshita Jun 1991 A
5027915 Suzuki Jul 1991 A
5036939 Johnson Aug 1991 A
5042835 Burns Aug 1991 A
5057062 Yamasaki Oct 1991 A
5060745 Yasui Oct 1991 A
5078225 Ohmura Jan 1992 A
5078229 Kikuchi Jan 1992 A
5107951 Kawamura Apr 1992 A
5205371 Karnopp Apr 1993 A
5251713 Enokimoto Oct 1993 A
5253730 Hayashi Oct 1993 A
5327989 Furuhashi Jul 1994 A
5370198 Karpik Dec 1994 A
5393194 Smith Feb 1995 A
5429290 Greene Jul 1995 A
5588660 Paddison Dec 1996 A
5692579 Peppel Dec 1997 A
5692759 Flynn Dec 1997 A
5697332 Masahiro Dec 1997 A
5704866 Pritchard Jan 1998 A
5708238 Asao Jan 1998 A
5727643 Kawano Mar 1998 A
5753300 Wessels et al. May 1998 A
5779272 Panek Jul 1998 A
5842732 Daggett Dec 1998 A
5860486 Boivin Jan 1999 A
5863277 Melbourne Jan 1999 A
5881834 Karpik Mar 1999 A
5887671 Yuki Mar 1999 A
5904216 Furusawa May 1999 A
5944134 Peppel Aug 1999 A
5947217 Snare Sep 1999 A
5950750 Dong Sep 1999 A
5971434 Neufeld Oct 1999 A
6029750 Carrier Feb 2000 A
6070689 Tanaka Jun 2000 A
6092877 Rasidescu Jul 2000 A
6126227 Romolo Oct 2000 A
6149540 Johnson Nov 2000 A
6161853 Jung Dec 2000 A
6161908 Takayama Dec 2000 A
6199894 Anderson Mar 2001 B1
6206124 Mallette Mar 2001 B1
6227323 Ashida May 2001 B1
6283241 Kubota Sep 2001 B1
6293605 Neubrand Sep 2001 B2
6321864 Forbes Nov 2001 B1
6343578 Kerkau Feb 2002 B1
6378645 Uegane Apr 2002 B1
6379411 Turner Apr 2002 B1
6390219 Vaisanen May 2002 B1
6412797 Park Jul 2002 B1
6416108 Elswick Jul 2002 B1
6431569 Handa Aug 2002 B2
6461208 Suzuki Oct 2002 B2
6467561 Boivin Oct 2002 B1
6467787 Marsh Oct 2002 B1
6478098 Boivin Nov 2002 B2
6520284 Spannbauer Feb 2003 B2
6551385 Turner Apr 2003 B2
6554665 Kaneko Apr 2003 B1
RE38124 Mallette May 2003 E
6557530 Benson May 2003 B1
6557922 Hommel May 2003 B1
6568030 Watanabe May 2003 B1
6595309 Savage Jul 2003 B1
6622968 St. Clair Sep 2003 B1
6626258 Forbes Sep 2003 B1
6631778 Mallette Oct 2003 B2
6695083 Nakamura Feb 2004 B2
6695566 Rodriguez Navio Feb 2004 B2
6715460 Ashida Apr 2004 B2
6715575 Karpik Apr 2004 B2
6725958 Ashida Apr 2004 B2
6725962 Fukuda Apr 2004 B1
6745862 Morii Jun 2004 B2
6752235 Bell Jun 2004 B1
6755271 Berg Jun 2004 B1
6767022 Chevalier Jul 2004 B1
6786526 Blalock Sep 2004 B1
6796395 Berg Sep 2004 B1
6799779 Shibayama Oct 2004 B2
6799781 Rasidescu Oct 2004 B2
6823834 Benson Nov 2004 B2
6851691 Rasidescu Feb 2005 B2
6916142 Hansen Jul 2005 B2
6923507 Billberg Aug 2005 B1
6926108 Polakowski Aug 2005 B1
6942050 Honkala Sep 2005 B1
6966399 Tanigaki Nov 2005 B2
6978857 Korenjak Dec 2005 B2
7040437 Fredrickson May 2006 B1
7047924 Waters May 2006 B1
7055454 Whiting Jun 2006 B1
7063057 Waters Jun 2006 B1
7070012 Fecteau Jul 2006 B2
7077233 Hasegawa Jul 2006 B2
7096988 Moriyama Aug 2006 B2
7124853 Kole Oct 2006 B1
7125134 Hedlund Oct 2006 B1
7165702 Billberg Jan 2007 B1
7182165 Keinath Feb 2007 B1
7182169 Suzuki Feb 2007 B2
