Anti-BCMA single domain antibodies and application thereof

Information

  • Patent Grant
  • 12227581
  • Patent Number
    12,227,581
  • Date Filed
    Wednesday, July 10, 2019
    5 years ago
  • Date Issued
    Tuesday, February 18, 2025
    4 days ago
Abstract
A group of anti-BCMA single domain antibodies, as well as genes of the single domain antibodies in the group, a vector containing the single domain antibodies in the group, a chimeric antigen receptor, and a T cell modified by a chimeric antigen receptor, and detection and treatment application of the single domain antibodies in the group. The anti-BCMA single domain antibodies have high activity, high stability, high specificity, and high binding capability.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a National Stage Application and claims priority under 35 U.S.C. § 371 to Patent Cooperation Treaty application PCT/CN2019/095507, filed Jul. 10, 2019, which claims the benefit of CN application No. 201810972054.2, filed Aug. 24, 2018. Priority is claimed to these applications and the disclosures of these prior applications are considered part of the disclosure of this application and to the extent allowed the entire contents of the aforementioned applications are incorporated herein.


TECHNICAL FIELD

The present disclosure belongs to the field of biotechnologies. In particular, the present disclosure relates to a group of single domain antibodies against B cell maturation antigen (BCMA) and use thereof.


BACKGROUND

BCMA (B cell maturation antigen, BCMA) is a member of tumor necrosis factor receptor (TNFR) superfamily, which can bind to a B cell-activating factor (BAFF) or a B lymphocyte stimulator (BLyS) and a proliferation inducing ligand (APRIL). It is reported that in normal cells. BCMA is mainly expressed by plasmocytes and some mature B cells, but not expressed in most B cells or other organs. Multiple myeloma (MM) is a malignant tumor characterized by massive proliferation of clonal plasmocytes. The RNA of BCMA is generally detected in MM cells, and the BCMA protein can be detected on the surfaces of plasmocytes of a patient with multiple myeloma. Accordingly, a candidate target antigen for immune treatment of MM is BCMA. At present, MM treatment can induce remission, but almost all the patients will eventually relapse and die. Some monoclonal antibody candidate drugs have shown a promise to treat MM in pre-clinical studies and early clinical trials, but have not been universally approved by consensus, and no monoclonal antibody drug has been marketed. Clearly, there is an urgent need of new immunological therapy for MM, and an effective antigen-specific adoptive T cell therapy developed for this disease will be an important research progress.


Single domain antibody (sdAb), also known as nanobody, is a heavy chain antibody found in Alpaca blood in which a light chain is absent. By using the molecular biology technology in combination with nano-particle science, Belgian scientists have developed a novel, low molecular weight fragment of antibody which can bind to an antigen. It has a group of advantages, such as, simple structure, strong penetration, easy expression and purification, high affinity and stability, and no toxic and side reactions, or the like. Single domain antibodies for various target antigens have been researched by use of a single domain antibody platform technology, and then used in the field of biomedicines.


The present disclosure aims to develop a group of promising anti-BCMA single domain antibodies for use in therapeutic antibody candidate drugs and chimeric antigen receptor T cells targeting BCMA.


SUMMARY OF THE INVENTION

The technical problem to be solved by the present disclosure is to provide a group of novel anti-BCMA single domain antibodies having good effects.


Another technical problem to be solved by the present disclosure is to develop various uses of anti-BCMA single domain antibodies.


In order to achieve the above objects, the present disclosure provides the following technical solutions:


The present disclosure provides a group of anti-BCMA single domain antibodies composed of a framework region and a complementarity determining region, wherein the complementarity determining region has an amino acid sequence selected from those of SEQ ID NOs: 1-66 (Annex 1: Amino Acid Sequences of Complementarity Determining Regions of Screened BCMA-sdAbs).


In some embodiments, the amino acid sequence of the complementarity determining region has more than 80%, more than 85%, more than 90%, more than 95% or more than 99% identity to the amino acid sequence as set forth in SEQ ID NOs: 1-66.


Preferably, the difference in amino acids is conservative substitution.


In some embodiments, the single domain antibody in the group has an amino acid sequence selected from SEQ ID NOs: 67-132 or is an amino acid sequence selected from SEQ ID NOs: 67-132 (Annex 2: Amino Acid Sequences of Screened BCMA-sdAbs).


In some embodiments, the amino acid sequence of the single domain antibody has more than 80%, more than 85%, more than 90%, more than 95% or more than 99% identity to the amino acid sequence as set forth in SEQ ID NOs: 67-132.


Preferably, the difference in amino acids is conservative substitution, more preferably, one or more conservative substitutions.


The present disclosure provides a group of genes of anti-BCMA single domain antibodies having a nucleotide sequence selected from those of SEQ ID NOs: 133-198 (Annex 3: Nucleotide Sequences of Screened BCMA-sdAbs), or being a nucleotide sequence of SEQ ID NOs: 133-198, or being a nucleotide sequence encoding the above single domain antibodies.


In some embodiments, the nucleotide sequence of the single domain antibody has more than 80%, more than 85%, more than 90%, more than 95% or more than 99% identity to the nucleotide sequence as set forth in SEQ ID NOs: 133-198.


Preferably, the difference in bases is conservative substitution, more preferably, one or more conservative substitutions.


The present disclosure provides a polypeptide having one or more single domain antibodies selected from the group of single domain antibodies as described above.


Preferably, the plurality of single domain antibodies are the same or different.


The present disclosure provides an expression vector including one or more genes selected from the group of genes of single domain antibodies as described above.


Preferably, the expression vector is a prokaryotic cell expression vector, a eukaryotic cell expression vector, or other cell expression vector(s).


The present disclosure provides a host cell including the above expression vector.


Preferably, the host cell is a prokaryotic expression cell, a eukaryotic expression cell, a fungus cell or a yeast cell, wherein the prokaryotic expression cell is preferably Escherichia coli.


The present disclosure provides a chimeric antigen receptor, having one or multiple single domain antibodies selected from the above group of single domain antibodies.


Preferably, the multiple single domain antibodies are the same or different.


The present disclosure provides a T cell modified by a chimeric antigen receptor, which is modified by the above chimeric antigen receptor.


The present disclosure provides a pharmaceutical composition including one or more single domain antibodies selected from the above group of single domain antibodies as active ingredients.


The present disclosure provides a humanized anti-BCMA single domain antibody, which is obtained by humanizing the single domain antibody selected from the above group of single domain antibodies.


The present disclosure provides use of the single domain antibody in the above group of single domain antibodies in detection of BCMA.


The present disclosure provides use of the single domain antibody in the above group of single domain antibodies for blocking an interaction between BAFF and BCMA.


In some embodiments, the single domain antibody is linked to one or more of a cytotoxic agent, an enzyme, a radioisotope, a fluorescent compound or a chemiluminescent compound.


The present disclosure provides use of the single domain antibody in the above group of single domain antibodies in preparation of a drug for treating a disease associated with abnormal BCMA expression.


Preferably, the disease associated with abnormal BCMA expression is a multiple myeloma disease.


The present disclosure has the following beneficial technical effects:


The disclosure screens a group of anti-BCMA single domain antibodies. Compared with the existing antibodies, respective anti-BCMA single domain antibodies in the group have high activity and strong neutralization or binding capability. The group of single domain antibodies can specifically bind to human BCMA antigens or tumor cell strains expressing BCMA on the cell surfaces, effectively block the binding of BAFF antigen to BCMA, and generate a corresponding signal cascade effect. The group of single domain antibodies can be used for detecting and/or treating a plurality of diseases associated with abnormal BCMA expression.


Hereinafter the present disclosure will be described in details by reference to the accompanying drawings and examples, but the scope of the present disclosure is not limited thereto.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an amplification of common heavy chain antibody and genes of single chain antibodies via a first-round PCR. With reference to (Marker) (1500 BP, 1000 BP, 800 BP, 500 BP, 250 BP and 100 BP)1 PCR amplification products, there are common heavy chain gene amplification fragments having more than 800 BP and heavy chain antibody gene amplification fragments having less than 800 BP, 2 and 3 are PCR amplification products, which are heavy chain antibody gene amplification fragments having only about 500 BP.



FIG. 2 shows a VHH target gene fragment obtained in second-round PCR amplification. Marker (1500BP, 1200 BP, 1000 BP, 800 BP, 700 BP, 600 BP, 500 BP, 250 BP and 100 BP). 1-12 are PCR amplification products, which are heavy chain antibody VHH gene amplification fragments having about 500 BP.



FIG. 3 is an SDS-PAGE illustration of expressed BCMA-sdAbs before purification.



FIG. 4 shows an SDS-PAGE illustration of expressed BCMA-sdAbs after being purified by a nickel column.



FIG. 5 shows a concentration gradient of a purified BCMA single domain antibody binding to BCMA protein (ELISA).



FIG. 6 shows that a BCMA single domain antibody can competitively inhibit the binding of BAFF protein to BCMA protein.



FIG. 7 shows a killing efficiency of BCMA CART on tumor cells.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The disclosure screens a group of anti-BCMA single domain antibodies by a group of steps, which have potentials of high activity and high neutralization or binding capability. These single domain antibodies have similar structures (composed of a framework region and a complementarity determining region), and similar functional effects. Thus, they can be considered as a group of anti-BCMA single domain antibodies having common structure and common property effects.


The term “BCMA”, as used herein, is a member of tumor necrosis factor receptor (TNFR) superfamily, which can bind to a B cell-activating factor or a B lymphocyte stimulator and a proliferation inducing ligand (APRIL)). Multiple myeloma (MM) is a malignant tumor characterized by massive proliferation of clonal plasmocytes. The RNA of BCMA is generally detected in MM cells, and the BCMA protein can be detected on the surfaces of plasmocytes in a patient with multiple myeloma.


The term “multiple myeloma (MM)” as used herein is a malignant tumor characterized by massive proliferation of clonal plasmocytes. At present. MM treatment can induce remission, but almost all the patients will eventually relapse and die. Some monoclonal antibodies have shown a promise to treat MM in pre-clinical studies and early clinical trials, but have not been universally approved. Clearly, there is an urgent need of new antibodies and new immunological therapy for MM.


New antibodies against BCMA are the development object, and finally the protective object of the present disclosure. The scope of the present disclosure encompasses the obtained anti-BCMA antibodies and various forms thereof (for example, single domain antibodies), as well as substances including the antibody as component (for example, pharmaceutical compositions, kits, vectors, chimeric antigen receptors, a chimeric antigen receptor modified T cells, or the like), uses (for example, uses for diagnosis, treatment or application, etc.). However, it should be understood by those skilled in the art that the protective objects of the present disclosure are not limited to these exemplified contents.


The term “single domain antibody (sdAb)” as used herein refers to a fragment containing a single variable domain in an antibody, and is also known as nanobody. Like a complete antibody, it can selectively bind to a specific antigen. Compared with the mass of the complete antibody (150-160 kDa), the single domain antibody (only about 12-15 kDa) is much smaller. The first single domain antibody was made from alpaca heavy chain antibodies by artificial engineering, and known as “VHH segment”. In a preferred embodiment, the present disclosure uses the single domain antibody of the alpaca, whereas those skilled in the art should understand that the present disclosure can also encompass single domain antibodies derived from other species. Without limitation, the single domain antibody of the present disclosure is an anti-BCMA single domain antibody.


The term “framework region” is also known as a skeleton region. The sequences of about 110 amino acids near the N-terminals of the H chain and the L chain of immunoglobulin vary greatly, while the amino acid sequences in other positions are relatively constant. Accordingly, the light chain and the heavy chain can be divided to a variable region 00 and a constant region (C). The variable region contains an HVR (hypervariable region), also known as complementarity-determining region (CDR) and a frame region (FR). The variability of FR is less than that of CDR. There are four FR molecules in total, that is. FR1, FR2, FR3 and FR4, respectively. During the recognition of antibody, four FR molecules crimp so that CDR molecules are close to each other. It should be understood that the present disclosure is not limited to specific framework region(s), and those skilled in the art can select or obtain appropriate framework region(s) according to practical requirements without departing from the protective scope of the present disclosure.


The term “complementarity determining region (CDR)”, the whole antibody molecule can be divided into a constant region and a variable region. In the variable region, some amino acid residues are highly variable, and the regions in which the compositions and arrangement orders of these amino acid residues are more prone to vary are called hypervariable regions. There are three hyper-variable regions (HVR) in the V regions of the L chain and the H chain, which can form a precise complementation with the antigen determinants in terms of spatial structure, and thus the hyper-variable regions are also called complementarity determining regions.


The term “identity” of sequence as used herein is interchangeably used with “homology”, and refers to a similarity degree between sequences as measured by sequence alignment softwares, such as BLAST. The sequence alignment methods and softwares are well-known by those skilled in the art. Modified nucleotide sequences can be obtained by substitution, deletion and/or addition of one or more (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 or more) amino acids or bases in a known sequence. For example, by modifying the amino acid sequence or nucleotide sequence as set forth in one or more of sequence SEQ ID NOs: 1-198 of the present disclosure via conventional means (for example, by conservative substitution), it is feasible to obtain sequences having more than 80%, more than 85%, more than 90%, more than 95% or more than 99% sequence identity to these sequences, and having substantially the same properties, which are encompassed within the protective scope of the present disclosure. Preferably, the present disclosure obtains sequence identity by conservative substitution, but is not limited thereto.


The term “amino acid sequence” refers to an arrangement in which amino acids are linked to each other to form a peptide chain (or polypeptide), wherein the amino acid sequence can only be read in one direction. There are more than 100 types of different amino acids, twenty of which are commonly used. The present disclosure does not exclude the case that other substances (e.g., saccharides, lipids, and other modifications) are attached to the amino acid chains, and is not limited to the 20 amino acids that are commonly used, either.


