ANTI-PD-1 ANTIBODY-ATTENUATED IL-2 IMMUNOCONJUGATES AND USES THEREOF

Abstract
Disclosed herein are modified human interleukin-2 (hIL-2) proteins, human antibody molecules, or antigen-binding fragments thereof, that immunospecifically bind to human programmed cell death protein-1 (hPD-1), and immunoconjugates comprising the same.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which is being submitted herewith electronically in XML format and is hereby incorporated by reference in its entirety. Said XML copy, created on Aug. 26, 2024, is named 102085.002045_Sequence Listing.xml and is 696,000 bytes in size.


TECHNICAL FIELD

Disclosed herein are modified human interleukin-2 (hIL-2) proteins, human antibody molecules, or antigen-binding fragments thereof, that immunospecifically bind to human programmed cell death protein-1 (hPD-1), and immunoconjugates comprising the same.


BACKGROUND

Human IL-2 (hIL-2) is a Type 1 four α-helical bundle, glycosylated cytokine produced by CD4+ T cells and CD8+T cells. Autocrine and paracrine IL-2 signaling occurs through engagement of either a high-affinity trimeric receptor complex comprising IL-2Rα(CD25), IL-2Rβ (CD122), and IL-2Rγ (CD132), or an intermediate-affinity dimeric receptor complex which comprises IL-2Rβ (CD122) and IL-2Rγ (CD132). IL-2 has dual opposing and pleiotropic roles, in that it can both stimulate T cell proliferation to generate T cell effector, T cell memory, and activated NK cells, but can also stimulate suppressive regulatory T cells for maintenance of immune homeostasis. Low-dose IL-2 primarily stimulates regulatory T cells as well as some T effector and NK cells, whereas high-dose IL-2 broadly stimulates cytotoxic T cells, T effector, and NK cells and regulatory T cells. The use of IL-2 in the treatment of autoimmune diseases and as a cancer immunotherapy has, however, been limited by off-target effects and toxicity associated with the administration of IL-2.


SUMMARY

Disclosed herein are modified human interleukin-2 (hIL-2) proteins comprising a substitution at amino acid position 20 and a substitution at amino acid position 38 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345, wherein the modified hIL-2 protein exhibits reduced potency on both a high affinity hIL-2 receptor and on an intermediate affinity hIL-2 receptor relative to the non-modified hIL-2.


Also disclosed herein are modified human interleukin-2 (hIL-2) proteins comprising a D20A, D20S, D20Q, D20M, D20I, D20V, D20N, D20G, D20T, or D20E substitution at amino acid position 20 and a R38E substitution at amino acid position 38 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345.


Also disclosed herein are human antibody molecules, or antigen-binding fragments thereof, that immunospecifically bind to human programmed cell death protein-1 (hPD-1), wherein the human antibody molecule or antigen-binding fragment thereof comprises:

    • a) a heavy chain complementarity determining region 1 (CDR1) comprising the amino acid sequence of SEQ ID NO: 418, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 419, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 420, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 421, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 422, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 423;
    • b) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 386, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 387, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 388, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 389, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 390, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 391;
    • c) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 396, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 397, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 398, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 399, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 400, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 401; or
    • d) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 406, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 407, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 408, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 409, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 410, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 411.


Also disclosed herein are immunoconjugates comprising:

    • (a) a modified hIL-2 protein comprising a substitution at amino acid position 20 and a substitution at amino acid position 38 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345; and
    • (b) a human antibody molecule, or antigen-binding fragment thereof, that immunospecifically binds to hPD-1, wherein the human antibody molecule or antigen-binding fragment thereof comprises:
      • (i) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 418, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 419, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 420, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 421, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 422, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 423;
      • (ii) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 386, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 387, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 388, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 389, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 390, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 391;
      • (iii) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 396, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 397, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 398, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 399, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 400, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 401; or
      • (iv) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 406, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 407, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 408, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 409, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 410, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 411.


Pharmaceutical compositions comprising any of the herein disclosed modified hIL-2 proteins, human antibody molecules, or antigen-binding fragments thereof, or immunoconjugates are also disclosed.


Also disclosed herein are polynucleotides comprising a nucleic acid sequence encoding any of the herein disclosed modified hIL-2 proteins, human antibody molecules, or antigen-binding fragments thereof, or immunoconjugates, as well as vectors comprising the polynucleotides and transformed cells comprising the vectors.


Disclosed herein are methods of treating a disease or disorder in a subject, the methods comprising administering a therapeutically effective amount of any of the herein disclosed immunoconjugates or pharmaceutical compositions to the subject to thereby treat the disease or disorder.


Also disclosed are uses of any of the herein disclosed immunoconjugates or pharmaceutical compositions in the preparation of a medicament for the treatment of a disease, and uses of any of the herein disclosed immunoconjugates or pharmaceutical compositions for the treatment of a disease or disorder.





BRIEF DESCRIPTION OF THE DRAWINGS

The summary, as well as the following detailed description, is further understood when read in conjunction with the appended drawings. For the purpose of illustrating the disclosed modified hIL-2 proteins, anti-hPD-1 antibodies or antigen-binding fragments thereof, and immunoconjugates, there are shown in the drawings exemplary embodiments of the modified hIL-2 proteins, anti-hPD-1 antibodies or antigen-binding fragments thereof, and immunoconjugates; however, the modified hIL-2 proteins, anti-hPD-1 antibodies or antigen-binding fragments thereof, and immunoconjugates are not limited to the specific embodiments disclosed. In the drawings:



FIG. 1A, FIG. 1B, FIG. 1C, FIG. 1D, FIG. 1E, FIG. 1F, FIG. 1G, and FIG. 1H illustrate exemplary antibody-hIL-2 immunoconjugates as described in Example 1 herein. Non-attenuated human IL-2 cytokine (grey rectangle) was fused either directly (df) or via an L6 linker (L6) to either the N-terminus or C-terminus of both heavy chains or both kappa light chains of the antibody.



FIG. 2A, FIG. 2B, FIG. 2C, FIG. 2D, FIG. 2E, FIG. 2F, FIG. 2G, and FIG. 2H illustrate exemplary antibody-hIL-2 immunoconjugates with hCD25 (1-164) extracellular domain designed to interfere with the immunoconjugate's hIL-2 binding to the human IL-2Rα. For N-terminal variants, the human CD25/IL-2Rαextracellular domain (black triangle) was fused to a non-attenuated hIL-2 cytokine (grey rectangle) via an L20 linker (light grey line). Non-attenuated hIL-2 cytokine was then either directly fused (df) or fused to the antibody with an L6 linker. For C-terminal variants, the hCD25/IL-2Rαextracellular domain moiety was either directly fused (df) or fused to the antibody using an L6 linker, followed by an L20 linker and non-attenuated hIL-2 cytokine.



FIG. 3 illustrates an exemplary 1H3-hIgG1-L6-hIL-2 immunoconjugate that contains a CD25/IL-2Rαextracellular domain moiety. The hCD25/IL-2Rαextracellular domain moiety was fused to the 1H3-hIgG1-L6-hIL-2 at the C-terminus of each heavy chain via an L6 linker followed by an L20 linker and hIL-2 cytokine moiety containing substitutions predicted to modulate binding to CD122/IL-2Rβ as described in Example 2 (attenuated hIL-2).



FIG. 4A, FIG. 4B, FIG. 4C, and FIG. 4D show the results of experiments analyzing the binding of the anti-hPD-1 antibodies 2H7-hIgG4, C51E6-5-hIgG4, and A2-hIgG4 to the human PD-1 receptor on Jurkat cells in the presence of saturating concentrations of anti-hPD-1 #1-mIgG2b-N297A and anti-hPD-1 #2-mIgG2b-N297A (10 μM) prior to exposure with anti-hPD-1 antibodies.



FIG. 5 illustrates exemplary anti-hPD-1-attenuated hIL-2 immunoconjugates either with an L6 linker (L6) (left) or direct fusion (df) (right). Anti-hPD-1 antibodies comprising either hIgG4 or hIgG1 Fc domains, with or without L235E (LE) or L235A/G237A (LAGA) modifications in the Fc domain, were fused to attenuated hIL-2 cytokines at the C-terminus of the antibody heavy chains. Various substitutions in the hIL-2 cytokine were introduced for potency attenuation.



FIG. 6A and FIG. 6B show the results of competition assays demonstrating that anti-hPD-1 #1-mIgG2b-N297A (FIG. 6A) or anti-hPD-1 #2-mIgG2b-N297A (FIG. 6B) bind to anti-hPD-1 receptor on Jurkat cells in the presence of saturating concentrations of anti-hPD-1-attenuated hIL-2 immunoconjugates (280 nM).



FIG. 7 shows the results of competition assays demonstrating that the anti-hPD-1-attenuated hIL-2 immunoconjugates 2H7-hIgG4-df-hIL-2 (D20A/R38E), C51E6-5-L6-hIgG4-hIL-2 (D20A/R38E), and A2-hIgG4-df-hIL-2 (D20A/R38E) do not inhibit the binding of human PD-L1 to the human PD-1 receptor using the PD-1/PD-L1 Blockade Bioassay.



FIG. 8 shows the results of experiments analyzing the effect of the administration of vehicle, surrogate anti-PD-1 antibodies (anti-mPD-1 RMP1-14 mIgG2b-N297A and anti-mPD-1 RMP1-30 mIgG2b-N297A), and surrogate anti-PD-1-attenuated hIL-2 immunoconjugates (anti-mPD-1 RMP1-14 mIgG2b-N297A-L6-hIL-2 (F42K/Y45R/V69R) or anti-mPD-1 RMP1-30 mIgG2b-N297A-L6-hIL-2 (F42K/Y45R/V69R)) on the growth of established subcutaneous MC38 syngeneic tumors in C57BL/6 mice, as described in Example 18. Test agents were dosed intraperitoneally at 5 mg/kg twice weekly for 4 weeks, starting on day 1. The points on the graph represent mean tumor volumes of an average of 10 mice per group.



FIG. 9A, FIG. 9B, and FIG. 9C illustrate the results of studies conducted to determine the efficacy of surrogate anti-hPD-1-attenuated hIL-2 immunoconjugate anti-mPD-1 RMP1-30 mIgG2b-N297A-hIL-2 (F42K/Y45R/V69R) in an MC38 murine colon adenocarcinoma model. FIG. 9A depicts the mean subcutaneous tumor volumes (mm3) measured every 3-4 days for 8 days after the first dose of test agents (3 doses on days 1, 4, and 8 at 5 mg/kg). Tumor growth curves represent an average of 15 animals per group. FIG. 9B summarizes results from immunophenotyping tumors by flow cytometry on day 9, showing the proportion of different CD8′ T cell subsets as fractions of the total CD8 T cell average absolute counts. FIG. 9C illustrates immunophenotyping results on day 9 which demonstrated that there was a significant expansion of CD8 T effector memory and a trend towards decreased regulatory T cells in tumors (cells/μL) following exposure to the surrogate immunoconjugate.



FIG. 10 shows the results from an experiment analyzing the acceleration of Graft vs Host Disease in NOD-Prkdcem26Cd52IL-2rgem26Cd22/NjuCrl (NCG) mice exposed to anti-hPD-1-attenuated hIL-2 immunoconjugates, as demonstrated by significant body weight decrease in an NCG-PBMC model.



FIG. 11A and FIG. 11B show the results of an experiment analyzing the dose-dependent expansion of cells/mL of blood CD8 Effector Memory T cells (FIG. 11A) and CD4 Effector Memory T cells (FIG. 11B) of NOD-Prkdcem26cd2IL-2rgem26Cd22/NjuCrl (NCG) mice treated with 2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) in the NCG-PBMC model.



FIG. 12 shows a decrease in cells/mL of blood regulatory T cells of NOD-Prkdcem 26Cd52IL-2rgem26Cd22/NjuCrl (NCG) mice treated with 2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) in the NCG-PBMC model.



FIG. 13A and FIG. 13B show that H7-632-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) (designated “H7-767”) (FIG. 13B) continues to bind to the human PD-1 receptor on Jurkat cells in the presence of saturating concentrations of anti-hPD-1 #1-mIgG2b-N297A and anti-hPD-1 #2-mIgG2b-N297A (10 μM) prior to exposure.



FIG. 14A and FIG. 14B are graphs showing the binding of recombinant human PD-1 captured by H7-767 immobilized to a CM5 sensor chip followed by binding of either (FIG. 14A) H7-767, KEYTRUDA®, or OPDIVO® or (FIG. 14B) PD-L1 or PD-L2, as evaluated by surface plasmon resonance (SPR).



FIG. 15 demonstrates that H7-632-hIgG1-LAGA and H7-767 do not inhibit the binding of human PD-L1 to the human PD-1 receptor using an hPD-1/hPD-L1 Blockade Bioassay.



FIG. 16A, FIG. 16B, FIG. 16C, and FIG. 16D are graphs showing the binding of anti-hPD-1-attenuated hIL-2 immunoconjugates 2H7-hIgG4-df-hIL-2 (D20A/R38E), C51E6-5-hIgG4-df-hIL-2 (D20A/R38E), and A2-hIgG4-df-hIL-2 (D20A/R38E) to the human PD-1 receptor on Jurkat cells in the presence of saturating concentrations of anti-hPD-1 #1-mIgG2b-N297A and anti-hPD-1 #2-mIgG2b-N297A (10 μM) prior to exposure with anti-hPD-1-attenuated hIL-2 immunoconjugates, as assessed by flow cytometry.



FIG. 17 is a graph showing the binding of 2H7-hIgG4-df-hIL-2 (D20A/R38E), C51E6-5-hIgG4-df-hIL-2 (D20A/R38E), A2-hIgG4-df-hIL-2 (D20A/R38E) and the irrelevant antibody control 1H3-hIgG4-df-hIL-2 (D20A/R38E) to HEK-293T cells recombinantly expressing cynomolgus PD-1, as assessed by flow cytometry.



FIG. 18A, FIG. 18B, FIG. 18C, and FIG. 18D show the antagonist activity of anti-hPD-1-attenuated hIL-2 immunoconjugates 2H7-hIgG4-df-hIL-2 (D20A/R38E), C51E6-5-hIgG4-df-hIL-2 (D20A/R38E), and A2-hIgG4-df-hIL-2 (D20A/R38E) in the presence of anti-hPD-1 #1 or anti-hPD-1 #2. FIG. 18A and FIG. 18B show results from the titration of anti-hPD-1 #1 or anti-hPD-1 #2 in the presence of fixed concentration anti-hPD-1-attenuated hIL-2 immunoconjugates. FIG. 18C and FIG. 18D show the results from the converse experiment in which anti-hPD-1-attenuated hIL-2 immunoconjugates were titrated with a fixed concentration of 100 nM of anti-hPD-1 #1 (FIG. 18C) or 100 nM of anti-hPD-1 #2 (FIG. 18D).



FIG. 19 shows the effect of the administration of various test agents including a surrogate anti-mouse PD-1/attenuated IL-2 immunoconjugate on the growth of established subcutaneous MC38 syngeneic tumors in C57BL/6 mice. Each growth curve represents the mean tumor volume of ten mice per treatment group.



FIG. 20 shows the ability of MC38 tumor cells to grow in tumor naïve mice compared to mice from the MC38 primary tumor study illustrated in FIG. 19 that were previously dosed with anti-mPD-1-hIL-2 F42K/Y45R/V69R and which had demonstrated complete long-term regression of the established primary tumor. Animals from both cohorts (10 mice per group) were subcutaneously implanted with 5×105 MC38 tumor cells on the left flank contralateral to the location of the primary tumor. Mice previously exposed to the surrogate agent anti-mPD-1-hIL-2 F42K/Y45R/V69R demonstrated no tumor growth as they had developed a sustained immunity, whilst corresponding naïve mice controls demonstrated the typical growth of tumors in their flanks.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The disclosed modified hIL-2 proteins, human antibody molecules or antigen-binding fragments thereof, and immunoconjugates may be understood more readily by reference to the following detailed description taken in connection with the accompanying figures, which form a part of this disclosure. It is to be understood that the disclosed modified hIL-2 proteins, human antibody molecules or antigen-binding fragments thereof, and immunoconjugates are not limited to the specific modified hIL-2 proteins, human antibody molecules or antigen-binding fragments thereof, and immunoconjugates described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed modified hIL-2 proteins, human antibody molecules or antigen-binding fragments thereof, and immunoconjugates.


Unless specifically stated otherwise, any description as to a possible mechanism or mode of action or reason for improvement is meant to be illustrative only, and the disclosed modified hIL-2 proteins, human antibody molecules or antigen-binding fragments thereof, and immunoconjugates are not to be constrained by the correctness or incorrectness of any such suggested mechanism or mode of action or reason for improvement.


Throughout this text, the descriptions refer to modified hIL-2 proteins, human antibody molecules or antigen-binding fragments thereof, and immunoconjugates, as well as methods of using the modified hIL-2 proteins, human antibody molecules or antigen-binding fragments thereof, and immunoconjugates. Where the disclosure describes or claims a feature or embodiment associated with a modified hIL-2 protein, human antibody molecule or antigen-binding fragment thereof, and immunoconjugate, such a feature or embodiment is equally applicable to the methods of using the modified hIL-2 proteins, human antibody molecules or antigen-binding fragments thereof, and immunoconjugates. Likewise, where the disclosure describes or claims a feature or embodiment associated with a method of using a modified hIL-2 protein, human antibody molecule or antigen-binding fragment thereof, and immunoconjugate, such a feature or embodiment is equally applicable to the modified hIL-2 proteins, human antibody molecules or antigen-binding fragments thereof, and immunoconjugates.


Where a range of numerical values is recited or established herein, the range includes the endpoints thereof and all the individual integers and fractions within the range, and also includes each of the narrower ranges therein formed by all the various possible combinations of those endpoints and internal integers and fractions to form subgroups of the larger group of values within the stated range to the same extent as if each of those narrower ranges was explicitly recited. Where a range of numerical values is stated herein as being greater than a stated value, the range is nevertheless finite and is bounded on its upper end by a value that is operable within the context of the herein disclosure. Where a range of numerical values is stated herein as being less than a stated value, the range is nevertheless bounded on its lower end by a non-zero value. It is not intended that the scope of the modified hIL-2 proteins, human antibody molecules or antigen-binding fragments thereof, and immunoconjugates be limited to the specific values recited when defining a range. All ranges are inclusive and combinable.


When values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. Reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. The term “about” when used in reference to numerical ranges, cutoffs, or specific values is used to indicate that the recited values may vary by up to as much as 10% from the listed value. Thus, the term “about” is used to encompass variations of +10% or less, variations of +5% or less, variations of +1% or less, variations of +0.5% or less, or variations of +0.1% or less from the specified value.


It is to be appreciated that certain features of the disclosed modified hIL-2 proteins, human antibody molecules or antigen-binding fragments thereof, and immunoconjugates which are, for clarity, described herein in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the disclosed modified hIL-2 proteins, human antibody molecules or antigen-binding fragments thereof, and immunoconjugates that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any subcombination.


As used herein, the singular forms “a,” “an,” and “the” include the plural.


Various terms relating to aspects of the description are used throughout the specification and claims. Such terms are to be given their ordinary meaning in the art unless otherwise indicated. Other specifically defined terms are to be construed in a manner consistent with the definitions provided herein.


The term “comprising” is intended to include examples encompassed by the terms “consisting essentially of” and “consisting of”; similarly, the term “consisting essentially of” is intended to include examples encompassed by the term “consisting of.”


The term “antibody molecule” is meant in a broad sense and includes full length immunoglobulin molecules and antigen-binding fragments thereof.


Immunoglobulins can be assigned to five major classes, namely IgA, IgD, IgE, IgG, and IgM, depending on the heavy chain constant domain amino acid sequence. IgA and IgG are further sub-classified as the isotypes IgA1, IgA2, IgG1, IgG2, IgG3, and IgG4. Antibody light chains of any vertebrate species can be assigned to one of two clearly distinct types, namely kappa (κ) and lambda (2), based on the amino acid sequences of their constant domains.


“Antigen-binding fragment” refers to a portion of an immunoglobulin molecule that retains the antigen binding properties of the parental full length antibody (i.e., “antigen-binding fragment thereof”). Exemplary antigen binding fragments can have: heavy chain complementarity determining regions (CDR) 1, 2, and/or 3; light chain CDR1, 2, and/or 3; a heavy chain variable region (VH); a light chain variable region (VL); and combinations thereof. Antigen binding fragments include: a Fab fragment, a monovalent fragment consisting of the VL, VH, constant light (CL), and constant heavy 1 (CH1) domains; a F (ab) 2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; a Fd fragment consisting of the VH and CH1 domains; a Fv fragment consisting of the VL and VH domains of a single arm of an antibody; and a domain antibody (dAb) fragment (Ward et al., Nature 341:544-546, 1989), which consists of a VH domain or a VL domain. VH and VL domains can be engineered and linked together via a synthetic linker to form various types of single chain antibody designs where the VH/VL domains pair intramolecularly, or intermolecularly in those cases when the VH and VL domains are expressed by separate single chain antibody constructs, to form a monovalent antigen binding site, such as single chain Fv (scFv) or diabody, described for example in Int'l Pat. Pub. Nos. WO1998/44001, WO1988/01649, WO1994/13804, and WO1992/01047. These antibody fragments are obtained using techniques well known to those of skill in the art, and the fragments are screened for utility in the same manner as are full length antibodies.


The phrase “immunospecifically binds” refers to the ability of the disclosed antibody molecules to preferentially bind to its target (hPD-1 in the case of anti-hPD-1 antibody molecules) without preferentially binding other molecules in a sample containing a mixed population of molecules. Antibody molecules that immunospecifically bind hPD-1 are substantially free of other antibodies having different antigenic specificities (e.g., an anti-hPD-1 antibody is substantially free of antibodies that specifically bind antigens other than hPD-1). Antibody molecules that immunospecifically bind hPD-1, however, can have cross-reactivity to other antigens, such as orthologs of hPD-1, including Macaca fascicularis (cynomolgus monkey) PD-1. The antibody molecules disclosed herein are able to immunospecifically bind both naturally-produced hPD-1 and to PD-1 which is recombinantly produced in mammalian or prokaryotic cells.


An antibody variable region consists of four “framework” regions interrupted by three “antigen binding sites.” The antigen binding sites are defined using various terms: (i) Complementarity Determining Regions (CDRs), three in the VH (HCDR1, HCDR2, HCDR3), and three in the VL (LCDR1, LCDR2, LCDR3) are based on sequence variability (Wu and Kabat J Exp Med 132:211-50, 1970; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md., 1991); and (ii) “Hypervariable regions” (“HVR” or “HV”), three in the VH (H1, H2, H3) and three in the VL (L1, L2, L3) refer to the regions of the antibody variable domains which are hypervariable in structure as defined by Chothia and Lesk (Chothia and Lesk Mol Biol 196:901-17, 1987). The AbM definition of CDRs is also widely used; it is a compromise between Kabat and Chothia numbering schemes and is so-called because it was used by Oxford Molecular's AbM antibody modelling software (Rees, A. R., Searle, S. M. J., Henry, A. H. and Pedersen, J. T. (1996) In Sternberg M. J. E. (ed.), Protein Structure Prediction. Oxford University Press, Oxford, 141-172). Other terms include “IMGT-CDRs” (Lefranc et al., Dev Comparat Immunol 27:55-77, 2003) and “Specificity Determining Residue Usage” (SDRU) (Almagro Mol Recognit 17:132-43, 2004). The International ImMunoGeneTics (IMGT) database (http://www_imgt_org) provides a standardized numbering and definition of antigen-binding sites. The correspondence between CDRs, HVs and IMGT delineations is described in Lefranc et al., Dev Comparat Immunol 27:55-77, 2003.


“Framework” or “framework sequences” are the remaining sequences of a variable region other than those defined to be antigen binding sites. Because the antigen binding sites can be defined by various terms as described above, the exact amino acid sequence of a framework depends on how the antigen-binding site was defined.


“Human antibody,” “fully human antibody,” and like terms refers to an antibody having heavy and light chain variable regions in which both the framework and the antigen binding sites are derived from sequences of human origin. If the antibody contains a constant region, the constant region also is derived from sequences of human origin. A human antibody comprises heavy and/or light chain variable regions that are “derived from” sequences of human origin if the variable regions of the antibody are obtained from a system that uses human germline immunoglobulin or rearranged immunoglobulin genes. Such systems include human immunoglobulin gene libraries displayed on phage, and transgenic non-human animals such as mice or chicken carrying human immunoglobulin loci as described herein. “Human antibody” may contain amino acid differences when compared to the human germline or rearranged immunoglobulin sequences due to, for example, naturally occurring somatic mutations or intentional introduction of substitutions in the variable domain (framework and antigen binding sites), or constant domain. Typically, a “human antibody” is at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical in amino acid sequence to an amino acid sequence encoded by a human germline or rearranged immunoglobulin gene. In some cases, a “human antibody” may contain consensus framework sequences derived from human framework sequence analyses, for example as described in Knappik et al., J Mol Biol 296:57-86, 2000, or synthetic HCDR3 incorporated into human immunoglobulin gene libraries displayed on phage, as described in, for example, Shi et al., J Mol Biol 397:385-96, 2010 and Int'l Pat. Pub. No. WO2009/085462. Antibodies in which antigen binding sites are derived from a non-human species are not included in the definition of “human antibody.”


Human antibodies, while derived from human immunoglobulin sequences, may be generated using systems such as phage display incorporating synthetic CDRs and/or synthetic frameworks, or can be subjected to in vitro mutagenesis to improve antibody properties in the variable regions or the constant regions or both, resulting in antibodies that do not naturally exist within the human antibody germline repertoire in vivo.


“Recombinant antibody” includes all antibodies that are prepared, expressed, created, or isolated by recombinant means, such as: antibodies isolated from an animal (e.g., a mouse) that is transgenic or transchromosomal for human immunoglobulin genes or a hybridoma prepared therefrom (described further below); antibodies isolated from a host cell transformed to express the antibody; antibodies isolated from a recombinant, combinatorial antibody library; and antibodies prepared, expressed, created, or isolated by any other means that involve splicing of human immunoglobulin gene sequences to other DNA sequences, or antibodies that are generated in vitro using Fab arm exchange.


“Monoclonal antibody” refers to a population of antibody molecules of a single molecular composition. A monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope, or in a case of a bispecific monoclonal antibody, a dual binding specificity to two distinct epitopes. Monoclonal antibody therefore refers to an antibody population with single amino acid composition in each heavy and each light chain, except for possible well known alterations such as removal of C-terminal lysine from the antibody heavy chain. Monoclonal antibodies may have heterogeneous glycosylation within the antibody population. Monoclonal antibody may be monospecific or multispecific, or monovalent, bivalent or multivalent. A bispecific antibody is included in the term monoclonal antibody.


“Epitope” refers to a portion of an antigen to which an antibody specifically binds. Epitopes usually consist of chemically active (such as polar, non-polar, or hydrophobic) surface groupings of moieties such as amino acids or polysaccharide side chains and can have specific three-dimensional structural characteristics, as well as specific charge characteristics. An epitope can be composed of contiguous and/or discontiguous amino acids that form a conformational spatial unit. For a discontiguous epitope, amino acids from differing portions of the linear sequence of the antigen come in close proximity in 3-dimensional space through the folding of the protein molecule.


“Variant” refers to a polypeptide or a polynucleotide that differs from a reference polypeptide or a reference polynucleotide by one or more modifications for example, substitutions, insertions, or deletions. The term “mutation” as used herein is intended to mean one or more intentional substitutions which are made to a polypeptide or polynucleotide.


“Treat,” “treatment,” and like terms refer to both therapeutic treatment and prophylactic or preventative measures, and includes reducing the severity and/or frequency of symptoms, eliminating symptoms and/or the underlying cause of the symptoms, reducing the frequency or likelihood of symptoms and/or their underlying cause, and improving or remediating damage caused, directly or indirectly, by the disease or disorder. Treatment also includes prolonging survival as compared to the expected survival of a subject not receiving treatment. Subjects to be treated include those that have the disease or disorder as well as those prone to have the disease or disorder or those in which the disease or disorder is to be prevented.


As used herein, “administering to the subject” and similar terms indicate a procedure by which the disclosed modified hIL-2 proteins, immunoconjugates, or pharmaceutical compositions are injected into a subject such that target cells, tissues, or segments of the body of the subject are contacted with the disclosed modified hIL-2 proteins or immunoconjugates comprising the same.


The phrase “therapeutically effective amount” refers to an amount of the modified hIL-2 proteins, immunoconjugates, or pharmaceutical compositions, as described herein, effective to achieve a particular biological or therapeutic result such as, but not limited to, biological or therapeutic results disclosed, described, or exemplified herein. The therapeutically effective amount may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the modified hIL-2 proteins, immunoconjugates, or pharmaceutical compositions to cause a desired response in a subject. Exemplary indicators of a therapeutically effect amount include, for example, improved well-being of the patient, reduction of a disease symptom, arrested or slowed progression of disease symptoms, and/or absence of disease symptoms.


The term “subject” as used herein is intended to mean any animal, in particular, mammals. Thus, the methods are applicable to human and nonhuman animals, although most preferably used with humans. “Subject” and “patient” are used interchangeably herein.


Immunoconjugate and fusion protein are used interchangeably herein.


Modified human interleukin-2 (hIL-2) proteins


Disclosed herein are modified hIL-2 proteins comprising a substitution at amino acid position 20 and a substitution at amino acid position 38 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345, wherein the modified hIL-2 protein exhibits reduced potency on both a high affinity hIL-2 receptor and on an intermediate affinity hIL-2 receptor relative to a non-modified hIL-2 The disclosed modified hIL-2 proteins are also referred to as “attenuated” hIL-2 herein.


Suitable substitutions at amino acid position 20 include, for example, any one of a D20A, D20S, D20Q, D20M, D20I, D20V, D20N, D20G, D20T, or D20E substitution.


Suitable substitutions at amino acid position 38 include, for example, any one of an R38E, R38N, R38G, R38H, R38I, R38L, R38M, R38F, R38P, R38S, R38T, R38W, R38Y, R38V, R38A, R38Q, R38D, or an R38K substitution.


In some embodiments, any one of the D20A, D20S, D20Q, D20M, D20I, D20V, D20N, D20G, D20T, or D20E substitutions can be combined with an R38E substitution.


The modified hIL-2 proteins can comprise the amino acid sequence of any one of SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620. The modified hIL-2 proteins can comprise the amino acid sequence of any one of SEQ ID NOs: 134-150, 307, 344, 608, 611, 614, or 620. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 134. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 135. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 136. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 137. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 138. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 139. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 140. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 141. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 142. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 143. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 144. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 145. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 146. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 147. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 148. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 149. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 150. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 307. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 344. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 607. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 608. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 609. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 610. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 611. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 614. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 617. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 620. The modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620 can further comprise a T3A substitution and/or a C125A substitution. In some embodiments, the modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620 further comprises a T3A substitution. In some embodiments, the modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620 further comprises a C125A substitution. In some embodiments, the modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620 further comprises a T3A substitution and a C125A substitution.


The modified hIL-2 proteins may comprise a D20A substitution and a R38E substitution.


As described herein the term “reduced potency” and related terms such as “reduction in potency” or “attenuation” of IL-2 activity refer to a reduction in potency of the modified hIL-2 as determined by an increased EC50 value relative to the EC50 value for an non-modified-hIL-2 in an IL-2-dependent assay. As described herein the reduction in potency of the modified hIL-2 will be on both the high affinity and on the intermediate affinity IL-2 receptors. The IL-2-dependent assay for determining potency may be an engineered human erythroleukemic TF1 (TF1+IL-2RB) or a human natural killer NK-92 cell proliferation assay as described herein. In one embodiment, the IL-2-dependent assay for determining potency is an engineered human erythroleukemic TF1 (TF1+IL-2RB) cell proliferation assay. In another embodiment, the IL-2-dependent assay for determining potency is a human natural killer NK-92 cell proliferation assay. Other IL-2-dependent assays for determining potency may also be a TF1+IL-2Rβ or a human natural killer NK-92 pSTAT5 assay as described herein. The non-modified-hIL-2 may be a prokaryote-expressed hIL-2 such as Proleukin® (which has the native human IL-2 amino acid sequence apart from a C125S substitution to remove an unbound cysteine, and which does not bear the normal human carbohydrate expression on residue T3), or the non-modified-hIL-2 may be an hIL-2 with the amino acid sequence of SEQ ID NO: 345 or with the amino acid sequence of SEQ ID NO: 345 with a C125S substitution, which is expressed in a mammalian cell line, such as a CHO or HEK cell line.


The modified hIL-2 proteins can further comprise a substitution at amino acid position 3 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. A suitable substitution includes, for example, a T3A. In some embodiments, the modified hIL-2 proteins comprise a T3A substitution, a D20A substitution, and a R38E substitution. In some aspects, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 216.


Alternatively, the modified hIL-2 proteins can further comprise a deletion of amino acid position 3 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. In some embodiments, the modified hIL-2 proteins comprise a deletion of amino acids 1-3, a D20A substitution, and a R38E substitution. In some aspects, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 218.


The modified hIL-2 proteins can further comprise a deletion or substitution at amino acid position 125 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. The substitution at amino acid position 125 can be C125A. In some embodiments, the modified hIL-2 proteins comprise a D20A substitution, a R38E substitution, and a C125A substitution. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 215. In some embodiments, the modified hIL-2 proteins comprise a T3A substitution, a D20A substitution, a R38E substitution, and a C125A substitution. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 217. In some embodiments, the modified hIL-2 proteins comprise a deletion of amino acids 1-3, a D20A substitution, a R38E substitution, and a C125A substitution. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 219.


The modified hIL-2 proteins can exhibit a reduction in potency of at least about 200-fold, at least about 500-fold, at least about 1,000-fold, at least about 2,000-fold, at least about 5,000-fold, at least about 6,500-fold, or at least about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) relative to a non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. In some embodiments, the modified hIL-2 proteins can exhibit a reduction in potency of greater than about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) relative to a non-modified hIL-2. A greater reduction in hIL-2 potency on the high affinity hIL-2 receptor may be possible and acceptable for the modified hIL-2 proteins described herein, but such a reduction may not be quantifiable with the methods described herein due to limits of the cell proliferation assay conditions.


In addition, the modified hIL-2 proteins can exhibit a reduction in potency of at least about 200-fold, at least about 500-fold, at least about 1,000-fold, at least about 2,000-fold, at least about 5,000-fold, at least about 6,500-fold, or at least about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to an non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. In some embodiments, the modified hIL-2 proteins can exhibit a reduction in potency of greater than about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to a non-modified hIL-2.


The modified hIL-2 proteins can exhibit a reduction in potency of up to about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) and a reduction in potency of up to about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to a non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. The modified hIL-2 proteins can exhibit a reduction in potency of greater than about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) and a reduction in potency of greater than about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to a non-modified hIL-2


As demonstrated herein, the modified hIL-2 proteins can be fused to an anti-PD-1 antibody or an antigen-binding fragment thereof. The hIL-2 proteins can fused to the anti-PD-1 antibody or an antigen-binding fragment thereof at the N-terminus of an antibody light chain, the C-terminus of an antibody light chain, the N-terminus of an antibody heavy chain, the C-terminus of an antibody heavy chain, the N-terminus of the antigen-binding fragment, or the C-terminus of the antigen-binding fragment. In some embodiments, the modified hIL-2 protein is directly fused by a peptide bond to the anti-PD-1 antibody or an antigen-binding fragment thereof. The modified hIL-2 proteins can be, for example, directly fused by a peptide bond to the C-terminal amino acid residue of the anti-PD-1 antibody heavy chain. In some embodiments, the modified hIL-2 protein is fused to the anti-PD-1 antibody or an antigen-binding fragment thereof through a linker.


Fusion of the modified hIL-2 proteins to the antibody or antigen-binding fragments thereof can rescue the modified hIL-2 proteins' ability to bind to and activate the human intermediate affinity IL-2 receptor on PD-1-expressing cells such as T cells and in particular tumor-infiltrating lymphocytes. In some embodiments, the hIL-2 protein that is fused to the antibody or an antigen-binding fragment thereof exhibits potency on the intermediate affinity IL-2 receptor on PD-1-expressing cells that is comparable to the potency of wild type hIL-2 on the intermediate affinity IL-2 receptor.


Fusion of the modified hIL-2 protein to an antibody or antigen-binding fragment thereof can be used to selectively deliver IL-2 signaling to cells expressing the PD-1 target of the antibody or antigen-binding fragment thereof. Without being bound by theory, it is believed that targeting the modified hIL-2 protein to specific cell populations can dramatically amplify the therapeutic effects of the IL-2 (e.g., anti-tumor immunity) without off-target systemic toxicities.


Also disclosed herein are modified human interleukin-2 (hIL-2) proteins comprising a D20A, D20S, D20Q, D20M, D20I, D20V, D20N, D20G, D20T, or D20E substitution at amino acid position 20 and a R38E substitution at amino acid position 38 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345.


The modified hIL-2 proteins can comprise the amino acid sequence of any one of SEQ ID NOs: 307, 607-611, 614, 617, or 620. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 307. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 607. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 608. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 609. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 610. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 611. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 614. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 617. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 620. The modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 307, 607-611, 614, 617, or 620 can further comprise a T3A substitution and/or a C125A substitution. In some embodiments, the modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 307, 607-611, 614, 617, or 620 further comprises a T3A substitution. In some embodiments, the modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 307, 607-611, 614, 617, or 620 further comprises a C125A substitution. In some embodiments, the modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 307, 607-611, 614, 617, or 620 further comprises a T3A substitution and a C125A substitution.


The modified hIL-2 proteins may comprise a D20A substitution and a R38E substitution. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 149.


The modified hIL-2 proteins can further comprise a substitution at amino acid position 3 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. A suitable substitution includes, for example, a T3A. In some embodiments, the modified hIL-2 proteins comprise a T3A substitution, a D20A substitution, and a R38E substitution. In some aspects, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 216.


Alternatively, the modified hIL-2 proteins can further comprise a deletion of amino acid position 3 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. In some embodiments, the modified hIL-2 proteins comprise a deletion of amino acids 1-3, a D20A substitution, and a R38E substitution. In some aspects, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 218.


The modified hIL-2 proteins can further comprise a deletion or substitution at amino acid position 125 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. The substitution at amino acid position 125 can be C125A. In some embodiments, the modified hIL-2 proteins comprise a D20A substitution, a R38E substitution, and a C125A substitution. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 215. In some embodiments, the modified hIL-2 proteins comprise a T3A substitution, a D20A substitution, a R38E substitution, and a C125A substitution. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 217. In some embodiments, the modified hIL-2 proteins comprise a deletion of amino acids 1-3, a D20A substitution, a R38E substitution, and a C125A substitution. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 219.


The modified hIL-2 proteins can exhibit a reduction in potency of at least about 200-fold, at least about 500-fold, at least about 1,000-fold, at least about 2,000-fold, at least about 5,000-fold, at least about 6,500-fold, or at least about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) relative to a non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. In some embodiments, the modified hIL-2 proteins can exhibit a reduction in potency of greater than about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) relative to a non-modified hIL-2. A greater reduction in hIL-2 potency on the high affinity hIL-2 receptor may be possible and acceptable for the modified hIL-2 proteins described herein, but such a reduction may not be quantifiable with the methods described herein due to limits of the cell proliferation assay conditions.


In addition, the modified hIL-2 proteins can exhibit a reduction in potency of at least about 200-fold, at least about 500-fold, at least about 1,000-fold, at least about 2,000-fold, at least about 5,000-fold, at least about 6,500-fold, or at least about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to an non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. In some embodiments, the modified hIL-2 proteins can exhibit a reduction in potency of greater than about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to a non-modified hIL-2.


The modified hIL-2 proteins can exhibit a reduction in potency of up to about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rβγ) and a reduction in potency of up to about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to a non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. The modified hIL-2 proteins can exhibit a reduction in potency of greater than about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) and a reduction in potency of greater than about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to a non-modified hIL-2.


As demonstrated herein, the modified hIL-2 proteins can be fused to an anti-PD-1 antibody or an antigen-binding fragment thereof. The hIL-2 proteins can fused to the anti-PD-1 antibody or an antigen-binding fragment thereof at the N-terminus of an antibody light chain, the C-terminus of an antibody light chain, the N-terminus of an antibody heavy chain, the C-terminus of an antibody heavy chain, the N-terminus of the antigen-binding fragment, or the C-terminus of the antigen-binding fragment. In some embodiments, the modified hIL-2 protein is directly fused by a peptide bond to the anti-PD-1 antibody or an antigen-binding fragment thereof. The modified hIL-2 proteins can be, for example, directly fused by a peptide bond to the C-terminal amino acid residue of the anti-PD-1 antibody heavy chain. In some embodiments, the modified hIL-2 protein is fused to the anti-PD-1 antibody or an antigen-binding fragment thereof through a linker.


Fusion of the modified hIL-2 proteins to the antibody or antigen-binding fragments thereof can rescue the modified hIL-2 proteins' ability to bind to and activate the human intermediate affinity IL-2 receptor on PD-1-expressing cells such as T cells and in particular tumor-infiltrating lymphocytes. In some embodiments, the hIL-2 protein that is fused to the antibody or an antigen-binding fragment thereof exhibits potency on the intermediate affinity IL-2 receptor on PD-1-expressing cells that is comparable to the potency of wild type hIL-2 on the intermediate affinity IL-2 receptor.


Fusion of the modified hIL-2 protein to an antibody or antigen-binding fragment thereof can be used to selectively deliver IL-2 signaling to cells expressing the PD-1 target of the antibody or antigen-binding fragment thereof. Without being bound by theory, it is believed that targeting the modified hIL-2 protein to specific cell populations can dramatically amplify the therapeutic effects of the IL-2 (e.g., anti-tumor immunity) without off-target systemic toxicities.


Human anti-human programmed cell death protein-1 (hPD-1) antibodies


Disclosed herein are human antibody molecules, or antigen-binding fragments thereof, that immunospecifically bind to hPD-1, wherein the human antibody molecule or antigen-binding fragment thereof comprises:

    • a) a heavy chain complementarity determining region 1 (CDR1) comprising the amino acid sequence of SEQ ID NO: 418, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 419, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 420, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 421, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 422, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 423;
    • b) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 386, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 387, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 388, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 389, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 390, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 391;
    • c) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 396, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 397, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 398, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 399, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 400, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 401; or
    • d) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 406, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 407, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 408, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 409, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 410, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 411.


In some embodiments, the human antibody molecules, or antigen-binding fragments thereof, comprise a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 418, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 419, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 420, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 421, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 422, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 423 (referred to herein as “H7-632”).


In some embodiments, the human antibody molecules, or antigen-binding fragments thereof, comprise a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 386, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 387, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 388, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 389, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 390, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 391 (referred to herein as “2H7”).


In some embodiments, the human antibody molecules, or antigen-binding fragments thereof, comprise a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 396, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 397, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 398, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 399, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 400, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 401 (referred to herein as “C51E6-5”).


In some embodiments, the human antibody molecules, or antigen-binding fragments thereof, comprise a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 406, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 407, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 408, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 409, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 410, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 411 (referred to herein as “A2”).


The disclosed human antibody molecules or antigen-binding fragments thereof, can exhibit one or more of the following activities:

    • Bind to PD-1 without inhibiting PD-L1 binding to PD-1;
    • Bind to PD-1 in the presence of standard-of-care anti-PD-1 antibodies used in the clinic (e.g., KEYTRUDAX and OPDIVOX);
    • Be highly selective for PD-1 and do not immunospecifically bind other related B7 family members; and
    • Bind to PD-1 on activated human T cells (EC50 ˜0.1-0.2 nM in a flow cytometry binding assay).


The human antibody molecules, or antigen-binding fragments thereof, can comprise a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 416 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 417 (referred to herein as “H7-632”).


The human antibody molecules, or antigen-binding fragments thereof, can comprise a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 384 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 385 (referred to herein as “2H7”).


The human antibody molecules, or antigen-binding fragments thereof, can comprise a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 394 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 395 (referred to herein as “C51E6-5”).


The human antibody molecules, or antigen-binding fragments thereof, can comprise a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 404 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 405 (referred to herein as “A2”).


The human antibody molecules, or antigen-binding fragments thereof, can comprise a human IgG1 heavy chain constant region.


The human antibody molecules, or antigen binding fragments thereof, can have substitutions or deletions within the constant region to minimize Fc-mediated immune effector function, such as FcγRIIIA-mediated antibody-dependent cell-mediated cytotoxicity (ADCC), FcγRI-and FcγRIIa-dependent antibody-dependent cellular phagocytosis (ADCP), and Clq binding-mediated complement-dependent cytotoxicity (CDC). In some embodiments, the human antibody molecules comprise a L235A substitution, wherein the amino acid numbering is according to EU numbering. In some embodiments, the human antibody molecules comprise a G237A substitution, wherein the amino acid numbering is according to EU numbering. In some embodiments, the human antibody molecules comprise an L235A and a G237A substitution, wherein the amino acid numbering is according to EU numbering.


The human antibody molecules, or antigen-binding fragments thereof, can comprise a heavy chain comprising the amino acid sequence of SEQ ID NO: 414 and a light chain comprising the amino acid sequence of SEQ ID NO: 415 (referred to herein as “H7-632-hIgG1-LAGA”).


The human antibody molecules, or antigen-binding fragments thereof, can comprise a heavy chain comprising the amino acid sequence of SEQ ID NO: 424 and a light chain comprising the amino acid sequence of SEQ ID NO: 425 (referred to herein as “2H7-hIgG4”).


The human antibody molecules, or antigen-binding fragments thereof, can comprise a heavy chain comprising the amino acid sequence of SEQ ID NO: 426 and a light chain comprising the amino acid sequence of SEQ ID NO: 427 (referred to herein as “C51E6-5-hIgG4”).


The human antibody molecules, or antigen-binding fragments thereof, can comprise a heavy chain comprising the amino acid sequence of SEQ ID NO: 428 and a light chain comprising the amino acid sequence of SEQ ID NO: 429 (referred to herein as “A2-hIgG4”).


The human antibody molecules, or antigen-binding fragments thereof, can be fused to a modified hIL-2 protein comprising a substitution at amino acid position 20 and a substitution at amino acid position 38 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. The human antibody molecule, or antigen-binding fragments thereof, can be fused to any of the herein disclosed modified hIL-2 proteins.