7185732 Saito Mar 2007 B2
7210547 Nojima May 2007 B2
7216733 Iwami May 2007 B2
7222882 Boucher May 2007 B2
7237789 Herman Jul 2007 B1
7237802 Nguyen Jul 2007 B2
7237803 Nguyen Jul 2007 B2
7239032 Wilson Jul 2007 B1
7240472 Evers Jul 2007 B2
7240960 Fallis Jul 2007 B2
7249652 Wolf Jul 2007 B2
7331896 Kroppe Feb 2008 B1
7370724 Saito May 2008 B2
7374012 Inui May 2008 B2
7380622 Shimizu Jun 2008 B2
7380805 Turner Jun 2008 B1
7395890 Visscher Jul 2008 B2
7410182 Giese Aug 2008 B1
7431024 Buchwitz Oct 2008 B2
7444236 Wiles Oct 2008 B2
7455141 Hildebrand Nov 2008 B2
7458593 Saito Dec 2008 B2
7481293 Ogawa Jan 2009 B2
7485984 Fulks Feb 2009 B2
7497299 Kobayashi Mar 2009 B2
7497471 Kobayashi Mar 2009 B2
7500709 Heselhaus Mar 2009 B2
7523799 Yoshihara Apr 2009 B2
7540511 Saito Jun 2009 B2
7559596 Garska Jul 2009 B2
7565944 Sakamoto Jul 2009 B2
7565945 Okada Jul 2009 B2
7568732 Schlup Aug 2009 B2
7578523 Kosuge Aug 2009 B2
7600603 Okada Oct 2009 B2
7604084 Okada Oct 2009 B2
7610132 Yanai Oct 2009 B2
7632327 Ogawa Nov 2009 B2
7665792 Flynn Feb 2010 B1
7677599 Kurten Mar 2010 B2
7677634 Flynn Mar 2010 B2
7717495 Leonard May 2010 B2
7753162 Shiozawa Jul 2010 B2
7761217 Waters Jul 2010 B2
7762567 Marur Jul 2010 B2
7775318 Okada Aug 2010 B2
7782000 Suzuki Aug 2010 B2
7795602 Leonard Sep 2010 B2
7819220 Sunsdahl Oct 2010 B2
7854290 McKoskey Dec 2010 B1
7871106 Leonard Jan 2011 B2
RE42086 Saito Feb 2011 E
7896422 Willard Mar 2011 B2
7900743 Kaku Mar 2011 B2
7922201 Kurten Apr 2011 B2
7950486 Van Bronkhorst May 2011 B2
7967365 Gerhardt Jun 2011 B2
7971904 David Jul 2011 B2
7992671 Okada Aug 2011 B2
8029021 Leonard Oct 2011 B2
8104524 Manesh Jan 2012 B2
8122993 Ripley Feb 2012 B2
8176957 Manesh May 2012 B2
8191952 Mokhtari Jun 2012 B2
8205910 Leonard Jun 2012 B2
8240748 Chapman Aug 2012 B2
8328235 Schneider Dec 2012 B2
8353534 Arnold Jan 2013 B2
8376078 Hiddema Feb 2013 B2
8382130 Nakamura Feb 2013 B2
8408354 Nozaki Apr 2013 B2
8454041 Fujii Jun 2013 B2
8517135 Schapf Aug 2013 B2
8517140 West Aug 2013 B2
8544582 Kaku Oct 2013 B2
8596709 Ugolini Dec 2013 B2
8602159 Harris Dec 2013 B2
8613335 Deckard Dec 2013 B2
8640814 Deckard Feb 2014 B2
8651800 Li Feb 2014 B2
8662216 Roucka Mar 2014 B2
8746719 Safranski Jun 2014 B2
8893835 Nam Nov 2014 B2
8944465 Shinbori Feb 2015 B2
8967666 Lardella Mar 2015 B2
8979124 Shinbori Mar 2015 B2
9096289 Hedlund Aug 2015 B2
9150182 Schlangen Oct 2015 B1
9248861 Koren Feb 2016 B2
9248886 Giese Feb 2016 B1
9358836 David Jun 2016 B2
9440671 Schlangen Sep 2016 B2
9506407 Blake Nov 2016 B2
9540072 Hedlund Jan 2017 B2
9592782 Raska Mar 2017 B2
9623912 Schlangen Apr 2017 B2
9776481 Deckard Oct 2017 B2
9845004 Hedlund Dec 2017 B2
9873316 Lovold Jan 2018 B2
9895946 Schlangen Feb 2018 B2
9988083 Smith Jun 2018 B1
10077087 Lubben Sep 2018 B2
10358187 Vistad Jul 2019 B2
20020093168 Hibbert Jul 2002 A1