The term “nucleotide sequence” refers to an arrangement of bases in DNAs or RNAs, namely, an arrangement of A, T, G and C in DNA, or an arrangement of A, U, G and C in mRNA. It also includes arrangements of bases in rRNA, tRNA and mRNA. It should be understood that the antibody gene of the present disclosure also encompasses, in addition to DNA sequences, RNA (rRNA, tRNA and mRNA) and their complementarity sequences. It will also be understood that genes encoding the antibodies of the present disclosure are not equivalent to the sequences as set forth in SEQ ID NOs: 133-198 of the present disclosure, and the genes which encode the antibodies of the present disclosure but are different from the nucleotide sequences as set forth in SEQ ID NOs: 133-198 are also within the protective scope of the present disclosure.


In some embodiments, the polypeptide, the pharmaceutical composition, the chimeric antibody receptor or the CART of the present disclosure comprises one single domain antibody, it should be understood that the present disclosure is not limited thereto. The above substances of the present disclosure can contain two, three, or multiple single domain antibodies, wherein the multiple single domain antibodies are the same or different. Moreover, in addition to the single domain antibodies of the present disclosure, other antibodies or single domain antibodies that are not contained in the present disclosure can also be included without going beyond the scope of the present disclosure.


The term “expression vectors” refers to a vector that incorporates expression elements (such as, promoter, RBS, or terminor) on the basis of the basic backbone of a cloning vector so that a target gene can be expressed. The expression vector comprises four parts: a target gene, a promoter, a terminator and a marker gene. The present disclosure includes, but is not limited to, a prokaryotic cell expression vector, a eukaryotic cell expression vector or other cell expression vectors.


“Chimeric antigen receptor (CAR)” is a core component of “chimeric antigen receptor T cell (CART)”, which imparts a T cell with an ability to recognize tumor antigens in an independent manner, so that the T cell modified by CAR is capable of recognizing a broader range of targets as compared with a natural T cell surface receptor. The basic design of CAR comprises a tumor-associated antigen binding region, an extracellular hinge region, a transmembrane region, and an intracellular signal region.


In an embodiment of the present disclosure, the chimeric antigen receptor or chimeric antigen receptor T cell of the present disclosure can contain one, two or more single domain antibodies of the present disclosure, which can be the same or different.


In an embodiment of the present disclosure, the “pharmaceutical composition” of the present disclosure can contain one, two or more single domain antibodies of the present disclosure, which can be the same or different.


The term “humanized” antibody refers to an antibody in which the constant regions (namely CH and CL regions) of the antibodies or the whole antibodies are encoded by human antibody genes. The humanized antibody can greatly reduce the immune side reaction of a heterologous antibody in a human organism. The humanized antibody includes several types including chimeric antibodies, modified antibodies and full human antibodies. It will be appreciated that those skilled in the art can prepare suitable humanized forms of the single domain antibodies of the present disclosure according to the practical requirements, which are within the scope of the present disclosure.


The term “lentivirus” as used herein is one genus of Retroviridae including eight viruses that can infect humans and vertebrates, wherein the primary infection cells are mainly lymphocytes and macrophages, and the infected individuals will eventually develop the diseases. The types of lentiviruses include, for example, human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV), equine infectious anemia (EIA), and feline immunodeficiency virus (FIV). The progress of lentiviral vector research is rapid and intensive. This vector can effectively integrate foreign genes into host chromosomes, so as to achieve persistent expression. In terms of infectability, it can effectively infect neurons, hepatocytes, cardiomyocytes, tumor cells, endothelial cells, stem cells and other types of cells, so as to achieve good gene therapeutic effect. In addition, those skilled in the art can also select other suitable vectors other than lentivirus, which are within the protective scope of the present disclosure.


Hereinafter the present disclosure will be described in details by reference to the following examples. However, the present disclosure is not limited to the specific details of these examples, because for persons skilled in the art, other variations are well established, or obvious according to the direct disclosure and the appended claims. Therefore, all the technologies achieved based on the above description of the present disclosure shall fall within the scope of the present disclosure.


Unless otherwise specified, all the experimental methods described in the following examples are conventional methods; and all the reagents and biomaterials are commercially available, unless otherwise specified.


Example 1: Construction of Anti-BCMA Antigen-Specific Single Domain Antibody Library

1) Immunization of Alpaca with BCMA Antigen


It is performed according to the conventional immunization method. Briefly, adult healthy alpacas were subject to multipoint subcutaneous injections at their necks and backs with BCMA antigen (Human TNFRSF17/BCMA/CD269 Protein, purchased from Beijing Yiqiao Shenzhou. Product No. 10620-H15H) with a total weight of about 2 mg, in which the antigen and an equal volume of Freund's adjuvant were added. Immunizations were carried out for 4-6 times. The absorption of mass at the injection sites was followed to confirm correct immunization. The immunization interval time was 7-15 days. After the fourth immunization, serum was collected to determine the immune titer of the antigen. When the titer reached 10,000 times or more (ELISA method), about 100 ml of whole blood was collected, and lymphocytes were separated and stored at −80° C., for subsequent use.


2) Separation and RNA Extraction of Peripheral Blood Lymphocytes of Alpaca


Peripheral blood lymphocytes of alpacas were separated by using a QIAGEN kit (QIAamp RNA Blood Mini Kit (50), Product No. 52304) following the instructions. Briefly, to 1 ml of full blood was added 5-10 ml of red blood cell lysate. The mixture was uniformly mixed, and placed in an ice bath for 30 min. It was centrifuged for 10 min at 2000 rpm after red blood cells were lysed. The supernatant was discarded, and an additional 1-2 ml of red blood cell lysate was added and uniformly mixed. The mixture was placed in an ice bath for 10 min to lyse residual red blood cells, and then centrifuged at 2000 rpm for 10 min. The supernatant was discarded, and 0.3 ml of lysate was added to mix with leukocytes uniformly. The resultant mixture was stored at −80° C., for subsequent use.


RNA purification was carried out by using a QIAGEN kit (QIAamp RNA Blood Mini Kit (50), Product No. 52304) following the instructions. Briefly, to 0.3 ml of the separated alpaca lymphocytes was added 0.3 ml of buffer RLT, and the mixture was mixed well with shaking. The mixed liquid from the last step was transferred to a collection tube equipped with an adsorption column (QIAshredderSpinColumn), and centrifuged at 14,000 rpm for 2 min. The filtrate in the collection tube was transferred to a new centrifuge tube. 0.5 ml of 70% ethanol was added into the filtrate, and uniformly mixed upside down. The mixture was centrifuged at 10000 rmp for 15 s, the waste liquid in the collection tube was discarded, and the adsorption column was re-placed into the collection tube. The adsorption column was transferred to a new 2 ml collection tube, 0.7 ml of buffer RWI was added, and the mixture was centrifuged at 10000 rmp for 15 s. The adsorption column was transferred to a new 2 ml collection tube. 0.5 ml of buffer RPE was added, and the mixture was centrifuged for 15 s at 10000 rmp. 0.5 ml of buffer RPE was added, and the mixture was centrifuged at 14000 rmp for 3 min. The adsorption column was transferred to a new 1.5 ml centrifuge tube, and 30-50 μl RNase-free water was added dropwise into the middle of an adsorption membrane in the air. The mixture was placed at room temperature for 2-5 min, and centrifuged at 12,000 rpm for 1 min. The plasmid solution was collected into the centrifuge tube, and measured for the RNA concentration.


3) Variable Region-VHH of Heavy Chain Antibody


Synthesis of a first chain of cDNA: A cDNA synthesis kit (MiniBESTAgarose Gel DNA Extraction Kit ver.4.0, TAKARA Company) was used following the instructions. With this template, two sets of primers were used to perform PCR amplification of the VHH gene fragment of the heavy chain antibody. By using a Nested PCR method, the fragments of greater than 800 bp in the first PCR amplification are common heavy chain gene fragments, and the fragments between 800 bp and 500 bp are heavy chain antibody gene fragments with deletion of light chains (see FIG. 1). The gene fragments of heavy chain antibodies with deletion of light chain were recovered by gel cutting, and used as the template to obtain the VHH target gene (˜500 bp) by PCR amplification with VHH specific primers (see FIG. 2).









Synthesis of primers:


First-round PCR Fd5′ primer:


YF-1:


(SEQ ID NO: 199)


CGC CAT CAA GGT ACC AGT TGA





YF-2:


(SEQ ID NO: 200)


GGG GTA CCT GTC ATC CAC GGA CCA GCT GA





First-round PCR Bd3′ primer:


YBN:


(SEQ ID NO: 201)


CAG CCG GCC ATG GCC SMK GTR CAG CTG GTG GAK TCT GGG





GGA G





Second-round PCR primer:


YV-BACK:


(SEQ ID NO: 202)


CAT GTG CATGGCCTA GAC TCG CGG CCCAGC CGG CCA TGG





CC





YV-FOR: 


(SEQ ID NO: 203)


CAT GTG TAG ATT CCT GGC CGG CCT GGC CTG AGG AGA CGG





TGA CCT GG







4) Ligation of VHH Fragment and Phage Display Vector and Electric Transformation of TG1 Competent Cells


After the VHH fragment and the pHEN6 vector plasmid were subjected to single digestion with Sfl, the VHH fragment and the pHEN6 vector (Conrath, KEM other. Antimicrob Agents Chemother (Antimicrobial Chemotherapy) 2001, 45: (10) 2807-12, Chinese patent ZL20111028003.1)) were ligated by a ligase, and then electrically transformed into TG1 competent cells, which were used to coat a plate, and detected by colony PCR for verification of the antibody insertion rate. Detection of recombinant gene cloning efficiency: an LB/Amp plate was coated with an electrically transformed bacterial solution, cultured overnight at 32° C., and detected by colony PCR for verification of the ligation efficiency of the antibodies on the next day. The ligation efficiency of the phage-antibody library was more than 90%. The LB/Amp plate was coated with the electrically transformed bacterial solution, and cultured overnight at 32° C. The culture was washed with 2YT culture medium, and 15% glycerol was added. The mixture was stored at −80° C.


5) Preparation of VHH Phage Antibody Library


Helper phage M13K07 (Invitrogen) was added into the antibody library for rescue: the phage antibody library was prepared according to a conventional method and stored at −80° C., for subsequent use.


Example 2: Preparation of Single Domain Antibody of BCMA

Screening of BCMA-Specific Single Domain Antibody






    • First-round: BCMA protein concentration 150 μg/ml, 150 μl/well, 1 micropore, incubate overnight at 4° C.

    • Second-round: BCMA protein concentration 10-100 μg/ml, 150 μl/well, 5 micropores, incubate overnight at 4° C.

    • Third-round: BCMA protein concentration 10-50 μg/ml, 150 μl/well, 5 micropores, incubate overnight at 4° C.















Blocking: 1% CPBS, 300 μl/well, 37° C., incubate for 2 h.












Total amount





Screening
of added phage
Elution
Number



Round No.
antibody library
solution + Tris-HCl
of single colony
Elution titer





First round
 5.6 × 1011
300 μl + 200 μl
10
50/μl


Second round
5.25 × 1011
150 μl/well × 5 + 350 μl
¼ = 600
2.4 × 104/μl





about 2400



Third round
5.32 × 1011
150 μl/well × 5 + 350 μl
¼ = 750
  3 × 104/μl





about 3000










2. Picking of Positive Clones Via Phage ELISA


A single colony was randomly picked from an agar plate screened for grown colonies in the third round, inoculated and cultured in a 96-well culture plate containing an Amp 2YT liquid culture medium, and subject to superinfection of helper phages to induce the expression of the phage antibody. The expression supernatant was harvested, and then an ELISA assay was carried out with BCMA as an antigen. BCMA-positive wells were selected, and subject to DNA sequencing to identify the gene sequence of the anti-BCMA single domain antibody clones. A series of single domain antibody gene sequences including those in Annex 3 were obtained and used for further expression and screening of the single domain antibodies with high specificity and high activity.


Example 3: Construction of Expression Plasmid of Specific BCMA Single Domain Antibody

The specific BCMA single domain antibody gene obtained in Example 3 was amplified by PCR to obtain PCR products with restriction enzymes BbsI and BamHI sites. The PCR products and vectors (pSJF2 vector) (kim ls. Biosic Biochem. 2002, 66 (5): 1148-51, Chinese patent ZL 201110280031) were treated with restriction enzymes BbsI and BamHI respectively, and recombined by ligation with T4 ligase to obtain the plasmid sdAb-pSJF2 that can be efficiently expressed in Escherichia coli, which was subject to gene sequencing to determine the correctness of its sequence.

    • 1) PCR amplification conditions required for obtaining VHH target genes, and compositions of 50 μl PCR system:
















MIX
25 μl



Positive colony clone
 1 μl



5’ primer
 1 μl
(1 mol/1)


3’ primer
 1 μl
(1 mol/1)


DEPC-treated ddH2O
22 μl



Total volume
50 μl



















PCR Reaction Conditions:





















94° C. 94° C. 72° C.
 3 min 30 s 55° C.  1 min
custom character
30 s
    30 rounds
















(SEQ ID NO: 204)


5′ primer-GAA GAAGAA GAC AA CAG GCC SVK GTG MAG 





CTG GWG GAK TCT





(SEQ ID NO: 205)


3′ primer-gaagatctccggatccTGAGGAGACGGTGACCTGGGT








    • 2) The target gene and the vector were digested, ligated, and transformed into TG1 cells. The products were subject to PCR for identifying the clones containing the target fragment, which were subject to gene sequencing so as to obtain the BCMA single domain antibody expression plasmid with a correct gene sequence.





