Antenna device and method of setting resonant frequency of antenna device

Information

  • Patent Grant
  • 9564678
  • Patent Number
    9,564,678
  • Date Filed
    Thursday, September 6, 2012
    11 years ago
  • Date Issued
    Tuesday, February 7, 2017
    7 years ago
Abstract
In antenna device, a coil conductor of an antenna coil module and a conductor layer at least partially overlap. A current flows in the conductor layer to block a magnetic field generated by a current flowing in the coil conductor. A current flows along the periphery of a slit and around the periphery of the conductor layer due to a cut-edge effect. Since magnetic flux does not pass through the conductor layer, magnetic flux attempts to bypass the conductor layer along a path in which the conductor opening of the conductor layer is on the inside and the outer edge of the conductor layer is on the outside. As a result, the magnetic flux generates large loops that link the inside and the outside of a coil conductor of an antenna on a reader/writer side to couple an antenna device and the antenna on the reader/writer side.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to antenna devices preferably for use in RFID systems and short-range wireless communication systems, such systems performing communication through electromagnetic signals with appliances that are communication partners, and also relates to methods of setting the resonant frequency of such antenna devices.


2. Description of the Related Art


In RFID systems and short-range wireless communication systems, which have become widely used in recent years, in order to facilitate communication between mobile electronic appliances such as mobile telephones or between a mobile electronic appliance and a reader/writer, a communication antenna is mounted in each of the appliances. Among such antennas, an antenna to be mounted in a mobile electronic appliance is disclosed in Japanese Unexamined Patent Application Publication No. 2006-270681.



FIG. 1 is a view illustrating communication between a mobile information terminal 21 and a reader/writer as disclosed in Japanese Unexamined Patent Application Publication No. 2006-270681 when the mobile information terminal 21 and the reader/writer are in the vicinity of each other. In the example illustrated in FIG. 1, a magnetic field H, which is part of the electromagnetic waves radiated from a transmitting/receiving antenna unit 26 of the reader/writer, is affected by metal objects such as a battery pack 25 within a main body 22 of the terminal and is weakened due to reflection, absorption and the like. A metal layer 30 is arranged closer to a side onto which the electromagnetic waves are incident than a location of a communication surface CS of an antenna module 10. An induced current (eddy current) is generated due to the external magnetic field acting on the front surface of the metal layer 30 and a magnetic field H1 generated as a result of this current causes generation of an induced electric current in an antenna coil 15 of the antenna module 10.


In this example, the metal layer 30 is arranged close to and facing the antenna module 10 so as to cover part of the antenna coil 15 and thereby inductive coupling occurs between the transmitting/receiving antenna unit 26 of the reader/writer and the antenna coil 15 of the antenna module 10 via the magnetic field component H1 that arises around the metal layer 30.


The antenna device illustrated in FIG. 1 attempts to solve a problem in that when the antenna of the antenna device and the antenna on the communication partner side are brought close to each other and the distance therebetween becomes very small, the communication characteristics fluctuate greatly depending on the magnitude of positional displacement between the centers of the two antenna. In order to reduce the degree to which magnetic flux, which is attempting to link the antenna coil 15 of the antenna module 10 on the mobile information terminal 21 side and transmitting/receiving antenna unit 26 on the reader/writer side, is blocked by metal objects such as the battery pack 25 within the casing, the metal layer 30 is provided to induce magnetic flux in that region. Therefore, a substantial effect cannot be regularly or reliably obtained by changing the positions of shielding members such as the battery pack 25.


Furthermore, the metal layer 30 effectively does not regularly or reliably increase the communication range in a state in which the antenna device and the antenna on the communication partner side are spaced apart from each other.


SUMMARY OF THE INVENTION

Accordingly, preferred embodiments of the present invention provide an antenna device that, even when the size of the antenna device is small compared to that of an antenna on the communication-partner side, is capable of stable communication and is also capable of increasing the maximum possible communication range, and also provide a method of adjusting the central resonant frequency of the antenna device.


An antenna device according to a preferred embodiment of the present invention is provided in an electronic appliance and includes a coil conductor having a loop shape or a spiral shape in which a winding center portion provides a coil opening; and a conductor layer that is arranged on a side closer to an antenna on a communication partner side than a location of the coil conductor; wherein the conductor layer includes a conductor opening and a slit, the slit connecting the conductor opening and an outer edge of the conductor layer; and when the substrate is viewed in plan view, the coil conductor and conductor layer are superposed one on top of the other.


A method of setting a resonant frequency of an antenna device according to another preferred embodiment of the present invention includes the steps of mounting inside a casing of an electronic appliance an antenna coil module that is formed by stacking a substrate on which a loop-shaped or spiral-shaped coil conductor, in which a winding center portion defines a coil opening, has been formed, on a magnetic sheet, arranging a conductor layer in the casing on a side that is closer to an antenna of a communication partner side than a location of the coil conductor; and forming a conductor opening and a slit in the conductor layer, the slit connecting the conductor opening and an outer edge of the conductor layer; wherein, when the substrate is viewed in plan view, the coil opening and the conductor opening at least partially overlap, and the resonant frequency is set to be lower than a central frequency of a to-be-used frequency band when the conductor layer is not present and is set to be the central frequency of the to-be-used frequency band when the antenna coil module has been mounted inside the casing of the electronic appliance.


According to various preferred embodiments of the present invention, a current flows through the conductor layer so that a magnetic field, which is generated by the current flowing through the coil conductor, is blocked. Then, a current flows around the periphery of the opening in the conductor layer and a current flows along the periphery of the slit and around the periphery of the conductor layer due to the cut-edge effect. As a result, a magnetic field arises around the conductor layer and the communication range can be increased.


In addition, since the conductor layer causes large loops of magnetic flux to circulate, the magnetic flux extends from the antenna device to the antenna on the communication partner side or from the antenna on the communication partner side to the antenna device, and the maximum possible range of communication between the antenna device and the antenna on the communication partner side becomes large.


The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a view illustrating a situation in which communication is performed between the mobile information terminal 21 and the reader/writer as disclosed in Japanese Unexamined Patent Application Publication No. 2006-270681 when the mobile information terminal 21 and the reader/writer are in the vicinity of each other.



FIG. 2A is a view of a rear surface of an electronic appliance that is equipped with an antenna device according to a first preferred embodiment of the present invention, and FIG. 2B is a plan view of the interior of a lower casing viewed from the rear surface side.



FIG. 3A is a plan view of the antenna coil module 3 and FIG. 3B is a front view thereof.



FIG. 4A is a sectional view illustrating a state in which the antenna device 101 and the antenna on the reader/writer side are magnetically coupled, and FIG. 4B is a sectional view illustrating a state in which there is no conductor layer 2, as a comparative example.



FIGS. 5A and 5B are views of an antenna device according to a second preferred embodiment of the present invention, wherein FIG. 5A is a plan view of the interior of a lower casing 1 of an electronic appliance, and FIG. 5B is a plan view of a state in which the antenna coil module 3 has been mounted on an inner surface of the lower casing 1.



FIGS. 6A and 6B are plan views of an antenna device 103 according to a third preferred embodiment of the present invention wherein FIG. 6A illustrates the current that flows through a coil conductor 31 and FIG. 6B illustrates a current l that flows through a conductor layer 2.



FIG. 7A is a plan view of an antenna coil module 13 according to a fourth preferred embodiment of the present invention and FIG. 7B is a front view thereof.



FIG. 8 is a plan view of an antenna device 104 according to a fifth preferred embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
First Preferred Embodiment

An antenna device and a method of setting a resonant frequency of the antenna device according to a first preferred embodiment of the present invention will be described with reference to FIGS. 2A to 4B.



FIG. 2A is a view of a rear surface of an electronic appliance that is equipped with the antenna device according to the first preferred embodiment of the present invention. The rear surface of the electronic appliance faces an antenna on a reader/writer side, which is a communication partner side. FIG. 2B is a plan view of the interior of a lower casing on the rear surface side. Only the structures of principal components are illustrated in FIGS. 2A and 2B.


As illustrated in FIG. 2A, a conductor layer 2 is located on an outer surface of a lower casing 1. The conductor layer 2 is, for example, a vapor-deposited metal film such as an aluminum film. A conductor opening CA and a slit SL, which connects the conductor opening CA and an outer edge of the conductor layer 2, are provided in the conductor layer 2.


As illustrated in FIG. 2B, an antenna coil module 3 is arranged on an inner surface of the lower casing 1 so as to partially cover the conductor opening CA.


In this preferred embodiment, a camera module is to be installed in the conductor opening CA, for example. It is preferable for the lens of the camera module to be exposed to the outside through an opening in the casing. Therefore, by arranging the conductor opening so as to coincide with the opening provided in the casing in this way, there is no need to design a special casing taking into account provision of the conductor layer 2.


In addition, in cases such as where a portion of an outer surface of the casing is preferably metallic from a design point of view, a metal film is preferably formed on the outer surface of the casing by vapor deposition or other suitable process and the metal film may double as the conductor layer.


By forming the conductor layer 2 on an inner or outer surface of the casing of the electronic appliance in this way, there is no need to ensure there is a dedicated space in which to arrange the conductor layer 2 and a conductor layer 2 having a large area can be arranged.



FIGS. 3A and 3B are a plan view and a front view of the antenna coil module 3, respectively. The antenna coil module 3 preferably includes a rectangular-sheet-shaped flexible substrate 33 and a magnetic sheet 39 having the same or substantially the same rectangular sheet-shaped configuration as the flexible substrate 33. Connectors 32 are provided on the flexible substrate 33 and are used to connect a spiral-shaped coil conductor 31, in which a winding center portion provides a coil opening CW, and an external circuit. The magnetic sheet 39 preferably is, for example, made of a ferrite formed in a sheet-shaped configuration.