20020107101 Bowen Aug 2002 A1
20020147072 Goodell Oct 2002 A1
20020178968 Christensen Dec 2002 A1
20020179356 Morii Dec 2002 A1
20030001409 Semple Jan 2003 A1
20030006081 Burke Jan 2003 A1
20030089166 Mizuno May 2003 A1
20030172907 Nytomt Sep 2003 A1
20030211913 Spitale Nov 2003 A1
20040026948 Novajovsky Feb 2004 A1
20040079561 Ozawa Apr 2004 A1
20040089492 Eide May 2004 A1
20040099470 Tanigaki May 2004 A1
20040108159 Rondeau Jun 2004 A1
20040153782 Fukui Aug 2004 A1
20040159483 Imamura Aug 2004 A1
20040187826 Kino Sep 2004 A1
20040195797 Nash Oct 2004 A1
20040216945 Inui Nov 2004 A1
20040221669 Shimizu Nov 2004 A1
20040226384 Shimizu Nov 2004 A1
20040242090 Gibbs Dec 2004 A1
20040262064 Lefort Dec 2004 A1
20050012421 Fukuda Jan 2005 A1
20050016784 Fecteau Jan 2005 A1
20050040000 Kelley Feb 2005 A1
20050045414 Takagi Mar 2005 A1
20050067220 Keller Mar 2005 A1
20050072613 Maltais Apr 2005 A1
20050073140 Boucher Apr 2005 A1
20050161283 Emler Jul 2005 A1
20050073177 Smith Aug 2005 A1
20050173180 Hypes Aug 2005 A1
20050173940 Smith Aug 2005 A1
20050199432 Abe Sep 2005 A1
20050199433 Abe Sep 2005 A1
20050205320 Girouard Sep 2005 A1
20050225067 Nguyen Oct 2005 A1
20050231145 Mukai Oct 2005 A1
20050235767 Shimizu Oct 2005 A1
20050235768 Shimizu Oct 2005 A1
20050242677 Akutsu Nov 2005 A1
20050248116 Franson Nov 2005 A1
20050252592 Albright Nov 2005 A1
20050257989 Iwami Nov 2005 A1
20050257990 Shimizu Nov 2005 A1
20050267660 Fujiwara Dec 2005 A1
20050279552 Schuehmacher Dec 2005 A1
20060022619 Koike Feb 2006 A1
20060042862 Saito Mar 2006 A1
20060043754 Smith Mar 2006 A1
20060055139 Furumi Mar 2006 A1
20060065472 Ogawa Mar 2006 A1
20060075840 Saito Apr 2006 A1
20060076180 Saito Apr 2006 A1
20060085966 Kerner Apr 2006 A1
20060108174 Saito May 2006 A1
20060162990 Saito Jul 2006 A1
20060169510 Visscher Aug 2006 A1
20060169514 Lim Aug 2006 A1
20060169525 Saito Aug 2006 A1
20060175124 Saito Aug 2006 A1
20060180370 Polakowski Aug 2006 A1
20060180385 Yanai Aug 2006 A1
20060185741 McKee Aug 2006 A1
20060185919 Hibbert Aug 2006 A1
20060185927 Sakamoto Aug 2006 A1
20060191734 Kobayashi Aug 2006 A1
20060191735 Kobayashi Aug 2006 A1
20060191737 Kobayashi Aug 2006 A1
20060191739 Koga Aug 2006 A1
20060196721 Saito Sep 2006 A1
20060196722 Makabe Sep 2006 A1
20060201270 Kobayashi Sep 2006 A1
20060207823 Okada Sep 2006 A1
20060207824 Saito Sep 2006 A1
20060207825 Okada Sep 2006 A1
20060208564 Yuda Sep 2006 A1
20060212200 Yanai Sep 2006 A1
20060219452 Okada Oct 2006 A1
20060219469 Okada Oct 2006 A1
20060219470 Imagawa Oct 2006 A1
20060273566 Hepner Dec 2006 A1
20060288800 Mukai Dec 2006 A1
20070017480 Kondo Jan 2007 A1
20070028877 McDonald Feb 2007 A1
20070068726 Shimizu Mar 2007 A1
20070074588 Harata Apr 2007 A1
20070074589 Harata Apr 2007 A1
20070074927 Okada Apr 2007 A1
20070074928 Okada Apr 2007 A1