Example 4: Expression and Purification of Anti-BCMA Single Domain Antibody

The strains containing the plasmid BCMAsdAb-pSJF2 in example 3 were inoculated on an LB culture plate containing ampicillin at 37° C., overnight. A single colony was picked and inoculated in 15 ml LB medium solution containing ampicillin, and was cultured in a shaker at 37° C., overnight. 10 ml of culture was transferred to 1 L of 2YT culture solution containing ampicillin and cultured in a shaker at 37° C., at 240 rpm/min. After OD value reached 0.4-0.6, 0.5-1.0 mM IPTG was added and additionally incubated overnight. The above solution was centrifuged for collecting bacteria. The bacteria were lysed by adding lysozym and centrifuged, and the soluble single domain antibody protein in the supernatant was collected. A protein with the purity of more than 95% was obtained by Ni ion affinity chromatography. FIG. 3 shows the expressed anti-BCMA single domain antibody protein, and FIG. 4 shows SDS-PAGE electrophoresis results of expressed BCMA-sdAbs purified by a nickel column.


Example 5: Affinity Assay Test of BCMA Single Domain Antibody

1) Preparation of Sample


Antigen: Bio-BCMA was diluted to 10 μg/ml with 1× dynamic buffer (1×PBS, containing 0.05% Tween 20, 0.1% BSA, pH7.2):


Single domain antibody was gradually diluted into 400 nM, 200 nM, 100 nM, 50 nM, 25 nM, 12.5 nM and 6.25 nM with 1× kinetic buffer:


2) Sample Test


The antigen to be tested was loaded through an SA sensor. The antigen was diluted by 5 gradients, and all the BCMA single domain antibodies had an affinity of 50 nm, 20 nm, 10 nm, 1 nm, 0.1 nm and 0.01 nm.


Example 6: Binding Test of Purified BCMA Single Domain Antibody and BCMA Antigen (ELISA)

The BCMA-Fc antigen was diluted to 1 μg/ml with 0.05 M NaHCO3 (pH 9.5). A 96-well place was coated with 100 μl antigen overnight at 4° C. The 96-well plate was blocked with 300 μl 0.5% BSA-PBS for 2 h at 37° C. The purified BCMA single domain antibodies with different dilution concentrations were added in 100 μl/well at 37° C., for 1 h. The plate was washed three times with 0.05% PBST. Mouse anti-His-HRP diluted in 1:5000 fold was added in 100 μl/well at 37° C., for 1 hour. The plate was washed three times with 0.05% PBST. 100 μl of TMB was added and kept in dark place at room temperature for 20 min. 100 μl of 1 mol/L HCl was added to quench the reaction. The OD value of the sample at 450 nm was measured by a microplate reader. FIG. 5 shows the concentration gradient of purified BCMA single domain antibody binding to BCMA protein (ELISA). Except that the binding ability of the two antibodies of B35 (13) and B92 (6-1) to the BCMA antigen was relatively low: the binding ability of the rest 11 antibodies to BCMA antigen was very high.


Example 7: Binding Competitive Inhibition Test of BCMA Single Domain Antibody on BAFF and BCMA

Because BCMA can bind to BAFF, the functional BCMA single domain antibody should be able to competitively inhibit the binding of BAFF to BCMA. BAFF protein coated a detachable ELISA plate according to 1 μg/ml. 100 μl/well and incubated overnight at 4° C. 2% BSA was added for blocking. 300 μl/well, incubated at 37° C., for 2 hours. The BCMA single domain antibody was diluted to a final concentration of 10 μg/ml. 100 μl BCMA (10 μg/ml) single domain antibody was added. 2 μl of BAFF (5 μg/ml) protein was added in each well to be uniformly mixed. Goat anti-rabbit IgG HRP (1:5000) was diluted. 100 μl/well, incubated for 1 h at 37° C. TMB chromogenic solution was added. 100 μl/well, and reacted in dark for 10 min. The reaction was quenched by adding 2M H2SO4 at 50 μl/well. The OD value was measured at 450 nm. FIG. 6 shows that the BCMA single domain antibody can competitively inhibit the binding of BAFF protein to BCMA protein. Different BCMA single domain antibodies could competitively inhibit the binding of BAFF protein to BCMA protein, and the inhibition rate ranged from 34% to 92%.


Example 8: The Study on BCMA Single Domain Antibody as Recognition Antibody Targeting Specific BCMA Antigen on CART Cell

1) Construction of Vector


A BCMA single domain antibody gene and a second-generation CAR structure gene were synthesized. The two genes were spliced by overlapping PCR to obtain a BCMA CAR gene. After the synthetic gene was obtained, molecular cloning was carried out. First. PCR products of two gene fragments were obtained. Then, overlapping PCR was carried out to obtain BCMA CAR gene with the second-generation CAR structure in which two fragments are linked. Through enzyme digestion of Pre vector and BCMA CAR gene, ligation, transformation, cloning, plasmid upgrading and sequencing, the BCMA CAR-expressed lentiviral vector Pre-Lenti-EFI BCMA with a correct sequence was obtained.


2) Packaging of Lentivirus


On the day before virus packaging. 293T cells were digested by trypsin and spread in 150 cm culture dish. The cells were incubated in 5% CO2 culture box for 8-24 h. When the adherent cells reached 80% of the total culture dish area, the 293T cells were transfected. Pre-Lenti-EFI BCMA CAR: psPAX2: pMD2G=4:3:1 was co-transfected with lipofectamine 2000. The virus supernatant was collected after 48 hours, and centrifuged at 4° C., at 1250 rpm for 5 min to remove the dead 293T cells and cell debris. Then, the virus supernatant was filtered, concentrated, sub-packaged, and stored in a refrigerator at −80° C.


3) Preparation of CART Cells


10 ml of fresh blood was taken from healthy volunteers. Peripheral blood mononuclear cells (PBMC) were isolated with lymphocyte isolation solution, and then T cells were isolated and purified by magnetic beads. 2×106 T cells/well were seeded into a 6-well plate, cultured in an x-vivo 15 culture medium containing IL-2 (1000 U/ml) and stimulated with anti-CD3 for 24 h. After 24 hours of stimulation, a BCMA virus solution was added and infected overnight. 2 ml of culture medium was added on the second day. After 6-7 days of infection, the expression of CAR was evaluated by flow cytometry. The positive rate of expressing anti-BCMA-CAR by transfected T cells was analyzed using biotinylated BCMA via flow cytometry.


4) Determination of Killing Vitality


In a cell killing test, an LDH detection kit (Promega) was used for detection. CART cells/T cells: target cells were set with four gradients, which were 0.5:1, 1:1, 2:1 and 4:1, respectively. Daudi cells 3×104/well, and the rest wells were supplemented to 200 μL with an X-VIVO-containing culture medium/1640) culture medium. The 96-well plate was cultured in a 5% CO2 incubator at 37° C. After 17 h, 20 μl of lysate was added into the maximum release well, and the cells were uniformly mixed to be completely ruptured. The 96-well plate was incubated in the CO2 incubator for 2 h. Two hours later, the maximum release well was observed. After target cells were completely lysed. 50 μL of supernatant was sucked from each well to the 96-well plate with a flat bottom, and then 50 μL of substrate solution was added to each well, development was carried out for 30 min in the dark. After 30 min, the mixture was observed for the color change, wherein the colors of the maximum release MM. IS well and the CART cell well should be darker. A microplate reader was used for measurement at a wavelength of 490 nm. The killing results were seen in FIG. 7. BCMA chimeric antigen receptor modified T cells can specifically kill BCMA-positive cells with a very high killing activity of more than 20%, and has no killing effect on BCMA-negative cells.












Annex 1:















Clone


Sequence
CDR1
CDR2
CDR3
group





 1
TYFMA
GGIRWSDGVPHYADSVKG
CASRGIADGSDFGS
G3





 2
IKAMA
AYIRSGGTTNYADSVKG
CNADYSPPGSRFPDLGP
G1





 3
ANTM
ARISTDGRTNYADSVKG
CNANWLSKFDY
NG7





 4
VNAVA
AYIRRSGSTNYADSVKG
CNADFGSDYVVLGS
G5





 5
IKALA
AYITSGGNTNYADSVRG
CNADFGEGTIISLGP
G9





 6
INAMA
AALTSGGNTHYADSVKG
CNADFGTAGLVVLGP
G7





 7
INAMA
AYIRSNGRTNYADSVKG
CNADYGPPVSIGP
G6-2





 8
IKAMA
AAVTSGGSTHYLDSVKG
CNADFGTDYVDLGP
G10





 9
INAMG
AAITKSNNINYADSVKG-
CNGFFALPGYSSEEFGP
G2





10
MNRMG
ADIRDGGSTIYSDSVKG
CNAGRTGDRFNLVAY
G8





11
GYAMA
AAISSSSNSAPYYANSVKG
CAARYGTKRYVAREYDS
G17





12
INGMG
ARIDSRGSAYYADFVEG
CFAWQGAETY
G25





13
TYAMA
AYITNGGSTDYAASVKG
CNGATRGAQLVFD
NG1





14
NYAMA
AAISVSANSAPYYANSVKG
CAARYGTKRYVAREYDS
NG20





15
LNAMG
ARIAADGSTHYADSVEG
CFAWLGTDTY
NG21





16
NNAMG
ARIDSGGITRYADSLKG
CFAHVGGTI
G14





17
INSMG
ASITGGGSSRYADSVKG
CNTIPPARTQSDHGEWYDY
NGS1





18
IN-MS
ATTRHDSTHYSDSVKG
CSGFFLDGSTWHPY
G12





19
INAMA
AYIRSNGSTNYADSVKG
CNGFFTLPGYSSEEFGP
G6





20
INAMG
AGITKGGRTNYADSVKG
CNGLCSGRECYGDSLFAA
G22#





21
INAMA
AYIRSNGRTNYADSVKG
CSGFFLDGSTWHPY
G6-1





22
DYAIG
SCISSSDGSTHYADSVKG
CATPWVTYCPENLLFSY
G13#





23
DYAIG
SCITSSDGSTYYADSVKG
CATPWVTYCPENLLFSY
G13-2#





24
IKAMG
AAITSGGSTNYADSVKG
CNGFFEYRGLEQLGP
G31





25
IRAMT
AVLTSAGKPMYADSVKG
CNADFGTPGSVVLGP
G4





26
IEAMG
AAITSGDSTNYADFVKG
CNALMVVRAGSNPEIGP
NG2





27
DYAIG
SCISSSDGSTYYADSVKG
CATPWVTYCPENLLFSY
G13-3#





28
LDAVG
ARIDRRGSTYYAVSVEG
CFAWQGAETH
G20





29
FNDMG
AAITSSRNTLYVDSVKG
CNPYPSPNNY
NG3





30
INAMG
AAITRSGKTNYADSVKG
CNGFYGSEFGP
NG4





31
RYAVG
ASITWSGDYTYYKDSVKG
CAADKSSFRLRGPGLYDY
NG5





32
YYAIG
SCISSRDGTTHYADSVKG
CATPWVTYCPENLLFSY
++





33
YYAIG
SAISNIDDDTYYEDSVKG
CAADKDVVVVRTGLSESDY
NG8





34
INAMA
AVITSGGRTMYAESVKG
CNGDWGSEGRVLGP
NG9





35
IGDME
ASISAGPEMRSAGTPTYAKSVEG
CNADVLTYYNGRYSRDVY
NG10





36
INMS
ATITRHDSTHYSDSVKG
CSGFFLDGSTWRPY
G12-1





37
GYAVA
AAISSSDNSSPYYANVVKG
CAARYGTKRYVAREYDS






38
INAMA
AYIRSSGTTMYADSVKG
CNGDYSPPGSTYPDLGP
NG11





39
DYAIG/
SCITSSDGSTYYADSVKG/
CATPWVN/
G15(bi)



YCPENLLFSY
AAIRWSDGVPHYTDSVKG
CASRGIADGSDFGSY






40
ATTMA
ALITSDWHTKYADSVKD
CYARQAFSEPR
G11





41
IDAMG
ARLGSNGFTQYDISVEG
CFAWLGQDTV
NG12





42
NYAMG
ASVTRSGDNTYYKDSAKG
CAADKSSFRLRGPGVYDY
NG14





43
VMLMG
ASITSADYTTYAESVEG
CKVIAATVWGQETQVRQGLF
NG13





44
ARSMT
AVIMGGGSTMYADSVKG
CNADWGEVGFPNLGP
G21





45
TYAIG
AAISRRGNKTDYAESVKG
CAASARNFIGTQPLDYDY
NG23





46
NYALG
AAIDWRHSSYYADSVKG
CAASSLFPSSAPRQYDY
NG15





47
NYAMG
AAIVGSGDSTRYADSVKG
CASSSDPRVYIASTLDY
NG16





48
MFIMG
AAISRNSNLTYYFQSVKG
CNADYGPPVSIGP
G23





49
IKAMG
AGIVSSGNTNYADFVKG
CNALVVVTSASGPELAS
NG17





50
TYFMA
CNADYSPPGSRFPDLGP
AGIVSSGNTNYADFVKG
G1-3





51
NYAIA
SSTGSDGNLYTPSVRG
CVAGKRPVITTWIALDA
NG18





52
IDSMR
AHITSTGRTNYADAVKG
CNMVTTPYMH
NG24





53
ENAMG
AAITSSRSTLYIDSVKG
CNPYPSPNSY
NG25





54
ANKMG
ARISTDGRTNYADSVKG
CNANWLDKYDY
NG19





55
ARSMT
AVITSGGSTMYADSVKG
CNADWGEVGFVNLGP
NG26






(G21-1)