When not fused to the antibody molecule or antigen-binding fragment thereof, the modified hIL-2 protein can exhibit reduced potency on both a high affinity hIL-2 receptor and on an intermediate affinity hIL-2 receptor relative to a non-modified hIL-2.


Suitable substitutions at amino acid position 20 of the modified hIL-2 include, for example, any one of a D20A, D20S, D20Q, D20M, D20I, D20V, D20N, D20G, D20T, or D20E substitution.


Suitable substitutions at amino acid position 38 of the modified hIL-2 protein include, for example, any one of an R38E, R38N, R38G, R38H, R38I, R38L, R38M, R38F, R38P, R38S, R38T, R38W, R38Y, R38V, R38A, R38Q, R38D, or a R38K substitution.


In some embodiments, any one of the D20A, D20S, D20Q, D20M, D20I, D20V, D20N, D20G, D20T, or D20E substitutions can be combined with an R38E substitution.


The modified hIL-2 proteins can comprise the amino acid sequence of any one of SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620. The modified hIL-2 proteins can comprise the amino acid sequence of any one of SEQ ID NOs: 134-150, 307, 344, 608, 611, 614, or 620. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 134. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 135. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 136. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 137. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 138. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 139. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 140. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 141. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 142. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 143. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 144. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 145. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 146. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 147. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 148. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 149. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 150. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 307. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 344. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 607. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 608. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 609. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 610. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 611. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 614. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 617. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 620. The modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620 can further comprise a T3A substitution and/or a C125A substitution. In some embodiments, the modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620 further comprises a T3A substitution. In some embodiments, the modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620 further comprises a C125A substitution. In some embodiments, the modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620 further comprises a T3A substitution and a C125A substitution.


The modified hIL-2 protein can comprise a D20A substitution and a R38E substitution.


The modified hIL-2 protein can further comprise a substitution at amino acid position 3 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. A suitable substitution includes, for example, a T3A. In some embodiments, the modified hIL-2 protein comprises a T3A substitution, a D20A substitution, and a R38E substitution. In some aspects, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 216.


Alternatively, the modified hIL-2 protein can further comprise a deletion of amino acid position 3 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. In some embodiments, the modified hIL-2 protein comprises a deletion of amino acids 1-3, a D20A substitution, and a R38E substitution. In some aspects, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 218.


The modified hIL-2 protein can further comprise a deletion or substitution at amino acid position 125 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. The substitution at amino acid position 125 can be C125A. In some embodiments, the modified hIL-2 protein comprises a D20A substitution, a R38E substitution, and a C125A substitution. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 215. In some embodiments, the modified hIL-2 protein comprises a T3A substitution, a D20A substitution, a R38E substitution, and a C125A substitution. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 217. In some embodiments, the modified hIL-2 protein comprises a deletion of amino acids 1-3, a D20A substitution, a R38E substitution, and a C125A substitution. In some embodiments, the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 219.


When not fused to the human antibody molecules or antigen-binding fragments thereof, the modified hIL-2 proteins can exhibit a reduction in potency of at least about 200-fold, at least about 500-fold, at least about 1,000-fold, at least about 2,000-fold, at least about 5,000-fold, at least about 6,500-fold, or at least about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) relative to a non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. In some embodiments, when not fused to the human antibody molecules or antigen-binding fragments thereof, the modified hIL-2 proteins can exhibit a reduction in potency of greater than about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) relative to a non-modified hIL-2. A greater reduction in hIL-2 potency on the high affinity hIL-2 receptor may be possible and acceptable for the modified hIL-2 proteins described herein, but such a reduction may not be quantifiable with the methods described herein due to limits of the cell proliferation assay conditions.


In addition, when not fused to the human antibody molecules or antigen-binding fragments thereof, the modified hIL-2 proteins can exhibit a reduction in potency of at least about 200-fold, at least about 500-fold, at least about 1,000-fold, at least about 2,000-fold, at least about 5,000-fold, at least about 6,500-fold, or at least about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to an non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. In some embodiments, when not fused to the human antibody molecules or antigen-binding fragments thereof, the modified hIL-2 proteins can exhibit a reduction in potency of greater than about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to an non-modified hIL-2.


When not fused to the human antibody molecules or antigen-binding fragments thereof, the modified hIL-2 proteins can exhibit a reduction in potency of up to about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) and a reduction in potency of up to about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to a non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. When not fused to the human antibody molecules or antigen-binding fragments thereof, the modified hIL-2 proteins can exhibit a reduction in potency of greater than about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) and a reduction in potency of greater than about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to a non-modified hIL-2.


Fusion of the modified hIL-2 proteins to the antibody or antigen-binding fragments thereof can rescue the modified hIL-2 proteins' ability to bind to and activate the human intermediate affinity IL-2 receptor on PD-1-expressing cells such as T cells and in particular tumor-infiltrating lymphocytes. In some embodiments, the hIL-2 protein that is fused to the antibody or an antigen-binding fragment thereof exhibits potency on the intermediate affinity IL-2 receptor on PD-1-expressing cells that is comparable to the potency of wild type hIL-2 on the intermediate affinity IL-2 receptor


The modified hIL-2 proteins can be fused to the human antibody molecules or antigen-binding fragments thereof at the N-terminus of an antibody light chain, the C-terminus of an antibody light chain, the N-terminus of an antibody heavy chain, the C-terminus of an antibody heavy chain, the N-terminus of the antigen-binding fragment, or the C-terminus of the antigen-binding fragment. In some embodiments, the hIL-2 protein is directly fused by a peptide bond to the antibody or an antigen-binding fragment thereof. The hIL-2 can be, for example, directly fused by a peptide bond to the C-terminal amino acid residue of the antibody heavy chain. In some embodiments, the hIL-2 protein is fused to the antibody or an antigen-binding fragment thereof through a linker.


Fusion of the human antibody molecules or antigen-binding fragments thereof to the modified hIL-2 proteins can be used to selectively deliver IL-2 signaling to cells expressing PD-1. Without being bound by theory, it is believed that targeting the modified hIL-2 protein to specific cell populations expressing PD-1 can dramatically amplify the therapeutic effects of the IL-2 (e.g., anti-tumor immunity) while reducing or minimizing off-target systemic toxicities.


Immunoconjugates

Disclosed herein are immunoconjugates comprising any of the herein disclosed modified hIL-2 proteins and any of the herein disclosed human antibody molecules, or antigen-binding fragments thereof. The immunoconjugates can comprise:

    • (a) a modified hIL-2 protein comprising a substitution at amino acid position 20 and a substitution at amino acid position 38 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345; and
    • (b) a human antibody molecule, or antigen-binding fragment thereof, that immunospecifically binds to hPD-1, wherein the human antibody molecule or antigen-binding fragment thereof comprises:
      • (i) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 418, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 419, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 420, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 421, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 422, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 423;
      • (ii) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 386, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 387, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 388, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 389, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 390, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 391;
      • (iii) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 396, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 397, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 398, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 399, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 400, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 401; or
      • (iv) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 406, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 407, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 408, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 409, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 410, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 411.


Suitable substitutions at amino acid position 20 of the modified hIL-2 portion of the immunoconjugates include, for example, any of a D20A, D20S, D20Q, D20M, D20I, D20V, D20N, D20G, D20T, or D20E substitution.


Suitable substitutions at amino acid position 38 of the modified hIL-2 portion of the immunoconjugates include, for example, any of an R38E, R38N, R38G, R38H, R38I, R38L, R38M, R38F, R38P, R38S, R38T, R38W, R38Y, R38V, R38A, R38Q, R38D, or a R38K substitution.


In some embodiments, any one of the D20A, D20S, D20Q, D20M, D20I, D20V, D20N, D20G, D20T, or D20E substitutions can be combined with an R38E substitution.


The modified hIL-2 protein portion of the immunoconjugates can comprise the amino acid sequence of any one of SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620. The modified hIL-2 protein portion of the immunoconjugates can comprise the amino acid sequence of any one of SEQ ID NOs: 134-150, 307, 344, 608, 611, 614, or 620. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 134. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 135. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 136. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 137. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 138. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 139. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 140. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 141. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 142. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 143. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 144. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 145. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 146. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 147. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 148. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 149. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 150. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 307. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 344. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 607. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 608. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 609. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 610. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 611. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 614. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 617. In some embodiments, the modified hIL-2 proteins comprise the amino acid sequence of SEQ ID NO: 620. The modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620 can further comprise a T3A substitution and/or a C125A substitution. In some embodiments, the modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620 further comprises a T3A substitution. In some embodiments, the modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620 further comprises a C125A substitution. In some embodiments, the modified hIL-2 protein of any one of amino acid sequences SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620 further comprises a T3A substitution and a C125A substitution.


The modified hIL-2 protein portion of the immunoconjugates can comprise a D20A substitution and a R38E substitution.


The modified hIL-2 protein portion of the immunoconjugates can further comprise a substitution at amino acid position 3 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. A suitable substitution includes, for example, a T3A. In some embodiments, the modified hIL-2 protein portion of the immunoconjugates comprise a T3A substitution, a D20A substitution, and a R38E substitution. In some aspects, the modified hIL-2 protein portion of the immunoconjugates comprise the amino acid sequence of SEQ ID NO: 216.


Alternatively, the modified hIL-2 protein portion of the immunoconjugates can further comprise a deletion of amino acid position 3 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. In some embodiments, the modified hIL-2 protein portion of the immunoconjugates comprise a deletion of amino acids 1-3, a D20A substitution, and a R38E substitution. In some aspects, the modified hIL-2 protein portion of the immunoconjugates comprise the amino acid sequence of SEQ ID NO: 218.


The modified hIL-2 protein portion of the immunoconjugates can further comprise a deletion or substitution at amino acid position 125 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345. The substitution at amino acid position 125 can be C125A. In some embodiments, the modified hIL-2 protein portion of the immunoconjugates comprise a D20A substitution, a R38E substitution, and a C125A substitution. In some embodiments, the modified hIL-2 protein portion of the immunoconjugates comprise the amino acid sequence of SEQ ID NO: 215. In some embodiments, the modified hIL-2 protein portion of the immunoconjugates comprise a T3A substitution, a D20A substitution, a R38E substitution, and a C125A substitution. In some embodiments, the modified hIL-2 protein portion of the immunoconjugates comprise the amino acid sequence of SEQ ID NO: 217. In some embodiments, the modified hIL-2 protein portion of the immunoconjugates comprise a deletion of amino acids 1-3, a D20A substitution, a R38E substitution, and a C125A substitution. In some embodiments, the modified hIL-2 protein portion of the immunoconjugates comprise the amino acid sequence of SEQ ID NO: 219.


The modified hIL-2 protein portion of the immunoconjugates can exhibit a reduction in potency of at least about 200-fold, at least about 500-fold, at least about 1,000-fold, at least about 2,000-fold, at least about 5,000-fold, at least about 6,500-fold, or at least about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) relative to a non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. In some embodiments, the modified hIL-2 protein portion of the immunoconjugates can exhibit a reduction in potency of greater than about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) relative to a non-modified hIL-2. A greater reduction in hIL-2 potency on the high affinity hIL-2 receptor may be possible and acceptable for the modified hIL-2 proteins described herein, but such a reduction may not be quantifiable with the methods described herein due to limits of the cell proliferation assay conditions.


In addition, the modified hIL-2 protein portion of the immunoconjugates can exhibit a reduction in potency of at least about 200-fold, at least about 500-fold, at least about 1,000-fold, at least about 2,000-fold, at least about 5,000-fold, at least about 6,500-fold, or at least about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to an non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. In some embodiments, the modified hIL-2 protein portion of the immunoconjugates can exhibit a reduction in potency of greater than about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to an non-modified hIL-2.


The modified hIL-2 protein portion of the immunoconjugates can exhibit a reduction in potency of up to about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) and a reduction in potency of up to about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to a non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. The modified hIL-2 protein portion of the immunoconjugates can exhibit a reduction in potency of greater than about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) and a reduction in potency of greater than about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to a non-modified hIL-2.


The hIL-2 protein portion of the immunoconjugates can be fused to the antibody or an antigen-binding fragment thereof at the N-terminus of an antibody light chain, the C-terminus of an antibody light chain, the N-terminus of an antibody heavy chain, the C-terminus of an antibody heavy chain, the N-terminus of the antigen-binding fragment, or the C-terminus of the antigen-binding fragment. In some embodiments, the hIL-2 protein portion of the immunoconjugates is directly fused by a peptide bond to the human antibody molecule or an antigen-binding fragment thereof. The hIL-2 protein portion of the immunoconjugates can be, for example, directly fused by a peptide bond to the C-terminal amino acid residue of the antibody heavy chain. In some embodiments, the hIL-2 protein portion of the immunoconjugates is fused to the human antibody molecule or an antigen-binding fragment thereof through a linker.


Fusion of the modified hIL-2 proteins to the human antibody molecules or antigen-binding fragments thereof can rescue the modified hIL-2 proteins' ability to activate the intermediate affinity IL-2 receptor. In some embodiments, the immunoconjugate is able to activate the intermediate affinity IL-2 receptor to a degree that is comparable to wild type hIL-2 activation of the intermediate affinity IL-2 receptor.


In some embodiments, the human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates comprise a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 418, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 419, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 420, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 421, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 422, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 423.


In some embodiments, the human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates comprise a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 386, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 387, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 388, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 389, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 390, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 391.


In some embodiments, the human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates comprise a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 396, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 397, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 398, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 399, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 400, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 401.


In some embodiments, the human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates comprise a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 406, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 407, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 408, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 409, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 410, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 411.


The human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates can comprise a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 416 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 417.


The human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates can comprise a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 384 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 385.


The human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates can comprise a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 394 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 395.


The human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates can comprise a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 404 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 405.


The human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates can comprise an IgG1 heavy chain constant region.


The human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates can have substitutions or deletions within the constant region to minimize Fc-mediated immune effector function, such as FcγRIIIA-mediated antibody-dependent cell-mediated cytotoxicity (ADCC), FcγRI-and FcγRIIa-dependent antibody-dependent cellular phagocytosis (ADCP), and Clq binding-mediated complement-dependent cytotoxicity (CDC). In some embodiments, the human antibody molecule portion of the immunoconjugates comprise a L235A substitution, wherein the amino acid numbering is according to EU numbering. In some embodiments, the human antibody molecule portion of the immunoconjugates comprise a G237A substitution, wherein the amino acid numbering is according to EU numbering. In some embodiments, the human antibody molecule portion of the immunoconjugates comprise an L235A and a G237A substitution, wherein the amino acid numbering is according to EU numbering.


The human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates can comprise a heavy chain comprising the amino acid sequence of SEQ ID NO: 414 and a light chain comprising the amino acid sequence of SEQ ID NO: 415.


The human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates can comprise a heavy chain comprising the amino acid sequence of SEQ ID NO: 424 and a light chain comprising the amino acid sequence of SEQ ID NO: 425.


The human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates can comprise a heavy chain comprising the amino acid sequence of SEQ ID NO: 426 and a light chain comprising the amino acid sequence of SEQ ID NO: 427.


The human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugates can comprise a heavy chain comprising the amino acid sequence of SEQ ID NO: 428 and a light chain comprising the amino acid sequence of SEQ ID NO: 429.


The immunoconjugates can have one or more of the following properties:

    • Binds to PD-1 but does not inhibit PD-L1 binding to PD-1;
    • Binds to PD-1 in the presence of standard-of-care anti-PD-1 antibodies used in the clinic (e.g., KEYTRUDA″ and OPDIVOR);
    • Is highly selective for PD-1 and does not immunospecifically bind other related B7 family members;
    • Binds PD-1 on activated human T cells (EC50 ˜0.1-0.2 nM in a flow binding assay);
    • Has reduction in potency of at least about 200-fold, at least about 500-fold, at least about 1,000-fold, at least about 2,000-fold, at least about 5,000-fold, at least about 6,500-fold, or at least about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) relative to a non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. In some embodiments, the modified hIL-2 protein portion of the immunoconjugates can exhibit a reduction in potency of greater than about 10,000-fold on the high affinity IL-2 receptor (hIL-2Rαβγ) relative to a non-modified hIL-2. A greater reduction in hIL-2 potency on the high affinity hIL-2 receptor may be possible and acceptable for the modified hIL-2 proteins described herein, but such a reduction may not be quantifiable with the methods described herein due to limits of the cell proliferation assay conditions;
    • Has a reduction in potency of at least about 200-fold, at least about 500-fold, at least about 1,000-fold, at least about 2,000-fold, at least about 5,000-fold, at least about 6,500-fold, or at least about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to an non-modified hIL-2, for example as quantified by a comparison in EC50 values in an hIL-2-dependent cell proliferation assay described herein. In some embodiments, the modified hIL-2 protein portion of the immunoconjugates can exhibit a reduction in potency of greater than about 10,000-fold on the intermediate affinity IL-2 receptor (hIL-2Rβγ) relative to a non-modified hIL-2;
    • Rescues and expands PD-1-expressing human memory T cell subsets in a GvHD animal model; and
    • Has minimal or no impact on body weight, blood chemistry, or hematology parameters after single dose at 1 and 10 mg/kg in cynomolgus monkeys.


In some embodiments, the immunoconjugate comprises a modified hIL-2 protein comprising a T3A substitution, a R38E substitution, a D20A substitution, and a C125A substitution fused to the C-terminus of the antibody heavy chain of a human anti-hPD-1 antibody comprising a human IgG1 framework with a L235A substitution and a G237A substitution. In some embodiments, the immunoconjugate comprises a light chain comprising the amino acid sequence of SEQ ID NO: 415 and a heavy chain-hIL-2 protein fusion comprising the amino acid sequence of SEQ ID NO: 532.


The disclosed immunoconjugates can selectively deliver IL-2 signaling to PD-1-expressing T cells. The human antibody molecule, or antigen-binding fragment thereof, portion of the immunoconjugate is utilized solely to deliver the modified hIL-2 to PD-1-expressing cells and does not block PD-1 receptor function, as do classical anti-PD-1 inhibitor antibodies such as OPDIVOR and KEYTRUDAR. The primary mechanism-of-action of the herein disclosed immunoconjugates is via the T cell selective activity of IL-2. The human PD-1 receptor is primarily expressed on a minor subset of T cells with potent tumor reactivity. Without being bound by theory, it is believed that targeting the modified hIL-2 protein portion of the immunoconjugate to this population of T cells can dramatically amplify anti-tumor immunity while reducing or minimizing off-target systemic IL-2-mediated toxicities mediated by cell populations that lack PD-1 expression.


Pharmaceutical compositions, polynucleotides, vectors, and cells


Disclosed herein are pharmaceutical compositions comprising any of the herein disclosed modified hIL-2 proteins, any of the herein disclosed human antibody molecules or antigen-binding fragments thereof, or any of the herein disclosed immunoconjugates. In some embodiments, the pharmaceutical compositions comprise any of the herein disclosed modified hIL-2 proteins. In some embodiments, the pharmaceutical compositions comprise any of the herein disclosed human antibody molecules or antigen-binding fragments thereof. In some embodiments, the pharmaceutical compositions comprise any of the herein disclosed immunoconjugates.


Disclosed herein are polynucleotides comprising a nucleic acid sequence encoding any of the herein disclosed modified hIL-2 proteins, any of the herein disclosed human antibody molecules or antigen-binding fragments thereof, or any of the herein disclosed immunoconjugates. In some embodiments, the polynucleotides comprise a nucleic acid sequence encoding any of the herein disclosed modified hIL-2 proteins. In some embodiments, the polynucleotides comprise a nucleic acid sequence encoding any of the herein disclosed human antibody molecules or antigen-binding fragments thereof. In some embodiments, the polynucleotides comprise a nucleic acid sequence encoding any of the herein disclosed immunoconjugates.


Disclosed herein are vectors comprising a polynucleotide comprising a nucleic acid sequence that encodes any of the herein disclosed modified hIL-2 proteins, any of the herein disclosed human antibody molecules or antigen-binding fragments thereof, or any of the herein disclosed immunoconjugates. In some embodiments, the vectors comprise a polynucleotide comprising a nucleic acid sequence that encodes any of the herein disclosed modified hIL-2 proteins. In some embodiments, the vectors comprise a polynucleotide comprising a nucleic acid sequence that encodes any of the herein disclosed human antibody molecules or antigen-binding fragments thereof. In some embodiments, the vectors comprise a polynucleotide comprising a nucleic acid sequence that encodes any of the herein disclosed immunoconjugates.


Also disclosed herein are transformed cells comprising any of the herein disclosed vectors.


Methods of treatment and uses


Disclosed herein are methods of treating a disease or disorder in a subject, the methods comprising administering a therapeutically effective amount of any of the herein disclosed immunoconjugates or pharmaceutical compositions to the subject to thereby treat the disease.


Also disclosed are uses of any of the herein disclosed immunoconjugates or pharmaceutical compositions in the preparation of a medicament for the treatment of a disease. Also disclosed are uses of any of the herein described immunoconjugates or pharmaceutical compositions for the treatment of a disease or disorder.


The disclosed immunoconjugates and pharmaceutical compositions can be used to treat diseases or disorders in which stimulation of the subject's immune system would be beneficial. In some embodiments, the subject has an insufficient or deficient immune response and the disclosed immunoconjugates and pharmaceutical compositions stimulate the subject's immune response. The antibody portion of the immunoconjugate can serve to direct the modified hIL-2 protein to the subject's immune cells by, for example, binding to an antigen expressed on the surface of the immune cell. In the case of the disclosed modified hIL-2 protein-human anti-hPD-1 antibody immunoconjugates, for example, the anti-PD-1 antibody (or antigen-binding fragment thereof) portion of the immunoconjugate can bind PD-1 expressed on T cells, thereby delivering the modified hIL-2 protein to the T cells. Targeting the modified IL-2 protein to specific cells can dramatically amplify the therapeutic efficacy of the IL-2 protein without off-target systemic toxicities mediated by cell populations that lack the antigen expression. The disclosed methods and uses can be used to treat, for example, cancer, autoimmune diseases and inflammatory diseases, and chronic infections and infectious diseases. Exemplary cancers include bladder cancer, brain cancer, head and neck cancer, pancreatic cancer, lung cancer, non-small cell lung carcinoma, breast cancer, ovarian cancer, uterine cancer, cervical cancer, endometrial cancer, esophageal cancer, colon cancer, colorectal cancer, rectal cancer, gastric cancer, prostate cancer, blood cancer, skin cancer, melanoma, squamous cell carcinoma, bone cancer, and kidney cancer. Exemplary autoimmune diseases and inflammatory disease include systemic lupus erythematosus (SLE), Type 1 diabetes, rheumatoid arthritis, ankylosing spondylitis, psoriasis, Behcet's disease, granulomatosis with polyangiitis, Takayasu's disease, Crohn's disease, ulcerative colitis, autoimmune hepatitis, sclerosing cholangitis, Sjoren's syndrome, alopecia areata, and inflammatory myopathies. Exemplary infectious diseases include HIV and hepatitis B.


In some embodiments, the disease is cancer. The methods and uses can comprise administering a therapeutically effective amount of any of the herein disclosed modified hIL-2 protein-antibody conjugates to the subject to thereby treat the cancer. In some aspects, the cancer is melanoma. In some aspects, the cancer is non-small cell lung carcinoma.


EXAMPLES

The following examples are provided to further describe some of the embodiments disclosed herein. The examples are intended to illustrate, not to limit, the disclosed embodiments.


General Methods

Protocol A. Flow cytometry screen for binding of anti-hPD-1 antibodies or anti-hPD-1 antibody-attenuated hIL-2 fusions to human PD-1


To test for binding to hPD-1, antibodies and antibody-attenuated hIL-2 fusion proteins were characterized in full titration curves. A Jurkat cell line was transfected with a mammalian vector which encoded amino acids 1-185 of human PD-1 (SEQ ID NO: 346) to stably express the extracellular domain and a portion of the transmembrane domain of human PD-1, and this transfected cell line was used to determine binding of anti-hPD-1 antibodies. Jurkat+hPD-1 cells were washed and added to 96-well plates at 100,000 cells per well in FACS buffer (PBS, 0.2% Heat-inactivated Fetal Bovine Serum). Cells were blocked with 1:50 dilution of human FcR Block (Miltenyi) for 10 minutes at 4° C. and washed with FACS buffer.


Antibodies or antibody-attenuated hIL-2 immunoconjugates (fusion proteins) were serially diluted six-fold in FACS buffer for an 8-point curve and added to human PD-1 expressing Jurkat cells for 1 hour on ice in 100 μL volume. Cells were washed and re-suspended in FACS buffer containing 1:40 dilution of Allophycocyanin conjugated anti-human IgG Fc monoclonal antibody. Cells were washed once more, re-suspended in FACS buffer containing 1:1000 dilution of Sytox Green (Thermo Fisher) and flow cytometric analysis was conducted on the BD FACS Canto II, BD Celesta or BD Fortessa (BD Biosciences) flow cytometers. The geometric mean fluorescent intensity (gMFI) was calculated using FlowJo software version 10. Half maximal effective concentration (EC50) values were calculated from the gMFI of the Allophycocyanin signal across the titrated concentrations using GraphPad Prism 7 software.


Protocol B. Flow cytometry competition screen for binding of anti-hPD-1 antibodies or anti-hPD-1 antibody-attenuated hIL-2 fusions to human PD-1


Antibodies and antibody-attenuated hIL-2 fusion proteins were tested for the ability to bind human PD-1 in the presence of a saturating concentration of anti-hPD-1 #1-mIgG2b-N297A (sequence comprising the heavy and light chain variable region sequences of nivolumab, clone 5C4, as described in U.S. Patent Pub. No. US 2009/0217401A1, formatted onto a murine IgG2b-N297A background) (SEQ ID NOs: 348 and 349) or anti-hPD-1 #2-mIgG2b-N297A (sequence comprising the heavy and light chain variable region sequences of pembrolizumab (clone 109A-H/K09A-L-11) as described in Int'l Pub. No. WO2008/156712A1, formatted onto a murine IgG2b-N297A background) (SEQ ID NOs: 350 and 351).


Antibodies or antibody-attenuated hIL-2 fusion proteins were serially diluted six-fold for an 8-point titration curve with and without saturating amounts of 10 UM anti-hPD-1 #1-mIgG2b-N297A or anti-hPD-1 #2-mIgG2b-N297A. Briefly, Jurkat cells stably expressing hPD-1 (as described in Protocol A above) were washed and re-suspended in FACS buffer containing 1:50 dilution of human FcR Blocking reagent. Cells were incubated at 4° C. for 10 minutes and washed. Cells were then re-suspended in 100 μL volume with anti-hPD-1 #1-mIgG2b-N297A or anti-hPD-1 #2-mIgG2b-N287A diluted in FACS buffer to 10 UM and incubated at 4° C. for one hour. Cells were washed and incubated with test antibodies or antibody-attenuated hIL-2 fusion proteins serially diluted six-fold for an 8-point curve in 100 μL volume for one hour at 4° C. To detect bound test anti-hPD-1 antibodies or anti-hPD-1-attenuated hIL-2 fusion proteins, cells were washed again and incubated with 1:40 dilution of Allophycocyanin-conjugated anti-human IgG Fc monoclonal antibody for 45 minutes on ice. Cells were washed and re-suspended in FACS buffer containing 1:1000 dilution of Sytox Green (Thermo Fisher). To generate a comparison, Jurkat cells stably expressing human PD-1 were incubated with only the titrated test antibodies or antibody-attenuated hIL-2 fusion proteins (without anti-hPD-1 #1-mIgG2b-N297A or anti-hPD-1 #2-mIgG2b-N297A) and subsequently with 1:40 dilution of Allophycocyanin-conjugated anti-human IgG Fc secondary. As a control, the variable regions of anti-hPD-1 #1 and anti-hPD-1 #2 were cloned into hIgG4 frameworks and were assessed with and without the addition of anti-hPD-1 #1-mIgG2b-N297A or anti-hPD-1 #2-mIgG2b-N297A. Flow cytometry was carried out on the BD Canto II, BD Celesta, or BD Fortessa (BD Biosciences) flow cytometers and gMFI was calculated using FlowJo software version 10. EC50 values were calculated from the gMFI of the Allophycocyanin signal across the titrated concentrations using GraphPad Prism 7 software.


Protocol C. Cell-based screen for characterization of non-antagonist anti-hPD-1 antibodies or anti-hPD-1 antibody-attenuated hIL-2 fusions


Human PD-1 antibodies and anti-hPD-1-attenuated hIL-2 fusion proteins were characterized for the ability to block hPD-1 from binding to ligand hPD-L1 (SEQ ID NO: 584). Anti-hPD-1 antibodies and anti-hPD-1-attenuated hIL-2 fusion proteins were either characterized as an antagonist or non-antagonist using an in vitro cell-based human PD-1/PD-L1 blockade bioassay (Promega, Cat #J1255). This co-culture assay utilized two cell lines: FCyR11b artificial Antigen Presenting Cells/Chinese Ovary Hamster K1 (aAPC/CHO-K1) and Jurkat Effector cells. aAPC/CHO K1 cells stably express both human PD-L1 ligand and a cell surface protein to activate cognate T cell receptors (TCRs) while Jurkat Effector cells express hPD-1 and a luciferase reporter under the control of Nuclear Factor of Activated T cells response element (NFAT-RE). When these cells are co-cultured in the presence of a non-antagonistic antibody, hPD-1/hPD-L1 interaction inhibits TCR signaling and no luminescence is detected. In the presence of an antibody that antagonizes hPD-1 interaction with hPD-L1 (SEQ ID NO: 584), the inhibitory signal is disrupted and luminescence is detected.


The thaw-and-use assay was performed according to manufacturer's instructions. In short, aAPC/CHO-K1 cells were first thawed and plated at 30,000 cells per well in flat-bottom 96-well plates for 18 hours at 37° C. in a 5% CO2 incubator. After cells had adhered, the media was removed and 200 nM or 1000 nM test antibodies or antibody-attenuated hIL-2 fusion proteins were diluted in 40 μL assay buffer (RPMI 1640 medium+1% FBS) and added to the aAPC/CHO-K1 cells. A human IgG4 isotype control monoclonal antibody which targeted Keyhole Limpet Hemocyanin (KLH) clone C3 (SEQ ID NOs: 585 and 586) was used as a negative control. Jurkat effector cells expressing hPD-1 were added at 24,000 cells per well in 40 μL volume. The final concentration of fixed antibodies tested was 100 nM or 500 nM. In some examples, a range of concentrations of anti-hPD-11 or anti-hPD-1-attenuated hIL-2 fusion proteins were tested in this co-culture assay, with the top concentration in a five-fold titration series of 500 nM (FIG. 7).


The co-culture assay was incubated at 37° C. in a 5% CO2 incubator for an additional 18-20 hours. To read the luminescence signal, plates were allowed to come to room temperature, and 80 μL of the Bio-Glo™ reagent was added to each well. The plates were incubated for 15 minutes in the dark at room temperature and luminescence was read on a Victor X luminometer (Perkin Elmer). Relative luminescence units (RLU) were averaged for each triplicate and graphed using GraphPad Prism 7 software.


Protocol D. In vitro phosphorylated STAT5 assay to test attenuation of hIL-2 variants


The level of attenuation of hIL-2 receptor activation activity of antibody-attenuated hIL-2 fusion proteins was characterized using a phosphorylated STAT5 assay. Variants were tested in both hIL-2 responsive human natural killer NK-92 cells and engineered human erythroleukemic TF1 cells. The NK-92 cell line naturally expresses the high-affinity hIL-2 receptor (IL-2Rαβγ) at physiologic levels, while the TF1 cell line that naturally expresses the IL-2RY (SEQ ID NO: 352) was engineered to also stably express human CD122 (IL-2RB) (SEQ ID NO: 353) for expression of the intermediate affinity hIL-2 receptor complex (IL-2Rβγ). This TF1+IL-2Rβ stable cell line does not express the IL-2Rα(SEQ ID NO: 354). Both NK-92 and TF1+IL-2Rβ cell lines were used to assess the level of attenuation of IL-2 potency in these cell-based potency assays as fixed concentration screens and full titration curves.


To perform the fixed concentration screen, 100,000 NK-92 cells or TF1+IL-2Rβ cells were plated into 96 wells in 50 μL of fresh growth medium lacking human IL-2 cytokine and incubated overnight at 37° C. in a CO2 incubator. After 15-16 hours, human IL-2 starved cells were treated with 25.7 nM recombinant hIL-2 (denoted as rhIL-2) (SEQ ID NO: 345) or test antibody-attenuated hIL-2 fusion proteins for the NK-92 cell assay, or with 33.3 nM hIL-2 or test hIL-2 variants for the TF1+IL-2Rβ cell assay. Cells were incubated at 37° C., 5% CO2 for 10 minutes. Cells were fixed with Cytofix Buffer (BD Biosciences) for 10 minutes at 37° C. and then permeabilized after treatment with Perm Buffer III (BD Biosciences) for 30 minutes on ice. hIL-2-dependent Stat5 phosphorylation was detected after staining fixed and permeabilized cells with Alexa Fluor-647 conjugated anti-Stat5 antibody (BD Biosciences) at 0.5 μL per sample for 45 minutes at room temperature in the dark. Cells were washed and reagents were diluted in BD Pharmingen Buffer (BD Biosciences). Stained cells were acquired on a FACS-Celesta cytometer (BD Biosciences) and analyzed using FlowJo software version 10.7.2. The assays were performed in cohorts but normalized using the rhIL-2 for each plate. The degree of attenuation of selected antibody-attenuated hIL-2 fusion proteins were evaluated in an 8-point, 6-fold serially titrated curve ranging from 1200 nM to 7 pM on both NK-92 and TF1+IL-2Rβ cell lines. The procedure for the pStat5 curves was performed in the same manner as the method described above. EC50 values were calculated from the geometric mean fluorescent intensity (gMFI) across the titrated concentrations using GraphPad Prism 7 software. The fold change in activity from rhIL-2 was calculated by dividing the EC50 values for the variants by the EC50 of hIL-2.


Protocol E. In vitro cell-based proliferation assay to test attenuation of antibody-attenuated hIL-2 fusion proteins


The antibody-attenuated hIL-2 fusion proteins were also tested for attenuated hIL-2 activity in hIL-2 dependent cell proliferation assays. 10,000 NK-92 cells (expressing the high affinity receptor hIL-2Rαβγ) or TF1+IL-2Rβ cells (expressing the intermediate affinity receptor hIL-2Rβγ) suspended in 50 μL of fresh growth medium without hIL-2 cytokine were plated per well in 96-well U-bottom cell culture plate. Eight point, 6-fold serial titrations of antibody-attenuated hIL-2 fusion proteins with a highest concentration of 996 nM were diluted in fresh media and overlaid on cells in wells. Cells were incubated at 37° C. in a 5% CO2 incubator for 3 days for TF1+IL-2Rβ cells or 4 days for NK-92 cells. To measure proliferation, Cell-Titer-Glo (Promega) was added to wells, incubated for 10 minutes at room temperature and luminescence was read for 0.1 second per well using a VictorX Multilabel Plate Reader (Perkin Elmer). EC50 values were calculated from the relative luminescence units (RLU) across the titrated concentrations using GraphPad Prism 7 software. The fold change in activity from rhIL-2 was calculated by dividing the EC50 values for the variants by the EC50 of hIL-2. The assays were performed in cohorts but normalized using the rhIL-2 EC50 value for each plate.


Example 1: Optimization of Antibody-Attenuated hIL-2 Fusion Protein Variants and Determination of their hIL-2 Activity on the Intermediate and High-Affinity hIL-2 Receptor Complexes

In order to determine the optimal structures for an antibody-attenuated hIL-2 fusion protein, non-attenuated hIL-2 was fused to an anti-DNase I antibody (clone 1H3) designated as 1H3-hIgG1 (SEQ ID NO: 379, SEQ ID NO: 374) in the antibody variable region in a variety of ways as illustrated in FIG. 1. Variations included the hIL-2 fused at the N-terminus of the human anti-DNase I antibody (clone 1H3) immunoglobulin hIgG1 heavy chain or human kappa light chain via a direct fusion (df) denoted as hIL-2 Nterm light chain df (SEQ ID NO: 379, SEQ ID NO: 356), hIL-2 Nterm heavy chain df (SEQ ID NO: 358, SEQ ID NO: 374) or six amino acid linker (L6) (SEQ ID NO: 355) denoted as hIL-2 Nterm light chain L6 fusion (SEQ ID NO: 379, SEQ ID NO: 357) and hIL-2 Nterm heavy chain L6 fusion (SEQ ID NO: 359, SEQ ID NO: 374). Variations in which the hIL-2 moiety was fused to the C-terminus of both the heavy chains and light chains via df or L6 were also created and denoted as hIL-2 Cterm heavy chain df (SEQ ID NO: 360, SEQ ID NO: 374), hIL-2 Cterm heavy chain L6 fusion (SEQ ID NO: 361, SEQ ID: 374), hIL-2 Cterm light chain df (SEQ ID NO:379, SEQ ID NO: 362), hIL-2 Cterm light chain L6 fusion (SEQ ID NO:379, SEQ ID NO: 363). Further variations were generated in which a CD25/IL-2Rαextracellular domain (amino acids 1-164) (SEQ ID NO: 126) was fused to the N-terminus or C-terminus of the heavy chains or the kappa light chains to interfere with the binding of the IL-2 to CD25 of the IL-2 receptor (FIG. 2). In these constructs, human CD25 extracellular domain (amino acids 1-164) (SEQ ID NO: 126) was fused to human IL-2 via a 20 amino acid linker (L20) (SEQ ID NO: 364), which was then directly fused or fused via an L6 linker (SEQ ID NO: 355) to 1H3-hIgG1 heavy chain or light chain at the N terminus: hCD25-L20-hIL-2 Nterm heavy chain df (SEQ ID NO: 365, SEQ ID NO: 374), hCD25-L20-hIL-2 Nterm heavy chain L6 fusion (SEQ ID NO: 366, SEQ ID NO: 374), hCD25-L20-hIL-2 Nterm light chain df (SEQ ID NO: 379, SEQ ID NO: 367), hCD25-L20-hIL-2 Nterm light chain L6 fusion (SEQ ID NO: 379, SEQ ID NO: 368). Lastly, a final set of variants in which the CD25/IL-2Rαextracellular domain moiety (SEQ ID NO: 126) fused to the C-terminus of the heavy chain and kappa light chains were created: hCD25-L20-hIL-2 Cterm heavy chain df (SEQ ID NO: 369, SEQ ID NO: 374), hCD25-L20-hIL-2 Cterm heavy chain L6 fusion (SEQ ID NO: 370, SEQ ID NO: 374), hCD25-L20-hIL-2 Cterm light chain df (SEQ ID NO: 379, SEQ ID NO: 371), hCD25-L20-hIL-2 Cterm light chain L6 fusion (SEQ ID NO: 379, SEQ ID NO:372). These antibody-hIL-2 fusion proteins were produced, expressed, and Protein-A purified using standard techniques. The 16 N- or C-terminus and linker variants described above were evaluated in an in vitro cell-based phosphorylated STAT5 assay using an 8-point, 6-fold serial titration, as described in Protocol D.


Table 1 summarizes the EC50 calculated over the 8-point, 6-fold serially titrated curves using the geometric mean fluorescence intensity (gMFI) calculated by the FlowJo version 10 software. The fold change from rhIL-2 was also calculated for each variant as a measurement of the level of attenuation as compared to the activity of the rhIL-2 positive control. Some EC50 values were unable to be calculated by the GraphPad Prism 7 software and were marked as Not Calculated (NC); however, based on dose-titration curves there was no attenuation for these variants.


Fusions of the hIL-2 moiety to the N-terminus or C-terminus of the immunoglobulin heavy chain resulted in no reduction in IL-2 activity when compared to rhIL-2 on cell lines expressing the high-affinity hIL-2 receptor (NK-92) or intermediate-affinity hIL-2 receptor (TF1+IL-2RB). The direct fusion (df) of hIL-2 to the antibody component of the fusion protein resulted in no change in IL-2 activity when compared with fusion employing a six amino acid linker (L6) between the IL-2 and antibody components. Similarly, fusions of the IL-2 component to the heavy chain or light chain of the antibody component resulted in no change in IL-2 activity when compared to rhIL-2. All N- or C-terminus and linker fusion protein variants in which the hCD25/hIL-2Rαmoiety was fused to hIL-2 were predicted to exhibit reduced binding of the fusion protein to the CD25 of the hIL-2 receptor on cells. Experimentally these constructs exhibited strongly attenuated hIL-2 activity (by at least 45-fold) on the high affinity IL-2 receptor (NK-92) and by 18-fold on the intermediate hIL-2 receptor (TF1+IL-2RB).









TABLE 1







pSTAT5 EC50 and fold change on fusion protein domain variants


















Attenuation

Fold
Attenuation






based on
pSTAT5
change
based on


HC or LC
HC and
pSTAT5
Fold change
dose-titration
EC50
from rhIL-2
dose-titration


Component Of
LC SEQ
EC50
from rhIL-2
curves
(TF1 +
(TF1 +
curves (TF1 +


Fusion Protein
ID NOs:
(NK-92)
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)
IL-2Rβ)





hIL-2 Nterm
358, 374
<0.1 a

    1a

Not
 1.11
2
Not


heavy chain df



Attenuated


Attenuated


hIL-2 Nterm
359, 374
NCa
NCa
Not
 0.19
0
Not


heavy chain L6



Attenuated


Attenuated


fusion









hIL-2 Nterm
379, 356
<0.1 a

    1a

Not
 0.52
1
Not


light chain df



Attenuated


Attenuated


hIL-2 Nterm
379, 357
<0.1 a

    0a

Not
 0.13
0
Not


light chain L6



Attenuated


Attenuated


fusion









hIL-2 Cterm
360, 374
<0.1a 

    0a

Not
<0.1 
0
Not


heavy chain df



Attenuated


Attenuated


hIL-2 Cterm
361, 374
NCa
NCa
Not
<0.1 
0
Not


heavy chain L6



Attenuated


Attenuated


fusion









hIL-2 Cterm
379, 362
NCa
NCa
Not
 1.15
1
Not


light chain df



Attenuated


Attenuated


hIL-2 Cterm
379, 363
<0.1a 

    0a

Not
 0.25
0
Not


light chain L6



Attenuated


Attenuated


fusion









hCD25-L20-
365, 374
7.42
1052 
Attenuated
190.50 a
314a  
Attenuated


hIL-2 Nterm









heavy chain df









hCD25-L20-
366, 374
2.24
318
Attenuated
10.70
18 
Attenuated


hIL-2 Nterm









heavy chain L6









fusion









hCD25-L20-
379, 367
106.80 
15149 
Attenuated
328.50 a
542a  
Attenuated


hIL-2 Nterm









light chain df









hCD25-L20-
379, 368
4.45
631
Attenuated
27.88
46 
Attenuated


hIL-2 Nterm









light chain L6









fusion









hCD25-L20-
369, 374
1.89
149
Attenuated
 93.89a
104a  
Attenuated


hIL-2 Cterm









heavy chain df









hCD25-L20-
370, 374
6.09
479
Attenuated
 90.53a
101a  
Attenuated


hIL-2 Cterm









heavy chain L6









fusion









hCD25-L20-
379, 371
0.58
 45
Attenuated
156.90a
174a  
Attenuated


hIL-2 Cterm









light chain df









hCD25-L20-
379, 372
1.76
138
Attenuated
221.90a
247a  
Attenuated


hIL-2 Cterm









light chain L6









fusion





NC = Not Calculated;



a = Fold change is an estimate only since a full four parameter logistic curve was not reached







Example 2: Antibody-Attenuated hIL-2 Fusion Protein Variant Production and Determination of their Binding Kinetics to Recombinant Human CD25 and/or Human CD122

Since there was no reduction in hIL-2 activity in the various N-terminus or C-terminus immunoglobulin heavy chain fusion proteins, the hIL-2 Cterm heavy chain L6 fusion (SEQ ID NOs: 361, 374), designated as “1H3-hIgG1-L6-hIL-2”, was used as the base construct for antibody-attenuated-hIL-2 fusion protein variants with substitutions in the hIL-2 moiety. Single, double and/or multiple amino acid substitutions were introduced into selected residues of human IL-2 in order to investigate the role those residues play in the recognition of either human CD25/IL-2Rαand/or human CD122/IL-2Rβ or CD132/IL-2Rγ (human IL-2R subunits). Over three hundred antibody-attenuated hIL-2 fusion protein variants with substitutions in the hIL-2 moiety were generated and evaluated in 6 rounds. These variants were first screened using a flow-based phosphorylated STAT5 (pSTAT5) assay at a fixed concentration on IL-2 dependent cell lines (NK-92 and TF1+IL-2RB) as well as in dose-titration curves. Phosphorylated STAT5 is a downstream signal of IL-2 activity and was used as a snapshot measurement of IL-2 potency. IL-2 dependent cell proliferation assays were also performed to measure IL-2 activity over a period of 3-4 days. Criteria for attenuated hIL-2 selection included: (1) reduced IL-2 potency on both NK-92 and TF1+IL-2Rβ cell lines with greater than 50% agonist activity on both cell lines; and (2) moderate-to-high production yield.


Human anti-DNase I antibody-hIL-2 fusion proteins were generated by fusing the human IL-2 or the human IL-2 variants (SEQ ID NOs: 1-344, 377, 378, and 575) to the C-terminus of a human anti-DNase I antibody (clone 1H3, having a human IgG1 isotype) heavy chain via the L6 linker, which were combined with the hIgG1 light chain (1H3-hkappa LC; SEQ ID NO: 374) to generate the 1H3-hIgG1-L6-hIL-2 fusion proteins (provided in Table 28). Mouse anti-yellow fever virus antibody-hIL-2 fusion proteins were also generated by fusing human IL-2 variants to the C-terminus of a mouse anti-yellow fever virus antibody (clone 2D12, having a mouse IgG1 isotype) heavy chain with a D265A substitution for decreased immune effector function via the L6 linker, which were combined with the 2D12-mIgG1 light chain (2D12-mKappa LC; SEQ ID NO: 376) to generate the 2D12-mIgG1-D265A-L6-hIL-2 fusion proteins (provided in Table 28). Some of these mouse anti-yellow fever virus antibody-hIL-2 fusion proteins were formatted onto a human IgG1 constant region and were generated in the same manner as described above using, which was combined with 2D12-hKappa light chain (2D12-hKappa LC; SEQ ID NO: 573). Iterations of IL-2 amino acid substitutions were performed in six rounds, designated Groups 1 to 6. 1H3-hIgG1-L6-hIL-2, 2D12-mIgG1-D265A-L6-hIL-2, and 2D12-hIgG1-L6-hIL-2 fusion proteins were produced, expressed, and Protein-A purified using standard techniques.


