Ampoules for producing a reaction gas and systems for depositing materials onto microfeature workpieces in reaction chambers

Information

  • Patent Grant
  • 7584942
  • Patent Number
    7,584,942
  • Date Filed
    Wednesday, March 31, 2004
    20 years ago
  • Date Issued
    Tuesday, September 8, 2009
    14 years ago
Abstract
Ampoules for producing a reaction gas and systems for depositing materials onto microfeature workpieces in reaction chambers are disclosed herein. In one embodiment, an ampoule includes a vessel having an interior volume configured to receive a precursor with a headspace above the precursor. The ampoule further includes a carrier gas inlet for flowing carrier gas into the vessel, a conduit having an opening in the precursor and an outlet in the headspace, and a means for flowing precursor through the conduit and into the headspace to increase the surface area of the precursor exposed to the carrier gas.
Description
TECHNICAL FIELD

The present invention is related to ampoules for producing a reaction gas and systems for depositing materials onto microfeature workpieces in reaction chambers.


BACKGROUND

Thin film deposition techniques are widely used in the manufacturing of microfeatures to form a coating on a workpiece that closely conforms to the surface topography. The size of the individual components in the workpiece is constantly decreasing, and the number of layers in the workpiece is increasing. As a result, both the density of components and the aspect ratios of depressions (i.e., the ratio of the depth to the size of the opening) are increasing. Thin film deposition techniques accordingly strive to produce highly uniform conformal layers that cover the sidewalls, bottoms, and corners in deep depressions that have very small openings.


One widely used thin film deposition technique is Chemical Vapor Deposition (CVD). In a CVD system, one or more precursors that are capable of reacting to form a solid thin film are mixed while in a gaseous or vaporous state, and then the precursor mixture is presented to the surface of the workpiece. The surface of the workpiece catalyzes the reaction between the precursors to form a solid thin film at the workpiece surface. A common way to catalyze the reaction at the surface of the workpiece is to heat the workpiece to a temperature that causes the reaction.


Although CVD techniques are useful in many applications, they also have several drawbacks. For example, if the precursors are not highly reactive, then a high workpiece temperature is needed to achieve a reasonable deposition rate. Such high temperatures are not typically desirable because heating the workpiece can be detrimental to the structures and other materials already formed on the workpiece. Implanted or doped materials, for example, can migrate within the silicon substrate at higher temperatures. On the other hand, if more reactive precursors are used so that the workpiece temperature can be lower, then reactions may occur prematurely in the gas phase before reaching the substrate. This is undesirable because the film quality and uniformity may suffer, and also because it limits the types of precursors that can be used.


Atomic Layer Deposition (ALD) is another thin film deposition technique. FIGS. 1A and 1B schematically illustrate the basic operation of ALD processes. Referring to FIG. 1A, a layer of gas molecules A coats the surface of a workpiece W. The layer of A molecules is formed by exposing the workpiece W to a precursor gas containing A molecules and then purging the chamber with a purge gas to remove excess A molecules. This process can form a monolayer of A molecules on the surface of the workpiece W because the A molecules at the surface are held in place during the purge cycle by physical adsorption forces at moderate temperatures or chemisorption forces at higher temperatures. Referring to FIG. 1B, the layer of A molecules is then exposed to another precursor gas containing B molecules. The A molecules react with the B molecules to form an extremely thin layer of solid material on the workpiece W. The chamber is then purged again with a purge gas to remove excess B molecules.



FIG. 2 illustrates the stages of one cycle for forming a thin solid layer using ALD techniques. A typical cycle includes (a) exposing the workpiece to the first precursor A, (b) purging excess A molecules, (c) exposing the workpiece to the second precursor B, and then (d) purging excess B molecules. In actual processing, several cycles are repeated to build a thin film on a workpiece having the desired thickness. For example, each cycle may form a layer having a thickness of approximately 0.5-1.0 Å, and thus several cycles are required to form a solid layer having a thickness of approximately 60 Å.



FIG. 3 schematically illustrates an ALD system 1 including a single-wafer reaction chamber 10, a carrier gas supply 30, and an ampoule 60 in fluid communication with the reaction chamber 10 and the carrier gas supply 30. The reaction chamber 10 includes a heater 16 that supports the workpiece W and a gas dispenser 12 that dispenses gases into the reaction chamber 10. The gas dispenser 12 has a plenum 13 in fluid communication with the ampoule 60 and a distributor plate 14 with a plurality of holes 15. In operation, a carrier gas flows from the carrier gas supply 30 into the ampoule 60 and mixes with a precursor 70 to form a reaction gas. The reaction gas flows from the ampoule 60 to the gas dispenser 12 for deposition onto the workpiece W. The heater 16 heats the workpiece W to a desired temperature, and a vacuum 18 maintains a negative pressure in the reaction chamber 10 to draw the reaction gas from the gas dispenser 12 across the workpiece W and then through an outlet of the reaction chamber 10.


One drawback of ALD processing is that it has a relatively low throughput compared to CVD techniques. For example, each A-purge-B-purge cycle can take several seconds. This results in a total process time of several minutes to form a single thin layer of only 60 Å. In contrast to ALD processing, CVD techniques require only about one minute to form a 60 Å thick layer. The low throughput limits the utility of the ALD technology in its current state because ALD may create a bottleneck in the overall manufacturing process.


Another drawback of both ALD and CVD processing is that the precursors must be delivered in a gaseous state. Many potentially useful precursors, including, halides, THDs and DMHDs, are relatively low vapor pressure liquids or solids. It can be difficult to volatilize such precursors at a sufficient rate for a commercially acceptable production throughput. Accordingly, a need exists to improve the process of vaporizing low volatility precursors.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are schematic cross-sectional views of stages in ALD processing in accordance with the prior art.



FIG. 2 is a graph illustrating a cycle for forming a layer using ALD techniques in accordance with the prior art.



FIG. 3 is a schematic representation of a system including a reaction chamber for depositing materials onto a microfeature workpiece in accordance with the prior art.



FIG. 4 is a schematic representation of a system for depositing materials onto a microfeature workpiece W in accordance with one embodiment of the invention.



FIG. 5 is a schematic representation of an ampoule for use in processing microfeature workpieces in accordance with another embodiment of the invention.



FIG. 6 is a schematic representation of an ampoule for use in processing microfeature workpieces in accordance with another embodiment of the invention.



FIG. 7 is a schematic representation of an ampoule for use in processing microfeature workpieces in accordance with another embodiment of the invention.



FIG. 8A is a schematic representation of an ampoule for use in processing microfeature workpieces in accordance with another embodiment of the invention.



FIG. 8B is a top plan view of one of the trays in the precursor exposure assembly of FIG. 8A.



