The present invention is related to ampoules for producing a reaction gas and systems for depositing materials onto microfeature workpieces in reaction chambers.
Thin film deposition techniques are widely used in the manufacturing of microfeatures to form a coating on a workpiece that closely conforms to the surface topography. The size of the individual components in the workpiece is constantly decreasing, and the number of layers in the workpiece is increasing. As a result, both the density of components and the aspect ratios of depressions (i.e., the ratio of the depth to the size of the opening) are increasing. Thin film deposition techniques accordingly strive to produce highly uniform conformal layers that cover the sidewalls, bottoms, and corners in deep depressions that have very small openings.
One widely used thin film deposition technique is Chemical Vapor Deposition (CVD). In a CVD system, one or more precursors that are capable of reacting to form a solid thin film are mixed while in a gaseous or vaporous state, and then the precursor mixture is presented to the surface of the workpiece. The surface of the workpiece catalyzes the reaction between the precursors to form a solid thin film at the workpiece surface. A common way to catalyze the reaction at the surface of the workpiece is to heat the workpiece to a temperature that causes the reaction.
Although CVD techniques are useful in many applications, they also have several drawbacks. For example, if the precursors are not highly reactive, then a high workpiece temperature is needed to achieve a reasonable deposition rate. Such high temperatures are not typically desirable because heating the workpiece can be detrimental to the structures and other materials already formed on the workpiece. Implanted or doped materials, for example, can migrate within the silicon substrate at higher temperatures. On the other hand, if more reactive precursors are used so that the workpiece temperature can be lower, then reactions may occur prematurely in the gas phase before reaching the substrate. This is undesirable because the film quality and uniformity may suffer, and also because it limits the types of precursors that can be used.
Atomic Layer Deposition (ALD) is another thin film deposition technique.
One drawback of ALD processing is that it has a relatively low throughput compared to CVD techniques. For example, each A-purge-B-purge cycle can take several seconds. This results in a total process time of several minutes to form a single thin layer of only 60 Å. In contrast to ALD processing, CVD techniques require only about one minute to form a 60 Å thick layer. The low throughput limits the utility of the ALD technology in its current state because ALD may create a bottleneck in the overall manufacturing process.
Another drawback of both ALD and CVD processing is that the precursors must be delivered in a gaseous state. Many potentially useful precursors, including, halides, THDs and DMHDs, are relatively low vapor pressure liquids or solids. It can be difficult to volatilize such precursors at a sufficient rate for a commercially acceptable production throughput. Accordingly, a need exists to improve the process of vaporizing low volatility precursors.
A. Overview
The following disclosure describes several embodiments of ampoules for producing a reaction gas and systems for depositing materials onto workpieces in reaction chambers. Many specific details of the invention are described below with reference to single-wafer reaction chambers for depositing materials onto microfeature workpieces, but several embodiments can be used in batch systems for processing a plurality of workpieces simultaneously. The term “microfeature workpiece” is used throughout to include substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, read/write components, and other features are fabricated. For example, microfeature workpieces can be semiconductor wafers such as silicon or gallium arsenide wafers, glass substrates, insulative substrates, and many other types of materials. Furthermore, the term “gas” is used throughout to include any form of matter that has no fixed shape and will conform in volume to the space available, which specifically includes vapors (i.e., a gas having a temperature less than the critical temperature so that it may be liquefied or solidified by compression at a constant temperature). Several embodiments in accordance with the invention are set forth in
Several aspects of the invention are directed to ampoules for producing a reaction gas for processing microfeature workpieces in a reaction chamber. In one embodiment, an ampoule includes a vessel having an interior volume configured to receive a precursor with a headspace above the precursor. The ampoule further includes a carrier gas inlet for flowing carrier gas into the vessel, a conduit having an opening in the precursor and an outlet in the headspace, and a flow driver for flowing the precursor through the conduit and into the headspace to increase the surface area of the precursor exposed to the carrier gas. The flow driver can include a pump or a carrier gas line configured to flow carrier gas into the conduit. The carrier gas entrains molecules of the precursor as the carrier gas flows into and through the conduit.
In another embodiment, an ampoule includes a vessel having an interior volume configured to receive a precursor with a headspace above the precursor. The ampoule further includes a conduit for conveying a flow of the precursor to the headspace, a carrier gas inlet for flowing carrier gas into the vessel, and a precursor exposure assembly at least partially within the headspace. The precursor exposure assembly is positioned so that at least some of the nonvaporized precursor flows from the conduit onto the assembly to increase the surface area of the precursor exposed to the carrier gas. The precursor exposure assembly can include a plurality of channels, a conical surface, and/or a plurality of trays arranged in a stack to hold discrete volumes of precursor.
