As is typically well-known, animals experience changes in behavior patterns corresponding with seasonal changes. For example, in summer months, when weather is hot, mammals will often be less active during mid-day hours when temperatures are more extreme and more active during early morning and late afternoon hours when temperatures are more moderate. In contrast, during winter months, when weather is generally colder, mammals will often be more active during mid-day hours when temperatures are more moderate. As such, a pet owner may expect that their animal may not respond positively to a fixed exercise schedule that ignores seasonal changes.
In addition, animals may experience physiological changes corresponding with seasonal changes. For example, in the months preceding summer, furry mammals such as cats and dogs may experience a decrease in coat density. Furthermore, mammals may experience weight loss as they become more active. These changes are likely an evolutionary response to warmer temperatures. In contrast, in the months preceding winter, these same mammals may experience an increase in coat density and coarseness. Likewise, these mammals may experience weight gains as their bodies store excess energy for lean winter months.
For a pet owner, these seasonal changes may cause some confusion when caring for their pet. Particularly for indoor pets, the evolutionary changes described may not be required for the animal's survival since the animal's movement is restricted to a climate controlled environment. In those cases, changes in the pet's behavior and physiology may be detrimental to the pet's health and well-being. As such, animal treatment pads utilizing narrow spectrum light are presented herein.
The following presents a simplified summary of some embodiments of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some embodiments of the invention in a simplified form as a prelude to the more detailed description that is presented below.
As such, animal pads are presented including: a pad; a lamp fixture positioned to at least illuminate a portion of the pad, where the lamp fixture includes, a narrow spectrum lamp, and a power source; and an intensity adjustment module including, a switch for turning the narrow spectrum lamp on and off, and an intensity adjustment element for adjusting an intensity of the narrow spectrum lamp in response to a number of inputs, where a first input of the number of inputs is a user adjustable input. In some embodiments, animal pads are presented where the intensity adjustment module further includes: a thermocouple for measuring an ambient temperature and for providing a second input of the number of inputs to the intensity adjustment element; and a logic element in electronic communication with the intensity adjustment element, the logic element configured for regulating the intensity adjustment element in response to the second input. In some embodiments, animal pads are presented where the intensity of the narrow spectrum lamp is adjustable to an intensity range of approximately 100 to 25% over a temperature range of approximately 20 to 100° F. In some embodiments, animal pads are presented where the narrow spectrum lamp emits light in a spectrum range of approximately 520-435 nanometers. In some embodiments, animal pads are presented where the narrow spectrum lamp is selected from the group consisting of: an incandescent bulb, a fluorescent bulb, and a number of light emitting diodes, and where the narrow spectrum lamp has a wattage in a range of approximately 5 to 300 watts. In some embodiments, animal pads are presented where the switch is selected from the group consisting of: a user activated switch, a pressure sensitive switch configured for automatically activating when an animal is on the pad, an inductive switch configured for automatically activating when the animal is detected, and a motion switch configured for automatically activating when motion is detected. In some embodiments, animal pads are presented where the pad further includes a removable side wall, the removable side wall disposed at least substantially perpendicular to the pad, and where the lamp fixture further includes a removable protective screen for preventing contact between an animal the narrow spectrum lamp. In some embodiments, animal pads further include an air circulating device in electronic communication with the logic for providing a comfortable environment for an animal.
In other embodiments, automatically adjusting lamp fixtures for use with an animal are presented, the automatically adjusting lamp fixture including: a base for attachment with a selected surface and for providing a mechanical support; a semi-rigid neck attached with the base, the semi-rigid neck providing flexible positioning; a lamp socket attached with the semi-rigid neck, the lamp socket positioned distally from the base; a narrow spectrum lamp; an opaque lamp shade for preventing light leakage; a power source; and an intensity adjustment module including, a switch for turning the narrow spectrum lamp on and off, and an intensity adjustment element for adjusting an intensity of the narrow spectrum lamp in response to a number of inputs, where a first input of the number of inputs is a user adjustable input. In some embodiments, lamp fixtures are provided where the intensity adjustment module further includes: a thermocouple for measuring an ambient temperature and for providing a second input of the number of inputs to the intensity adjustment element; and a logic element in electronic communication with the intensity adjustment element, the logic element configured for regulating the intensity adjustment element in response to the second input. In some embodiments, lamp fixtures further include an air circulating device in electronic communication with the logic for providing a comfortable environment for an animal.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
The present invention will now be described in detail with reference to a few embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.