FIG. 9 is a top plan view of a precursor exposure assembly for use in an ampoule in accordance with another embodiment of the invention.





DETAILED DESCRIPTION

A. Overview


The following disclosure describes several embodiments of ampoules for producing a reaction gas and systems for depositing materials onto workpieces in reaction chambers. Many specific details of the invention are described below with reference to single-wafer reaction chambers for depositing materials onto microfeature workpieces, but several embodiments can be used in batch systems for processing a plurality of workpieces simultaneously. The term “microfeature workpiece” is used throughout to include substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, read/write components, and other features are fabricated. For example, microfeature workpieces can be semiconductor wafers such as silicon or gallium arsenide wafers, glass substrates, insulative substrates, and many other types of materials. Furthermore, the term “gas” is used throughout to include any form of matter that has no fixed shape and will conform in volume to the space available, which specifically includes vapors (i.e., a gas having a temperature less than the critical temperature so that it may be liquefied or solidified by compression at a constant temperature). Several embodiments in accordance with the invention are set forth in FIGS. 4-9 and the following text to provide a thorough understanding of particular embodiments of the invention. A person skilled in the art will understand, however, that the invention may have additional embodiments, or that the invention may be practiced without several of the details of the embodiments shown in FIGS. 4-9.


Several aspects of the invention are directed to ampoules for producing a reaction gas for processing microfeature workpieces in a reaction chamber. In one embodiment, an ampoule includes a vessel having an interior volume configured to receive a precursor with a headspace above the precursor. The ampoule further includes a carrier gas inlet for flowing carrier gas into the vessel, a conduit having an opening in the precursor and an outlet in the headspace, and a flow driver for flowing the precursor through the conduit and into the headspace to increase the surface area of the precursor exposed to the carrier gas. The flow driver can include a pump or a carrier gas line configured to flow carrier gas into the conduit. The carrier gas entrains molecules of the precursor as the carrier gas flows into and through the conduit.


In another embodiment, an ampoule includes a vessel having an interior volume configured to receive a precursor with a headspace above the precursor. The ampoule further includes a conduit for conveying a flow of the precursor to the headspace, a carrier gas inlet for flowing carrier gas into the vessel, and a precursor exposure assembly at least partially within the headspace. The precursor exposure assembly is positioned so that at least some of the nonvaporized precursor flows from the conduit onto the assembly to increase the surface area of the precursor exposed to the carrier gas. The precursor exposure assembly can include a plurality of channels, a conical surface, and/or a plurality of trays arranged in a stack to hold discrete volumes of precursor.


Another aspect of the invention is directed to methods for processing microfeature workpieces in a reaction chamber. In one embodiment, a method includes delivering carrier gas to a vessel having a precursor and a headspace above the precursor, flowing the precursor through a conduit into the headspace to increase the surface area of the precursor exposed to the carrier gas, and removing from the headspace a reaction gas comprised of vaporized precursor. Flowing the precursor through the conduit can include entraining molecules of the precursor in a carrier gas that passes through the conduit. Alternatively, flowing the precursor through the conduit can include pumping the precursor through the conduit with a pump. The method can further include passing the reaction gas from the headspace to the reaction chamber and depositing a reaction product on a surface of the microfeature workpiece. The reaction product can be derived, at least in part, from the vaporized precursor.


B. Embodiments of Systems for Depositing Materials onto Microfeature Workpieces



FIG. 4 is a schematic representation of a system 100 for depositing materials onto a microfeature workpiece W in accordance with one embodiment of the invention. The illustrated system 100 includes a gas phase reaction chamber 110 for receiving the workpiece W, an ampoule 160 for carrying a precursor 170, and a carrier gas supply 130 for providing carrier gas to the ampoule 160 to facilitate transport of the precursor 170 to the reaction chamber 110. The carrier gas mixes with precursor 170 in the ampoule 160 to form a reaction gas. The reaction gas is delivered to the reaction chamber 110 and deposits a layer of material onto the surface of the workpiece W.


The illustrated system 100 further includes a carrier gas supply line 132 to convey the flow of carrier gas to the ampoule 160, and a reaction gas delivery line 140 to convey the flow of reaction gas from the ampoule 160 to the reaction chamber 110. Gas flow through the supply line 132 and the delivery line 140 can be regulated by one or more valves. For example, the gas flow can be regulated by an ampoule inlet valve 134, an ampoule outlet valve 142, a delivery line valve 144 (shown in hidden lines), and a chamber inlet valve 146 (shown in hidden lines). Optionally, a bypass line 136 (shown in hidden lines) with a valve 138 (shown in hidden lines) may deliver carrier gas directly from the supply line 132 to the delivery line 140 to control the concentration of the vaporized precursor in the reaction gas.


In some circumstances, more than one precursor may be necessary to deposit the desired reaction product on the workpiece W. A second precursor and a purge gas, for example, may be delivered from a second gas supply 150 (shown schematically and in hidden lines) and a third gas supply 155 (shown schematically and in hidden lines), respectively. The second gas supply 150 can be coupled to the reaction chamber 110 via a delivery line 152 (shown in hidden lines) having a valve 154 (shown in hidden lines) to control the flow of the second precursor, and the third gas supply 155 can be coupled to the reaction chamber 110 via a delivery line 156 (shown in hidden lines) having a valve 158 (shown in hidden lines) to control the flow of the purge gas. The first and second precursors can be the gas and/or vapor phase constituents that react to form the thin, solid layer on the workpiece W. The purge gas can be a suitable type of gas that is compatible with the reaction chamber 110 and the workpiece W. In other embodiments, the system 100 can include a different number of gas sources for applications that require additional precursors or purge gases.


The illustrated reaction chamber 110 includes a gas dispenser 112 to flow the gas(es) onto the workpiece W and a workpiece support 114 to hold the workpiece W. The workpiece support 114 can be heated to bring the workpiece W to a desired temperature for catalyzing the reaction between the first and second precursors at the surface of the workpiece W. For example, the workpiece support 114 can be a plate with a heating element. The workpiece support 114, however, may not be heated in other applications. A vacuum 116 (shown schematically) maintains negative pressure in the reaction chamber 110 to draw the gas(es) from the gas dispenser 112 across the workpiece W and then through an outlet of the reaction chamber 110.


The illustrated ampoule 160 includes a vessel 162 having an interior volume configured to receive the precursor 170 with a headspace 178 above the precursor 170. The vessel 162 should be made of a material that is relatively inert with respect to the precursor 170 such that contact between the precursor 170 and the interior surface of the vessel 162 does not unduly degrade the vessel 162 or contaminate the precursor 170. Moreover, the material of the vessel 162 should also be selected to withstand the rigors of use, which may include elevated processing temperatures, corrosive fluids, and/or friction with an abrasive particulate precursor. Suitable materials for forming the vessel 162 can include ceramics, glass, and metals such as stainless steel.


