The present disclosure generally relates to systems that include a temperature controlled bed system configured to draw ambient air away from a sleeping surface of a mattress. Methods of use are included.
Sleep is critical for people to feel and perform their best, in every aspect of their lives. Sleep is an essential path to better health and reaching personal goals. Indeed, sleep affects everything from the ability to commit new information to memory to weight gain. It is therefore essential for people to use bedding that suit both their personal sleep preference and body type in order to achieve comfortable, restful sleep.
Mattresses are an important aspect in achieving proper sleep. It is therefore beneficial to provide a mattress capable of maintaining a preselected temperature based on a user's sleep preference, so that the user achieves maximum comfort during sleep. It is desirable to provide a system which draws ambient air away from a sleeping surface of the mattress. It is also desirable to provide a temperature control system capable of being controlled to apply different temperature environments on different regions of the sleeping surface. This disclosure describes an improvement over these prior art technologies.
In one embodiment, in accordance with the principles of the present disclosure, a bedding system is provided that includes a fan box layer having a plurality of ducts, each of the ducts being in communication with a fan configured to move air out of the duct and into an area surrounding the bedding system. A capacitor layer is positioned above the fan box layer. The capacitor layer includes a plurality of outlet ports, each of the outlet ports being in communication with one of the ducts. A mattress layer is positioned above the capacitor layer. The mattress layer includes a bottom portion having a plurality of first holes that are each in communication with at least one of the outlet ports and a top portion having a plurality of second holes that are each in communication with one of the first holes. The top portion defines a sleep surface.
The present disclosure will become more readily apparent from the specific description accompanied by the following drawings, in which:
Like reference numerals indicate similar parts throughout the figures.
The exemplary embodiments of an ambient bed having a heat reclaim system and methods of use are discussed in terms of a bedding system that includes elements that enable air to be drawn away from a sleep surface of a mattress to regulate the temperature of the sleep surface. The present disclosure may be understood more readily by reference to the following detailed description of the disclosure taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this disclosure is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed disclosure.
Also, as used in the specification and including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It is also understood that all spatial references, such as, for example, horizontal, vertical, top, upper, lower, bottom, left and right, are for illustrative purposes only and can be varied within the scope of the disclosure. For example, the references “upper” and “lower” are relative and used only in the context to the other, and are not necessarily “superior” and “inferior”.
The following discussion includes a description of an ambient bed having a heat reclaim system, related components and methods of using the ambient bed system in accordance with the principles of the present disclosure. Alternate embodiments are also disclosed. Reference will now be made in detail to the exemplary embodiments of the present disclosure, which are illustrated in the accompanying figures. Turning to
The components of bedding 20 can be fabricated from materials including metals, polymers and/or composites, depending on the particular application. For example, the components of bedding system 20, individually or collectively, can be fabricated from materials such as fabrics or textiles, paper or cardboard, cellulosic-based materials, biodegradable materials, plastics and other polymers, metals, semi-rigid and rigid materials. Various components of bedding system 20 may have material composites, including the above materials, to achieve various desired characteristics such as strength, rigidity, elasticity, performance and durability. The components of bedding system 20, individually or collectively, may also be fabricated from a heterogeneous material such as a combination of two or more of the above-described materials. The components of bedding system 20 can be extruded, molded, injection molded, cast, pressed and/or machined. The components of bedding system 20 may be monolithically formed, integrally connected or include fastening elements and/or instruments, as described herein.