The number of windings (number of turns) of the coil conductor 31 is determined on the basis of the required inductance. If there is only one turn, a simple loop-shaped coil conductor is formed.


The antenna coil module 3 is arranged so that the antenna coil module 3 is mounted on an inner surface of the lower casing 1 of the electronic appliance as illustrated in FIG. 2B, and when an upper casing is stacked thereon, the connectors 32 contact predetermined pins of a circuit board mounted in the upper casing.


The circuit board is provided with a capacitor that is connected in parallel with the connectors 32. The resonant frequency is determined by the inductance defined by the coil conductor 31 and the magnetic sheet 39 of the antenna coil module 3 and the capacitance of the capacitor. For example, in the case where a HF band is used having a central frequency of 13.56 MHz, the resonant frequency is determined to be 13.56 MHz.



FIG. 4A is a sectional view illustrating a state in which the antenna device 101 and the antenna on the reader/writer side are magnetically coupled. Furthermore, FIG. 4B is a sectional view illustrating a state in which there is no conductor layer 2, as a comparative example. Components of the casing of the electronic appliance are omitted from the figures.


Since at least a portion of the coil conductor 31 of the antenna coil module 3 is covered by the conductor layer 2, a current flows through the conductor layer such that the magnetic field that arises due to the current flowing through the coil conductor is blocked. Then, a current, which flows around the periphery of the opening of the conductor layer, passes along the periphery of the slit and flows around the periphery of the conductor layer due to a cut-edge effect. In addition, a current also flows through the planar portion of the conductor layer. Accordingly, a magnetic field arises around the conductor layer and since magnetic flux does not penetrate through the conductor layer 2, magnetic flux MF attempts to bypass the conductor layer 2 along a path in which the conductor opening CA of the conductor layer 2 is on the inside and the outer edge of the conductor layer 2 is on the outside. As a result, the magnetic flux MF draws relatively large loops that link the inside and the outside of a coil conductor 41 of an antenna 4 on the reader/writer side. In other words, the antenna device 101 and the antenna 4 on the reader/writer side are magnetically coupled.


Furthermore, the magnetic flux, which is attempting to link the coil conductor 31 and the antenna on the communication partner side, can circulate through the coil opening CW and the conductor opening CA due to the fact that the coil opening CW and the conductor opening CA at least partially overlap when the coil conductor 31 is viewed in plan view. Specifically, when the coil opening CW and the conductor opening CA overlap over almost the entire peripheries thereof when the coil conductor 31 is viewed in plan view, the coil conductor 31 can be made to effectively radiate a magnetic field.


In addition, large magnetic field loops can be generated due to the fact that the area of the conductor layer 2 is larger than the area of the region over which the coil conductor 31 is formed.


Furthermore, the directivity of the antenna can be made to be wider in the antenna direction of the communication partner by stacking the magnetic sheet 39 on the surface of the flexible substrate 33 that is on the side farther from the antenna on the communication partner side.


In this way, since it turns out that the magnetic flux is oriented in directions that extend beyond the conductor layer 2, stable communication can be realized even when the antenna device 101 and the reader/writer are close to each other in a state where the center of the antenna device 101 (center of antenna coil module 3) and the center of the antenna 4 of the reader/writer are aligned.


Furthermore, since conductor loops are not formed in the conductor layer 2 because the conductor layer 2 is provided with the slit SL, as illustrated in FIG. 4A, when the magnetic flux MF circulates through the conductor opening CA and around the outer edge of the conductor layer 2, eddy currents can be prevented from arising in the conductor layer 2 and losses due to such eddy currents can be minimized and prevented. As a result, the maximum possible communication range can be secured between the antenna device 101 and the antenna 4 on the reader/writer side.


In contrast to this, as illustrated in FIG. 4B, when there is no conductor layer 2, the magnetic flux MF, which passes through the coil opening CW, does not spread out in the left-right direction in FIG. 4B (direction of spreading when the antenna module 3 is viewed in plan view) and the degree of coupling with the antenna 4 on the reader/writer side is small. Therefore, a phenomenon occurs in which communication becomes increasingly unstable the closer the antenna device 101 and the reader/writer are brought to each other.


Moreover, in the antenna device according to a preferred embodiment of the present invention, the conductor layer causes large loops of magnetic flux to circulate and therefore magnetic flux reaches from the antenna device to the antenna on the communication partner side or from the antenna on the communication partner side to the antenna device and the maximum possible range of communication between the antenna device and the antenna on the communication partner side becomes large.


The following table lists results obtained when the size of the antenna coil module 3 was varied and the range over which communication can be performed between an antenna device 101 equipped with each of the antenna coil modules 3 and the antenna on the communication partner side was measured.














Size of Antenna
Without Conductor
With Conductor


Coil Module
Layer
Layer







22.5 mm × 20 mm
0-24 mm
0-44 mm


22.5 mm × 19 mm
0-23 mm
0-43 mm


22.5 mm × 18 mm
0-19 mm
0-41 mm


22.5 mm × 17 mm

0-39 mm


22.5 mm × 16 mm

0-38 mm









For example, in the case of the antenna device equipped with the antenna coil module 3 having a size of, for example, about 22.5 mm×about 18 mm, when the conductor layer is included, the maximum possible communication range is increased to about 41 mm, in contrast to when the conductor layer is not provided and the maximum communication range is about 19 mm. Furthermore, for example, in the case of the antenna devices equipped with the antenna coil modules 3 having sizes equal to or less than, for example, about 22.5 mm×about 17 mm, communication is not possible at any distance when the conductor layer is not provided. In contrast, when the conductor layer is included, communication is possible over a wide range from, for example, about 0 mm to about 38 mm even in cases where the antenna device is configured so as to be equipped with a very small antenna coil module 3 such as the one having a size of about 22.5 mm×about 16 mm, for example.


Setting of the central resonant frequency of the antenna device 101 is preferably performed as follows. In a state in which the antenna coil module 3 illustrated in FIG. 2B is not in the vicinity of the conductor layer 2, in other words, in a stand alone state in which the antenna coil module 3 has not yet been mounted in the lower casing 1, while the antenna coil module 3 is connected in parallel with a resonance capacitor, the resonant frequency is set in advance to be lower than the central resonant frequency of the frequency band to be used. As illustrated in FIGS. 2B and 4A, when the antenna coil module 3 is brought close to the conductor opening CA of the conductor layer 2, since the inductance value of the antenna coil module 3 becomes smaller, the resonant frequency of the antenna device 101 increases. Consequently, the inductance value of the antenna coil module 3 in the stand alone state is determined so that the resonant frequency of the antenna device 101 once the antenna device 101 has been constructed by mounting the antenna coil module 3 inside the casing of the electronic appliance approximately coincides with the central resonant frequency of the frequency band to be used.


In addition, the inductance of the antenna device varies in accordance with the length and width of the slit SL. For example, when the slit SL is made to be large, the degree of reduction of the inductance value (increase of resonant frequency) when the conductor layer 2 is brought close to the antenna coil module 3 can be suppressed. Accordingly, the length and width of the slit SL are set so as to obtain a desired inductance value.


Furthermore, since the inductance varies with the positional relationship between the antenna coil module 3 and the conductor layer 2 and with the shape and size of the conductor opening CA of the conductor layer 2, the positional relationship between the antenna coil module 3 and the conductor layer 2 and the shape and size of the conductor opening CA of the conductor layer 2 are set so as to obtain a desired inductance value.


In this way, since the loops of magnetic flux are large due to the presence of the conductor layer, the coil opening CW of the coil conductor 31 may be made small and the antenna coil module can be reduced in size. Furthermore, together with making the coil opening CW small, the number of coil turns can be increased and the number of values of the inductance of the antenna coil module that can be adopted can be increased. As a result, setting of the resonant frequency is simplified.


As described above, in a preferred embodiment of the present invention, characteristics are used for which a magnetic field cannot penetrate into the conductor layer and the emission pattern of the magnetic field at the frequency being used is caused to change due to the presence of the conductor layer.


Stable communication can be performed with the antenna device 101 according to a preferred embodiment of the present invention, even when there are various sizes of the antenna device 101 and the antenna 4 on the reader/writer side. In other words, in the case where the antenna 4 on the reader/writer side is large, magnetic flux circulates in large loops due to the presence of the conductor layer 2 and the magnetic flux from the antenna device 101 reaches the antenna 101 on the reader/writer side, and in the case in which the antenna 4 on the reader/writer side is small, the distance that the magnetic flux reaches is increased due to the presence of the conductor layer 2.


Second Preferred Embodiment


FIGS. 5A and 5B are views of an antenna device 102 according to a second preferred embodiment of the present invention. FIG. 5A is a plan view from the inner surface side of the lower casing 1 of the electronic appliance. Furthermore, FIG. 5B is a plan view of a state in which the antenna coil module 3 has been mounted on an inner surface of the lower casing 1.


In the second preferred embodiment, the conductor layer 2 is preferably provided on an inner surface of the lower casing 1. The conductor layer 2 is preferably formed by vapor deposition of a metal film such as aluminum or by adhesion of a metal foil, for example. In this way, a conductor layer may be provided on an inner surface of the casing.


Moreover, in the preferred embodiment illustrated in FIGS. 5A and 5B, the slit SL of the conductor layer 2 is provided in a portion for which the distance from the conductor opening CA to the edge is short.


The conductor layer 2 may be connected to the ground of a circuit inside the electronic appliance. By doing this, the conductor layer 2 can also serve as a conductor layer to shield the electronic appliance.


Third Preferred Embodiment


FIGS. 6A and 6B are plan views of an antenna device 103 according to a third preferred embodiment of the present invention. FIG. 6A illustrates an electric current that flows through the coil conductor 31 and FIG. 6B illustrates an electric current l that flows through the conductor layer 2. The antenna device 103 preferably includes the antenna coil module 3 and the conductor layer 2. The antenna coil module 3 is preferably constructed by stacking the flexible substrate on which the spiral-shaped coil conductor 31 has been formed on top of a magnetic sheet. Basically, this is the same as the configuration illustrated in FIGS. 3A and 3B. However, in this preferred embodiment, the two terminals of the coil conductor extend from the flexible substrate and connectors are provided at positions separated from the coil conductor 31.


