This invention relates to imaging systems in general, and more particularly to anatomical imaging systems.
CereTom® CT Machine with Centipede Belt Drive
Looking first at
CereTom® CT machine 5 generally comprises a torus 10 which is supported by a base 15. A center opening 20 is formed in torus 10. Center opening 20 receives the patient anatomy which is to be scanned by CereTom®CT machine 5. Inasmuch as CereTom® CT machine 5 is designed to be as small and mobile as possible, and inasmuch as CereTom® CT machine 5 is intended to be used extensively for stroke diagnosis applications, center opening 20 is configured to be just slightly larger than the head of a patient.
Looking next at
Still looking at
Looking next at
Looking again at
As noted above, the various components of CereTom® CT machine 5 are engineered so as to provide a relatively small and mobile CT machine. As a result, CereTom® CT machine 5 is particularly well suited for use in stroke diagnosis applications. More particularly, since CereTom® CT machine 5 is constructed so as to be a small, mobile unit, it can be pre-positioned in the emergency room of a hospital and then quickly moved to the bedside of a patient when scanning is required, rather than requiring the patient to be transported to a radiology department for scanning. Furthermore, the patient can be scanned while remaining on their hospital bed or gurney, since CereTom® CT machine 5 moves relative to the patient during scanning. This is extremely beneficial, since it eliminates transport delays and hence significantly reduces the time needed to scan the patient, which can be extremely important in timely diagnosing a potential stroke victim.
Further details regarding the construction and use of CereTom® CT machine 5 are disclosed in U.S. Pat. Nos. 7,175,347, 7,637,660, 7,568,836, 7,963,696, 7,438,471, 7,397,895, 7,396,160 and 7,736,056, which patents are hereby incorporated herein by reference.
In practice, CereTom® CT machine 5 has proven to be highly effective in the timely diagnosis of potential stroke victims. In addition, CereTom® CT machine 5 has also proven to be highly effective in other head scanning applications, in the scanning of limbs (e.g., arms and/or hands, legs and/or feet), and in scanning infants and small toddlers (e.g., those capable of fitting within center opening 20). Furthermore, CereTom® CT machine 5 has also proven highly effective in veterinarian applications (e.g., to scan the leg and/or hoof of a horse).
Significantly, in view of the relatively small size and high mobility of CereTom® CT machine 5, CT scanning has been conducted in a wide range of different locations, e.g., in emergency rooms for stroke diagnosis, in operating rooms for neurosurgical applications, in veterinary clinics for animal treatment, etc.
In view of the substantial success of CereTom® CT machine 5, it has now been desired to increase the size of CereTom® CT machine 5 so that it can be used for full body scanning, e.g., such as during a spinal procedure in an operating room. To this end, it is necessary for CereTom® CT machine 5 to be scaled up in size so that the diameter of center opening 20 is large enough to receive both the torso of the patient and the surgical platform needed to support the patient during the surgical procedure. However, in this respect, it must also be appreciated that additional changes must be made to CereTom® CT machine 5 in order to permit the aforementioned full body scanning in an operating room setting.
More particularly, in
Unfortunately, and as seen in
In fact, when CereTom® CT machine 5 is supported on its centipede belt drives 63, the bottom of skirt 75 sits approximately 2.2 inches above the surface of the floor.
Thus there is a need for a new and improved form of CereTom® CT machine 5 which can be used to scan the torso of a patient while the patient is supported on patient support 100.
These and other objects of the present invention are addressed by the provision and use of a new and improved form of CereTom® CT machine 5, which can be used to scan the torso of a patient while the patient is supported on patient support 100.
In one preferred form of the invention, there is provided apparatus for imaging an object, the apparatus comprising:
an imaging device configured to image the object while the object is supported on a support, the support comprising a base for positioning on a surface, wherein the object and the support are stationary relative to the surface, and further wherein the imaging device is adapted to move relative to the surface, and hence relative to the object and to the support, during imaging;
the imaging device comprising a housing having a bottom notch sized to accommodate the base of the support, whereby to allow the base of the support to extend into the housing during imaging.