Group 1 contained an initial series of only 2D12-mIgG1-D265A-L6-hIL-2 or 2D12-hIgG1-L6-hIL-2 fusion proteins which comprised a substitution or combination of substitutions in human IL-2 which were predicted to be involved in binding to only one of the IL-2 receptor subunits CD25/IL-2Rα, CD122/IL-2Rβ, or CD132/IL-2Rγ. The fusion proteins in this group included the following substitutions to IL-2 predicted to modulate binding to CD25/IL-2Rα: F42K (SEQ ID NO: 1), V69A (SEQ ID NO: 2), V69E (SEQ ID NO: 3), V69F (SEQ ID NO: 4), V69G (SEQ ID NO: 5), V69H (SEQ ID NO: 6), V69I (SEQ ID NO: 7), V69K (SEQ ID NO: 8), V69L (SEQ ID NO: 9), V69M (SEQ ID NO: 10), V69Q (SEQ ID NO: 11), V69S (SEQ ID NO: 12), V69T (SEQ ID NO: 13), V69W (SEQ ID NO: 14), V69Y (SEQ ID NO: 15), V69R (SEQ ID NO: 581), (F42K/F44K) (SEQ ID NO: 16), (F44K/Y45R) (SEQ ID NO: 17), (F42K/V69R) (SEQ ID NO: 18), (Y45R/V69R) (SEQ ID NO: 19), (F42K/F44K/Y45R) (SEQ ID NO: 20), (F42A/Y45A/L72G) (SEQ ID NO: 574), (R38A/F42K/Y45R) (SEQ ID NO: 21), (R38E/F42K/Y45R) (SEQ ID NO: 22), (K43E/F42K/Y45R) (SEQ ID NO: 23), (K43T/F42K/Y45R) (SEQ ID NO: 24), (F42K/Y45R/E62A) (SEQ ID NO: 25), (P65R/F42K/Y45R) (SEQ ID NO: 26), (P65S/F42K/Y45R) (SEQ ID NO: 27), (V69A/F42K/Y45R) (SEQ ID NO: 28), (V69D/F42K/Y45R) (SEQ ID NO: 29), or (V69R/F42K/Y45R) (SEQ ID NO: 30). The substitutions in this group included the following substitutions predicted to modulate binding to CD122/IL-2RB: D20A (SEQ ID NO: 31), D20N (SEQ ID NO: 32), D20K (SEQ ID NO: 33), N88A (SEQ ID NO: 34), N88G (SEQ ID NO: 35), N88H (SEQ ID NO: 36), N88K (SEQ ID NO: 37), (D20A/D84A) (SEQ ID NO: 38), (D20A/E15A) (SEQ ID NO: 39), (D20A/E95A) (SEQ ID NO: 40), (D20A/N88A) (SEQ ID NO: 41), (D20A/S87A) (SEQ ID NO: 42), (D84A/N88A) (SEQ ID NO: 43), (E15A/N88A) (SEQ ID NO: 44), or (S87A/N88A) (SEQ ID NO: 45). Group 1 also included the following substitutions to IL-2 predicted to modulate IL-2 binding to CD132/IL-2-Rγ: Q126L (SEQ ID NO: 377) or Q126E (SEQ ID NO: 378). The IL-2 substitutions studied in Group 1 were not predicted to modulate binding to more than one of the IL-2 receptor subunits.


Group 2 contained a series of 1H3-hIgG1-L6-hIL-2 fusion proteins which comprised one or more substitutions in human IL-2 which were predicted to be involved in CD25/IL-2Rαbinding only. The fusion proteins in this group included the following substitutions to IL-2 predicted to modulate binding to CD25/IL-2Rα: R38A (SEQ ID NO: 46), R38D (SEQ ID NO: 47), R38E (SEQ ID NO: 48), R38Q (SEQ ID NO: 49), F42R (SEQ ID NO: 50), F42A (SEQ ID NO: 51), F42D (SEQ ID NO: 52), F42H (SEQ ID NO: 53), K43A (SEQ ID NO: 54), K43E (SEQ ID NO: 55), K43Q (SEQ ID NO: 56), Y45A (SEQ ID NO: 57), Y45K (SEQ ID NO: 58), Y45S (SEQ ID NO: 59), Y45R (SEQ ID NO: 60), E61A (SEQ ID NO: 61), E61R (SEQ ID NO: 62), E61K (SEQ ID NO: 63), E62A (SEQ ID NO: 64), E62R (SEQ ID NO: 65), E62K (SEQ ID NO: 66), E62Y (SEQ ID NO: 67), E68Y (SEQ ID NO: 68), E68A (SEQ ID NO: 69), E68K (SEQ ID NO: 70), E68R (SEQ ID NO: 71), E68L (SEQ ID NO: 72), L72Y (SEQ ID NO: 73), L72R (SEQ ID NO: 74), L72A (SEQ ID NO: 75), L72D (SEQ ID NO: 76), L72H (SEQ ID NO: 77), L72F (SEQ ID NO: 78), (R38D/E61R) (SEQ ID NO: 79), (R38D/E61R/K43E) (SEQ ID NO: 80), or (T3A/F42A/Y45A/L72G/C125A) (SEQ ID NO: 81). The substitution T3A was introduced into the IL-2 amino acid sequence to remove the predicted O-linked glycosylation site on human IL-2 (see for example Int'l Pub. No. WO2012/107417) and the substitution C125A was introduced into the IL-2 amino acid sequence to remove an unpaired cysteine residue (see for example Int'l Pub. No. WO2018/184964). The IL-2 substitutions studied in Group 2 were predicted to not modulate IL-2 binding to CD132/IL-2-Rγ, nor were these substitutions predicted to modulate binding to more than one of the IL-2 receptor subunits.


Group 3 contained a series of 1H3-hIgG1-L6-hIL-2 fusion proteins which comprised one or more substitutions in human IL-2 which were predicted to be involved in CD122/IL-2Rβ binding only. The fusion proteins in this group included the following substitutions to IL-2 predicted to modulate binding to CD122/IL-2RB: E15A (SEQ ID NO: 82), E15R (SEQ ID NO: 83), E15K (SEQ ID NO: 84), H16A (SEQ ID NO: 85), H16Y (SEQ ID NO: 86), H16E (SEQ ID NO: 87), L19A (SEQ ID NO: 88), D20I (SEQ ID NO: 89), D20S (SEQ ID NO: 90), D20H (SEQ ID NO: 91), D20T (SEQ ID NO: 92), D20W (SEQ ID NO: 93), D20Y (SEQ ID NO: 94), D20R (SEQ ID NO: 95), D20F (SEQ ID NO: 96), R81A (SEQ ID NO: 97), D84A (SEQ ID NO: 98), D84R (SEQ ID NO: 99), D84K (SEQ ID NO: 100), S87A (SEQ ID NO: 101), N88Y (SEQ ID NO: 102), N88D (SEQ ID NO: 103), N88R (SEQ ID NO: 104), N88E (SEQ ID NO: 105), N88F (SEQ ID NO: 106), N88I (SEQ ID NO: 107), 192A (SEQ ID NO: 108), 192Y (SEQ ID NO: 109), 192S (SEQ ID NO: 110), 192F (SEQ ID NO: 111), 192R (SEQ ID NO: 112), 192D (SEQ ID NO: 113), 192E (SEQ ID NO: 114), E95A (SEQ ID NO: 115), E95R (SEQ ID NO: 116), E95K (SEQ ID NO: 117), (D20Y/H16E) (SEQ ID NO: 118), (D20Y/H16A) (SEQ ID NO: 119), (D20Y/H16Y) (SEQ ID NO: 120), (D20Y/192A) (SEQ ID NO: 121), (D20Y/192S) (SEQ ID NO: 122), (D20Y/192R) (SEQ ID NO: 123), (D20Y/E95R) (SEQ ID NO: 124), or (D20Y/E95A) (SEQ ID NO: 125).


Group 4 contained a series of fusion proteins containing the 1H3-hIgG1-L6-hIL-2 HC fused to a CD25/IL-2Rα extracellular domain moiety (SEQ ID NO: 126), a 20 amino acid linker (L20) (SEQ ID NO: 364), and human IL-2 variants comprising one or more substitutions to residues predicted to be involved in binding to CD122/IL-2Rβ. The fusion proteins in this group included the following substitutions to IL-2 predicted to modulate binding to CD122/IL-2Rβ: E15A (SEQ ID NO: 82), D20I (SEQ ID NO: 89), D20S (SEQ ID NO: 90), D20H (SEQ ID NO: 91), D20W (SEQ ID NO: 93), D20Y (SEQ ID NO: 94), D20R (SEQ ID NO: 95), D20F (SEQ ID NO: 96), D84K (SEQ ID NO: 100), S87A (SEQ ID NO: 101), N88Y (SEQ ID NO: 102), N88D (SEQ ID NO: 103), N88R (SEQ ID NO: 104), N88E (SEQ ID NO: 105), N88F (SEQ ID NO: 106), N88I (SEQ ID NO: 107), 192A (SEQ ID NO: 108), E95A (SEQ ID NO: 115), or E95K (SEQ ID NO: 117). The antibody-attenuated hIL-2 fusion proteins in this group are denoted as 1H3-hIgG1-L6-hCD25 (1-164)-L20-hIL-2.


Group 5 contained a series of 1H3-hIgG1-L6-hIL-2 which comprised a combination of substitutions in IL-2 which were predicted to be involved in binding of IL-2 to CD25/IL-2Rα and to CD122/IL-2Rβ or CD132/IL-2Rγ. In addition, some variants had a deletion in the first three amino acids at the N-terminus of the hIL-2 moiety (Δ1-3APT). The fusion proteins in Group 5 included the following substitutions to IL-2 predicted to modulate IL-2 binding to CD25/IL-2Rα and to CD122/IL-2Rβ: (F42D/D20A) (SEQ ID NO: 127), (F42R/D20A) (SEQ ID NO: 128), (F42K/D20A) (SEQ ID NO: 129), (F42A/D20A) (SEQ ID NO: 130), (F42H/D20A) (SEQ ID NO: 131), (Y45R/D20A) (SEQ ID NO: 132), (Y45K/D20A) (SEQ ID NO: 133), (R38N/D20A) (SEQ ID NO: 134), (R38G/D20A) (SEQ ID NO: 135), (R38H/D20A) (SEQ ID NO: 136), (R38I/D20A) (SEQ ID NO: 137), (R38L/D20A) (SEQ ID NO: 138), (R38M/D20A) (SEQ ID NO: 139), (R38F/D20A) (SEQ ID NO: 140), (R38P/D20A) (SEQ ID NO: 141), (R38S/D20A) (SEQ ID NO: 142), (R38T/D20A) (SEQ ID NO: 143), (R38W/D20A) (SEQ ID NO: 144), (R38Y/D20A) (SEQ ID NO: 145), (R38V/D20A) (SEQ ID NO: 146), (R38A/D20A) (SEQ ID NO: 147), (R38Q/D20A) (SEQ ID NO: 148), (D20A/R38E) (SEQ ID NO: 149), (R38D/D20A) (SEQ ID NO: 150), (K43E/D20A) (SEQ ID NO: 151), (E61A/D20A) (SEQ ID NO: 152), (E62A/D20A) (SEQ ID NO: 153), (E62Y/D20A) (SEQ ID NO: 154), (L72D/D20A) (SEQ ID NO: 155), (L72H/D20A) (SEQ ID NO: 156), (L72R/D20A) (SEQ ID NO: 157), (F42D/192D) (SEQ ID NO: 158), (F42R/192D) (SEQ ID NO: 159), (F42H/192D) (SEQ ID NO: 160), (F42A/192D) (SEQ ID NO: 161), (H16A/F42A) (SEQ ID NO: 575), (K43E/192D) (SEQ ID NO: 162), (Y45R/192D) (SEQ ID NO: 163), (Y45K/192D) (SEQ ID NO: 164), (E62A/192D) (SEQ ID NO: 165), (E62Y/192D) (SEQ ID NO: 166), (L72D/192D) (SEQ ID NO: 167), (L72H/192D) (SEQ ID NO: 168), (L72R/192D) (SEQ ID NO: 169), (R38D/192D) (SEQ ID NO: 170), (R38E/192D) (SEQ ID NO: 171), (R38Q/192D) (SEQ ID NO: 172), (R38A/192D) (SEQ ID NO: 173), (R38E/N88R) (SEQ ID NO: 174), (R38E/D84R) (SEQ ID NO: 175), (R38E/D84K) (SEQ ID NO: 176), (F42A/Y45R/D20A) (SEQ ID NO: 177), (F42H/Y45R/D20A) (SEQ ID NO: 178), (R38D/E61R/D20A) (SEQ ID NO: 179), (R38E/E61R/D20A) (SEQ ID NO: 180), (R38Q/E61R/D20A) (SEQ ID NO: 181), (R38A/E61R/D20A) (SEQ ID NO: 182), (R38A/D20A/E95A) (SEQ ID NO: 183), (D20A/E95A/R38D) (SEQ ID NO: 184), (D20A/E95A/R38E) (SEQ ID NO: 185), (D20A/E95A/R38Q) (SEQ ID NO: 186), (D20A/E95A/F42R) (SEQ ID NO: 187), (D20A/E95A/F42A) (SEQ ID NO: 188), (D20A/E95A/F42D) (SEQ ID NO: 189), (D20A/E95A/F42H) (SEQ ID NO: 190), (D20A/E95A/F42K) (SEQ ID NO: 191), (D20A/E95A/K43A) (SEQ ID NO: 192), (D20A/E95A/K43E) (SEQ ID NO: 193), (D20A/E95A/K43Q) (SEQ ID NO: 194), (D20A/E95A/Y45A) (SEQ ID NO: 195), (D20A/E95A/Y45K) (SEQ ID NO: 196), (D20A/E95A/Y45S) (SEQ ID NO: 197), (D20A/E95A/Y45R) (SEQ ID NO: 198), (D20A/E95A/E61A) (SEQ ID NO: 199), (D20A/E95A/E62A) (SEQ ID NO: 200), (D20A/E95A/E62R) (SEQ ID NO: 201), (D20A/E95A/E62K) (SEQ ID NO: 202), (D20A/E95A/E62Y) (SEQ ID NO: 203), (D20A/E95A/E68Y) (SEQ ID NO: 204), (D20A/E95A/E68A) (SEQ ID NO: 205), (D20A/E95A/E68L) (SEQ ID NO: 206), (D20A/E95A/L72Y) (SEQ ID NO: 207), (D20A/E95A/L72R) (SEQ ID NO: 208), (D20A/E95A/L72A) (SEQ ID NO: 209), (D20A/E95A/L72D) (SEQ ID NO: 210), (D20A/E95A/L72H) (SEQ ID NO: 211), (D20A/E95A/L72F) (SEQ ID NO: 212), (F42K/Y45R/D20A/S87A) (SEQ ID NO: 213), (F42K/Y45R/D20A/E95A) (SEQ ID NO: 214), (D20A/R38E/C125A) (SEQ ID NO: 215), (T3A/D20A/R38E) (SEQ ID NO: 216), (T3A/D20A/R38E/C125A) (SEQ ID NO: 217), (Δ-3APT/D20A/R38E) (SEQ ID NO: 218), or (Δ-3APT/D20A/R38E/C125A) (SEQ ID NO: 219). The fusion proteins in Group 5 included the following substitutions to IL-2 predicted to modulate IL-2 binding to CD25/IL-2Rα and to CD132/IL-2R: (R38E/Q22A) (SEQ ID NO: 220), (R38E/T123A) (SEQ ID NO: 221), (R38E/1129A) (SEQ ID NO: 222), (R38E/S130A) (SEQ ID NO: 223), (R38E/Q126A) (SEQ ID NO: 224), (R38E/Q126D) (SEQ ID NO: 225), (R38E/Q126V) (SEQ ID NO: 226), (R38E/Q22A/S130A) (SEQ ID NO: 227), (F42K/Y45R/Q126D) (SEQ ID NO: 228), or (D20A/E95A/Q126D) (SEQ ID NO: 229). Mutations to the hIL-2 sequence for Group 5 antibody-attenuated hIL-2 fusion proteins in which the numbering is according to IL-2 sequence are listed in SEQ ID NO: 127-229 and 575.


Group 6 contained a series of 1H3-hIgG1-L6-hIL-2 fusion proteins which comprised a combination of substitutions in human IL-2 which were predicted to be involved in binding of IL-2 to CD25/IL-2Rα and to CD122/IL-2Rβ, but not to CD132/IL-2Rγ. The fusion proteins in Group 6 included the following combination of substitutions in IL-2 predicted to modulate IL-2 binding to CD25/IL-2Rα and CD122/IL-2Rβ: (D20A/E61R) (SEQ ID NO: 230), (D20A/E61N) (SEQ ID NO: 231), (D20A/E61D) (SEQ ID NO: 232), (D20A/E61Q) (SEQ ID NO: 233), (D20A/E61G) (SEQ ID NO: 234), (D20A/E61H) (SEQ ID NO: 235), (D20A/E61I) (SEQ ID NO: 236), (D20A/E61L) (SEQ ID NO: 237), (D20A/E61K) (SEQ ID NO: 238), (D20A/E61M) (SEQ ID NO: 239), (D20A/E61F) (SEQ ID NO: 240), (D20A/E61P) (SEQ ID NO: 241), (D20A/E61S) (SEQ ID NO: 242), (D20A/E61T) (SEQ ID NO: 243), (D20A/E61W) (SEQ ID NO: 244), (D20A/E61Y) (SEQ ID NO: 245), (D20A/E61V) (SEQ ID NO: 246), (D20A/F42N) (SEQ ID NO: 247), (D20A/F42Q) (SEQ ID NO: 248), (D20A/F42E) (SEQ ID NO: 249), (D20A F42G) (SEQ ID NO: 250), (D20A/F42I) (SEQ ID NO: 251), (D20A/F42L) (SEQ ID NO: 252), (D20A/F42M) (SEQ ID NO: 253), (D20A/F42P) (SEQ ID NO: 254), (D20A/F42S) (SEQ ID NO: 255), (D20A/F42T) (SEQ ID NO: 256), (D20A/F42W) (SEQ ID NO: 257), (D20A/F42Y) (SEQ ID NO: 258), (D20A/F42V) (SEQ ID NO: 259), (D20A/Y45A) (SEQ ID NO: 260), (D20A/Y45N) (SEQ ID NO: 261), (D20A/Y45D) (SEQ ID NO: 262), (D20A/Y45Q) (SEQ ID NO: 263), (D20A/Y45E) (SEQ ID NO: 264), (D20A/Y45G) (SEQ ID NO: 265), (D20A/Y45H) (SEQ ID NO: 266), (D20A/Y45I) (SEQ ID NO: 267), (D20A/Y45L) (SEQ ID NO: 268), (D20A/Y45M) (SEQ ID NO: 269), (D20A/Y45F) (SEQ ID NO: 270), (D20A/Y45P) (SEQ ID NO: 271), (D20A/Y45S) (SEQ ID NO: 272), (D20A/Y45T) (SEQ ID NO: 273), (D20A/Y45W) (SEQ ID NO: 274), (D20A/Y45V) (SEQ ID NO: 275), (192D/F42N) (SEQ ID NO: 276), (192D/F42Q) (SEQ ID NO: 277), (192D/F42E) (SEQ ID NO: 278), (192D/F42G) (SEQ ID NO: 279), (192D/F42I) (SEQ ID NO: 280), (192D/F42L) (SEQ ID NO: 281), (192D/F42K) (SEQ ID NO: 282), (192D/F42M) (SEQ ID NO: 283), (192D/F42P) (SEQ ID NO: 284), (192D/F42S) (SEQ ID NO: 285), (192D/F42T) (SEQ ID NO: 286), (192D/F42W) (SEQ ID NO: 287), (192D/F42Y) (SEQ ID NO: 288), (192D/F42V) (SEQ ID NO: 289), (192D/Y45A) (SEQ ID NO: 290), (192D/Y45N) (SEQ ID NO: 291), (192D/Y45D) (SEQ ID NO: 292), (192D/Y45Q) (SEQ ID NO: 293), (192D/Y45E) (SEQ ID NO: 294), (192D/Y45G) (SEQ ID NO: 295), (192D/Y45H) (SEQ ID NO: 296), (192D/Y451) (SEQ ID NO: 297), (192D/Y45L) (SEQ ID NO: 298), (192D/Y45M) (SEQ ID NO: 299), (192D/Y45F) (SEQ ID NO: 300), (192D/Y45P) (SEQ ID NO: 301), (192D/Y45S) (SEQ ID NO: 302), (192D/Y45T) (SEQ ID NO: 303), (192D/Y45W) (SEQ ID NO: 304), (192D/Y45V) (SEQ ID NO: 305), (R38E/D20H) (SEQ ID NO: 306), (R38E/D20S) (SEQ ID NO: 307), (F42A/N88R) (SEQ ID NO: 308), (F42A/N88D) (SEQ ID NO: 309), (R38E/D84A) (SEQ ID NO: 310), (R38E/D84N) (SEQ ID NO: 311), (R38E/D84Q) (SEQ ID NO: 312), (R38E/D84E) (SEQ ID NO: 313), (R38E/D84G) (SEQ ID NO: 314), (R38E/D84H) (SEQ ID NO: 315), (R38E/D84I) (SEQ ID NO: 316), (R38E/D84L) (SEQ ID NO: 317), (R38E/D84M) (SEQ ID NO: 318), (R38E/D84F) (SEQ ID NO: 319), (R38E/D84P) (SEQ ID NO: 320), (R38E/D84S) (SEQ ID NO: 321), (R38E/D84T) (SEQ ID NO: 322), (R38E/D84W) (SEQ ID NO: 323), (R38E/D84Y) (SEQ ID NO: 324), (R38E/D84V) (SEQ ID NO: 325), (R38E/192A) (SEQ ID NO: 326), (R38E/192R) (SEQ ID NO: 327), (R38E/192N) (SEQ ID NO: 328), (R38E/192Q) (SEQ ID NO: 329), (R38E/192E) (SEQ ID NO: 330), (R38E/192G) (SEQ ID NO: 331), (R38E/192H) (SEQ ID NO: 332), (R38E/192L) (SEQ ID NO: 333), (R38E/192K) (SEQ ID NO: 334), (R38E/192M) (SEQ ID NO: 335), (R38E/192F) (SEQ ID NO: 336), (R38E/192P) (SEQ ID NO: 337), (R38E/192S) (SEQ ID NO: 338), (R38E/192T) (SEQ ID NO: 339), (R38E/192W) (SEQ ID NO: 340), (R38E/192Y) (SEQ ID NO: 341), (R38E/192V) (SEQ ID NO: 342), (R38E/H16E) (SEQ ID NO: 343), or (R38K/D20A) (SEQ ID NO: 344). Mutations to the hIL-2 sequence for Group 6 antibody-attenuated hIL-2 fusion proteins in which the numbering is according to IL-2 sequence is listed in SEQ ID NO: 230-344.


The binding kinetics of some purified 1H3-hIgG1-L6-hIL-2 variant proteins for individual recombinant human CD25 and human CD122 were determined using bio-layer interferometry (BLI). Briefly, binding experiments were performed using an Octet Red96 instrument (Pall ForteBio) at 25° C. C-terminal poly-histidine tagged human CD25 and human CD122 extracellular domains were captured onto anti-His2 sensors (Pall ForteBio). Receptor loaded sensors were dipped into a 7-point serial 3-fold dilution of each 1H3-hIgG-L6-hIL-2 variant, starting at a top concentration of 300 nM. 1H3-hIgG1-L6-hIL-2 fusion proteins were diluted into an assay buffer consisting of phosphate buffered saline (PBMS) supplemented with 0.1% BSA, 0.02% Tween-20 (pH 7.2). Loaded sensors were regenerated using 10 mM Glycine buffer (pH 1.7). Kinetic constants were calculated using a monovalent binding model.


Table 2 documents the association constant (kon), dissociation constant (koff), and equilibrium constant (KD) of 74 immunoglobulin-hIL-2 fusion protein variants bound to recombinant human CD25 or recombinant human CD122.









TABLE 2







Binding kinetics of 1H3-hIgG-L6-hIL-2 fusion proteins to recombinant human


CD25 or CD122 by Octet BLI













SEQ ID
Predicted






NO of
receptor sub-





1H3-hIgG1-L6-hIL-2
hIL-2
unit targeted by
KD
kon
koff


fusion proteins
variant
IL-2 substitution
(M)
(1/Ms)
(1/s)















1H3-hIgG1-L6-hIL-2 WT
345
N/A
3.20E−10
5.90E+05
1.90E−04


1H3-hIgG1-L6-hIL-2
82
CD122
2.04E−09
1.15E+05
2.35E−04


(E15A)







1H3-hIgG1-L6-hIL-2
83
CD122
3.41E−09
9.48E+04
3.23E−04


(E15R)







1H3-hIgG1-L6-hIL-2
84
CD122
1.39E−09
1.71E+05
2.37E−04


(E15K)







1H3-hIgG1-L6-hIL-2
85
CD122
1.68E−09
1.71E+05
2.87E−04


(H16A)







1H3-hIgG1-L6-hIL-2
86
CD122
1.46E−09
1.50E+05
2.20E−04


(H16Y)







1H3-hIgG1-L6-hIL-2
87
CD122
1.40E−09
1.57E+05
2.20E−04


(H16E)







1H3-hIgG1-L6-hIL-2
88
CD122
1.76E−09
2.03E+05
3.57E−04


(L19A)







1H3-hIgG1-L6-hIL-2
89
CD122
1.16E−09
1.70E+05
1.98E−04


(D20I)







1H3-hIgG1-L6-hIL-2
90
CD122
6.24E−10
1.74E+05
1.09E−04


(D20S)







1H3-hIgG1-L6-hIL-2
91
CD122
1.13E−09
1.88E+05
2.12E−04


(D20H)







1H3-hIgG1-L6-hIL-2
93
CD122
1.01E−09
1.87E+05
1.90E−04


(D20W)







1H3-hIgG1-L6-hIL-2
94
CD122
1.42E−09
1.51E+05
2.14E−04


(D20Y)







1H3-hIgG1-L6-hIL-2
95
CD122
1.21E−09
1.44E+05
1.75E−04


(D20R)







1H3-hIgG1-L6-hIL-2
96
CD122
1.57E−09
1.75E+05
2.75E−04


(D20F)







1H3-hIgG1-L6-hIL-2
46
CD25
5.55E−09
1.82E+05
1.01E−03


(R38A)







1H3-hIgG1-L6-hIL-2
47
CD25
1.86E−09
8.84E+05
1.64E−03


(R38D)







1H3-hIgG1-L6-hIL-2
48
CD25
8.74E−09
3.31E+05
2.89E−03


(R38E)







1H3-hIgG1-L6-hIL-2
49
CD25
6.33E−09
4.83E+05
3.05E−03


(R38Q)







1H3-hIgG1-L6-hIL-2
50
CD25
2.63E−09
1.59E+06
4.20E−03


(F42R)







1H3-hIgG1-L6-hIL-2
51
CD25
9.25E−09
9.89E+05
9.15E−03


(F42A)







1H3-hIgG1-L6-hIL-2
52
CD25
4.51E−09
1.70E+06
7.64E−03


(F42D)







1H3-hIgG1-L6-hIL-2
53
CD25
6.84E−09
8.23E+05
5.63E−03


(F42H)







1H3-hIgG1-L6-hIL-2
54
CD25
4.79E−09
2.59E+05
1.24E−03


(K43A)







1H3-hIgG1-L6-hIL-2
55
CD25
5.66E−09
4.52E+05
2.56E−03


(K43E)







1H3-hIgG1-L6-hIL-2
56
CD25
2.28E−09
4.49E+05
1.02E−03


(K43Q)







1H3-hIgG1-L6-hIL-2
57
CD25
3.66E−09
4.29E+05
1.57E−03


(Y45A)







1H3-hIgG1-L6-hIL-2
58
CD25
9.03E−09
5.22E+05
4.71E−03


(Y45K)







1H3-hIgG1-L6-hIL-2
59
CD25
2.45E−09
5.05E+05
1.24E−03


(Y45S)







1H3-hIgG1-L6-hIL-2
60
CD25
1.96E−09
6.46E+05
1.27E−03


(Y45R)







1H3-hIgG1-L6-hIL-2
61
CD25
7.00E−09
3.21E+05
2.25E−03


(E61A)







1H3-hIgG1-L6-hIL-2
62
CD25
8.84E−09
1.22E+06
1.08E−02


(E61R)







1H3-hIgG1-L6-hIL-2
63
CD25
1.56E−08
3.16E+05
4.94E−03


(E61K)







1H3-hIgG1-L6-hIL-2
64
CD25
1.23E−08
3.79E+05
4.67E−03


(E62A)















1H3-hIgG1-L6-hIL-2
65
CD25
No binding observed












(E62R)















1H3-hIgG1-L6-hIL-2
66
CD25
No binding observed












(E62K)







1H3-hIgG1-L6-hIL-2
67
CD25
1.55E−08
2.91E+05
4.50E−03


(E62Y)







1H3-hIgG1-L6-hIL-2
68
CD25
8.18E−09
1.80E+05
1.47E−03


(E68Y)







1H3-hIgG1-L6-hIL-2
69
CD25
4.49E−09
1.45E+05
6.52E−04


(E68A)







1H3-hIgG1-L6-hIL-2
70
CD25
9.63E−09
2.54E+05
2.44E−03


(E68K)







1H3-hIgG1-L6-hIL-2
71
CD25
1.16E−08
2.54E+05
2.96E−03


(E68R)







1H3-hIgG1-L6-hIL-2
72
CD25
8.62E−09
1.02E+05
8.82E−04


(E68L)







1H3-hIgG1-L6-hIL-2
112
CD122
2.54E−09
1.08E+05
2.76E−04


(I92R)







1H3-hIgG1-L6-hIL-2
113
CD122
7.94E−09
4.95E+04
3.93E−04


(I92D)







1H3-hIgG1-L6-hIL-2
114
CD122
2.41E−09
8.54E+04
2.06E−04


(I92E)







1H3-hIgG1-L6-hIL-2
115
CD122
3.11E−09
1.47E+05
4.58E−04


(E95A)







1H3-hIgG1-L6-hIL-2
116
CD122
2.29E−09
1.14E+05
2.61E−04


(E95R)







1H3-hIgG1-L6-hIL-2
117
CD122
3.25E−09
1.25E+05
4.07E−04


(E95K)







1H3-hIgG1-L6-hIL-2
213
CD25 + CD122
3.25E−08
1.24E+05
4.05E−03


(F42K/Y45R/D20A/S87A)















1H3-hIgG1-L6-hIL-2
214
CD25 + CD122
No binding observed












(F42K/Y45R/D20A/E95A)















1H3-hIgG1-L6-hIL-2
228
CD25 + CD132
No binding observed












(F42K/Y45R/Q126D)







1H3-hIgG1-L6-hIL-2
229
CD122 + CD132
3.34E−09
4.87E+04
1.62E−04


(D20A/E95A/Q126D)















1H3-hIgG1-L6-hIL-2
79
CD25
No binding observed


(R38D/E61R)





1H3-hIgG1-L6-hIL-2
80
CD25
No binding observed












(R38D/E61R/K43E)














Table 3 documents the association (kon) constants, dissociation (kofr) constants, and equilibrium constants (KD)) of 74 1H3-hIgG1-L6-hIL-2 fusion proteins bound to recombinant human CD122.









TABLE 3







Binding kinetics of 1H3-hIgG-L6-hIL-2 fusion proteins to recombinant human CD122 by Octet BLI














Predicted






SEQ ID NO
receptor sub-unit





1H3-hIgG-L6-hIL-2
of hIL-2
targeted by IL-2
KD
kon
koff


fusion proteins
variant
substitution
(M)
(1/Ms)
(1/s)





1H3-hIgG1-L6-hIL-2 WT
345a
N/A
5.60E−09
7.00E+05
3.90E−03


1H3-hIgG1-L6-hIL-2
 82b
CD122
8.89E−09
1.75E+05
1.56E−03


(E15A)







1H3-hIgG1-L6-hIL-2
 83
CD122
3.69E−09
1.46E+05
5.38E−04


(E15R)







1H3-hIgG1-L6-hIL-2
 84
CD122
3.56E−09
2.42E+05
8.62E−04


(E15K)







1H3-hIgG1-L6-hIL-2
 85
CD122
1.78E−09
1.55E+06
2.76E−03


(H16A)







1H3-hIgG1-L6-hIL-2
 86
CD122
4.36E−09
9.97E+05
4.35E−03


(H16Y)















1H3-hIgG1-L6-hIL-2
 87
CD122
No binding observed












(H16E)







1H3-hIgG1-L6-hIL-2
 88
CD122
1.03E−08
4.72E+05
4.87E−03


(L19A)















1H3-hIgG1-L6-hIL-2
 89
CD122
No binding observed


(D20I)





1H3-hIgG1-L6-hIL-2
 90
CD122
No binding observed


(D20S)





1H3-hIgG1-L6-hIL-2
 91
CD122
No binding observed


(D20H)





1H3-hIgG1-L6-hIL-2
 93
CD122
No binding observed


(D20W)





1H3-hIgG1-L6-hIL-2
 94
CD122
No binding observed


(D20Y)





1H3-hIgG1-L6-hIL-2
 95
CD122
No binding observed


(D20R)





1H3-hIgG1-L6-hIL-2
 96
CD122
No binding observed












(D20F)







1H3-hIgG1-L6-hIL-2
 46
CD25
1.38E−08
2.08E+05
2.87E−03


(R38A)







1H3-hIgG1-L6-hIL-2
 47
CD25
2.20E−09
4.28E+05
9.42E−04


(R38D)







1H3-hIgG1-L6-hIL-2
 48
CD25
5.81E−09
4.64E+05
2.69E−03


(R38E)







1H3-hIgG1-L6-hIL-2
 49
CD25
1.01E−09
2.81E+05
2.84E−04


(R38Q)







1H3-hIgG1-L6-hIL-2
 50
CD25
5.47E−09
5.42E+05
2.96E−03


(F42R)







1H3-hIgG1-L6-hIL-2
 51
CD25
5.97E−09
4.19E+05
2.50E−03


(F42A)







1H3-hIgG1-L6-hIL-2
 52
CD25
1.04E−08
2.38E+05
2.46E−03


(F42D)







1H3-hIgG1-L6-hIL-2
 53
CD25
6.33E−09
4.45E+05
2.81E−03


(F42H)







1H3-hIgG1-L6-hIL-2
 54
CD25
1.03E−08
2.85E+05
2.94E−03


(K43A)







1H3-hIgG1-L6-hIL-2
 55
CD25
5.47E−09
3.65E+05
2.00E−03


(K43E)







1H3-hIgG1-L6-hIL-2
 56
CD25
4.21E−09
5.14E+05
2.17E−03


(K43Q)







1H3-hIgG1-L6-hIL-2
 57
CD25
4.93E−09
4.51E+05
2.22E−03


(Y45A)







1H3-hIgG1-L6-hIL-2
 58
CD25
6.56E−09
3.55E+05
2.33E−03


(Y45K)







1H3-hIgG1-L6-hIL-2
 59
CD25
6.96E−09
5.07E+05
3.53E−03


(Y45S)







1H3-hIgG1-L6-hIL-2
 60
CD25
7.58E−09
4.36E+05
3.31E−03


(Y45R)







1H3-hIgG1-L6-hIL-2
 61
CD25
1.34E−08
3.13E+05
4.18E−03


(E61A)







1H3-hIgG1-L6-hIL-2
 62
CD25
1.30E−08
4.56E+05
5.91E−03


(E61R)







1H3-hIgG1-L6-hIL-2
 63
CD25
1.56E−08
3.16E+05
4.94E−03


(E61K)







1H3-hIgG1-L6-hIL-2
 64
CD25
1.23E−08
3.79E+05
4.67E−03


(E62A)















1H3-hIgG1-L6-hIL-2
 65
CD25
No binding observed


(E62R)





1H3-hIgG1-L6-hIL-2
 66
CD25
No binding observed












(E62K)







1H3-hIgG1-L6-hIL-2
 67
CD25
1.55E−08
2.91E+05
4.50E−03


(E62Y)







1H3-hIgG1-L6-hIL-2
 68
CD25
8.18E−09
1.80E+05
1.47E−03


(E68Y)







1H3-hIgG1-L6-hIL-2
 69
CD25
4.49E−09
1.45E+05
6.52E−04


(E68A)







1H3-hIgG1-L6-hIL-2
 70
CD25
1.05E−08
2.02E+05
2.12E−03


(E68K)







1H3-hIgG1-L6-hIL-2
 71
CD25
8.51E−09
2.27E+05
1.93E−03


(E68R)







1H3-hIgG1-L6-hIL-2
 72
CD25
2.72E−09
7.79E+04
2.12E−04


(E68L)







1H3-hIgG1-L6-hIL-2
 73
CD25
6.39E−09
1.94E+05
1.24E−03


(L72Y)







1H3-hIgG1-L6-hIL-2
 74
CD25
1.96E−08
3.07E+04
6.01E−04


(L72R)







1H3-hIgG1-L6-hIL-2
 75
CD25
9.08E−09
1.47E+05
1.34E−03


(L72A)







1H3-hIgG1-L6-hIL-2
 76
CD25
9.52E−09
1.57E+05
1.50E−03


(L72D)







1H3-hIgG1-L6-hIL-2
 77
CD25
9.03E−09
1.65E+05
1.49E−03


(L72H)







1H3-hIgG1-L6-hIL-2
 78
CD25
5.04E−09
2.28E+05
1.15E−03


(L72F)







1H3-hIgG1-L6-hIL-2
 97
CD122
7.08E−09
2.20E+05
1.56E−03


(R81A)















1H3-hIgG1-L6-hIL-2
 98
CD122
No binding observed












(D84A)







1H3-hIgG1-L6-hIL-2
 99
CD122
1.88E−08
4.73E+05
8.88E−03


(D84R)







1H3-hIgG1-L6-hIL-2
101
CD122
7.09E−09
3.31E+05
2.34E−03


(S87A)















1H3-hIgG1-L6-hIL-2
102
CD122
No binding observed


(N88Y)





1H3-hIgG1-L6-hIL-2
103
CD122
No binding observed


(N88D)





1H3-hIgG1-L6-hIL-2
104
CD122
No binding observed


(N88R)





1H3-hIgG1-L6-hIL-2
105
CD122
No binding observed


(N88E)





1H3-hIgG1-L6-hIL-2
106
CD122
No binding observed


(N88F)





1H3-hIgG1-L6-hIL-2
107
CD122
No binding observed












(N88I)







1H3-hIgG1-L6-hIL-2
108
CD122
3.38E−09
1.95E+06
6.58E−03


(I92A)







1H3-hIgG1-L6-hIL-2
109
CD122
1.23E−08
4.53E+05
5.57E−03


(I92Y)















1H3-hIgG1-L6-hIL-2
110
CD122
No binding observed












(I92S)







1H3-hIgG1-L6-hIL-2
111
CD122
5.45E−09
1.03E+05
5.59E−04


(I92F)















1H3-hIgG1-L6-hIL-2
112
CD122
No binding observed


(I92R)





1H3-hIgG1-L6-hIL-2
113
CD122
No binding observed












(I92D)







1H3-hIgG1-L6-hIL-2
114
CD122
1.62E−09
9.33E+05
1.51E−03


(I92E)







1H3-hIgG1-L6-hIL-2
115
CD122
8.17E−09
2.87E+05
2.35E−03


(E95A)















1H3-hIgG1-L6-hIL-2
116
CD122
No binding observed












(E95R)







1H3-hIgG1-L6-hIL-2
117
CD122
3.81E−09
6.58E+05
2.51E−03


(E95K)















1H3-hIgG1-L6-hIL-2
213
CD25 + CD122
No binding observed


(F42K/Y45R/D20A/S87A)





1H3-hIgG1-L6-hIL-2
214
CD25 + CD122
No binding observed












(F42K/Y45R/D20A/E95A)







1H3-hIgG1-L6-hIL-2
228
CD25 +CD132
9.16E−09
3.75E+05
3.44E−03


(F42K/Y45R/Q126D)















1H3-hIgG1-L6-hIL-2
229
CD122 + CD132
No binding observed












(D20A/E95A/Q126D)







1H3-hIgG1-L6-hIL-2
 79
CD25
1.29E−08
3.68E+05
4.73E−03


(R38D/E61R)







1H3-hIgG1-L6-hIL-2
 80
CD25
7.47E−09
4.52E+05
3.38E−03


(R38D/E61R/K43E)











aSEQ ID NO: 345 corresponds to wild type hIL-2.




bSEQ ID NO: 57 is attenuated IL-2 sequence only.







Example 3: Testing for Attenuation for the High-Affinity and Intermediate-Affinity hIL-2 Receptor with a Fixed Concentration Cell-Based Potency pSTAT5 Screen

The attenuation of antibody-attenuated hIL-2 fusion proteins described in Example 2 was tested in a fixed concentration pSTAT5 screen using the NK-92 (expressing the high affinity hIL-2 receptor) and TF1+IL-2Rβ (expressing the intermediate affinity hIL-2 receptor) cell lines as described in Protocol D. Tables 4-8 list the fold change of geometric mean fluorescent intensity (gMFI) of antibody-attenuated hIL-2 fusion proteins from free cytokine wild-type rhIL-2, a measurement of reduction of IL-2 activity. For the fixed concentration screen, the fold change was calculated by dividing the gMFI of the rhIL-2 by the gMFI of the variants. For experiments with full titration curves, fold change from rhIL-2 was calculated by dividing the EC50 values for the rhIL-2 by the EC50 of variants. Fold change was rounded to the nearest whole number. A reduced gMFI in both NK-92 and TF1+IL-2Rβ cell lines when compared to the gMFI resulting from rhIL-2 was indicative of attenuation of IL-2 activity at both the high- and intermediate-affinity receptors. Group 1 variants described in Example 2 were not tested in the fixed concentration cell-based potency pSTAT5 screen.


Each variant tested was also assessed for IL-2 agonistic activity and characterized either as a full or partial IL-2 agonist, or having no IL-2 activity (inactive). 1H3-hIgG1-L6-hIL-2 fusion protein dose-titration curves that reached the maximal gMFI level exhibited by the rhIL-2 positive control were considered to be antibody-attenuated hIL-2 fusion protein with full agonist activity. Partial agonist activity was calculated as a percentage of full activity using rhIL-2 maximal gMFI as 100%. Antibody-attenuated hIL-2 fusion protein with less than 10% of the rhIL-2 maximal gMFI at the highest concentration of 1200 nM were considered to have no agonist activity (inactive). Some EC50 values and level of attenuation could not be accurately calculated using the GraphPad Prism 7 software since activity did not reach a maximum and accordingly these values are an estimate.


pSTAT5 fixed concentration results demonstrated that while some single residue substitutions attenuated IL-2 activity on the high-affinity cell line (NK-92), a combination of substitutions which modulated binding to both the alpha chain and the beta chain or both the alpha chain and gamma chain were required to substantially attenuate IL-2 activity on the high affinity IL-2 receptor (more than 20-fold attenuation from recombinant hIL-2).









TABLE 4







Fold change from rhIL-2 in a fixed concentration pSTAT5 screen on


1H3-hIgG1-L6-hIL-2 fusion proteins from Group 2











SEQ ID

Fold change



NO of
Fold change
from hIL-2



hIL-2
from hIL-2
(TF1 +


Variants
variant
(NK-92)
IL-2Rβ)













1H3-hIgG1-L6-hIL-2 (R38D)
47
7
1


1H3-hIgG1-L6-hIL-2 (R38E)
48
12
1


1H3-hIgG1-L6-hIL-2 (R38Q)
49
1
1


1H3-hIgG1-L6-hIL-2 (F42R)
50
7
1


1H3-hIgG1-L6-hIL-2 (F42A)
51
1
1


1H3-hIgG1-L6-hIL-2 (F42H)
53
1
1


1H3-hIgG1-L6-hIL-2 (K43E)
55
1
1


1H3-hIgG1-L6-hIL-2 (K43Q)
56
1
1


1H3-hIgG1-L6-hIL-2 (Y45A)
57
1
1


1H3-hIgG1-L6-hIL-2 (Y45K)
58
1
1


1H3-hIgG1-L6-hIL-2 (Y45S)
59
1
1


1H3-hIgG1-L6-hIL-2 (Y45R)
60
10
1


1H3-hIgG1-L6-hIL-2 (E68Y)
68
1
1


1H3-hIgG1-L6-hIL-2 (E68A)
69
1
1


1H3-hIgG1-L6-hIL-2 (E68L)
72
2
1


1H3-hIgG1-L6-hIL-2 (L72Y)
73
1
1


1H3-hIgG1-L6-hIL-2 (L72A)
75
1
1


1H3-hIgG1-L6-hIL-2 (L72F)
78
1
1


1H3-hIgG1-L6-hIL-2
79
NT-1
1


(R38D/E61R)





1H3-hIgG1-L6-hIL-2
80
NT-1
1


(R38D/E61R/K43E)





1H3-hIgG1-L6-hIL-2
81
10
1


(T3A/F42A/Y45A/L72G/C125A)








NT-1 = Already tested in pSTAT5 full titration first, no data for fixed concentration assay.