20070087890 Hamrin Apr 2007 A1
20070090621 Vigen Apr 2007 A1
20070095601 Okada May 2007 A1
20070096449 Okada May 2007 A1
20070175686 Yoshihara Aug 2007 A1
20070175696 Saito Aug 2007 A1
20070199753 Giese Aug 2007 A1
20070225105 Bowen Sep 2007 A1
20070227810 Sakurai Oct 2007 A1
20070242398 Ogawa Oct 2007 A1
20070246283 Giese Oct 2007 A1
20070290493 David Dec 2007 A1
20080023240 Sunsdahl Jan 2008 A1
20080023249 Sunsdahl Jan 2008 A1
20080141957 Hayashi Jan 2008 A1
20080053743 Tomita Mar 2008 A1
20080199253 Okada Aug 2008 A1
20080257630 Takeshima Oct 2008 A1
20080284124 Brady Nov 2008 A1
20090078491 Tsutsumikoshi Mar 2009 A1
20090078492 Tsutsumikoshi Mar 2009 A1
20090152035 Okada Jun 2009 A1
20090152036 Okada Jun 2009 A1
20090217908 Watanabe Sep 2009 A1
20090294197 Polakowski Dec 2009 A1
20090301830 Kinsman Dec 2009 A1
20090308682 Ripley Dec 2009 A1
20100012412 Deckard Jan 2010 A1
20100060026 Bowers Mar 2010 A1
20100071982 Giese Mar 2010 A1
20100089355 Fredrickson Apr 2010 A1
20100090430 Weston Apr 2010 A1
20100108427 Richer May 2010 A1
20100170231 Yamaguchi Jul 2010 A1
20100269771 Wermuth Oct 2010 A1
20110088968 Kempf Apr 2011 A1
20110100340 Mukkala May 2011 A1
20110139529 Eichenberger Jun 2011 A1
20110240395 Hurd Oct 2011 A1
20110298189 Schneider Dec 2011 A1
20120143465 Kim Jun 2012 A1
20120205902 Beavis Aug 2012 A1
20120223500 Kinsman Sep 2012 A1
20130048409 Fujii Feb 2013 A1
20130125535 Schultz May 2013 A1
20130175779 Kvien Jul 2013 A1
20130180798 Matsushima Jul 2013 A1
20130233265 Zurface Sep 2013 A1
20130240272 Gass Sep 2013 A1
20130256050 Novotny Oct 2013 A1
20140124279 Schlangen May 2014 A1
20140210234 Ricketts Jul 2014 A1
20140262583 Uri Sep 2014 A1
20140353956 Bjerketvedt Dec 2014 A1
20150165886 Bennett Jun 2015 A1
20150197128 Miller Jul 2015 A1
20150210115 David Jul 2015 A1
20150210319 Tiramani Jul 2015 A1
20150354149 Dahm Dec 2015 A1
20160347350 Heon Dec 2016 A1
20170101142 Hedlund Apr 2017 A1
20170137059 Ohba May 2017 A1
20170210192 Reybrouck Jul 2017 A1
20170274935 Deckard Sep 2017 A1
20180154717 Neu Jun 2018 A1
20180170134 Schlangen Jun 2018 A1
Foreign Referenced Citations (60)
Number Date Country
2013317853 Apr 2015 AU
2015266694 Jan 2017 AU
2017204255 Jul 2017 AU
1150752 Jul 1983 CA
2561337 Sep 1999 CA
2265693 Jan 2004 CA
317335 Nov 1956 CH
101511664 Aug 2009 CN
116605 Feb 1900 DE
1755101 Apr 1971 DE
3033707 Apr 1982 DE
351667 Nov 1986 DE
4122690 Jan 1992 DE
102010017784 Feb 2012 DE
0238077 Sep 1987 EP
0287038 Oct 1988 EP
0709247 May 1996 EP
0794096 Sep 1997 EP
1215107 Jun 2002 EP
1557345 Jul 2005 EP
1564123 Aug 2005 EP
1769998 Apr 2007 EP
3328717 Jun 2018 EP
2678886 Jan 1993 FR
S62218209 Sep 1987 JP
H01113527 May 1989 JP
H11334447 Jul 1999 JP
2000177434 Jun 2000 JP
2001065344 Mar 2001 JP
2003011843 Jan 2003 JP
3385382 Mar 2003 JP
2003343373 Dec 2003 JP
2005-193788 Jul 2005 JP