In another preferred form of the invention, there is provided a method for imaging an object, the method comprising:
positioning the object on a support, the support comprising a base disposed on a surface, wherein the object and the support are stationary relative to the surface;
imaging the object while the object is supported on the support, wherein the imaging device is adapted to move relative to the surface, and hence relative to the object and to the support, during imaging, and further wherein the base of the support extends into a bottom notch formed in the housing during imaging.
In another preferred form of the invention, there is provided apparatus for imaging an object, the apparatus comprising:
an imaging device configured to move on a surface such that the imaging device comprises a leading end and a trailing end, wherein the imaging device comprises a camera and a viewing screen, wherein the output of the camera may be displayed on the viewing screen, and further wherein the camera is disposed on the leading end of the imaging device so as to capture an image of the space ahead of the leading end of the imaging device during movement of the imaging device across the surface.
These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts and further wherein:
In accordance with the present invention, there is now provided a new and improved form of CereTom® CT machine 5, hereinafter sometimes referred to as the BodyTom™ CT machine, which can be used to scan the torso of a patient while the patient is supported on patient support 100.
More particularly, and looking now at
See
If desired, casters 62 of gross movement mechanism 55 can be replaced with a powered drive system, e.g., power driven wheels. Furthermore, if desired, centipede belt drives 63 of fine movement mechanism 60 can be replaced with an alternative floor crawler mechanism, e.g., a tracked or wheeled floor crawler mechanism.
Also, if desired, a video camera/video screen system can be provided on BodyTom™ CT machine 205 in order to assist the operator in safely navigating around obstacles which might otherwise be obstructed from the view of the operator when transporting and/or positioning the machine. This feature can be important in view of the increased size of BodyTom™ CT machine 205. In one preferred form of the invention, video cameras and video screens are provided on each end of BodyTom™ CT machine 205, so that the operator can maneuver the machine from either end. By way of example but not limitation, video cameras 285A, 285B and video screens 290A, 290B may be provided, with the operator viewing the output of video camera 285A on video screen 290B or the output of video camera 285B on video screen 290A. In one preferred form of the invention, video screens 290A, 290B are also used to provide output to the operator when BodyTom™ CT machine 205 is being used in scanning mode, set-up mode, etc.
Furthermore, if desired, batteries 70 can be Lithium-Ion batteries.
It should be appreciated that the present invention is not limited to use in medical applications or, indeed, to use with CT machines. Thus, for example, the present invention may be used in connection with CT machines used for non-medical applications, e.g., with CT machines used to scan inanimate objects which are to be supported on an object support which needs to be encompassed by the CT machine (e.g., in the center opening of the CT machine and the bottom notch of the CT machine). Furthermore, the present invention may be used with non-CT-type scanning systems. Thus, for example, the present invention may be used in conjunction with SPECT machines, MRI machines, PET machines, X-ray machines, etc., i.e., wherever the scanning machine must accommodate portions of a support within the scanning machine during scanning.
It will be appreciated that still further embodiments of the present invention will be apparent to those skilled in the art in view of the present disclosure. It is to be understood that the present invention is by no means limited to the particular constructions herein disclosed and/or shown in the drawings, but also comprises any modifications or equivalents within the scope of the invention.