In one embodiment, shown in
As shown in
In one embodiment, the wall on the first side of housing 30 includes three fans 32 that are spaced apart from one another and the wall on the second side of housing 30 includes three fans 32 that are spaced apart from one another. However, it is envisioned that the wall on the first side of housing 30 and the wall on the second side of housing 30 may each include one or a plurality of fans 32. In one embodiment, each of fans 32 in the wall on the first side of housing 30 is aligned with one of fans 32 in the wall on the second side of housing 30, as shown in
In one embodiment, housing 30 comprises a recess 40 between adjacent fans 32 and/or between fans 32 and top and bottom sides of housing 30 that extend between the first and second sides of housing 30, as shown in
Capacitor layer 24 is positioned atop fan box layer 22 such that second ends 38 of ducts 34 are each coupled to an outlet port 42 of capacitor layer 24, as shown in
Top surface 46 of capacitor layer 24 includes a plurality of apertures 56 associated with each outlet port 42, as shown in
Mattress layer 26 is positioned atop capacitor layer 24 such that air flow aperture devices 58, 58a are aligned with first holes 60 that extend through a bottom surface of mattress layer 26. First holes 60 are in communication with one of apertures 56 and one of outlet ports 42 or are in communication with one of apertures 56a. Mattress layer 26 includes a plurality of sets of second holes 62, each set of second holes 62 being in communication with one of first holes 60. That is, each first hole 60 is in communication with a plurality of second holes 62 that each extend through sleep surface 28. First holes 60 each have a diameter that is greater than that of each of second holes 62 such that the holes in mattress layer 26 decrease in diameter and increase in quantity from the bottom surface of mattress layer 26 to sleep surface 28. First holes 60 each extend parallel to each of second holes 62. In one embodiment, at least one of second holes 62 is coaxial with a respective one of first holes 60 and at least one of second holes 62 is offset from a longitudinal axis defined by the respective one of first holes 60. In one embodiment, each set of second holes 62 has a circular configuration, as shown in
Mattress layer 26 includes a plurality of cavities 64 extending perpendicular to second holes 62 such that cavities 64 each extend through a plurality of second holes 62, as shown in
System controller 52 may include a printed circuit board and the sensors throughout the system that are constructed within the various components. System controller 52 may be connected to a module 68 by a wire or wirelessly such that a user can select a desired temperature for sleep surface 28 using module 68. The functions of system controller 52 and/or module 68 may be carried out by a processor, such as, for example, a computer processor. Temperature regulator assemblies 54 are connected to system controller 52 by a wire or wirelessly. Temperature regulator assemblies 54 extend into mattress layer 26 such that a soft flow channel 70 of each temperature regulator assembly 54 is positioned adjacent sleep surface 28. In one embodiment, soft flow channels 70 are flush with sleep surface 28. In one embodiment, soft flow channels 70 protrude at least slightly above sleep surface 28. In one embodiment, soft flow channels 70 are positioned at least slightly below sleep surface 28. In any event, soft flow channels 70 are positioned to bear at least part of the load of a sleeper who is lying upon sleep surface 28, while still enabling the flow of air across sleep surface 28.
Temperature regulator assemblies 54 each include sensors 72. Sensors 72 may include temperature sensors, pressure sensors, moisture sensors, mass flow sensors, etc. Sensors 72 are configured to detect at least one characteristic of air within soft flow channels 70, such as, for example, temperature. Temperature regulator assemblies 54 each include a device configured to adjust the temperature of air within compartment 48, such as, for example, a thermoelectric device. In one embodiment, bedding system 20 includes a moisture sensor 76 that is separate from temperature regulator assemblies 54 and pressure sensors 78 that are integral with temperature regulator assemblies 54, as shown in
In one embodiment, bedding system 20 comprises pressure sensors positioned in the areas corresponding to the lower lumbar and hips of a sleeper as he or she lies upon mattress layer 26. There are two primary functions for the pressure sensor array within bedding system 20. The first is that it is used to indicate the presence of the sleeper. The second function of the pressure sensor array is to interpolate the lying direction, weight, and approximate size of the sleeper. The pressure sensor array directly interacts with a PID system controller and/or system controller 54. The pressure sensor array also allows for the potential use of intelligent comfort controls and features.
Sensors 72 may be used to detect whether the temperature of air within at least one of soft flow channels 70 is greater than, less than or equal to the temperature selected using module 68 and send a signal to system controller 52 indicating the same. If the temperature of air within one of soft flow channels 70 is greater than the temperature selected using module 68, system controller 52 will send a signal to temperature regulator assemblies 54 which causes thermoelectric devices 74 to alter air within compartment 48 such that the temperature of such air is less than or equal to the temperature selected using module 68. System controller 52 and/or temperature regulator assemblies 54 will send a signal to fans 32 causing fans to turn on and blow air out of compartment 48 and into the area surrounding bedding system 20. The negative pressure created as the air moves out of compartment 48 and into the area surrounding bedding system 20 will cause air at sleep surface 28 that has a temperature that is greater than the temperature selected using module 68 to move into second holes 62. The air will move from second holes 62 and into first holes 60. The air will move from first holes 60 and into outlet ports 42 such that the air moves through the air channels of ducts 34 and into the area surrounding bedding system 20. The air will change the ambient temperature in the area surrounding bedding system 20 over time.