TABLE 5







Fold change from rhIL-2 in a fixed concentration pSTAT5 screen


on 1H3-hIgG1-L6-hIL-2 fusion proteins from Group 3











SEQ ID

Fold change



NO of
Fold change
from hIL-2



hIL-2
from hIL-2
(TF1 +


Variants
variant
(NK-92)
IL-2Rβ)













1H3-hIgG1-L6-hIL-2 (E15A)
82
1
1


1H3-hIgG1-L6-hIL-2 (E15R)
83
1
1


1H3-hIgG1-L6-hIL-2 (E15K)
84
1
1


1H3-hIgG1-L6-hIL-2 (H16A)
85
1
1


1H3-hIgG1-L6-hIL-2 (H16Y)
86
1
1


1H3-hIgG1-L6-hIL-2 (H16E)
87
1
NT-1


1H3-hIgG1-L6-hIL-2 (L19A)
88
1
NT-1


1H3-hIgG1-L6-hIL-2 (D20I)
89
12
NT-1


1H3-hIgG1-L6-hIL-2 (D20S)
90
4
NT-1


1H3-hIgG1-L6-hIL-2 (D20H)
91
10
NT-1


1H3-hIgG1-L6-hIL-2 (D20W)
93
16
NT-1


1H3-hIgG1-L6-hIL-2 (D20Y)
94
17
NT-1


1H3-hIgG1-L6-hIL-2 (D20R)
95
19
NT-1


1H3-hIgG1-L6-hIL-2 (D20F)
96
17
NT-1


1H3-hIgG1-L6-hIL-2 (R81A)
97
1
1


1H3-hIgG1-L6-hIL-2 (D84A)
98
1
NT-1


1H3-hIgG1-L6-hIL-2 (D84R)
99
3
NT-1


1H3-hIgG1-L6-hIL-2 (D84K)
100
2
NT-1


1H3-hIgG1-L6-hIL-2 (S87A)
101
1
1


1H3-hIgG1-L6-hIL-2 (N88Y)
102
22
NT-1


1H3-hIgG1-L6-hIL-2 (N88D)
103
2
NT-1


1H3-hIgG1-L6-hIL-2 (N88R)
104
3
NT-1


1H3-hIgG1-L6-hIL-2 (N88E)
105
10
NT-1


1H3-hIgG1-L6-hIL-2 (N88F)
106
19
NT-1


1H3-hIgG1-L6-hIL-2 (N88I)
107
9
NT-1


1H3-hIgG1-L6-hIL-2 (I92A)
108
1
1


1H3-hIgG1-L6-hIL-2 (I92Y)
109
1
NT-1


1H3-hIgG1-L6-hIL-2 (I92S)
110
1
NT-1


1H3-hIgG1-L6-hIL-2 (I92F)
111
1
1


1H3-hIgG1-L6-hIL-2 (I92R)
112
1
NT-1


1H3-hIgG1-L6-hIL-2 (I92D)
113
3
NT-1


1H3-hIgG1-L6-hIL-2 (I92E)
114
1
1


1H3-hIgG1-L6-hIL-2 (E95A)
115
1
1


1H3-hIgG1-L6-hIL-2 (E95R)
116
1
NT-1


1H3-hIgG1-L6-hIL-2 (E95K)
117
1
1


1H3-hIgG1-L6-hIL-2 (D20T)
92
3
2


1H3-hIgG1-L6-hIL-2 (D20A)
31
7
2


1H3-hIgG1-L6-hIL-2
118
6
4


(D20Y/H16E)





1H3-hIgG1-L6-hIL-2
119
10
3


(D20Y/H16A)





1H3-hIgG1-L6-hIL-2
120
10
4


(D20Y/H16Y)





1H3-hIgG1-L6-hIL-2
121
11
4


(D20Y/192A)





1H3-hIgG1-L6-hIL-2
122
11
4


(D20Y/192S)





1H3-hIgG1-L6-hIL-2
123
12
5


(D20Y/192R)





1H3-hIgG1-L6-hIL-2
124
12
5


(D20Y/E95R)





1H3-hIgG1-L6-hIL-2
125
11
5


(D20Y/E95A)








NT-1 = Already tested in pSTAT5 full titration first, no data for fixed concentration assay.













TABLE 6







Fold change from rhIL-2 in a fixed concentration pSTAT5 screen


on 1H3-hIgG1-L6-hIL-2 fusion proteins from Group 4













Fold




Fold
change



SEQ ID
change
from



NO of
from
hIL-2



hIL-2
hIL-2
(TF1 +


Variants
variant
(NK-92)
IL-2Rβ)













1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
82
17
1


(E15A)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
89
21
15


(D20I)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
90
2
14


(D20S)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
91
22
15


(D20H)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
93
23
15


(D20W)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
94
23
16


(D20Y)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
95
23
16


(D20R)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
96
23
18


(D20F)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
100
23
17


(D84K)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
101
17
2


(S87A)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
102
23
18


(N88Y)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
103
23
17


(N88D)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
104
24
17


(N88R)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
105
25
18


(N88E)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
106
25
18


(N88F)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
107
25
20


(N88I)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
108
15
3


I192A)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
115
14
1


(E95A)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
117
25
8


(E95K)



















TABLE 7







Fold change from rhIL-2 in a fixed concentration pSTAT5 screen on


1H3-hIgG1-L6-hIL-2 fusion proteins from Group 5











SEQ ID
Fold change
Fold change



NO of
from
from hIL-2



hIL-2
hIL-2
(TF1 +


Variants
variant
(NK-92)
IL-2Rβ)













1H3-hIgG1-L6-hIL-2 (F42D/D20A)
127
11
3


1H3-hIgG1-L6-hIL-2 (F42R/D20A)
128
10
2


1H3-hIgG1-L6-hIL-2 (F42K/D20A)
129
10
4


1H3-hIgG1-L6-hIL-2 (F42A/D20A)
130
11
3


1H3-hIgG1-L6-hIL-2 (F42H/D20A)
131
12
2


1H3-hIgG1-L6-hIL-2 (Y45R/D20A)
132
11
1


1H3-hIgG1-L6-hIL-2 (Y45K/D20A)
133
11
2


1H3-hIgG1-L6-hIL-2 (R38N/D20A)
134
14
3


1H3-hIgG1-L6-hIL-2 (R38G/D20A)
135
13
2


1H3-hIgG1-L6-hIL-2 (R38H/D20A)
136
12
3


1H3-hIgG1-L6-hIL-2 (R38I/D20A)
137
11
3


1H3-hIgG1-L6-hIL-2 (R38L/D20A)
138
11
4


1H3-hIgG1-L6-hIL-2 (R38M/D20A)
139
11
3


1H3-hIgG1-L6-hIL-2 (R38F/D20A)
140
12
3


1H3-hIgG1-L6-hIL-2 (R38P/D20A)
141
13
3


1H3-hIgG1-L6-hIL-2 (R38S/D20A)
142
15
2


1H3-hIgG1-L6-hIL-2 (R38T/D20A)
143
13
3


1H3-hIgG1-L6-hIL-2 (R38W/D20A)
144
14
2


1H3-hIgG1-L6-hIL-2 (R38Y/D20A)
145
14
3


1H3-hIgG1-L6-hIL-2 (R38V/D20A)
146
12
3


1H3-hIgG1-L6-hIL-2 (R38A/D20A)
147
13
3


1H3-hIgG1-L6-hIL-2 (R38Q/D20A)
148
14
3


1H3-hIgG1-L6-hIL-2 (R38E/D20A)
149
15
3


1H3-hIgG1-L6-hIL-2 (R38D/D20A)
150
15
3


1H3-hIgG1-L6-hIL-2 (K43E/D20A)
151
13
2


1H3-hIgG1-L6-hIL-2 (E61A/D20A)
152
14
2


1H3-hIgG1-L6-hIL-2 (E62A/D20A)
153
14
2


1H3-hIgG1-L6-hIL-2 (E62Y/D20A)
154
14
3


1H3-hIgG1-L6-hIL-2 (L72D/D20A)
155
14
2


1H3-hIgG1-L6-hIL-2 (L72H/D20A)
156
14
3


1H3-hIgG1-L6-hIL-2 (L72R/D20A)
157
10
3


1H3-hIgG1-L6-hIL-2 (F42D/I92D)
158
12
5


1H3-hIgG1-L6-hIL-2 (F42R/I92D)
159
12
3


1H3-hIgG1-L6-hIL-2 (F42H/I92D)
160
12
2


1H3-hIgG1-L6-hIL-2 (F42A/I92D)
161
12
3


1H3-hIgG1-L6-hIL-2 (K43E/I92D)
162
13
4


1H3-hIgG1-L6-hIL-2 (Y45R/I92D)
163
13
1


1H3-hIgG1-L6-hIL-2 (Y45K/I92D)
164
13
1


1H3-hIgG1-L6-hIL-2 (E62A/I92D)
165
13
3


1H3-hIgG1-L6-hIL-2 (E62Y/I92D)
166
14
5


1H3-hIgG1-L6-hIL-2 (L72D/I92D)
167
14
5


1H3-hIgG1-L6-hIL-2 (L72H/I92D)
168
14
5


1H3-hIgG1-L6-hIL-2 (L72R/I92D)
169
14
5


1H3-hIgG1-L6-hIL-2 (R38D/I92D)
170
15
2


1H3-hIgG1-L6-hIL-2 (R38E/I92D)
171
15
2


1H3-hIgG1-L6-hIL-2 (R38Q/I92D)
172
14
2


1H3-hIgG1-L6-hIL-2 (R38A/I92D)
173
13
4


1H3-hIgG1-L6-hIL-2 (R38E/N88R)
174
16
1


1H3-hIgG1-L6-hIL-2 (R38E/D84R)
175
14
2


1H3-hIgG1-L6-hIL-2 (R38E/D84K)
176
14
2


1H3-hIgG1-L6-hIL-2 (F42A/Y45R/D20A)
177
11
2


1H3-hIgG1-L6-hIL-2 (F42H/Y45R/D20A)
178
12
2


1H3-hIgG1-L6-hIL-2 (R38D/E61R/D20A)
179
12
3


1H3-hIgG1-L6-hIL-2 (R38E/E61R/D20A)
180
11
3


1H3-hIgG1-L6-hIL-2 (R38Q/E61R/D20A)
181
12
3


1H3-hIgG1-L6-hIL-2 (R38A/E61R/D20A)
182
13
3


1H3-hIgG1-L6-hIL-2 (D20A/E95A/R38A)
183
6
5


1H3-hIgG1-L6-hIL-2 (D20A/E95A/R38D)
184
21
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/R38E)
185
21
5


1H3-hIgG1-L6-hIL-2 (D20A/E95A/R38Q)
186
19
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42R)
187
21
4


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42A)
188
21
5


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42D)
189
22
12


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42H)
190
22
4


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42K)
191
21
4


1H3-hIgG1-L6-hIL-2 (D20A/E95A/K43A)
192
5
7


1H3-hIgG1-L6-hIL-2 (D20A/E95A/K43E)
193
13
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/K43Q)
194
5
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/Y45A)
195
4
5


1H3-hIgG1-L6-hIL-2 (D20A/E95A/Y45K)
196
22
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/Y45S)
197
5
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/Y45R)
198
25
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E61A)
199
10
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E62A)
200
23
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E62R)
201
25
17


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E62K)
202
25
15


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E62Y)
203
25
10


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E68Y)
204
8
5


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E68A)
205
5
8


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E68L)
206
7
9


1H3-hIgG1-L6-hIL-2 (D20A/E95A/L72Y)
207
1
5


1H3-hIgG1-L6-hIL-2 (D20A/E95A/L72R)
208
12
9


1H3-hIgG1-L6-hIL-2 (D20A/E95A/L72A)
209
2
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/L72D)
210
21
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/L72H)
211
14
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/L72F)
212
2
6


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42K/Y45R)
214
21
5


1H3-hIgG1-L6-hIL-2 (D20A/R38E/C125A)
215
16
3


1H3-hIgG1-L6-hIL-2 (T3A/D20A/R38E)
216
18
2


1H3-hIgG1-L6-hIL-2 (T3A/D20A/R38E/C125A)
217
18
3


1H3-hIgG1-L6-hIL-2 (Δ1-3APT/D20A/R38E)
218
13
1


1H3-hIgG1-L6-hIL-2 (Δ1-3APT/D20A/R38E/C125A)
219
15
4


1H3-hIgG1-L6-hIL-2 (R38E/Q22A)
220
12
0


1H3-hIgG1-L6-hIL-2 (R38E/T123A)
221
12
0


1H3-hIgG1-L6-hIL-2 (R38E/I129A)
222
13
1


1H3-hIgG1-L6-hIL-2 (R38E/S130A)
223
12
0


1H3-hIgG1-L6-hIL-2 (R38E/Q126A)
224
13
1


1H3-hIgG1-L6-hIL-2 (R38E/Q126D)
225
15
4


1H3-hIgG1-L6-hIL-2 (R38E/Q126V)
226
14
1


1H3-hIgG1-L6-hIL-2 (R38E/Q22A/S130A)
227
13
1
















TABLE 8







Fold change from rhIL-2 in a fixed concentration pSTAT5 screen on


1H3-hIgG1-L6-hIL-2 fusion proteins from Group 6











SEQ ID

Fold change



NO
Fold change
from hIL-2



of hIL-2
from hIL-2
(TF1 +


Variants
variant
(NK-92)
IL-2Rβ)













1H3-hIgG1-L6-hIL-2 (D20A/E61R)
230
25
4


1H3-hIgG1-L6-hIL-2 (D20A/E61N)
231
15
1


1H3-hIgG1-L6-hIL-2 (D20A/E61D)
232
11
0


1H3-hIgG1-L6-hIL-2 (D20A/E61Q)
233
16
2


1H3-hIgG1-L6-hIL-2 (D20A/E61G)
234
15
2


1H3-hIgG1-L6-hIL-2 (D20A/E61H)
235
15
2


1H3-hIgG1-L6-hIL-2 (D20A/E61I)
236
16
1


1H3-hIgG1-L6-hIL-2 (D20A/E61L)
237
16
1


1H3-hIgG1-L6-hIL-2 (D20A/E61K)
238
17
2


1H3-hIgG1-L6-hIL-2 (D20A/E61M)
239
15
2


1H3-hIgG1-L6-hIL-2 (D20A/E61F)
240
14
0


1H3-hIgG1-L6-hIL-2 (D20A/E61P)
241
15
1


1H3-hIgG1-L6-hIL-2 (D20A/E61S)
242
16
1


1H3-hIgG1-L6-hIL-2 (D20A/E61T)
243
16
2


1H3-hIgG1-L6-hIL-2 (D20A/E61W)
244
15
2


1H3-hIgG1-L6-hIL-2 (D20A/E61Y)
245
15
2


1H3-hIgG1-L6-hIL-2 (D20A/E61V)
246
17
3


1H3-hIgG1-L6-hIL-2 (D20A/F42N)
247
15
2


1H3-hIgG1-L6-hIL-2 (D20A/F42Q)
248
15
2


1H3-hIgG1-L6-hIL-2 (D20A/F42E)
249
16
1


1H3-hIgG1-L6-hIL-2 (D20A/F42G)
250
17
2


1H3-hIgG1-L6-hIL-2 (D20A/F42I)
251
17
2


1H3-hIgG1-L6-hIL-2 (D20A/F42L)
252
14
2


1H3-hIgG1-L6-hIL-2 (D20A/F42M)
253
15
2


1H3-hIgG1-L6-hIL-2 (D20A/F42P)
254
17
2


1H3-hIgG1-L6-hIL-2 (D20A/F42S)
255
15
2


1H3-hIgG1-L6-hIL-2 (D20A/F42T)
256
16
2


1H3-hIgG1-L6-hIL-2 (D20A/F42W)
257
16
2


1H3-hIgG1-L6-hIL-2 (D20A/F42Y)
258
17
2


1H3-hIgG1-L6-hIL-2 (D20A/F42V)
259
18
2


1H3-hIgG1-L6-hIL-2 (D20A/Y45A)
260
15
2


1H3-hIgG1-L6-hIL-2 (D20A/Y45N)
261
14
2


1H3-hIgG1-L6-hIL-2 (D20A/Y45D)
262
18
3


1H3-hIgG1-L6-hIL-2 (D20A/Y45Q)
263
17
3


1H3-hIgG1-L6-hIL-2 (D20A/Y45E)
264
18
3


1H3-hIgG1-L6-hIL-2 (D20A/Y45G)
265
18
2


1H3-hIgG1-L6-hIL-2 (D20A/Y45H)
266
16
2


1H3-hIgG1-L6-hIL-2 (D20A/Y45I)
267
13
2


1H3-hIgG1-L6-hIL-2 (D20A/Y45L)
268
13
2


1H3-hIgG1-L6-hIL-2 (D20A/Y45M)
269
16
3


1H3-hIgG1-L6-hIL-2 (D20A/Y45F)
270
13
2


1H3-hIgG1-L6-hIL-2 (D20A/Y45P)
271
25
4


1H3-hIgG1-L6-hIL-2 (D20A/Y45S)
272
14
3


1H3-hIgG1-L6-hIL-2 (D20A/Y45T)
273
24
3


1H3-hIgG1-L6-hIL-2 (D20A/Y45W)
274
19
3


1H3-hIgG1-L6-hIL-2 (D20A/Y45V)
275
21
3


1H3-hIgG1-L6-hIL-2 (I92D/F42N)
276
29
5


1H3-hIgG1-L6-hIL-2 (I92D/F42Q)
277
29
4


1H3-hIgG1-L6-hIL-2 (I92D/F42E)
278
30
5


1H3-hIgG1-L6-hIL-2 (I92D/F42G)
279
32
5


1H3-hIgG1-L6-hIL-2 (I92D/F42I)
280
31
4


1H3-hIgG1-L6-hIL-2 (I92D/F42L)
281
31
5


1H3-hIgG1-L6-hIL-2 (I92D/F42K)
282
26
4


1H3-hIgG1-L6-hIL-2 (I92D/F42M)
283
28
5


1H3-hIgG1-L6-hIL-2 (I92D/F42P)
284
29
4


1H3-hIgG1-L6-hIL-2 (I92D/F42S)
285
30
5


1H3-hIgG1-L6-hIL-2 (I92D/F42T)
286
28
3


1H3-hIgG1-L6-hIL-2 (I92D/F42W)
287
18
4


1H3-hIgG1-L6-hIL-2 (I92D/F42Y)
288
22
3


1H3-hIgG1-L6-hIL-2 (I92D/F42V)
289
30
3


1H3-hIgG1-L6-hIL-2 (I92D/Y45A)
290
11
3


1H3-hIgG1-L6-hIL-2 (I92D/Y45N)
291
4
3


1H3-hIgG1-L6-hIL-2 (I92D/Y45D)
292
29
5


1H3-hIgG1-L6-hIL-2 (I92D/Y45Q)
293
25
3


1H3-hIgG1-L6-hIL-2 (I92D/Y45E)
294
27
4


1H3-hIgG1-L6-hIL-2 (I92D/Y45G)
295
20
3


1H3-hIgG1-L6-hIL-2 (I92D/Y45H)
296
7
3


1H3-hIgG1-L6-hIL-2 (I92D/Y45I)
297
20
4


1H3-hIgG1-L6-hIL-2 (I92D/Y45L)
298
5
3


1H3-hIgG1-L6-hIL-2 (I92D/Y45M)
299
14
3


1H3-hIgG1-L6-hIL-2 (I92D/Y45F)
300
10
3


1H3-hIgG1-L6-hIL-2 (I92D/Y45P)
301
28
4


1H3-hIgG1-L6-hIL-2 (I92D/Y45S)
302
11
3


1H3-hIgG1-L6-hIL-2 (I92D/Y45T)
303
28
4


1H3-hIgG1-L6-hIL-2 (I92D/Y45W)
304
27
4


1H3-hIgG1-L6-hIL-2 (I92D/Y45V)
305
28
5


1H3-hIgG1-L6-hIL-2 (R38E/D20H)
306
17
5


1H3-hIgG1-L6-hIL-2 (R38E/D20S)
307
17
3


1H3-hIgG1-L6-hIL-2 (F42A/N88R)
308
18
3


1H3-hIgG1-L6-hIL-2 (F42A/N88D)
309
18
3


1H3-hIgG1-L6-hIL-2 (R38E/D84A)
310
18
1


1H3-hIgG1-L6-hIL-2 (R38E/D84N)
311
18
1


1H3-hIgG1-L6-hIL-2 (R38E/D84Q)
312
18
1


1H3-hIgG1-L6-hIL-2 (R38E/D84E)
313
16
1


1H3-hIgG1-L6-hIL-2 (R38E/D84G)
314
18
1


1H3-hIgG1-L6-hIL-2 (R38E/D84H)
315
19
2


1H3-hIgG1-L6-hIL-2 (R38E/D84I)
316
20
1


1H3-hIgG1-L6-hIL-2 (R38E/D84L)
317
19
1


1H3-hIgG1-L6-hIL-2 (R38E/D84M)
318
20
2


1H3-hIgG1-L6-hIL-2 (R38E/D84F)
319
20
2


1H3-hIgG1-L6-hIL-2 (R38E/D84P)
320
20
1


1H3-hIgG1-L6-hIL-2 (R38E/D84S)
321
21
1


1H3-hIgG1-L6-hIL-2 (R38E/D84T)
322
20
1


1H3-hIgG1-L6-hIL-2 (R38E/D84W)
323
21
1


1H3-hIgG1-L6-hIL-2 (R38E/D84Y)
324
21
1


1H3-hIgG1-L6-hIL-2 (R38E/D84V)
325
22
1


1H3-hIgG1-L6-hIL-2 (R38E/I92A)
326
22
1


1H3-hIgG1-L6-hIL-2 (R38E/I92R)
327
22
2


1H3-hIgG1-L6-hIL-2 (R38E/I92N)
328
22
1


1H3-hIgG1-L6-hIL-2 (R38E/I92Q)
329
22
1


1H3-hIgG1-L6-hIL-2 (R38E/I92E)
330
22
2


1H3-hIgG1-L6-hIL-2 (R38E/I92G)
331
22
1


1H3-hIgG1-L6-hIL-2 (R38E/I92H)
332
21
1


1H3-hIgG1-L6-hIL-2 (R38E/I92L)
333
17
1


1H3-hIgG1-L6-hIL-2 (R38E/I92K)
334
24
3


1H3-hIgG1-L6-hIL-2 (R38E/I92M)
335
20
1


1H3-hIgG1-L6-hIL-2 (R38E/I92F)
336
16
1


1H3-hIgG1-L6-hIL-2 (R38E/I92P)
337
24
5


1H3-hIgG1-L6-hIL-2 (R38E/I92S)
338
22
2


1H3-hIgG1-L6-hIL-2 (R38E/I92T)
339
22
1


1H3-hIgG1-L6-hIL-2 (R38E/I92W)
340
23
1


1H3-hIgG1-L6-hIL-2 (R38E/I92Y)
341
21
1


1H3-hIgG1-L6-hIL-2 (R38E/I92V)
342
21
1


1H3-hIgG1-L6-hIL-2 (R38E/H16E)
343
25
3


1H3-hIgG1-L6-hIL-2 (R38K/D20A)
344
17
3









Example 4: Testing for Attenuation of IL-2 Fusion Proteins for Each of the High-Affinity and Intermediate-Affinity hIL-2 Receptors with a Cell-Based Potency pSTAT5 Dose-Titration Screen

The attenuation of selected antibody-attenuated hIL-2 fusion proteins described in Example 2 (1H3-hIgG1-L6-hIL-2 fusion protein from Groups 2-6) were tested in pSTAT5 titration curves using the NK-92 and TF1+IL-2Rβ cell lines as described in Protocol D.


The gMFI of the Alexa Fluor 647 pSTAT5-positive signal was used to generate four parameter logistic curves and GraphPad Prism 7 software was then used to calculate EC50 values. These values were compared to recombinant hIL-2 (rhIL-2) control as a measurement of attenuation. Tables 9-13 summarize the fold change in activity from rhIL-2 calculated using the gMFI of the Alexa Fluor 647 signal.


An increase in the fold change from rhIL-2 was indicative of the degree of attenuation of hIL-2 activity. Each antibody-attenuated hIL-2 fusion protein tested in the pSTAT5 titration curve was also assessed for agonistic activity and characterized as either full, partial, or no activity (inactive). Antibody-attenuated hIL-2 fusion protein dose-titration curves that reached the maximal gMFI level as the rhIL-2 were considered to be variants with full agonist activity. Partial agonist activity was calculated as described in Example 3. Inactive antibody-attenuated hIL-2 fusion proteins were classified as having less than 10% activity in comparison to rhIL-2. Some fold changes from rhIL-2 could not be accurately calculated (denoted as Not Calculated or “NC”) using the GraphPad Prism 7 software since a full four parameter logistic curve was not generated and accordingly these values are an estimate (annotated as ª in Tables 9-13). However, these variants had greater than 10,000-fold attenuation from rhIL-2 on graphs (data not shown). This is denoted on Tables 9-13 as “>10,000 on graph; NC”


Full titration pSTAT5 curves demonstrated similar findings as presented in Example 3 in which substitutions that modulated binding to both the alpha chain and the beta chain substantially attenuated IL-2 activity on the high affinity IL-2 receptor in comparison to single substitutions for binding to the alpha or beta chain only. The full titration pSTAT5 assay was additionally able to differentiate between variants with substitutions that caused inactivity versus highly attenuated variants. Finally, comparison of dose-titration curves illustrated more accurate of levels of attenuation over a fixed concentration assay.









TABLE 9







Fold change from rhIL-2 and agonistic activity on 1H3-hIgG1-L6-hIL-2 fusion


proteins from Group 2
















Fold





Fold

change




SEQ ID
change

from
Agonistic



NO of
from
Agonistic
rhIL-2
Activity



hIL-2
rhIL-2
Activity
(TF1 +
(TF1 +


Variants
variant
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)





1H3-hIgG1-L6-hIL-2 (R38A)
46
     2
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (R38D)
47
     55
Full
 1
Full


1H3-hIgG1-L6-hIL-2 (R38E)
48
 99-136
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (F42R)
50
     65
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (F42D)
52
    193
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (K43A)
54
     3 a
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (Y45R)
57
     81 a
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (E61A)
61
     3 a
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (E61R)
62
     22 a
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (E61K)
63
     14 a
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (E62A)
64
     6 a
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (E62R)
65
>10,000
Partial, 80%
38
Full


1H3-hIgG1-L6-hIL-2 (E62K)
66
    2048
Full
10
Full


1H3-hIgG1-L6-hIL-2 (E62Y)
67
     18
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (E68K)
70
     2 a
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (E68R)
71
     3 a
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (L72R)
74
     2 a
Full
 1
Full


1H3-hIgG1-L6-hIL-2 (L72D)
76
     4 a
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (L72H)
77
     1 a
Partial, 80%
 0
Full


1H3-hIgG1-L6-hIL-2
79
    479
Partial, 80%
NT
NT


(R38D/E61R)







1H3-hIgG1-L6-hIL-2
80
    598
Full
NT
NT


(R38D/E61R/K43E)







1H3-hIgG1-L6-hIL-2
81
360-1426
Full
 0
Full


(T3A/F42A/Y45A/L72G/C125A)





NT = not tested



a = Fold change is an estimate only since a full four parameter logistic curve was not reached














TABLE 10







Fold change from rhIL-2 and agonistic activity on 1H3-hIgG1-L6-hIL-2 fusion


proteins variants from Group 3
















Fold





Fold

change




SEQ ID
change

from
Agonistic



NO of
from
Agonistic
rhIL-2
Activity



hIL-2
rhIL-2
Activity
(TF1 +
(TF1 +


Variants
variant
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)





1H3-hIgG1-L6-hIL-2 (H16E)
 87
     63
Full
 63
Full


1H3-hIgG1-L6-hIL-2 (L19A)
 88
     0
Full
  0
Full


1H3-hIgG1-L6-hIL-2 (D20I)
 89
NT
NT
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hIL-2 (D20S)
 90
     28
Partial, 80%
 277 a
Partial, 80%


1H3-hIgG1-L6-hIL-2 (D20H)
 91
>10,000 a
Partial, 90%
2767 a
Partial, 50%


1H3-hIgG1-L6-hIL-2 (D20W)
 93
NT
NT
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hIL-2 (D20Y)
 94
>10,000 a
Partial, 50-70%
 84-143 a
Partial, 80%


1H3-hIgG1-L6-hIL-2 (D20R)
 95
NT
NT
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hIL-2 (D20F)
 96
NT
NT
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hIL-2 (D84A)
 98
NT
NT
 14
Full


1H3-hIgG1-L6-hIL-2 (D84R)
 99
     16
Full
 244 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (D84K)
100
     14
Partial, 90%
 195 a
Full


1H3-hIgG1-L6-hIL-2 (N88Y)
102
NT
NT
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hIL-2 (N88D)
103
     21
Partial, 90%
 130
Full


1H3-hIgG1-L6-hIL-2 (N88R)
104
5-27
Partial, 80%-Full
289-556
Partial, 40%


1H3-hIgG1-L6-hIL-2 (N88E)
105
NT
NT
>10,000 on
Partial, 40%






graph, NC a



1H3-hIgG1-L6-hIL-2 (N88F)
106
NT
NT
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hIL-2 (N88I)
107
NT
NT
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hIL-2 (I92Y)
109
NT
NT
  1
Full


1H3-hIgG1-L6-hIL-2 (I92S)
110
NT
NT
  8
Full


1H3-hIgG1-L6-hIL-2 (I92R)
112
NT
NT
 31
Full


1H3-hIgG1-L6-hIL-2 (I92D)
113
8-20
Full
 68-365 a
Partial, 70-90%


1H3-hIgG1-L6-hIL-2 (E95R)
116
NT
NT
  5
Full


1H3-hIgG1-L6-hIL-2 (D20T)
 92
     8
Full
 167 a
Partial, 80%


1H3-hIgG1-L6-hIL-2 (D20A)
 31
     21
Partial, 80%
 117 a
Partial, 80%


1H3-hIgG1-L6-hIL-2
 94
     52 ª
Partial, 80%
2159 a
Partial, 30%


(D20Y/H16E)







1H3-hIgG1-L6-hIL-2
119
>10,000 ª
Partial, 40%
 30 a
Partial, 20%


(D20Y/H16A)







1H3-hIgG1-L6-hIL-2
120
>10,000 ª
Partial, 40%
 343 a
Partial, 20%


(D20Y/H16Y)







1H3-hIgG1-L6-hIL-2
121
>10,000 ª
Partial, 20%
  4 a
Partial, 10%


(D20Y/I92A)







1H3-hIgG1-L6-hIL-2
122
>10,000 ª
Partial, 10%
 12 a
Partial, 10%


(D20Y/I92S)





NT = Not Tested; NC = Not Calculated by GraphPad Prism 7



a = Fold change is an estimate only since a full four parameter logistic curve was not reached














TABLE 11







Fold change from rhIL-2 and agonistic activity on 1H3-hIgG1-L6-hIL-2 fusion proteins from Group 4













SEQ ID


Fold change
Agonistic



NO of
Fold change
Agonistic
from rhIL-2
Activity



hIL-2
from rhIL-2
Activity
(TF1 +
(TF1 +


Variants
variant
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)





1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (E15A)
 82
    184
Full
 20
Full


1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (D20I)
 89
>10,000 a
Partial, 80%
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (D20S)
 90
    2403
Full
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (D20H)
 91
>10,000 a
Partial, 80%
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (D20W)
 93
>10,000 a
Partial, 60%
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (D20Y)
 94
>10,000 a
Partial, 90%
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (D20R)
 95
>10,000 a
Partial, 80%
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (D20F)
 96
>10,000 a
Partial, 70%
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (D84K)
100
>10,000
Full
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (S87A)
101
    305
Full
 44
Full


1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (N88Y)
102
>10,000 a
Partial, 50%
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (N88D)
103
    393
Full
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (N88R)
104
    274
Full
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (N88E)
105
>10,000 a
Full
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (N88F)
106
>10,000 a
Partial, 80%
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (N88I)
107
   7780
Full
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (I92A)
108
     26
Full
 95
Full


1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (E95A)
115
     30
Full
 16
Full


1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2 (E95K)
117
    792
Full
434 a
Partial, 60%





NC = Not Calculated by GraphPad Prism 7



a = Fold change is an estimate only since a full four parameter logistic curve was not reached














TABLE 12







Fold change from rhIL-2 and agonistic activity on 1H3-hIgG1-L6-hIL-2 fusion proteins from Group 5













SEQ ID


Fold change
Agonistic



NO of
Fold change
Agonistic
from rhIL-2
Activity



hIL-2
from rhIL-2
Activity
(TF1 +
(TF1 +


Variants
variant
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)





1H3-hIgG1-L6-hIL-2 (F42K/D20A)
129
>10,000 a
Partial, 30%
 219 a
Partial, 50%


1H3-hIgG1-L6-hIL-2 (F42A/D20A)
130
>10,000 a
Partial, 70%
 96 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (R38N/D20A)
134
    4497
Partial, 70%
 121 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (R38G/D20A)
135
    2811
Partial, 70%
 139 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (R38H/D20A)
136
    1752
Partial, 80%
 107 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (R38I/D20A)
137
    658
Partial, 70%
 107 a
Partial, 60%


1H3-hIgG1-L6-hIL-2 (R38L/D20A)
138
    532
Partial, 80%
 125 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (R38M/D20A)
139
    786
Partial, 90%
 85 a
Partial, 90%


1H3-hIgG1-L6-hIL-2 (R38F/D20A)
140
    1072
Partial, 80%
 124 a
Partial, 90%


1H3-hIgG1-L6-hIL-2 (R38P/D20A)
142
    337
Partial, 70%
 337 a
Partial, 80%


1H3-hIgG1-L6-hIL-2 (R38S/D20A)
142
    571
Partial, 70%
 571 a
Partial, 90%


1H3-hIgG1-L6-hIL-2 (R38V/D20A)
146
    765
Partial, 70%
 765 a
Partial, 90%


1H3-hIgG1-L6-hIL-2 (R38A/D20A)
147
    619
Partial, 80%
 70 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (R38Q/D20A)
148
    4700
Partial, 80%
 91 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/R38E)
149
>10,000 a
Partial, 60%-Full
 409 a
Partial, 50%


1H3-hIgG1-L6-hIL-2 (R38D/D20A)
150
>10,000 a
Partial, 70%
 172 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (K43E/D20A)
151
    584
Partial, 90%
 231 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (F42R/I92D)
159
    801 a
Partial, 40%
 52 a
Partial, 80%


1H3-hIgG1-L6-hIL-2 (F42H/I92D)
160
    194
Full
 801 a
Partial, 80%


1H3-hIgG1-L6-hIL-2 (F42A/I92D)
161
    338 a
Partial, 70%
 194 a
Full


1H3-hIgG1-L6-hIL-2 (R38D/I92D)
170
>10,000 a
Partial, 80%
 338 a
Partial, 80%


1H3-hIgG1-L6-hIL-2 (R38E/I92D)
171
>10,000 a
Partial, 70%
 51 a
Partial, 80%


1H3-hIgG1-L6-hIL-2 (R38Q/I92D)
172
    561
Full
 48 a
Partial, 90%


1H3-hIgG1-L6-hIL-2 (R38E/D84R)
175
>10,000 a
Partial, 60%
 50 a
Partial, 80%


1H3-hIgG1-L6-hIL-2 (R38E/D84K)
176
>10,000 a
Partial, 40%
 45 a
Partial, 80%


1H3-hIgG1-L6-hIL-2 (R38D/E61R/D20A)
179
>10,000 on
Partial, 40%
 62 a
Partial, 70%




graph, NC a





1H3-hIgG1-L6-hIL-2 (R38E/E61R/D20A)
180
>10,000 a
Partial, 90%
 181 a
Partial, 60%


1H3-hIgG1-L6-hIL-2 (R38Q/E61R/D20A)
181
>10,000 a
Partial, 40%
 115 a
Partial, 80%


1H3-hIgG1-L6-hIL-2 (R38A/E61R/D20A)
182
>10,000 a
Partial, 40%
 130 a
Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/R38A)
183
 149-199
Partial, 70-80%
 157 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/R38D)
184
>10,000
Partial, 60-70%
 84-508 a
Full


1H3-hIgG1-L6-hIL-2 (D20A/E95A/R38E)
185
>10,000 a
Partial, 70-90%
188-427 a
Partial,







70%-Full


1H3-hIgG1-L6-hIL-2 (D20A/E95A/R38Q)
186
    3725
Partial, 70%
124-413 a
Partial,







80%-Full


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42R)
187
>10,000 a
Partial, 70%
 87 a
Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42A)
188
3000-5718 a
Partial, 90%
 45-244 a
Partial,







70%-Full


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42D)
189
>10,000 a
Partial, 10%
1451 a
Partial, 30%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42H)
190
    3579
Partial, 80%
 411 a
Full


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42K)
191
>10,000 a
Partial, 50%
 82 a
Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/K43E)
193
 386-553
Partial, 80-90%
 46-142 a
Partial, 50-0%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/Y45A)
195
     62
Partial, 90%
 300 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/Y45K)
196
    7951 a
Partial, 70%
 205 a
Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/Y45R)
198
>10,000 a
Partial, 80%
 293 a
Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E61A)
199
    367
Partial, 80%
 195 a
Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E62A)
200
    3265 a
Partial, 70%
 230 a
Partial, 50%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E62R)
201
>10,000 a
Inactive, 5%
>10,000 on
Partial, 10%






graph, NC a



1H3-hIgG1-L6-hIL-2 (D20A/E95A/E62K)
202
>10,000 a
Inactive, 10%
>10,000 on
Partial, 10%






graph, NC a



1H3-hIgG1-L6-hIL-2 (D20A/E95A/E62Y)
203
>10,000 a
Partial, 70%
 265 a
Partial, 40%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E68Y)
204
    131
Partial, 80%
 61 a
Partial, 50%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E68A)
205
     45
Partial, 60%
 620 a
Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E68L)
206
    187
Partial, 80%
 172 a
Partial, 40%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/L72R)
208
    1178
Full
 499 a
Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/L72D)
210
>10,000 a
Partial, 70%
456-504 a
Partial, 60-70%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/L72H)
211
    798
Partial, 70%
 117 a
Partial, 70%


1H3-hIgG1-L6-hIL-2
214
>10,000 a
Partial, 60-70%
155 185 a
Partial, 70%


(D20A/E95A/F42K/Y45R)







1H3-hIgG1-L6-hIL-2
213
    840 a
Partial, 70%
 155 a
Partial, 70%


(F42K/Y45R/D20A/S87A)







1H3-hIgG1-L6-hIL-2 (D20A/R38E/C125A)
215
>10,000 on
Partial, 50%
183-584 a
Partial, 50-70%




graph, NC a





hIgG1-L6-hIL-2(T3A/D20A/R38E)
216
>10,000 a
Partial, 60-90%
 77-484 a
Partial, 60%


1H3-hIgG1-L6-hIL-2
217
>10,000 a
Partial, 90%
218-512 a
Partial, 50-60%


(T3A/D20A/R38E/C125A)







1H3-hIgG1-L6-hIL-2(A1-3APT/D20A/R38E)
218
 24-69
Full
  6
Full


1H3-hIgG1-L6-hIL-2 (A1-
219
 49-619
Partial, 30-70%
165-619 a
Partial, 40-50%


3APT/D20A/R38E/C125A)







1H3-hIgG1-L6-hIL-2 (R38E/Q126D)
225
>10,000 on
Partial, 60%
>10,000 on
Partial, 40%




graph, NC a

graph, NC a



1H3-hIgG1-L6-hIL-2 (F42K/Y45R/Q126D)
228
>10,000 a
Partial, 60%
 226 a
Partial, 50%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/Q126D)
229
>10,000 on
Inactive
>10,000 on
Inactive




graph, NC a

graph, NC a





NC = Not Calculated by GraphPad Prism 7



a = Fold change is an estimate only since a full four parameter logistic curve was not reached














TABLE 13







Fold change from rhIL-2 and agonistic activity on 1H3-hIgG1-L6-hIL-2 fusion proteins from Group 6













SEQ ID


Fold change
Agonistic



NO of
Fold change
Agonistic
from rhIL-2
Activity



hIL-2
from rhIL-2
Activity
(TF1 +
(TF1 +


Variants
variant
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)





1H3-hIgG1-L6-hIL-2
247
>10,000 a
Partial, 60%
>10,000 on
Partial, 80%


(D20A/F42N)



graph, NC a



1H3-hIgG1-L6-hIL-2
248
>10,000 a
Partial, 50%
 16 a
Partial, 70%


(D20A/F42Q)







1H3-hIgG1-L6-hIL-2
254
>10,000 a
Partial, 60%
 13 a
Partial, 80%


(D20A/F42P)







1H3-hIgG1-L6-hIL-2
255
>10,000 a
Partial, 60%
 17 a
Partial, 40%


(D20A/F42S)







1H3-hIgG1-L6-hIL-2
264
    4717
Partial, 80%
 32 a
Partial, 50%


(D20A/Y45E)







1H3-hIgG1-L6-hIL-2
277
>10,000 a
Partial, 50%
 24 a
Partial, 70%


(I92D/F42Q)







1H3-hIgG1-L6-hIL-2
280
>10,000 a
Partial, 30%
117 a
Partial, 20%


(I92D/F42I)







1H3-hIgG1-L6-hIL-2
282
>10,000 a
Partial, 50%
 58 a
Partial, 90%


(I92D/F42K)







1H3-hIgG1-L6-hIL-2
286
>10,000 a
Partial, 60%
>10,000 on
Partial, 80%


(I92D/F42T)



graph, NC a



1H3-hIgG1-L6-hIL-2
307
>10,000 a
Partial, 50%
 25 a
Partial, 40%


(R38E/D20S)







1H3-hIgG1-L6-hIL-2
308
>10,000 a
Partial, 70%
 34 a
Partial, 30%


(F42A/N88R)





NC = Not Calculated by GraphPad Prism



a = Fold change is an estimate only since a full four parameter logistic curve was not reached







Example 5: Testing for Attenuation for the High-Affinity and Intermediate-Affinity hIL-2 Receptor with Cell-Based Proliferation Assays

The attenuation of IL-2 activity of antibody-attenuated hIL-2 fusion proteins from Groups 1-6 in Example 2 (2D12-mIgG1-D265A-L6-hIL-2, 2D12-hIgG1-L6-hIL-2, and 1H3-hIgG1-L6-hIL-2 fusion proteins) were tested in proliferation assays in both the NK-92 and TF1+IL-2Rβ cell lines as described in Protocol E. The results of the assays are provided in Tables 14-19.


Selected 1H3-hIgG1-L6-hIL-2 fusion proteins with substantial attenuation in the pSTAT5 titration curves from Example 4 were tested in this cell-based proliferation assay. pSTAT5 is a downstream read-out of IL-2 activity and assays require only 10 minutes of stimulation which may be a small snapshot of IL-2 dependent activity. For proliferation assays, cells were incubated with 2D12-mIgG1-D265A-L6-hIL-2, 2D12-hIgG1-L6-hIL-2, 1H3-hIgG1-L6-hIL-2 fusion proteins, or recombinant hIL-2 control for 3-4 days, providing a more physiological relevant read-out of IL-2 dependent activity in vivo. Other 2D12-mIgG1-D265A-L6-hIL-2 and 2D12-hIgG1-L6-hIL-2 fusion proteins that were generated but not tested in a pSTAT5 assay were assayed for IL-2 dependent activity using this proliferation assay.


Similar to cell-based pSTAT5 dose-titration experiments, the calculated EC50 as determined from relative luminescence units (RLU) instead of gMFI and analysis of the results were performed identically to Example 4 once EC50 was calculated. Similar to results identified in Example 4, proliferation curves demonstrated that some substitutions that modulated binding to both the alpha chain and beta chain substantially attenuated IL-2 activity on the high affinity receptor in comparison to single substitutions for binding to the alpha or beta chain only. These selected 1H3-hIgG1-L6-hIL-2 fusion proteins were also tested for proliferation on the TF1+IL-2Rβ cell line and demonstrated that some of these same substitutions substantially attenuated IL-2 activity on the intermediate affinity receptor.