The illustrated ampoule 160 further includes a gas conduit 164 in fluid communication with the supply line 132 to convey a flow of carrier gas within the vessel 162. The gas conduit 164 has an opening 166 in the precursor 170 and an outlet 168 in the headspace 178. The opening 166 is sized and positioned so that precursor 170 flows into the gas conduit 164 and becomes entrained in the carrier gas as the carrier gas flows through the conduit 164. Because the mixture of carrier gas and entrained precursor 172 is less dense than the liquid precursor 170, the entrained precursor 172 flows up the gas conduit 164 and through the outlet 168. As such, the portion of the gas conduit 164 between the opening 166 and the outlet 168 defines a lift tube 167 to convey a flow of entrained precursor 172 to the headspace 178. The lift tube 167 can have a hollow circular, rectangular, triangular, or other suitable cross-sectional configuration to convey the flow of entrained precursor 172.


In the lift tube 167, some of the entrained precursor 172 vaporizes as the precursor 172 is exposed to the carrier gas. The vaporized precursor is subsequently removed from the headspace 178 via the gas delivery line 140. The nonvaporized precursor 170 flows from the outlet 168 and back toward the precursor 170 at the base of the vessel 162. Additional amounts of the precursor 170 vaporize in the headspace 178 because the nonvaporized precursor 170 flowing between the outlet 168 and the liquid precursor 170 at the base of the vessel 162 is exposed to the carrier gas. As such, the precursor 170 is exposed to the carrier gas in the lift tube 167, at the surface of the liquid precursor 170, and in the external flow from the outlet 168 of the lift tube 167.


One feature of the ampoule 160 illustrated in FIG. 4 is that the lift tube 167 increases the surface area of the precursor exposed to the carrier gas. Because the precursor is exposed to the carrier gas as the precursor flows through the lift tube 167 and from the outlet 168 toward the base of the vessel 162, the surface area of the precursor exposed to the carrier gas is greater than the transverse cross-sectional area of the vessel 162. An advantage of this feature is that the vaporization rate of the precursor in the vessel 162 is increased because the vaporization rate is generally proportional to the exposed surface area of the precursor. As such, certain low volatility precursors that do not vaporize in prior art ampoules at a sufficient rate for a commercially acceptable production throughput may vaporize at commercially acceptable rates in the ampoule 160 illustrated in FIG. 4.


Another feature of the ampoule 160 illustrated in FIG. 4 is that the vaporization rate of the precursor is increased without increasing the flow rate of the carrier gas. An advantage of this feature is that the vaporization rate of the precursor is increased without reducing the concentration of precursor in the carrier gas.


C. Additional Embodiments of Ampoules for Use in Deposition Systems



FIG. 5 is a schematic representation of an ampoule 260 for use in processing microfeature workpieces in accordance with another embodiment of the invention. The illustrated ampoule 260 is generally similar to the ampoule 160 described above with reference to FIG. 4. The illustrated ampoule 260, however, includes a gas conduit 264 and a discrete lift tube 267 spaced apart from the gas conduit 264. The gas conduit 264 includes an outlet 265, and the lift tube 267 includes an opening 266 in the precursor 170 and an outlet 268 in the headspace 178. The lift tube 267 may also include a tapered portion 269 at the opening 266 so that the cross-sectional area of the opening 266 is greater than the cross-sectional area of the outlet 268.


The opening 266 of the lift tube 267 and the outlet 265 of the gas conduit 264 are positioned relative to each other so that carrier gas 263 flows from the outlet 265 into the lift tube 267. The carrier gas 263 entrains precursor 172 as the gas 263 flows through the lift tube 267, and some of the entrained precursor 172 vaporizes in the lift tube 267. Some of the nonvaporized precursor 170 may also vaporize as the precursor 170 flows from the outlet 268 of the lift tube 267 toward the liquid precursor 170 at the base of the vessel 162. As such, the illustrated lift tube 267 increases the surface area of the precursor exposed to carrier gas so that the ampoule 260 advantageously increases the vaporization rate of the precursor.



FIG. 6 is a schematic representation of an ampoule 360 for use in processing microfeature workpieces in accordance with another embodiment of the invention. The illustrated ampoule 360 is generally similar to the ampoule 260 described above with reference to FIG. 5. For example, the ampoule 360 includes a lift tube 367 with an opening 366 in the precursor 170 and an outlet 368 in the headspace 178. The illustrated ampoule 360, however, does not entrain precursor in a flow of carrier gas passing through the lift tube. Rather, the ampoule 360 includes a pump 369 (shown schematically) to flow the precursor 170 through the lift tube 367 and into the headspace 178. The pump 369 can be submerged in the precursor 170, positioned in the headspace 178, or located at another suitable position to flow precursor 170 through the lift tube 367. In the headspace 178, the precursor 170 is exposed to carrier gas, which is delivered to the vessel 162 via a carrier gas inlet 361. Exposure to the carrier gas causes some of the precursor 170 to vaporize. The nonvaporized precursor 170 flows back toward the liquid precursor 170 at the base of the vessel 162 for recirculation through the lift tube 367. As such, the illustrated ampoule 360 increases the surface area of the precursor 170 exposed to the carrier gas and, consequently, the vaporization rate of the precursor 170.



FIG. 7 is a schematic representation of an ampoule 460 for use in processing microfeature workpieces in accordance with another embodiment of the invention. The illustrated ampoule 460 is generally similar to the ampoule 160 described above with reference to FIG. 4. The illustrated ampoule 460, however, further includes a precursor exposure assembly 480 for increasing the surface area of the precursor 170 exposed to the carrier gas. The illustrated precursor exposure assembly 480 includes a conical member 482 having a surface 484 positioned proximate to the outlet 168 of the gas conduit 164 so that the nonvaporized precursor 170 falls onto the surface 484 after exiting the outlet 168. The slope of the conical member 482 conveys the flow of nonvaporized precursor 170 across the surface 484 in a direction S1. While the nonvaporized precursor 170 flows across the surface 484, the precursor 170 is exposed to the carrier gas in the headspace 178 and, consequently, some of the precursor 170 vaporizes. One advantage of the ampoule 460 illustrated in FIG. 7 is that the precursor exposure assembly 480 increases the vaporization rate of the precursor 170 by increasing the exposure of the precursor 170 to the carrier gas.