The conductor layer 2 preferably includes the conductor opening CA and the slit SL, which connects the conductor opening CA and the outer edge of the conductor layer 2.


When the coil conductor 31 and the conductor layer 2 are viewed in plan view, the coil opening CW and the conductor opening CA are aligned and overlap over almost the entire peripheries thereof. With such a configuration, when the coil conductor 31 is viewed in plan view, the entirety of the coil conductor 31 can be covered by the conductor layer 2. Consequently, since the magnetic flux generated by the coil conductor 31 attempts to totally link to the conductor layer 2, a large current is generated in the conductor layer 2 in a direction opposite to that of the current that flows through the coil conductor 31 so as to block this magnetic flux. The large electric current I, which flows around the periphery of the conductor opening CA, flows along the periphery of the slit SL, through the plane of the conductor layer and along the periphery of the conductor layer due to the cut-edge effect. Accordingly, a strong magnetic field can be generated by the conductor layer and the communication range can be further widened. In addition, the loops of magnetic flux passing through the conductor opening CA and the coil opening CW and circulating around the conductor layer 2 are more effectively widened. Consequently, stable communication can be performed even when the electronic appliance equipped with the antenna device 103 is oriented in any direction among in-plane directions relative to the surface of the antenna on the reader/writer side.


Fourth Preferred Embodiment


FIG. 7A and FIG. 7B are a plan view and a front view of an antenna coil module 13 according to a fourth preferred embodiment, respectively. The antenna coil module 13 is positioned so as to be in the vicinity of a conductor layer, as illustrated in FIGS. 2A and 2B, similarly to the case of the first preferred embodiment. Due to the antenna coil module 13 being positioned in this way, a large electric current is generated in the conductor layer 2 and a strong magnetic field is generated around the conductor layer 2.


The antenna coil module 13 preferably includes the rectangular-plate-shaped flexible substrate 34 and the magnetic sheet 39 having the same rectangular shape. The spiral-shaped coil conductor 31, in which a winding center portion defines the coil opening CW, and connectors 32, which are used to connect to an external circuit, are provided on the flexible substrate 34. The coil conductor 31 is preferably arranged over two layers of the flexible substrate 34. The two layers are connected by via conductors. The magnetic sheet 39 preferably is, for example, composed of a ferrite formed in a sheet-shaped configuration.


In this way, a strong magnetic field is generated by the coil conductor due to the coil conductor 31 being wound over a plurality of layers, and as a result, a large current is made to flow in the conductor layer. In addition, the coil conductor can be centered and arranged so as to be aligned with the inner edge of the conductor opening. Accordingly, magnetic flux, which is centered on and generated by the coil conductor 31 attempts to link to the conductor layer and therefore a large current can be made to flow in the conductor layer.


Fifth Preferred Embodiment


FIG. 8 is a plan view of an antenna device 104 according to a fifth preferred embodiment of the present invention. The antenna device 104 preferably includes the antenna coil module 3 and the conductor layer 2. In the antenna coil module 3, a flexible substrate on which a spiral-shaped coil conductor has been formed is stacked on top of a magnetic sheet. This configuration is similar to that illustrated in FIGS. 6A and 6B. However, in this preferred embodiment, the coil opening CW is preferably slightly smaller than the conductor opening CA.


Since a portion of the coil conductor 31 is covered by the conductor layer 2, a current flows through the conductor layer 2 due to the magnetic flux generated by the coil conductor 31 as a result of this structure.


In addition, in each of the above-described preferred embodiments, the conductor layer is preferably provided on an outer surface or an inner surface of the casing, but the conductor layer may be arranged on an internal component of the casing. Furthermore, in the case where the casing itself is metal, the casing may be used as the conductor layer.


In addition, in each of the above-described preferred embodiments, the antenna coil module 3 is preferably constructed by stacking the flexible substrate 33 equipped with the coil conductor 31 on top of the magnetic sheet 39 composed of a ferrite; however, it may not be necessary to provide a magnetic sheet in an environment where there is no adverse influence on formation of loops of magnetic flux at the rear surface of the antenna coil module 3.


While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.