TABLE 14







Fold change from rhIL-2 and agonistic activity on 2D12-mIgG1-D265A-L6-hIL-2 or 2D12-hIgG1-L6-hIL-2


fusion proteins from Group 1 in a cell-based proliferation assay













SEQ ID


Fold change
Agonistic



NO
Fold change
Agonistic
from rhIL-2
Activity



of hIL-2
from rhIL-2
Activity
(TF1 +
(TF1 +


Variants
variant
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)















2D12-mIgG1-D265A-L6-hIL-2 (F42K)
1
2
Full
     0
Full


2D12-mIgG1-D265A-L6-hIL-2 (Y45R)
60
3
Full
     2
Full


2D12-hIgG1-L6-hIL-2 (V69A)
2
0
Full
     0
Full


2D12-hIgG1-L6-hIL-2 (V69E)
3
13
Partial, 60%
     83
Full


2D12-hIgG1-L6-hIL-2 (V69H)
6
41
Partial, 60%
    544
Full


2D12-hIgG1-L6-hIL-2 (V69K)
8
>10,000 on
Inactive
    3033
Partial, 40%




graph, NC ª





2D12-hIgG1-L6-hIL-2 (V69L)
9
1
Full
     1
Full


2D12-hIgG1-L6-hIL-2 (V69F)
4
0
Full
     1
Full


2D12-hIgG1-L6-hIL-2 (V69G)
5
108
Full
    396
Full


2D12-hIgG1-L6-hIL-2 (V69I)
7
1
Full
     1
Full


2D12-hIgG1-L6-hIL-2 (V69M)
10
2
Full
     3
Full


2D12-hIgG1-L6-hIL-2 (V69Q)
11
7
Full
     16
Full


2D12-mIgG1-D265A-L6-hIL-2 (V69R)
581
2392
Partial, 70%
    2973
Partial, 50%


2D12-hIgG1-L6-hIL-2 (V69S)
12
6
Full
     13
Full


2D12-hIgG1-L6-hIL-2 (V69T)
13
3
Full
     3
Full


2D12-hIgG1-L6-hIL-2 (V69W)
14
0
Full
     1
Full


2D12-hIgG1-L6-hIL-2 (V69Y)
15
1
Full
     1
Full


2D12-mIgG1-D265A-L6-hIL-2 (D20A)
31
1
Full
>10,000 a
Full


2D12-mIgG1-D265A-L6-hIL-2 (D20N)
32
0
Full
>10,000 a
Full


2D12-mIgG1-D265A-L6-hIL-2 (D20K)
33
4
Full
>10,000 on
Inactive






graph, NC a



2D12-mIgG1-D265A-L6-hIL-2 (N88A)
34
0
Full
    2289
Full


2D12-mIgG1-D265A-L6-hIL-2 (N88G)
35
0
Full
    2978
Full


2D12-mIgG1-D265A-L6-hIL-2 (N88H)
36
1-3
Full
>10,000 on
Inactive






graph, NC a



2D12-mIgG1-D265A-L6-hIL-2 (N88K)
37
 564-9557
Partial, 40%
>10,000 on
Inactive






graph, NC a



2D12-mIgG1-D265A-L6-hIL-2
375
 0-12
Full
    118
Full


(Q126L)







2D12-mIgG1-D265A-L6-hIL-2
376
0-3
Full
     40
Full


(Q126E)







2D12-mIgG1-D265A-L6-hIL-2
16
44
Full
>10,000 on
Inactive


(F42K/F44K)



graph, NC a



2D12-mIgG1-D265A-L6-hIL-2
17
1-2
Full
0-3
Full


(F42K/Y45R)







2D12-mIgG1-D265A-L6-hIL-2
18
1500
Partial, 80%
    841
Partial, 80%


(F42K/V69R)







2D12-mIgG1-D265A-L6-hIL-2
19
1
Full
     3
Full


(Y45R/V69R)







2D12-mIgG1-D265A-L6-hIL-2
38
1
Full
>10,000 on
Inactive


(D20A/D84A)



graph, NC a



2D12-mIgG1-D265A-L6-hIL-2
39
0
Full
>10,000 on
Partial, 40%


(D20A/E15A)



graph, NC a



2D12-mIgG1-D265A-L6-hIL-2
40
0
Full
>10,000 a
Full


(D20A/E95A)







2D12-mIgG1-D265A-L6-hIL-2
41
6
Partial, 60%
>10,000 on
Inactive


(D20A/N88A)



graph, NC a



2D12-mIgG1-D265A-L6-hIL-2
42
0
Full
>10,000 a
Full


(D20A/S87A)







2D12-mIgG1-D265A-L6-hIL-2
43
0
Full
>10,000 on
Inactive


(D84A/N88A)



graph, NC a



2D12-mIgG1-D265A-L6-hIL-2
44
0
Full
    4201
Partial, 80%


(E15A/N88A)







2D12-mIgG1-D265A-L6-hIL-2
45
0
Full
    1521
Full


(S87A/N88A)







2D12-mIgG1-D265A-L6-hIL-2
20
NT
NT
     0
Full


(F42K/F44K/Y45R)







2D12-mIgG1-D265A-L6-hIL-2
574
0-1
Full
0-3
Full


(F42A/Y45A/L72G)







2D12-mIgG1-D265A-L6-hIL-2
21
1
Full
     0
Full


(R38A/F42K/Y45R)







2D12-mIgG1-D265A-L6-hIL-2
22
1-3
Full
     0
Full


(R38E/F42K/Y45R)







2D12-mIgG1-D265A-L6-hIL-2
23
0
Full
     3
Full


(K43E/F42K/Y45R)







2D12-mIgG1-D265A-L6-hIL-2
24
0
Full
     3
Full


(K43T/F42K/Y45R)







2D12-mIgG1-D265A-L6-hIL-2
25
1
Full
0-3
Full


(F42K/Y45R/E62A)







2D12-mIgG1-D265A-L6-hIL-2
26
1
Full
0-2
Full


(P65R/F42K/Y45R)







2D12-mIgG1-D265A-L6-hIL-2
27
1
Full
0-2
Full


(P65S/F42K/Y45R)







2D12-mIgG1-D265A-L6-hIL-2
28
1
Full
0-4
Full


(V69A/F42K/Y45R)







2D12-mIgG1-D265A-L6-hIL-2
29
1
Full
0-5
Full


(V69D/F42K/Y45R)







2D12-mIgG1-D265A-L6-hIL-2
30
1-4
Full
0-6
Full


(V69R/F42K/Y45R)










NT = Not Tested


NC = Not Calculated by GraphPad Prism 7



a = Fold change is an estimate only since a full four parameter logistic curve was not reached














TABLE 15







Fold change from rhIL-2 and agonistic activity on 1H3-hIgG1-L6-hIL-2 fusion proteins from


Group 2 in a cell-based proliferation assay













SEQ ID


Fold change
Agonistic



NO
Fold change
Agonistic
from rhIL-2
Activity



of hIL-2
from rhIL-2
Activity
(TF1 +
(TF1+


Variants
variant
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)





1H3-hIgG1-L6-hIL-2 (R38A)
46
 0
Full
 1
Full


1H3-hIgG1-L6-hIL-2 (R38D)
47
 3
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (R38E)
48
 7
Full
 1 a
Full


1H3-hIgG1-L6-hIL-2 (F42R)
50
 6
Full
 0 a
Full


1H3-hIgG1-L6-hIL-2 (F42D)
52
 10
Full
 2
Full


1H3-hIgG1-L6-hIL-2 (K43A)
54
 1 a
Full
 2
Full


1H3-hIgG1-L6-hIL-2 (Y45R)
60
 4
Full
 0 a
Full


1H3-hIgG1-L6-hIL-2 (E61A)
61
 0 a
Full
 1
Full


1H3-hIgG1-L6-hIL-2 (E61R)
62
 1
Full
 1
Full


1H3-hIgG1-L6-hIL-2 (E61K)
63
 1
Full
 1
Full


1H3-hIgG1-L6-hIL-2 (E62A)
64
 1
Full
 1
Full


1H3-hIgG1-L6-hIL-2 (E62R)
65
>10,000 on
Inactive
209
Partial, 60%




graph, NC a





1H3-hIgG1-L6-hIL-2 (E62K)
66
>10,000 a
Partial, 40-70%
67-99
Partial, 60%


1H3-hIgG1-L6-hIL-2 (E62Y)
67
 1
Full
 1
Full


1H3-hIgG1-L6-hIL-2 (E68K)
70
 0
Full
 1
Full


1H3-hIgG1-L6-hIL-2 (E68R)
71
 1
Full
 1
Full


1H3-hIgG1-L6-hIL-2 (L72R)
74
 3
Full
 3
Full


1H3-hIgG1-L6-hIL-2 (L72D)
76
 2
Full
 0
Full


1H3-hIgG1-L6-hIL-2 (L72H)
77
 1
Full
 1
Full


1H3-hIgG1-L6-hIL-2 (R38D/E61R)
79
 36
Full
 2
Full


1H3-hIgG1-L6-hIL-2
80
 27
Full
 1
Full


(R38D/E61R/K43E)







1H3-hIgG1-L6-hIL-2
81
142
Full
 1-2
Partial,


(T3A/F42A/Y45A/L72G/C125A)




40%-Full





NT = Not Tested


NC = Not Calculated by GraphPad Prism 7



a = Fold change is an estimate only since a full four parameter logistic curve was not reached














TABLE 16







Fold change from rhIL-2 and agonistic activity on 1H3-hIgG1-L6-hIL-2 fusion proteins from


Group 3 in a cell-based proliferation assay













SEQ ID


Fold change
Agonistic



NO
Fold change
Agonistic
from rhIL-2
Activity



of hIL-2
from rhIL-2
Activity
(TF1 +
(TF1+


Variants
variant
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)





1H3-hIgG1-L6-hIL-2 (H16E)
 87
 0
Full
 34
Full


1H3-hIgG1-L6-hIL-2 (L19A)
 88
NT
NT
  1
Full


1H3-hIgG1-L6-hIL-2 (D20I)
 89
NT
NT
  8 a
Partial, 50%


1H3-hIgG1-L6-hIL-2 (D20S)
 90
 1
Full
201-304
Partial,







80%-Full


1H3-hIgG1-L6-hIL-2 (D20H)
 91
239
Full
986-6461 a
Partial, 50-70%


1H3-hIgG1-L6-hIL-2 (D20W)
 93
NT
NT
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hIL-2 (D20Y)
 94
880-2097 a
Full
 383
Full


1H3-hIgG1-L6-hIL-2 (D20R)
 95
NT
NT
262-275
Full


1H3-hIgG1-L6-hIL-2 (D20F)
 96
NT
NT
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hIL-2 (D84A)
 98
NT
NT
 21
Full


1H3-hIgG1-L6-hIL-2 (D84R)
 99
 9
Full
269-455
Partial, 80-90%


1H3-hIgG1-L6-hIL-2 (D84K)
100
 4
Full
354-385
Partial,







70%-Full


1H3-hIgG1-L6-hIL-2 (N88Y)
102
NT
NT
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hIL-2 (N88D)
103
 0
Full
115-137
Partial,







70%-Full


1H3-hIgG1-L6-hIL-2 (N88R)
104
 1-5
Partial,
 959
Partial, 80%





80%-Full




1H3-hIgG1-L6-hIL-2 (N88E)
105
NT
NT
1162
Partial, 50%


1H3-hIgG1-L6-hIL-2 (N88F)
106
NT
NT
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hIL-2 (N88I)
107
NT
NT
>10,000 on
Inactive






graph, NC a



1H3-hIgG1-L6-hIL-2 (I92Y)
109
NT
NT
  1
Full


1H3-hIgG1-L6-hIL-2 (I92S)
110
NT
NT
 10
Full


1H3-hIgG1-L6-hIL-2 (I92R)
112
NT
NT
 13
Full


1H3-hIgG1-L6-hIL-2 (I92D)
113
 15-20
Full
609-1006
Partial,







90%-Full


1H3-hIgG1-L6-hIL-2 (E95R)
116
NT
NT
  8
Full


1H3-hIgG1-L6-hIL-2 (D20T)
 92
 2
Full
124-149
Full


1H3-hIgG1-L6-hIL-2 (D20Y/H16E)
118
 5
Full
8076 a
Partial, 80%





NT = Not Tested


NC = Not Calculated by GraphPad Prism 7



a = Fold change is an estimate only since a full four parameter logistic curve was not reached














TABLE 17







Fold change from rhIL-2 and agonistic activity on 1H3-hIgG1-L6-hIL-2


fusion proteins from Group 4 in a cell-based proliferation assay













SEQ ID


Fold change
Agonistic



NO of
Fold change
Agonistic
from rhIL-2
Activity



hIL-2
from rhIL-2
Activity
(TF1 +
(TF1 +


Variants
variant
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)
















1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
82
14
Partial, 90%
13

Partial, 70%












(E15A)


















1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
90
127
Full
8709

a

Partial, 50%












(D20S)







1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
93
>10,000 on
Inactive
>10,000 on
Inactive













(D20W)

graph, NC a

graph, NC

a














1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
94
>10,000 on
Partial, 50%
>10,000 on
Inactive













(D20Y)

graph, NC a

graph, NC

a




1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
100
783
Partial, 90%
2051

a

Partial, 30%












(D84K)


















1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
101
19
Partial, 90%
20

Partial, 90%












(S87A)


















1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
103
50
Full
3284

a

Partial, 90%












(N88D)


















1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
104
42
Full
6864

a

Partial, 50%












(N88R)


















1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
117
51
Full
164

Partial, 80%












(E95K)










NC = Not Calculated by GraphPad Prism 7



a = Fold change is an estimate only since a full four parameter logistic curve was not reached














TABLE 18







Fold change from rhIL-2 and agonistic activity on 1H3-hIgG1-L6-hIL-2


fusion proteins from Group 5 in a cell-based proliferation assay













SEQ ID


Fold change
Agonistic



NO of
Fold change
Agonistic
from rhIL-2
Activity



hIL-2
from rhIL-2
Activity
(TF1 +
(TF1 +


Variants
variant
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)
















1H3-hIgG1-L6-hIL-2 (F42K/D20A)
129
>10,000 on
Partial, 20%
3060

a

Full
















graph, NC

a


















1H3-hIgG1-L6-hIL-2 (F42A/D20A)
130
>10,000 on
Full
2081

a

Full
















graph, NC

a







1H3-hIgG1-L6-hIL-2 (R38P/D20A)
141
86

Full
761

Full


1H3-hIgG1-L6-hIL-2 (R38S/D20A)
142
140

Full
662

Full


1H3-hIgG1-L6-hIL-2 (R38V/D20A)
146
11

Full
843

Full













1H3-hIgG1-L6-hIL-2 (D20A/R38E)
149
1183-2016
Partial, 70%-Full
>10,000

a

Partial, 80%-Full














1H3-hIgG1-L6-hIL-2 (R38D/D20A)
150
2262

a

Full
680

Full













1H3-hIgG1-L6-hIL-2 (F42R/I92D)
159
>10,000 on
Partial, 30%
1210

Full
















graph, NC

a







1H3-hIgG1-L6-hIL-2 (F42H/I92D)
160
288

a

Full
242

a

Full













1H3-hIgG1-L6-hIL-2 (F42A/I92D)
161
>10,000 on
Partial, 60%
2275

Partial, 80%
















graph, NC

a







1H3-hIgG1-L6-hIL-2 (R38D/I92D)
170
746

a

Partial, 90%
172

Full


1H3-hIgG1-L6-hIL-2 (R38E/I92D)
171
1611

a

Full
116

Full













1H3-hIgG1-L6-hIL-2 (R38E/D84R)
175
>10,000 on
Full
147

Full
















graph, NC

a


















1H3-hIgG1-L6-hIL-2 (R38E/D84K)
176
>10,000 on
Partial, 70%
315

Full
















graph, NC

a


















1H3-hIgG1-L6-hIL-2 (R38D/E61R/D20A)
179
>10,000 on
Partial, 50%
984

Full
















graph, NC

a


















1H3-hIgG1-L6-hIL-2 (R38E/E61R/D20A)
180
>10,000 on
Full
417

Full
















graph, NC

a


















1H3-hIgG1-L6-hIL-2 (R38Q/E61R/D20A)
181
>10,000 on
Partial, 80%
803

Full
















graph, NC

a


















1H3-hIgG1-L6-hIL-2 (R38A/E61R/D20A)
182
>10,000 on
Partial, 60%
1031

Full
















graph, NC

a







1H3-hIgG1-L6-hIL-2 (D20A/E95A/R38A)
183
42

Partial, 70%
537

Partial, 80%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/R38D)
184
5315

a

Partial, 50%
492

Partial, 80%













1H3-hIgG1-L6-hIL-2 (D20A/E95A/R38E)
185
>10,000 on
Full
439

Partial, 90%
















graph, NC

a







1H3-hIgG1-L6-hIL-2 (D20A/E95A/R38Q)
186
572

Full
859

Partial, 80%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42R)
187
2096

Partial, 70%
356

Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42A)
188
369

Partial, 70%
73

Partial, 90%












1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42D)
189
>10,000 on
Inactive
>10,000 on
Inactive
















graph, NC

a


graph, NC

a




1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42H)
190
641

Partial, 90%
320

Full













1H3-hIgG1-L6-hIL-2 (D20A/E95A/F42K)
191
>10,000 on
Inactive
272

Partial, 80%
















graph, NC

a







1H3-hIgG1-L6-hIL-2 (D20A/E95A/K43E)
193
80

Partial, 90%
1876

a

Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/Y45A)
195
25

Full
82

Partial, 90%













1H3-hIgG1-L6-hIL-2 (D20A/E95A/Y45K)
196
>10,000 on
Partial, 20%
383

Partial, 60%
















graph, NC

a


















1H3-hIgG1-L6-hIL-2 (D20A/E95A/Y45R)
198
>10,000 on
Inactive
57

Partial, 50%
















graph, NC

a







1H3-hIgG1-L6-hIL-2 (D20A/E95A/E61A)
199
306

a

Partial, 80%
702

Partial, 80%













1H3-hIgG1-L6-hIL-2 (D20A/E95A/E62A)
200
>10,000 on
Partial, 20%
661

Partial, 60%
















graph, NC

a

















1H3-hIgG1-L6-hIL-2 (D20A/E95A/E62R)
201
>10,000 on
Inactive
>10,000 on
Inactive
















graph, NC

a


graph, NC

a














1H3-hIgG1-L6-hIL-2 (D20A/E95A/E62K)
202
>10,000 on
Inactive
>10,000 on
Inactive
















graph, NC

a


graph, NC

a




1H3-hIgG1-L6-hIL-2 (D20A/E95A/E62Y)
203
721

Partial, 40%
982

a

Partial, 30%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E68Y)
204
11

Full
469

Full


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E68A)
205
6

Partial, 50%
535

Partial, 80%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/E68L)
206
15

Full
972

Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/L72R)
208
655

a

Partial, 50%
316

Partial, 40%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/L72D)
210
5415

Inactive
125

Partial, 90%


1H3-hIgG1-L6-hIL-2 (D20A/E95A/L72H)
211
583

a

Partial, 60%
135

Partial, 80%












1H3-hIgG1-L6-hIL-2
214
>10,000 on
Inactive
 58-209
Partial, 40-80%














(D20A/E95A/F42K/Y45R)

graph, NC

a







1H3-hIgG1-L6-hIL-2
213
123

Full
0

Full


(F42K/Y45R/D20A/S87A)









1H3-hIgG1-L6-hIL-2 (D20A/R38E/C125A)
215
>10,000

a

Partial, 30-90%
2102

a

Partial, 80%












1H3-hIgG1-L6-hIL-2 (T3A/D20A/R38E)
216
2338-5870
Partial, 80%-Full
353-571
Full














1H3-hIgG1-L6-hIL-2
217
>10,000

a

Full
1086

a

Partial, 80%-Full













(T3A/D20A/R38E/C125A)








1H3-hIgG1-L6-hIL-2 (Δ1-3APT/D20A/R38E)
218
 4-16
Full
32

Partial, 90%














1H3-hIgG1-L6-hIL-2
219
>10,000

a

Inactive-Partial,
993

a

Partial, 60%


(Δ1-3APT/D20A/R38E/C125A)



50%





1H3-hIgG1-L6-hIL-2 (F42K/Y45R/Q126D)
228
>10,000

a

Partial, 50%
597

Partial, 80%













1H3-hIgG1-L6-hIL-2 (D20A/E95A/Q126D)
229
106

a

Inactive
>10,000 on
Inactive



















graph, NC

a







NC = Not Calculated by GraphPad Prism 7



a = Fold change is an estimate only since a full four parameter logistic curve was not reached














TABLE 19







Fold change from rhIL-2 and agonistic activity on 1H3-hIgG1-L6-hIL-2


fusion proteins from Group 6 in a cell-based proliferation assay













SEQ ID


Fold change
Agonistic



NO of
Fold change
Agonistic
from rhIL-2
Activity



hIL-2
from rhIL-2
Activity
(TF1 +
(TF1 +


Variants
variant
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)

















1H3-hIgG1-L6-hIL-2 (D20A/E61R)
230
3950

a

Partial, 10%
278

Partial, 50%


1H3-hIgG1-L6-hIL-2 (D20A/F42N)
247
>10,000

a

Partial, 50%
662

Partial, 80%













1H3-hIgG1-L6-hIL-2 (D20A/F42Q)
248
>10,000 on
Partial, 30%
630

Partial, 80%
















graph, NC

a







1H3-hIgG1-L6-hIL-2 (D20A/F42I)
251
1307

a

Partial, 20%
494

Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/F42L)
252
68

Full
533

Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/F42M)
253
53

Full
370

Partial, 50%


1H3-hIgG1-L6-hIL-2 (D20A/F42P)
254
9374

a

Partial, 80%
702

Partial, 80%


1H3-hIgG1-L6-hIL-2 (D20A/F42S)
255
1286

Partial, 70%
687

Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/F42T)
256
1474

a

Partial, 10%
622

Partial, 80%


1H3-hIgG1-L6-hIL-2 (D20A/F42W)
257
414

a

Partial, 70%
400

Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/F42Y)
258
322

Partial, 70%
545

Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/F42V)
259
5796

a

Partial, 30%
579

Partial, 80%


1H3-hIgG1-L6-hIL-2 (D20A/Y45A)
260
61

Partial, 80%
554

Partial, 80%


1H3-hIgG1-L6-hIL-2 (D20A/Y45N)
261
31

Full
390

Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/Y45D)
262
363

Partial, 60%
729

Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/Y45Q)
263
730

a

Partial, 70%
348

Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/Y45E)
264
1414

a

Partial, 60%
486

Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/Y45G)
265
613

a

Partial, 80%
392

Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/Y45H)
266
420

a

Partial, 70%
427

Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/Y45I)
267
39

Partial, 70%
137

Partial, 30%


1H3-hIgG1-L6-hIL-2 (D20A/Y45L)
268
11

Full
426

Partial, 70%


1H3-hIgG1-L6-hIL-2 (D20A/Y45M)
269
107

Full
449

Partial, 60%


1H3-hIgG1-L6-hIL-2 (D20A/Y45F)
270
25

Partial, 90%
272

Partial, 50%


1H3-hIgG1-L6-hIL-2 (D20A/Y45P)
271
577

a

Full
710

Full


1H3-hIgG1-L6-hIL-2 (I92D/F42Q)
277
7227

a

Partial, 30%
872

Full


1H3-hIgG1-L6-hIL-2 (I92D/F42I)
280
4587

a

Partial, 10%
3644

a

Full


1H3-hIgG1-L6-hIL-2 (I92D/F42K)
282
>10,000

a

Partial, 20%
848

a

Full


1H3-hIgG1-L6-hIL-2 (I92D/F42T)
286
>10,000

a

Partial, 40%
1068

a

Full


1H3-hIgG1-L6-hIL-2 (I92D/F42W)
287
405

a

Full
3954

a

Full


1H3-hIgG1-L6-hIL-2 (I92D/F42Y)
288
58

Full
106

Full


1H3-hIgG1-L6-hIL-2 (I92D/F42V)
289
1075

a

Partial, 60%
343

Full


1H3-hIgG1-L6-hIL-2 (I92D/Y45A)
290
15

Full
285

Full


1H3-hIgG1-L6-hIL-2 (I92D/Y45Q)
293
53

Full
80

Full


1H3-hIgG1-L6-hIL-2 (I92D/Y45G)
295
41

Full
91

Full


1H3-hIgG1-L6-hIL-2 (I92D/Y45M)
299
7

Full
146

Full


1H3-hIgG1-L6-hIL-2 (I92D/Y45F)
300
33

Full
1650

a

Full


1H3-hIgG1-L6-hIL-2 (I92D/Y45S)
302
20

Full
306

Full


1H3-hIgG1-L6-hIL-2 (R38E/D20H)
306
13

Inactive
2945

Partial, 40%













1H3-hIgG1-L6-hIL-2 (R38E/D20S)
307
>10,000 on
Partial, 50%
626

Full
















graph, NC

a







1H3-hIgG1-L6-hIL-2 (F42A/N88R)
308
8351

a

Partial, 70%
1456

Full


1H3-hIgG1-L6-hIL-2 (F42A/N88D)
309
1966

a

Full
86

Full


1H3-hIgG1-L6-hIL-2 (R38E/I92K)
334
>10,000

a

Partial, 70%
239

Full












1H3-hIgG1-L6-hIL-2 (R38E/192P)
337
>10,000 on
Inactive
>10,000 on
Inactive
















graph, NC

a


graph, NC

a




1H3-hIgG1-L6-hIL-2 (R38E/H16E)
343
658

a

Full
58

Full


1H3-hIgG1-L6-hIL-2 (R38K/D20A)
344
66

Full
369

Partial, 70%





NC = Not Calculated by GraphPad Prism 7



a = Fold change is an estimate only since a full four parameter logistic curve was not reached







Example 6: Generation of Anti-hPD-1 Antibodies

Several approaches were used to generate a variety of different anti-hPD-1 antibodies with desired properties.


In one approach, anti-hPD-1 human monoclonal antibodies were generated using transgenic chickens (OmniChicken™) that express human antibody genes (human light chain (VLCL or VKCK) and human VH) and the chicken constant regions of the heavy chain (Ching et al., mAbs 2018). Transgenic chickens were immunized with 100 μg of Fc-tagged human PD-1 protein (huPD-1-Fc) (SEQ ID NO: 380) every 14 days for 14 weeks. In another approach, transgenic chickens were genetically immunized six times with DNA encoding human PD-1 (SEQ ID NO: 347) followed by a final boost with 100 μg huPD-1-Fc (SEQ ID NO: 380). The serum immune response of each animal was monitored by ELISA against biotinylated human PD-1 on streptavidin coated plates.


Splenocytes were isolated from each immunized animal, tested for positive antibody clones using the Gel Encapsulated Microenvironment (GEM) assay (as described in Mettler Izquierdo, S., Varela, S., Park, M., Collarini, E. J., Lu, D., Pramanick, S., Rucker, J., Lopalco, L., Etches, R., & Harriman, W. (2016). High-efficiency antibody discovery achieved with multiplexed microscopy. Microscopy (Oxford, England), 65 (4), 341-352) and screened against human PD-1 labelled beads. Positive clones were sequenced and variable regions of the heavy and light chains were cloned, assembled into a single chain variable fragment, and fused to the hinge and Fc regions of immunoglobulins (ScFv-Fc). These unique scFv-Fc fusion proteins were transiently expressed in Expi293 cells and supernatants were tested for binding activity by ELISA on plates coated with huPD-1-Fc (SEQ ID NO: 380) or cynomolgous-PD-1-Fc (SEQ ID NO: 381). In total, 102 unique anti-human PD-1 variable heavy and variable light pairings were identified using this method. 2H7-hIgG4 (SEQ ID NOs: 382-391, 424, and 425) and A2-hIgG4 (SEQ ID NOs: 402-411, 428, and 429) were among the antibodies identified in this approach.


Other approaches led to the identification of an anti-hPD-1 antibody denoted as C51E6-hIgG4, which was germline optimized to become the antibody designated C51E6-5-hIgG4 (SEQ ID NOs: 392-401, 426, 427), and humanized and further sequence optimized to become the antibody designated Abzlmod-hIgG4 (SEQ ID NOs: 449, 450).


The anti-PD-1 variable region sequences were expressed as human IgG4 kappa antibodies and were evaluated for the ability to bind to PD-1 expressing cells using flow cytometry as described in General Methods Protocol A. Antibodies to be tested were first screened for binding to human PD-1 using a Jurkat cell line expressing recombinant human PD-1 (Jurkat+hPD-1 cell line). Antibodies were serially diluted from a top concentration of 280 nM and Allophycocyanin-conjugated anti-human IgG secondary antibody was then added to cells for detection. Of 92 hits, 79 test anti-PD-1 antibodies had an EC50 binding (by flow cytometry) of <30 nM. 2H7-hIgG4 (SEQ ID NOs: 382-391, 424, and 425), C51E6-5-hIgG4 (SEQ ID NOs: 392-401, 426, and 427), A2-hIgG4 (SEQ ID NOs: 402-411, 428, and 429), OMC.1.B6-hIgG4 (SEQ ID NOs: 438 and 439), OMC.1.D6-hIgG4 (SEQ ID NOs: 442 and 443), OMC.2.C6-hIgG4 (SEQ ID NOs: 440 and 441), 1H9-hIgG4 (SEQ ID NOs: 576 and 525), 1D5-hIgG4 (SEQ ID NOs: 577 and 527), and 2A3.H7-hIgG4 (SEQ ID NOs: 424 and 523) were among a group of antibodies identified as antibodies with medium to high affinity binding to hPD-1 using a Jurkat cell line expressing human PD-1 (SEQ ID NO: 346). The calculated EC50 of binding to Jurkat cells which recombinantly expressed hPD-1 by flow cytometry in multiple experiments was 0.1-0.3 nM for 2H7-hIgG4, 1H9-hIgG4, 1D5-hIgG4, and 2A3.H7-hIgG4. The calculated EC50 of binding to Jurkat cells expressing hPD-1 by flow for C51E6-5-hIgG4 was 2-4 nM, and 3-16 nM for A2-hIgG4, OMC.1.B6-hIgG4, OMC.1.D6-hIgG4, and OMC.2.C6-hIgG4. Binding was specific to hPD-1 since 2H7-hIgG4, C51E6-5-hIgG4, A2-hIgG4, 1H9-hIgG4, 1D5-hIgG4, 2A3.H7-hIgG4, OMC.1.B6-hIgG4, OMC.1.D6-hIgG4, and OMC.2.C6-hIgG4 antibody titrations did not bind the parental Jurkat cell line which did not express hPD-1 (data not shown).


Example 7: Characterization of Anti-hPD-1 Antibody Binding in the Presence of Anti-hPD-1 #1-mIgG2b-N297A and Anti-hPD-1 #2-mIgG2b-N297A Antibodies

2H7-hIgG4, C51E6-5-hIgG4, and A2-hIgG4 were assessed for binding competition to hPD-1 in the presence of anti-hPD-1 #1-mIgG2b-N297A and anti-hPD-1 #2-mIgG2b-N297A as described in General Methods Protocol B.


As a control, OPDIVO® (nivolumab) was titrated in the presence of saturating concentrations of 10 UM anti-hPD-1 #1-mIgG2b-N297A (FIG. 4A). The dose-titration curve in the presence of anti-hPD-1 #1-mIgG2b-N297A competitor was greatly reduced (100 to 1000-fold shift of the dose-titration curve to the right of the graph) when compared to the dose-titration curve of OPDIVO® without anti-hPD-1 #1-mIgG2b-N297A competitor. The addition of anti-hPD-1 #1-mIgG2b-N297A or anti-hPD-1 #2-mIgG2b-N297A at saturating concentrations (10 μM) prior to exposure with 2H7-hIgG4, C51E6-5-hIgG4, or A2-hIgG4 did not abrogate binding of 2H7-hIgG4, C51E6-5-hIgG4, or A2-hIgG4 to hPD-1 as illustrated by less than 10-fold shift in FIG. 4B-4D, suggesting that 2H7-hIgG4, C51E6-5-hIgG4 and A2-hIgG4 did not compete for binding to PD-1 in the presence of anti-hPD-1 #1-mIgG2b-N297A or anti-hPD-1 #2-mIgG2b-N297A.


Example 8: Characterization of Non-Antagonist hPD-1 Antibodies

Anti-hPD-1 antibodies 2H7-hIgG4, C51E6-5-hIgG4 and A2-hIgG4 were tested for PD-1 antagonist activity using an in vitro cell-based human PD-1/PD-L1 blockade bioassay as described in General Methods Protocol C. All antibodies except A2-hIgG4 were tested at 200 nM final concentration. A2-hIgG4 was tested at 500 nM final concentration.


None of the anti-hPD-1 antibodies 2H7-hIgG4, C51E6-5-hIgG4, A2-hIgG4, OMC.1.B6-hIgG4, OMC.1.D6-hIgG4, OMC.2.C6-hIgG4, 1H9-hIgG4, 1D5-hIgG4, and 2A3.H7-hIgG4 demonstrated hPD-1 antagonist activity, as all displayed luminescence levels of an average of 3000 relative luminescence units (RLU) and exhibited an RLU similar to the negative control KLH-C3-hIgG4 (data not shown). In contrast, the anti-hPD-1 #1, which is a known hPD-1 antagonist that blocks hPD-L1 (SEQ ID NO: 584) engagement with hPD-1, exhibited luminescence of above 14,000 RLU (data not shown).


Example 9: Anti-hPD-1-Attenuated hIL-2 Fusion Proteins Bind Jurkat Cells Expressing Human PD-1

In order to construct various antibody and antibody-attenuated hIL-2 fusion protein expression vectors, the corresponding polynucleotide encoding sequences of antibody, cytokines, cytokine receptors and linkers were generated and cloned into expression vectors. The antibodies or antibody fusion proteins were transiently expressed in Human Embryonic Kidney (HEK) 293 cells, then purified by affinity chromatography using Protein A- or Protein G-Sepharose. The purified proteins were concentrated and buffer-exchanged to phosphate buffered saline or phosphate buffered saline containing 100 mM L-arginine and 10 mM L-histidine using ultracentrifugal filtration, after which protein concentration was determined.


In some approaches, 2H7-hIgG4, C51E6-5-hIgG4, and A2-hIgG4 carrying an S228P hinge stabilization mutation were directly fused (df) to hIL-2 or fused to hIL-2 at the C-terminus of the immunoglobulin heavy chain using the L6 linker. An illustration of these anti-PD-1-attenuated hIL-2 fusion proteins is summarized in FIG. 5. Various constructs were generated with the substitutions in hIL-2 that attenuated hIL-2 activity as described in Example 2. Anti-hPD-1-attenuated hIL-2 fusion proteins listed in Table 20 were tested for binding to hPD-1 using the Jurkat cell line expressing hPD-1 as described in General Methods Protocol A. The variable region of 2H7-hIgG4 (SEQ ID NOs: 384 and 385) was further optimized, and the isotype was switched to a human IgGIwith the effector function null substitutions L235A/G237A (LAGA, as described in WO1998/006248) to become H7-632-hIgG1-LAGA (SEQ ID NOs: 414 and 415). The optimized H7-632-hIgG1-LAGA was also directly fused (df) to a variant of hIL-2 with attenuated hIL-2 activity (hIL-2 T3A/D20A/R38E/C125A; SEQ ID NO: 217) to become H7-767 (SEQ ID NOs: 412-413, 415-423, 532) and both H7-632-hIgG1-LAGA and H7-767 were tested for binding to hPD-1 (Table 20). EC50 values were calculated from the geometric mean fluorescent intensity (gMFI) across the titrated concentrations using GraphPad Prism 7 software.


The generation of anti-hPD-1-attenuated hIL-2 fusion proteins did not reduce binding to hPD-1, and the anti-hPD-1-attenuated hIL-2 fusion proteins were still able to bind to Jurkat cells expressing human PD-1. The calculated EC50 of tested anti-hPD-1-attenuated hIL-2 fusion proteins in comparison to respective anti-hPD-1 antibody without the attenuated hIL-2 moiety is summarized in Table 20.









TABLE 20







Anti-hPD-1-attenuated hIL-2 fusion protein binding (EC50) to hPD-1 expressing Jurkat cell line by


flow cytometry










Anti-hPD-1 Antibody
EC50 (nM)
Corresponding Anti-hPD-1-hIL-2 Fusion Protein
EC50 (nM)













Anti-hPD-1 #1
0.3586
Anti-hPD-1 #1-hIgG4-L6-hIL-2 (D20A/R38E)
0.5318


C51E6-5-hIgG4
2.048
C51E6-5-hIgG4-L6-hIL-2 (D20A/R38E)
1.587


OMC.1.B6-hIgG4
7.422
OMC.1.B6-hIgG4-L6-hIL-2 (D20A/R38E)
5.635


OMC.2.C6-hIgG4
11.52
OMC.2.C6-hIgG4-L6-hIL-2 (D20A/R38E)
16.32


OMC.1.D6-hIgG4
15.96
OMC.1.D6-hIgG4-L6-hIL-2 (D20A/R38E)
8.87


A2-hIgG4
5.968
A2-hIgG4-df-hIL-2 (D20A/R38E)
10.67


D12-hIgG4
9.674
D12-hIgG4-df-hIL-2 (D20A/R38E)
17.09


G12-hIgG4
5.36
G12-hIgG4-df-hIL-2 (D20A/R38E)
7.578


2H7-hIgG4
0.2769
2H7-hIgG4-df-hIL-2 (D20A/R38E)
0.1946


H7-632-hIgG1-LAGA
0.115
H7-767
0.218









The addition of the attenuated hIL-2 moiety on anti-hPD-1 antibodies did not abrogate binding to human PD-1 as demonstrated by a less than 2-fold increase in EC50 binding of anti-hPD-1-hIL-2 fusion proteins to Jurkat+hPD-1 cells in comparison to the anti-hPD-1 antibody without the attenuated hIL-2 moiety.


Example 10: Anti-hPD-1-Attenuated hIL-2 Fusion Proteins Bind hPD-1 in the Presence of Anti-hPD-1 #1 and Anti-hPD-1 #2 Antibodies

Anti-hPD-1-attenuated hIL-2 fusion proteins were tested for binding to the hPD-1 receptor in the presence of anti-hPD-1 #1 and anti-hPD-1 #2 as described in General Methods Protocol B and Example 7. The converse experiment was also performed in which anti-hPD-1 #1-mIgG2b-N297A or anti-hPD-1 #2-mIgG2b-N297A was examined for binding to hPD-1 in the presence of saturating concentrations of test antibody-attenuated hIL-2 fusion proteins. In this format, Jurkat cells expressing hPD-1 were plated at 100,000 cells per well in FACS buffer, blocked with anti-human FcγR Blocking Reagent (Miltenyi) for 10 minutes at 4° C. and washed. Test antibody-attenuated hIL-2 fusion proteins 2H7-hIgG4-df-hIL-2 (D20A/R38E), C51E6-5-hIgG4-L6-hIL-2 (D20A/R38E), A2-hIgG4-df-hIL-2 (D20A/R38E), H7-767, and isotype control anti-DNase 1H3-hIgG4-df-hIL-2 (D20A/R38E) were diluted to 280 nM final concentration in 100 μL FACS buffer and incubated with Jurkat cells expressing hPD-1 cells for 1 hour on ice. Cells were washed and re-suspended in FACS buffer containing six-fold serial titrations of anti-hPD-1 #1-mIgG2b-N297A or anti-hPD-1 #2-mIgG2b-N297A starting at a maximum concentration of 50 nM for 1 hour on ice. Cells were washed and re-suspended in 1:100 dilution of Phycoerythrin-conjugated anti-mouse IgG light chain kappa monoclonal antibody for 45 minutes on ice. Cells were again washed and re-suspended in FACS buffer with 1:1000 dilution of Sytox Green (Thermo Fisher). Flow cytometry analysis was performed using the BD FACS Canto II (BD Biosciences) and gMFI calculated using FlowJo software version 10. EC50 values were calculated from the gMFI of the Phycoerythrin signal across the titrated concentrations using GraphPad Prism 7 software.


The addition of the attenuated hIL-2 to anti-hPD-1 antibodies 2H7-hIgG4, C51E6-5-hIgG4, and A2-hIgG4 did not diminish the ability of the anti-hPD-1 proteins to bind to human PD-1 in the presence of anti-hPD-1 #1-mIgG2b-N297A or anti-hPD-1 #2-mIgG2b-N297A, similar to the results described in Example 7 (FIG. 16B-16D). H7-767 was also tested in this competition assay and FIG. 13B illustrates that H7-767 continues to bind to the hPD-1 receptor in the presence of anti-hPD-1-#1-mIgG2b-N297A or anti-hPD-1 #2-mIgG2b-N297A. In contrast, the binding of the positive control anti-hPD-1 #1 was substantially decreased in the presence of anti-hPD-1 #1-mIgG2b-N297A or anti-hPD-1 #2-mIgG2b-N297A (FIG. 16A, 13A).



FIG. 6A and FIG. 6B show that for the converse competition assay, anti-hPD-1 #1-mIgG2b-N297A (FIG. 6A) and anti-hPD-1 #2-mIgG2b-N297A (FIG. 6B) were still able to bind to hPD-1 on Jurkat cells in the presence of saturating (280 nM) anti-hPD-1-attenuated hIL-2 fusion proteins 2H7-hIgG4-df-hIL-2 (D20A/R38E), C51E6-5-hIgG4-df-hIL-2 (D20A/R38E) or A2-hIgG4-df-hIL-2 (D20A/R38E). These binding curves with saturating anti-hPD-1-attenuated hIL-2 fusion proteins prior to exposure with anti-hPD-1 fusion proteins overlapped with binding curves of anti-hPD-1 #1-mIgG2b-N297A (no competition) or anti-hPD-1 #2-mIgG2b-N297A (no competition). The binding curves also overlapped with a saturating negative control fusion protein, 1H3-hIgG4-df-hIL-2 (D20A/R38E) that did not bind to hPD-1.


Example 11: Anti-hPD-1-Attenuated hIL-2 Fusion Proteins Bind Recombinantly-Expressed Cynomolgus PD-1

Anti-hPD-1-attenuated hIL-2 fusion proteins were tested in flow cytometry for binding to cynomolgus PD-1 using a human Embryonic Kidney 293 cell line expressing the SV40 large T cell antigen (HEK-293T) that was transiently transfected to recombinantly express cynomolgus PD-1. For each transfection reaction, 2 million HEK-293T cells were transfected with 2 μg of pCMV6-hygro-HA-cyno-PD-1 (1-185) (SEQ ID NO: 448), a mammalian vector comprising the cynomolgus PD-1 extracellular domain tagged with a human influenza hemagglutinin and the sequence encoding for hygromycin resistance. Transfection was performed by electroporation. Transfected cells were blocked with human FcγR blocking reagent and stained with titrating amounts of anti-hPD-1-attenuated hIL-2 fusion proteins. Additionally, Phycoerythrin conjugated anti-hemagglutinin clone 15B12 was added to cells to stain for transfected cells and Allophycocyanin-conjugated anti-human IgG Fc secondary clone HP6017 (BioLegend Cat #409306) was added to cells to stain bound antibody. The cells were analyzed on the BD Canto II and FlowJo software version 10 was used to gate on live, transfected (hemagglutinin-positive) cells and to calculate gMFI of the Allophycocyanin signal. EC50 values were calculated from the gMFI across the titrated concentrations using GraphPad Prism 7 software.


Anti-hPD-1-attenuated hIL-2 fusion proteins bound to cynomolgus PD-1-expressing HEK-293T cells in a similar fashion to the binding profile seen on Jurkat T cells expressing human PD-1 (FIG. 17). The EC50 for binding to cynomolgus PD-1 expressing HEK-293T cells was 5 nM for 2H7-hIgG4-df-hIL-2 (D20A/R38E), 6 nM for C51E6-5-hIgG4-df-hIL-2 (D20A/R38E), and 11 nM for A2-hIgG4-df-hIL-2 (D20A/R38E). Anti-hPD-1 #1 and anti-hPD-1 #2 which were formatted as comparator anti-hPD-1-attenuated hIL-2 fusion proteins also bound to cynomolgus PD-1 with EC50 values of 9 nM and 2 nM, respectively, suggesting that the addition of the attenuated hIL-2 moiety on the anti-hPD-1 antibodies did not abrogate binding to cynomolgus PD-1.


Example 12: Anti-hPD-1-Attenuated hIL-2 Fusion Proteins Bind Activated Primary Human and Cynomolgus PD-1

The binding of anti-hPD-1 antibodies and anti-hPD-1-attenuated hIL-2 fusion proteins on activated primary T cells expressing hPD-1 was examined by flow cytometry. To test if 2H7-hIgG4, C51E6-5-hIgG4, or A2-hIgG4 bound to native hPD-1, cryopreserved human peripheral blood mononuclear cells (PBMCs) were thawed and activated with 50 ng/ml phorbol 12-myristate 13-acetate (PMA) and 1 μg/mL ionomycin to up-regulate the hPD-1 receptor. Activated PBMCs were collected, blocked with 1:50 dilution of Human FcγR Blocking Reagent (Miltenyi) for 10 minutes at 4° C., and stained with titrated concentrations of anti-hPD-1 antibodies 2H7-hIgG4, C51E6-5-hIgG4, A2-hIgG4, anti-hPD-1 #1, and isotype control. Cells were then stained with 1:20 dilution of Allophycocyanin-conjugated anti-human IgG Fc to detect bound antibody. To delineate immune subsets, a cocktail of surface markers included anti-human CD3, anti-CD4, and anti-CD8 antibodies was used. In addition, a sample fraction was examined for cellular expression of hPD-1, hCD25, hCD122, and hCD132. Cells were analyzed on the BD Fortessa (BD Biosciences), FlowJo software version 10 was used to gate on T cell subsets then calculate gMFI of the allophycocyanin signal. EC50 values were calculated from the gMFI across the titrated concentrations using GraphPad Prism 7 software. To test the binding of anti-hPD-1-hIL-2 fusion proteins, cryopreserved CD3+T cells were activated with PMA/ionomycin and flow cytometry binding was performed identically as described above.


Human PD-1 antibody-attenuated hIL-2 fusion proteins were also tested for binding to activated cynomolgus T cells using flow cytometry. Cynomolgus PBMCs were activated with a mixture of 0.081 μM PMA and 1.34 μM ionomycin. 24 hours later, cells were stained using the same procedure as binding to human PD-1 primary cells described above except cynomolgus cross-reactive markers were used. FlowJo software version 10 was used to gate on live, CD3+CD4+ or CD3+CD8+ T cells and then to calculate gMFI of the Allophycocyanin signal. EC50 values were calculated from the gMFI across the titrated concentrations of anti-hPD-1 antibodies or hPD-1 antibody-attenuated hIL-2 fusion proteins using GraphPad Prism 7 software.


In some variants tested, the attenuated hIL-2 also included the substitutions T3A and C125A, which remove a site for O-linked glycosylation and substitute away a free cysteine residue, respectively.


40-50% of CD4+ T cells were PD-1+ while 30-40% of CD8+ T cells were PD-1+ after PMA and ionomycin activation (data not shown). The calculated EC50 for binding to activated human CD3+CD4+ T cells by flow cytometry was 0.1-0.7 nM for 2H7-hIgG4, 12 nM for C51E6-5-hIgG4, 30 nM for A2-hIgG4, and 0.04 nM for 2H7-hIgG4-df-hIL-2 (T3A/D20A/R38E/C125A). The EC50 for binding to activated human CD3+CD8+ T cells was 0.1-0.8 nM for 2H7-hIgG4, 16 nM for C51E6-5-hIgG4, 22 nM for A2-hIgG4, and 0.03 nM for 2H7-hIgG4-df-hIL-2 (T3A/D20A/R38E/C125A). The EC50 for binding to activated human CD3+CD4+ T cells was 0.19 nM and activated human CD3+CD8+ T cells was 0.12 nM for H7-767. The EC50 for binding to activated cynomolgus CD3+CD4+T cells was 0.09 nM for 2H7-hIgG4 and 0.04 nM for 2H7-hIgG4-df-hIL-2 (T3A/D20A/R38E/C125A). EC50 for binding to activated cynomolgus CD3+CD8+ T cells was 0.08 nM for 2H7-hIgG4 and 0.03 nM for 2H7-hIgG4-df-hIL-2 (T3A/D20A/R38E/C125A). The EC50 for binding to activated cynomolgus CD3+CD4+ T cells was 0.26 nM and activated cynomolgus CD3+CD8+ T cells was 0.24 nM for H7-767. This data demonstrated that when the hPD-1 antibodies were converted to anti-hPD-1-attenuated hIL-2 fusion proteins, the calculated EC50 value for binding to activated hPD-1 remained similar to the calculated EC50 value of hPD-1 naked antibody binding to hPD-1. H7-767 and H7-632-hIgG1-LAGA anti-PD-1 naked antibody were tested for binding on primary non-activated human CD4 and CD8+ T cells by flow cytometry. Frozen human CD3 T were thawed and flow cytometry performed as described above. Both H7-767 and H7-632-hIgG1-LAGA anti-PD-1 naked antibody did not bind non-activated human CD4 and CD8+ T cells (data not shown).