FIG. 8A is a schematic representation of an ampoule 560 for use in processing microfeature workpieces in accordance with another embodiment of the invention. The illustrated ampoule 560 is generally similar to the ampoule 160 described above with reference to FIG. 4. The illustrated ampoule 560, however, includes a precursor exposure assembly 580 for increasing the surface area of the precursor 170 exposed to the carrier gas. The illustrated precursor exposure assembly 580 includes a plurality of trays 582 arranged in a stack and positioned proximate to the outlet 168 of the gas conduit 164. The trays 582 hold discrete volumes of precursor 170 to increase the surface area of the precursor 170 exposed to the carrier gas. In the illustrated embodiment, the nonvaporized precursor 170 flows from the outlet 168 of the gas conduit 164 and into a top tray 582a. As described in detail below, the individual trays 582 are configured so that cascading flows 176 of precursor 170 pass downward from one tray 582 to an adjacent tray 582. In other embodiments, the gas conduit 164 can include a plurality of holes to flow nonvaporized precursor 170 directly into the individual trays 582 in lieu of or in addition to the flow from the outlet 168 to the top tray 582a.



FIG. 8B is a top plan view of one of the trays 582 of the precursor exposure assembly 580 of FIG. 8A without the precursor 170. Referring to both FIGS. 8A and 8B, the illustrated trays 582 include a support surface 583, a hole 584 in the support surface 583, and an outer wall 586 projecting from the support surface 583. The hole 584 is sized to receive the gas conduit 164 (FIG. 8A) so that the trays 582 can be arranged around the conduit 164. The outer wall 586 and the support surface 583 define an interior region configured to carry the nonvaporized precursor 170. The trays 582 can also include a plurality of notches 588 in the outer wall 586 through which the nonvaporized precursor 170 flows to an adjacent tray 582. More specifically, the outer wall 586 has a height H1 (FIG. 8A) and is positioned at a radius R1 (FIG. 8B) on the trays 582. The notches 588 have a height H2 (FIG. 8A) and are positioned at a radius R2 (FIG. 8B) less than the radius R1. The trays 582 can be arranged with the notches 588 on adjacent trays 582 offset from each other so that the nonvaporized precursor 170 can flow downwardly into the adjacent tray 582. In additional embodiments, the precursor exposure assembly 580 can have other configurations. For example, the trays 582 may not include notches 588, and/or the individual trays may have different diameters. Moreover, the gas conduit 164 can be positioned to flow nonvaporized precursor 170 into the trays 582 without extending through the center of the tray stack.


One feature of the ampoule 560 illustrated in FIGS. 8A and 8B is that the trays 582 of the precursor exposure assembly 580 carry discrete volumes of precursor 170. An advantage of this feature is that the vaporization rate of the precursor 170 is increased due to the large surface area of the precursor 170 exposed to the carrier gas. Moreover, the trays 582 provide a relatively constant surface area that helps stabilize the vaporization rate of the precursor 170 and lends greater control to the concentration of the vaporized precursor 170 in the reaction gas extracted from the vessel 162.



FIG. 9 is a top plan view of a precursor exposure assembly 680 for use in an ampoule in accordance with another embodiment of the invention. The illustrated precursor exposure assembly 680 includes a central member 681 and a plurality of channels 682 projecting radially outward from the central member 681. The central member 681 includes a hole 684 sized to receive a gas conduit so that the channels 682 can be positioned around the outlet of the gas conduit. The channels 682 can project radially outward and generally normal to the gas conduit, or alternatively, the channels 682 can project radially outward and downward toward the precursor at the base of the vessel. In either case, the channels 682 are configured to receive some of the nonvaporized precursor as it flows from the gas conduit to increase the surface area of the nonvaporized precursor exposed to the carrier gas. The channels 682 can include a support surface 683 and sidewalls 686 projecting from the support surface 683. The sidewalls 686 ensure that the nonvaporized precursor flows across the support surface 683 in a direction S2 so that the surface area of the precursor exposed to the carrier gas is predictable and consistent over time. In additional embodiments, the channels 682 may not have sidewalls 686 or may have other configurations.


From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, any of the precursor exposure assemblies illustrated in FIGS. 7-9 can be used with any of the ampoules illustrated in FIGS. 4-6. Accordingly, the invention is not limited except as by the appended claims.