Likewise, if the temperature of air within one of soft flow channels 70 is less than the temperature selected using module 68, system controller 52 will send a signal to temperature regulator assemblies 54 which causes thermoelectric devices 74 to alter air within compartment 48 such that the temperature of such air is greater than or equal to the temperature selected using module 68. System controller 52 and/or temperature regulator assemblies 54 will send a signal to fans 32 causing fans to turn on and blow air out of compartment 48 and into the area surrounding bedding system 20. The negative pressure created as the air moves out of compartment 48 and into the area surrounding bedding system 20 will cause air at sleep surface 28 that has a temperature that is less than the temperature selected using module 68 to move into second holes 62. The air will move from second holes 62 and into first holes 60. The air will move from first holes 60 and into outlet ports 42 such that the air moves through the air channels of ducts 34 and into the area surrounding bedding system 20. The air will change the ambient temperature in the area surrounding bedding system 20 over time.
In one embodiment, bedding system 20 may be configured to continuously draw air from sleep surface 28, alter the temperature of the air within bedding system 20 and then move the air into the area surrounding bedding system 20 continuously until sensors 72 detect that the air within soft flow channels 70 is equal to the temperature selected using module 68. That is, bedding system 20 will operate in the manner described in the preceding paragraphs until sensors 72 detect that air within soft flow channels 70 each have a temperature that is equal to the temperature selected using module 68. System controller 52 will then terminate the signal to temperature regulator assembly 54 that causes temperature regulator assembly 54 to turn thermoelectric device 74 on and/or the signal that causes fans 32 to turn on. Alternatively, system controller 52 can send a signal to temperature regulator assembly 54 that causes temperature regulator assembly 54 to turn thermoelectric device 74 off and/or a signal that causes fans 32 to turn off. There will be no signal between system controller 52 and temperature regulator assembly 54 unless and until sensors 72 detect that the temperature of air within at least one of soft flow channels 70 is greater or less than the temperature selected using module 68, at which point system controller 52 will provide the signals discussed above. The end result is to create and achieve an ambient equilibrium between the sleeper and his or her environment.
In one embodiment, first section 48a and a second section 48b of capacitor layer 24 each have a system controller 52 and a temperature regulator assembly 54 that can be controlled independently. That is, the system controller 52 and the temperature regulator assembly or assemblies 54 of first section 48a may be set and controlled independently from the system controller 52 and the temperature regulator assembly or assemblies 54 of second section 48a such that a portion of sleep surface 28 above first section 48a of capacitor layer 24 can be set to a temperature that is distinct from a portion of sleep surface 28 above second section 48b of capacitor layer 24. In one embodiment, this may be achieved by selecting a desired temperature for the portion of sleep surface 28 above first section 48a. Sensors 72 of the temperature regulator assembly or assemblies 54 of first section 48a may be used to detect whether the temperature of air within at least one of soft flow channels 70 of the temperature regulator assembly assemblies 54 of first section 48a is greater than, less than or equal to the temperature selected using module 68 and send a signal to system controller 52 of first section 48a indicating the same. If the temperature of air within one of soft flow channels 70 of first section 48a is greater than the temperature selected using module 68, system controller 52 of first section 48a will send a signal to temperature regulator assemblies 54 of first section 48a which causes thermoelectric devices 74 of first section 48a to alter air within compartment 48a such that the temperature of such air is less than or equal to the temperature selected using module 68. System controller 52 and/or temperature regulator assemblies 54 of first section 48a will send a signal to fans 32 in a portion of fan box layer 22 directly below first section 48a causing fans 32 to turn on and blow air out of compartment 48a and into the area surrounding bedding system 20. The negative pressure created as the air moves out of first section 48a of compartment 48 and into the area surrounding bedding system 20 will cause air at the portion of sleep surface 28 above first section 48a that has a temperature that is greater than the temperature selected using module 68 to move into second holes 62 of a portion of mattress layer 26 directly above first section 48a. The air will move from second holes 62 and into first holes 60 of the portion of mattress layer 26 directly above first section 48a. The air will move from first holes 60 of a portion of mattress layer 26 directly above first section 48a and into outlet ports 42 of first section 48a such that the air moves through the air channels of ducts 34 of the portion of fan box layer 22 directly below first section 48a and into the area surrounding bedding system 20. The air will change the ambient temperature in the area surrounding bedding system 20 over time. System 20 may also be used to decrease the temperature of the air adjacent sleep surface 28 above first section 48a if the temperature of air within one of soft flow channels 70 of first section 48a is less than the temperature selected using module 68 in the manner discussed above.