Claims
  • 1. An electronic appliance comprising: a casing;an antenna device disposed in the casing, the antenna device including: a coil conductor having a loop shape or a spiral shape in which a winding center portion defines a coil opening; anda conductor layer; whereinthe conductor layer includes a conductor opening and a slit, the slit connecting the conductor opening and an outer edge of the conductor layer;when the coil conductor is viewed in plan view, at least a portion of the coil conductor overlaps with the conductor layer;the conductor layer is arranged to function as a radiator to radiate a magnetic field; andthe electronic appliance is configured such that the magnetic field is radiated towards an outside of the casing and communication between the antenna device and a communication partner is performed with the communication partner being disposed outside of the casing;the communication between the antenna device and the communication partner is performed using inductive coupling;the conductor layer is located on an inner surface, on an outer surface, or on an internal component of the casing of the electronic appliance; andan end portion of the coil opening at least partially overlaps with the conductor layer when viewed in plan view.
  • 2. The electronic appliance according to claim 1, wherein the slit in the conductor layer is provided in a portion of the conductor layer at which a distance from the conductor opening to the edge surface of the casing is less than half of a length or width of the casing.
  • 3. The electronic appliance according to claim 1, wherein the slit in the conductor layer is provided in a portion of the conductor layer which is adjacent to the edge surface of the casing.
  • 4. The electronic appliance according to claim 1, wherein the conductor layer is larger than an area of a region in which the coil conductor is located.
  • 5. The electronic appliance according to claim 1, wherein the coil conductor is wound across a plurality of layers.
  • 6. The electronic appliance according to claim 1, wherein, when the coil conductor is viewed in plan view, the coil opening and the conductor opening overlap each other over almost entire peripheries thereof.
  • 7. The electronic appliance according to claim 1, wherein the coil conductor is located on a substrate, a magnetic sheet is stacked on a surface of the substrate on a side that is spaced from the antenna on the communication partner side, and an antenna coil module includes the substrate and the magnetic sheet.
  • 8. The electronic appliance according to claim 1, wherein a resonant frequency of the antenna device is lower than a central frequency of a to-be-used frequency band in a state in which the conductor layer is not present and is equal or substantially equal to the central frequency of the to-be-used frequency band in a state in which the antenna coil module has been mounted inside the casing of the electronic appliance.
  • 9. The electronic appliance according to claim 1, wherein the communication partner is a reader/writer.
  • 10. The electronic appliance according to claim 1, further comprising a magnetic layer.
  • 11. The electronic appliance according to claim 1, wherein the communication between the antenna device and the communication partner is performed in the HF frequency band.
  • 12. The electronic appliance according to claim 2, wherein an area of the conductor layer is larger than an area of a region in which the coil conductor is disposed.
  • 13. The electronic appliance according to claim 1, further comprising a magnetic layer arranged on a side farther from an antenna on a communication partner side than the coil conductor is relative to the antenna on the communication partner side.
  • 14. The electronic appliance according to claim 13, wherein when the conductor layer is viewed in plan view, an outer peripheral edge of the magnetic layer is located inside of an outer peripheral edge of the conductor layer.
  • 15. An electronic appliance comprising: a metal casing;an antenna device disposed in the casing, the antenna device including: a coil conductor having a loop shape or a spiral shape in which a winding center portion defines a coil opening; anda conductor layer; whereinthe conductor layer includes a conductor opening and a slit, the slit connecting the conductor opening and an outer edge of the conductor layer;when the coil conductor is viewed in plan view, at least a portion of the coil conductor overlaps with the conductor layer;the conductor layer is arranged to function as a radiator to radiate a magnetic field; andthe electronic appliance is configured such that the magnetic field is radiated towards an outside of the casing and communication between the antenna device and a communication partner is performed with the communication partner being disposed outside of the casing;the communication between the antenna device and the communication partner is performed using inductive coupling;the conductor layer is defined by at least a portion of the metal casing of the electronic appliance; andan end portion of the coil opening at least partially overlaps with the conductor layer when viewed in plan view.
Priority Claims (1)
Number Date Country Kind
2009-103358 Apr 2009 JP national
US Referenced Citations (166)
Number Name Date Kind
3364564 Kurtz et al. Jan 1968 A
4794397 Ohe et al. Dec 1988 A
5232765 Yano et al. Aug 1993 A
5253969 Richert Oct 1993 A
5337063 Takahira Aug 1994 A
5374937 Tsunekawa et al. Dec 1994 A
5399060 Richert Mar 1995 A
5491483 D'Hont Feb 1996 A
5528222 Moskowitz et al. Jun 1996 A
5757074 Matloubian et al. May 1998 A
5854480 Noto Dec 1998 A
5903239 Takahashi et al. May 1999 A
5936150 Kobrin et al. Aug 1999 A
5955723 Reiner Sep 1999 A
5995006 Walsh Nov 1999 A
6104311 Lastinger Aug 2000 A
6107920 Eberhardt et al. Aug 2000 A
6172608 Cole Jan 2001 B1
6181287 Beigel Jan 2001 B1
6190942 Wilm et al. Feb 2001 B1
6243045 Ishibashi Jun 2001 B1
6249258 Bloch et al. Jun 2001 B1
6259369 Monico Jul 2001 B1
6271803 Watanabe et al. Aug 2001 B1
6335686 Goff et al. Jan 2002 B1
6362784 Kane et al. Mar 2002 B1
6367143 Sugimura Apr 2002 B1
6378774 Emori et al. Apr 2002 B1
6406990 Kawai Jun 2002 B1
6448874 Shiino et al. Sep 2002 B1
6452563 Porte Sep 2002 B1
6462716 Kushihi Oct 2002 B1
6542050 Arai et al. Apr 2003 B1
6600459 Yokoshima et al. Jul 2003 B2
6634564 Kuramochi Oct 2003 B2
6664645 Kawai Dec 2003 B2
6763254 Nishikawa Jul 2004 B2
6812707 Yonezawa et al. Nov 2004 B2
6828881 Mizutani et al. Dec 2004 B2
6837438 Takasugi et al. Jan 2005 B1
6861731 Buijsman et al. Mar 2005 B2
6927738 Senba et al. Aug 2005 B2
6956481 Cole Oct 2005 B1
6963729 Uozumi Nov 2005 B2
7050007 Akiho et al. May 2006 B2
7088249 Senba et al. Aug 2006 B2
7088307 Imaizumi Aug 2006 B2
7112952 Arai et al. Sep 2006 B2
7119693 Devilbiss Oct 2006 B1
7129834 Naruse et al. Oct 2006 B2
7183987 Akiho et al. Feb 2007 B2
7248221 Kai et al. Jul 2007 B2
7250910 Yoshikawa et al. Jul 2007 B2
7276929 Arai et al. Oct 2007 B2
7317396 Ujino Jan 2008 B2
7405664 Sakama et al. Jul 2008 B2
7934646 Yang May 2011 B2
20010011012 Hino et al. Aug 2001 A1
20020011967 Goff et al. Jan 2002 A1
20020015002 Yasukawa et al. Feb 2002 A1
20020044092 Kushihi Apr 2002 A1
20020067316 Yokoshima et al. Jun 2002 A1
20020093457 Hamada et al. Jul 2002 A1
20020186004 Prazeres da Costa et al. Dec 2002 A1
20030006901 Kim et al. Jan 2003 A1
20030020661 Sato Jan 2003 A1
20030045324 Nagumo et al. Mar 2003 A1
20030169153 Muller Sep 2003 A1
20030206095 Chaloner et al. Nov 2003 A1
20040001027 Killen et al. Jan 2004 A1
20040026519 Usami et al. Feb 2004 A1
20040056823 Zuk et al. Mar 2004 A1
20040066617 Hirabayashi et al. Apr 2004 A1
20040217915 Imaizumi Nov 2004 A1
20040219956 Iwai et al. Nov 2004 A1
20040227673 Iwai et al. Nov 2004 A1
20040252064 Yuanzhu Dec 2004 A1
20050001031 Akiho et al. Jan 2005 A1
20050092836 Kudo May 2005 A1
20050099337 Takei et al. May 2005 A1
20050125093 Kikuchi et al. Jun 2005 A1
20050133605 Koyama et al. Jun 2005 A1
20050134460 Usami Jun 2005 A1
20050134506 Egbert Jun 2005 A1
20050138798 Sakama et al. Jun 2005 A1
20050140512 Sakama et al. Jun 2005 A1
20050232412 Ichihara et al. Oct 2005 A1
20050236623 Takechi et al. Oct 2005 A1
20050253726 Yoshida et al. Nov 2005 A1
20050275539 Sakama et al. Dec 2005 A1
20060001138 Sakama et al. Jan 2006 A1
20060032926 Baba et al. Feb 2006 A1
20060044192 Egbert Mar 2006 A1
20060055531 Cook et al. Mar 2006 A1
20060055601 Kameda et al. Mar 2006 A1
20060071084 Detig et al. Apr 2006 A1
20060109185 Iwai et al. May 2006 A1
20060114159 Yoshikawa et al. Jun 2006 A1
20060145872 Tanaka et al. Jul 2006 A1
20060158380 Son et al. Jul 2006 A1
20060170606 Yamagajo et al. Aug 2006 A1
20060208900 Tavassoli Hozouri Sep 2006 A1
20060214801 Murofushi et al. Sep 2006 A1
20060220871 Baba et al. Oct 2006 A1
20060244568 Tong et al. Nov 2006 A1
20060244676 Uesaka Nov 2006 A1
20060267138 Kobayashi Nov 2006 A1
20070004028 Lair et al. Jan 2007 A1