Another aspect of the invention is directed to methods for processing microfeature workpieces in a reaction chamber. In one embodiment, a method includes delivering carrier gas to a vessel having a precursor and a headspace above the precursor, flowing the precursor through a conduit into the headspace to increase the surface area of the precursor exposed to the carrier gas, and removing from the headspace a reaction gas comprised of vaporized precursor. Flowing the precursor through the conduit can include entraining molecules of the precursor in a carrier gas that passes through the conduit. Alternatively, flowing the precursor through the conduit can include pumping the precursor through the conduit with a pump. The method can further include passing the reaction gas from the headspace to the reaction chamber and depositing a reaction product on a surface of the microfeature workpiece. The reaction product can be derived, at least in part, from the vaporized precursor.
B. Embodiments of Systems for Depositing Materials onto Microfeature Workpieces
The illustrated system 100 further includes a carrier gas supply line 132 to convey the flow of carrier gas to the ampoule 160, and a reaction gas delivery line 140 to convey the flow of reaction gas from the ampoule 160 to the reaction chamber 110. Gas flow through the supply line 132 and the delivery line 140 can be regulated by one or more valves. For example, the gas flow can be regulated by an ampoule inlet valve 134, an ampoule outlet valve 142, a delivery line valve 144 (shown in hidden lines), and a chamber inlet valve 146 (shown in hidden lines). Optionally, a bypass line 136 (shown in hidden lines) with a valve 138 (shown in hidden lines) may deliver carrier gas directly from the supply line 132 to the delivery line 140 to control the concentration of the vaporized precursor in the reaction gas.
In some circumstances, more than one precursor may be necessary to deposit the desired reaction product on the workpiece W. A second precursor and a purge gas, for example, may be delivered from a second gas supply 150 (shown schematically and in hidden lines) and a third gas supply 155 (shown schematically and in hidden lines), respectively. The second gas supply 150 can be coupled to the reaction chamber 110 via a delivery line 152 (shown in hidden lines) having a valve 154 (shown in hidden lines) to control the flow of the second precursor, and the third gas supply 155 can be coupled to the reaction chamber 110 via a delivery line 156 (shown in hidden lines) having a valve 158 (shown in hidden lines) to control the flow of the purge gas. The first and second precursors can be the gas and/or vapor phase constituents that react to form the thin, solid layer on the workpiece W. The purge gas can be a suitable type of gas that is compatible with the reaction chamber 110 and the workpiece W. In other embodiments, the system 100 can include a different number of gas sources for applications that require additional precursors or purge gases.
The illustrated reaction chamber 110 includes a gas dispenser 112 to flow the gas(es) onto the workpiece W and a workpiece support 114 to hold the workpiece W. The workpiece support 114 can be heated to bring the workpiece W to a desired temperature for catalyzing the reaction between the first and second precursors at the surface of the workpiece W. For example, the workpiece support 114 can be a plate with a heating element. The workpiece support 114, however, may not be heated in other applications. A vacuum 116 (shown schematically) maintains negative pressure in the reaction chamber 110 to draw the gas(es) from the gas dispenser 112 across the workpiece W and then through an outlet of the reaction chamber 110.
The illustrated ampoule 160 includes a vessel 162 having an interior volume configured to receive the precursor 170 with a headspace 178 above the precursor 170. The vessel 162 should be made of a material that is relatively inert with respect to the precursor 170 such that contact between the precursor 170 and the interior surface of the vessel 162 does not unduly degrade the vessel 162 or contaminate the precursor 170. Moreover, the material of the vessel 162 should also be selected to withstand the rigors of use, which may include elevated processing temperatures, corrosive fluids, and/or friction with an abrasive particulate precursor. Suitable materials for forming the vessel 162 can include ceramics, glass, and metals such as stainless steel.
The illustrated ampoule 160 further includes a gas conduit 164 in fluid communication with the supply line 132 to convey a flow of carrier gas within the vessel 162. The gas conduit 164 has an opening 166 in the precursor 170 and an outlet 168 in the headspace 178. The opening 166 is sized and positioned so that precursor 170 flows into the gas conduit 164 and becomes entrained in the carrier gas as the carrier gas flows through the conduit 164. Because the mixture of carrier gas and entrained precursor 172 is less dense than the liquid precursor 170, the entrained precursor 172 flows up the gas conduit 164 and through the outlet 168. As such, the portion of the gas conduit 164 between the opening 166 and the outlet 168 defines a lift tube 167 to convey a flow of entrained precursor 172 to the headspace 178. The lift tube 167 can have a hollow circular, rectangular, triangular, or other suitable cross-sectional configuration to convey the flow of entrained precursor 172.