Example 13: Quantification of Binding of Anti-hPD-1 Antibodies and Anti-hPD-1-Attenuated hIL-2 Fusion Proteins to Recombinant Human or Cynomolgus PD-1 by Surface Plasmon Resonance (SPR)

Surface plasmon resonance binding analysis was performed using a high-throughput SPR Carterra® LSA™ to determine binding affinities of anti-hPD-1 antibodies and anti-hPD-1-attenuated hIL-2 fusion proteins. Proteins were diluted to 2 or 10 μg/mL in 10 mM sodium acetate pH 4.5 containing 0.01% Tween-20 and coupled to a HC30M (Carterra Bio) chip using sulpho-N-hydroxysuccinimide/1-ethyl-3-(3-dimethylamino) propyl carbodiimide (sulpho-NHS/EDC) coupling chemistry and blocked with ethanolamine. A non-regenerative kinetic coupling process was used to determine binding kinetics to commercially sourced recombinant His-tagged human PD-1 and His-tagged cynomolgus PD-1 (Acro Biosystems).


Anti-hPD-1 antibodies and anti-hPD-1-attenuated hIL-2 fusion proteins were expressed with either a modified human IgG1 or a modified IgG4 isotype with a kappa light chain framework. Additional substitutions L235E, or L235A/G237A (LAGA, as described in Int'l Pub. No. WO1998/006248) (numbering based upon the EU numbering system) were introduced to the Fc region to abrogate effector functions of the immunoglobulin component.


The association constants (ka), dissociation constants (kd), and equilibrium constants (KD) of various anti-hPD-1 antibodies and anti-hPD-1 antibody-attenuated hIL-2 fusion proteins binding to recombinant human or cynomolgus PD-1 proteins was determined from the titration curves and the Carterra Kinetics software. The maximal feasible SPR signal generated (Rmax) and residual standard deviation (Res SD) was also calculated. The results from the kinetics screen are summarized in Table 21, and demonstrated that the addition of the attenuated hIL-2 moiety on anti-hPD-1 antibodies did not modulate PD-1 antibody binding to the human PD-1 or cynomolgus PD-1 antigens. In a separate experiment, H7-632-hIgG1-LAGA (SEQ ID NOs: 414 and 415) was measured by SPR and had a steady state equilibrium dissociation constant (KD) of 1.23×10−9M and H7-767 had a KD)=1.93×10−9M.









TABLE 21







Binding kinetics of anti-hPD-1 and anti-hPD-1-hIL-2 fusion proteins to recombinant human PD-1


and cynomolgus PD-1 by high-throughput SPR Carterra ® LSA ™











Kinetics Summary












Human PD-1
Cyno PD-1




















ka



Res
ka



Res



Name
(M−1 s−1)
kd (s−1)
KD (M)
Rmax
SD
(M−1 s−1)
kd (s−1)
KD (M)
Rmax
SD





















Anti-
2H7-hIgG4-LE
2.60E+05
8.20E−04
3.10E−09
146
8.5
1.40E+05
1.00E−03
7.10E−09
186
6.5


hPD-1
2H7-hIgG4-LAGA
1.70E+05
9.10E−04
5.30E−09
258
13
9.10E+04
1.10E−03
1.20E−08
295
11


Anti-
Abz1mod-hIgG4
1.40E+05
6.00E−05
4.26E−10
123
8.1
1.70E+05
6.20E−04
3.70E−09
183
10


bodies
A2-hIgG4
3.70E+04
1.30E−03
3.60E−08
341
7.8
6.80E+04
4.00E−02
5.89E−07
238
4.8



OMC.1.B6-hIgG4
7.70E+04
4.00E−03
5.20E−08
241
6.8
8.80E+04
4.40E−03
5.10E−08
262
5.5



OMC.2.C6-hIgG4
5.70E+04
6.60E−04
1.20E−08
229
8.7
5.50E+04
7.40E−04
1.30E−08
268
8.9



OMC.1.D6-hIgG4
4.10E+04
1.70E−03
4.20E−08
263
5.1
5.80E+04
4.00E−02
6.94E−07
182
4



OMC476pH7-hIgG4
6.00E+04
1.10E−03
1.80E−08
225
8.9
7.80E+04
1.70E−02
2.21E−07
254
2.8



OMC476pB11-hIgG4
5.00E+04
1.50E−03
3.00E−08
221
7
8.00E+04
2.60E−02
3.21E−07
204
2.7



OMC476pG10-hIgG4
9.30E+04
4.10E−03
4.40E−08
256
4.9
1.20E+05
6.00E−02
4.87E−07
188
4.9



OMC476pH10-hIgG4
1.00E+05
6.50E−03
6.40E−08
63
1.8
1.20E+05
5.90E−02
4.80E−07
81
3.8



OMC476pE4-hIgG4
7.90E+04
8.80E−04
1.10E−08
216
9.6
1.00E+05
3.50E−02
3.31E−07
204
6.3



D12-hIgG4
5.70E+04
4.60E−04
8.10E−09
234
9.9
5.90E+04
1.60E−02
2.72E−07
297
2.4



G12-hIgG4
5.30E+04
2.60E−03
5.00E−08
477
8.5
8.60E+04
6.50E−02
7.54E−07
327
7.8



EH12.2H7-mIgG1*
1.10E+05
2.20E−03
1.90E−08
309
5.2
8.60E+04
7.30E−03
8.50E−08
307
4.2



J105-mIgG1*
6.20E+04
5.30E−03
8.60E−08
186
2.8
5.00E+04
6.60E−02
1.30E−09
92
1.2



MIH4-mIgG1*
1.30E+05
1.40E−03
1.00E−08
117
3.8
1.30E+05
1.20E−01
8.91E−07
61
1.8



J110-hIgG1
1.00E+05
1.00E−03
1.00E−08
346
15
4.10E+04
5.00E−02
1.20E−09
228
8.2



OPDIVO ® (nivolumab)
1.70E+05
1.70E−03
1.00E−08
55
2.6
1.50E+05
9.50E−04
6.40E−09
75
3.2



KEYTRUDA ®
2.90E+05
1.30E−03
4.50E−09
19
2.6
7.00E+05
4.00E−04
5.75E−07
53
3.7



(pembrolizumab)












Anti-
2H7-hIgG1-LAGA-hIL-2
1.50E+05
8.30E−04
5.40E−09
420
28
8.80E+04
9.70E−04
1.10E−08
502
21


hPD-1-
(T3A/D20A/R38E/C125A)












attenuated
2H7-hIgG4-LE-hIL-2
1.90E+05
8.10E−04
4.30E−09
374
17
9.00E+04
1.00E−03
1.10E−08
449
15


hIL-2
(T3A/D20A/R38E/C125A)












Fusion
2H7-hIgG4-LAGA-hIL-2
1.70E+05
8.20E−04
4.80E−09
359
22
9.60E+04
9.80E−04
1.00E−08
429
17


Proteins
(T3A/D20A/R38E/C125A)













2H7-hIgG1-LAGA-hIL-2
1.80E+05
7.80E−04
4.30E−09
417
25
9.10E+04
9.70E−04
1.10E−08
505
19



(T3A/R38E/192K/C125A)













hIgG4-LE-hIL-2
1.90E+05
8.80E−04
4.70E−09
380
19
9.50E+04
1.10E−03
1.20E−08
429
17



(T3A/R38E/192K/C125A)













2H7-hIgG4-LAGA-hIL-2
2.20E+05
8.20E−04
3.70E−09
355
17
1.00E+05
1.10E−03
1.10E−08
418
16



(T3A/R38E/192K/C125A)













2H7-hIgG1-LAGA-hIL-2
1.30E+05
8.10E−04
6.20E−09
458
29
7.60E+04
1.00E−03
1.30E−08
532
23



(T3A/R38E/D84K/C125A)













2H7-hIgG4-LE-hIL-2
2.00E+05
9.40E−04
4.70E−09
232
13
1.30E+05
1.10E−03
8.20E−09
262
10



(T3A/R38E/D84K/C125A)













2H7 hIgG4LAGA-df-hIL-2
1.70E+05
7.30E−04
4.40E−09
400
20
8.10E+04
1.00E−03
1.30E−08
482
20



(T3A/R38E/D84K/C125A)





*Commercially sourced, no sequence available






Example 14: Determining Whether Anti-hPD-1 Antibodies and Anti-hPD-1-Attenuated hIL-2 Fusion Proteins Compete with Anti-hPD-1 #1 and Anti-hPD-1 #2 for Binding to PD-1 by Surface Plasmon Resonance (SPR)

Anti-hPD-1 and anti-hPD-1-attenuated hIL-2 fusion proteins were assayed for competition with one another using a sandwich method. Antibodies and corresponding antibody-IL-2 cytokine-fusion proteins were immobilized to HC30M chips using amine coupling chemistry described in Example 13. Following kinetic analysis described in Example 13, 80 nM human PD-1 (Acro Biosystems, Cat #PD-1-H5221-100 μg) was injected into the whole array. Competing anti-hPD-1 and anti-hPD-1-attenuated hIL-2 fusion proteins (analyte) were diluted to 30 μg/mL and subsequently injected into the array and binding parameters were assessed using SPR. Assessment of all anti-hPD-1 and anti-hPD-1-hIL-2 fusion proteins was performed in duplicate. Some variants tested had a modified human IgG1 or IgG4 kappa light chain framework with additional L235E or L235A/G237A (LAGA) substitutions to abrogate effector function of the immunoglobulin.


The screening of pairs of anti-hPD-1 or anti-hPD-1-attenuated hIL-2 fusion proteins allowed the identification of two bins, shown in Table 22. Antibodies and fusion proteins from Group 1 were able to bind hPD-1 in the presence of all antibodies and fusion proteins from Group 2, but competed with all members of the same Group. Antibodies and fusion proteins from Group 2 were able to bind hPD-1 in the presence of all antibodies and fusion proteins from Group 1, but competed with all members of the same Group. None of the anti-hPD-1 listed in Group 1 in Table 22 competed with KEYTRUDA® and OPDIVO®.









TABLE 22







Groups 1 and 2 from anti-hPD-1 and anti-hPD-1-


attenuated hIL-2 fusion protein binning screen by SPR










Group 1
Group 2






Abz1mod-hIgG4
KEYTRUDA ®



OMC.1.B6-hIgG4
OPDIVO ®



OMC.1.D6-hIgG4
Anti-hPD-1 clone



OMC.2.C6-hIgG4
EH12.2H7-mIgG1*



OMC476pE4-hIgG4
Anti-hPD-1 clone



OMC476pH7-hIgG4
J105-mIgG1*



OMC476pB11-hIgG4




OMC476pH10-hIgG4




OMC476pG10-hIgG4




A2-hIgG4




D12-hIgG4




G12-hIgG4




2H7-hIgG4-LE




2H7-hIgG4-LE-df-hIL-2




(T3A/D20A/R38E/C125A)




2H7-hIgG4-LAGA-df-hIL-2




(T3A/D20A/R38E/C125A)




2H7-hIgG1-LAGA-df-hIL-2




(T3A/D20A/R38E/C125A)




2H7-hIgG4-LE-df-hIL-2




(T3A/R38E/I92K/C125A)




2H7-hIgG4-LAGA-df-hIL-2




(T3A/R38E/I92K/C125A)




2H7-hIgG1-LAGA-df-hIL-2




(T3A/R38E/I92K/C125A)




2H7-hIgG4-LE-df-hIL-2




(T3A/R38E/D84K/C125A)




2H7-hIgG4-LAGA-df-hIL-2




(T3A/R38E/D84K/C125A)




2H7-hIgG1-LAGA-df-hIL-2




(T3A/R38E/D84K/C125A)




Anti-PD-1 clone MIH4 mIgG1




Anti-PD-1 clone J110 hIgG1





*Commercially sourced, no sequence available






Example 15: Antagonism of Anti-hPD-1-Attenuated hIL-2 Fusion Proteins to hPD-1 in the Presence of Anti-hPD-1 #1 and Anti-hPD-1 #2

Anti-hPD-1-attenuated hIL-2 fusion proteins were tested for antagonism of hPD-1. Characterization of anti-hPD-1-attenuated hIL-2 fusion proteins was performed according to General Methods Protocol C. FIG. 7 illustrates these results. When compared to the PD-1 antagonists KEYTRUDA® or OPDIVO®, 2H7-hIgG4-df-hIL-2 (D20A/R38E), C51E6-5-hIgG4-L6-hIL-2 (D20A/R38E), and A2-hIgG4-df-hIL-2 (D20A/R38E) were non-antagonistic to human PD-1, as demonstrated by the low level of detectable luminescence. H7-632-hIgG1-LAGA and H7-767 were also tested for antagonist activity as described in General Protocol C. FIG. 15 illustrates that H7-632-hIgG1-LAGA and H7-767 do not block hPD-L1 (SEQ ID NO: 584) from interacting with the hPD-1 receptor.


For competition assays using the cell-based co-culture assay described in General protocol C, a few modifications were performed. Samples of the anti-hPD-1-attenuated hIL-2 fusion proteins were diluted to a fixed concentration of 400 nM and 20 μL was added to 20 μL of titrated anti-hPD-1 #1 or anti-hPD-1 #2. The 40 μL mixture was added to CHO cells. Forty (40) μL of Jurkat PD-1 effector cells were overlayed on the mixture of CHO cells and anti-hPD-1-attenuated hIL-2 fusion proteins. In this competition assay, a final concentration of saturating 100 nM anti-hPD-1-attenuated hIL-2 fusion proteins was tested in combination with titrated anti-hPD-1 #1 or anti-hPD-1 #2. The rest of the assay was performed as described in General Protocol C. FIG. 18A and FIG. 18B demonstrate that the addition of 100 nM anti-hPD-1-attenuated hIL-2 fusion proteins did not compete with the blocking of titrated anti-hPD-1 #1 binding to hPD-L1 (SEQ ID NO: 584). Dose-titration curves of anti-hPD-1 #1 remained unchanged from curves without competitor antibody, suggesting that the presence of anti-hPD-1-attenuated hIL-2 fusion proteins did not compete with anti-hPD-1 #1 function even at high concentrations. In the presence of 100 nM 2H7-hIgG4-df-hIL-2 (D20A/R38E) and 100 nM C51E6-5-hIgG4-L6-hIL-2 (D20A/R38E), anti-hPD-1 #2 exhibited a 35% reduction in luminescence (RLU) at higher concentrations of anti-hPD-1 #2 (FIG. 18B) but it is unclear if this reduction was significant due to the extent of the standard deviation.


In the converse experiment, either anti-hPD-1 #1 or anti-hPD-1 #2 were diluted to a concentration of 400 nM and 20 μL was combined with 20 μL of titrated anti-hPD-1-attenuated hIL-2 fusion proteins. Anti-hPD-1-attenuated hIL-2 fusion proteins were serially titrated and the 40 μL mixture was added to CHO cells, then overlayed with 40 μL of Jurkat PD-1 Effector cells. The rest of the assay was performed as described in General Protocol C. FIG. 18C and FIG. 18D demonstrate that the addition of 100 nM anti-hPD-1 #1 (FIG. 18C) or 100 nM anti-hPD-1 #2 (FIG. 18D) do not impair the ability of the anti-hPD-1-attenuated hIL-2 fusion proteins to be antagonists. The observed flat curve above 18,000 relative luminescent units (RLU) indicated that there was no competition for antagonist activity and the anti-hPD-1-attenuated hIL-2 fusion proteins tested remained able to exhibit antagonist function even in the presence of anti-hPD-1 #1 or anti-hPD-1 #2.


Example 16: Testing Anti-hPD-1-Attenuated hIL-2 Fusion Proteins for Attenuation on the High-Affinity and Intermediate-Affinity hIL-2 Receptors with Cell-Based Proliferation Assays

Anti-hPD-1-attenuated hIL-2 fusion proteins were evaluated for the level of attenuation of hIL-2 activity using the cell proliferation assays on NK-92 and TF1+IL-2Rβ cell lines as described in General Protocol E. Control fusion proteins included fusion proteins incorporating an anti-DNase I antibody (designated 1H3) with a human IgG4 or human IgG1 backbone directly fused to hIL-2 or with a linker (SEQ ID NO: 355) to demonstrate the effects of non-targeting attenuated hIL-2 fusion proteins. The hIL-2 sequence of these constructs contained substitutions for attenuated hIL-2 activity as described in Example 2. Full, partial, or no agonistic IL-2 activity (inactive) was also assessed similarly to Example 3. Some of the variants tested were expressed on a modified human IgG1 or IgG4 isotype with a kappa light chain, with additional L235E or L235A/G237A (LAGA) substitutions in the Fc region to abrogate immunoglobulin effector function. In some antibody-cytokine fusion proteins, the hIL-2 cytokine was fused to the C-terminus of the light chain (LC fusion).


The calculated EC50 of each antibody-cytokine fusion protein was determined from relative luminescence units (RLU), and fold change EC50 was calculated when compared with recombinant human IL-2 (rhIL-2). The fold change from rhIL-2 and agonistic activity is summarized in Table 23. Agonistic activity was measured as full, partial, or inactive as determined by the maximal luminescence of antibody-attenuated hIL-2 fusion proteins in comparison to the maximal luminescence of rhIL-2. Antibody-attenuated hIL-2 fusion proteins dose-titration curves that reached the maximal luminescence as the rhIL-2 were considered to be variants with full activity. Partial activity was calculated as a percentage of full activity using rhIL-2 maximal luminescence as 100%. Maximal RLU of antibody-attenuated hIL-2 fusion proteins with less than 10% of the rhIL-2 maximal RLU at the highest concentration of 1200 nM were considered to have no agonist activity or inactive. For some variants EC50 values were estimated only since maximal luminescence was not reached, as annotated by an a in Table 23.









TABLE 23







Fold change from rhIL-2 and agonistic activity of antibody-attenuated hIL-2 fusion proteins on NK-92


(high-affinity IL-2R) and TF1 + IL-2Rβ (intermediate-affinity IL-2R) cell lines.
















Fold change
Agonistic




Fold change
Agonistic
from rhIL-2
Activity




from rhIL-2
Activity
(TF1 +
(TF1 +



Variants
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)
















Non-Targeted
1H3-hIgG4-df-hIL-2 (WT)
0

a

Full
0-1
Full


Antibody-Attenuated
1H3-hIgG4-L6-hIL-2 (WT)
0

a

Full
0-1
Full














hIL-2 Fusion
1H3-hIgG4-df-hIL-2 (WT) LC fusion
0

a

Full
24

Full


Proteins
1H3-hIgG4-L6-hIL-2 (WT) LC fusion
0

a

Full
2

Full













1H3-hIgG4-L6-hIL-2 (D20Y)
>10,000 on
Inactive
>10,000 on
Inactive
















graph, NC

a


graph, NC

a















1H3-hIgG4-df-hIL-2 (D20Y)
>10,000 on
Partial, 60%
>10,000 on
Inactive
















graph, NC

a


graph, NC

a
















1H3-hIgG1-df-hIL-2 (D20Y)
8539

a

Partial, 90%
>10,000 on
Inactive



















graph, NC

a





1H3-hIgG4-L6-hIL-2 (D20A/R38P)
>10,000

a

Partial, 80%
4132

a

Full














1H3-hIgG4-L6-hIL-2 (D20A/R38S)
>10,000 on
Partial, 90%
9225

a

Full
















graph, NC

a








1H3-hIgG4-L6-hIL-2 (D20A/R38D)
118

a

Partial, 90%
8591

a

Partial, 90%



1H3-hIgG4-L6-hIL-2 (D20A/R38Q/E95A)
153

Full
5738

a

Full



1H3-hIgG4-L6-hIL-2 (D20A/F42H/E95A)
>10,000

a

Full
1368

a

Full



1H3-hIgG4-L6-hIL-2 (R38D/I92D)
190

Full
437

Full



1H3-hIgG4-L6-hIL-2 (R38E/I92D)
377

a

Full
296

Full



1H3-hIgG4-L6-hIL-2 (F42H/I92D)
794

a

Full
393

Full



1H3-hIgG4-df-hIL-2 (D20A/R38E)
868

a

Partial, 90%-
>10,000

a

Partial, 70%-






Full


Full



1H3-hIgG4-L6-hIL-2 (D20A/R38E)
177

a

Partial, 60-
>10,000

a

Partial, 70%-






80%


Full














1H3-hIgG4-L6-hIL-2 (T3A/D20A/R38E)
>10,000 on
Partial, 40%
>10,000

Partial, 70%
















graph, NC

a








1H3-hIgG4-L6-hIL-2 (D20A/R38E/C125A)
>10,000

a

Partial, 20%
6436

Partial, 40%














1H3-hIgG4-L6-hIL-2
>10,000 on
Partial, 20%
>10,000

Full















(T3A/D20A/R38E/C125A)
graph, NC

a


















1H3-hIgG1-L6-hIL-2 (D20A/R38E)
NT
NT
250-372
Full















1H3-hIgG1-L6-hIL-2 (T3A/D20A/R38E)
392

Partial, 80%
186

Partial, 60%



1H3-hIgG1-L6-hIL-2 (D20A/R38E/C125A)
2346

a

Partial, 80%
2157

a

Partial, 60%













1H3-hIgG4-df-hIL-2 (D20A/R38E)
>10,000 on
Inactive
>10,000 on
Inactive















LC fusion
graph, NC

a


graph, NC

a
















1H3-hIgG4-L6-hIL-2 (D20A/R38E)
>10,000 on
Inactive
2155

a

Partial, 30%















LC fusion
graph, NC

a








1H3-hIgG1-L6-hIL2 (H16A)
0

Full
0

a

Full



1H3-hIgG1-L6-hIL2 (F42A)
0

Full
0

a

Full



1H3-hIgG1-L6-hIL2 (H16A/F42A)
1

Full
0

a

Full


Anti-hPD-1-
A2-hIgG4-df-hIL-2 (D20A/R38E)
811

a

Partial, 20-
>10,000

a

Partial, 60-80%


Attenuated



90%
















hIL-2 Fusion
D12-hIgG4-df-hIL-2 (D20A/R38E)
>10,000 on
Partial, 20%
>10,000

a

Partial, 40%














Proteins

graph, NC

a








G12-hIgG4-df-hIL-2 (D20A/R38E)
>10,000

a

Partial, 20%
>10,000

a

Partial, 50%














OMC476pB11-hIgG4-df-hIL-2
>10,000 on
Partial, 70%
36

Full















(D20A/R38E)
graph, NC

a



















OMC476pE4-hIgG4-df-hIL-2
>10,000 on
Partial, 70%
1619

Full















(D20A/R38E)
graph, NC

a








OMC476pG10-hIgG4-df-hIL-2
>10,000

a

Partial, 70%
NC

a

Inactive



(D20A/R38E)




















OMC476pH10-hIgG4-df-hIL-2
>10,000 on
Partial, 70%
3563

a

Partial, 80%















(D20A/R38E)
graph, NC

a








A2-hIgG4-df-hIL-2 (D20A/F42A)
284

Full
4323

a

Partial, 80%



A2-hIgG4-df-hIL-2 (D20A/F42S)
3542

Full
4052

a

Partial, 90%



A2-hIgG4-df-hIL-2 (D20S/R38E)
NT

NT
7035

a

Full



A2-hIgG4-df-hIL-2 (F42A/N88R)
6423

Full
3757

a

Partial, 90%



A2-hIgG4-df-hIL-2 (F42I/I92D)
9543

Full
5611

a

Partial, 90%



A2-hIgG4-df-hIL-2 (F42Q/I92D)
8572

Full
3363

a

Full



A2-hIgG4-df-hIL-2 (F42T/I92D)
2175

Full
5649

a

Full



A2-hIgG4-df-hIL-2 (F42W/I92D)
1239

Full
4409

a

Partial, 50%













A2-hIgG4-df-hIL-2 (R38E/D84K)
 160-1503
Full
1158-1716
Partial, 90%



A2-hIgG4-df-hIL-2 (R38E/I92K)
252-977
Full
 864-1655
Partial, 80%-





















Full



C51E6-5-hIgG4-df-hIL-2 (D20A/R38E)
4317

Partial, 70%
>10,000

a

Partial, 60%



C51E6-5-hIgG4-L6-hIL-2 (D20A/R38E)
NT

NT
>10,000

a

Partial, 80%



C51E6-5-hIgG4-LE-df-hIL-2
4326

Partial, 80%
>10,000

a

Partial, 70%



(T3A/D20A/R38E/C125A)




















C51E6-5-hIgG4-LAGA-df-hIL-2
4336

Partial, 60%
>10,000 on
Partial, 60%















(T3A/D20A/R38E/C125A)



graph, NC

a
















OMC.1.B6-hIgG4-L6-hIL-2 (D20A/R38E)
NT
NT
8460

a

Partial, 70%



OMC.1.D6-hIgG4-L6-hIL-2 (D20A/R38E)
NT
NT
>10,000

a

Partial, 70%



OMC.2.C6-hIgG4-L6-hIL-2 (D20A/R38E)
NT
NT
>10,000

a

Partial, 70%



2A3.H7-hIgG4-df-hIL-2 (D20A/R38E)
NT
NT
6603

a

Partial, 60%



1H9-hIgG4-df-hIL-2 (D20A/R38E)
NT
NT
9769

a

Partial, 90%



1D5-hIgG4-df-hIL-2 (D20A/R38E)
NT
NT
7420

a

Partial, 80%



1D5-hIgG4-LE-df-hIL-2
NT
NT
NC

a

Inactive















(T3A/D20A/R38E/C125A)




















1D5-hIgG4-LAGA-df-hIL-2
NT
NT
NC

a

Partial, 20%















(T3A/D20A/R38E/C125A)









2H7-hIgG1-df-hIL-2
4839

a

Full
2057

a

Full



(T3A/D20A/R38E/C125A)









2H7-hIgG1-LE-df-hIL-2
7727

a

Full
6729

a

Partial, 80%



(T3A/D20A/R38E/C125A)









2H7-hIgG1-LAGA-df-hIL-2
>10,000

a

Full
3428

a

Partial, 50-60%



(T3A/D20A/R38E/C125A)









2H7-hIgG4-df-hIL-2
707-7206

a

Full
>10,000

a

Partial, 60%-



(T3A/D20A/R38E/C125A)





Full



2H7-hIgG4-LE-df-hIL-2
>10,000

Full
>10,000

a

Partial, 50-60%



(T3A/D20A/R38E/C125A)









2H7-hIgG4-LAGA-df-hIL-2
>10,000

Full
7480

a

Partial, 40-50%



T3A/D20A/R38E/C125A)









H7-767
>10,000

a

Partial, Full
>10,000

a

Full



2H7-hIgG1-df-hIL-2
1500

Partial, 90%
140

a

Full



(T3A/R38E/D84K/C125A)









2H7-hIgG1-LE-df-hIL-2
1268

Partial, 90%
517

a

Full



(T3A/R38E/D84K/C125A)




















2H7-hIgG1-LAGA-df-hIL-2
2157-4035
Partial, 90%-
774-1650

a

Full















(T3A/R38E/D84K/C125A)


Full






2H7-hIgG4-df-hIL-2
1602

Partial, 90%
>10,000

a

Full



(T3A/R38E/D84K/C125A)




















2H7-hIgG4-LE-df-hIL-2
1675-5096
Partial, 90%
1281-2842

a

Full



(T3A/R38E/D84K/C125A)








2H7-hIgG4-LAGA-df-hIL-2
1596-5689
Partial, 90%-
1203-3515

a

Partial, 60-80%



(T3A/R38E/D84K/C125A)

Full


















2H7-hIgG1-df-hIL-2
370

Full
160

Full



(T3A/R38E/I92K/C125A)









2H7-hIgG1-LE-df-hIL-2
319

Full
656

Full



(T3A/R38E/I92K/C125A)




















2H7-hIgG1-LAGA-df-hIL-2
 406-1280
Full
514-1569

a

Full















(T3A/R38E/I92K/C125A)




















2H7-hIgG4-df-hIL-2
520

Full
789-926
Partial, 80%-















(T3A/R38E/I92K/C125A)





Full














2H7-hIgG4-LE-df-hIL-2
 610-1675
Full
474-2080

a

Full



(T3A/R38E/I92K/C125A)








2H7-hIgG4-LAGA-df-hIL-2
 827-2888
Full
737-2845

a

Partial, 70%-



(T3A/R38E/I92K/C125A)




Full















2H7-hIgG1-LAGA-df-hIL2
6689

Full
9711

a

Partial, 70%



(T3A/D20S/R38E/C125A)









2H7-hIgG1-LAGA-df-hIL2
6199

Full
3915

Full



(T3A/R38E/D84F/C125A)









2H7-hIgG1-LAGA-df-hIL2
75

Full
89

Full



(T3A/R38E/192R/C125A)









2H7-hIgG1-LAGA-df-hIL2
118

Full
53

Full



(T3A/R38E/192E/C125A)









2H7-hIgG1-LAGA-df-hIL2
9

Full
30

Full



(T3A/R38E/192S/C125A)









2H7-hIgG1-LAGA-df-hIL2
2717

Full
3396

a

Partial, 80%



(T3A/R38E/I92D/C125A)









2H7-hIgG1-LAGA-df-hIL2
126

Full
122

Full



(T3A/H16E/R38E/C125A)











NT = Not Tested


NC = Not Calculated by GraphPad Prism 7



a = Fold change is an estimate only since a full four parameter logistic curve was not reached







Example 17: Rescue of IL-2 Activity of Anti-hPD-1-Attenuated hIL-2 Fusion Proteins on a Cell Line Expressing the Intermediate-Affinity hIL-2 Receptor and hPD-1

Anti-hPD-1-attenuated hIL-2 fusion proteins were evaluated for rescue of hIL-2 activity using a targeted cell line expressing hPD-1. Briefly, the TF1+IL-2Rβ cell line described in General Methods Protocol D was modified through lentiviral transduction to express the hPD-1 receptor (SEQ ID NO: 580). Flow cytometry with a Brilliant Blue 515 conjugated hPD-1 antibody (BD Biosciences Cat #565936) was used to detect hPD-1 expressing TF1+IL-2Rβ cells. Cells were sorted for low hPD-1 expression (less than 103 intensity on the Brilliant Blue 515 fluorophore). The pool was sorted twice more to collect cells that approximated hPD-1 expression levels on activated primary cells. This cell line (TF1+IL-2Rβ+hPD-1) was expanded and frozen in aliquots for the cell-based proliferation assays. Proliferation assays were performed as described in General Methods Protocol E with an incubation period of 3 days. Some variants tested had a modified human IgG1 or IgG4 kappa light chain framework with additional L235E or L235A/G237A (LAGA) substitutions to abrogate effector function of the immunoglobulin.


Table 24 summarizes the results from the proliferation assays on the targeted TF1+IL-2Rβ+hPD-1 cell line. Agonistic activity was measured as full, partial, or inactive as determined by the maximal luminescence of antibody-attenuated hIL-2 fusion proteins in comparison to the maximal luminescence of rhIL-2. Antibody-attenuated hIL-2 fusion protein dose-titration curves that reached the maximal luminescence as the rhIL-2 were considered to be variants with full activity. Partial activity was calculated as a percentage of full activity using rhIL-2 maximal luminescence as 100%. Maximal RLU of antibody-attenuated hIL-2 fusion proteins with less than 10% of the rhIL-2 maximal RLU at the highest concentration of 1200 nM were considered to have no agonist activity or inactive. For some variants, EC50 values were estimates only since a full curve was not reached. Many examples of anti-hPD-1-hIL-2 fusion proteins with attenuated hIL-2 showed rescued hIL-2 activity on the targeted cell line where the non-targeting antibody controls (denoted with 1H3) demonstrated no rescue of hIL-2 activity. Full rescue was illustrated by the reduction of fold-change from rhIL-2 to a value of 0 or 1.









TABLE 24







Fold change from rhIL-2 and agonistic activity of antibody-hIL-2 fusion


proteins on TF1 + IL-2Rβ + hPD-1 cell line (human PD-1 expressing cell


line with intermediate-affinity IL-2R).












Fold decrease





from rhIL-
Agonistic




2 (TF1 +
Activity (TF1 +



Variants
IL-2Rβ + hPD-1)
IL-2Rβ + hPD-1)














Non-Targeted
1H3-hIgG4-df-hIL-2 (WT)
1

Full


Antibody-Attenuated
1H3-hIgG4-L6-hIL-2 (WT)
1

Full


hIL-2 Fusion
1H3-hIgG4-L6-hIL-2 (D20Y)
NC

a

Inactive


Proteins
1H3-hIgG4-df-hIL-2 (D20Y)
NC

a

Inactive



1H3-hIgG4-L6-hIL-2 (D20A/R38P)
3074

a

Partial, 80%



1H3-hIgG4-L6-hIL-2 (D20A/R38S)
4482

a

Partial, 80%



1H3-hIgG4-L6-hIL-2 (D20A/R38D)
2964

a

Partial, 60%



1H3-hIgG4-L6-hIL-2
3538

a

Partial, 80%



(D20A/R38Q/E95A)






1H3-hIgG4-L6-hIL-2
657

a

Partial, 70%



(D20A/F42H/E95A)






1H3-hIgG4-L6-hIL-2 (R38D/I92D)
1428

a

Full



1H3-hIgG4-L6-hIL-2 (R38E/I92D)
1887

a

Full



1H3-hIgG4-L6-hIL-2 (F42H/I92D)
2024

a

Full



1H3-hIgG4-df-hIL-2 (D20A/R38E)
307-3628

a

Partial, 70%-Full











1H3-hIgG4-L6-hIL-2 (D20A/R38E)
4883-5226
Partial, 70%-Full












1H3-hIgG4-L6-hIL-2
9167

a

Partial, 80%



(T3A/D20A/R38E)






1H3-hIgG4-L6-hIL-2
4714

Partial, 60%



(D20A/R38E/C125A)






1H3-hIgG4-L6-hIL-2
4626

Partial, 60%



(T3A/D20A/R38E/C125A)






1H3-hIgG1-L6-hIL-2 (D20A/R38E)
297

Full



1H3-hIgG1-L6-hIL-2
513

Partial, 80%



(T3A/D20A/R38E)






1H3-hIgG1-L6-hIL-2
3342

Partial, 80%



(D20A/R38E/C125A)






1H3-hIgG1-L6-hIL-2
1081

Partial, 90%



(T3A/D20A/R38E/C125A)






1H3-hIgG1-LAGA-df-hIL-2
6459

Full



(T3A/D20A/R38E/C125A)






1H3-hIgG1-L6-hIL-2 (H16A)
4

a

Full



1H3-hIgG1-L6-hIL-2 (F42A)
0

a

Full



1H3-hIgG1-L6-hIL-2 (H16A/F42A)
2

a

Full



1H3-hIgG1-L6-hIL-2 (D20T)
75

a

Full



1H3-hIgG1-L6-hIL-2
2

a

Full



(T3A/F42A/Y45A/L72G/C125A)





Anti-hPD-1-Attenuated
A2-hIgG4-df-hIL-2 (D20A/R38E)
0-1

a

Full


hIL-2 Fusion
D12-hIgG4-df-hIL-2 (D20A/R38E)
1

a

Full


Proteins
G12-hIgG4-df-hIL-2 (D20A/R38E)
1

a

Full



OMC476pB11-hIgG4-df-hIL-2
0

a

Full



(D20A/R38E)






OMC476pE4-hIgG4-df-hIL-2
2

a

Full



(D20A/R38E)






OMC476pG10-hIgG4-df-hIL-2
0

a

Full



(D20A/R38E)






OMC476pH10-hIgG4-df-hIL-2
1

a

Full



(D20A/R38E)






A2-hIgG4-df-hIL-2 (D20A/F42A)
2

a

Full



A2-hIgG4-df-hIL-2 (D20A/F42S)
1

a

Full



A2-hIgG4-df-hIL-2 (D20S/R38E)
0

a

Full



A2-hIgG4-df-hIL-2 (F42A/N88R)
0

a

Full



A2-hIgG4-df-hIL-2 (F42I/I92D)
9

a

Full



A2-hIgG4-df-hIL-2 (F42Q/I92D)
5

a

Full



A2-hIgG4-df-hIL-2 (F42T/I92D)
1

a

Full



A2-hIgG4-df-hIL-2 (F42W/I92D)
4

a

Full



A2-hIgG4-df-hIL-2 (R38E/D84K)
0-1

a

Full



A2-hIgG4-df-hIL-2 (R38E/I92K)
0-1

a

Full



C51E6-5-hIgG4-df-hIL-2
0-1

a

Partial, 70%-Full



(D20A/R38E)






C51E6-5-hIgG4-L6-hIL-2
1

a

Partial, 90%



(D20A/R38E)






C51E6-5-hIgG4-LE-df-hIL-2
1

a

Full



(T3A/D20A/R38E/C125A)






C51E6-5-hIgG4-LAGA-df-hIL-2
0

a

Full



(T3A/D20A/R38E/C125A)






OMC.1.B6-hIgG4-L6-hIL-2
0

a

Partial, 60%



(D20A/R38E)






OMC.1.D6-hIgG4-L6-hIL-2
0

a

Partial, 90%



(D20A/R38E)






OMC.2.C6-hIgG4-L6-hIL-2
0

a

Partial, 60%



(D20A/R38E)






2A3.H7-hIgG4-df-hIL-2
0

a

Full



(D20A/R38E)






1H9-hIgG4-df-hIL-2 (D20A/R38E)
0

a

Full



1D5-hIgG4-df-hIL-2 (D20A/R38E)
1

a

Full



2H7-hIgG1-df-hIL-2
1

a

Full



(T3A/D20A/R38E/C125A)






2H7-hIgG1-LE-df-hIL-2
0

Full



(T3A/D20A/R38E/C125A)






2H7-hIgG1-LAGA-df-hIL-2
1

a

Full



(T3A/D20A/R38E/C125A)






2H7-hIgG4-df-hIL-2
1

a

Full



(T3A/D20A/R38E/C125A)






2H7-hIgG4-LE-df-hIL-2
1-4

a

Full



(T3A/D20A/R38E/C125A)






2H7-hIgG4-LAGA-df-hIL-2
1

a

Full



(T3A/D20A/R38E/C125A)






H7-767
0-1

a

Full



2H7-hIgG1-df-hIL-2
2

a

Full



(T3A/R38E/D84K/C125A)






2H7-hIgG1-LE-df-hIL-2
1

a

Full



(T3A/R38E/D84K/C125A)






2H7-hIgG1-LAGA-df-hIL-2
1

a

Full



(T3A/R38E/D84K/C125A)






2H7-hIgG4-df-hIL-2
1

a

Full



(T3A/R38E/D84K/C125A)






2H7-hIgG4-LE-df-hIL-2
0-2

a

Full



(T3A/R38E/D84K/C125A)






2H7-hIgG4-LAGA-df-hIL-2
1-3

a

Full



(T3A/R38E/D84K/C125A)






2H7-hIgG1-df-hIL-2
1

a

Full



(T3A/R38E/I92K/C125A)






2H7-hIgG1-LE-df-hIL-2
1

a

Full



(T3A/R38E/I92K/C125A)






2H7-hIgG1-LAGA-df-hIL-2
1-2

a

Full



(T3A/R38E/I92K/C125A)






2H7-hIgG4-df-hIL-2
1

a

Full



(T3A/R38E/I92K/C125A)






2H7-hIgG4-LE-df-hIL-2
1

a

Full



(T3A/R38E/I92K/C125A)






2H7-hIgG4-LAGA-df-hIL-2
1

a

Full



(T3A/R38E/I92K/C125A)














2H7-hIgG1-LAGA-df-hIL2
Not Attenuated
Full












(T3A/D20S/R38E/C125A)
on graph; NC

a





2H7-hIgG1-LAGA-df-hIL2
0

a

Full



(T3A/R38E/D84F/C125A)






2H7-hIgG1-LAGA-df-hIL2
0

a

Full



(T3A/R38E/192R/C125A)






2H7-hIgG1-LAGA-df-hIL2
2

a

Full



(T3A/R38E/192E/C125A)














2H7-hIgG1-LAGA-df-hIL2
Not Attenuated
Full












(T3A/R38E/192S/C125A)
on graph; NC

a





2H7-hIgG1-LAGA-df-hIL2
0

a

Full



(T3A/R38E/C125A)






2H7-hIgG1-LAGA-df-hIL2
>10,000

a

Full



(T3A/H16E/R38E/C125A)





NC = Not Calculated by GraphPad Prism 7



a = Fold change is an estimate only since a full four parameter logistic curve was not reached







Example 18: Evaluation of Surrogate Anti-hPD-1-Attenuated hIL-2 Fusion Proteins that Block or do not Block Mouse PD-L1 in an In Vivo Murine Colon Adenocarcinoma (MC38) Model

Since there are no accepted models to explore in vivo efficacy of oncology therapeutics in primates, a surrogate anti-mPD-1-attenuated hIL-2 fusion protein was generated and tested in a syngeneic murine tumor model. This MC38 colon adenocarcinoma model is routinely used to test efficacy of immuno-oncology therapeutics. To explore the in vivo effect of the anti-PD-1-attenuated hIL-2 fusion protein, a surrogate anti-mouse PD-1 antibody designated RMP1-14 (known to block mouse PD-L1 binding) and RMP1-30 (described as a mouse PD-L1 non-blocker) was fused to an attenuated hIL-2 at the C-terminus of the mouse IgG2b-N297A heavy chain and tested in an MC38 colon adenocarcinoma model. The hIL-2 moiety included the substitutions F42K. Y45R. and V69R that were tested on an IL-2 dependent mouse T lymphoblast cell line (CTLL-2) and that were demonstrated to be attenuated for mouse IL-2 activity. Human IL-2 can stimulate proliferation of mouse T cells at similar concentrations, however the same substitutions that attenuate activity on human IL-2 dependent cell lines do not attenuate activity on the CTLL-2 cell line (data not shown). As such, the F42K/Y45R/V69R substitutions were used in hIL-2 as a surrogate since they demonstrated attenuated IL-2 activity on mouse cell lines. Sequences comprising the heavy and light chain variable region sequences of anti-mouse PD-1 antibodies RMP1-14 and RMP1-30 (as described in Matsumoto K et al., J Immunol. 2004 Feb. 15: 172 (4): 2530-41) were also formatted onto a murine IgG2b-N297A background to generate anti-mPD-1 RMP1-14 mIgG2b-N297A (SEQ ID NOs: 564 and 566) and anti-mPD-1 RMP1-30 mIgG2b-N297A (SEQ ID NOs: 567 and 568). The mouse IgG2b isotype with an N297A substitution is the murine equivalent of an Fc isotype that abrogates Fc immune effector function. Surrogate antibodies and antibody-attenuated hIL-2 fusion proteins were produced, expressed and Protein-A purified using standard techniques.


In this murine tumor model, ten week old female C57BL/6NCrl (Charles River) mice were injected into the right flank with 5×105 MC38 colorectal carcinoma cells. When tumors reached 80-120 mm3. mice were sorted into cohorts (10 mice/group) and treatment began on day 1 of study. Anti-mPD-1 RMP1-14 mIgG2b-N297A. anti-mPD-1 RMP1-30 mIgG2b-N297A. anti-mPD-1 RMP1-14 mIgG2b-N297A-L6-hIL-2 (F42K/Y45R/V69R) (SEQ ID NOs: 565 and 566), and anti-mPD-1 RMP1-30 mIgG2b-N297A-L6-hIL-2 (F42K/Y45R/V69R) (SEQ ID NOs: 568 and 569) were dosed intraperitoneally at 5 mg/kg twice weekly for 4 weeks along with vehicle control (phosphate-buffered saline). Tumor size was measured with calipers twice weekly using the formula (w2 ×L)/2 where w=width and L=length for the duration of the study. The study endpoint was a tumor volume of 1000 mm3 or survival at day 50, whichever came first.



FIG. 8 demonstrates that although the administration of anti-mPD-1 RMP1-14-mIgG2b-N297A or anti-mPD-1 RMP1-30-mIgG2b-N297A antibodies alone did not promote significant efficacy relative to treatment with vehicle control, the administration of anti-mPD-1 RMP1-14 mIgG2b-N297A-L6-hIL-2 (F42K/Y45R/V69R) or anti-mPD-1 RMP1-30 mIgG2b-N297A-L6-hIL-2 (F42K/Y45R/V69R) anti-PD-1-attenuated hIL-2 fusion proteins was associated with 90% and 100% complete tumor regressions respectively. These data demonstrate that the anti-tumor efficacy mediated by anti-mPD-1-hIL-2 (F42K/Y45R/V69R) fusion proteins does not require PD-1 checkpoint blockade and that efficacy is dependent on hIL-2 activity. The data further demonstrate that antibody mediated targeting of PD-1 expressing T cells is sufficient to promote potent anti-tumor efficacy in the MC38 tumor model.


Example 19: Surrogate Anti-hPD-1-Attenuated hIL-2 Fusion Protein Expands Effector Memory CD8+ T Cells in an In Vivo Murine Colon Adenocarcinoma Model

To understand the mechanism-of-action of the surrogate anti-hPD-1-attenuated hIL-2 fusion protein in vivo, a similar in vivo experiment to Example 18 was performed, followed by immunophenotyping of the resultant T cell populations in tumors, blood, spleens and lymph nodes after three doses. Ten week old female C57BL/6NCrl (Charles River) mice were subcutaneously implanted with the 5×105 murine MC38 colon adenocarcinoma cancer tumor cells into the right flank and tumors were monitored for growth. Animals with tumors between 150-260 mm3 were divided between four groups with 10 mice per group for the study. After 21 days post-implantation, animals were dosed intraperitoneally with 0.2 mL/dose phosphate buffered saline (PBS) for the vehicle control, 5 mg/kg anti-KLH-C3-mIgG2b-N297A-L6-hIL-2 (F42K/Y45R/V69R), 5 mg/kg anti-mPD-1 RMP1-30 mIgG2b-N297A, or 5 mg/kg anti-mPD-1 RMP1-30 mIgG2b-N297A-L6-hIL-2 (F42K/Y45R/V69R) on days 1, 4 and 8. On day 9, tumors, spleens and inguinal lymph nodes were harvested from all mice and processed into single cell suspensions for subsequent flow cytometry analysis.