56
FNGVA
AVIRSGGNTLYADSVKG
CNVDYSPPGSLVPDLGP
G18





57
INAMG
AAITRGGSTNYADSVKG
CNGLCSDDRCYGDSLFAP
G16





58
LDAVG
ARIDSRGSAYYADSVEG
CFAYYGAQISFGP
G24





59
LDAMG
AHIDDDRGTAYYADFVKG
CFAWQGAETY
G19





60
VNAVA
AYIRRSGSTNYADSVKG
CNAGRTGDRFNLVAY
G5-1





61
TYFMA
GGIRWSDGVPHYADSVKG
CNADYSPPGSRFPDLGP
G26





62
IKAMA
AYIRSGGTNYADSVKG
CASRGIADGSDFGS
G27





63
LYAMG
AYIRSGGTTNYADSVKG
CNADYSPPGSRFPDLGP
G1-2





64
TYAMG
AAISRRGNKTDYAESVKG
CAASARNFIGTQPLDYDY
G28





65
GYFMA
GGIRWSDGVPHYADSK
CASRGIADGSDFGS
G29





66
INAMG
AAITKSNNINYADSBKG
CNGFFTLPGYSSEEFGP
G2-1



















Annex 2











Clone


Sequence
Amino acid sequence
group





 67
EVQLQASGGGLAQAGGSLRLSCTASGRTFSTYFMAWFRQPPGKEREYVGGIRWSDGVPHYADS
G3



VKGRFTISRDNAKNTVYLQMNSLKSEDTAVYFCASRGIADGSDFGSYGQGTQVTVSS






 68
QVKLEESGGGLVQPGGSLRLSCAASGSIFSIKAMAWYRQAPGKQRELVAYIRSGGTTNYADSV
G1



KGRFTISRDIAKNTVYLQMNSLKPEDTAVYYCNADYSPPGSRFPDLGPWGQGTQVTVSS






 69
QVKLEESGGGLAQPGGSLRLSCAASGLVFSANTMAWYRRAPGKQRELVARISTDGRTNYADSV
NG7



KGRFTISRDNREKTVFLQMNRLNPDDTAVYYCNANWLSKFDYWGQGTQVTVSS






 70
DVQLQASGGGLVQAGGSLRLSCVASGSIFSVNAVAWYRQAPGKQRELVAYIRRSGSTNYADSV
G5



KGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNADFGSDYVVLGSWGQGTQVTVSS






 71
QVKLEESGGGLVQAGGSLRLSCAASGSIFSIKALAWYRQAPGKQRELVAYITSGGNTNYADSV
G9



RGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNADFGEGTIISLGPWGQGTQVTVSS






 72
EVQLVESGGGLVQPGGSLRLSCAASGSEFSINAMAWYRQAPGKQRELVAALTSGGNTHYADSV
G7



KGRFTISRDNAKNTWYLQMNSLKPEDTAVYYCNADFGTAGLVVLGPWGQGTQVTVSS






 73
EVQLQASGGGLVQPGGSLRLSCAASGSIFSINAMAWYRQAPGKQRELVAYIRSNGRTNYADSV
G6-2



KGRFTISRDNAKNTVYLQMNSLKLEDTAVYYCNADYGPPVSIGPWGQGTQVTVSS






 74
EVQLVESGGGLVQAGGSLRLSCVVSGSLLSIKAMAWFRQPPGKQRELVAAVTSGGSTHYLDSV
G10



KGRFTISRDNANTVHLQMNSLKPEDTAVYYCNADFGTDYVDLGPWGQGTGVTVSS






 75
DVQLQASGGGLVQPGGSLRLSCAVSGSIFSINAMGWYRQAPGKQRELVAAITKSNNINYADSV
G2



KGRFTISTDNAKNTVYLQMNSLKPEDTAVYYCNGFFALPGYSSEEFGPWGQGTQVTVSS






 76
EVQLVESGGGLVQPGGSLRLSCVASGNIFDMNRMGWYRQPPGKQRELVADIRDGGSTIYSDSV
G8



KGRFTISRDNAKNTLYLQMNSLKPDDTAVYYCNAGRTGDRFNLVAYWGQGTQVTVSS






 77
DVQLQASGGGLVQHGGSLRLSCEASGRTFSGYAMAWFRQAPGKEHEFVAAISSSSNSAPYYAN
G17



SVKGRFTISRDNAKMTVYLQMNNLQTEDTAVYYCAARYGTKRYVAREYDSWGQGTQVTVSS






 78
DVQLQASGGGVVQAGGSLRLSCTASGSIRSINGMGWSRVAPGKQRDFVARIDSRGSAYYADSV
G25



EGRFTISRDNAKNTVYLQVDTLKPEDTAVYYCFAWQGAETYWGLGTQVTVSS






 79
QVKLEESGGGLVQPGGSLRLSCAASGSIGDTYAMAWYRQAPGKQRDLVAYITNGGSTDYAASV
NG1



KGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNGATRGAQLVFDWGQGTQVTVSS






 80
QVKLEESGGGLVQHGGSLRLSCAASGGTFSNYAMAWFRQAPGKEREFVAAISVSANSAPYYAN
NG20



SVKGRFTISRDNAKNTVYLQMNSLKTEDTAVYYCAARYGTKRYVAREYDSWGQGTQVTVSS






 81
QVKLEESGGGLVQPGGSLRLSCAASGSSVSLNAMGWSRVQPGSTRDFVARIAADGSTHYADSV
NG21



EGRFTISGDAARNTVYLQMDSLKPEDTAVYYCFAWLGTDTYWGQGTQVTVSS






 82
DVQLQASGGGLVQAGGSLTLSCAASGSIGDNNAMGWSRTPPGKQREFVARIDSGGITRYADSL
G14



KGRFTVSRDTGKNTVSLQMNSLKAEDTGVYYCFAHVGGTIWGQGTQVTVSS






 83
QVQLVESGGGLVQPGGSLRLSCLPSGGIFTINSMGWYRQAPGKQRELVASITGGGSSRYADSV
NSG1



KGRFIMSRDNAKNMVYLQMNSLKPEDTAVYYCNTIPPARTQSDHGEWYDYWGQGTQVTVSS






 84
QVKLEESGGGLVQAGGSLRLSCAASSSIFSINMSWYRQAPGNERELVATITRHDSTHYSDSVK
G12



GRFTISRDDDKNTIYLQMNSLKPEDTAVYYCSGFFLDGSTWHPYWGQGTQVTVSS






 85
EVQLVESGGGLVQPGGSLRLSCAASGSIVSINAMAWYRQAPGKQRELVAYIRSNGSTNYADSV
G6



KGRFTISRDNAKNTVYLQMNSLKLEDTAVYYCNGFFTLPGYSSEEFGPWGQGTQVTVSS






 86
EVQLVESGGGLVQPGGSLRLSCAASESIFSINAMGWYRQAPGKQREYVAGITKGGRTNYADSV
G22#



KGRFTISRDDAKNTVYLQMNSLKPEDTAVYYCNGLCSGRECYGDSLFAAWGQGTQVTVSS






 87
EVQLVESGGGLVQPGGSLRLSCAASGSIVSINAMAWYRQAPGKQRELVAYIRSNGRTNYADSV
G6-1



KGRFTISRDNAKNTVYLQMNSLKLEDTAVYYCSGFFLDGSTWHPYWGQGTQVTVSS






 88
EVQLVESGGGLAQAGGSLRLSCAASGFTFDDYAIGWFRQAPGKEREGVSCISSSDGSTHYADS
G13#



VKGRFTISRDNARNTVTLQINSLKPEDTAVYYCATPWVTYCPENLLFSYWGQGTQVTVSS






 89
QVKLEESGGGLVQPGGSLRLSCAASGFTFDDYAIGWFRQAPGKEREGVSCITSSDGSTYYADS
G13-#



VKGRFTISRDNANNTVHLQISNLKPEDTAVYYCATPWVTYCPENLLFSYWGQGTQVTVSS






 90
EVQLVESGGGLVQAGGSLTLSCAVSGSSFSIKAMGWYRLAPGKQRELVAAITSGGSTNYADSV
G31



KGRFTISRDSAKNTVYLQMNSLKPEDTAVYYCNGFFEYRGLEQLGPWGQGTQVTVSS






 91
DVQLQASGGGLVQPGGSLRLSCAASGSIVGIRAMTWYRQAPGKQRELVAVLTSAGKPMYADSV
G4



KGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNADFGTPGSVVLGPWGQGTQVTVSS






 92
QVKLEESGGGLVQPGGSLRLSCAASGSILSIEAMGWYRQTLGKQRELVAAITSGDSTNYADFV
NG2



KGRFTISRDKAKNMVYLQMNSLKPEDTAVYFCNALMVVRAGSNPEIGPWGQGTQVTVSS






 93
QVKLEESGGGLVQPGGSLRLSCAASGFTFDDYAIGWFRQAPGKEREGVSCISSSDGSTYYADS
G13-#



VKGRFTISRDNANNTVHLQISNLKPEDTAVYFCNALMVVRAGSNPEIGPWGQGTQVTVSS






 94
EVQLVESGGGLVQPGGSLRLSCVVSARGVSLDAVGWSRVAPGKQRDFVARIDRRGSTYYAVSV
G20



EGRSTISRDNAKNTVYLQLDTLKPEDTAVYYCFAWQGAETHWGLGTQVTVSS






 95
QVKLEESGGGLVQAGGSLTLSCVASGSHFSFNDMGWYRQDPWKGRDLVAAITSSRNTLYVDSV
NG3



KGRFTISRDDAKNTVYLQMNNLKPEDTAVYYCNPYPSPNNYWGQGTQVTVSS






 96
QVKLEESGGGLVQPGGSLRLSCAASGSPFTINAMGWYRQAPGKQRELVAAITRSGKTNYADSV
NG4



KGRFTISGDNALTTVYLQMNNLQPEDTAVYYCNGFYGSEFGPWGQGTQVTVSS






 97
QVKLEESGGGLVQAGGSATLSCSAPGDTLSRYAVGWFRQGPGQERDFVASITWSGDYTYYKDS
NG5



VKGRFTISRDSVNNMVYLRMNSLKPEDTALYYCAADKSSFRLRGPGLYDYRGQGTQVTVSS






 98
QVKLEESGGGLVQPGGSLRLSCAASGFTFDYYAIGWFRQAPGKEREGVSCISSRDGTTHYADS
NG6#



VKGRFTISRDNAKNTVYLQIDSLKPEDTAVYYCATPWVTYCPENLLFSYWGQGTQVTVSS






 99
QVKLEESGGGFVQPGGSLRLSCAASGFSLHYYAIGWFRQAPGKEREWVSAISNIDDDTYYEDS
NG8



VKGRFTISRDNAKNTAYLQMNNLKPEDTAVYYCAADKDVVVVRTGLSESDYWGQGTQVTVSS






100
QVKLEESGGGLVQAGGSLRLSCAASGSIFGINAMAWYRQAPGKQRELVAVITSGGRTMYAESV
NG9



KGRFAISRDVAKNTVYLQMNSLKPEDTAVYYCNGDWGSEGRVDLGPWGQGTQVTVSS






101
QVKLEESGGGLVQPGGTLRLSCAASGSIRSIGDMEWYRQAPGQQRELVASISAGPEMRSAGTP
NG10



TYAKSVEGRFTISRDNIKNMMWLQMNSLRPEDTAVYSCNADVLTYYNGRYSRDVYWGQGTQVT




VSS






102
QVKLEESGGGLVQAGGSLRLSCAASSSIFSINMSWYRQAPGNERELVATITRHDSTHYSDSVK
G12-1



GRFAISRDDDKNTIYLQMNSLKPEDTAVYYCSGFFLDGSTWRPYWGQGTQVTVSS






103
DVQLQASGGGLVQPGGSLRLSCAASGRTLSGYAVAWFRQAPGKEREFVAAISSSDNSSPYYAN
G17-1



VVKGRFTISRDNAKNTVYLQMNSLQTEDTALYYCAARYGTKRYVAREYDSWGQGTQVTVSS






104
QVKLEESGGGLVQPGGSLRLSCAASRSIFSINAMAWYRQAPGKQRELVAYIRSSGTTMYADSV
NG11



KGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNGDYSPPGSTYPDLGPWGQGTQVTVSS