In the lift tube 167, some of the entrained precursor 172 vaporizes as the precursor 172 is exposed to the carrier gas. The vaporized precursor is subsequently removed from the headspace 178 via the gas delivery line 140. The nonvaporized precursor 170 flows from the outlet 168 and back toward the precursor 170 at the base of the vessel 162. Additional amounts of the precursor 170 vaporize in the headspace 178 because the nonvaporized precursor 170 flowing between the outlet 168 and the liquid precursor 170 at the base of the vessel 162 is exposed to the carrier gas. As such, the precursor 170 is exposed to the carrier gas in the lift tube 167, at the surface of the liquid precursor 170, and in the external flow from the outlet 168 of the lift tube 167.
One feature of the ampoule 160 illustrated in
Another feature of the ampoule 160 illustrated in
C. Additional Embodiments of Ampoules for Use in Deposition Systems
The opening 266 of the lift tube 267 and the outlet 265 of the gas conduit 264 are positioned relative to each other so that carrier gas 263 flows from the outlet 265 into the lift tube 267. The carrier gas 263 entrains precursor 172 as the gas 263 flows through the lift tube 267, and some of the entrained precursor 172 vaporizes in the lift tube 267. Some of the nonvaporized precursor 170 may also vaporize as the precursor 170 flows from the outlet 268 of the lift tube 267 toward the liquid precursor 170 at the base of the vessel 162. As such, the illustrated lift tube 267 increases the surface area of the precursor exposed to carrier gas so that the ampoule 260 advantageously increases the vaporization rate of the precursor.
One feature of the ampoule 560 illustrated in
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, any of the precursor exposure assemblies illustrated in
Number | Name | Date | Kind |
---|---|---|---|
579269 | Hent | Mar 1897 | A |
1741519 | Huff | Dec 1929 | A |
2508500 | de Lange | May 1950 | A |
RE24291 | Goodyer | Mar 1957 | E |
3522836 | King | Aug 1970 | A |
3618919 | Beck | Nov 1971 | A |
3620934 | Endle | Nov 1971 | A |
3630769 | Hart et al. | Dec 1971 | A |
3630881 | Lester et al. | Dec 1971 | A |
3634212 | Valayll et al. | Jan 1972 | A |
3744771 | Deaton | Jul 1973 | A |
3945804 | Shang et al. | Mar 1976 | A |
4018949 | Donakowski et al. | Apr 1977 | A |
4242182 | Popescu | Dec 1980 | A |
4269625 | Molenaar | May 1981 | A |
4289061 | Emmett | Sep 1981 | A |
4313783 | Davies et al. | Feb 1982 | A |
4388342 | Suzuki et al. | Jun 1983 | A |
4397753 | Czaja | Aug 1983 | A |
4436674 | McMenamin | Mar 1984 | A |
4438724 | Doehler et al. | Mar 1984 | A |
4469801 | Hirai et al. | Sep 1984 | A |
4509456 | Kleinert et al. | Apr 1985 | A |
4545136 | Izu et al. | Oct 1985 | A |
4590042 | Drage | May 1986 | A |
4593644 | Hanak | Jun 1986 | A |
4595399 | Collins et al. | Jun 1986 | A |
4681777 | Engelken et al. | Jul 1987 | A |
4738295 | Genser | Apr 1988 | A |
4780178 | Yoshida et al. | Oct 1988 | A |
4826579 | Westfall | May 1989 | A |
4832115 | Albers et al. | May 1989 | A |
4871417 | Nishizawa et al. | Oct 1989 | A |
4894132 | Tanaka et al. | Jan 1990 | A |
4911638 | Bayne et al. | Mar 1990 | A |
4923715 | Matsuda et al. | May 1990 | A |
4948979 | Munakata et al. | Aug 1990 | A |
4949669 | Ishii et al. | Aug 1990 | A |
4966646 | Zdeblick | Oct 1990 | A |
4977106 | Smith | Dec 1990 | A |