Claims
  • 1. An ampoule for producing a reaction gas for processing a microfeature workpiece in a reaction chamber, the ampoule comprising: a vessel including an interior volume having a precursor region configured to receive a precursor and a headspace above the precursor region;a conduit in the vessel, the conduit having a first portion in the precursor region, a second portion in the headspace, an opening in the first portion positioned to be in the precursor, and an outlet in the second portion positioned to be in the headspace;a flow driver for flowing precursor through the conduit and into the headspace; anda precursor exposure assembly at least partially within the headspace, the precursor exposure assembly including a plurality of trays configured in a stack and positioned so that at least some nonvaporized precursor flows from the conduit into at least one of the trays to increase the surface area of the precursor exposed to a carrier gas.
  • 2. The ampoule of claim 1 wherein: the conduit comprises a lift tube having the opening and the outlet; andthe flow driver comprises a carrier gas conduit positioned relative to the lift tube to flow carrier gas into the lift tube via the opening and entrain precursor in the carrier gas.
  • 3. The ampoule of claim 1, wherein the plurality of trays have at least approximately the same cross-sectional dimension and a plurality of notches so that precursor flows downward from one tray to an adjacent tray, the trays being configured to carry discrete volumes of precursor to increase the surface area of the precursor exposed to the carrier gas.
  • 4. An ampoule for producing a reaction gas for processing a microfeature workpiece in a reaction chamber, the ampoule comprising: a vessel including an interior volume configured to receive a precursor with a headspace above the precursor;a carrier gas conduit for conveying a flow of carrier gas in the vessel, the carrier gas conduit having an outlet positioned to be in the headspace and an opening positioned to be in the precursor so that the carrier gas entrains precursor as the carrier gas flows through the conduit; anda precursor exposure assembly at least partially within the headspace, the precursor exposure assembly including a plurality of trays configured in a stack and positioned so that at least a portion of the precursor flows from the carrier gas conduit into at least one of the trays to increase the surface area of the precursor exposed to the carrier gas.
  • 5. An ampoule for producing a reaction gas for processing a microfeature workpiece in a reaction chamber, the ampoule comprising: a vessel including an interior volume configured to receive a precursor with a headspace above the precursor;a first conduit having an opening positioned to be in the precursor and an outlet positioned to be in the headspace;a carrier gas conduit for conveying a flow of carrier gas in the vessel, the carrier gas conduit having an outlet positioned relative to the first conduit to flow the carrier gas into the first conduit via the opening and entrain precursor in the carrier gas; anda precursor exposure assembly at least partially within the headspace, the precursor exposure assembly including a plurality of trays configured in a stack and positioned so that at least some precursor flows from the first conduit into at least one of the trays to increase the surface area of the precursor exposed to the carrier gas.
  • 6. The ampoule of claim 5, wherein the at least some precursor that flows into at least one of the trays comprises nonvaporized precursor.
  • 7. An ampoule for producing a reaction gas for processing a microfeature workpiece in a reaction chamber, the ampoule comprising: a vessel including an interior volume configured to receive a precursor with a headspace above the precursor;a conduit for conveying a flow of precursor to the headspace;a carrier gas inlet for flowing carrier gas into the vessel; anda precursor exposure assembly comprising a plurality of trays configured in a stack at least partially within the headspace and positioned so that at least a portion of the precursor flows from the conduit onto the precursor exposure assembly to increase the surface area of the precursor exposed to the carrier gas.
  • 8. The ampoule of claim 7 wherein: the conduit comprises a lift tube having an opening positioned to be in the precursor and an outlet positioned to be in the headspace; andthe ampoule further comprises a carrier gas conduit coupled to the carrier gas inlet and the lift tube, the carrier gas conduit configured to convey a flow of carrier gas into the lift tube and entrain precursor in the carrier gas.
  • 9. The ampoule of claim 7 wherein: the conduit comprises a lift tube having an opening positioned to be in the precursor and an outlet positioned to be in the headspace; andthe ampoule further comprises a carrier gas conduit coupled to the carrier gas inlet and having an outlet positioned relative to the lift tube to flow carrier gas into the lift tube via the opening and entrain precursor in the carrier gas.
  • 10. An ampoule for producing a reaction gas for processing a microfeature workpiece in a reaction chamber, the ampoule comprising: a vessel including an interior volume configured to receive a precursor with a headspace above the precursor;a conduit for conveying a flow of precursor into the headspace;a flow driver for flowing precursor through the conduit and into the headspace; anda precursor exposure assembly at least partially within the headspace, the precursor exposure assembly including a plurality of trays arranged in a stack so that at least some nonvaporized precursor flows from the conduit into at least one of the trays to increase the surface area of the precursor exposed to a carrier gas.
  • 11. The ampoule of claim 10 wherein: the conduit comprises an opening positioned to be in the precursor and an outlet positioned to be in the headspace; andthe flow driver comprises a carrier gas conduit positioned relative to the conduit to flow carrier gas into the conduit via the opening and entrain precursor in the carrier gas.