2006-232058 Sep 2006 JP
2006-232061 Sep 2006 JP
2006-256579 Sep 2006 JP
2006-256580 Sep 2006 JP
2006-281839 Oct 2006 JP
2007038709 Feb 2007 JP
2007-106319 Apr 2007 JP
2018-523603 Aug 2018 JP
WO 199501503 Jan 1995 WO
WO 9746407 Dec 1997 WO
WO 9812095 Mar 1998 WO
WO 200105613 Jan 2001 WO
WO 2002087957 Nov 2002 WO
WO 2007100751 Sep 2007 WO
2009062823 May 2009 WO
WO 2009096998 Aug 2009 WO
WO 2009114414 Sep 2009 WO
WO 2009151995 Dec 2009 WO
WO 2011093847 Aug 2011 WO
WO 2011099959 Aug 2011 WO
WO 2013119958 Aug 2013 WO
WO 2014047488 Mar 2014 WO
WO 2015071904 May 2015 WO
WO 2015105974 Jul 2015 WO
WO 2015105976 Jul 2015 WO
WO 2015184354 Dec 2015 WO
WO 2017023726 Feb 2017 WO
Non-Patent Literature Citations (39)
Entry
International Search Report issued by the European Patent Office, dated Aug. 4, 2009, for International Patent Application No. PCT/US2009/045900; 3 pages.
Written Opinion of the International Searching Authority, dated Aug. 4, 2009, for International Patent Application No. PCT/US2009/045900; 6 pages.
International Preliminary Report on Patentability issued by the European Patent Office, dated Dec. 13, 2010, for International Patent Application No. PCT/US2009/045900; 7 pages.
Examination Report No. 1 issued by the Australian Government IP Australia, dated Nov. 19, 2018, for Australian Patent Application No. 2016303426; 3 pages.
Examination Report No. 1 issued by the Australian Government IP Australia, dated Jun. 28, 2018, for Australian Patent Application No. 2017204255; 3 pages.
International Search Report and Written Opinion issued by the European Patent Office, dated Jan. 16, 2014, for International Patent Application No. PCT/US2013/061002; 13 pages.
Strike Razor: Light Tactical Vehicle, Advanced Mobile Systems, copyright 2011; 2 pages.
Brochure, Fully Equipped LTATV Sales, available at http://chrishainesoffroad.com/vehicles/pdf, last accessed Jul. 15, 2014, copyright 2010-2011; 2 pages.
Webpage, RP Advanced Mobile Systems: Military SxS Tactical Defense Vehicles, available at http://web.archive.org/web/20120324210549/http://www.rpadvancedmobilesystems.com/, available as early as Mar. 24, 2012, last accessed Jul. 15, 2014; 4 pages.
Brochure, Strike Razer, Advanced Mobile Systems for Rapid Response; 5 pages.
Written Opinion issued by the European Patent Office, dated Aug. 27, 2008, for International Patent Application No. PCT/US2008/003485; 7 pages.
Written Opinion issued by the European Patent Office, dated Sep. 1, 2008, for International Patent Application No. PCT/US2008/003480; 12 pages.
Written Opinion issued by the European Patent Office, dated Oct. 2, 2008, for International Patent Application No. PCT/US2008/003483; 10 pages.
Examination Report No. 1 issued by the Australian Government IP Australia, dated Sep. 29, 2016, for Australian Patent Application No. 2013317853; 5 pages.