5015330 | Okumura et al. | May 1991 | A |
5017404 | Paquet et al. | May 1991 | A |
5020476 | Bay et al. | Jun 1991 | A |
5062446 | Anderson | Nov 1991 | A |
5076205 | Vowles et al. | Dec 1991 | A |
5090985 | Soubeyrand | Feb 1992 | A |
5091207 | Tanaka | Feb 1992 | A |
5131752 | Yu et al. | Jul 1992 | A |
5136975 | Bartholomew et al. | Aug 1992 | A |
5172849 | Barten et al. | Dec 1992 | A |
5200023 | Gifford et al. | Apr 1993 | A |
5223113 | Kaneko et al. | Jun 1993 | A |
5232749 | Gilton | Aug 1993 | A |
5248527 | Uchida et al. | Sep 1993 | A |
5286296 | Sato et al. | Feb 1994 | A |
5325020 | Campbell et al. | Jun 1994 | A |
5364219 | Takahashi et al. | Nov 1994 | A |
5366557 | Yu | Nov 1994 | A |
5377429 | Sandhu et al. | Jan 1995 | A |
5380396 | Shikida et al. | Jan 1995 | A |
5409129 | Tsukada et al. | Apr 1995 | A |
5418180 | Brown | May 1995 | A |
5427666 | Mueller et al. | Jun 1995 | A |
5433787 | Suzuki et al. | Jul 1995 | A |
5433835 | Demaray et al. | Jul 1995 | A |
5445491 | Nakagawa et al. | Aug 1995 | A |
5453124 | Moslehi et al. | Sep 1995 | A |
5474612 | Sato et al. | Dec 1995 | A |
5477623 | Tomizawa et al. | Dec 1995 | A |
5480818 | Matsumoto et al. | Jan 1996 | A |
5496410 | Fukuda et al. | Mar 1996 | A |
5498292 | Ozaki | Mar 1996 | A |
5500256 | Watabe | Mar 1996 | A |
5522934 | Suzuki et al. | Jun 1996 | A |
5536317 | Crain et al. | Jul 1996 | A |
5562800 | Kawamura | Oct 1996 | A |
5575883 | Nishikawa | Nov 1996 | A |
5589002 | Su | Dec 1996 | A |
5589110 | Motoda et al. | Dec 1996 | A |
5592581 | Okase | Jan 1997 | A |
5595606 | Fujikawa et al. | Jan 1997 | A |
5599513 | Masaki et al. | Feb 1997 | A |
5609798 | Liu et al. | Mar 1997 | A |
5624498 | Lee et al. | Apr 1997 | A |
5626936 | Alderman | May 1997 | A |
5640751 | Faria | Jun 1997 | A |
5643394 | Maydan et al. | Jul 1997 | A |
5654589 | Huang et al. | Aug 1997 | A |
5658503 | Johnston et al. | Aug 1997 | A |
5683538 | O'Neill et al. | Nov 1997 | A |
5693288 | Nakamura | Dec 1997 | A |
5716796 | Bull et al. | Feb 1998 | A |
5729896 | Dalal et al. | Mar 1998 | A |
5733375 | Fukuda et al. | Mar 1998 | A |
5746434 | Boyd et al. | May 1998 | A |
5754297 | Nulman | May 1998 | A |
5766364 | Ishida et al. | Jun 1998 | A |
5769950 | Takasu et al. | Jun 1998 | A |
5769952 | Komino | Jun 1998 | A |
5772771 | Li et al. | Jun 1998 | A |
5788778 | Shang et al. | Aug 1998 | A |
5792269 | Deacon et al. | Aug 1998 | A |
5792700 | Turner et al. | Aug 1998 | A |
5803938 | Yamaguchi et al. | Sep 1998 | A |
5819683 | Ikeda et al. | Oct 1998 | A |
5820641 | Gu et al. | Oct 1998 | A |
5820686 | Moore | Oct 1998 | A |
5827370 | Gu | Oct 1998 | A |
5833888 | Arya et al. | Nov 1998 | A |
5846275 | Lane et al. | Dec 1998 | A |
5846330 | Quirk et al. | Dec 1998 | A |
5851294 | Young et al. | Dec 1998 | A |
5851849 | Comizzoli et al. | Dec 1998 | A |
5865417 | Harris et al. | Feb 1999 | A |
5866986 | Pennington | Feb 1999 | A |
5868159 | Loan et al. | Feb 1999 | A |
5879459 | Gadgil et al. | Mar 1999 | A |
5879516 | Kasman | Mar 1999 | A |
5885425 | Hsieh et al. | Mar 1999 | A |
5895530 | Shrotriya et al. | Apr 1999 | A |
5902403 | Aitani et al. | May 1999 | A |
5908947 | Vaartstra | Jun 1999 | A |
5911238 | Bump et al. | Jun 1999 | A |
5932286 | Beinglass et al. | Aug 1999 | A |
5936829 | Moslehi | Aug 1999 | A |
5940684 | Shakuda et al. | Aug 1999 | A |