Likewise, to set the temperature of a portion of sleep surface directly above second section 48b of capacitor layer 24, a user selects a desired temperature for the portion of sleep surface 28 above second section 48b. Sensors 72 of the temperature regulator assembly or assemblies 54 of second section 48b may be used to detect whether the temperature of air within at least one of soft flow channels 70 of the temperature regulator assembly or assemblies 54 of second section 48b is greater than, less than or equal to the temperature selected using module 68 and send a signal to system controller 52 of second section 48b indicating the same. If the temperature of air within one of soft flow channels 70 of second section 48b is greater than the temperature selected using module 68, system controller 52 of second section 48b will send a signal to temperature regulator assemblies 54 of second section 48b which causes thermoelectric devices 74 of second section 48b to alter air within compartment 48 such that the temperature of such air is less than or equal to the temperature selected using module 68. System controller 52 and/or temperature regulator assemblies 54 of second section 48b will send a signal to fans 32 in a portion of fan box layer 22 directly below second section 48b causing fans 32 to turn on and blow air out of compartment 48b and into the area surrounding bedding system 20. The negative pressure created as the air moves out of second section 48b of compartment 48 and into the area surrounding bedding system 20 will cause air at the portion of sleep surface 28 above second section 48b that has a temperature that is greater than the temperature selected using module 68 to move into second holes 62 of a portion of mattress layer 26 directly above second section 48b. The air will move from second holes 62 and into first holes 60 of the portion of mattress layer 26 directly above second section 48b. The air will move from first holes 60 of a portion of mattress layer 26 directly above second section 48b and into outlet ports 42 of first section 48a such that the air moves through the air channels of ducts 34 of the portion of fan box layer 22 directly below second section 48b and into the area surrounding bedding system 20. The air will change the ambient temperature in the area surrounding bedding system 20 over time. System 20 may also be used to decrease the temperature of the air adjacent sleep surface 28 above second section 48b if the temperature of air within one of soft flow channels 70 of second section 48b is less than the temperature selected using module 68 in the manner discussed above.
When a thermoelectric device is in cooling mode it must exhaust hot air and when it is in heating mode it must exhaust cool air. As such, in one embodiment, thermoelectric device(s) 74 of temperature regulator assembly or assemblies 54 of first section 48a of capacitor layer 24 are configured to exchange air with thermoelectric device(s) 74 of temperature regulator assembly assemblies 54 of second section 48b of capacitor layer 24. This may improve the efficiency of bedding system 20 by limiting the amount of work required by thermoelectric devices 74 to alter the temperature within first section 48a or second section of compartment 48 of capacitor layer 24. In one embodiment, air in first section 48a may be exchanged with air in second section 48b through openings 50a in wall 50 of fan box layer 22. Such a configuration acts as a heat reclaim system that feeds hot air into second section 48b of compartment 48 when a sleeper above first section 48a of compartment 48 is being cooled and a sleeper above second section 48b is being warmed. Conversely, the cold air that is produced by thermoelectric device 74 in second section 48b that is warming the sleeper will be sent to first section 48a, which includes the thermoelectric device 74 that is cooling the sleeper.
In one embodiment of the heat reclaim system, when thermoelectric device(s) 74 of temperature regulator assembly or assemblies 54 of first section 48a receive a signal to increase the temperature adjacent sleep surface 28 above first section 48a, thermoelectric device(s) 74 of temperature regulator assembly or assemblies 54 of first section 48a may exhaust cool air when creating hot air in order to return the temperature adjacent sleep surface 28 above first section 48a to a selected temperature. The cool air may then be used by thermoelectric device(s) 74 of temperature regulator assembly or assemblies 54 of second section 48b to cool air adjacent sleep surface 28 above second section 48b in order to decrease the temperature adjacent sleep surface 28 above second section 48b. This allows air from one side of system 20 to be “reclaimed” and utilized by an opposite side of system 20 to improve the efficiency thereof. In the same manner, thermoelectric device(s) 74 of temperature regulator assembly or assemblies 54 of second section 48b may exhaust cool air when creating hot air in order to return the temperature adjacent sleep surface 28 above second section 48b to a selected temperature. The cool air may then be used by thermoelectric device(s) 74 of temperature regulator assembly or assemblies 54 of first section 48a to cool air adjacent sleep surface 28 above first section 48a in order to decrease the temperature adjacent sleep surface 28 above first section 48a.