  • 12. A system for depositing materials onto a microfeature workpiece in a reaction chamber, the system comprising: a vessel including an interior volume configured to receive a precursor with a headspace above the precursor;a carrier gas conduit for conveying a flow of carrier gas in the vessel, the carrier gas conduit having an outlet positioned to be in the headspace and an opening positioned to be in the precursor so that the carrier gas entrains precursor as the carrier gas flows through the conduit;a gas delivery line in fluid communication with the headspace;a gas phase reaction chamber coupled to the gas delivery line; anda plurality of trays positioned at least partially within the headspace, the trays being configured in a stack and arranged so that at least a portion of the precursor flows from the carrier gas conduit into at least one of the trays.
  • 13. A system for depositing materials onto a microfeature workpiece in a reaction chamber, the system comprising: a vessel including an interior volume configured to receive a precursor with a headspace above the precursor;a carrier gas line for providing carrier gas to the vessel;a conduit having an opening positioned to be in the precursor and an outlet positioned to be in the headspace;a flow driver for flowing precursor through the conduit and into the headspace;a gas delivery line in fluid communication with the headspace;a gas phase reaction chamber coupled to the gas delivery line; anda plurality of trays positioned at least partially within the headspace and configured such that at least some precursor flows into at least one of the trays to increase the surface area of the precursor exposed to the carrier gas.
  • 14. The system of claim 13 wherein: the conduit comprises a lift tube having the opening and the outlet; andthe flow driver comprises a carrier gas conduit coupled to the carrier gas line and the lift tube, the carrier gas conduit configured to convey a flow of carrier gas into the lift tube and entrain precursor in the carrier gas.
  • 15. The system of claim 13 wherein: the conduit comprises a lift tube having the opening and the outlet; andthe flow driver comprises a carrier gas conduit coupled to the carrier gas line and having an outlet positioned relative to the lift tube to flow carrier gas into the lift tube via the opening and entrain precursor in the carrier gas.
  • 16. A system for depositing materials onto a microfeature workpiece in a reaction chamber, the system comprising: a vessel including an interior volume configured to receive a precursor with a headspace above the precursor;a conduit for conveying a flow of precursor to the headspace;a carrier gas line for providing carrier gas to the vessel;a precursor exposure assembly comprising a plurality of trays configured in a stack at least partially within the headspace and positioned so that at least some nonvaporized precursor flows from the conduit onto the precursor exposure assembly to increase the surface area of the precursor exposed to the carrier gas;a gas delivery line in fluid communication with the headspace; anda gas phase reaction chamber coupled to the gas delivery line.
  • 17. The system of claim 16 wherein: the conduit comprises a lift tube having an opening positioned to be in the precursor and an outlet positioned to be in the headspace; andthe system further comprises a carrier gas conduit coupled to the carrier gas line and the lift tube, the carrier gas conduit configured to convey a flow of carrier gas into the lift tube and entrain precursor in the carrier gas.
US Referenced Citations (412)
Number Name Date Kind
579269 Hent Mar 1897 A
1741519 Huff Dec 1929 A
2508500 de Lange May 1950 A
RE24291 Goodyer Mar 1957 E
3522836 King Aug 1970 A
3618919 Beck Nov 1971 A
3620934 Endle Nov 1971 A
3630769 Hart et al. Dec 1971 A
3630881 Lester et al. Dec 1971 A
3634212 Valayll et al. Jan 1972 A
3744771 Deaton Jul 1973 A
3945804 Shang et al. Mar 1976 A
4018949 Donakowski et al. Apr 1977 A
4242182 Popescu Dec 1980 A
4269625 Molenaar May 1981 A
4289061 Emmett Sep 1981 A
4313783 Davies et al. Feb 1982 A
4388342 Suzuki et al. Jun 1983 A
4397753 Czaja Aug 1983 A
4436674 McMenamin Mar 1984 A
4438724 Doehler et al. Mar 1984 A
4469801 Hirai et al. Sep 1984 A
4509456 Kleinert et al. Apr 1985 A
4545136 Izu et al. Oct 1985 A
4590042 Drage May 1986 A
4593644 Hanak Jun 1986 A
4595399 Collins et al. Jun 1986 A
4681777 Engelken et al. Jul 1987 A
4738295 Genser Apr 1988 A
4780178 Yoshida et al. Oct 1988 A
4826579 Westfall May 1989 A
4832115 Albers et al. May 1989 A
4871417 Nishizawa et al. Oct 1989 A
4894132 Tanaka et al. Jan 1990 A
4911638 Bayne et al. Mar 1990 A
4923715 Matsuda et al. May 1990 A
4948979 Munakata et al. Aug 1990 A
4949669 Ishii et al. Aug 1990 A
4966646 Zdeblick Oct 1990 A
4977106 Smith Dec 1990 A
5015330 Okumura et al. May 1991 A
5017404 Paquet et al. May 1991 A
5020476 Bay et al. Jun 1991 A
5062446 Anderson Nov 1991 A
5076205 Vowles et al. Dec 1991 A
5090985 Soubeyrand Feb 1992 A
5091207 Tanaka Feb 1992 A
5131752 Yu et al. Jul 1992 A
5136975 Bartholomew et al. Aug 1992 A
5172849 Barten et al. Dec 1992 A
5200023 Gifford et al. Apr 1993 A
5223113 Kaneko et al. Jun 1993 A
5232749 Gilton Aug 1993 A
5248527 Uchida et al. Sep 1993 A
5286296 Sato et al. Feb 1994 A
5325020 Campbell et al. Jun 1994 A
5364219 Takahashi et al. Nov 1994 A
5366557 Yu Nov 1994 A
5377429 Sandhu et al. Jan 1995 A
5380396 Shikida et al. Jan 1995 A
5409129 Tsukada et al. Apr 1995 A
5418180 Brown May 1995 A
5427666 Mueller et al. Jun 1995 A
5433787 Suzuki et al. Jul 1995 A
5433835 Demaray et al. Jul 1995 A
5445491 Nakagawa et al. Aug 1995 A
5453124 Moslehi et al. Sep 1995 A
5474612 Sato et al. Dec 1995 A
5477623 Tomizawa et al. Dec 1995 A
5480818 Matsumoto et al. Jan 1996 A
5496410 Fukuda et al. Mar 1996 A
5498292 Ozaki Mar 1996 A
5500256 Watabe Mar 1996 A
5522934 Suzuki et al. Jun 1996 A
5536317 Crain et al. Jul 1996 A
5562800 Kawamura Oct 1996 A
5575883 Nishikawa Nov 1996 A
5589002 Su Dec 1996 A
5589110 Motoda et al. Dec 1996 A
5592581 Okase Jan 1997 A
5595606 Fujikawa et al. Jan 1997 A
5599513 Masaki et al. Feb 1997 A
5609798 Liu et al. Mar 1997 A