5953634 | Kajita et al. | Sep 1999 | A |
5956613 | Zhao et al. | Sep 1999 | A |
5958140 | Arami et al. | Sep 1999 | A |
5961775 | Fujimura et al. | Oct 1999 | A |
5963336 | McAndrew et al. | Oct 1999 | A |
5968587 | Frankel | Oct 1999 | A |
5972430 | DiMeo, Jr. et al. | Oct 1999 | A |
5994181 | Hsieh et al. | Nov 1999 | A |
5997588 | Goodwin et al. | Dec 1999 | A |
5998932 | Lenz | Dec 1999 | A |
6006694 | DeOrnellas et al. | Dec 1999 | A |
6008086 | Schuegraf et al. | Dec 1999 | A |
6016611 | White et al. | Jan 2000 | A |
6022483 | Aral | Feb 2000 | A |
6032923 | Biegelsen et al. | Mar 2000 | A |
6039557 | Unger et al. | Mar 2000 | A |
6042652 | Hyun et al. | Mar 2000 | A |
6045620 | Tepman et al. | Apr 2000 | A |
6059885 | Ohashi et al. | May 2000 | A |
6062256 | Miller et al. | May 2000 | A |
6070551 | Li et al. | Jun 2000 | A |
6079426 | Subrahmanyam et al. | Jun 2000 | A |
6080446 | Tobe et al. | Jun 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6089543 | Freerks | Jul 2000 | A |
6090210 | Ballance et al. | Jul 2000 | A |
6109206 | Maydan et al. | Aug 2000 | A |
6113698 | Raaijmakers et al. | Sep 2000 | A |
6123107 | Selser et al. | Sep 2000 | A |
6129331 | Henning et al. | Oct 2000 | A |
6139700 | Kang et al. | Oct 2000 | A |
6142163 | McMillin et al. | Nov 2000 | A |
6143077 | Ikeda et al. | Nov 2000 | A |
6143078 | Ishikawa et al. | Nov 2000 | A |
6143659 | Leem | Nov 2000 | A |
6144060 | Park et al. | Nov 2000 | A |
6149123 | Harris et al. | Nov 2000 | A |
6159297 | Herchen et al. | Dec 2000 | A |
6159298 | Saito | Dec 2000 | A |
6160243 | Cozad | Dec 2000 | A |
6161500 | Kopacz et al. | Dec 2000 | A |
6173673 | Golovato et al. | Jan 2001 | B1 |
6174366 | Ihantola | Jan 2001 | B1 |
6174377 | Doering et al. | Jan 2001 | B1 |
6174809 | Kang et al. | Jan 2001 | B1 |
6178660 | Emmi et al. | Jan 2001 | B1 |
6182603 | Shang et al. | Feb 2001 | B1 |
6183563 | Choi et al. | Feb 2001 | B1 |
6190459 | Takeshita et al. | Feb 2001 | B1 |
6192827 | Welch et al. | Feb 2001 | B1 |
6193802 | Pang et al. | Feb 2001 | B1 |
6194628 | Pang et al. | Feb 2001 | B1 |
6197119 | Dozoretz et al. | Mar 2001 | B1 |
6199465 | Hattori | Mar 2001 | B1 |
6200415 | Maraschin | Mar 2001 | B1 |
6203613 | Gates et al. | Mar 2001 | B1 |
6206967 | Mak et al. | Mar 2001 | B1 |
6206972 | Dunham | Mar 2001 | B1 |
6207937 | Stoddard et al. | Mar 2001 | B1 |
6210754 | Lu et al. | Apr 2001 | B1 |
6211033 | Sandhu et al. | Apr 2001 | B1 |
6211078 | Matthews | Apr 2001 | B1 |
6214714 | Wang et al. | Apr 2001 | B1 |
6237394 | Harris et al. | May 2001 | B1 |
6237529 | Spahn | May 2001 | B1 |
6245192 | Dhindsa et al. | Jun 2001 | B1 |
6251190 | Mak et al. | Jun 2001 | B1 |
6255222 | Xia et al. | Jul 2001 | B1 |
6263829 | Schneider et al. | Jul 2001 | B1 |
6264788 | Tomoyasu et al. | Jul 2001 | B1 |
6270572 | Kim et al. | Aug 2001 | B1 |
6273954 | Nishikawa et al. | Aug 2001 | B2 |
6277763 | Kugimiya et al. | Aug 2001 | B1 |
6280584 | Kumar et al. | Aug 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6287980 | Hanazaki et al. | Sep 2001 | B1 |
6290491 | Shahvandi et al. | Sep 2001 | B1 |
6291337 | Sidhwa | Sep 2001 | B1 |
6294394 | Erickson et al. | Sep 2001 | B1 |
6297539 | Ma et al. | Oct 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6302965 | Umotoy et al. | Oct 2001 | B1 |
6303953 | Doan et al. | Oct 2001 | B1 |
6305314 | Sneh et al. | Oct 2001 | B1 |