20070015549 Hernandez et al. Jan 2007 A1
20070018893 Kai et al. Jan 2007 A1
20070040028 Kawamata Feb 2007 A1
20070052613 Gallschuetz et al. Mar 2007 A1
20070057854 Oodachi et al. Mar 2007 A1
20070069037 Kawai Mar 2007 A1
20070132591 Khatri Jun 2007 A1
20070164414 Dokai et al. Jul 2007 A1
20070200705 Yamagajo et al. Aug 2007 A1
20070200782 Hayama et al. Aug 2007 A1
20070229276 Yamagajo et al. Oct 2007 A1
20070247387 Kubo et al. Oct 2007 A1
20070252700 Ishihara et al. Nov 2007 A1
20070252703 Kato et al. Nov 2007 A1
20070252763 Martin Nov 2007 A1
20070252770 Kai et al. Nov 2007 A1
20070285335 Bungo et al. Dec 2007 A1
20070290928 Chang et al. Dec 2007 A1
20080024156 Arai et al. Jan 2008 A1
20080068132 Kayanakis et al. Mar 2008 A1
20080070003 Nakatani et al. Mar 2008 A1
20080074268 Shafer Mar 2008 A1
20080087990 Kato et al. Apr 2008 A1
20080111695 Yamagajo et al. May 2008 A1
20080129606 Yanagisawa et al. Jun 2008 A1
20080143630 Kato et al. Jun 2008 A1
20080169905 Slatter Jul 2008 A1
20080184281 Ashizaki et al. Jul 2008 A1
20080272885 Atherton Nov 2008 A1
20090002130 Kato Jan 2009 A1
20090009007 Kato et al. Jan 2009 A1
20090021352 Kataya et al. Jan 2009 A1
20090021446 Kataya et al. Jan 2009 A1
20090065594 Kato et al. Mar 2009 A1
20090066466 Arimura Mar 2009 A1
20090080296 Dokai et al. Mar 2009 A1
20090096696 Joyce, Jr. et al. Apr 2009 A1
20090109034 Chen et al. Apr 2009 A1
20090109102 Dokai et al. Apr 2009 A1
20090134979 Tsukamoto et al. May 2009 A1
20090140947 Sasagawa et al. Jun 2009 A1
20090160719 Kato et al. Jun 2009 A1
20090201116 Orihara Aug 2009 A1
20090224061 Kato et al. Sep 2009 A1
20090231106 Okamura Sep 2009 A1
20090262041 Ikemoto et al. Oct 2009 A1
20090266900 Ikemoto et al. Oct 2009 A1
20090278687 Kato Nov 2009 A1
20090284220 Toncich et al. Nov 2009 A1
20090321527 Kato et al. Dec 2009 A1
20100103058 Kato et al. Apr 2010 A1
20100182210 Ryou et al. Jul 2010 A1
20100283694 Kato Nov 2010 A1
20100308118 Kataya et al. Dec 2010 A1
20110031320 Kato et al. Feb 2011 A1
20110063184 Furumura et al. Mar 2011 A1
20110186641 Kato et al. Aug 2011 A1
20110253795 Kato Oct 2011 A1
Foreign Referenced Citations (559)
Number Date Country
2 279 176 Jul 1998 CA
10 2006 057 369 Jun 2008 DE
0 694 874 Jan 1996 EP
0 848 448 Jun 1998 EP
0 948 083 Oct 1999 EP
0 977 145 Feb 2000 EP
1 010 543 Jun 2000 EP
1 085 480 Mar 2001 EP
1 160 915 Dec 2001 EP
1 170 795 Jan 2002 EP
1 193 793 Apr 2002 EP
1 227 540 Jul 2002 EP
1 280 232 Jan 2003 EP
1 280 350 Jan 2003 EP
1 343 223 Sep 2003 EP
1 357 511 Oct 2003 EP
1 445 730 Aug 2004 EP
1 484 816 Dec 2004 EP
1 547 753 Jun 2005 EP
1 548 872 Jun 2005 EP
1 626 364 Feb 2006 EP
1 701 296 Sep 2006 EP
1 703 589 Sep 2006 EP
1 742 296 Jan 2007 EP
1 744 398 Jan 2007 EP
1 840 802 Oct 2007 EP
1 841 005 Oct 2007 EP
1 865 574 Dec 2007 EP
1 887 652 Feb 2008 EP
1 976 056 Oct 2008 EP
1 988 491 Nov 2008 EP
1 988 601 Nov 2008 EP
1 993 170 Nov 2008 EP
2 009 738 Dec 2008 EP
2 012 258 Jan 2009 EP
2 023 275 Feb 2009 EP
2 096 709 Sep 2009 EP
2 148 449 Jan 2010 EP
2 166 617 Mar 2010 EP
2 251 934 Nov 2010 EP
2 256 861 Dec 2010 EP
2 330 684 Jun 2011 EP
2 787 640 Jun 2000 FR
2 305 075 Mar 1997 GB
2461443 Jan 2010 GB
50-143451 Nov 1975 JP
61-284102 Dec 1986 JP
62-127140 Aug 1987 JP
01-212035 Aug 1989 JP
02-164105 Jun 1990 JP
02-256208 Oct 1990 JP
3-171385 Jul 1991 JP
03-503467 Aug 1991 JP
03-262313 Nov 1991 JP
04-150011 May 1992 JP
04-167500 Jun 1992 JP
04-096814 Aug 1992 JP
04-101168 Sep 1992 JP
04-134807 Dec 1992 JP
05-226926 Sep 1993 JP
05-327331 Dec 1993 JP
6-53733 Feb 1994 JP
06-077729 Mar 1994 JP
06-029215 Apr 1994 JP
06-177635 Jun 1994 JP
6-260949 Sep 1994 JP
07-183836 Jul 1995 JP
08-055725 Feb 1996 JP
08-056113 Feb 1996 JP
8-87580 Apr 1996 JP
08-88586 Apr 1996 JP
08-088586 Apr 1996 JP
08-176421 Jul 1996 JP
08-180160 Jul 1996 JP
08-279027 Oct 1996 JP
08-307126 Nov 1996 JP
08-330372 Dec 1996 JP
09-014150 Jan 1997 JP
09-035025 Feb 1997 JP
9-93029 Apr 1997 JP
09-093029 Apr 1997 JP
09-245381 Sep 1997 JP
09-252217 Sep 1997 JP
09-270623 Oct 1997 JP
09-284038 Oct 1997 JP
09-294374 Nov 1997 JP
9-512367 Dec 1997 JP
10-69533 Mar 1998 JP
10-069533 Mar 1998 JP
10-084406 Mar 1998 JP
10-505466 May 1998 JP
10-171954 Jun 1998 JP
10-173427 Jun 1998 JP
10-193849 Jul 1998 JP
10-193851 Jul 1998 JP
10-242742 Sep 1998 JP
10-293828 Nov 1998 JP
10-334203 Dec 1998 JP
11-025244 Jan 1999 JP
11-025245 Jan 1999 JP
11025244 Jan 1999 JP
11-039441 Feb 1999 JP
11-075329 Mar 1999 JP
11-085937 Mar 1999 JP
11-88241 Mar 1999 JP
11-102424 Apr 1999 JP
11-103209 Apr 1999 JP
11-149536 Jun 1999 JP
11-149537 Jun 1999 JP
11-149538 Jun 1999 JP
11-175678 Jul 1999 JP
11-219420 Aug 1999 JP
11-220319 Aug 1999 JP
11-238103 Aug 1999 JP
11238103 Aug 1999 JP
11-282993 Oct 1999 JP
11-328352 Nov 1999 JP
11-331014 Nov 1999 JP
11-346114 Dec 1999 JP
11-515094 Dec 1999 JP
2000-21128 Jan 2000 JP
2000-021639 Jan 2000 JP
2000-022421 Jan 2000 JP
2000-048152 Feb 2000 JP
2000-059260 Feb 2000 JP
2000-085283 Mar 2000 JP
2000-090207 Mar 2000 JP
2000-132643 May 2000 JP
2000-137778 May 2000 JP
2000-137779 May 2000 JP
2000-137785 May 2000 JP
2000-148948 May 2000 JP
2000-172812 Jun 2000 JP
2000-209013 Jul 2000 JP
2000-222540 Aug 2000 JP
2000-510271 Aug 2000 JP
2000-242754 Sep 2000 JP
2000-243797 Sep 2000 JP
2000-251049 Sep 2000 JP
2000-261230 Sep 2000 JP
2000-276569 Oct 2000 JP
2000-286634 Oct 2000 JP
2000-286760 Oct 2000 JP
2000-311226 Nov 2000 JP
2000-321984 Nov 2000 JP
2000-349680 Dec 2000 JP
2001-10264 Jan 2001 JP
2001-028036 Jan 2001 JP
2001-043340 Feb 2001 JP
3075400 Feb 2001 JP
2001-66990 Mar 2001 JP
2001-76111 Mar 2001 JP
2001-084463 Mar 2001 JP
2001-101369 Apr 2001 JP
2001-505682 Apr 2001 JP
2001-168628 Jun 2001 JP
2001-188890 Jul 2001 JP
2001-209767 Aug 2001 JP
2001-240046 Sep 2001 JP
2001-240217 Sep 2001 JP
2001-256457 Sep 2001 JP
2001-257292 Sep 2001 JP
2001-514777 Sep 2001 JP
2001-291181 Oct 2001 JP
2001-319380 Nov 2001 JP
2001-331976 Nov 2001 JP
2001-332923 Nov 2001 JP
2001-339226 Dec 2001 JP
2001-344574 Dec 2001 JP
2001-351083 Dec 2001 JP
2001-351084 Dec 2001 JP
2001-352176 Dec 2001 JP
2001-358527 Dec 2001 JP
2002-024776 Jan 2002 JP
2002-026513 Jan 2002 JP
2002-32731 Jan 2002 JP
2002-042076 Feb 2002 JP
2002-042083 Feb 2002 JP
2002-063557 Feb 2002 JP
2002-505645 Feb 2002 JP
2002-76750 Mar 2002 JP
2002-076750 Mar 2002 JP
2002-111363 Apr 2002 JP
2002-143826 May 2002 JP
2002-150245 May 2002 JP
2002-157564 May 2002 JP
2002-158529 May 2002 JP
2002-175508 Jun 2002 JP
2002-175920 Jun 2002 JP
2002-183676 Jun 2002 JP
2002-183690 Jun 2002 JP
2002-185358 Jun 2002 JP
2002-204117 Jul 2002 JP
2002-521757 Jul 2002 JP
2002-522849 Jul 2002 JP
2002-222398 Aug 2002 JP
2002-230128 Aug 2002 JP
2002-232221 Aug 2002 JP
2002-246828 Aug 2002 JP
2002-252117 Sep 2002 JP
2002-259934 Sep 2002 JP
2002-280821 Sep 2002 JP
2002-290130 Oct 2002 JP
2002-298109 Oct 2002 JP
2002-308437 Oct 2002 JP
2002-319008 Oct 2002 JP
2002-319009 Oct 2002 JP
2002-319812 Oct 2002 JP
2002-325013 Nov 2002 JP
2002-344225 Nov 2002 JP
2002344225 Nov 2002 JP
2002-362613 Dec 2002 JP
2002-366917 Dec 2002 JP
2002-373029 Dec 2002 JP
2002-373323 Dec 2002 JP
2002-374139 Dec 2002 JP
2003-006599 Jan 2003 JP
2003-016412 Jan 2003 JP
2003-022912 Jan 2003 JP
2003-026177 Jan 2003 JP
2003-030612 Jan 2003 JP
2003-037861 Feb 2003 JP
2003-44789 Feb 2003 JP
2003-046318 Feb 2003 JP
2003-58840 Feb 2003 JP
2003-067711 Mar 2003 JP
2003-069335 Mar 2003 JP
2003-076947 Mar 2003 JP
2003-76963 Mar 2003 JP
2003-78333 Mar 2003 JP
2003-078336 Mar 2003 JP
2003-085501 Mar 2003 JP
2003-085520 Mar 2003 JP
2003-87008 Mar 2003 JP
2003-87044 Mar 2003 JP
2003-099184 Apr 2003 JP
2003-099720 Apr 2003 JP
2003-099721 Apr 2003 JP
2003-110344 Apr 2003 JP
2003-132330 May 2003 JP
2003-134007 May 2003 JP
2003-139866 May 2003 JP
2003-155062 May 2003 JP
2003-158414 May 2003 JP
2003-168760 Jun 2003 JP
2003-179565 Jun 2003 JP
2003-187207 Jul 2003 JP
2003-187211 Jul 2003 JP
2003-188338 Jul 2003 JP
2003-188620 Jul 2003 JP
2003-198230 Jul 2003 JP
2003-209421 Jul 2003 JP
2003-216919 Jul 2003 JP
2003-218624 Jul 2003 JP
2003-233780 Aug 2003 JP
2003-242471 Aug 2003 JP
2003-243918 Aug 2003 JP
2003-249813 Sep 2003 JP
2003-529163 Sep 2003 JP
2003-288560 Oct 2003 JP
2003-308363 Oct 2003 JP
2003-309418 Oct 2003 JP
2003-317055 Nov 2003 JP
2003-317060 Nov 2003 JP
2003-331246 Nov 2003 JP
2003-332820 Nov 2003 JP
2003-536302 Dec 2003 JP
2004-040597 Feb 2004 JP
2004-505481 Feb 2004 JP
2004-082775 Mar 2004 JP
2004-88218 Mar 2004 JP
2004-93693 Mar 2004 JP
2004-096566 Mar 2004 JP
2004-096618 Mar 2004 JP
2004-506905 Mar 2004 JP
2004-104344 Apr 2004 JP
2004-121412 Apr 2004 JP
2004-126750 Apr 2004 JP
2004-127230 Apr 2004 JP
2004-140513 May 2004 JP
2004-145449 May 2004 JP
2004-163134 Jun 2004 JP
2004-166176 Jun 2004 JP
2004-213582 Jul 2004 JP
2004-519916 Jul 2004 JP
2004070879 Aug 2004 JP
2004-234595 Aug 2004 JP
2004-253858 Sep 2004 JP
2004-527864 Sep 2004 JP
2004-280390 Oct 2004 JP
2004-282403 Oct 2004 JP
2004-287767 Oct 2004 JP
2004-295297 Oct 2004 JP
2004-297249 Oct 2004 JP
2004-297681 Oct 2004 JP