105
EVQLQASGGGLVQPGGSLRLSCAASGFTFDDYAIGWFRQAPGKEREGVSCITSSDFSTYYADS
G15(bi)



VKGRFTISRDNANNTVHLQISNLKPEDTAVYYCATPWVNYCPENLLFSYWGQGTQVTVSSQAQ




VQLVESGGGLAQAGGSLRLSCTASGRTFSTYFMAWFRQPPGKEREYVGGIRWSDGVPHYTDSV




KGRFTISRDNAKNTVYLQMNSLKSEDTABYFCASRGIADGSDFGSYGQGTQVTVSS






106
QVKLEESGGGLVQAGGSLRLSCGASGIIFSATTMAWYRQAPGKQRELVALITSDWHTKYADSV
G11



KDRFSISRDNAKSTVHLQMNSLRSEDTAVYFCYARQAFSEPRQGQGTQVTVSS






107
QVQLVDSGGGLVQPGGSLRLSCAASGSSGRIDAMGWSRVAPGKQRDFVARLGSNGFTQYDISV
NG12



EGRFTISGDVAKNTIYLQMDTLKPEDTAVYYCFAWLGQDTVWGQGTQVTVSS






108
QVQLVDSGGGLVKAGASLRLSCAASGDALFNYAMGWFRQGPGKERDFVASVTRSGDNTYYKDS
NG14



AKGRFTISRDDAKNTVYLQMNSLKPEDTAVYFCAADKSSFRLRGPGVYDYRGQGTQVTVSS






109
DVQLVDSGGGLVQAGGSLRLSCAVSGSDGRVMLMGWYRQAPGQQRDLVASITSADYTTYAESV
NG13



EGRFTISTDNNKNTVYLQMNSLKPEDTAVYFCKVIAATVWGQETQVRQGLTFWGQGTQVTVSS






110
EVQLVESGGGLVQPGGSLRLSCVASGSISSARSMTWYRQALGKQRELVAVIMGGGSTMYADSV
G21



KGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNADWGGVGFPNLGPWGQGTQVTVSS






111
DVQLQASGGGLVQIGDSVRLSCIASGGTFRTYAIGWFRQAPGAEREFVAAISRRGNKDYAESV
NG23



KGRFTVSRDNAENTVYLQMNSLKPDDMGVYYCAASARNFIGTQPLDYDYWGQGTQVTVSS






112
QVKLEESGGGLVQAGGSLRLSCAASGWNLGNYALGWFRQAPGKEREFVAAIDWRHSSYYADSV
NG15



KGRFTISRDNTKNMVYLQMSSLKLEDTRLYYCAASSLFPSSAPRQYDYWGQGTQVTVSS






113
DVQLVDSGGGLVQAGGSLRLSCVASGRTFSNYAMGWYRRRPGLEREFVAAIVGSGDSTRYADS
NG16



VKGRFTISRDNAKNTVYLQMNTLKPEDTAVYYCASSSDPRVYIASTLDYWGQGTQVTVSS






114
QVQLVESGGGLVQAGGSLRLSCAASGRTFSMFIMGWFRQAPGKERELVAAISRNSNLTYYFQS
G23



VKGRFTISRDNAKNTVYLQMNSLKLEDTAVYYCNADYGPPVSIGPWGQGTQVTVSS






115
QVKLEESGGGWVQPGGSLRLSCVVSGRILSIKAMGWYRQAPGKQREYVAGIVSSGNTNYADFV
NG17



KGRFTISGDNAKNTVFLQMNSLKPEDTAVYYCNALVVVTSASGPELASWGQGTQVTVSS






116
DVQLVDSGGGLAQAGGSLRLSCTASGRTFSTYFMAWFRQPPGKQRELVAYIRSGGTTNYADSV
G1-3



KGRFTISRDIAKNTVYLQMNSLKPEDTAVYYCNADYSPPGSRFPDLGPWGQGTQVTVSS






117
QVKLEESGGGLVQPGGSLTLSCAASGFTLDNYAIAWFRQAPGREREWVSSTGSDGNLYTPSVR
NG18



GRFTISRDNAKNTVYLQMNSLKPEDTAVYYCVAGKRPVITTWIALDAWGQGTQVTVSS






118
DVQLVDSGGGLVQAGGSLRLSCAASGTFSSIDSMRWFRRAPGKEREFVAHITSTGRTNYADAV
NG24



KGRFTISRDNAKNTMWLQMDNLKPDDTAVYYCNMVTTPYMHWGQGTQVTVSS






119
QVKLEESGGGLVQAGGSLKLSCVASGSRFSENAMGQYHQAPDKQRTLVAAITSSRSTLYIDSV
NG25



KGRFTISRDNAKNTVYLQMSNLKPEDTGVYYCNPYPSPNSYWGQGTQVTVSS






120
QVKLEESGGGLVQPGGSLRLSCAASGLVFSANKMGWYRQAPGKQRELVARISTDGRTNYADSV
NG19



KGRFTISRDNAEKTVFLQMNSLNPDDTAVYYCNANWLDKYDYWGQGTQVTVSS






121
QVKLEESGGGLVEPGGSLRLSCVASGSISSARSMTWYRQAHGKQRELVAVITSGGSTMYADSV
NG26



KGRFTISRDSAKNTVYLQMNSLKPEDTAVYYCNADWGEVGFVNLGPWGQGTQVTVSS
(G21-1)





122
EVQLVESGGGLVQPGGSLRLSCAASGSIFGFNGVAWFRQAPGKGRELVAVIRSGGNTYADSVK
G18



GRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVDYSPPGSLVPDLGPWGQGTQVTVSS






123
EVQLEESGGGLVQPGGSLRLSCAASGSTASINAMGWYRQAPGKQRELVAAITRGGSTNYADSV
G16#



KGRFTISRDNAKNTVYLQMNSLKPEDTAVYSCNGLCSDDRCYGDSLFAPWGPGTQVTVSS






124
EVQLVESGGGLVQPGGSLRLSCLVSGRGVSLDAVGWSRVAPGKQRDFVARIDSRGSAYYADSV
G24



EGRFTISRDNAKNTVYLQVDTLKPEDTAVYYCFAYYGAQISFGPWGQGTQVTVSS






125
DVQLQASGGGLVQPGGSLRLSCVVSGRGVNLDAMGWSRVAPGKQRDFVAHIDDRGTAYYADFV
G19



KGRSTISRDNAKNTVYLQVDTLKPEDTAVYYCFAWQGAETYWGLGTRVTVSS






126
EVQLVESGGGLVQAGGSLRLSCVASGSIFSVNAVAWYRQAPGKQRELVAYIRRSGSTNYADSV
G5-1



KGRFTISRDNAKNTLYLQMNSLKPDDTAVYYCNAGRTGDRFNLVAYWGQGTQVTVSS






127
EVQLVESGGGLAQAGGSLRLSCTASGRTFSTYFMAWFRQPPGKEREYVGGIRWSDGVPHYADS
G26



VKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNADYSPPGSRFPDLGPWGQGTQVTVSS






128
EVQLQASGGGLVQPGGSLRLSCVASGSIFSIKAMAWYRQAPGKQRELVAYIRSGGTTNYADSV
G27



KGRFTISRDIAKNTVYLQMNSLKSEDTAVYFCASRGIADGSDFGSYGQGTQVTVSS






129
EVQLVESGGGLVQAGASVRLSCAASGRANSLYAMGWFRQAPGKQRELVAYIRSGGTTNYADSV
G1-2



KGRFTISRDIAKNTVYLQMNSLKPEDTAVYYCNADYSPPGSRFPDLGPWGQGTQVTVSS






130
EVQLVESGGGLVQIGDSVRLSCIASGGTFRTYAMGWFRQAPGAEREFVAAISRRGNKTDYAES
G28



VKGRFTVSRDNAENTVYLQMNSLKPDDMGVYYCAASARNFIGTQPLDYDYWGQGTQVTVSS






131
QVKLEESGGGMVQAGGSLRLSCVASGRSFVGYFMAWFRQPPGKEREYVGGIRWSDGVPHYADS
G29



VKGRFTISRDNAKNTVYLQMNSLKSEDTAVYFCASRGIADGSDFGSYGQGTQVTVSS






132
QVKLVESGGGLVQPGGSLRLSCAASGSIFSINAMGWYRQAPGKQRELVAAITKSNNINYADSV
G2-1



KGRFTISRDNAKNTVYLWMNSLKPEDTAVYYCNGFFTLPGYSSEEFGPWGQGTQVTVSS



















Annex 3











Clone


Sequence
Nucleotide acid sequence
group





133
GAGGTACAGCTGGTGGAATCTGGGGGAGGATTGGCGCAGGCTGGGGGCTCTCTGAGACTCTCC
G3



TGTACAGCCTCTGGACGCACCTTCAGTACCTATTTCATGGCCTGGTTCCGCCAGCCTCCAGGG




AAAGAGCGTGAATACGTAGGCGGTATTAGGTGGAGTGATGGTGTTCCACACTATGCAGACTCC




GTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATTTGCAAATGAAC




AGCCTGAAATCTGAGGACACGGCCGTTTATTTTTGTGCATCACGGGGTATTGCGGATGGATCT




GACTTTGGTTCCTACGGCCAGGGGACCCAGGTCACCGTCTCCTCA






134
GAGGTACAGCTGGTGGAATCTGGGGGAGGATTGGCGCAGGCTGGGGGCTCTCTGAGACTCTCC
G1



TGTACAGCCTCTGGACGCACCTTCAGTACCTATTTCATGGCCTGGTTCCGCCAGCCTCCAGGG




AAAGAGCGTGAATACGTAGGCGGTATTAGGTGGAGTGATGGTGTTCCACACTATGCAGACTCC




GTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATTTGCAAATGAAC




AGCCTGAAATCTGAGGACACGGCCGTTTATTTTTGTGCATCAGGGGGTATTGCGGATGGATCT




GACTTTGGTTCCTACGGCCAGGGGACCCAGGTCACCGTCTCCTCA






135
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTAAGACTCTCC
NG7



TGTGCAGCCTCTGGACTCGTCTTCAGTGCCAATACCATGGCCTGGTACCGCCGGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCACGTATTAGCACTGACGGACGTACAAACTACGCGGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACCGCGAGAAGACGGTGTTTCTGCAAATGAACAGG




CTGAACCCTGACGACACGGCCGTCTATTACTGTAATGCAAACTGGCTCAGTAAATTTGACTAC




TGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






136
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGAGACTCTCC
G5



TGTGTAGCCTCTGGAAGCATCTTCAGTGTCAATGCCGTGGCCTGGTACCGCCAGGCTCCAGGG




AAACAGCGCGAGTTGGTCGCATATATACGTCGTAGTGGTAGCACAAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATCTGCAAATGAACAGC




CTGAAACCTGAGGACACAGCCGTCTATTACTGTAATGCAGATTTCGGTAGCGACTATGTCGTC




CTCGGTTCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






137
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGAGACTCTCC
G9



TGTGCAGCCTCTGGAAGCATCTTCAGTATCAAAGCCTTGGCCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCATATATTACTAGTGGTGGTAACACAAACTATGCAGACTCCGTG




AGGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTATATCTGCAAATGAACAGC




CTGAAACCTGAGGACACAGCCGTCTATTACTGTAATGCAGATTTCGGAGAAGGGACTATCATA




TCCCTTGGACCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






138
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G7



TGTGCAGCCTCTGGAAGCGAATTCAGTATCAATGCCATGGCGTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCAGCACTTACTAGTGGTGGTAACACTCACTATGCGGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGTGGTATCTGCAAATGAACAGC




CTGAAACCTGAGGACACGGCCGTCTATTACTGTAATGCAGATTTCGGAACTGCGGGTTTGGTA




GTGCTGGGTCCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






139
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G6-2



TGTGCAGCCTCTGGAAGCATCGTCAGTATCAATGCCATGGCCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCATATATTCGTAGTAATGGCCGCACAAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATTTCCAGAGACAACGCCAAGAACACGGTGTATCTGCAAATGAACAGC




CTGAAACTTGAGGACACGGCCGTCTATTACTGTAATGCAGACTACGGGCCTCCAGTATCCATT




GGTCCTTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






140
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGAGACTCTCC
G10



TGTGTAGTCTCTGGAAGTCTCCTCAGTATCAAAGCCATGGCCTGGTTCCGCCAGCCTCCAGGG




AAGCAGCGCGAGTTGGTCGCAGCTGTTACTAGTGGTGGAAGCACACACTATTTAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCAACACGGTGCATCTGCAAATGAACAGCCTG




AAACCTGAGGACACAGCTGTCTATTACTGTAATGCAGATTTCGGTACTGACTATGTCGACTTA




GGGCCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






141
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G2



TGTGCAGTCTCTGGAAGCATCTTCAGTATCAATGCCATGGGCTGGTACCGCCAGGCTCCAGGG




AAACAGCGCGAGTTGGTCGCAGCTATTACTAAAAGTAATAACATAAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCACAGACAACGCCAAGAACACGGTGTATCTGCAAATGAACAGC




CTGAAACCTGAGGACACGGCCGTCTATTACTGTAATGGATTCTTCGCTTTGCCTGGGTACAGT




AGTGAAGAATTTGGTCCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






142
GAGGTACAGCTGGTGGAATCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G8



TGTGTAGCCTCTGGAAACATCTTCGATATGAATCGGATGGGCTGGTACCGCCAGCCTCCAGGG




AAGCAGCGCGAGTTGGTCGCAGATATTCGTGATGGCGGTTCTACAATTTATTCAGATTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGCTGTATCTGCAAATGAACAGC




CTGAAACCTGACGACACAGCCGTGTATTATTGTAATGCGGGGCGGACAGGGGATCGTTTTAAT




TTGGTGGCGTATTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






143
GATGTGCAGCTGCAGGCGTCTGGGGGAGGCTTGGTGCAGCACGGGGGCTCTCTGAGACTCTCC
G17



TGTGAAGCCTCTGGACGCACCTTCAGTGGCTATGCCATGGCCTGGTTCCGCCAGGCTCCAGGA




AAGGAACATGAATTTGTAGCAGCTATTAGCTCAAGTAGTAATAGTGCCCCATACTATGCAAAT




TCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTTTATCTACAAATG




AACAACCTACAAACTGAGGACACGGCCGTTTATTACTGTGCAGCCCGGTACGGTACGAAACGG




TACGTCGCCCGGGAGTATGACTCGTGGGGCCAAGGGACCCAGGTCACCGTCTCCTCA






144
GATGTGCAGCTGCAGGCGTCTGGGGGAGGCGTCGTGCAGGCTGGGGGGTCTCTGAGACTCTCC
G25



TGTACAGCCTCTGGAAGCATCCGCAGTATCAATGGCATGGGCTGGTCGCGCGTGGCTCCAGGG




AAGCAGCGCGACTTCGTCGCACGTATTGATAGTAGGGGTAGCGCATACTATGCAGACTCCGTA




GAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATCTGCAAGTGGACACG




CTGAAACCTGAGGACACGGCCGTCTATTATTGCTTTGCGTGGCAGGGTCCGGAAACATATTGG




GGCCTGGGCACCCAGGTCACCGTCTCCTCA






145
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGCGACTCTCC
NG1



TGTGCAGCCTCTGGAAGCATCGGCGATACCTATGCCATGGCCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGACTTGGTCGCATATATTACTAATGGTGGTAGCACGGACTACGCAGCCTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTCTATCTGCAAATGAACAGC




CTGAAACCTGAGGACACGGCCGTCTACTACTGTAATGGAGCTACCCGTCGTGCACAGTTAGTC




TTCGACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






146
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGATTGGTGCAGCACGGGGGCTCTCTGAGACTCTCC
NG20



TGTGCAGCCTCTGGAGCCACCTTCAGTAACTATCCCATGGCCTGGTTCCGCCAGCCTCCAGGA




AAGGAGCGTGAATTTGTAGCAGCTATTAGCGTGAGTGCTAATAGTGCCCCATACTATGCAAAT




TCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTTTATCTGCAAATG




AACAGCCTAAAAACTGAGGACACGGCCGTTTATTACTGTGCAGCCCGGTACGGTACGAAACGA




TACGTCGCCCGGGAGTATGACTCGTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






147
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGCGACTCTCC
NG21



TGCGCAGCCTCTGGAAGTAGCGTCAGTCTCAATGCCATGGGCTGGTCGCGCGTGCAACCAGGA




AGTACGCGCGACTTCGTCGCACGGATTGCTGCCGATGGTAGCACTCACTATGCAGACTCCGTG




AGGGCCGGTTCACCATCTCCGGGGACGCCGCCAGGAACACGGTGTATCTACAAATGGATTCGC




TGAAACCCGAAGACACGGCCGTCTATTACTGTTTTGCGTGGCTGGGTACGGACACGTACTGGG




GCCAGGGGACCCAGGTCACCGTCTCCTCA






148
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGACACTCTCC
G14



TGTGCAGCCTCTGGAAGCATCGGCGATAACAATGCCATGGGCTGGTCCCGCACGCCTCCAGGG




AAGCAGCGCGAGTTCGTCGCACGTATAGATAGTGGGGGGATCACACGCTATGCAGACTCCCTG




AAGGGCCGATTCACTGTCTCCAGAGACACCGGCAAGAACACGGTGTCTCTGCAAATGAACAGC




CTGAAAGCTGAGGACACAGGCGTCTATTACTGTTTTGCACATGTCGGTGGTACTATCTGGGGC




CAGGGGACCCAGGTCACCGTCTCCTCA






149
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
NGS1



TGTTTACCCTCTGGAGGCATCTTCACTATCAATAGCATGGGCTGGTATCGGCAGGCTCCAGGG




AAACAGCGCGAGTTGGTCGCAAGTATCACTGGTGGTGGTAGTTCACGTTATGCAGACTCCGTG




AAGGGCCGATTCATCATGTCCAGAGACAACGCCAAGAACATGGTGTATCTGCAAATGAACAGC




CTGAAACCTGAGGACACGGCCGTCTATTACTGTAATACAATCCCCCCGGCCCGGACCCAAAGC




GATCATGGGGAGTGGTATFACTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






150
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGGCTGGAGGGTCTCTGAGACTCTCC
G12



TGCGCAGCCTCTAGCAGCATCTTCAGTATCAATATGAGCTGGTACCGCCAGGCTCCAGGGAAC




GAGCGCGAGTTGGTCGCAACTATTACACGGCATGATAGCACACACTATTCAGACTCCGTGAAC




GGCCGATTCACCATCTCCAGAGACGACGACAAGAACACGATATATCTGCAAATGAACAGCCTG




AAACCTGAGGACACGGCCGTCTATTACTGTTCTGGGTTTTTTCTGGACGGTAGTACCTGGCAC




CCATATTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






151
GAGGTACAGCTGGTGGAATCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G6



TGTGCAGCCTCTGGAAGCATCGTCAGTATCAATGCCATGGCCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCATATATTCGTAGTAATGGCAGCACAAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATTTCCAGAGACAACGCCAAGAACACGGTCTACCTGCAAATGAACAGC




CTGAAACTTGAGGACACGGCCGTCTATTATTGTAATGGATTCTTCACTTTGCCTGGCTACAGT




AGTGAAGAATTTGGTCCCTGGGGCCAGGCGACCCAGGTCACCGTCTCCTCA






152
GAGGTACAGCTGGTGGAATCTGGGGGAGGCTTGGTGCAGCCTGGAGGGTCTCTGAGACTCTCC
G22#



TGTGCAGCCTCTGAGAGCATCTTCAGTATCAACCCCATGGGCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTATGTCGCAGGCATTACTAAGGGTGGGCGTACAAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACGACGCCAAGAATACGGTGTATCTGCAAATGAACAGC




CTGAAACCTGAAGACACGGCCGTCTATTACTGTAATGGTTTGTGCTCAGGCAGAGAGTGTTAT




GGGGACTCCCTTTTTGCCGCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCAGGATCCGAA




CAAAAACTGATCAGCGAAGAAGATCTGAACCATCACCATCACCATTAGTGA






153
GAGGTACAGCTGGTGGAATCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G6-1



TGTGCAGCCTCTGGAAGCATCGTCAGTATCAATGCCATGGCCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCATATATTCGTAGTAATGGCCGCACAAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATTTCCAGAGACAACGCCAAGAACACGGTGTATCTGCAAATGAACAGC




CTGAAACTTGAGGACACGGCCGTCTATTACTGTTCTGGGTTTTTTCTGGACGGTAGTACCTGG




CACCCATATTGGGGCCAGGGCACCCAGGTCACCGTCTCCTCA






154
GAGGTACAGCTGGTGGAATCTGGGGGAGGATTGGCGCAGGCTGGGGGCTCTCTGAGACTCTCC
G13#



TGTGCAGCCTCTGGATTCACTTTCGATGATTATGCCATAGGCTGGTTCCGCCAGGCCCCAGGG




AAGGAGCGTGAGGGGGTCTCATGTATTAGTAGTAGTGATGGTAGCACACACTATGCAGACTCC




GTGAAGGGCCGATTCACCATCTCCAGAGACAATGCCAGGAACACGGTGACTCTGCAAATAAAC




AGCCTGAAACCTGAGGATACGGCCGTTTATTACTGTGCGACCCCCTGGGTGACCTATTGCCCC




GAGAACCTTCTGTTTAGTTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






155
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G13-2#



TGTGCAGCCTCTGGATTCACTTTCGATGATTATGCCATAGGCTGGTTCCGCCAGGCCCCAGGG




AAGGAGCGCGAGGGGGTCTCATGTATTACGAGTAGTGATGGTAGCACATACTATGCAGACTCT




GTGAAGGGCCGATTCACCATCTCCAGAGACAATGCCAACAACACGGTGCATCTGCAAATAAGC




AACCTAAAACCTGAGGATACGGCCGTTTATTACTGTGCGACCCCCTGGGTGACCTACTGCCCC




GAGAACCTTCTGTTTAGTTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






156
GAGGTACAGCTGGTGGAATCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGACACTCTCC
G31



TGTGCAGTCTCTGGAAGCAGCTTCAGTATCAAGGCCATGGGCTGGTACCGCCTGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCAGCAATTACTAGTGGTGGTAGCACGAACTATGCGGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAGCGCCAAGAACACGGTGTATCTGCAAATGAACAGC




CTGAAACCTGAGGACACAGCCGTCTATTACTGTAATGGTTTTTTCGAGTATAGGGGTCTTGAA




CAATTGGGCCCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






157
GATGTGCAGCTGCAGGCGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G4



TGTGCAGCCTCTGGAAGCATCGTCGGTATCCGTGCCATGACGTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCAGTTCTTACTAGTGCTGGTAAACCTATGTATGCCGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTATATCTGCAAATGAACAGC




CTGAAACCTGAGGACACGGCCGTCTATTACTGTAACGCAGATTTCGGGACTCCGGGTTCAGTA




GTACTGGGTCCTTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






158
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
NG2



TGTGCAGCCTCTGGAAGCATCCTCAGTATCGAGGCCATGGGCTGGTACCGCCAGACTCTTGGG




AAGCAGCGCGAATTGGTCGCAGCTATTACTAGTGGTGATAGCACAAACTATGCAGACTTCGTG




AAGGGCCGATTCACCATCTCCAGAGACAAGGCCAAGAACATGGTGTATCTGCAAATGAACAGC




CTGAAACCTGAGGACACGGCCGTCTATTTCTGTAATGCCCTAATGGTAGTTAGGGCTGGCTCG




AATCCCGAAATTGGTCCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






159
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGAGACTCTCC
G13-3#



TGTGCAGCCTCTGGATTCACTTTCGATGATTATGCCATAGGCTGGTTCCGCCAGGCCCCAGGG




AAGGAGCGTGAGGGGGTCTCATGTATTAGTAGTAGTGATGGTAGCACATACTATGCAGACTCC




GTGAAGGGCCGATTCACCATCTCCAGAGACAATGCCAAGAACACGGTGTATCTGCAAATAAAC




AGCCTGAAACCTGAGGATACGGCCGTTTATTACTGTGCGACCCCCTGGGTGACCTACTGCCCC




GAGAACCTTCTGTTTAGTTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






160
GAGGTACAGCTGGTGGAATCTGGGGGAGGATTGGTGCAGCCTGGGGGGTCTCTGAGACTGTCC
G20



TGTGTAGTCTCTGCAAGGGGCGTCAGTCTCGATGCCGTGGGCTGGTCGCGCGTGGCTCCAGGG




AAGCAGCGCGACTTCGTCGCACGTATTGATCGAAGGGGTAGTACATACTATGCAGTGTCCGTA




GAGGGCCGATCCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATCTGCAACTGGACACG




CTGAAACCTGAGGACACGGCCGTCTATTATTGTTTTGCATGGCAGGGTGCGGAAACACATTGG




GGCCTGGGGACCCAGGTCACCGTCTCCTCA






161
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGACCCTCTCC
NG3



TGTGTAGCCTCTGGAAGCCACTTCAGTTTCAATGACATGGGCTGGTATCGCCAGGATCCGTGG




AAGGGGCGCGACTTGGTCGCGGCTATTACTAGTAGTCGTAACACACTTTATGTAGACTCCGTG




AAGGGCCGGTTCACCATCTCCAGAGACGACGCCAAGAACACGGTGTATCTACAAATGAACAAC




CTGAAACCTGAGGACACAGCCGTCTATTACTGTAACCCGTACCCTTCCCCAAATAACTACTGG




GGCCAGGGGACCCAGGTCACCGTCTCCTCA






162
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
NG4



TGTGCAGCCTCTGGAAGCCCCTTCACGATCAATGCCATGGGCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCAGCAATTACTCGTAGTGGTAAGACGAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCGGAGACAACGCCCTGACCACGGTGTATCTGCAAATGAACAAC




CTGCAACCTGAAGACACGGCCGTCTATTACTGTAATGGGTTCTACGGGTCTGAATTTGGGCCC




TGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






163
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGATTGGTCCAGGCTGGGGGCTCTGCGACGCTCTCC
NG5



TGTTCAGCCCCTGGAGACACCTTAAGTAGATACGCCGTGGGCTGGTTCCGCCAGGGGCCAGGG




CAGGAGCGTGATTTTGTAGCATCCATTACCTGGAGTGGTGATTACACATACTATAAAGACTCC




GTGAAGGGCCGATTCACCATCTCCAGAGACAGTGTCAACAACATGGTGTATCTGCGAATGAAC




AGCCTGAAACCTGAGGACACGGCCCTGTATTACTGTGCAGCCGATAAGAGTTCCTTTAGACTC




CGAGGCCCTGGATTATATGACTACAGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






164
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
NG6#



TGTGCAGCCTCTGGATTCACTTTCGATTATTATGCCATAGGCTGGTTCCGCCAGGCCCCAGGG




AAGGAGCGCGAGGGGGTCTCATGTATTAGTAGTAGGGATGGTACCACCCACTATGCAGACTCC




GTGAAGGGCCGATTCACCATCTCCAGAGACAATGCCAAGAACACGGTGTATCTGCAAATAGAC




AGCCTGAAACCTGAGGATACGGCCGTTTATTACTGTGCGACCCCCTGGGTGACCTACTGCCCC




GAGAACCTTCTGTTTAGTTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






165
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTCGTACAGCCTGGGGGGTCACTGAGACTCTCC
NG8



TGTGCAGCCTCGGGATTCAGTTTGCATTATTATGCCATAGGCTGGTTCCGCCAGGCCCCAGGG




AAGGAGCGCGAGTGGGTCTCTGCCATTAGTAATATTGATGATGACACATACTATGAAGACTCC




GTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGCGTATCTGCAAATGAAC




AACCTGAAACCTGAGGACACGGCCGTTTATTACTGTGCAGCAGATAAGGATGTAGTGGTAGTG




CGTACGGGTCTCAGCGAGTCTGACTATTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






166
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGAGACTCTCC
NG9



TGTGCAGCCTCTGGAAGCATCTTCGGTATCAATGCCATGGCCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAACTGGTCGCAGTTATTACCAGTGGTGGACGCACAATGTATGCAGAGTCCGTG