6309161 | Hofmeister | Oct 2001 | B1 |
6315859 | Donohoe | Nov 2001 | B1 |
6328803 | Rolfson et al. | Dec 2001 | B2 |
6329297 | Balish et al. | Dec 2001 | B1 |
6333272 | McMillin et al. | Dec 2001 | B1 |
6334928 | Sekine et al. | Jan 2002 | B1 |
6342277 | Sherman | Jan 2002 | B1 |
6346477 | Kaloyeros et al. | Feb 2002 | B1 |
6347602 | Goto et al. | Feb 2002 | B2 |
6347918 | Blahnik | Feb 2002 | B1 |
6355561 | Sandhu et al. | Mar 2002 | B1 |
6358323 | Schmitt et al. | Mar 2002 | B1 |
6364219 | Zimmerman et al. | Apr 2002 | B1 |
6374831 | Chandran et al. | Apr 2002 | B1 |
6383300 | Saito et al. | May 2002 | B1 |
6387185 | Doering et al. | May 2002 | B2 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6387324 | Patterson et al. | May 2002 | B1 |
6402806 | Schmitt et al. | Jun 2002 | B1 |
6402849 | Kwag et al. | Jun 2002 | B2 |
6415736 | Hao et al. | Jul 2002 | B1 |
6419462 | Horie et al. | Jul 2002 | B1 |
6420230 | Derderian et al. | Jul 2002 | B1 |
6420742 | Ahn et al. | Jul 2002 | B1 |
6425168 | Takaku et al. | Jul 2002 | B1 |
6428859 | Chiang et al. | Aug 2002 | B1 |
6432256 | Raoux | Aug 2002 | B1 |
6432259 | Noorbaksh et al. | Aug 2002 | B1 |
6432831 | Dhindsa et al. | Aug 2002 | B2 |
6435865 | Tseng et al. | Aug 2002 | B1 |
6444039 | Nguyen | Sep 2002 | B1 |
6450117 | Murugesh et al. | Sep 2002 | B1 |
6451119 | Sneh et al. | Sep 2002 | B2 |
6458416 | Derderian et al. | Oct 2002 | B1 |
6461436 | Campbell et al. | Oct 2002 | B1 |
6461931 | Eldridge | Oct 2002 | B1 |
6486081 | Ishikawa et al. | Nov 2002 | B1 |
6503330 | Sneh et al. | Jan 2003 | B1 |
6506254 | Bosch et al. | Jan 2003 | B1 |
6508268 | Kouketsu et al. | Jan 2003 | B1 |
6509280 | Choi | Jan 2003 | B2 |
6534007 | Blonigan et al. | Mar 2003 | B1 |
6534395 | Werkhoven et al. | Mar 2003 | B2 |
6540838 | Sneh et al. | Apr 2003 | B2 |
6541353 | Sandhu et al. | Apr 2003 | B1 |
6551929 | Kori et al. | Apr 2003 | B1 |
6562140 | Bondestam et al. | May 2003 | B1 |
6562141 | Clarke | May 2003 | B2 |
6573184 | Park | Jun 2003 | B2 |
6579372 | Park | Jun 2003 | B2 |
6579374 | Bondestam et al. | Jun 2003 | B2 |
6585823 | Van Wijck | Jul 2003 | B1 |
6596085 | Schmitt et al. | Jul 2003 | B1 |
6602346 | Gochberg | Aug 2003 | B1 |
6622104 | Wang et al. | Sep 2003 | B2 |
6630201 | Chiang et al. | Oct 2003 | B2 |
6634314 | Hwang et al. | Oct 2003 | B2 |
6635965 | Lee et al. | Oct 2003 | B1 |
6638672 | Deguchi | Oct 2003 | B2 |
6638879 | Hsieh et al. | Oct 2003 | B2 |
6641673 | Yang | Nov 2003 | B2 |
6663713 | Robles et al. | Dec 2003 | B1 |
6666982 | Brcka | Dec 2003 | B2 |
6673196 | Oyabu | Jan 2004 | B1 |
6689220 | Nguyen | Feb 2004 | B1 |
6704913 | Rossman | Mar 2004 | B2 |
6705345 | Bifano | Mar 2004 | B1 |
6706334 | Kobayashi et al. | Mar 2004 | B1 |
6734020 | Lu et al. | May 2004 | B2 |
6770145 | Saito | Aug 2004 | B2 |
6800139 | Shinriki et al. | Oct 2004 | B1 |
6807971 | Saito et al. | Oct 2004 | B2 |
6818249 | Derderian | Nov 2004 | B2 |
6821347 | Carpenter et al. | Nov 2004 | B2 |
6830652 | Ohmi et al. | Dec 2004 | B1 |
6838114 | Carpenter et al. | Jan 2005 | B2 |
6845734 | Carpenter et al. | Jan 2005 | B2 |
6849131 | Chen et al. | Feb 2005 | B2 |
6861094 | Derderian et al. | Mar 2005 | B2 |
6861356 | Matsuse et al. | Mar 2005 | B2 |
6877726 | Rindt et al. | Apr 2005 | B1 |
6881295 | Nagakura et al. | Apr 2005 | B2 |
6887521 | Basceri | May 2005 | B2 |