FIG. 9A charts the tumor volume growth (mm3) over 9 days from the first dose on day 1 where each point represents a mean of 10 mice. By day 8, anti-mPD-1 RMP1-30 mIgG2b-N297A-L6-hIL-2 (F42K/Y45R/V69R) had a reduction in tumor volume compared to other treatment groups. FIG. 9B summarizes the contribution of various CD8 T cell subsets in the tumor of each treatment group in which T Central Memory were phenotyped as CD45 CD3+CD4CD8+CD44+CD127+CD69CD103. T Effector Memory were CD45+CD3+CD4CD8+CD44+CD127+CD69+CD103CD62L. T Resident Memory were CD45+CD3+CD4+CD8+CD44+CD127+CD69+CD103+, CD44+CD62LT cells were CD45+CD3+CD4CD8+CD44+CD62L′ and T Naïve were CD45 CD3+CD4+CD8+CD44 CD62L+. In comparison to other treatment groups, there was expansion of the CD8+ T Effector Memory subset in the anti-mPD-1 RMP1-30 mIgG2b-N297A-L6-hIL-2 (F42K/Y45R/V69R) treated mice as indicated in the increase of the light grey slice of FIG. 9B. This was also illustrated in FIG. 9C in absolute counts (cells/μL) within the MC38 dissected tumor. Furthermore, within the tumor, there was a decrease in the absolute counts (cells/μL) of Regulatory T cells defined as expressing CD45 CD3+CD4+ CD8 CD25 FoxP3 markers.


The expansion of CD8 T Effector Memory and decrease in Regulatory T cells has been associated with effective immunotherapy in both mice and humans.


Example 20: Anti-hPD-1-Attenuated hIL-2 Fusion Proteins are Active In Vivo in an NCG-PBMC Model

Engrafting human immune cells into NOD-Prkdcem2Cd52IL-2rgem26Cd22/NjuCrl (NCG) mice that lack functional T. B, and NK cells has been a valuable tool for evaluating efficacy of therapeutics hypothesized to stimulate human T cells. In this model, if the therapeutic activates human T cells, there would be a resulting expansion of T cells and accelerated graft-versus-host disease (GvHD).


Three independent donors for human peripheral mononuclear cell (hPBMC) engraftment were evaluated over a 4 week period for engraftment kinetics as well as expression of human PD-1 and human IL-2 receptors on T cells. Of the three donors tested. the donor that induced the most T cells with an intermediate window for GvHD was chosen. 1.5×107 hPBMCs were intravenously injected into NCG mice and divided into 8 groups of 8-16 mice. On days 7, 10, and 14, mice were intraperitoneally injected with three doses of 2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) (SEQ ID NOs: 471, 425) (2.5 mg/kg, 5 mg/kg, or 10 mg/kg), 1H3-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) (SEQ ID NOs: 546, 374) (5 mg/kg or 10 mg/kg), 1H3-hIgG1-LAGA-df-hIL-2 (T3A/C125A) (SEQ ID NOs: 563, 374) (10 mg/kg), or 2H7-hIgG1-LAGA-df-hIL-2 (T3A/R38E/192K/C125A) (SEQ ID NOs: 474, 425) (5 mg/kg). The anti-DNase fusion protein both as a wild-type hIL-2 (1H3-hIgG1-LAGA-df-hIL-2 (T3A/C125A)) and with the attenuated hIL-2 moiety (1H3-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A)) was used as a non-targeting antibody control. Although the 1H3-hIgG1-LAGA-df-hIL-2 (T3A/C125A) fusion protein had no changes in the hIL-2 moiety which reduce hIL-2 activity, it did comprise the T3A and C125A substitutions to remove the predicted O-linked glycosylation site on human IL-2 (see for example Int'l Pub. No. WO2012/107417) and unpaired cysteine residue (see for example Int'l Pub. No. WO2018/184964), respectively. These substitutions have not demonstrated reduced hIL-2 potency in the clinic. On Day 21, blood, spleen, and lungs were harvested in which blood and spleens were processed for flow cytometry immunophenotyping while lungs were weighed.


After 21 days, flow cytometry immunophenotyping was performed on the blood and spleens of animals. Table 25 summarizes the markers used to delineate human T cell populations for subsequent analysis.









TABLE 25







Phenotypic markers to define


human T cell subsets in NCG-PBMC mice










Cell Population
Phenotypic Markers






Pan T cells
CD3+



CD8+ Naïve
CD3+CD4−CD8+CD45RO−CCR7+



CD8+ Effector
CD3+CD4−CD8+CD45RO−CCR7−



CD8+ Effector Memory
CD3+CD4−CD8+CD45RO+CCR7−



CD8+ Central Memory
CD3+CD4−CD8+CD45RO+CCR7+



CD4+ Naïve
CD3+CD4+CD8−CD45RO−CCR7+



CD4+ Effector
CD3+CD4+CD8−CD45RO−CCR7−



CD4+ Effector Memory
CD3+CD4+CD8−CD45RO+CCR7−



CD4+ Central Memory
CD3+CD4+CD8−CD45RO+CCR7+



Regulatory T cells
CD3+CD4+CD8−CD25+Foxp3+



NK Cells
CD3−CD56+









Body weight was measured for 21 days and normalized to day 1 for each individual animal as an assessment of graft-versus-host disease (GvHD) as illustrated in FIG. 10. Accelerated GvHD was observed in the 2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) treated mice at 10 mg/kg. A small decrease in body weight was also observed in the 2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) treated mice at 2.5 mg/kg, 5 mg/kg, and 2H7-hIgG1-LAGA-df-hIL-2 (T3A/R38E/192K/C125A) at 5 mg/kg. Although body weight loss was seen in the 1H3-hIgG1-LAGA-df-hIL-2 (T3A/C125A), it was not sustained.


The flow cytometry analysis correlated with the accelerated graft-versus-host disease (GvHD) observed. Using the phenotypic markers for human T cell subset delineation provided in Table 25, flow cytometry analysis of peripheral blood demonstrated only a minor expansion of CD3+, CD4+, and CD8+ T cell subsets (as quantified by a fold change from vehicle control of between 10-fold to 50-fold for CD3+ T cells) in mice treated with 2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) at 2.5 mg/kg and 5 mg/kg, and mice treated with 1H3-hIgG1-LAGA-df-hIL-2 (T3A/C125A) at 10 mg/kg. Furthermore, CD3+, CD4+, and CD8+ T cell subsets were greatly expanded (fold change from vehicle control was greater than 50-fold for CD3+ T cells) in the peripheral blood of mice treated with 2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) at 10 mg/kg. Table 26 summarizes the expanded human T cell subsets.









TABLE 26







Expansion of human CD3+, CD4+, and CD8+ T cell subsets in NCG-PBMC mice









Fold Change in numbers (Blood)










Agent
CD3+ T cells
CD4+ T cells
CD8+ T cells













Vehicle (PBS)
1
1
1


1H3-hIgG1-LAGA-df-hIL-2 (T3A/C125A) 10 mg/kg
22.76
27.73
16.13


1H3-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) 5 mg/kg
1.94
2.12
1.74


1H3-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) 10 mg/kg
0.56
0.56
0.57


2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) 2.5 mg/kg
24.57
32.4
14.4


2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) 5 mg/kg
53.03
70.74
22.86


2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) 10 mg/kg
203.3
296.94
58.82


2H7-hIgG1-LAGA-df-hIL-2 (T3A/R38E/I92K/C125A) 5 mg/kg
31.79
48.76
8.79





N/A = Not Applicable






In addition to evaluating CD3+, CD4+, and CD8+ T cells between treatment groups, the memory and naïve subsets for CD4+ and CD8+ T cell subsets were also assessed. The phenotypic markers used for delineation of Naïve, Effector, Effector Memory and Central Memory for both CD4+ and CD8+ T cell is summarized in Table 25. There were no changes in Naïve, Effector or Central Memory T cells between treatment groups (data not shown). However, mice treated with 2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) at 10 mg/kg had greatly expanded CD4+ and CD8+ Effector Memory (EM) T cells in the peripheral blood with an average cell number per milliliter greater than 5 million for CD8+ T cells and greater than 50 million for CD4+ T cells (FIGS. 11A and 11B). Box-and-whisker plots were graphed with the box around the first and third quartile, the horizontal line as the median, and lines indicated the minimum and maximum points. There was moderate expansion of CD8 Effector Memory (EM) T cells defined as an average cell number per million between 1 to 5 million per milliliter for animals treated with 2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) at 2.5 mg/kg and 5 mg/kg as well as for 1H3-hIgG1-LAGA-df-hIL-2 (T3A/C125A). There was moderate expansion of CD4 Effector Memory (EM) T cells between 6 to 13 million per milliliter for CD4+ T cells in the mice treated with 2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) at 2.5 mg/kg and 5 mg/kg.


In addition to stimulating effector T cells, IL-2 has been described to stimulate NK cells and regulatory T cells (Tregs) and since Tregs express high levels of CD25 and NK cells express CD122, these immune cell types were also evaluated. FIG. 12 illustrates that animals treated with 2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) at the highest dose of 10 mg/kg did not expand human regulatory T cells and instead had the lowest percent of regulatory T cells (as phenotypically defined in Table 25) in the peripheral blood of animals. There was a dose-dependent decrease of human regulatory T cells and in comparison to vehicle control that had an average of 1.6% human CD3+ T cells that were Tregs, 2H7-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) at 10 mg/kg had an average of 0.16% human CD3+ T cells that were Tregs. There were no changes in the percentage of human NK cells in peripheral blood (phenotype defined in Table 25) in all treatment groups in comparison to vehicle control (data not shown).


Example 21: Non-Clinical Safety Profile of Anti-hPD-1-Attenuated hIL-2 Fusion Proteins

Cynomolgus monkeys previously have been used to evaluate the toxicity of unmodified IL-2. Lethality was observed in cynomolgus monkeys at exogenous recombinant IL-2 doses as low as 50 μg/kg/day. Since the binding of H7-767 to cynomolgus monkey hPD-1 on primary activated PBMCs was confirmed by flow cytometry (Example 12), a single-dose study for preliminary safety assessment was performed with both a variant of H7-767 (H7-02-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) (SEQ ID NOs: 582 and 583) and H7-767. H7-02-hIgG1-LAGA-df-hIL-2 (T3A/D20A/R38E/C125A) was delivered by 15 minute iv infusion to 8 monkeys at 1 mg/kg (4 animals) or 10 mg/kg (4 animals). Sampling at time-points up to 360 hours following infusion was performed. No adverse effects, gross toxicities, body weight loss, or lethality was observed (data not shown). A follow-up single-dose study using H7-767 was performed at higher doses of 5 mg/kg and 50 mg/kg similar to the first study, with sampling at time-points up to 360 hours post-infusion. Again, no adverse effects, gross toxicities, body weight loss or lethality was observed (data not shown).


Example 22: Attenuation of IL-2 Activity of Modified hIL-2 Proteins

The attenuation of IL-2 activity of modified hIL-2 proteins comprising a substitution at amino acid position 20 (D20) and a substitution at amino acid position 38 (R38) was tested in proliferation assays in both the NK-92 and TF1+IL-2Rβ cell lines as described in Example 5 above. The modified hIL-2 proteins were grouped into 7 groups (1 to 7) based upon the maximal agonist activity of the modified hIL-2 protein and the level of attenuation of potency on both the intermediate and high-affinity receptors (Table 27) relative to non-modified recombinant hIL-2. The criteria used for grouping the modified hIL-2 proteins was:

    • Group 1: Variants with the highest attenuation (i.e., >10,000-fold) and at least about 80% activity on the intermediate-affinity receptor but also had high attenuation and at least about 70% activity on the high-affinity receptor.
    • Group 2: Variants with at least about 70% activity and >1,000-fold attenuation on the intermediate-affinity receptor, and about 20% activity to about 30% activity on the high-affinity receptor.
    • Group 3: Variants with about 50% activity to about 70% activity and >1,000-fold attenuation on the intermediate-affinity receptor, and about 20% activity on the high-affinity receptor.
    • Group 4: Variants with at least about 70% activity but only >500-fold attenuation on the intermediate-affinity receptor, and about 50% activity on the high-affinity receptor.
    • Group 5: Variants with at least about 70% activity on both receptors but >10-fold to >300-fold attenuation on the intermediate-affinity receptor in descending order and 70-fold to 1500-fold attenuation on the high-affinity receptor also in descending order.
    • Group 6: Variants with only about 30% activity and >2,500-fold attenuation on the intermediate-affinity receptor, and no activity on the high-affinity receptor.
    • Group 7: Variants with no activity on both the intermediate-affinity receptor and high-affinity receptor.









TABLE 27







Fold change from rhIL-2 and agonistic activity of modified hIL-2 proteins


comprising a substitution at amino acid position 20 (D20) and a substitution at amino


acid position 38 (R38) in a cell-based proliferation assay


















Fold change
Agonistic




SEQ ID NO
Fold change
Agonistic
from rhIL-2
Activity




of hIL-2
from rhIL-2
Activity
(TF1 +
(TF1 +



Variants
variant
(NK-92)
(NK-92)
IL-2Rβ)
IL-2Rβ)
















Group
1H3-hIgG1-
149
1183-2016
at least about
>10,000 a
at least about


1
L6-hIL-2


70%

80%



(D20A/R38E)







Group
1H3-hIgG1-
608
>10,000 ª
about 30%
  6665
at least about


2
L6-hIL-2




70%



(D20Q/R38E)







Group
1H3-hIgG1-
614
>10,000 a
about 30%
  2607
at least about


2
L6-hIL-2




70%



(D20M/R38E)







Group
1H3-hIgG1-
611
>10,000 ª
about 20%
  1782
at least about


2
L6-hIL-2




70%



(D20I/R38E)







Group
1H3-hIgG1-
620
>10,000 on
about 20%
  1849
about 50%


3
L6-hIL-2

graph, NC ª






(D20V/R38E)







Group
1H3-hIgG1-
307
>10,000 on
about 50%
    626
at least about


4
L6-hIL-2

graph, NC ª


70%



(D20S/R38E)







Group
1H3-hIgG1-
607
   1521
at least about
    378
at least about


5
L6-hIL-2


70%

70%



(D20N/R38E)







Group
1H3-hIgG1-
610
    1288
at least about
    212
at least about


5
L6-hIL-2


70%

70%



(D20G/R38E)







Group
1H3-hIgG1-
617
    524
at least about
     75
at least about


5
L6-hIL-2


70%

70%



(D20T/R38E)







Group
1H3-hIgG1-
609
     77
at least about
     12
at least about


5
L6-hIL-2


70%

70%



(D20E/R38E)







Group
1H3-hIgG1-
306
No activity
No activity
  2945
about 30%


6
L6-hIL-2








(D20H/R38E)







Group
1H3-hIgG1-
612
>10,000 ª
No activity
>10,000 ª
No activity


7
L6-hIL-2








(D20L/R38E)







Group
1H3-hIgG1-
613
No activity
No activity
    544
No activity


7
L6-hIL-2








(D20K/R38E)







Group
1H3-hIgG1-
615
>10,000 ª
No activity
>10,000 ª
No activity


7
L6-hIL-2








(D20F/R38E)







Group
1H3-hIgG1-
616
>10,000 ª
No activity
>10,000 ª
No activity


7
L6-hIL-2








(D20P/R38E)







Group
1H3-hIgG1-
618
>10,000 ª
No activity
>10,000 ª
No activity


7
L6-hIL-2








(D20W/R38E)







Group
1H3-hIgG1-
619
>10,000 ª
No activity
        1
No activity


7
L6-hIL-2








(D20Y/R38E)







Group
1H3-hIgG1-
606
>10,000 ª
No activity
>10,000 ª
No activity


7
L6-hIL-2








(D20R/R38E)









Example 23: Activity of Surrogate Fusion Protein in a Murine MC38 Colo-Rectal Tumor Model

Ten week old female C57BL/6NCrl mice were injected into the right flank with 5×105 syngeneic MC38 colorectal carcinoma cells. When tumors reached 80-120 mm3, mice were sorted into cohorts (10 mice/group) and treatment began on day 1 of study. All agents except hIL-2 were dosed intraperitoneally at 5 mg/kg twice weekly for 4 weeks, starting on day 1. hIL-2 was dosed intraperitoneally at 36,000 International Units once a day from days 1-5. Tumor size was measured with calipers twice weekly for the duration of the study. The study endpoint was a tumor volume of 1000 mm3 or survival at day 50 or progression free survival at day 70, whichever came first.


All test agents including antibody molecules and antibody-hIL-2 fusion proteins were generated using a mouse IgG2b Fc region with a single N297A amino-acid substitution at position 297, which prevents glycosylation of the Fc region and significantly reduces any Fc region-mediated immune effector function, thereby preventing cellular depletion in vivo. Anti-mPD-1 RMP1-14 is a monoclonal antibody antagonist of the mouse PD-1 receptor (Matsumoto, J Immunol 172:2530-2541, 2004). Anti-mPD-1 RMP1-14-hIL-2 F42K/Y45R/V69R is a bi-functional fusion protein consisting of the monoclonal RMP1-14 antibody antagonist of the mouse PD-1 receptor fused at its C-terminus via a flexible six amino-acid glycine/serine linker to hIL-2 F42K/Y45R/V69R (SEQ ID NO: 621) that is a reduced potency IL-2 variant. This molecule was designed to target a reduced potency hIL-2 variant directly to PD-1 expressing T cells in vivo in mice. Anti-KLH-hIL-2 F42K, Y45R, V69R is a control fusion protein consisting of an isotype control monoclonal antibody recognizing a non-mammalian antigen (keyhole limpet hemocyanin, KLH) fused at its C-terminus via a flexible six amino-acid glycine/serine linker to hIL-2 F42K, Y45R, V69R that is a reduced potency IL-2 variant.


Results are presented in FIG. 19. The MC38 colo-rectal tumor model is particularly responsive to antibody mediated PD-1 receptor inhibition. Although tumors growing in vehicle-treated mice rapidly reached study endpoint, 50% of mice treated with anti-mPD-1 RMP1-14 experienced complete tumor regression. In contrast, 100% of mice treated with an anti-mPD-1 RMP1-14-hIL-2 F42K, Y45R, V69R fusion protein experienced durable, long-term tumor regression. Mice treated with various combinations of the individual components of anti-mPD-1 RMP1-14-hIL-2 F42K, Y45R, V69R fusion protein, including either anti-mPD-1 RMP1-14 combined with hIL-2 free cytokine (administered at a dose and regimen equivalent to a therapeutic dose in humans) or anti-mPD-1 RMP1-14 combined with a non-targeted anti-KLH-hIL-2 F42K, Y45R, V69R fusion protein did not recapitulate the efficacy seen with anti-mPD-1 RMP1-14-hIL-2 F42K, Y45R, V69R. These data demonstrate that targeting a reduced potency hIL-2 to PD-1 expressing cells significantly improves anti-tumor efficacy relative to an anti-PD-1 receptor antagonist and that the activity of the fusion protein is not due to the additive effects of the molecule's individual components.


Example 24: Evaluation of Protective Anti-Tumor Immunity Induced by Surrogate Anti-mPD-1 RMP1-14-hIL-2 F42K, Y45R, V69R in the MC38 Colo-Rectal Tumor Model

Mice that had undergone a complete tumor regression in the primary tumor study described in Example 23 and that had survived to day 50 were subjected to a secondary tumor challenge without any additional drug therapy. For tumor re-challenge, mice were implanted on the left flank contralateral to the location of the primary tumor with 5×105 MC38 tumor cells. As a control group, 10 age-matched tumor naïve mice were also implanted with MC38 tumor cells.



FIG. 20 shows that all mice that had previously undergone a complete tumor regression in a prior primary tumor study and had survived to day 50 after treatment with anti-mPD-1 RMP1-14-hIL-2 F42K, Y45R, V69R were completely protected from secondary tumor development. In contrast, all tumor-naïve mice implanted with MC38 tumor cells went on to develop tumors that rapidly reached study endpoint of tumor volume of 100 mm3. The development of protective anti-tumor immunity in the absence of continued drug therapy suggests that anti-mPD-1 RMP1-14-hIL-2 F42K, Y45R, V69R induced an anti-tumor memory T cell response.


Those skilled in the art will appreciate that numerous changes and modifications can be made to the preferred embodiments disclosed herein and that such changes and modifications can be made without departing from the spirit of the invention. It is, therefore, intended that the appended claims cover all such equivalent variations as fall within the true spirit and scope of the invention.


The disclosures of each patent, patent application, and publication cited or described in this document are hereby incorporated herein by reference, in its entirety.









TABLE 28







Exemplary Antibodies









Antibody Name
Heavy chain
Light chain





Anti-hPD-1 #1-mIgG2b-N297A
Anti-hPD-1 #1-mIgG2b-N297A HC
Anti-hPD-1 #1-mKappa LC (SEQ ID



(SEQ ID NO: 348)
NO: 349)


Anti-hPD-1 #2-mIgG2b-N297A
Anti-hPD-1 #2-mIgG2b-N297A HC
Anti-hPD-1 #2-mKappa LC (SEQ ID



(SEQ ID NO: 350)
NO: 351)


hIL-2 Nterm light chain df
1H3-hIgG1 HC (SEQ ID NO: 379)
hIL-2-df-1H3-hkappa LC (SEQ ID NO:




356)


hIL-2 Nterm light chain L6 fusion
1H3-hIgG1 HC (SEQ ID NO: 379)
hIL-2-L6-1H3-hkappa LC (SEQ ID NO:




357)


hIL-2 Nterm heavy chain df
hIL-2-df-1H3-hIgG1 HC (SEQ ID NO:
1H3-hKappa LC (SEQ ID NO: 374)



358)



hIL-2 Nterm heavy chain L6 fusion
hIL-2-L6-1H3-hIgG1 HC (SEQ ID NO:
1H3-hKappa LC (SEQ ID NO: 374)



359)



hIL-2 Cterm heavy chain df
1H3-hIgG1-df-hIL-2 HC (SEQ ID NO:
1H3-hKappa LC (SEQ ID NO: 374)



360)



hIL-2 Cterm heavy chain L6 fusion
1H3-hIgG1-L6-hIL-2 HC (SEQ ID NO:
1H3-hKappa LC (SEQ ID NO: 374)



361)



hIL-2 Cterm light chain df
1H3-hIgG1 HC (SEQ ID NO: 379)
1H3-hKappa-df-hIL-2 (WT) LC (SEQ ID




NO: 362)


hIL-2 Cterm light chain L6 fusion
1H3-hIgG1 HC (SEQ ID NO: 379)
1H3-hKappa-L6-hIL-2 (WT) LC (SEQ




ID NO: 363)


hCD25-L20-hIL-2 Nterm heavy chain df
hCD25-L20-hIL-2-df-1H3-hIgG1 HC
1H3-hKappa LC (SEQ ID NO: 374)



(SEQ ID NO: 365)



hCD25-L20-hIL-2 Nterm heavy chain L6
hCD25-L20-hIL-2-L6-1H3-hIgG1 HC
1H3-hKappa LC (SEQ ID NO: 374)


fusion
(SEQ ID NO: 366)



hCD25-L20-hIL-2 Nterm light chain df
1H3-hIgG1 HC (SEQ ID NO: 379)
hCD25-L20-hIL-2-df-1H3-hKappa LC




(SEQ ID NO: 367)


hCD25-L20-hIL-2 Nterm light chain L6
1H3-hIgG1 HC (SEQ ID NO: 379)
hCD25-L20-hIL-2-L6-1H3-hKappa LC


fusion

(SEQ ID NO: 368)


hCD25-L20-hIL-2 Cterm heavy chain df
1H3-hIgG1-df-hCD25-L20-hIL-2 HC
1H3-hKappa LC (SEQ ID NO: 374)



(SEQ ID NO: 369)



hCD25-L20-hIL-2 Cterm heavy chain L6
1H3-hIgG1-L6-hCD25-L20-hIL-2 HC
1H3-hKappa LC (SEQ ID NO: 374)


fusion
(SEQ ID NO: 370)



hCD25-L20-hIL-2 Cterm light chain df
1H3-hIgG1 HC (SEQ ID NO: 379)
1H3-hKappa-df-hCD25-L20-hIL-2 LC




(SEQ ID NO: 371)


hCD25-L20-hIL-2 Cterm light chain L6
1H3-hIgG1 HC (SEQ ID NO: 379)
1H3-hKappa-L6-hCD25-L20-hIL-2 LC


fusion

(SEQ ID NO: 372)


2D12-mIgG1-D265A-L6-hIL-2
2D12-mIgG1-D265A-L6-hIL-2 HC (SEQ
2D12-mKappa LC (SEQ ID NO: 376)



ID NO: 375)



2H7-hIgG4
2H7-hIgG4 HC (SEQ ID NO: 424)
2H7-hKappa LC (SEQ ID NO: 425)


C51E6-5-hIgG4
C51E6-5-hIgG4 HC (SEQ ID NO: 426)
C51E6-5-hKappa LC (SEQ ID NO: 427)


A2-hIgG4
A2-hIgG4 HC (SEQ ID NO: 428)
A2-hLambda LC (SEQ ID NO: 429)


H7-632-hIgG1-LAGA
H7-632 HC (SEQ ID NO: 414)
H7-632 LC (SEQ ID NO: 415)


2H7-hIgG4-df-hIL-2 (D20A/R38E)
2H7-hIgG4-df-hIL-2 (D20A/R38E) HC
2H7-hKappa LC (SEQ ID NO: 425)



(SEQ ID NO: 430)



C51E6-5-hIgG4-L6-hIL-2 (D20A/R38E)
C51E6-5-hIgG4-L6-hIL-2 (D20A/R38E)
C51E6-5-hKappa LC (SEQ ID NO: 427)



HC (SEQ ID NO: 432)



A2-hIgG4-df-hIL-2 (D20A/R38E)
A2-hIgG4-df-hIL-2 (D20A/R38E) HC
A2-hLambda LC (SEQ ID NO: 429)



(SEQ ID NO: 433)



1H3-hIgG4-df-hIL-2 (D20A/R38E)
1H3-hIgG4-df-hIL-2 (D20A/R38E) HC
1H3-hKappa LC (SEQ ID NO: 374)



(SEQ ID NO: 434)



2H7-hIgG4-df-hIL-2
2H7-hIgG4-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 435)



OMC.1.B6-hIgG4
OMC.1.B6-hIgG4 HC (SEQ ID NO: 438)
OMC.1.B6-hLambda LC (SEQ ID NO:




439)


OMC.2.C6-hIgG4
OMC.2.C6-hIgG4 HC (SEQ ID NO: 440)
OMC.2.C6-hLambda LC (SEQ ID NO:




441)


OMC.1.D6-hIgG4
OMC.1.D6-hIgG4 HC (SEQ ID NO:
OMC.1.D6-hLambda LC (SEQ ID NO:



442)
443)


D12-hIgG4
D12-hIgG4 HC (SEQ ID NO: 444)
D12-hLambda LC (SEQ ID NO: 445)


G12-hIgG4
G12-hIgG4 HC (SEQ ID NO: 446)
G12-hLambda LC (SEQ ID NO: 447)


Abz1mod-hIgG4
Abz1mod-hIgG4 HC (SEQ ID NO: 449)
Abz1mod-hKappa LC (SEQ ID NO: 450)


Anti-hPD-1 #1-hIgG4-L6-hIL-2
Anti-hPD-1 #1-hIgG4-L6-hIL-2
Anti-hPD-1 #1-hKappa (SEQ ID NO:


(D20A/R38E)
(D20A/R38E) (SEQ ID NO: 451)
452)


OMC.1.B6-hIgG4-L6-hIL-2
OMC.1.B6-hIgG4-L6-hIL-2
OMC.1.B6-hLambda LC (SEQ ID NO:


(D20A/R38E)
(D20A/R38E) HC (SEQ ID NO: 453)
439)


OMC.2.C6-hIgG4-L6-hIL-2
OMC.2.C6-hIgG4-L6-hIL-2
OMC.2.C6-hLambda LC (SEQ ID NO:


(D20A/R38E)
(D20A/R38E) HC (SEQ ID NO: 454)
441)


OMC.1.D6-hIgG4-L6-hIL-2
OMC.1.D6-hIgG4-L6-hIL-2
OMC.1.D6-hLambda LC (SEQ ID NO:


(D20A/R38E)
(D20A/R38E) HC (SEQ ID NO: 455)
443)


D12-hIgG4-df-hIL-2 (D20A/R38E)
D12-hIgG4-df-hIL-2 (D20A/R38E) HC
D12-hLambda LC (SEQ ID NO: 445)



(SEQ ID NO: 456)



G12-hIgG4-df-hIL-2 (D20A/R38E)
G12-hIgG4-df-hIL-2 (D20A/R38E) HC
G12-hLambda LC (SEQ ID NO: 447)



(SEQ ID NO: 457)



2H7-hIgG4-LE
2H7-hIgG4-LE HC (SEQ ID NO: 458)
2H7-hKappa LC (SEQ ID NO: 425)


2H7-hIgG4-LAGA
2H7-hIgG4-LAGA HC (SEQ ID NO:
2H7-hKappa LC (SEQ ID NO: 425)



459)



OMC476pH7-hIgG4
OMC476pH7-hIgG4 HC (SEQ ID NO:
OMC476pB11.H7 LC (SEQ ID NO: 462)



461)



OMC476pB11-hIgG4
OMC476pB11-hIgG4 HC (SEQ ID NO:
OMC476pB11.H7 LC (SEQ ID NO: 462)



463)



OMC476pG10-hIgG4
OMC476pG10-hIgG4 HC (SEQ ID NO:
OMC476pG10.H10 LC (SEQ ID NO:



464)
466)


OMC476pH10-hIgG4
OMC476pH10-hIgG4 HC (SEQ ID NO:
OMC476pG10.H10 LC (SEQ ID NO:



465)
466)


OMC476pE4-hIgG4
OMC476pE4-hIgG4 HC (SEQ ID NO:
OMC476pE4 LC (SEQ ID NO: 468)



467)



J110-hIgG1
J110-hIgG1 HC (SEQ ID NO: 469)
J110-hKappa LC (SEQ ID NO: 470)


2H7-hIgG1-LAGA-df-hIL-2
2H7-hIgG1-LAGA-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 471)



2H7-hIgG4-LE-df-hIL-2
2H7-hIgG4-LE-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 472)



2H7-hIgG4-LAGA-df-hIL-2
2H7-hIgG4-LAGA-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 473)



2H7-hIgG1-LAGA-df-hIL-2
2H7-hIgG1-LAGA-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/I92K/C125A)
(T3A/R38E/I92K/C125A) HC (SEQ ID




NO: 474)



hIgG4-LE-df-hIL-2
hIgG4-LE-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/I92K/C125A)
(T3A/R38E/I92K/C125A) HC (SEQ ID




NO: 475)



2H7-hIgG4-LAGA-df-hIL-2
2H7-hIgG4-LAGA-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/I92K/C125A)
(T3A/R38E/I92K/C125A) HC (SEQ ID




NO: 476)



2H7-hIgG1-LAGA-df-hIL-2
2H7-hIgG1-LAGA-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/D84K/C125A)
(T3A/R38E/D84K/C125A) HC (SEQ ID




NO: 477)



2H7-hIgG4-LE-df-hIL-2
2H7-hIgG4-LE-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/D84K/C125A)
(T3A/R38E/D84K/C125A) HC (SEQ ID




NO: 478)



2H7-hIgG4-LAGA-df-hIL-2
2H7-hIgG4-LAGA-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/D84K/C125A)
(T3A/R38E/D84K/C125A) HC (SEQ ID




NO: 479)



1H3-hIgG4-df-hIL-2 (WT)
1H3-hIgG4-df-hIL-2 (WT) HC (SEQ ID
1H3-hKappa LC (SEQ ID NO: 374)



NO: 480)



1H3-hIgG4-L6-hIL-2 (WT)
1H3-hIgG4-L6-hIL-2 (WT) HC (SEQ ID
1H3-hKappa LC (SEQ ID NO: 374)



NO: 481)



1H3-hIgG4-df-hIL-2 (WT) LC fusion
1H3-hIgG4 HC (SEQ ID NO: 482)
1H3-hKappa-df-hIL-2 (WT) LC (SEQ ID




NO: 362)


1H3-hIgG4-L6-hIL-2 (WT) LC fusion
1H3-hIgG4 HC (SEQ ID NO: 482)
1H3-hKappa-L6-hIL-2 (WT) LC (SEQ




ID NO: 363)


1H3-hIgG4-L6-hIL-2 (D20Y)
1H3-hIgG4-L6-hIL-2 (D20Y) HC (SEQ
1H3-hKappa LC (SEQ ID NO: 374)



ID NO: 485)



1H3-hIgG4-df-hIL-2 (D20Y)
1H3-hIgG4-df-hIL-2 (D20Y) HC (SEQ
1H3-hKappa LC (SEQ ID NO: 374)



ID NO: 486)



1H3-hIgG1-df-hIL-2 (D20Y)
1H3-hIgG1-df-hIL-2 (D20Y) HC (SEQ
1H3-hKappa LC (SEQ ID NO: 374)



ID NO: 487)



1H3-hIgG4-L6-hIL-2 (D20A/R38P)
1H3-hIgG4-L6-hIL-2 (D20A/R38P) HC
1H3-hKappa LC (SEQ ID NO: 374)



(SEQ ID NO: 488)



1H3-hIgG4-L6-hIL-2 (D20A/R38S)
1H3-hIgG4-L6-hIL-2 (D20A/R38S) HC
1H3-hKappa LC (SEQ ID NO: 374)



(SEQ ID NO: 489)



1H3-hIgG4-L6-hIL-2 (D20A/R38D)
1H3-hIgG4-L6-hIL-2 (D20A/R38D) HC
1H3-hKappa LC (SEQ ID NO: 374)



(SEQ ID NO: 490)



1H3-hIgG4-L6-hIL-2
1H3-hIgG4-L6-hIL-2
1H3-hKappa LC (SEQ ID NO: 374)


(D20A/R38Q/E95A)
(D20A/R38Q/E95A) HC (SEQ ID NO:




491)



1H3-hIgG4-L6-hIL-2
1H3-hIgG4-L6-hIL-2
1H3-hKappa LC (SEQ ID NO: 374)


(D20A/F42H/E95A)
(D20A/F42H/E95A) HC (SEQ ID NO:




492)



1H3-hIgG4-L6-hIL-2 (R38D/I92D)
1H3-hIgG4-L6-hIL-2 (R38D/I92D) HC
1H3-hKappa LC (SEQ ID NO: 374)



(SEQ ID NO: 493)



1H3-hIgG4-L6-hIL-2 (R38E/I92D)
1H3-hIgG4-L6-hIL-2 (R38E/I92D) HC
1H3-hKappa LC (SEQ ID NO: 374)



(SEQ ID NO: 494)



1H3-hIgG4-L6-hIL-2 (F42H/I92D)
1H3-hIgG4-L6-hIL-2 (F42H/I92D) HC
1H3-hKappa LC (SEQ ID NO: 374)



(SEQ ID NO: 495)



1H3-hIgG4-L6-hIL-2 (D20A/R38E)
1H3-hIgG4-L6-hIL-2 (D20A/R38E) HC
1H3-hKappa LC (SEQ ID NO: 374)



(SEQ ID NO: 496)



1H3-hIgG4-L6-hIL-2 (T3A/D20A/R38E)
1H3-hIgG4-L6-hIL-2 (T3A/D20A/R38E)
1H3-hKappa LC (SEQ ID NO: 374)



HC (SEQ ID NO: 497)



1H3-hIgG4-L6-hIL-2
1H3-hIgG4-L6-hIL-2
1H3-hKappa LC (SEQ ID NO: 374)


(D20A/R38E/C125A)
(D20A/R38E/C125A) HC (SEQ ID NO:




498)



1H3-hIgG4-L6-hIL-2
1H3-hIgG4-L6-hIL-2
1H3-hKappa LC (SEQ ID NO: 374)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 499)



1H3-hIgG1-L6-hIL-2 (D20A/R38E)
1H3-hIgG1-L6-hIL-2 (D20A/R38E) HC
1H3-hKappa LC (SEQ ID NO: 374)



(SEQ ID NO: 500)



1H3-hIgG1-L6-hIL-2 (T3A/D20A/R38E)
1H3-hIgG1-L6-hIL-2 (T3A/D20A/R38E)
1H3-hKappa LC (SEQ ID NO: 374)



HC (SEQ ID NO: 501)



1H3-hIgG1-L6-hIL-2
1H3-hIgG1-L6-hIL-2
1H3-hKappa LC (SEQ ID NO: 374)


(D20A/R38E/C125A)
(D20A/R38E/C125A) HC (SEQ ID NO:




502)



1H3-hIgG4-df-hIL-2 (D20A/R38E) LC
1H3-hIgG4 HC (SEQ ID NO: 482)
1H3-hKappa-df-hIL-2 (D20A/R38E) LC


fusion

(SEQ ID NO: 503)


1H3-hIgG4-L6-hIL-2 (D20A/R38E) LC
1H3-hIgG4 HC (SEQ ID NO: 482)
1H3-hKappa-L6-hIL-2 (D20A/R38E) LC


fusion

(SEQ ID NO: 504)


OMC476pB11-hIgG4-df-hIL-2
OMC476pB11-hIgG4-df-hIL-2
OMC476pB11.H7 LC (SEQ ID NO: 462)


(D20A/R38E)
(D20A/R38E) HC (SEQ ID NO: 505)



OMC476pE4-hIgG4-df-hIL-2
OMC476pE4-hIgG4-df-hIL-2
OMC476pE4 LC (SEQ ID NO: 468)


(D20A/R38E)
(D20A/R38E) HC (SEQ ID NO: 506)



OMC476pG10-hIgG4-df-hIL-2
OMC476pG10-hIgG4-df-hIL-2
OMC476pG10.H10 LC (SEQ ID NO:


(D20A/R38E)
(D20A/R38E) HC (SEQ ID NO: 507)
466)


OMC476pH10-hIgG4-df-hIL-2
OMC476pH10-hIgG4-df-hIL-2
OMC476pG10.H10 LC (SEQ ID NO:


(D20A/R38E)
(D20A/R38E) HC (SEQ ID NO: 508)
466)


A2-hIgG4-df-hIL-2 (D20A/F42A)
A2-hIgG4-df-hIL-2 (D20A/F42A) HC
A2-hLambda LC (SEQ ID NO: 429)



(SEQ ID NO: 509)



A2-hIgG4-df-hIL-2 (D20A/F42S)
A2-hIgG4-df-hIL-2 (D20A/F42S) HC
A2-hLambda LC (SEQ ID NO: 429)



(SEQ ID NO: 510)



A2-hIgG4-df-hIL-2 (D20S/R38E)
A2-hIgG4-df-hIL-2 (D20S/R38E) HC
A2-hLambda LC (SEQ ID NO: 429)



(SEQ ID NO: 511)



A2-hIgG4-df-hIL-2 (F42A/N88R)
A2-hIgG4-df-hIL-2 (F42A/N88R) HC
A2-hLambda LC (SEQ ID NO: 429)



(SEQ ID NO: 512)



A2-hIgG4-df-hIL-2 (F42I/I92D)
A2-hIgG4-df-hIL-2 (F421/I92D) HC
A2-hLambda LC (SEQ ID NO: 429)



(SEQ ID NO: 513)



A2-hIgG4-df-hIL-2 (F42Q/I92D)
A2-hIgG4-df-hIL-2 (F42Q/I92D) HC
A2-hLambda LC (SEQ ID NO: 429)



(SEQ ID NO: 514)



A2-hIgG4-df-hIL-2 (F42T/I92D)
A2-hIgG4-df-hIL-2 (F42T/I92D) HC
A2-hLambda LC (SEQ ID NO: 429)



(SEQ ID NO: 515)



A2-hIgG4-df-hIL-2 (F42W/I92D)
A2-hIgG4-df-hIL-2 (F42W/I92D) HC
A2-hLambda LC (SEQ ID NO: 429)



(SEQ ID NO: 516)



A2-hIgG4-df-hIL-2 (R38E/D84K)
A2-hIgG4-df-hIL-2 (R38E/D84K) HC
A2-hLambda LC (SEQ ID NO: 429)



(SEQ ID NO: 517)



A2-hIgG4-df-hIL-2 (R38E/I92K)
A2-hIgG4-df-hIL-2 (R38E/I92K) HC
A2-hLambda LC (SEQ ID NO: 429)



(SEQ ID NO: 518)



C51E6-5-hIgG4-df-hIL-2 (D20A/R38E)
C51E6-5-hIgG4-df-hIL-2 (D20A/R38E)
C51E6-5-hKappa LC (SEQ ID NO: 427)



HC (SEQ ID NO: 519)



C51E6-5-hIgG4-LE-df-hIL-2
C51E6-5-hIgG4-LE-df-hIL-2
C51E6-5-hKappa LC (SEQ ID NO: 427)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 520)



C51E6-5-hIgG4-LAGA-df-hIL-2
C51E6-5-hIgG4-LAGA-df-hIL-2
C51E6-5-hKappa LC (SEQ ID NO: 427)


(T3A/D20A/R38E/C125A)
(D20A/R38E) HC (SEQ ID NO: 521)



2A3.H7-hIgG4-df-hIL-2 (D20A/R38E)
2H7-hIgG4-df-hIL-2 (D20A/R38E) HC
2A3-hKappa LC (SEQ ID NO: 523)



(SEQ ID NO: 430)



1H9-hIgG4-df-hIL-2 (D20A/R38E)
1H9-hIgG4-df-hIL-2 (D20A/R38E) HC
1H9-hKappa LC (SEQ ID NO: 525)



(SEQ ID NO: 524)



1D5-hIgG4-df-hIL-2 (D20A/R38E)
1D5-hIgG4-df-hIL-2 (D20A/R38E) HC
1D5-hKappa LC (SEQ ID NO: 527)



(SEQ ID NO: 526)



1D5-hIgG4-LE-df-hIL-2
1D5-hIgG4-LE-df-hIL-2
1D5-hKappa LC (SEQ ID NO: 527)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 528)



1D5-hIgG4-LAGA-df-hIL-2
1D5-hIgG4-LAGA-df-hIL-2
1D5-hKappa LC (SEQ ID NO: 527)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 529)



2H7-hIgG1-df-hIL-2
2H7-hIgG1-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 530)



2H7-hIgG1-LE-df-hIL-2
2H7-hIgG1-LE-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 531)



2H7-hIgG1-LE-df-hIL-2
2H7-hIgG1-LE-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/D84K/C125A)
(T3A/R38E/D84K/C125A) HC (SEQ ID




NO: 533)



2H7-hIgG4-df-hIL-2
2H7-hIgG4-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/D84K/C125A)
(T3A/R38E/D84K/C125A) HC (SEQ ID




NO: 534)



2H7-hIgG1-df-hIL-2
2H7-hIgG1-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/I92K/C125A)
(T3A/R38E/I92K/C125A) HC (SEQ ID




NO: 535)



2H7-hIgG1-LE-df-hIL-2
2H7-hIgG1-LE-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/I92K/C125A)
(T3A/R38E/I92K/C125A) HC (SEQ ID




NO: 536)



2H7-hIgG4-df-hIL-2
2H7-hIgG4-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/I92K/C125A)
(T3A/R38E/I92K/C125A) HC (SEQ ID




NO: 537)



2H7-hIgG1-LAGA-df-hIL2
2H7-hIgG1-LAGA-df-hIL2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/D20S/R38E/C125A)
(T3A/D20S/R38E/C125A) HC (SEQ ID




NO: 538)



2H7-hIgG1-LAGA-df-hIL2
2H7-hIgG1-LAGA-df-hIL2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/D84F/C125A)
(T3A/R38E/D84F/C125A) HC (SEQ ID




NO: 539)



2H7-hIgG1-LAGA-df-hIL2
2H7-hIgG1-LAGA-df-hIL2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/192R/C125A)
(T3A/R38E/192R/C125A) HC (SEQ ID




NO: 540)



2H7-hIgG1-LAGA-df-hIL2
2H7-hIgG1-LAGA-df-hIL2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/192E/C125A)
(T3A/R38E/192E/C125A) HC (SEQ ID




NO: 541)



2H7-hIgG1-LAGA-df-hIL2
2H7-hIgG1-LAGA-df-hIL2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/192S/C125A)
(T3A/R38E/192S/C125A) HC (SEQ ID




NO: 542)



2H7-hIgG1-LAGA-df-hIL2
2H7-hIgG1-LAGA-df-hIL2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/I92D/C125A)
(T3A/R38E/I92D/C125A) HC (SEQ ID




NO: 543)



2H7-hIgG1-LAGA-df-hIL2
2H7-hIgG1-LAGA-df-hIL2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/H16E/R38E/C125A)
(T3A/H16E/R38E/C125A) HC (SEQ ID




NO: 544)



1H3-hIgG1-L6-hIL-2
1H3-hIgG1-L6-hIL-2
1H3-hKappa LC (SEQ ID NO: 374)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 545)



1H3-hIgG1-LAGA-df-hIL-2
1H3-hIgG1-LAGA-df-hIL-2
1H3-hKappa LC (SEQ ID NO: 374)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 546)



C51E6-5-hIgG4/k-LE
C51E6-5-hIgG4/k-LE HC (SEQ ID NO:
C51E6-5-hKappa LC (SEQ ID NO: 427)



547)



C51E6-5-hIgG4/k-LAGA
C51E6-5-hIgG4/k-LAGA HC (SEQ ID
C51E6-5-hKappa LC (SEQ ID NO: 427)



NO: 548)



C51E6-5-hIgG4/k-LEPG
C51E6-5-hIgG4/k-LEPG HC (SEQ ID
C51E6-5-hKappa LC (SEQ ID NO: 427)



NO: 549)



C51E6-5-hIgG4/k-df-hIL-2
C51E6-5-hIgG4/k-df-hIL-2
C51E6-5-hKappa LC (SEQ ID NO: 427)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 550)



C51E6-5-hIgG4/k-LEPG-hIL-2
C51E6-5-hIgG4/k-LEPG-hIL-2
C51E6-5-hKappa LC (SEQ ID NO: 427)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 551)



A2-hIgG4/k-LE
A2-hIgG4/k-LE HC (SEQ ID NO: 552)
A2-hLambda LC (SEQ ID NO: 429)


A2-hIgG4/k-LAGA
A2-hIgG4/k-LAGA HC (SEQ ID NO:
A2-hLambda LC (SEQ ID NO: 429)



553)



A2-hIgG4/k-LEPG
A2-hIgG4/k-LEPG HC (SEQ ID NO:
A2-hLambda LC (SEQ ID NO: 429)



554)