5624498 Lee et al. Apr 1997 A
5626936 Alderman May 1997 A
5640751 Faria Jun 1997 A
5643394 Maydan et al. Jul 1997 A
5654589 Huang et al. Aug 1997 A
5658503 Johnston et al. Aug 1997 A
5683538 O'Neill et al. Nov 1997 A
5693288 Nakamura Dec 1997 A
5716796 Bull et al. Feb 1998 A
5729896 Dalal et al. Mar 1998 A
5733375 Fukuda et al. Mar 1998 A
5746434 Boyd et al. May 1998 A
5754297 Nulman May 1998 A
5766364 Ishida et al. Jun 1998 A
5769950 Takasu et al. Jun 1998 A
5769952 Komino Jun 1998 A
5772771 Li et al. Jun 1998 A
5788778 Shang et al. Aug 1998 A
5792269 Deacon et al. Aug 1998 A
5792700 Turner et al. Aug 1998 A
5803938 Yamaguchi et al. Sep 1998 A
5819683 Ikeda et al. Oct 1998 A
5820641 Gu et al. Oct 1998 A
5820686 Moore Oct 1998 A
5827370 Gu Oct 1998 A
5833888 Arya et al. Nov 1998 A
5846275 Lane et al. Dec 1998 A
5846330 Quirk et al. Dec 1998 A
5851294 Young et al. Dec 1998 A
5851849 Comizzoli et al. Dec 1998 A
5865417 Harris et al. Feb 1999 A
5866986 Pennington Feb 1999 A
5868159 Loan et al. Feb 1999 A
5879459 Gadgil et al. Mar 1999 A
5879516 Kasman Mar 1999 A
5885425 Hsieh et al. Mar 1999 A
5895530 Shrotriya et al. Apr 1999 A
5902403 Aitani et al. May 1999 A
5908947 Vaartstra Jun 1999 A
5911238 Bump et al. Jun 1999 A
5932286 Beinglass et al. Aug 1999 A
5936829 Moslehi Aug 1999 A
5940684 Shakuda et al. Aug 1999 A
5953634 Kajita et al. Sep 1999 A
5956613 Zhao et al. Sep 1999 A
5958140 Arami et al. Sep 1999 A
5961775 Fujimura et al. Oct 1999 A
5963336 McAndrew et al. Oct 1999 A
5968587 Frankel Oct 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
5994181 Hsieh et al. Nov 1999 A
5997588 Goodwin et al. Dec 1999 A
5998932 Lenz Dec 1999 A
6006694 DeOrnellas et al. Dec 1999 A
6008086 Schuegraf et al. Dec 1999 A
6016611 White et al. Jan 2000 A
6022483 Aral Feb 2000 A
6032923 Biegelsen et al. Mar 2000 A
6039557 Unger et al. Mar 2000 A
6042652 Hyun et al. Mar 2000 A
6045620 Tepman et al. Apr 2000 A
6059885 Ohashi et al. May 2000 A
6062256 Miller et al. May 2000 A
6070551 Li et al. Jun 2000 A
6079426 Subrahmanyam et al. Jun 2000 A
6080446 Tobe et al. Jun 2000 A
6086677 Umotoy et al. Jul 2000 A
6089543 Freerks Jul 2000 A
6090210 Ballance et al. Jul 2000 A
6109206 Maydan et al. Aug 2000 A
6113698 Raaijmakers et al. Sep 2000 A
6123107 Selser et al. Sep 2000 A
6129331 Henning et al. Oct 2000 A
6139700 Kang et al. Oct 2000 A
6142163 McMillin et al. Nov 2000 A
6143077 Ikeda et al. Nov 2000 A
6143078 Ishikawa et al. Nov 2000 A
6143659 Leem Nov 2000 A
6144060 Park et al. Nov 2000 A
6149123 Harris et al. Nov 2000 A
6159297 Herchen et al. Dec 2000 A
6159298 Saito Dec 2000 A
6160243 Cozad Dec 2000 A
6161500 Kopacz et al. Dec 2000 A
6173673 Golovato et al. Jan 2001 B1
6174366 Ihantola Jan 2001 B1
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6178660 Emmi et al. Jan 2001 B1
6182603 Shang et al. Feb 2001 B1
6183563 Choi et al. Feb 2001 B1
6190459 Takeshita et al. Feb 2001 B1
6192827 Welch et al. Feb 2001 B1
6193802 Pang et al. Feb 2001 B1
6194628 Pang et al. Feb 2001 B1
6197119 Dozoretz et al. Mar 2001 B1
6199465 Hattori Mar 2001 B1
6200415 Maraschin Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6206967 Mak et al. Mar 2001 B1
6206972 Dunham Mar 2001 B1
6207937 Stoddard et al. Mar 2001 B1
6210754 Lu et al. Apr 2001 B1
6211033 Sandhu et al. Apr 2001 B1
6211078 Matthews Apr 2001 B1
6214714 Wang et al. Apr 2001 B1
6237394 Harris et al. May 2001 B1
6237529 Spahn May 2001 B1
6245192 Dhindsa et al. Jun 2001 B1
6251190 Mak et al. Jun 2001 B1
6255222 Xia et al. Jul 2001 B1
6263829 Schneider et al. Jul 2001 B1
6264788 Tomoyasu et al. Jul 2001 B1
6270572 Kim et al. Aug 2001 B1
6273954 Nishikawa et al. Aug 2001 B2
6277763 Kugimiya et al. Aug 2001 B1
6280584 Kumar et al. Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6287980 Hanazaki et al. Sep 2001 B1
6290491 Shahvandi et al. Sep 2001 B1
6291337 Sidhwa Sep 2001 B1
6294394 Erickson et al. Sep 2001 B1
6297539 Ma et al. Oct 2001 B1
6302964 Umotoy et al. Oct 2001 B1
6302965 Umotoy et al. Oct 2001 B1
6303953 Doan et al. Oct 2001 B1
6305314 Sneh et al. Oct 2001 B1
6309161 Hofmeister Oct 2001 B1
6315859 Donohoe Nov 2001 B1
6328803 Rolfson et al. Dec 2001 B2
6329297 Balish et al. Dec 2001 B1
6333272 McMillin et al. Dec 2001 B1
6334928 Sekine et al. Jan 2002 B1
6342277 Sherman Jan 2002 B1
6346477 Kaloyeros et al. Feb 2002 B1
6347602 Goto et al. Feb 2002 B2
6347918 Blahnik Feb 2002 B1
6355561 Sandhu et al. Mar 2002 B1
6358323 Schmitt et al. Mar 2002 B1
6364219 Zimmerman et al. Apr 2002 B1
6374831 Chandran et al. Apr 2002 B1
6383300 Saito et al. May 2002 B1
6387185 Doering et al. May 2002 B2
6387207 Janakiraman et al. May 2002 B1
6387324 Patterson et al. May 2002 B1
6402806 Schmitt et al. Jun 2002 B1
6402849 Kwag et al. Jun 2002 B2
6415736 Hao et al. Jul 2002 B1
6419462 Horie et al. Jul 2002 B1
6420230 Derderian et al. Jul 2002 B1
6420742 Ahn et al. Jul 2002 B1
6425168 Takaku et al. Jul 2002 B1
6428859 Chiang et al. Aug 2002 B1
6432256 Raoux Aug 2002 B1
6432259 Noorbaksh et al. Aug 2002 B1
6432831 Dhindsa et al. Aug 2002 B2
6435865 Tseng et al. Aug 2002 B1
6444039 Nguyen Sep 2002 B1
6450117 Murugesh et al. Sep 2002 B1
6451119 Sneh et al. Sep 2002 B2
6458416 Derderian et al. Oct 2002 B1
6461436 Campbell et al. Oct 2002 B1
6461931 Eldridge Oct 2002 B1
6486081 Ishikawa et al. Nov 2002 B1
6503330 Sneh et al. Jan 2003 B1
6506254 Bosch et al. Jan 2003 B1
6508268 Kouketsu et al. Jan 2003 B1
6509280 Choi Jan 2003 B2
6534007 Blonigan et al. Mar 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6540838 Sneh et al. Apr 2003 B2
6541353 Sandhu et al. Apr 2003 B1
6551929 Kori et al. Apr 2003 B1
6562140 Bondestam et al. May 2003 B1
6562141 Clarke May 2003 B2
6573184 Park Jun 2003 B2
6579372 Park Jun 2003 B2
6579374 Bondestam et al. Jun 2003 B2
6585823 Van Wijck Jul 2003 B1
6596085 Schmitt et al. Jul 2003 B1
6602346 Gochberg Aug 2003 B1
6622104 Wang et al. Sep 2003 B2
6630201 Chiang et al. Oct 2003 B2
6634314 Hwang et al. Oct 2003 B2
6635965 Lee et al. Oct 2003 B1
6638672 Deguchi Oct 2003 B2
6638879 Hsieh et al. Oct 2003 B2
6641673 Yang Nov 2003 B2
6663713 Robles et al. Dec 2003 B1
6666982 Brcka Dec 2003 B2
6673196 Oyabu Jan 2004 B1