6905547 | Londergan et al. | Jun 2005 | B1 |
6905549 | Okuda et al. | Jun 2005 | B2 |
6955725 | Dando | Oct 2005 | B2 |
6966936 | Yamasaki et al. | Nov 2005 | B2 |
6991684 | Kannan et al. | Jan 2006 | B2 |
7022184 | Van Wijck et al. | Apr 2006 | B2 |
7056806 | Basceri et al. | Jun 2006 | B2 |
7086410 | Chouno et al. | Aug 2006 | B2 |
7153396 | Genser et al. | Dec 2006 | B2 |
20010001952 | Nishizawa et al. | May 2001 | A1 |
20010010309 | Van Bilsen | Aug 2001 | A1 |
20010011526 | Doering et al. | Aug 2001 | A1 |
20010012697 | Mikata | Aug 2001 | A1 |
20010020447 | Murugesh et al. | Sep 2001 | A1 |
20010024387 | Raaijmakers et al. | Sep 2001 | A1 |
20010029892 | Cook et al. | Oct 2001 | A1 |
20010045187 | Uhlenbrock | Nov 2001 | A1 |
20010050267 | Hwang et al. | Dec 2001 | A1 |
20010054484 | Komino | Dec 2001 | A1 |
20020000202 | Yuda et al. | Jan 2002 | A1 |
20020007790 | Park | Jan 2002 | A1 |
20020016044 | Dreybrodt et al. | Feb 2002 | A1 |
20020020353 | Redemann et al. | Feb 2002 | A1 |
20020042205 | McMillin et al. | Apr 2002 | A1 |
20020043216 | Hwang et al. | Apr 2002 | A1 |
20020052097 | Park | May 2002 | A1 |
20020073924 | Chiang et al. | Jun 2002 | A1 |
20020076490 | Chiang et al. | Jun 2002 | A1 |
20020076507 | Chiang et al. | Jun 2002 | A1 |
20020076508 | Chiang et al. | Jun 2002 | A1 |
20020088547 | Tomoyasu et al. | Jul 2002 | A1 |
20020094689 | Park | Jul 2002 | A1 |
20020100418 | Sandhu et al. | Aug 2002 | A1 |
20020104481 | Chiang et al. | Aug 2002 | A1 |
20020108714 | Doering et al. | Aug 2002 | A1 |
20020110991 | Li | Aug 2002 | A1 |
20020127745 | Lu et al. | Sep 2002 | A1 |
20020129768 | Carpenter et al. | Sep 2002 | A1 |
20020132374 | Basceri et al. | Sep 2002 | A1 |
20020144655 | Chiang et al. | Oct 2002 | A1 |
20020146512 | Rossman | Oct 2002 | A1 |
20020162506 | Sneh et al. | Nov 2002 | A1 |
20020164420 | Derderian et al. | Nov 2002 | A1 |
20020185067 | Upham | Dec 2002 | A1 |
20020195056 | Sandhu et al. | Dec 2002 | A1 |
20020195145 | Lowery et al. | Dec 2002 | A1 |
20020195201 | Beer | Dec 2002 | A1 |
20020197402 | Chiang et al. | Dec 2002 | A1 |
20030000473 | Chae et al. | Jan 2003 | A1 |
20030003697 | Agarwal et al. | Jan 2003 | A1 |
20030003730 | Li | Jan 2003 | A1 |
20030013320 | Kim et al. | Jan 2003 | A1 |
20030023338 | Chin et al. | Jan 2003 | A1 |
20030024477 | Okuda et al. | Feb 2003 | A1 |
20030027428 | Ng et al. | Feb 2003 | A1 |
20030027431 | Sneh et al. | Feb 2003 | A1 |
20030031794 | Tada et al. | Feb 2003 | A1 |
20030037729 | DeDontney et al. | Feb 2003 | A1 |
20030049372 | Cook et al. | Mar 2003 | A1 |
20030060030 | Lee et al. | Mar 2003 | A1 |
20030066483 | Lee et al. | Apr 2003 | A1 |
20030070609 | Campbell et al. | Apr 2003 | A1 |
20030070617 | Kim et al. | Apr 2003 | A1 |
20030070618 | Campbell et al. | Apr 2003 | A1 |
20030075273 | Kilpela et al. | Apr 2003 | A1 |
20030079686 | Chen et al. | May 2003 | A1 |
20030094903 | Tao et al. | May 2003 | A1 |
20030098372 | Kim | May 2003 | A1 |
20030098419 | Ji et al. | May 2003 | A1 |
20030106490 | Jallepally et al. | Jun 2003 | A1 |
20030121608 | Chen et al. | Jul 2003 | A1 |
20030159780 | Carpenter et al. | Aug 2003 | A1 |
20030185979 | Nelson | Oct 2003 | A1 |
20030192645 | Liu | Oct 2003 | A1 |
20030194862 | Mardian et al. | Oct 2003 | A1 |
20030200926 | Dando et al. | Oct 2003 | A1 |
20030203109 | Dando et al. | Oct 2003 | A1 |