Without being bound by theory, experimental use has demonstrated that use of embodiments provided herein have resulted in several beneficial aspects of pet care. For example, in utilizing embodiments provided herein, pets may be treated such that appetite increase during months preceding winter and during winter is avoided. As such, seasonal weight gain may, in some examples, be avoided. Further, use of embodiments provided herein has resulted in softer and silkier coats for pets, which characteristics are typically associated with summer months. Without being bound by theory, it is suggested that the use of a narrow spectrum light may function to trick an animal's evolutionary control system to respond to what is essentially a continuous summer. Experimental use has also resulted in a marked decrease in shedding and, therefore, a commensurate decrease in hairball production, which leads to an overall increase in general health of a pet. In addition, experimental use has further resulted in a marked decrease in vermin infestations such as flea infestation further leading to an overall increase in general health of a pet. In addition, since lamps, such as incandescent and fluorescent lamps emit heat, embodiments are defined in which intensity may be adjusted to avoid overheating a pet. However, in other embodiments, intensity may be adjusted to provide warmth to a pet.
Lamp fixture 110 may further include narrow spectrum lamp mounted in a lamp socket (not shown) for providing light treatment for animals. In some embodiments, a narrow spectrum lamp includes a wattage in a range of approximately 5 to 300 watts, more preferably 25 to 150 watts. In other embodiments, narrow spectrum lamp emits light in a spectrum range of approximately 520-435 nm. As noted above, experimental data has demonstrated without being bound by theory that treatment in this spectrum range has resulted in softer and silkier coats as well as appetite regulation in animals. Opaque lamp shade 116 may be utilized to limit or prevent light leakage to surrounding areas. In addition, lamp fixture 110 may further include protective screen 112 in some embodiments to prevent unintentional contact with the narrow spectrum lamp. In this manner, an animal may be safely treated without fear of inadvertent injury from heat generated by the narrow spectrum lamp.
In some embodiments, a power control system may be utilized to adjust intensity of light in treating animals. User adjustable inputs may be utilized in coordination with pressure switch 122 and thermocouple 124. In some embodiments, pressure switch may be configured to turn on the device when an animal is on the pad. In this manner power savings may be realized as well as extended working life of narrow spectrum lamps. Any number of switches may be utilized including without limitation: a user activated switch, a pressure sensitive switch configured for automatically activating when an animal is on the pad, an inductive switch configured for automatically activating when an animal is detected, and a motion switch configured for automatically activating when motion is detected. User adjustable inputs are discussed in further detail below for
In other embodiments, an air circulating device (not shown) may be utilized in coordination with embodiments disclosed herein. In some embodiments, an air circulating device may be vented through opaque lamp shade 116. In those embodiments, air circulating devices may be configured to both “push” and “pull” air through the shade. In this manner, heat from lamp fixture may either be directed toward an animal (i.e. push) or away from an animal (i.e. pull). In some embodiments, air circulation devices may be attached with neck 118. Air circulating devices may be single speed, variable speed, or multi-speed in embodiments.
In still other embodiments; a weighing device (not shown) may be utilized in coordination with embodiments disclosed herein. In some embodiments, it may be desirable to track an animal's weight. This may be particularly useful in determining whether a treatment regime is effective. For example, if weight loss increases with an increase in light exposure, a user may elect to reduce light exposure to stabilize weight or reverse weight loss. In another example, weight tracking may provide feedback to an owner to initiate an increase or decrease in amount of food being given to an animal or pet. In some embodiments, weight may be tracked by logic element described in further detail below for
Further, as illustrated, narrow spectrum lamp 406 may be utilized to provide a narrow spectrum of light as well as heat for an animal. Narrow spectrum lamps may include without limitation, an incandescent bulb, a fluorescent bulb, and a plurality of light emitting diodes. In embodiments, narrow spectrum lamps have a wattage equivalent in a range of approximately 5 to 300 watts, more preferably 25 to 150 watts. In some embodiments, narrow spectrum lamps emit light in a spectrum range of approximately 520-435 nm. Intensity adjustment module 410 is provided to respond to input. In some embodiments, input may be a user adjustable input. That is, a user may manually set intensity to a desired level. In other embodiments, input may be provided by thermocouple 408. Thermocouple 408 may be configured to provide an ambient temperature input for intensity adjustment module 410. In this manner, a continuously comfortable and localized environment may be provided for pets utilizing embodiments disclosed herein. In order to achieve this environment, logic element 412 may be utilized to regulate or electronically drive intensity adjustment element 414 in response to an intensity curve corresponding with a thermocouple for example. Logic element embodiments may be enabled in any manner well known in the art without limitation without departing from the present invention. In some embodiments, logic element is hardware enabled, software enabled, or hardware and software enabled without limitation. In some embodiments, logic element may be in electronic communication with a computing device, which device may be utilized to provide user adjustable input. In some embodiments, a treatment regime may be logged with the computing device. In some embodiments, the intensity of the narrow spectrum lamp is adjustable to an intensity range of approximately 100 to 25% over a temperature range of approximately 20 to 100° F., more preferably to a temperature range of approximately 40 to 80° F.