Likewise, when thermoelectric device(s) 74 of temperature regulator assembly or assemblies 54 of first section 48a receive a signal to decrease the temperature adjacent sleep surface 28 above first section 48a, thermoelectric device(s) 74 of temperature regulator assembly or assemblies 54 of first section 48a may exhaust hot air when creating cool air in order to return the temperature adjacent sleep surface 28 above first section 48a to a selected temperature. The hot air may then be used by thermoelectric device(s) 74 of temperature regulator assembly or assemblies 54 of second section 48b to heat air adjacent sleep surface 28 above second section 48b in order to increase the temperature adjacent sleep surface 28 above second section 48b. This allows air from one side of system 20 to be “reclaimed” and utilized by an opposite side of system 20 to improve the efficiency thereof. In the same manner, thermoelectric device(s) 74 of temperature regulator assembly or assemblies 54 of second section 48b may exhaust hot air when creating cool air in order to return the temperature adjacent sleep surface 28 above second section 48b to a selected temperature. The hot air may then be used by thermoelectric device(s) 74 of temperature regulator assembly or assemblies 54 of first section 48a to heat air adjacent sleep surface 28 above first section 48a in order to increase the temperature adjacent sleep surface 28 above first section 48a. Thermoelectric device(s) 74 can be, for example, an instrument is also called a Peltier device Peltier heat pump, solid state refrigerator, or thermoelectric cooler (TEC).
In one embodiment, thermoelectric device(s) in first section 48a of compartment 48 of capacitor layer 24 and thermoelectric device(s) in second section 48b of compartment 48 of capacitor layer 24 include an outlet or exhaust 84 to exhaust air outside of capacitor layer 24 such that when thermoelectric device(s) in first section 48a or thermoelectric device(s) in second section 48b are producing hot air (to increase the temperature of air adjacent sleep surface 28), the cool air that is exhausted from thermoelectric device(s) in first section 48a or thermoelectric device(s) in second section 48b is not contained within compartment 48. Rather the cool air is exhausted outside of capacitor layer 24. Likewise, when thermoelectric device(s) in first section 48a or thermoelectric device(s) in second section 48b are producing cool air (to decrease the temperature of air adjacent sleep surface 28), the hot air that is exhausted from thermoelectric device(s) in first section 48a or thermoelectric device(s) in second section 48b is not contained within compartment 48. Rather the hot air is exhausted outside of capacitor layer 24. This allows thermoelectric device(s) in first section 48a to cool air adjacent sleep surface 28 above first section 48a at the same time thermoelectric device(s) in second section 48b cools air adjacent sleep surface 28 above second section 48b or thermoelectric device(s) in first section 48a to heat air adjacent sleep surface 28 above first section 48a at the same time thermoelectric device(s) in second section 48b heats air adjacent sleep surface 28 above second section 48b.
In one embodiment, shown in
In one embodiment, shown in
In one embodiment, shown in
In one embodiment, shown in
It will be understood that various modifications may be made to the embodiments disclosed herein. For example, features of any one embodiment can be combined with features of any other embodiment. Therefore, the above description should not be construed as limiting, but merely as exemplification of the various embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a continuation application of U.S. patent application Ser. No. 15/974,093, filed May 8, 2018, which is a continuation application of U.S. patent application Ser. No. 15/789,346, filed Oct. 20, 2017, which issued as U.S. Pat. No. 10,104,982 and is a continuation application of U.S. patent application Ser. No. 15/429,984, filed Feb. 10, 2017, which issued as U.S. Pat. No. 9,820,581 and is a continuation application of U.S. patent application Ser. No. 14/595,537, filed Jan. 13, 2015, which issued as U.S. Pat. No. 9,756,952 and claims the benefit of U.S. Application Ser. No. 61/926,526, filed Jan. 13, 2014, and U.S. Application Ser. No. 61/926,540, filed Jan. 13, 2014. These applications are hereby incorporated herein by reference, in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2371788 | Weeber | Mar 1945 | A |