20030213435 | Okuda et al. | Nov 2003 | A1 |
20030232892 | Guerra-Santos et al. | Dec 2003 | A1 |
20040000270 | Carpenter et al. | Jan 2004 | A1 |
20040003777 | Carpenter et al. | Jan 2004 | A1 |
20040007188 | Burkhart et al. | Jan 2004 | A1 |
20040025786 | Kontani et al. | Feb 2004 | A1 |
20040035358 | Basceri et al. | Feb 2004 | A1 |
20040040502 | Basceri et al. | Mar 2004 | A1 |
20040040503 | Basceri et al. | Mar 2004 | A1 |
20040083959 | Carpenter et al. | May 2004 | A1 |
20040083960 | Dando | May 2004 | A1 |
20040083961 | Basceri | May 2004 | A1 |
20040089240 | Dando et al. | May 2004 | A1 |
20040094095 | Huang et al. | May 2004 | A1 |
20040099377 | Newton et al. | May 2004 | A1 |
20040124131 | Aitchison et al. | Jul 2004 | A1 |
20040154538 | Carpenter et al. | Aug 2004 | A1 |
20040226507 | Carpenter et al. | Nov 2004 | A1 |
20040226516 | Daniel et al. | Nov 2004 | A1 |
20040238123 | Becknell et al. | Dec 2004 | A1 |
20050016956 | Liu et al. | Jan 2005 | A1 |
20050016984 | Dando | Jan 2005 | A1 |
20050022739 | Carpenter et al. | Feb 2005 | A1 |
20050028734 | Carpenter et al. | Feb 2005 | A1 |
20050039680 | Beaman et al. | Feb 2005 | A1 |
20050039686 | Zheng et al. | Feb 2005 | A1 |
20050045100 | Derderian | Mar 2005 | A1 |
20050045102 | Zheng et al. | Mar 2005 | A1 |
20050048742 | Dip et al. | Mar 2005 | A1 |
20050059261 | Basceri et al. | Mar 2005 | A1 |
20050061243 | Sarigiannis et al. | Mar 2005 | A1 |
20050087132 | Dickey et al. | Apr 2005 | A1 |
20050217582 | Kim et al. | Oct 2005 | A1 |
20050249887 | Dando et al. | Nov 2005 | A1 |
20060115957 | Basceri et al. | Jun 2006 | A1 |
20060121689 | Basceri et al. | Jun 2006 | A1 |
20060165873 | Rueger et al. | Jul 2006 | A1 |
20060198955 | Zheng et al. | Sep 2006 | A1 |
20060204649 | Beaman et al. | Sep 2006 | A1 |
20060205187 | Zheng et al. | Sep 2006 | A1 |
20060213440 | Zheng et al. | Sep 2006 | A1 |
20060237138 | Qin | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
198 51 824 | May 2000 | DE |
1 167 569 | Jan 2002 | EP |
62235728 | Oct 1987 | JP |
62263629 | Nov 1987 | JP |
63020490 | Jan 1988 | JP |
63111177 | May 1988 | JP |
63234198 | Sep 1988 | JP |
63-256460 | Oct 1988 | JP |
6481311 | Mar 1989 | JP |
1-273991 | Nov 1989 | JP |
03174717 | Jul 1991 | JP |
4-100533 | Apr 1992 | JP |
4-213818 | Aug 1992 | JP |
6054443 | Feb 1994 | JP |
6-151558 | May 1994 | JP |
06201539 | Jul 1994 | JP |
06202372 | Jul 1994 | JP |
6-342785 | Dec 1994 | JP |
8-34678 | Feb 1996 | JP |
9-82650 | Mar 1997 | JP |
10008255 | Jan 1998 | JP |
10-223719 | Aug 1998 | JP |
11-172438 | Jun 1999 | JP |
2001-82682 | Mar 2001 | JP |
2001-261375 | Sep 2001 | JP |
2002-164336 | Jun 2002 | JP |
2001-254181 | Sep 2002 | JP |
598630 | Mar 1978 | SU |
WO-9837258 | Aug 1998 | WO |
WO-9906610 | Feb 1999 | WO |
WO-0040772 | Jul 2000 | WO |
WO-0063952 | Oct 2000 | WO |
WO-0065649 | Nov 2000 | WO |
WO-0079019 | Dec 2000 | WO |
WO-0132966 | May 2001 | WO |
WO-0146490 | Jun 2001 | WO |
WO-0245871 | Jun 2002 | WO |
WO-0248427 | Jun 2002 | WO |
WO-02073329 | Sep 2002 | WO |
WO-02073660 | Sep 2002 | WO |
WO-02081771 | Oct 2002 | WO |
WO-02095807 | Nov 2002 | WO |
WO-03008662 | Jan 2003 | WO |
WO-03016587 | Feb 2003 | WO |
WO-03028069 | Apr 2003 | WO |
WO-03033762 | Apr 2003 | WO |
WO-03035927 | May 2003 | WO |
WO-03052807 | Jun 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050217575 A1 | Oct 2005 | US |