International Search Report and Written Opinion issued by the European Patent Office, dated Aug. 8, 2015, for International Patent Application No. PCT/US2015/033327; 8 pages.
Examination Report No. 1 issued by the Australian Government IP Australia, dated Jul. 24, 2017, for Australian Patent Application No. 2015266694; 4 pages.
Decision on Appeal, Inter Partes Reexamination Control 95/002,010 of U.S. Pat. No. 7,854,285, Appeal 2015-004514, dated Sep. 28, 2015; 32 pages.
Decision on Appeal, Inter Partes Reexamination Control 95/002,011 of U.S. Pat. No. 8,151,923, Appeal 2015-004515, dated Sep. 28, 2015; 36 pages.
Communication Pursuant to Article 94(3) EPC issued by the European Patent Office, dated Nov. 14, 2018, for European Patent Application No. 15700942.4; 4 pages.
Communication Pursuant to Article 94(3) of the European Patent Convention, dated Feb. 6, 2018, for European Patent Application No. 15700942.4; 4 pages.
International Preliminary Report on Patentability issued by the European Patent Office, dated Jun. 17, 2016, for International Patent Application No. PCT/US2015/010623; 20 pages.
International Preliminary Report on Patentability issued by the European Patent Office, dated Jul. 12, 2016, for International Patent Application No. PCT/US2015/010621; 12 pages.
International Preliminary Report on Patentability issued by the European Patent Office, dated Mar. 30, 2011, for International Patent Application No. PCT/US2009/066110; 12 pages.
International Search Report and Written Opinion issued by the European Patent Office, dated Sep. 18, 2014, for International Patent Application No. PCT/US2013/025354; 13 pages.
International Search Report issued by the European Patent Office, dated Mar. 18, 2010, for International Patent Application No. PCT/US2009/066110; 5 pages.
International Preliminary Report on Patentability issued by the European Patent Office, dated Jun. 4, 2014, for International Patent Application No. PCT/US2013/025354; 18 pages.
International Search Report and Written Opinion issued by the European Patent Office, dated Nov. 6, 2007, for International Patent Application No. PCT/US2007/004895; 20 pages.
International Preliminary Report on Patentability issued by the European Patent Office, dated Jun. 10, 2008, for International Patent Application No. PCT/US2007/004895; 22 pages.
International Search Report and Written Opinion issued by the European Patent Office, dated Jul. 2, 2010, for International Patent Application No. PCT/US2009/066093; 14 pages.
Annex to Form PCT/ISA/206 Communication Relating to the Results of the Partial International Search issued by the European Patent Office, dated Mar. 2, 2010, for International Patent Application No. PCT/US2009/066093; 6 pages.
International Preliminary Report on Patentability issued by the International Bureau of WIPO, dated Jul. 19, 2011, for International Patent Application No. PCT/US2009/066093; 9 pages.
International Search Report and Written Opinion issued by the European Patent Office, dated Mar. 24, 2015, for International Patent Application No. PCT/US2015/010623; 11 pages.
International Search Report and Written Opinion issued by the European Patent Office, dated Aug. 12, 2014, for International Patent Application No. PCT/US2015/010621; 17 pages.
Written Opinion issued by the European Patent Office, dated Feb. 5, 2016, for International Patent Application No. PCT/US2015/010623; 8 pages.
“Kawasaki Teryx 6″ Lift Kit”, https://www.superatv.com/kawasaki-teryx-6-lift-kit; Jan. 23, 2016; 10 pages.
“6″ Lift Kit-Kawasaki Teryx 4”, https://www.pureoffroad.com/assets/images/superatv/IN-LK-K-TRX4-6, Nov. 13, 2015; 4 pages.
SuperATVMedia: “Kawasaki Teryx 4 6″ Lift Kit-SuperATV”, Dec. 3, 2015, https://www.youtube.com/watch?v=a6ewNg5De_g; 3 pages.
International Search Report and Written Opinion issued by the European Patent Office, dated Jul. 11, 2019, for International Patent Application No. PCT/US2019/017438; 22 pages.
International Preliminary Report on Patentability issued by the European Patent Office, dated Jun. 18, 2020, for International Patent Application No. PCT/US2019/017438; 19 pages.
Related Publications (1)
Number Date Country
20190248405 A1 Aug 2019 US