In some embodiments, air circulating device 416 may be utilized to further control temperature. For example, in some embodiments, an air circulating device may be vented through opaque lamp shade (see
In some embodiments, logic element may be further electronically coupled with a weighing device in order to track and store an animal's weight. As noted above, tracking an animal's weight may be particularly useful in determining whether a treatment regime is effective. For example, if weight loss increases with an increase in light exposure, a user may elect to reduce light exposure to stabilize weight or reverse weight loss. In another example, weight tracking may provide feedback to an owner to initiate an increase or decrease in amount of food being given to an animal or pet. Logic element may store weight associated data in any manner known in the art without departing from embodiments disclosed herein.
In some embodiments, logic element may be further electronically coupled with a timer in order to track exposure times. In an on-going a treatment regime, tracking exposure may provide data points for improving treatment. For example, if an adverse effect is noted, exposure times may be correlated with the effects to determine whether exposure should be reduced, or in some examples, increased. Likewise, if a beneficial effect is noted, exposure times may be similarly correlated. Logic element may store timer data in any manner known in the art without departing from embodiments disclosed herein.
Utilizing user adjustment inputs, treatment may be tailored to a specific animal. Thus, for example as illustrated in
In hibernation-like cycle 710, increased darkness 712 due to, for example, winter solar patterns, may result in decreased nerve stimulation in an animal's retinal ganglia. One result of the decreased nerve stimulation is that melanopsin production is inhibited 714. Melanopsin is a photo pigment found in specialized photosensitive ganglion cells of the retina that are involved in the regulation of circadian rhythms, pupillary light reflex, and other non-visual responses to light. In response to a lack of melanopsin, the pineal gland of some mammals may be stimulated to secrete melatonin 716 which may thicken fur and inhibit leptin secretion 718. Leptin appears to work as a feedback mechanism to signal the body regarding the amount of body fat and its distribution. Decreased leptin increases appetite and increases the body's ability to lay down fat. In contrast, higher levels of leptin decreases appetite and decrease the body's ability to lay down fat. Thus, decreased leptin may result in any of a number of physiological changes including, but not limited to reduced metabolism and increased appetite 720. Without being bound by theory, a net result may be increased weight during winter months 722.
In contrast, in an inhibited hibernation-like cycle 750, embodiments utilizing specific wavelengths of light 752 may result in nerve stimulation in an animal's retinal ganglia. One result of the nerve stimulation is that melanopsin production is stimulated 754. As noted above, melanopsin is a photo pigment found in specialized photosensitive ganglion cells of the retina that are involved in the regulation of circadian rhythms, pupillary light reflex, and other non-visual responses to light. In response to melanopsin production, the pineal gland of some mammals may inhibit melatonin secretion 756 which may, in turn, stimulate leptin secretion 758. As noted above, leptin appears to work as a feedback mechanism to signal the body regarding the amount of body fat and its distribution. Decreased leptin increases appetite and increases the body's ability to lay down fat. In contrast, higher levels of leptin decreases appetite and decrease the body's ability to lay down fat. Thus, leptin secretion may result in any of a number of physiological changes including, but not limited to: normal metabolism and decreased appetite 760. Without being bound by theory, a net result may be normal weight during treatment periods 762.
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. Furthermore, unless explicitly stated, any method embodiments described herein are not constrained to a particular order or sequence. Further, the Abstract is provided herein for convenience and should not be employed to construe or limit the overall invention, which is expressed in the claims. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
A claim for priority is hereby made under the provisions of 35 U.S.C. §119 for the present application based upon U.S. Provisional Application No. 61/316,381, filed on Mar. 23, 2010 which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61316381 | Mar 2010 | US |