AAGGGCCGATTCGCCATCTCCAGAGACGTCGCCAAGAACACGGTGTATCTGCAAATGAACAGC




CTGAAACCTGAAGACACAGCCGTCTATTACTGTAATGGAGACTGGGGGTCGGAGGGTAGGGTG




GACCTTGGACCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






167
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGACGCTGAGACTCTCC
NG10



TGTGCCGCCTCGGGAAGCATTCGCAGTATCGGCGACATGGAGTGGTACCGCCAGGCTCCAGGA




CAGCAGCGCGAGTTGGTCGCAAGTATTAGTGCTGGCCCTGAGATGCGTAGTGCTGGTACCCCA




ACTATGCAAAGTCCGTGGAAGGGCCGATTCACCATCTCCAGAGACAACATCAAGAACATGATG




TGGCTGCAAATGAACAGCCTGAGACCTGAAGACACGGCCGTCTATTCCTGTAATGCCGACGTT




CTGACGTACTATAATGGTAGATACTCCCGAGATGTCTACTGGGGCCAGGGGACCCAGGTCACC




GTCTCCTCA






168
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGAGACTCTCC
G12-1



TGCGCAGCCTCTAGCAGCATCTTCAGTATCAATATGAGCTGGTACCGCCAGGCTCCAGGGAAC




GAGCGCGAGTTGGTCGCAACTATTACACGACATGATAGTACACACTATTCAGACTCCGTGAAG




GGCCGATTCGCCATCTCCAGAGACGACGACAAGAACACGATATATCTGCAAATGAACAGCCTG




AAACCTGAGGACACGGCCGTCTATTACTGTTCTGGATTTTTTCTGGACGGTAGTACCTGGCGG




CCATATTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






169
GATGTGCAGCTGCAGGCGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G17-1



TGTGCAGCCTCTGGACGCACCCTCAGTGGCTATGCCGTGGCCTGGTTCCGCCAGGCTCCAGGA




AAGGAGCGTGAGTTTGTAGCAGCCATTAGCTCGAGTGATAATAGTAGCCCATATTATGCAAAT




GTCGTGAAGGGTCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTTTATCTGCAAATG




AACAGCCTGCAAACTGAGGACACGGCCCTTTATTACTGTGCAGCCCGGTACGGTACGAAACGG




TACGTCGCCCGGGAGTATGACTCGTGGGGTCAGGGGACCCAGGTCACCGTCTCCTCA






170
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
NG11



TGTGCAGCCTCTAGAAGCATCTTCAGTATCAATGCCATGGCCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCATATATTCGTAGTAGTGGTACCACAATGTATGCGGATTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATCTGCAAATGAACAGC




CTGAAACCTGAGGACACGGCCGTCTATTATTGTAACGGAGATTACTCCCCGCCCGGCAGCACG




TACCCTGACTTAGGTCCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






171
GAGGTGCAGCTGCAGGCGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G15(bi)



TGTGCAGCCTCTGGATTCACTTTCGATGATTATGCCATAGGCTGGTTCCGCCAGGCCCCAGGG




AAGGAGCGCGAGGGGGTCTCATGTATTACGAGTAGTGATGGTAGCACATACTATGCAGACTCT




GTGAAGGGCCGATTCACCATCTCTAGAGACAATGCCAACAACACGGTGCATCTGCAAATAAGC




AACCTAAAACCTGAGGATACGGCCGTTTATTACTGTGCGACCCCCTGGGTGAACTACTGCCCC




GAGAACCTTCTGTTTAGTTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCACAGGCCCAG




GTACAGCTGGTGGAATCTGGGGGAGGATTGGCGCAGGCTGGGGGCTCTCTGAGACTCTCCTGT




ACAGCCTCTGGACGCACCTTCAGTACCTATTTCATGGCCTGGTTCCGCCAGCCTCCAGGGAAA




GAGCGTGAATACGTAGGCGGTATTAGGTGGAGTGATGGTGTTCCACACTATACAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATTTGCAAATGAACAGC




CTGAAATCTGAGGACACGGCCGTTTATTTTTGTGCATCACGGGGTATTGCGGATGGATCTGAC




TTTGGTTCCTACGGCCAGGGGACCCAGGTCACCGTCTCCTCAGGATCCGAACAAAAACTGATC




AGCGAAGAAGATCTGAACCATCACCATCACCATTAGTGA






172
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGAGACTCTCC
G11



TGTGGAGCATCTGGAATTATTTTTAGTGCCACTACCATGGCCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCACTGATTACTAGTGATTGGCACACAAAGTATGCAGACTCCGTG




AAGGACCGATTCTCCATTTCCAGAGACAACGCCAAGAGCACGGTGCACCTGCAAATGAACAGC




CTGAGATCTGAAGACACAGCAGTCTATTTTTGTTATGCCCGCCAAGCCTTCAGTGAGCCTCGT




TGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






173
CAGGTACAGCTGGTGGATTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGATTGTCC
NG12



TGTGCAGCCTCTGGAAGCAGCGGCAGAATCGATGCCATGGGCTGGTCGCGCGTGGCTCCAGGG




AAGCAGCGCGACTTCGTCGCACGTCTTGGCAGTAATGGATTCACACAGTATGACATCTCCGTG




GAGGGCCGATTCACCATCTCCGGGGACGTCGCCAAGAATACGATATATCTGCAAATGGACACG




CTGAAACCTGAGGACACGGCCGTCTATTACTGTTTTGCGTGGCTGGGGCAAGATACCGTGTGG




GGCCAGGGGACCCAGGTCACCGTCTCCTCA






174
CAGGTACAGCTGGTGGATTCTGGGGGAGGATTGGTAAAGGCTGGGGCATCTCTGAGACTCTCC
NG14



TGTGCAGCCTCTGGAGACGCCTTATTTAACTACGCCATGGGCTGGTTTCGCCAGGGGCCAGGG




AAGGAGCGTGACTTTGTAGCATCTGTTACCAGGAGTGGTGATAATACATACTATAAAGACTCC




GCGAAGGGCCGATTCACCATCTCCAGAGACGACGCCAAGAACACGGTATATCTGCAAATGAAC




AGCCTGAAACCTGAGGACACGGCCGTTTATTTCTGTGCAGCAGATAAGAGTTCCTTTAGGCTC




CGAGGCCCTGGAGTATAFGACTACAGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






175
CAGGTACAGCTGGTGGATTCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGAGACTCTCC
NG13



TGTGCAGTCTCTGGAAGCGACGGCCGAGTCATGCTCATGGGCTGGTACCGCCAGGCTCCAGGG




CAGCAGCGCGACCTGGTCGCATCTATTACTAGTGCAGATTACACAACCTATGCAGAATCCGTC




GAGGGCCGATTCACCATCTCCACAGACAACAACAAGAACACAGTGTATCTACAAATGAACAGC




CTGAAGCCTGAAGACACAGCCGTCTATTTTTGTAAAGTAATTGCGGCGACGGTCTGGGGCCAG




GAGACCCAGGTCAGGCAGGGTTTGACATTCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






176
GAGGTACAGCTGGTGGAATCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G21



TGTGTAGCCTCTGGAAGCATCTCCAGTGCCAGATCCATGACCTGGTACCGCCAGGCTCTAGGG




AAGCAGCGCGAGTTGGTCGCAGTGATTATGGGTGGCGGTAGCACGATGTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATCTACAAATGAACAGC




CTGAAACCTGAGGACACGGCCGTCTATTATTGTAATGCAGACTGGGGGGGAGTCGGGTTTCCG




AACTTAGGTCCCTCCCGCCACCGCACCCAGGTCACCGTCTCCTCA






177
GATGTGCAGCTGCAGGCGTCTGGGGGAGGATTGGTGCAAATTGGGGACTCTGTGAGACTCTCC
NG23



TGTATAGCCTCTGGAGGCACCTTCAGAACTTATGCTATCGGTTGGTTCCGCCAGGCTCCAGGG




GCTGAGCGTGAATTTGTAGCTGCCATTAGCCGGCGCGGTAATAAGACAGATTATGCAGAGTCC




GTGAAGGGCCGATTCACAGTCTCCAGAGACAACGCCGAGAATACGGTGTATTTGCAAATGAAC




AGCCTGAAACCTGATGACATGGGCGTTTATTACTGTGCAGCGTCGGCGCGTAATTTCATCGGC




ACCCAGCCACTTGATTATGACTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






178
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGATTGGTACAGGCTGGGGGCTCTCTGAGACTCTCC
NG15



TGTGCAGCCTCTGGATGGAACCTTGGTAATTATGCCTTGGGCTGGTTCCGCCAGGCTCCAGGG




AAGGAGCGTGAGTTTGTAGCAGCTATCGACTGGCGTCATAGTTCATACTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACACCAAGAACATGGTGTATCTGCAAATGAGCAGC




CTGAAACTTGAGGACACGCGCCTTTATTACTGTGCAGCATCAAGCCTATTCCCTAGTAGTGCT




CCCCGTCAGTATGACTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






179
CAGGTACAGCTGGTGGATTCTGGGGGAGGATTGGTGCAGGCTGGGGGCTCTCTGAGACTCTCC
NG16



TGTGTAGCCTCTGGACGCACCTTCAGTAATTATFCCATGGGCTGGTACCGCCGACGTCCAGGG




CTGGAGCGTGAATTTGTAGCAGCTATTGTTGGGAGTGGTGATAGCACAAGGTATGCAGACTCC




GTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATCTGCAAATGAAC




ACGCTGAAACCTGAGGACACGGCCGTTTATTACTGTGCGTCATCCTCCGACCCGCGGGTTTAT




ATAGCAAGTACTCTCGATTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






180
CAGGTACAGCTGGTGGAATCTGGGGGAGGATTGGTGCAGGCTGGGGGCTCTCTGAGACTCTCC
G23



TGTGCAGCCTCTGGACGCACCTTCAGTATGTTTATCATGGGCTGGTTCCGCCAGGCTCCAGGG




AAGGAGCGTGAATTAGTAGCAGCTATTAGCCGGAATAGTAATCTCACATACTATTTTCAGTCC




GTGAAAGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATTTGCAAATGAAC




AGCCTGAAACTTGAGGACACGGCCGTCTATTACTGTAATGCAGACTACGGGCCTCCAGTATCC




ATTGGTCCTTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






181
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTGGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
NG17



TGTGTAGTCTCTGGAAGGATCCTCAGTATCAAGGCCATGGGCTGGTACCGCCAGGCTCCTGGG




AAGCAGCGCGAGTACGTCGCAGGTATTGTTAGCAGTGGTAATACAAACTATGCAGACTTCGTG




AAGGGCCGATTCACCATCTCCGGAGACAACGCCAAGAACACGGTGTTTCTGCAAATGAACAGC




CTGAAACCTGAAGACACGGCCGTCTATTACTGTAATGCCCTAGTGGTCGTTACTAGTGCCTCG




GGTCCCGAGTTGGCTTCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






182
GATGTACAGCTGGTGGATTCTGGGGGAGGATTGGCGCAGGCTGGGGGCTCTCTGAGACTCTCC
G1-3



TGTACAGCCTCTGGACGCACCTTCAGTACCTATTTCATGGCCTGGTTCCGCCAGCCTCCAGGG




AAGCAGCGCGAGTTGGTCGCATACATTCGTAGTGGTGGTACGACAAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACATCGCCAAGAACACGGTGTATCTGCAAATGAACAGC




CTGAAACCTGAGGACACGGCCGTCTATTACTGCAATGCAGATTACTCCCCGCCCGGCAGCCGG




TTCCCTGACTTAGGTCCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






183
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGACACTCTCC
NG18



TGCGCAGCCTCTGGATTCACCTTGGATAATTATGCCATAGCGTGGTTCCGCCAGGCCCCAGGG




AGGGAGCGCGAGTGGGTCTCATCAACTGGTAGTGATGGTAACTTATATACACCGTCCGTGAGG




GGCCGATTCACCATTTCCAGAGACAACGCCAAGAACACGGTGTATCTGCAAATGAACAGCCTG




AAACCTGAGGACACGGCCGTTTATTATTGTGTAGCAGGGAAGAGACCGGTAATTACTACATGG




ATTGCTTTGGACGCATGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






184
GATGTACAGCTGGTGGATTCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGAGACTCTCC
NG24



TGTGCAGCCTCTGGAACATTCTCCAGTATCGATTCCATGCGCTGGTTCCGGCGGGCTCCAGGA




AAGGAGCGCGAATTTGTCGCACATATTACTAGCACGGGTAGGACAAACTATGCAGACGCCGTG




AAGGGCCGATTTACCATCTCTAGAGACAACGCCAAGAACACGATGTGGCTGCAAATGGACAAC




CTGAAACCTGACGACACGGCCGTCTATTATTGCAATATGGTGACGACTCCTTATATGCACTGG




GGCCAGGGGACCCAGGTCACCGTCTCCTCA






185
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGAAACTCTCC
NG25



TGTGTAGCCTCTGGAAGCCGCTTCAGTGAAAATGCCATGGGCTGGTATCACCAGGCTCCAGAC




AAACAGCGCACCTTGGTCGCAGCTATTACTAGTAGTCGTAGCACTCTTTATATAGACTCCGTG




AAGGGCCGCTTCACCATCTCCAGAGACAACGCCAAGAACACGGTATATCTGCAAATGAGCAAC




CTGAAACCTGAGGACACCGGCGTCTATTACTGTAACCCGTACCCTTCCCCAAATTCCTACTGG




GGCCAGGGGACCCAGGTCACCGTCTCCTCA






186
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTAAGACTCTCC
NG19



TGTGCAGCCTCTGGACTCGTCTTCAGTGCCAATAAGATGGGCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCACGTATTAGCACTGACGGACGTACAAACTATGCGGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCGAGAAGACGGTGTTTCTGCAAATGAACAGC




CTGAATCCTGACGACACGGCCGTCTATTACTGTAATGCAAACTGGCTCGATAAATATGACTAC




TGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






187
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGCTTGGTGGAGCCTGGGGGGTCTCTGAGACTCTCC
NG26



TGTGTGGCCTCTGGAAGCATCTCCAGTGCCAGATCCATGACCTGGTACCGCCAGGCTCACGGG
(G21-1)



AAGCAGCGCGAGTTGGTCGCAGTTATTACTAGTGGCGGTAGCACAATGTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAGCGCCAAGAACACGGTGTATCTACAAATGAACAGC