3266064 | Figman | Aug 1966 | A |
3818522 | Schuster | Jun 1974 | A |
3928876 | Starr | Dec 1975 | A |
4057861 | Howorth | Nov 1977 | A |
4825488 | Bedford | May 1989 | A |
4866800 | Bedford | Sep 1989 | A |
5226188 | Liou | Jul 1993 | A |
5305483 | Watkins | Apr 1994 | A |
5474362 | Albecker, III | Dec 1995 | A |
5546618 | Beedy et al. | Aug 1996 | A |
5941248 | Wheeler | Aug 1999 | A |
6006524 | Park | Dec 1999 | A |
6148457 | Sul | Nov 2000 | A |
6484340 | Kutschi | Nov 2002 | B2 |
6581225 | Imai | Jun 2003 | B1 |
7165281 | Larsson Stefan et al. | Jan 2007 | B2 |
7334280 | Swartzburg | Feb 2008 | B1 |
7588291 | Gold | Sep 2009 | B2 |
7631377 | Sanford | Dec 2009 | B1 |
7908687 | Ward et al. | Mar 2011 | B2 |
7913332 | Barnhart | Mar 2011 | B1 |
8065763 | Brykalski et al. | Nov 2011 | B2 |
8181290 | Brykalski | May 2012 | B2 |
8332975 | Brykalski et al. | Dec 2012 | B2 |
8372182 | Vrzalik et al. | Feb 2013 | B2 |
8418286 | Brykalski et al. | Apr 2013 | B2 |
8881328 | Mikkelsen | Nov 2014 | B2 |
9326616 | DeFranks | May 2016 | B2 |
10568436 | Alletto | Feb 2020 | B2 |
20030019044 | Larsson et al. | Jan 2003 | A1 |
20030150060 | Huang | Aug 2003 | A1 |
20040237206 | Webster | Dec 2004 | A1 |
20040253920 | Schoettle | Dec 2004 | A1 |
20050278863 | Bahash | Dec 2005 | A1 |
20070136952 | Sargent | Jun 2007 | A1 |
20070261548 | Vrzalik | Nov 2007 | A1 |
20080098529 | Flocard | May 2008 | A1 |
20080148481 | Brykalski | Jun 2008 | A1 |
20090064411 | Marquette | Mar 2009 | A1 |
20100005588 | Christopher | Jan 2010 | A1 |
20100011502 | Brykalski | Jan 2010 | A1 |
20100274332 | Hirakawa | Oct 2010 | A1 |
20100325796 | Lachenbruch | Dec 2010 | A1 |
20110010850 | Frias | Jan 2011 | A1 |
20110041248 | Kim | Feb 2011 | A1 |
20110067183 | Hawkins | Mar 2011 | A1 |
20110247143 | Richards | Oct 2011 | A1 |
20110258782 | Call | Oct 2011 | A1 |
20110271447 | Theosabrata | Nov 2011 | A1 |
20110271448 | Faridoon | Nov 2011 | A1 |
20120017376 | Mikkelsen | Jan 2012 | A1 |
20130205509 | Chen | Aug 2013 | A1 |
20130269106 | Brykalski | Oct 2013 | A1 |
20140033441 | Morgan | Feb 2014 | A1 |
20140189951 | DeFranks | Jul 2014 | A1 |
20140201909 | Weyl | Jul 2014 | A1 |
20150208815 | Chandler | Jul 2015 | A1 |
20150257540 | Chandler | Sep 2015 | A1 |
20150282631 | Creamer | Oct 2015 | A1 |
20150289666 | Chandler | Oct 2015 | A1 |
20150289667 | Oakhill | Oct 2015 | A1 |
20150296992 | Ghanei | Oct 2015 | A1 |
20150359357 | Feng | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
S56-97416 | Aug 1981 | JP |
S5697416 | Aug 1981 | JP |
H07-3403 | Jan 1995 | JP |
H073403 | Jan 1995 | JP |
2010-201037 | Sep 2010 | JP |
2010201037 | Sep 2010 | JP |
Entry |
---|
International Preliminary Report on Patentability PCT/US2015/011179 Form PCT/IB/273. |
International Search Report PCT/US2015/011179. |
Written Opinion of the International Searching Authority (EPO) PCT/US2015/011179. |
International Search Report and Written Opinion dated May 29, 2015 of International Application No. PCT/US2015/011179 filed Jan. 13, 2015. |
Number | Date | Country | |
---|---|---|---|
20200170417 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
61926526 | Jan 2014 | US | |
61926540 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15974093 | May 2018 | US |
Child | 16781503 | US | |
Parent | 15789346 | Oct 2017 | US |
Child | 15974093 | US | |
Parent | 15429984 | Feb 2017 | US |
Child | 15789346 | US | |
Parent | 14595537 | Jan 2015 | US |
Child | 15429984 | US |