6689220 Nguyen Feb 2004 B1
6704913 Rossman Mar 2004 B2
6705345 Bifano Mar 2004 B1
6706334 Kobayashi et al. Mar 2004 B1
6734020 Lu et al. May 2004 B2
6770145 Saito Aug 2004 B2
6800139 Shinriki et al. Oct 2004 B1
6807971 Saito et al. Oct 2004 B2
6818249 Derderian Nov 2004 B2
6821347 Carpenter et al. Nov 2004 B2
6830652 Ohmi et al. Dec 2004 B1
6838114 Carpenter et al. Jan 2005 B2
6845734 Carpenter et al. Jan 2005 B2
6849131 Chen et al. Feb 2005 B2
6861094 Derderian et al. Mar 2005 B2
6861356 Matsuse et al. Mar 2005 B2
6877726 Rindt et al. Apr 2005 B1
6881295 Nagakura et al. Apr 2005 B2
6887521 Basceri May 2005 B2
6905547 Londergan et al. Jun 2005 B1
6905549 Okuda et al. Jun 2005 B2
6955725 Dando Oct 2005 B2
6966936 Yamasaki et al. Nov 2005 B2
6991684 Kannan et al. Jan 2006 B2
7022184 Van Wijck et al. Apr 2006 B2
7056806 Basceri et al. Jun 2006 B2
7086410 Chouno et al. Aug 2006 B2
7153396 Genser et al. Dec 2006 B2
20010001952 Nishizawa et al. May 2001 A1
20010010309 Van Bilsen Aug 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010012697 Mikata Aug 2001 A1
20010020447 Murugesh et al. Sep 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010029892 Cook et al. Oct 2001 A1
20010045187 Uhlenbrock Nov 2001 A1
20010050267 Hwang et al. Dec 2001 A1
20010054484 Komino Dec 2001 A1
20020000202 Yuda et al. Jan 2002 A1
20020007790 Park Jan 2002 A1
20020016044 Dreybrodt et al. Feb 2002 A1
20020020353 Redemann et al. Feb 2002 A1
20020042205 McMillin et al. Apr 2002 A1
20020043216 Hwang et al. Apr 2002 A1
20020052097 Park May 2002 A1
20020073924 Chiang et al. Jun 2002 A1
20020076490 Chiang et al. Jun 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020076508 Chiang et al. Jun 2002 A1
20020088547 Tomoyasu et al. Jul 2002 A1
20020094689 Park Jul 2002 A1
20020100418 Sandhu et al. Aug 2002 A1
20020104481 Chiang et al. Aug 2002 A1
20020108714 Doering et al. Aug 2002 A1
20020110991 Li Aug 2002 A1
20020127745 Lu et al. Sep 2002 A1
20020129768 Carpenter et al. Sep 2002 A1
20020132374 Basceri et al. Sep 2002 A1
20020144655 Chiang et al. Oct 2002 A1
20020146512 Rossman Oct 2002 A1
20020162506 Sneh et al. Nov 2002 A1
20020164420 Derderian et al. Nov 2002 A1
20020185067 Upham Dec 2002 A1
20020195056 Sandhu et al. Dec 2002 A1
20020195145 Lowery et al. Dec 2002 A1
20020195201 Beer Dec 2002 A1
20020197402 Chiang et al. Dec 2002 A1
20030000473 Chae et al. Jan 2003 A1
20030003697 Agarwal et al. Jan 2003 A1
20030003730 Li Jan 2003 A1
20030013320 Kim et al. Jan 2003 A1
20030023338 Chin et al. Jan 2003 A1
20030024477 Okuda et al. Feb 2003 A1
20030027428 Ng et al. Feb 2003 A1
20030027431 Sneh et al. Feb 2003 A1
20030031794 Tada et al. Feb 2003 A1
20030037729 DeDontney et al. Feb 2003 A1
20030049372 Cook et al. Mar 2003 A1
20030060030 Lee et al. Mar 2003 A1
20030066483 Lee et al. Apr 2003 A1
20030070609 Campbell et al. Apr 2003 A1
20030070617 Kim et al. Apr 2003 A1
20030070618 Campbell et al. Apr 2003 A1
20030075273 Kilpela et al. Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030094903 Tao et al. May 2003 A1
20030098372 Kim May 2003 A1
20030098419 Ji et al. May 2003 A1
20030106490 Jallepally et al. Jun 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030159780 Carpenter et al. Aug 2003 A1
20030185979 Nelson Oct 2003 A1
20030192645 Liu Oct 2003 A1
20030194862 Mardian et al. Oct 2003 A1
20030200926 Dando et al. Oct 2003 A1
20030203109 Dando et al. Oct 2003 A1
20030213435 Okuda et al. Nov 2003 A1
20030232892 Guerra-Santos et al. Dec 2003 A1
20040000270 Carpenter et al. Jan 2004 A1
20040003777 Carpenter et al. Jan 2004 A1
20040007188 Burkhart et al. Jan 2004 A1
20040025786 Kontani et al. Feb 2004 A1
20040035358 Basceri et al. Feb 2004 A1
20040040502 Basceri et al. Mar 2004 A1
20040040503 Basceri et al. Mar 2004 A1
20040083959 Carpenter et al. May 2004 A1
20040083960 Dando May 2004 A1
20040083961 Basceri May 2004 A1
20040089240 Dando et al. May 2004 A1
20040094095 Huang et al. May 2004 A1
20040099377 Newton et al. May 2004 A1
20040124131 Aitchison et al. Jul 2004 A1
20040154538 Carpenter et al. Aug 2004 A1
20040226507 Carpenter et al. Nov 2004 A1
20040226516 Daniel et al. Nov 2004 A1
20040238123 Becknell et al. Dec 2004 A1
20050016956 Liu et al. Jan 2005 A1
20050016984 Dando Jan 2005 A1
20050022739 Carpenter et al. Feb 2005 A1
20050028734 Carpenter et al. Feb 2005 A1
20050039680 Beaman et al. Feb 2005 A1
20050039686 Zheng et al. Feb 2005 A1
20050045100 Derderian Mar 2005 A1
20050045102 Zheng et al. Mar 2005 A1
20050048742 Dip et al. Mar 2005 A1
20050059261 Basceri et al. Mar 2005 A1
20050061243 Sarigiannis et al. Mar 2005 A1
20050087132 Dickey et al. Apr 2005 A1
20050217582 Kim et al. Oct 2005 A1
20050249887 Dando et al. Nov 2005 A1
20060115957 Basceri et al. Jun 2006 A1
20060121689 Basceri et al. Jun 2006 A1
20060165873 Rueger et al. Jul 2006 A1
20060198955 Zheng et al. Sep 2006 A1
20060204649 Beaman et al. Sep 2006 A1
20060205187 Zheng et al. Sep 2006 A1
20060213440 Zheng et al. Sep 2006 A1
20060237138 Qin Oct 2006 A1
Foreign Referenced Citations (48)
Number Date Country
198 51 824 May 2000 DE
1 167 569 Jan 2002 EP
62235728 Oct 1987 JP
62263629 Nov 1987 JP
63020490 Jan 1988 JP
63111177 May 1988 JP
63234198 Sep 1988 JP
63-256460 Oct 1988 JP
6481311 Mar 1989 JP
1-273991 Nov 1989 JP
03174717 Jul 1991 JP
4-100533 Apr 1992 JP
4-213818 Aug 1992 JP
6054443 Feb 1994 JP
6-151558 May 1994 JP
06201539 Jul 1994 JP
06202372 Jul 1994 JP
6-342785 Dec 1994 JP
8-34678 Feb 1996 JP
9-82650 Mar 1997 JP
10008255 Jan 1998 JP
10-223719 Aug 1998 JP
11-172438 Jun 1999 JP
2001-82682 Mar 2001 JP
2001-261375 Sep 2001 JP
2002-164336 Jun 2002 JP
2001-254181 Sep 2002 JP
598630 Mar 1978 SU
WO-9837258 Aug 1998 WO
WO-9906610 Feb 1999 WO
WO-0040772 Jul 2000 WO
WO-0063952 Oct 2000 WO
WO-0065649 Nov 2000 WO
WO-0079019 Dec 2000 WO
WO-0132966 May 2001 WO
WO-0146490 Jun 2001 WO
WO-0245871 Jun 2002 WO
WO-0248427 Jun 2002 WO
WO-02073329 Sep 2002 WO
WO-02073660 Sep 2002 WO
WO-02081771 Oct 2002 WO
WO-02095807 Nov 2002 WO
WO-03008662 Jan 2003 WO
WO-03016587 Feb 2003 WO
WO-03028069 Apr 2003 WO
WO-03033762 Apr 2003 WO
WO-03035927 May 2003 WO
WO-03052807 Jun 2003 WO
Related Publications (1)
Number Date Country
20050217575 A1 Oct 2005 US