CTGAAACCTFAGGACACGGCCGTCTATTATTGTAATGCAGACTGGGGGGAAGTCGGGTTTGTG




AACTTAGGTCCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






188
GAGGTACAGCTGGTGGAATCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G18



TGTGCAGCCTCTGGAAGCATCTTCGGTTTCAATGGCGTGGCCTGGTTCCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCAGTTATTCGTAGTGGTGGTAACACGCTCTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATCTGCAAATGAACAGC




CTGAAACCTGAGGACACGGCCGTCTATTACTGTAATGTAGATTACTCCCCGCCCGGTAGTCTG




GTTCCTGACTTAGGTCCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






189
GAGGTACAGCTGGAGGAGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G16#



TGTGCAGCCTCTGGAAGCATCGCCAGTATCAATGCCATGGGCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCAGCTATTACTAGAGGTGGTAGCACAAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTATATCTGCAAATGAACAGC




CTGAAACCGGAGGACACGGCCGTCTATTCATGTAATGGTTTGTGCTCAGACGATCGGTGTTAT




GGGGACTCCCTTTTTGCCCCCTGGGGCCCGGGGACCCAGGTCACCGTCTCCTCA






190
GAGGTACAGCTGGTGGAATCTGGGGGAGGATTGGTGCAGCCTGGGGGGTCTCTGAGACTGTCC
G24



TGTCTAGTCTCTGGAAGGGGCGTCAGTCTCGATGCCGTGGGCTGGTCGCGCGTGGCTCCAGGG




AAGCAGCGCGACTTCGTCGCACGTATTGATAGTAGGGGTAGCGCATACTATGCAGACTCCGTA




GAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATCTGCAAGTGGACACG




CTGAAACCTGAGGACACGGCCGTCTATTATTGTTTTGCGTACTACGGGGCTCAAATATCTTTT




GGTCCGTGGGGCCAGGGGACCCAGGTCACCGTCTCTTCA






191
GATGTGCAGCTGCAGGCGTCTGGGGGAGGATTGGTGCAGCCTGGGGGGTCTCTGAGACTGTCC
G19



TGTGTAGTCTCTGGAAGGGGCGTCAATCTCGATGCCATGGGCTGGTCGCGCGTGGCTCCAGGG




AAGCAGCGCGACTTCGTCGCACATATTGATGATAGGGGTACCGCATACTATGCAGACTTCGTA




AAGGGCCGATCCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATCTGCAAGTGGACACG




CTGAAACCTGAGGACACGGCCGTCTATTATTGCTTTGCGTGGCAGGGTGCGGAAACATATTGG




GGCCTGGGGACCCGGGTCACCGTCTCCTCAGGATCCGAACCAAAACTGATCAACGAAGAACAT




CTGAACCATCACCATCACCATTATTGA






192
GAGGTACAGCTGGTGGAATCTGGGGGAGGCTTGGTGCAGGCTGGGGGGTCTCTGAGACTCTCC
G5-1



TGTGTAGCCTCTGGAAGCATCTTCAGTGTCAATGCCGTGGCCTGGTACCGCCAGGCTCCAGGG




AAACAGCGCGAGTTGGTCGCATATATACGTCGTAGTGGTAGCACAAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAATGCCAAGAACACGCTGTATCTGCAAATGAACAGC




CTGAAACCTGACGACACAGCCGTGTATTATTGTAATGCGGGGCGGACAGGGGATCGTTTTAAT




TTGGTGGCGTATTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






193
GAGGTACAGCTGGTGGAATCTGGGGGAGGATTGGCGCAGGCTGGGGGCTCTCTGAGACTCTCC
G26



TGTACAGCCTCTGGACGCACCTTCAGTACCTATTTCATGGCCTGGTTCCGCCAGCCTCCAGGG




AAAGAGCGTGAATACGTAGGCGGTATTAGGTGGAGTGATGGTGTTCCACACTATGCAGACTCC




GTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATTTGCAAATGAAC




AGCCTGAAACCTGAGGACACGGCCGTCTATTACTGCAATGCAGATTACTCCCCGCCCGGCAGC




CGGTTCCCTGACTTAGGTCCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






194
GAGGTGCAGCTGCAGGCGTCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G27



TGTGTAGCCTCTGGAAGCATCTTCAGTATCAAAGCCATGGCCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCATACATTCGTAGTGGTGGTACGACAAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACATCGCCAAGAACACGGTGTATCTGCAAATGAACAGC




CTGAAATCTGAGGACACGGCCGTTTATTTTTGTGCATCACGGGGTATTGCGGATGGATCTGCT




TTGGTTCCTACGGCCAGGGGACCCAGGTCACCGTCTCCTCA






195
GAGGTACAGCTGGTGGAATCTGGGGGAGGCTTGGTGCAGGCTGGGGCCTCCGTGAGACTCTCC
G1-2



TGTGCAGCCTCTGGACGCGCCAACAGTTTGTATGCCATGGGCTGGTTCCGCCAGGCTCCAGGG




AAGCAGCGCGAGTTGGTCGCATACATTCGTAGTGGTGGTACGACAAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACATCGCCAAGAACACGGTGTATCTGCAAATGAACAGC




CTGAAACCTGAGGACACGGCCGTCTATTACTGCAATGCAGATTACTCCCCGCCCGGCAGCCGG




TTCCCTGACTTAGGTCCCTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






196
GAGGTACAGCTGGTGGAATCTGGGGGAGGATTGGTGCAAATTGGGGACTCTGTGAGACTCTCC
G28



TGTATAGCCTCTGGAGGCACCTTCAGAACTTATGCTATGGGTTGGTTCCGCCAGGCTCCAGGG




GCTGAGCGTGAATTTGTAGCTGCCATTAGCCGGCGCGGTAATAAGACAGATTATGCAGAGTCC




GTGAAGGGCCGATTCACAGTCTCCAGAGACAACGCCGAGAATACGGTGTATTTGCAAATGAAC




AGCCTGAAACCTGATGACATGGGCGTTTATTACTGTGCAGCGTCGGCGCGTAATTTCATCGGC




ACCCAGCCACTTGATTATGACTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCA






197
CAGGTAAAGCTGGAGGAGTCTGGGGGAGGAATGGTGCAGGCTGGGGGCTCTCTGAGACTCTCC
G29



TGTGTAGCCTCTGGACGCTCCTTCGTTGGCTATTTCATGGCCTGGTTCCGCCAGCCTCCAGGG




AAAGAGCGTGAATACGTAGGCGGTATTAGGTGGAGTGATGGTGTTCCACACTATGCAGACTCC




GTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATTTGCAAATGAAC




AGCCTGAAATCTGAGGACACGGCCGTTTATTTTTGTGCATCACGGGGTATTGCGGATGGATCT




GACTTTGGTTCCTACGGCCAGGGGACCCAGGTCACCGTCTCCTCA






198
GAGGTACAGCTGGTGGAATCTGGGGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCC
G2-1



TGTGCAGCCTCTGGAAGCATCTTCAGTATCAATGCCATGGGCTGGTACCGCCAGGCTCCAGGG




AAGCAGCGCGAATTGGTCGCAGCTATTACTAAAAGTAATAACATAAACTATGCAGACTCCGTG




AAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTGTATCTGCAAATGAACAGC




CTGAAACCTGAGGACACGGCCGTCTATTATTGTAATGGATTCTTCACTTTGCCTGGGTACAGT




AGTGAAGAATTTGGTCCCTGGGGCCTGGGGACCCAGGTCACCGTCTCCTCA








Claims
  • 1. An anti-BCMA (B cell maturation antigen) single domain antibody, comprising framework regions and complementarity determining regions, wherein the complementarity determining regions comprise the amino acid sequences of CDR1, CDR2, and CDR3 in SEQ ID NO: 67.
  • 2. The antibody of claim 1, wherein the single domain antibody comprises an amino acid sequence of SEQ ID NO:67 or is an amino acid sequence of SEQ ID NO: 67.
  • 3. A chimeric antigen receptor, comprising the single domain antibody of claim 1.
  • 4. The antibody of claim 1, wherein said single domain antibody is a humanized antibody.
  • 5. The chimeric antigen receptor of claim 3, comprising more than one of the single domain antibody, wherein the single domain antibodies are the same.
  • 6. The chimeric antigen receptor of claim 3, comprising more than one of the single domain antibody, wherein the single domain antibodies are different.
  • 7. A method of treating diseases associated with abnormal BCMA (B cell maturation antigen) expression, the method comprising: administering to a subject in need thereof an effective amount of a pharmaceutical composition comprising the single domain antibody of claim 1.
  • 8. The method of claim 7, wherein said disease associated with abnormal BCMA expression is a multiple myeloma disease.
  • 9. The method of claim 7, wherein the single domain antibody can be used to detect BCMA.
  • 10. The method of claim 7, wherein said single domain antibody is able to block an interaction between BAFF (B cell-activating factor) and BCMA.
  • 11. The method of claim 10, wherein said single domain antibody is linked to one or more of cytotoxicity agent(s), enzyme phase(s), radioisotope(s), fluorescent compound(s) or chemiluminescent compound(s).
Priority Claims (1)
Number Date Country Kind
201810972054.2 Aug 2018 CN national
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2019/095507 7/10/2019 WO
Publishing Document Publishing Date Country Kind
WO2020/038147 2/27/2020 WO A
US Referenced Citations (13)
Number Name Date Kind
10174095 Brogdon et al. Jan 2019 B2
10383929 Morgan et al. Aug 2019 B2
20160046724 Brogdon et al. Feb 2016 A1
20170226216 Morgan Aug 2017 A1
20180085444 Morgan et al. Mar 2018 A1
20180094280 Kutner et al. Apr 2018 A1
20180230225 Fan et al. Aug 2018 A1
20190153061 Brogdon et al. May 2019 A1
20200078399 Fan et al. Mar 2020 A1
20210163615 Fan et al. Jun 2021 A1
20210261675 Fan et al. Aug 2021 A1
20220127371 Fan et al. Apr 2022 A1
20220218746 Zhang. et al. Jul 2022 A1
Foreign Referenced Citations (15)
Number Date Country
105384825 Mar 2016 CN
105777911 Jul 2016 CN
105837693 Aug 2016 CN
106687483 May 2017 CN
106795217 May 2017 CN
107207598 Sep 2017 CN
107614008 Jan 2018 CN
109134665 Jan 2019 CN
109694413 Apr 2019 CN
3 842 462 Jun 2021 EP
10-2018-0035918 Apr 2018 KR
WO 2017025038 Feb 2017 WO
WO 2018028647 Feb 2018 WO
WO 2018119215 Jun 2018 WO
WO 2020038146 Feb 2020 WO
Non-Patent Literature Citations (18)
Entry
Mariuzza (Annu. Rev. Biophys. Biophys. Chem., 16: 139-159, 1987) (Year: 1987).
Hasegawa et al (Single amino acid substitution in LC-CDR1 induces Russell body phenotype that attenuates cellular protein synthesis through elF2α phosphorylation and thereby downregulates IgG secretion despite operational secretory pathway traffic. MAbs. Jul. 2017;9(5):854-873) (Year: 2017).
Al Qaraghuli et al. (2020, Nature Scientific Reports 10:13969) (Year: 2020).
Lloyd et al. (2009, Protein Engineering, Eng. Design & Selection 22(3): 159-168) (Year: 2009).
Khan et al. (2014, J. Immunol. 192: 5398-5405) (Year: 2014).
Coquery et al (Regulatory roles of the tumor necrosis factor receptor BCMA. Crit Rev Immunol. 2012;32(4):287-305) (Year: 2012).
American Cancer Society (Multiple Myeloma Causes, Risk Factors, and Prevention; https://www.cancer.org/cancer/types/multiple-myeloma/causes-risks-prevention/prevention.html (2020)) (Year: 2020).
McCarthy et al. (J. Immunol. Methods, 251(1-2): 137-149, 2001) (Year: 2001).
Lin et al. (African Journal of Biotechnology, 10(79):18294-18302, 2011) (Year: 2011).
Wu, W. et al., “A Novel VHH Antibody Targeting the B Cell-Activating Factor for B-Cell Lymphoma,” International Journal of Molecular Sciences, ISSN 1422-0067, 2014, vol. 15, pp. 9481-9496.
Tai, Y-T. et al., “Targeting B-cell maturation antigen in multiple myeloma,” Immunotherapy, 2015, vol. 7, No. 11, pp. 1187-1199.
International Search Report issued on Oct. 10, 2019 in PCT/CN2019/095507 filed on Jul. 10, 2019, 5 pages.
Extended European Search Report issued Aug. 9, 2022 in European Patent Application No. 19852395.3, 10 pages.
Japanese Office Action issued Jun. 3, 2022 in Japanese Patent Application No. 2021-534412, 6 pages.
Singaporean Office Action and Search Report issued Oct. 5, 2022 in Singaporean Patent Application No. 11202101675U, 8 pages.
Eurasian Office Action issued Oct. 31, 2022 in Eurasian Patent Application No. 202190608 (with English language translation), 6 pages.
Norris Lam, et al., “T Cells Expressing Anti-B-Cell Maturation Antigen (BCMA) Chimeric Antigen Receptors with Antigen Recognition Domains Made up of Only Single Human Heavy Chain Variable Domains Specifically Recognize BCMA and Eradicate Tumors in Mice,” Blood, No. 130, Supplement 1: 504, Dec. 7, 2017, 3 pages.
McKay Brown, et al., “Tolerance to Single, but Not Multiple, Amino Acid Replacements in Antibody VH CDR2,” The Journal of Immunology, 1996, pp. 3285-3291.
Related Publications (1)
Number Date Country
20220251226 A1 Aug 2022 US