2004-304370 Oct 2004 JP
2004-319848 Nov 2004 JP
2004-326380 Nov 2004 JP
2004-334268 Nov 2004 JP
2004-336250 Nov 2004 JP
2004-343000 Dec 2004 JP
2004-362190 Dec 2004 JP
2004-362341 Dec 2004 JP
2004-362602 Dec 2004 JP
2005-5866 Jan 2005 JP
2005-18156 Jan 2005 JP
2005-033461 Feb 2005 JP
2005-050581 Feb 2005 JP
2005-064799 Mar 2005 JP
2005-124061 May 2005 JP
2005-128592 May 2005 JP
2005-129019 May 2005 JP
2005-134942 May 2005 JP
2005-135132 May 2005 JP
2005-136528 May 2005 JP
2005-137032 May 2005 JP
3653099 May 2005 JP
2005-165839 Jun 2005 JP
2005-167327 Jun 2005 JP
2005-167813 Jun 2005 JP
2005-190417 Jul 2005 JP
2005-191705 Jul 2005 JP
2005-192124 Jul 2005 JP
2005-202943 Jul 2005 JP
2005-204038 Jul 2005 JP
2005204038 Jul 2005 JP
2005-210223 Aug 2005 JP
2005-210676 Aug 2005 JP
2005-210680 Aug 2005 JP
2005-217822 Aug 2005 JP
2005-229474 Aug 2005 JP
2005-236339 Sep 2005 JP
2005-244778 Sep 2005 JP
2005-252853 Sep 2005 JP
2005-269537 Sep 2005 JP
2005-275870 Oct 2005 JP
2005-277579 Oct 2005 JP
2005-284352 Oct 2005 JP
2005-284455 Oct 2005 JP
2005-293537 Oct 2005 JP
2005-295135 Oct 2005 JP
2005-306696 Nov 2005 JP
2005-311205 Nov 2005 JP
2005-321305 Nov 2005 JP
2005-322119 Nov 2005 JP
2005-327622 Nov 2005 JP
2005-328259 Nov 2005 JP
2005-333244 Dec 2005 JP
2005-335755 Dec 2005 JP
2005-340759 Dec 2005 JP
2005-345802 Dec 2005 JP
2005-346820 Dec 2005 JP
2005-352858 Dec 2005 JP
2006-13976 Jan 2006 JP
2006-013976 Jan 2006 JP
2006-025390 Jan 2006 JP
2006-031766 Feb 2006 JP
2006-033312 Feb 2006 JP
2006-39902 Feb 2006 JP
2006-039947 Feb 2006 JP
2006-42059 Feb 2006 JP
2006-42097 Feb 2006 JP
2006-050200 Feb 2006 JP
2006-053833 Feb 2006 JP
2006-67479 Mar 2006 JP
2006-72706 Mar 2006 JP
2006-074348 Mar 2006 JP
2006-80367 Mar 2006 JP
2006-92630 Apr 2006 JP
2006-102953 Apr 2006 JP
2006-107296 Apr 2006 JP
2006-513594 Apr 2006 JP
2006-148462 Jun 2006 JP
2006-148518 Jun 2006 JP
2006-151402 Jun 2006 JP
2006-174151 Jun 2006 JP
2006-195795 Jul 2006 JP
2006-203187 Aug 2006 JP
2006-203852 Aug 2006 JP
2006-217000 Aug 2006 JP
2006-232292 Sep 2006 JP
2006-237674 Sep 2006 JP
2006-238282 Sep 2006 JP
2006-246372 Sep 2006 JP
2006-270212 Oct 2006 JP
2006-270681 Oct 2006 JP
2006-270766 Oct 2006 JP
2006-285911 Oct 2006 JP
2006-287659 Oct 2006 JP
2006-295879 Oct 2006 JP
2006-302219 Nov 2006 JP
2006-309401 Nov 2006 JP
2006-311239 Nov 2006 JP
2006-323481 Nov 2006 JP
2006-339964 Dec 2006 JP
2007-007888 Jan 2007 JP
2007-13120 Jan 2007 JP
2007-013120 Jan 2007 JP
2007-18067 Jan 2007 JP
2007-019905 Jan 2007 JP
2007-28002 Feb 2007 JP
2007-040702 Feb 2007 JP
2007-043535 Feb 2007 JP
2007-048126 Feb 2007 JP
2007-65822 Mar 2007 JP
2007-79687 Mar 2007 JP
2007-81712 Mar 2007 JP
2007-096655 Apr 2007 JP
2007-096768 Apr 2007 JP
2007-102348 Apr 2007 JP
2007-116347 May 2007 JP
2007-122542 May 2007 JP
2007-149757 Jun 2007 JP
2007-150642 Jun 2007 JP
2007-150868 Jun 2007 JP
2007-159083 Jun 2007 JP
2007-159129 Jun 2007 JP
2007-166133 Jun 2007 JP
3975918 Jun 2007 JP
2007-172369 Jul 2007 JP
2007-172527 Jul 2007 JP
2007-199993 Aug 2007 JP
2007-524942 Aug 2007 JP
2007-228254 Sep 2007 JP
2007-228325 Sep 2007 JP
2007-228437 Sep 2007 JP
2007-233597 Sep 2007 JP
2007-241789 Sep 2007 JP
2007-249620 Sep 2007 JP
2007-266999 Oct 2007 JP
2007-272264 Oct 2007 JP
2007-279782 Oct 2007 JP
2007-287128 Nov 2007 JP
2007-295177 Nov 2007 JP
2007-295395 Nov 2007 JP
2007-295557 Nov 2007 JP
2007-312350 Nov 2007 JP
2007-317009 Dec 2007 JP
2007-324865 Dec 2007 JP
2008-033716 Feb 2008 JP
2008-042910 Feb 2008 JP
2008-72243 Mar 2008 JP
2008-083867 Apr 2008 JP
2008-092131 Apr 2008 JP
2008-097426 Apr 2008 JP
2008-098993 Apr 2008 JP
4069958 Apr 2008 JP
2008-103691 May 2008 JP
2008-107947 May 2008 JP
2008-513888 May 2008 JP
2008-148345 Jun 2008 JP
2008-519347 Jun 2008 JP
2008-160821 Jul 2008 JP
2008-160874 Jul 2008 JP
2008-167190 Jul 2008 JP
2008-182438 Aug 2008 JP
2008-197714 Aug 2008 JP
2008-535372 Aug 2008 JP
2008-207875 Sep 2008 JP
2008-211572 Sep 2008 JP
2008-217406 Sep 2008 JP
2008-226099 Sep 2008 JP
2008-252517 Oct 2008 JP
2008-288915 Nov 2008 JP
2008-294491 Dec 2008 JP
2009-017284 Jan 2009 JP
2009-021970 Jan 2009 JP
2009-25870 Feb 2009 JP
2009-27291 Feb 2009 JP
2009-027291 Feb 2009 JP
2009-037413 Feb 2009 JP
2009-044647 Feb 2009 JP
2009-044715 Feb 2009 JP
3148168 Feb 2009 JP
2009-065426 Mar 2009 JP
2009-110144 May 2009 JP
2009-111986 May 2009 JP
2009-130896 Jun 2009 JP
2009-135166 Jun 2009 JP
2009-524363 Jun 2009 JP
2009-153166 Jul 2009 JP
4301346 Jul 2009 JP
2009-181246 Aug 2009 JP
2009-182630 Aug 2009 JP
2009-213169 Sep 2009 JP
2009-213171 Sep 2009 JP
2009-260758 Nov 2009 JP
2009-284182 Dec 2009 JP
2010-009196 Jan 2010 JP
2010-015342 Jan 2010 JP
2010-504598 Feb 2010 JP
2010-050844 Mar 2010 JP
2010-051017 Mar 2010 JP
2010-081571 Apr 2010 JP
4535209 Sep 2010 JP
2011-015395 Jan 2011 JP
4609604 Jan 2011 JP
2011-205384 Oct 2011 JP
2012-033021 Feb 2012 JP
9100176 Mar 1992 NL
9100347 Mar 1992 NL
8907347 Aug 1989 WO
9833142 Jul 1998 WO
9967754 Dec 1999 WO
0010122 Feb 2000 WO
0195242 Dec 2001 WO
0248980 Jun 2002 WO
02061675 Aug 2002 WO
02097723 Dec 2002 WO
03079305 Sep 2003 WO
2004036772 Apr 2004 WO
2004070879 Aug 2004 WO
2004072892 Aug 2004 WO
2005073937 Aug 2005 WO
2005091434 Sep 2005 WO
2005115849 Dec 2005 WO
2006045682 May 2006 WO
2006048663 May 2006 WO
2006049068 May 2006 WO
2006114821 Nov 2006 WO
2007013168 Feb 2007 WO
2007083574 Jul 2007 WO
2007083575 Jul 2007 WO
2007086130 Aug 2007 WO
2007094494 Aug 2007 WO
2007097385 Aug 2007 WO
2007099602 Sep 2007 WO
2007100092 Sep 2007 WO
2007102360 Sep 2007 WO
2007105348 Sep 2007 WO
2007119310 Oct 2007 WO
2007125683 Nov 2007 WO
2007132094 Nov 2007 WO
2007138857 Dec 2007 WO
2008001561 Jan 2008 WO
2008007606 Jan 2008 WO
2008081699 Jul 2008 WO
2008126458 Oct 2008 WO
2008133018 Nov 2008 WO
2008140037 Nov 2008 WO
2008142957 Nov 2008 WO
2009008296 Jan 2009 WO
2009011144 Jan 2009 WO
2009011154 Jan 2009 WO
2009011376 Jan 2009 WO
2009011400 Jan 2009 WO
2009011423 Jan 2009 WO
2009048767 Apr 2009 WO
2009081719 Jul 2009 WO
2009110381 Sep 2009 WO
2009119548 Oct 2009 WO
2009128437 Oct 2009 WO
2009140220 Nov 2009 WO
2009142114 Nov 2009 WO
2010026939 Mar 2010 WO
2010050361 May 2010 WO
2010079830 Jul 2010 WO
2010119854 Oct 2010 WO
2011062274 May 2011 WO
Non-Patent Literature Citations (210)
Entry
Official Communication issued in corresponding Japanese Patent Application No. 2012-107344, mailed on Sep. 18, 2012.
Official Communication issued in corresponding Japanese Patent Application No. 2012-034665, mailed on Sep. 25, 2012.
Official Communication issued in International Patent Application No. PCT/JP2009/069486, mailed on Mar. 2, 2010.
Kato: “Radio IC Device”; U.S. Appl. No. 13/080,775, filed Apr. 6, 2011.
Kato et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/083,626, filed Apr. 11, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/070617, mailed on Mar. 16, 2010.
Nagai, “Mounting Technique of RFID by Roll-To-Roll Process”, Material Stage, Technical Information Institute Co., Ltd, vol. 7, No. 9, 2007, pp. 4-12.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/088,480, filed Apr. 18, 2011.
Kato et al.: “High-Frequency Device and Wireless IC Device”; U.S. Appl. No. 13/094,928, filed Apr. 27, 2011.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/099,392, filed May 3, 2011.
Kato et al.: “Radio Frequency IC Device”; U.S. Appl. No. 13/163,803, filed Jun. 20, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/050170, mailed on Apr. 13, 2010.
Official Communication issued in International Patent Application No. PCT/JP2010/051205, mailed on May 11, 2010.
Kato: “Wireless IC Device, Wireless IC Module and Method of Manufacturing Wireless IC Module”; U.S. Appl. No. 13/169,067, filed Jun. 27, 2011.
Kato et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/190,670, filed Jul. 26, 2011.
Shiroki et al.: “RFIC Chip Mounting Structure”; U.S. Appl. No. 13/223,429, filed Sep. 1, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/056559, mailed on Jul. 27, 2010.
Taniguchi et al.: “Antenna Device and Radio Frequency IC Device”; U.S. Appl. No. 13/232,102, filed Sep. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/056934, mailed on Jun. 30, 2009.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/903,242, filed Oct. 13, 2010.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/940,103, filed Nov. 5, 2010.
Kato et al.: “Wireless IC Device System and Method of Determining Authenticity of Wireless IC Device”; U.S. Appl. No. 12/940,105, filed Nov. 5, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059669, mailed on Aug. 25, 2009.
Official Communication issued in International Patent Application No. PCT/JP2009/062181, mailed on Oct. 13, 2009.
Official Communication issued in corresponding Japanese Application No. 2010-501323, mailed on Apr. 6, 2010.
Kato et al.: “Component of Wireless IC Device and Wireless IC Device”; U.S. Appl. No. 12/944,099, filed Nov. 11, 2010.
Kato et al.: Wireless IC Device and Manufacturing Method Thereof; U.S. Appl. No. 12/961,599, filed Dec. 7, 2010.