This patent application: (i) is a continuation-in-part of prior U.S. patent application Ser. No. 12/655,360, filed Dec. 29, 2009 now U.S. Pat. No. 8,251,584 by Andrew P. Tybinkowski et al. for ANATOMICAL IMAGING SYSTEM WITH CENTIPEDE BELT DRIVE, which is a continuation of prior U.S. patent application Ser. No. 11/706,133, filed Feb. 13, 2007 now U.S. Pat. No. 7,637,660 by Andrew P. Tybinkowski et al. for ANATOMICAL IMAGING SYSTEM WITH CENTIPEDE BELT DRIVEICA, which is a continuation of prior U.S. patent application Ser. No. 11/193,941, filed Jul. 29, 2005 now U.S. Pat. No. 7,175,347 by Andrew P. Tybinkowski et al. for ANATOMICAL IMAGING SYSTEM WITH CENTIPEDE BELT DRIVE, which claims benefit of (a) prior U.S. Provisional Patent Application Ser. No. 60/670,164, filed Apr. 11, 2005 by Andrew P. Tybinkowski et al. for ANATOMICAL IMAGING SYSTEM WITH CENTIPEDE DRIVE; and (b) prior U.S. Provisional Patent Application Ser. No. 60/593,001, filed Jul. 30, 2004 by Bernard Gordon et al. for ANATOMICAL SCANNING SYSTEM; and (ii) claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 61/388,487, filed Sep. 30, 2010 by Eric Bailey et al. for ANATOMICAL IMAGING SYSTEM WITH CENTIPEDE BELT DRIVE AND BOTTOM NOTCH TO ACCOMMODATE BASE OF PATIENT SUPPORT. The six (6) above-identified patent applications are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3603975 | Gordon | Sep 1971 | A |
3775612 | Foster et al. | Nov 1973 | A |
3904878 | Burch et al. | Sep 1975 | A |
4006359 | Sullins et al. | Feb 1977 | A |
4131802 | Braden et al. | Dec 1978 | A |
4928283 | Gordon | May 1990 | A |
5389101 | Heilbrun et al. | Feb 1995 | A |
5448607 | McKenna | Sep 1995 | A |
5736821 | Suyama | Apr 1998 | A |
5867553 | Gordon et al. | Feb 1999 | A |
5887047 | Bailey et al. | Mar 1999 | A |
5982843 | Bailey et al. | Nov 1999 | A |
6108396 | Bechwati et al. | Aug 2000 | A |
6144180 | Chen et al. | Nov 2000 | A |
6212251 | Tomura et al. | Apr 2001 | B1 |
6256404 | Gordon et al. | Jul 2001 | B1 |
6285028 | Yamakawa | Sep 2001 | B1 |
6374937 | Galando et al. | Apr 2002 | B1 |
6396902 | Tybinkowski et al. | May 2002 | B2 |
6459923 | Plewes et al. | Oct 2002 | B1 |
6705758 | Luusua et al. | Mar 2004 | B1 |
6813374 | Karimi et al. | Nov 2004 | B1 |
6857778 | Mun et al. | Feb 2005 | B2 |
6959068 | Sommer | Oct 2005 | B1 |
7175347 | Tybinkowski et al. | Feb 2007 | B2 |
7319738 | Lasiuk et al. | Jan 2008 | B2 |
7338207 | Gregerson et al. | Mar 2008 | B2 |
7396160 | Tybinkowski et al. | Jul 2008 | B2 |
7397895 | Bailey et al. | Jul 2008 | B2 |
7438471 | Tybinkowski et al. | Oct 2008 | B2 |
7568836 | Bailey et al. | Aug 2009 | B2 |
7637660 | Tybinkowski et al. | Dec 2009 | B2 |
7736056 | Tybinkowski et al. | Jun 2010 | B2 |
7963696 | Bailey et al. | Jun 2011 | B2 |
8118488 | Gregerson | Feb 2012 | B2 |
8251584 | Tybinkowski et al. | Aug 2012 | B2 |
20020035317 | Cheng et al. | Mar 2002 | A1 |
20030072613 | Colvard | Apr 2003 | A1 |
20030095635 | Moritake et al. | May 2003 | A1 |
20030147490 | Stabe et al. | Aug 2003 | A1 |
20030206609 | Kling et al. | Nov 2003 | A1 |
20050284672 | Egen et al. | Dec 2005 | A1 |
20070183588 | Bailey et al. | Aug 2007 | A1 |
20070183589 | Tybinkowski et al. | Aug 2007 | A1 |
20070195938 | Bailey et al. | Aug 2007 | A1 |
20100172468 | Gregerson | Jul 2010 | A1 |
20110222667 | Gregerson et al. | Sep 2011 | A1 |
20110228910 | Gregerson et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
1037450 | Nov 1989 | CN |
HEI 11-164829 | Jun 1999 | JP |
2003-190149 | Jul 2003 | JP |
WO 9800681 | Jan 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20120104264 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
60670164 | Apr 2005 | US | |
60593001 | Jul 2004 | US | |
61388487 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11706133 | Feb 2007 | US |
Child | 12655360 | US | |
Parent | 11193941 | Jul 2005 | US |
Child | 11706133 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12655360 | Dec 2009 | US |
Child | 13250754 | US |