Kataya et al.: “Radio Frequency IC Device and Electronic Apparatus”; U.S. Appl. No. 12/959,454, filed Dec. 3, 2010.
Ikemoto et al.:“Radio IC Device”; U.S. Appl. No. 12/981,582, filed Dec. 30, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/062801, mailed on Oct. 27, 2009.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus”; U.S. Appl. No. 13/022,695, filed Feb. 8, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/067778, mailed on Jan. 26, 2010.
Kato: “Wireless IC Device and Method for Manufacturing Same”; U.S. Appl. No. 13/022,693, filed Feb. 8, 2011.
Kato: “Wireless IC Device”; U.S. Appl. No. 13/080,781, filed Apr. 6, 2011.
Official communication issued in counterpart International Application No. PCT/JP2008/071502, mailed Feb. 24, 2009.
Kato et al.: “Wireless IC Device and Manufacturing Method Thereof,” U.S. Appl. No. 12/432,854, filed Apr. 30, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/058168, mailed Aug. 12, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/062886, mailed Oct. 21, 2008.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/469,896, filed May 21, 2009.
Ikemoto et al.: “Wireless IC Device,” U.S. Appl. No. 12/496,709, filed Jul. 2, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/062947, mailed Aug. 19, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/056026, mailed Jul. 1, 2008.
Ikemoto et al.:“Wireless IC Device and Electronic Apparatus,” U.S. Appl. No. 12/503,188, filed Jul. 15, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/055567, mailed May 20, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/051853, mailed Apr. 22, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/057239, mailed Jul. 22, 2008.
Kimura et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,338, filed Jul. 28, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,340, filed Jul. 28, 2009.
Kato: “Wireless IC Device,” U.S. Appl. No. 12/510,344, filed Jul. 28, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,347, filed Jul. 28, 2009.
Official Communication issued in International Patent Application No. PCT/JP2011/068110, mailed on Sep. 20, 2011.
Dokai et al.: “Antenna and Wireless Communication Device”; U.S. Appl. No. 13/613,021, filed Sep. 13, 2012.
Takeoka et al.: “Printed Wiring Board and Wireless Communication System”; U.S. Appl. No. 13/616,140, filed Sep. 14, 2012.
Dokai: “Wireless IC Device, Wireless IC Module and Method of Manufacturing Wireless IC Module”; U.S. Appl. No. 13/688,287, filed Nov. 29, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/067127, mailed on Oct. 18, 2011.
Kato et al.: “Wireless Communication Device and Metal Article”; U.S. Appl. No. 13/691,996, filed Dec. 3, 2012.
Yosui: “Antenna Apparatus and Communication Terminal Instrument”; U.S. Appl. No. 13/706,409, filed Dec. 6, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/071795, mailed on Dec. 27, 2011.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/738,143, filed Jan. 10, 2013.
Official Communication issued in International Patent Application No. PCT/JP2011/074009, mailed on Dec. 20, 2011.
Kato et al.: “Electromagnetic-Coupling-Module-Attached Article”; U.S. Appl. No. 13/754,972, filed Jan. 31, 2013.
Kimura et al.: “Electrical Product”; U.S. Appl. No. 13/757,991, filed Feb. 4, 2013.
Nakano et al.: “Communication Terminal Device”; U.S. Appl. No. 13/760,196, filed Feb. 6, 2013.
Official Communication issued in International Patent Application No. PCT/JP2011/073054, mailed on Dec. 20, 2011.
Official Communication issued in International Patent Application No. PCT/JP2011/073490, mailed on Jan. 10, 2012.
Kato et al.: “Antenna Device and Communication Terminal Apparatus”; U.S. Appl. No. 13/761,195, filed Feb. 7, 2013.
Kato et al.: “Antenna Device and Mobile Communication Terminal”; U.S. Appl. No. 13/767,960, filed Feb. 15, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/058884, mailed on Jun. 12, 2012.
Dokai et al.: “Wireless Communication Device”; U.S. Appl. No. 13/782,346, filed Mar. 1, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/053344, mailed on May 22, 2012.
Official Communication issued in International Patent Application No. PCT/JP2012/050557, mailed on Apr. 10, 2012.
Kimura et al.: “Wireless Communication Device”; U.S. Appl. No. 13/789,761, filed Mar. 8, 2013.
Dokai et al.: “RFID Chip Package and RFID Tag”; U.S. Appl. No. 13/792,650, filed Mar. 11, 2013.
Kato et al.: “Wireless IC Device Component and Wireless IC Device”; U.S. Appl. No. 13/794,929, filed Mar. 12, 2013.
Kato et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/848,748, filed Mar. 22, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/080493, mailed on Dec. 25, 2012.
Mukai et al.: “Inspection Method and Inspection Device for RFID Tag”; U.S. Appl. No. 13/933,184, filed Jul. 2, 2013.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/941,760, filed Jul. 15, 2013.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/943,973, filed Jul. 17, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/080700, mailed on Jan. 15, 2013.
Mukai et al.: “Wireless Integrated Circuit Device and Method of Manufacturing the Same”; U.S. Appl. No. 13/961,995, filed Aug. 8, 2013.
Kato et al.: “Radio IC Device”; U.S. Appl. No. 13/964,234, filed Aug. 12, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/067779, mailed on Aug. 28, 2012.
Official Communication issued in International Patent Application No. PCT/JP2009/066336, mailed on Dec. 22, 2009.
Official Communication issued in corresponding Japanese Patent Application No. 2010-509439, mailed on Jul. 6, 2010.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Mar. 29, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2009-525327, drafted on Sep. 22, 2010.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Aug. 2, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032312, mailed on Aug. 2, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Aug. 23, 2011.
Kato et al.: “Wireless IC Device Component and Wireless IC Device”; U.S. Appl. No. 13/241,823, filed Sep. 23, 2011.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/272,365, filed Oct. 13, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/056812, mailed on Jul. 13, 2010.
Dokai et al.: “Optical Disc”; U.S. Appl. No. 13/295,153, filed Nov. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/057668, mailed on Aug. 17, 2010.
Osamura et al.: “Radio Frequency IC Device and Method of Manufacturing the Same”; U.S. Appl. No. 13/308,575, filed Dec. 1, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/069417, mailed on Dec. 7, 2010.
Kato: “Wireless IC Device and Coupling Method for Power Feeding Circuit and Radiation Plate”; U.S. Appl. No. 13/325,273, filed Dec. 14, 2011.
Official Communication issued in International Application No. PCT/JP2007/066007, mailed on Nov. 27, 2007.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 12/359,690, filed Jan. 26, 2009.
Dokai et al.: “Test System for Radio Frequency IC Devices and Method of Manufacturing Radio Frequency IC Devices Using the Same”; U.S. Appl. No. 12/388,826, filed Feb. 19, 2009.
Official Communication issued in International Application No. PCT/JP2008/061955, mailed on Sep. 30, 2008.
Official Communication issued in International Application No. PCT/JP2007/066721, mailed on Nov. 27, 2007.
Official Communication issued in International Application No. PCT/JP2007/070460, mailed on Dec. 11, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/390,556, filed Feb. 23, 2009.
Kato et al.: “Inductively Coupled Module and Item With Inductively Coupled Module”; U.S. Appl. No. 12/398,497, filed Mar. 5, 2009.
Official Communication issued in International Patent Application No. PCT/JP2008/050945, mailed on May 1, 2008.
Kato et al.: “Article Having Electromagnetic Coupling Module Attached Thereto”; U.S. Appl. No. 12/401,767, filed Mar. 11, 2009.
Taniguchi et al.: “Antenna Device and Radio Frequency IC Device”; U.S. Appl. No. 12/326,117, filed Dec. 2, 2008.
Official Communication issued in International Patent Application No. PCT/JP2008/061442, mailed on Jul. 22, 2008.
Kato et al.: “Container With Electromagnetic Coupling Module”; U.S. Appl. No. 12/426,369, filed Apr. 20, 2009.
Kato: “Wireless IC Device”; U.S. Appl. No. 12/429,346, filed Apr. 24, 2009.
Official Communication issued in International Patent Application No. PCT/JP2010/053496, mailed on Jun. 1, 2010.
Ikemoto: “Wireless IC Tag, Reader-Writer, and Information Processing System”; U.S. Appl. No. 13/329,354, filed Dec. 19, 2011.
Kato et al.: “Antenna and Antenna Module”; U.S. Appl. No. 13/334,462, filed Dec. 22, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/069418, mailed on Feb. 8, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/063082, mailed on Nov. 16, 2010.
Ikemoto: “Communication Terminal and Information Processing System”; U.S. Appl. No. 13/412,772, filed Mar. 6, 2012.
“Antenna Engineering Handbook”, The Institute of Electronics and Communication Engineers, Mar. 5, 1999, pp. 20-21.
Official Communication issued in International Patent Application No. PCT/JP2010/066714, mailed on Dec. 14, 2010
Nomura et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/419,454, filed Mar. 14, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/070607, mailed on Feb. 15, 2011.
ITO: “Wireless IC Device and Method of Detecting Environmental State Using the Device”; U.S. Appl. No. 13/421,889, filed Mar. 16, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/053654, mailed on Mar. 29, 2011.
Kato et al.: “Antenna Device and Mobile Communication Terminal”; U.S. Appl. No. 13/425,505, filed Mar. 21, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/069416, mailed on Feb. 8, 2011.
Kato et al.: “Wireless Communication Device and Metal Article”; U.S. Appl. No. 13/429,465; filed Mar. 26, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/055344, mailed on Jun. 14, 2011.
Kubo et al.: “Antenna and Mobile Terminal”; U.S. Appl. No. 13/452,972, filed Apr. 23, 2012.
Ikemoto: “RFID System”; U.S. Appl. No. 13/457,525, filed Apr. 27, 2012.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus”; U.S. Appl. No. 13/468,058, filed May 10, 2012.
Official communication issued in counterpart European Application No. 08 77 7758, dated on Jun. 30, 2009.
Official communication issued in counterpart Japanese Application No. 2008-103741, mailed on May 26, 2009.
Official communication issued in counterpart Japanese Application No. 2008-103742, mailed on May 26, 2009.
Official communication issued in International Application No. PCT/JP2008/050358, mailed on Mar. 25, 2008.
Official communication issued in International Application No. PCT/JP2008/050356, mailed on Mar. 25, 2008.
Osamura et al.: “Packaging Material with Electromagnetic Coupling Module,”; U.S. Appl. No. 12/536,663, filed Aug. 6, 2009.
Osamura et al.: “Packaging Material with Electromagnetic Coupling Module,”; U.S. Appl. No. 12/536,669, filed Aug. 6, 2009.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device,”; U.S. Appl. No. 12/543,553, filed Aug. 19, 2009.
Shioya et al.: “Wireless IC Device,”; U.S. Appl. No. 12/551,037, filed Aug. 31, 2009.
Ikemoto: “Wireless IC Device and Manufacturing Method Thereof,”; U.S. Appl. No. 12/579,672, filed Oct. 15, 2009.
Official communication issued in International Application No. PCT/JP2008/058614, mailed on Jun. 10, 2008.
Official Communication issued in International Patent Application No. PCT/JP2010/066291, mailed on Dec. 28, 2010.
Ikemoto: “Communication Terminal and Information Processing System”; U.S. Appl. No. 13/432,002, filed Mar. 28, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/070767, mailed on Feb. 22, 2011.
Ieki et al.: “Transceiver and Radio Frequency Identification Tag Reader”; U.S. Appl. No. 13/437,978, filed Apr. 3, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/065431, mailed on Oct. 18, 2011.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 13/470,486, filed May 14, 2012.
Kato: “Wireless IC Device”; U.S. Appl. No. 12/789,610, filed May 28, 2010.
Kato: “Antenna and RFID Device”; U.S. Appl. No. 13/472,520, filed May 16, 2012.
Kato et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/540,694, filed Jul. 3, 2012.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/567,108, filed Aug. 6, 2012.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/567,109, filed Aug. 6, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/052594, mailed on May 17, 2011.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 13/585,866, filed Aug. 15, 2012.
Kato et al.: “Radio Communication Device and Radio Communication Terminal”; U.S. Appl. No. 13/600,256, filed Aug. 31, 2012.
Murayama et al.: “Wireless Communication Module and Wireless Communication Device”; U.S. Appl. No. 13/598,872, filed Aug. 30, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/069689, mailed on Oct. 4, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-552116, mailed on Apr. 17, 2012.
Tsubaki et al.: “RFID Module and RFID Device”; U.S. Appl. No. 13/603,627, filed Sep. 5, 2012.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/604,807, filed Sep. 6, 2012.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/604,801, filed Sep. 6, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/053656, mailed on May 17, 2011.
Official Communication issued in corresponding European Patent Application No. 09843679.3, mailed on Nov. 7, 2013.
Official Communication issued in corresponding Japanese Patent Application No. 2011-232369, mailed on Aug. 20, 2013.
Official Communication issued in corresponding European Patent Application No. 12188215.3, mailed on Apr. 11, 2014.
English translation of NL9100176, published on Mar. 2, 1992.
English translation of NL9100347, published on Mar. 2, 1992.
Kato et al.: “Antenna”; U.S. Appl. No. 11/928,502, filed Oct. 30, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/211,117, filed Sep. 16, 2008.
Kato et al.: “Antenna”; U.S. Appl. No. 11/688,290, filed Mar. 20, 2007.
Kato et al.: “Electromagnetic-Coupling-Module-Attached Article”; U.S. Appl. No. 11/740,509, filed Apr. 26, 2007.
Kato et al.: “Product Including Power Supply Circuit Board”; U.S. Appl. No. 12/234,949, filed Sep. 22, 2008.
Kato et al.: “Data Coupler”; U.S. Appl. No. 12/252,475, filed Oct. 16, 2008.
Kato et al.; “Information Terminal Device”; U.S. Appl. No. 12/267,666, filed Nov. 10, 2008.
Kato et al.: “Wireless IC Device and Wireless IC Device Composite Component”; U.S. Appl. No. 12/276,444; filed Nov. 24, 2008.
Dokai et al.: “Optical Disc”; U.S. Appl. No. 12/326,916, filed Dec. 3, 2008.
Dokai et al.: “System for Inspecting Electromagnetic Coupling Modules and Radio IC Devices and Method for Manufacturing Electromagnetic Coupling Modules and Radio IC Devices Using the System”; U.S. Appl. No. 12/274,400, filed Nov. 20, 2008.
Kato: “Wireless IC Device”; U.S. Appl. No. 11/964,185, filed Dec. 26, 2007.
Kato et al.: “Radio Frequency IC Device”; U.S. Appl. No. 12/336,629, filed Dec. 17, 2008.
Kato et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 12/339,198, filed Dec. 19, 2008.
Ikemoto et al.: “Wireless IC Device”; U.S. Appl. No. 11/851,651, filed Sep. 7, 2007.
Kataya et al.: “Wireless IC Device and Electronic Device”; U.S. Appl. No. 11/851,661, filed Sep. 7, 2007.
Dokai et al.: “Antenna and Radio IC Device”; U.S. Appl. No. 12/350,307, filed Jan. 8, 2009.
Official communication issued in Japanese Application No. 2007-531524, mailed on Sep. 11, 2007.
Official communication issued in Japanese Application No. 2007-531525, mailed on Sep. 25, 2007.
Official communication issued in Japanese Application No. 2007-531524, mailed on Dec. 12, 2007.
Official communication issued in European Application No. 077706650.4, mailed on Nov. 24, 2008.
Mukku-Sha, “Musen IC Tagu Katsuyo-no Subete” “(All About Wireless IC Tags”), RFID, pp. 112-126.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 11/624,382, filed Jan. 18, 2007.
Dokai et al.: “Wireless IC Device, and Component for Wireless IC Device”; U.S. Appl. No. 11/930,818, filed Oct. 31, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/042,399, filed Mar. 5, 2008.
Official communication issued in related U.S. Appl. No. 12/042,399, mailed on Aug. 25, 2008.
Official Communication issued in International Patent Application No. PCT/JP2008/063025, mailed on Aug. 12, 2008.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/603,608, filed Oct. 22, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/688,072, filed Jan. 15, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/053693, mailed on Jun. 9, 2009.
Kato: “Composite Antenna,” U.S. Appl. No. 12/845,846, filed Jul. 29, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/053690, mailed on Jun. 2, 2009.
Kato et al.: “Radio Frequency IC Device and Radio Communication System,” U.S. Appl. No. 12/859,340, filed Aug. 19, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/055758, mailed on Jun. 23, 2009.
Kato et al.: “Wireless IC Device,”; U.S. Appl. No. 12/859,880, filed Aug. 20, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/057482, mailed on Jul. 21, 2009.
Kataya et al.: “Wireless IC Device, Electronic Apparatus, and Method for Adjusting Resonant Frequency of Wireless IC Device,”; U.S. Appl. No. 12/861,945, filed Aug. 24, 2010.
Kato: “Wireless IC Device and Electromagnetic Coupling Module,”; U.S. Appl. No. 12/890,895, filed Sep. 27, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059410, mailed on Aug. 4, 2009.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/902,174, filed Oct. 12, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059259, mailed on Aug. 11, 2009.
Official Communication issued in corresponding Japanese Patent Application No. 2010-506742, mailed on Apr. 6, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/056698, mailed on Jul. 7, 2009.
Related Publications (1)
Number Date Country
20130234905 A1 Sep 2013 US
Continuations (2)
Number Date Country
Parent 13272365 Oct 2011 US
Child 13604801 US
Parent PCT/JP2009/066336 Sep 2009 US
Child 13272365 US