A2-hIgG4/k-df-hIL-2
A2-hIgG4/k-df-hIL-2
A2-hLambda LC (SEQ ID NO: 429)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 555)



A2-hIgG4/k-LE-df-hIL-2
A2-hIgG4/k-LE-df-hIL-2
A2-hLambda LC (SEQ ID NO: 429)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 556)



A2-hIgG4/k-LAGA-df-hIL-2
A2-hIgG4/k-LAGA-df-hIL-2
A2-hLambda LC (SEQ ID NO: 429)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 557)



A2-hIgG4/k-LEPG-df-hIL-2
A2-hIgG4/k-LEPG-df-hIL-2
A2-hLambda LC (SEQ ID NO: 429)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 558)



Anti-CD20-hIgG1/k
Anti-CD20-hIgG1/k HC (SEQ ID NO:
Anti-CD20-hKappa LC (SEQ ID NO:



560)
562)


Anti-CD20-hIgG1/k-LAGA
Anti-CD20-hIgG1/k-LAGA HC (SEQ ID
Anti-CD20-hKappa LC (SEQ ID NO:



NO: 561)
562)


1H3-hIgG1-LAGA-df-hIL-2
1H3-hIgG1-LAGA-df-hIL-2
1H3-hKappa LC (SEQ ID NO: 374)


(T3A/C125A)
T3A/C125A) HC (SEQ ID NO: 563)



anti-mPD-1 RMP1-14 mIgG2b-N297A
anti-mPD-1 RMP1-14 mIgG2b-N297A
anti-mPD-1 RMP1-14 mKappa LC (SEQ



HC (SEQ ID NO: 564)
ID NO: 566)


anti-mPD-1 RMP1-14 mIgG2b-N297A-
anti-mPD-1 RMP1-14 mIgG2b-N297A-
anti-mPD-1 RMP1-14 mKappa LC (SEQ


L6-hIL-2 (F42K/Y45R/V69R)
L6-hIL-2(F42K/Y45R/V69R) HC (SEQ
ID NO: 566)



ID NO: 565)



anti-mPD-1 RMP1-30 mIgG2b-N297A
anti-mPD-1 RMP1-30 mIgG2b-N297A
anti-mPD-1 RMP1-30 mKappa LC (SEQ



HC (SEQ ID NO: 567)
ID NO: 568)


anti-mPD-1 RMP1-30 mIgG2b-N297A-
anti-mPD-1 RMP1-30 mIgG2b-N297A-
anti-mPD-1 RMP1-30 mKappa LC (SEQ


L6-hIL-2 (F42K/Y45R/V69R)
L6-hIL-2 (F42K/Y45R/V69R) HC (SEQ
ID NO: 568)



ID NO: 569)



anti-KLH-C3-mIgG2b-N297A-L6-hIL-2
anti-KLH-C3-mIgG2b-N297A-L6-hIL-2
KLH-C3-mKappa LC (SEQ ID NO: 571)


(F42K/Y45R/V69R)
(F42K/Y45R/V69R) HC (SEQ ID NO:




570)



2D12-hIgG1-L6-hIL-2
2D12-hIgG1-L6-hIL-2 HC (SEQ ID NO:
2D12-hKappa LC (SEQ ID NO: 573)



572)



1H9-hIgG4
1H9-hIgG4 HC (SEQ ID NO: 576)
1H9-hKappa LC (SEQ ID NO: 525)


1D5-hIgG4
1D5-hIgG4 HC (SEQ ID NO: 577)
1D5-hKappa LC (SEQ ID NO: 527)


2A3.H7-hIgG4
2H7-hIgG4 HC (SEQ ID NO: 424)
2A3-hKappa LC (SEQ ID NO: 523)


H7-02-hIgG1-LAGA-df-hIL-2
H7-02-hIgG1-LAGA-df-hIL-2
H7-02-hKappa LC (SEQ ID NO: 583)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) HC (SEQ ID




NO: 582)



KLH-C3-hIgG4
KLH-C3-hIgG4 HC (SEQ ID NO: 585)
KLH-C3-hKappa LC (SEQ ID NO: 586)


1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(E15A)
(E15A) HC (SEQ ID NO: 587)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(D20I)
(D201) HC (SEQ ID NO: 588)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(D20S)
(D20S) HC (SEQ ID NO: 589)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(D20H)
(D20H) HC (SEQ ID NO: 590)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(D20W)
(D20W) HC (SEQ ID NO: 591)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(D20Y)
(D20Y) HC (SEQ ID NO: 592)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(D20R)
(D20R) HC (SEQ ID NO: 593)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(D20F)
(D20F) HC (SEQ ID NO: 594)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(D84K)
(D84K) HC (SEQ ID NO: 595)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(S87A)
(S87A) HC (SEQ ID NO: 596)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(N88Y)
(N88Y) HC (SEQ ID NO: 597)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(N88D)
(N88D) HC (SEQ ID NO: 598)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(N88R)
(N88R) HC (SEQ ID NO: 599)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(N88E)
(N88E) HC (SEQ ID NO: 600)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(N88F)
(N88F) HC (SEQ ID NO: 601)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(N88I)
(N88I) HC (SEQ ID NO: 602)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(I92A)
(I92A) HC (SEQ ID NO: 603)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(E95A)
(E95A) HC (SEQ ID NO: 604)



1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hIgG1-L6-hCD25(1-164)-L20-hIL-2
1H3-hkappa LC (SEQ ID NO: 374)


(E95K)
(E95K) HC (SEQ ID NO: 605)



H7-02-hIgG4
H7-02-hIgG4 HC (SEQ ID NO: 373)
H7-02 hKappa LC (SEQ ID NO: 607)


H7-632-hIgG1-LAGA-df-hIL-2
H7-632-hIgG1-LAGA-df-hIL-2
H7-632 LC (SEQ ID NO: 415)


(T3A/C125A)
(T3A/C125A) HC (SEQ ID NO: 431)



1H3-hIgG1-LAGA-L6-hIL-2
1H3-hIgG1-LAGA-L6-hIL-2
1H3-hKappa LC (SEQ ID NO: 374)


(T3A/D20A/R38E/C125A)
(T3A/D20A/R38E/C125A) (SEQ ID NO:




522)



1H3-hIgG1
1H3-hIgG1 HC (SEQ ID NO: 379)
1H3-hKappa LC (SEQ ID NO: 374)


H7-767
H7-767 HC (SEQ ID NO: 532)
H7-632 LC (SEQ ID NO: 415)


Anti-hPD-1 #1
Anti-hPD-1 #1 HC (SEQ ID NO: 559)
Anti-hPD-1#1-hKappa (SEQ ID NO:




452)


Anti-hPD-1 #2
Anti-hPD-1 #2 HC (SEQ ID NO: 578)
Anti-hPD-1 #2 LC (SEQ ID NO: 579)


2H7-hIgG4-LE-df-hIL-2
2H7-hIgG4-LE-df-hIL-2
2H7-hKappa LC (SEQ ID NO: 425)


(T3A/R38E/I92K/C125A)
(T3A/R38E/I92K/C125A) HC (SEQ ID




NO: 475)
















TABLE 29







Sequences









SEQ ID




NO:
Name
Sequence












1
hIL-2 F42K
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





2
hIL-2 V69A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEA




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





3
hIL-2 V69E
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEE




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





4
hIL-2 V69F
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEF




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





5
hIL-2 V69G
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEG




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





6
hIL-2 V69H
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEH




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





7
hIL-2 V69I
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEI




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





8
hIL-2 V69K
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEK




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





9
hIL-2 V69L
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEL




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





10
hIL-2 V69M
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEM




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





11
hIL-2 V69Q
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEQ




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





12
hIL-2 V69S
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEES




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





13
hIL-2 V69T
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEET




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





14
hIL-2 V69W
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEW




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





15
hIL-2 V69Y
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEY




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





16
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKKYMPKKATELKHLQCLEEELKPLEEV



F42K/F44K
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





17
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKKRMPKKATELKHLQCLEEELKPLEEV



F44K/Y45R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





18
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKFYMPKKATELKHLQCLEEELKPLEER



F42K/V69R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





19
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFRMPKKATELKHLQCLEEELKPLEER



Y45R/V69R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





20
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKKRMPKKATELKHLQCLEEELKPLEEV



F42K/F44K/Y45R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





21
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTAMLTKKERMPKKATELKHLQCLEEELKPLEEV



R38A/F42K/Y45R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





22
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTKKERMPKKATELKHLQCLEEELKPLEEV



R38E/F42K/Y45R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





23
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKEFRMPKKATELKHLQCLEEELKPLEEV



K43E/F42K/Y45R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





24
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKTERMPKKATELKHLQCLEEELKPLEEV



K43T/F42K/Y45R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





25
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKERMPKKATELKHLQCLEEALKPLEEV



F42K/Y45R/E62A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





26
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKERMPKKATELKHLQCLEEELKRLEEV



P65R/F42K/Y45R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





27
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKFRMPKKATELKHLQCLEEELKSLEEV



P65S/F42K/Y45R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





28
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKERMPKKATELKHLQCLEEELKPLEEA



V69A/F42K/Y45R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





29
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKERMPKKATELKHLQCLEEELKPLEED



V69D/F42K/Y45R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





30
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKERMPKKATELKHLQCLEEELKPLEER



V69R/F42K/Y45R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





31
hIL-2 D20A
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





32
hIL-2 D20N
APTSSSTKKTQLQLEHLLLNLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





33
hIL-2 D20K
APTSSSTKKTQLQLEHLLLKLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





34
hIL-2 N88A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISAINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





35
hIL-2 N88G
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISGINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





36
hIL-2 N88H
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISHINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





37
hIL-2 N88K
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISKINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





38
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/D84A
LNLAQSKNFHLRPRALISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





39
hIL-2
APTSSSTKKTQLQLAHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E15A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





40
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





41
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/N88A
LNLAQSKNFHLRPRDLISAINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





42
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/S87A
LNLAQSKNFHLRPRDLIANINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





43
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D84A/N88A
LNLAQSKNFHLRPRALISAINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





44
hIL-2
APTSSSTKKTQLQLAHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



E15A/N88A
LNLAQSKNFHLRPRDLISAINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





45
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



S87A/N88A
LNLAQSKNFHLRPRDLIAAINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





46
hIL-2 R38A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTAMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





47
hIL-2 R38D
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTDMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





48
hIL-2 R38E
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





49
hIL-2 R38Q
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTQMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





50
hIL-2 F42R
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTRKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





51
hIL-2 F42A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





52
hIL-2 F42D
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTDKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





53
hIL-2 F42H
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTHKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





54
hIL-2 K43A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFAFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





55
hIL-2 K43E
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFEFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





56
hIL-2 K43Q
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFQFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





57
hIL-2 Y45A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFAMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





58
hIL-2 Y45K
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFKMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





59
hIL-2 Y45S
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFSMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





60
hIL-2 Y45R
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFRMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





61
hIL-2 E61A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEAELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





62
hIL-2 E61R
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLERELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





63
hIL-2 E61K
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEKELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





64
hIL-2 E62A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEALKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





65
hIL-2 E62R
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEERLKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





66
hIL-2 E62K
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEKLKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





67
hIL-2 E62Y
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEYLKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





68
hIL-2 E68Y
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEYV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





69
hIL-2 E68A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEAV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





70
hIL-2 E68K
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEKV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





71
hIL-2 E68R
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLERV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





72
hIL-2 E68L
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLELV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





73
hIL-2 L72Y
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNYAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





74
hIL-2 L72R
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNRAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





75
hIL-2 L72A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNAAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





76
hIL-2 L72D
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNDAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





77
hIL-2 L72H
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNHAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





78
hIL-2 L72F
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNFAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





79
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTDMLTFKFYMPKKATELKHLQCLERELKPLEEV



R38D/E61R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





80
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTDMLTFEFYMPKKATELKHLQCLERELKPLEEV



R38D/E61R/K43E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





81
hIL-2
APASSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFAMPKKATELKHLQCLEEELKPLEEV



T3A/F42A/Y45A/
LNGAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFAQSIISTLT



L72G/C125A






82
hIL-2 E15A
APTSSSTKKTQLQLAHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





83
hIL-2 E15R
APTSSSTKKTQLQLRHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





84
hIL-2 E15K
APTSSSTKKTQLQLKHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





85
hIL-2 H16A
APTSSSTKKTQLQLEALLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





86
hIL-2 H16Y
APTSSSTKKTQLQLEYLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





87
hIL-2 H16E
APTSSSTKKTQLQLEELLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





88
hIL-2 L19A
APTSSSTKKTQLQLEHLLADLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





89
hIL-2 D20I
APTSSSTKKTQLQLEHLLLILQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





90
hIL-2 D20S
APTSSSTKKTQLQLEHLLLSLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





91
hIL-2 D20H
APTSSSTKKTQLQLEHLLLHLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





92
hIL-2 D20T
APTSSSTKKTQLQLEHLLLTLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





93
hIL-2 D20W
APTSSSTKKTQLQLEHLLLWLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





94
hIL-2 D20Y
APTSSSTKKTQLQLEHLLLYLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





95
hIL-2 D20R
APTSSSTKKTQLQLEHLLLRLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





96
hIL-2 D20F
APTSSSTKKTQLQLEHLLLFLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





97
hIL-2 R81A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLAPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





98
hIL-2 D84A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRALISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





99
hIL-2 D84R
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTEKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRRLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





100
hIL-2 D84K
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRKLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





101
hIL-2 S87A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLIANINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





102
hIL-2 N88Y
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISYINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





103
hIL-2 N88D
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISDINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





104
hIL-2 N88R
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISRINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





105
hIL-2 N88E
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISEINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





106
hIL-2 N88F
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISFINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





107
hIL-2 N88I
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISIINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





108
hIL-2 I92A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVAVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





109
hIL-2 I92Y
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVYVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





110
hIL-2 I92S
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVSVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





111
hIL-2 I92F
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVFVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





112
hIL-2 I92R
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVRVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





113
hIL-2 I92D
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





114
hIL-2 I92E
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVEVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





115
hIL-2 E95A
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





116
hIL-2 E95R
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLRLKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





117
hIL-2 E95K
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLKLKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





118
hIL-2
APTSSSTKKTQLQLEELLLYLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20Y/H16E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





119
hIL-2
APTSSSTKKTQLQLEALLLYLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20Y/H16A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





120
hIL-2
APTSSSTKKTQLQLEYLLLYLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20Y/H16Y
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





121
hIL-2
APTSSSTKKTQLQLEHLLLYLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20Y/I92A
LNLAQSKNFHLRPRDLISNINVAVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





122
hIL-2
APTSSSTKKTQLQLEHLLLYLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20Y/I92S
LNLAQSKNFHLRPRDLISNINVSVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





123
hIL-2
APTSSSTKKTQLQLEHLLLYLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20Y/I92R
LNLAQSKNFHLRPRDLISNINVRVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





124
hIL-2
APTSSSTKKTQLQLEHLLLYLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20Y/E95R
LNLAQSKNFHLRPRDLISNINVIVLRLKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





125
hIL-2
APTSSSTKKTQLQLEHLLLYLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20Y/E95A
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





126
hCD25 (1-164)
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGERRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNT




TKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRAL




HRGPAESVCKMTHGKTRWTQPQLICT





127
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTDKFYMPKKATELKHLQCLEEELKPLEEV



F42D/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





128
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTRKFYMPKKATELKHLQCLEEELKPLEEV



F42R/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





129
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTKKFYMPKKATELKHLQCLEEELKPLEEV



F42K/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





130
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTAKFYMPKKATELKHLQCLEEELKPLEEV



F42A/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





131
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTHKFYMPKKATELKHLQCLEEELKPLEEV



F42H/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





132
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFRMPKKATELKHLQCLEEELKPLEEV



Y45R/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





133
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFKMPKKATELKHLQCLEEELKPLEEV



Y45K/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





134
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTNMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38N/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





135
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTGMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38G/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





136
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTHMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38H/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





137
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTIMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38I/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





138
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTLMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38L/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





139
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTMMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38M/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





140
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTFMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38F/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





141
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTPMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38P/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





142
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTSMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38S/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





143
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTTMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38T/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





144
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTWMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38W/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





145
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTYMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38Y/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





146
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTVMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38V/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





147
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTAMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38A/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





148
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTQMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38Q/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





149
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





150
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTDMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38D/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





151
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFEFYMPKKATELKHLQCLEEELKPLEEV



K43E/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





152
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEAELKPLEEV



E61A/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





153
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEALKPLEEV



E62A/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





154
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEYLKPLEEV



E62Y/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





155
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



L72D/D20A
LNDAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





156
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



L72H/D20A
LNHAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





157
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



L72R/D20A
LNRAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





158
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTDKFYMPKKATELKHLQCLEEELKPLEEV



F42D/192D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





159
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTRKFYMPKKATELKHLQCLEEELKPLEEV



F42R/I92D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





160
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTHKFYMPKKATELKHLQCLEEELKPLEEV



F42H/I92D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





161
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFYMPKKATELKHLQCLEEELKPLEEV



F42A/I92D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





162
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFEFYMPKKATELKHLQCLEEELKPLEEV



K43E/I92D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





163
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFRMPKKATELKHLQCLEEELKPLEEV



Y45R/I92D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





164
hIL-2 Y45K/I92
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFKMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





165
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEALKPLEEV



E62A/I92D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





166
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEYLKPLEEV



E62Y/I92D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





167
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



L72D/I92D
LNDAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





168
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



L72H/I92D
LNHAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





169
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



L72R/I92D
LNRAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





170
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTDMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38D/I92D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





171
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/I92D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





172
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTQMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38Q/I92D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





173
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTAMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38A/I92D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





174
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/N88R
LNLAQSKNFHLRPRDLISRINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





175
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84R
LNLAQSKNFHLRPRRLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





176
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84K
LNLAQSKNFHLRPRKLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





177
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTAKFRMPKKATELKHLQCLEEELKPLEEV



F42A/Y45R/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





178
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTHKFRMPKKATELKHLQCLEEELKPLEEV



F42H/Y45R/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





179
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTDMLTFKFYMPKKATELKHLQCLERELKPLEEV



R38D/E61R/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





180
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLERELKPLEEV



R38E/E61R/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





181
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTQMLTFKFYMPKKATELKHLQCLERELKPLEEV



R38Q/E61R/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





182
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTAMLTFKFYMPKKATELKHLQCLERELKPLEEV



R38A/E61R/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





183
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTAMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38A/D20A/E95A
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





184
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTDMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/R38D
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





185
hIL-2 D20A/
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



E95A/R38E
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





186
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTQMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/R38Q
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





187
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTRKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/F42R
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





188
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTAKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/F42A
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





189
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTDKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT



F42D






190
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTHKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT



F42H






191
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTKKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/F42K
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





192
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFAFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT



K43A






193
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFEFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT



K43E






194
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFQFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT



K43Q






195
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFAMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT



Y45A






196
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFKMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT



Y45K






197
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKESMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT



45S






198
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFRMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT



Y45R






199
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEAELKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT



E61A






200
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEALKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT



E62A






201
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEERLKPLEEV



D20A/E95A/E62R
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





202
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEKLKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT



E62K






203
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEYLKPLEEV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT



E62Y






204
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEYV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT



E68Y






205
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEAV



D20A/E95A/E68A
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





206
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLELV



D20A/E95A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT



E68L






207
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNYAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT



L72Y






208
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNRAQSKNFHLRPRDLISNINVIVLALKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT



L72R






209
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNAAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT



L72A






210
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/L72D
LNDAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





211
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNHAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT



L72H






212
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/
LNFAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT



L72F






213
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTKKFRMPKKATELKHLQCLEEELKPLEEV



F42K/Y45R/D20A/
LNLAQSKNFHLRPRDLIANINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT



S87A






214
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTKKERMPKKATELKHLQCLEEELKPLEEV



F42K/Y45R/D20A/
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT



E95A






215
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/R38E/C125
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFAQSIISTLT



A






216
hIL-2
APASSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



T3A/D20A/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





217
hIL-2
APASSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



T3A/D20A/R38E/
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFAQSIISTLT



C125A




(IL-2-AAEA)






218
hIL-2 Δ1-
SSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNL



3APT/D20A/R38E
AQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





219
hIL-2 Δ1-
SSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNL



3APT/D20A/R38E/
AQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFAQSIISTLT



C125A






220
hIL-2
APTSSSTKKTQLQLEHLLLDLAMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/Q22A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





221
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/T123A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWIAFCQSIISTLT





222
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/I129A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIASTLT





223
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/S130A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIIATLT





224
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/Q126A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCASIISTLT





225
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/Q126D
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCDSIISTLT





226
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/Q126V
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCVSIISTLT





227
hIL-2
APTSSSTKKTQLQLEHLLLDLAMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/Q22A/S130
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIIATLT



A






228
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKFRMPKKATELKHLQCLEEELKPLEEV



F42K/Y45R/Q126
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCDSIISTLT



D






229
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20A/E95A/Q126
LNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWITFCDSIISTLT



D






230
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLERELKPLEEV



D20A/E61R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





231
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLENELKPLEEV



D20A/E61N
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





232
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEDELKPLEEV



D20A/E61D
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





233
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEQELKPLEEV



D20A/E61Q
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





234
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEGELKPLEEV



D20A/E61G
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





235
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEHELKPLEEV



D20A/E61H
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





236
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEIELKPLEEV



D20A/E61I
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





237
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLELELKPLEEV



D20A/E61L
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





238
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEKELKPLEEV



D20A/E61K
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





239
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEMELKPLEEV



D20A/E61M
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





240
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEFELKPLEEV



D20A/E61F
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





241
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEPELKPLEEV



D20A/E61P
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





242
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLESELKPLEEV



D20A/E61S
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





243
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLETELKPLEEV



D20A/E61T
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





244
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEWELKPLEEV



D20A/E61W
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





245
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEYELKPLEEV



D20A/E61Y
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





246
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEVELKPLEEV



D20A/E61V
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





247
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTNKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42N
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





248
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTQKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42Q
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





249
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTEKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





250
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTGKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42G
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





251
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTIKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42I
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





252
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTLKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42L
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





253
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTMKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42M
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





254
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTPKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42P
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





255
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTSKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42S
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





256
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTTKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42T
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





257
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTWKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42W
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





258
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTYKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42Y
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





259
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTVKFYMPKKATELKHLQCLEEELKPLEEV



D20A/F42V
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





260
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFAMPKKATELKHLQCLEEELKPLEEV



D20A/Y45A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





261
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFNMPKKATELKHLQCLEEELKPLEEV



D20A/Y45N
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





262
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFDMPKKATELKHLQCLEEELKPLEEV



D20A/Y45D
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





263
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFQMPKKATELKHLQCLEEELKPLEEV



D20A/Y45Q
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





264
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFEMPKKATELKHLQCLEEELKPLEEV



D20A/Y45E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





265
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFGMPKKATELKHLQCLEEELKPLEEV



D20A/Y45G
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





266
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFHMPKKATELKHLQCLEEELKPLEEV



D20A/Y45H
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





267
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFIMPKKATELKHLQCLEEELKPLEEV



D20A/Y45I
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





268
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFLMPKKATELKHLQCLEEELKPLEEV



D20A/Y45L
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





269
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFMMPKKATELKHLQCLEEELKPLEEV



D20A/Y45M
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





270
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFFMPKKATELKHLQCLEEELKPLEEV



D20A/Y45F
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





271
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFPMPKKATELKHLQCLEEELKPLEEV



D20A/Y45P
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





272
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFSMPKKATELKHLQCLEEELKPLEEV



D20A/Y45S
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





273
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFTMPKKATELKHLQCLEEELKPLEEV



D20A/Y45T
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





274
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFWMPKKATELKHLQCLEEELKPLEEV



D20A/Y45W
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





275
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLTFKFVMPKKATELKHLQCLEEELKPLEEV



D20A/Y45V
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





276
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTNKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42N
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





277
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTQKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42Q
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





278
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTEKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42E
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





279
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTGKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42G
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





280
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTIKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42I
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





281
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTLKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42L
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





282
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42K
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





283
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTMKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42M
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





284
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTPKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42P
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





285
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTSKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42S
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





286
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTTKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42T
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





287
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTWKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42W
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





288
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTYKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42Y
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





289
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTVKFYMPKKATELKHLQCLEEELKPLEEV



I92D/F42V
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





290
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFAMPKKATELKHLQCLEEELKPLEEV



I92D/Y45A
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





291
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKENMPKKATELKHLQCLEEELKPLEEV



I92D/Y45N
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





292
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKEDMPKKATELKHLQCLEEELKPLEEV



I92D/Y45D
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





293
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFQMPKKATELKHLQCLEEELKPLEEV



I92D/Y45Q
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





294
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFEMPKKATELKHLQCLEEELKPLEEV



I92D/Y45E
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





295
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFGMPKKATELKHLQCLEEELKPLEEV



I92D/Y45G
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





296
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFHMPKKATELKHLQCLEEELKPLEEV



I92D/Y45H
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





297
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFIMPKKATELKHLQCLEEELKPLEEV



I92D/Y45I
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





298
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTEKELMPKKATELKHLQCLEEELKPLEEV



I92D/Y45L
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





299
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKEMMPKKATELKHLQCLEEELKPLEEV



I92D/Y45M
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





300
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFFMPKKATELKHLQCLEEELKPLEEV



I92D/Y45F
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





301
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFPMPKKATELKHLQCLEEELKPLEEV



I92D/Y45P
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





302
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTEKFSMPKKATELKHLQCLEEELKPLEEV



I92D/Y45S
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





303
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFTMPKKATELKHLQCLEEELKPLEEV



I92D/Y45T
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





304
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFWMPKKATELKHLQCLEEELKPLEEV



I92D/Y45W
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





305
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFVMPKKATELKHLQCLEEELKPLEEV



I92D/Y45V
LNLAQSKNFHLRPRDLISNINVDVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





306
hIL-2
APTSSSTKKTQLQLEHLLLHLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D20H
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





307
hIL-2
APTSSSTKKTQLQLEHLLLSLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D20S
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





308
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFYMPKKATELKHLQCLEEELKPLEEV



F42A/N88R
LNLAQSKNFHLRPRDLISRINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





309
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFYMPKKATELKHLQCLEEELKPLEEV



F42A/N88D
LNLAQSKNFHLRPRDLISDINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





310
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84A
LNLAQSKNFHLRPRALISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





311
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84N
LNLAQSKNFHLRPRNLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





312
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84Q
LNLAQSKNFHLRPRQLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





313
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84E
LNLAQSKNFHLRPRELISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





314
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84G
LNLAQSKNFHLRPRGLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





315
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84H
LNLAQSKNFHLRPRHLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





316
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84I
LNLAQSKNFHLRPRILISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





317
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84L
LNLAQSKNFHLRPRLLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





318
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84M
LNLAQSKNFHLRPRMLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





319
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84F
LNLAQSKNFHLRPRFLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





320
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84P
LNLAQSKNFHLRPRPLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





321
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84S
LNLAQSKNFHLRPRSLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





322
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84T
LNLAQSKNFHLRPRTLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





323
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84W
LNLAQSKNFHLRPRWLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





324
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84Y
LNLAQSKNFHLRPRYLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





325
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/D84V
LNLAQSKNFHLRPRVLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





326
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/I92A
LNLAQSKNFHLRPRDLISNINVAVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





327
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/192R
LNLAQSKNFHLRPRDLISNINVRVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





328
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/192N
LNLAQSKNFHLRPRDLISNINVNVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





329
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/192Q
LNLAQSKNFHLRPRDLISNINVQVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





330
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/I92E
LNLAQSKNFHLRPRDLISNINVEVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





331
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/I92G
LNLAQSKNFHLRPRDLISNINVGVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





332
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/192H
LNLAQSKNFHLRPRDLISNINVHVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





333
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/I92L
LNLAQSKNFHLRPRDLISNINVLVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





334
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/I92K
LNLAQSKNFHLRPRDLISNINVKVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





335
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/I92M
LNLAQSKNFHLRPRDLISNINVMVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





336
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/I92F
LNLAQSKNFHLRPRDLISNINVFVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





337
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/192P
LNLAQSKNFHLRPRDLISNINVPVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





338
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/192S
LNLAQSKNFHLRPRDLISNINVSVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





339
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/I92T
LNLAQSKNFHLRPRDLISNINVTVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





340
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/192W
LNLAQSKNFHLRPRDLISNINVWVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





341
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/192Y
LNLAQSKNFHLRPRDLISNINVYVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





342
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/192V
LNLAQSKNFHLRPRDLISNINVVVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





343
hIL-2
APTSSSTKKTQLQLEELLLDLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38E/H16E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





344
hIL-2
APTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTKMLTFKFYMPKKATELKHLQCLEEELKPLEEV



R38K/D20A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





345
WT hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





346
Human PD-1
PGWFLDSPDRPWNPPTESPALLVVTEGDNATFTCSESNTSESFVLNWYRMSPSNQTDKLAAFPEDRSQP




GQDCRFRVTQLPNGRDFHMSVVRARRNDSGTYLCGAISLAPKAQIKESLRAELRVTERRAEVPTAHPSP




SPRPAGQFQTLVVGVVGGLLGSLVLLVWVLAVICSRAARGTIGARRTGQPLKEDPSAVPVESVDYGELD




FQWREKTPEPPVPCVPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





347
Human PD-1
CCAGGATGGTTCTTAGACTCCCCAGACAGGCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTG




GTGACCGAAGGGGACAACGCCACCTTCACCTGCAGCTTCTCCAACACATCGGAGAGCTTCGTGCTAAAC




TGGTACCGCATGAGCCCCAGCAACCAGACGGACAAGCTGGCCGCCTTCCCCGAGGACCGCAGCCAGCCC




GGCCAGGACTGCCGCTTCCGTGTCACACAACTGCCCAACGGGCGTGACTTCCACATGAGCGTGGTCAGG




GCCCGGCGCAATGACAGCGGCACCTACCTCTGTGGGGCCATCTCCCTGGCCCCCAAGGCGCAGATCAAA




GAGAGCCTGCGGGCAGAGCTCAGGGTGACAGAGAGAAGGGCAGAAGTGCCCACAGCCCACCCCAGCCCC




TCACCCAGGCCAGCCGGCCAGTTCCAAACCCTGGTGGTTGGTGTCGTGGGCGGCCTGCTGGGCAGCCTG




GTGCTGCTAGTCTGGGTCCTGGCCGTCATCTGCTCCCGGGCCGCACGAGGGACAATAGGAGCCAGGCGC




ACCGGCCAGCCCCTGAAGGAGGACCCCTCAGCCGTGCCTGTGTTCTCTGTGGACTATGGGGAGCTGGAT




TTCCAGTGGCGAGAGAAGACCCCGGAGCCCCCCGTGCCCTGTGTCCCTGAGCAGACGGAGTATGCCACC




ATTGTCTTTCCTAGCGGAATGGGCACCTCATCCCCCGCCCGCAGGGGCTCAGCTGACGGCCCTCGGAGT




GCCCAGCCACTGAGGCCTGAGGATGGACACTGCTCTTGGCCCCTC





348
Anti-hPD-1 #1-
QVQLVESGGGVVQPGRSLRLDCKASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRFT



mIgG2b-N297A
ISRDNSKNTLFLQMNSLRAEDTAVYYCATNDDYWGQGTLVTVSSAKTTPPSVYPLAPGCGDTTGSSVTL



HC
GCLVKGYFPESVTVTWNSGSLSSSVHTFPALLQSGLYTMSSSVTVPSSTWPSQTVTCSVAHPASSTTVD




KKLEPSGPISTINPCPPCKECHKCPAPNLEGGPSVFIFPPNIKDVLMISLTPKVTCVVVDVSEDDPDVQ




ISWFVNNVEVHTAQTQTHREDYASTIRVVSTLPIQHQDWMSGKEFKCKVNNKDLPSPIERTISKIKGLV




RAPQVYILPPPAEQLSRKDVSLTCLVVGENPGDISVEWTSNGHTEENYKDTAPVLDSDGSYFIYSKLNM




KTSKWEKTDSFSCNVRHEGLKNYYLKKTISRSPGK





349
Anti-hPD-1 #1-
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGT



mKappa LC
DFTLTISSLEPEDFAVYYCQQSSNWPRTFGQGTKVEIKRADAAPTVSIFPPSSEQLTSGGASVVCELNN




FYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVK




SENRNEC





350
Anti-hPD-1 #2-
QVQLVQSGVEVKKPGASVKVSCKASGYTFTNYYMYWVRQAPGQGLEWMGGINPSNGGTNENEKEKNRVT



mIgG2b-N297A
LTTDSSTTTAYMELKSLQFDDTAVYYCARRDYRFDMGFDYWGQGTTVTVSSAKTTPPSVYPLAPGCGDT



HC
TGSSVTLGCLVKGYFPESVTVTWNSGSLSSSVHTFPALLQSGLYTMSSSVTVPSSTWPSQTVTCSVAHP




ASSTTVDKKLEPSGPISTINPCPPCKECHKCPAPNLEGGPSVFIFPPNIKDVLMISLTPKVTCVVVDVS




EDDPDVQISWFVNNVEVHTAQTQTHREDYASTIRVVSTLPIQHQDWMSGKEFKCKVNNKDLPSPIERTI




SKIKGLVRAPQVYILPPPAEQLSRKDVSLTCLVVGENPGDISVEWTSNGHTEENYKDTAPVLDSDGSYF




IYSKLNMKTSKWEKTDSFSCNVRHEGLKNYYLKKTISRSPGK





351
Anti-hPD-1 #2-
EIVLTQSPATLSLSPGERATLSCRASKGVSTSGYSYLHWYQQKPGQAPRLLIYLASYLESGVPARESGS



mKappa LC
GSGTDFTLTISSLEPEDFAVYYCQHSRDLPLTFGGGTKVEIKRADAAPTVSIFPPSSEQLTSGGASVVC




FLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTS




PIVKSENRNEC





352
IL-2RY
LNTTILTPNGNEDTTADFFLTTMPTDSLSVSTLPLPEVQCFVENVEYMNCTWNSSSEPQPTNLTLHYWY




KNSDNDKVQKCSHYLFSEEITSGCQLQKKEIHLYQTFVVQLQDPREPRRQATQMLKLQNLVIPWAPENL




TLHKLSESQLELNWNNRFLNHCLEHLVQYRTDWDHSWTEQSVDYRHKESLPSVDGQKRYTERVRSRENP




LCGSAQHWSEWSHPIHWGSNTSKENPFLFALEAVVISVGSMGLIISLLCVYFWLERTMPRIPTLKNLED




LVTEYHGNESAWSGVSKGLAESLQPDYSERLCLVSEIPPKGGALGEGPGASPCNQHSPYWAPPCYTLKP




ET





353
human CD122
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGAPDS



(IL-2Rβ)
QKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVETHRCNISWEISQASHYFERH




LEFEARTLSPGHTWEEAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKP




AALGKDTIPWLGHLLVGLSGAFGFIILVYLLINCRNTGPWLKKVLKCNTPDPSKFFSQLSSEHGGDVQK




WLSSPFPSSSESPGGLAPEISPLEVLERDKVTQLLLQQDKVPEPASLSSNHSLTSCFTNQGYFFFHLPD




ALEIEACQVYFTYDPYSEEDPDEGVAGAPTGSSPQPLQPLSGEDDAYCTFPSRDDLLLESPSLLGGPSP




PSTAPGGSGAGEERMPPSLQERVPRDWDPQPLGPPTPGVPDLVDFQPPPELVLREAGEEVPDAGPREGV




SFPWSRPPGQGEFRALNARLPLNTDAYLSLQELQGQDPTHLV





354
IL-2Rα
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNT




TKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRAL




HRGPAESVCKMTHGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAA




TMETSIFTTEYQVAVAGCVELLISVLLLSGLTWQRRQRKSRRTI





355
L6 linker
SGGGGS



amino acid






356
hIL-2-df-1H3-

APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




hkappa LC

LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLTDTVLT




hIL-2 in
QSPALAVSPGERVTISCRASESVRTGVHWYQQKPGQQPKLLIYGASNLESGVPARFSGSGSGTDFTLTI



italics
DPVEADDTATYFCQQSWNDPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA




KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSENRGE




C





357
hIL-2-L6-1H3-

APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




hKappa LC


embedded image





Linker in


embedded image





dashed
DFTLTIDPVEADDTATYFCQQSWNDPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNN



underline
FYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK



hIL-2 in
SENRGEC



italics






358
hIL-2-df-1H3-

APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTEKFYMPKKATELKHLQCLEEELKPLEEV




hIgG1 HC

LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLTEVQLV




hIL-2 in
ESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFTISRDN



italics
AKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGGTAALG




CLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD




KKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKENWYVDG




VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT




LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ




GNVFSCSVMHEALHNHYTQKSLSLSPGK





359
hIL-2-L6-1H3-

APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTEKFYMPKKATELKHLQCLEEELKPLEEV




hIgG1 HC


embedded image





Linker in


embedded image





dashed
TISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSG



underline
GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP



hIL-2 in
SNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKE



italics
NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR




EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD




KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





360
1H3-hIgG1-df-
EVQLVESGGGLVQPGRSLKLSCAVSGFTESDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2 HC
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



hIL-2 in
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



italics
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKL





TRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMC






EYADETATIVEFLNRWITFCQSIISTLT






361
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hIL-2 HC
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



Linker in
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



dashed
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN



underline
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE



hIL-2 in
PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK



italics


embedded image







YKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGS






ETTEMCEYADETATIVEFLNRWITFCQSIISTLT






362
1H3-hKappa-df-
DTVLTQSPALAVSPGERVTISCRASESVRTGVHWYQQKPGQQPKLLIYGASNLESGVPARFSGSGSGTD



hIL-2 (WT) LC
FTLTIDPVEADDTATYFCQQSWNDPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNE



hIL-2 in
YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS



italics
FNRGECAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTEKFYMPKKATELKHLQCLEEEL





KPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTL






T






363
1H3-hKappa-L6-
DTVLTQSPALAVSPGERVTISCRASESVRTGVHWYQQKPGQQPKLLIYGASNLESGVPARFSGSGSGTD



hIL-2 (WT) LC
FTLTIDPVEADDTATYFCQQSWNDPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNE



Linker in
YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS



dashed


embedded image





underline

CLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITECQ




hIL-2 in

SIISTLT




italics






364
L20 linker
SGGGGSGGGGSGGGGSGGGS





365
hCD25-L20-hIL-
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNT



2-df-1H3-hIgG1
TKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRAL



HC


embedded image





Linker in

ILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVI




dashed

VLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLTEVQLVESGGGLVQPGRSLKLSCAVSGFT




underline
FSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFTISRDNAKITLYLQMDSLRSEDTATYYCA



hIL-2 in
RHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG



italics
VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKENWYVDGVEVHNAKTKPREEQYNSTYRVVS




VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS




LSPGK





366
hCD25-L20-hIL-
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNT



2-L6-1H3-hIgG1
TKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRAL



HC


embedded image





Linkers in

ILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVI




dashed


embedded image





underline
AVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFTISRDNAKITLYLQMDSLRSEDT



hIL-2 in
ATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS



italics
GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPC




PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKENWYVDGVEVHNAKTKPREEQYNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTC




LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY




TQKSLSLSPGK





367
hCD25-L20-hIL-
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGERRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNT



2-df-1H3-
TKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRAL



hKappa LC


embedded image





Linker in

ILNGINNYKNPKLTRMLTEKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVI




dashed

VLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLTDTVLTQSPALAVSPGERVTISCRASESV




underline
RTGVHWYQQKPGQQPKLLIYGASNLESGVPARESGSGSGTDFTLTIDPVEADDTATYFCQQSWNDPFTE



hIL-2 in
GSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQD



italics
SKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSENRGEC





368
hCD25-L20-hIL-
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNT



2-L6-1H3-
TKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRAL



hKappa LC


embedded image





Linkers in

ILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVI




dashed


embedded image





underline
RASESVRTGVHWYQQKPGQQPKLLIYGASNLESGVPARFSGSGSGTDFTLTIDPVEADDTATYFCQQSW



hIL-2 in
NDPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE



italics
SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSENRGEC





369
1H3-hIgG1-df -
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hCD25-L20-hIL-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



2 HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



Linker in
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN



dashed
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE



underline
PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK



hIL-2 in
SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGERR



italics
IKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCR






embedded image








embedded image







EEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSI






ISTLT






370
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hCD25-L20-hIL-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



2 HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



Linkers in
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN



dashed
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE



underline
PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK



hIL-2 in


embedded image





italics
KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS






embedded image








embedded image







KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWI






TFCQSIISTLT






371
1H3-hKappa-df-
DTVLTQSPALAVSPGERVTISCRASESVRTGVHWYQQKPGQQPKLLIYGASNLESGVPARFSGSGSGTD



hCD25-L20-hIL-
FTLTIDPVEADDTATYFCQQSWNDPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNE



2 LC
YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS



Linker in
FNRGECELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGERRIKSGSLYMLCTGNSSHSSWDNQCQCTS



dashed
SATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEATERIYHFVVGQMVYYQCV



underline


embedded image





hIL-2 in

LLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLI




italics

SNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT






372
1H3-hKappa-L6-
DTVLTQSPALAVSPGERVTISCRASESVRTGVHWYQQKPGQQPKLLIYGASNLESGVPARFSGSGSGTD



hCD25-L20-hIL-
FTLTIDPVEADDTATYFCQQSWNDPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNE



2 LC
YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS



Linkers in


embedded image





dashed
QCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEATERIYHFVVGQM



underline


embedded image





hIL-2 in

LQLEHLLLDLQMILNGINNYKNPKLTRMLTEKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNEHL




italics

RPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT






373
H7-02-hIgG4 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFKSYAMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET




ISRDNSKNTLYLQMNSLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR




STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV




DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ




FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWINGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





374
1H3-hkappa LC
DTVLTQSPALAVSPGERVTISCRASESVRTGVHWYQQKPGQQPKLLIYGASNLESGVPARFSGSGSGTD




FTLTIDPVEADDTATYFCQQSWNDPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNE




YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS




FNRGEC





375
2D12-mIgG1-
EVQLQQSGPELVKPGASVKISCKTSGYTFTEYTMHWVKQSHGKSLEWIGGINPNNGGTTYNQKFKGKAT



D265A-L6-hIL-2
LTVDKSSSTAYMELRSLTSQDSAVYYCARDYYRYGHYYAMDYWGQGTSVTVSSAKTTPPSVYPLAPGSA



HC
AQTNSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETVTCNVA




HPASSTKVDKKIVPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVAISKDDPEVQESW




FVDDVEVHTAQTQPREEQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAP




QVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFVYSKLNVQKS




NWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGKSGGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNY





KNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSE






TTFMCEYADETATIVEFLNRWITFCQSIISTLT






376
2D12-mkappa LC
QIVLTQSPAIMSASPGEKVTMTCSVSSSVREMHWYQQKSGTSPKRWIYDTSKLASGVPARFSGSGSGTS




YSLTISSMEAEDAATYYCQQWSSNPPTFGGGTKLKIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNF




YPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKS




FNRNEC





377
hIL-2 Q126L
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCLSIISTLT





378
hIL-2 Q126E
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEV




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCESIISTLT





379
1H3-hIgG1 HC
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT




ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG




TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS




NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





380
huPD-1-Fc
MQIPQAPWPVVWAVLQLGWRPGWELDSPDRPWNPPTESPALLVVTEGDNATFTCSESNTSESFVLNWYR




MSPSNQTDKLAAFPEDRSQPGQDCRFRVTQLPNGRDFHMSVVRARRNDSGTYLCGAISLAPKAQIKESL




RAELRVTERRAEVPTAHPSPSPRPAGQFQIEGRMDPKSCDKTHTCPPCPAPELLGGPSVELFPPKPKDT




LMISRTPEVTCVVVDVSHEDPEVKENWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





381
cynomolgous-
MQIPQAPWPVVWAVLQLGWRPGWFLESPDRPWNAPTFSPALLLVTEGDNATFTCSFSNASESFVLNWYR



PD-1-Fc
MSPSNQTDKLAAFPEDRSQPGQDCRERVTRLPNGRDFHMSVVRARRNDSGTYLCGAISLAPKAQIKESL




RAELRVTERRAEVPTAHPSPSPRPAGQFQIEGRMDPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDT




LMISRTPEVTCVVVDVSHEDPEVKENWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





382
2H7 VH
GAGGTGCAGCTGCTGGAAAGCGGCGGCGGACTGGTGCAGCCTGGAGGCAGCCTGCGGCTGTCTTGTGCC




GCTTCTGGCTTCACCTTCAAGGACTACTGCATGACCTGGGTCAGACAGGCCCCTGGCAAGGGCCTCGAG




TGGGTGTCCGCCATCGTGTACAGCGGCGGGTCAACATACTACGCCGACAGCGTGAAGGGCAGATTCACA




ATCAGCAGAGATAACAGCAAGAACACCCTGTACCTGCAGATGAACAACCTGAGAGCTGAAGATACCGCC




GTGTACTACTGCGCCAAGTACACCAGAGCCAGCTACTTCTACGACGCCATGGACGTGTGGGGCCAGGGC




ACCACCGTGACAGTGTCCTCAT





383
2H7 VL
GAGATCGTGCTGACCCAGTCTCCTGGCACCCTGAGCCTGAGCCCTGGCGAGAGAGCTACACTGTCATGC




AGAGCCTCTCAGAGCATCGGCAAGAGCTTCCTGGCCTGGTACCAGCAAAAGCCTGGACAGGCCCCTAGA




CTGCTGATCTACGACGCCAGCACCAGAGCCGCTGATATCCCCGCCAGATTCAGCGGATCTGGCAGCGGC




ACTGATTTCACCCTCACCATCAGCAGCCTGGAACCCGAGGACTTCGCCGTGTACTACTGCCAGCAGTAC




TACGACTGGCCCCCCCTGTCTTTTGGCGGAGGCACAAAGGTGGAAATCAAG





384
2H7 VH
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT




ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSS





385
2H7 VL
EIVLTQSPGTLSLSPGERATLSCRASQSIGKSFLAWYQQKPGQAPRLLIYDASTRAADIPARFSGSGSG




TDFTLTISSLEPEDFAVYYCQQYYDWPPLSFGGGTKVEIK





386
2H7 HCDR1
GFTFKDYCMT





387
2H7 HCDR2
AIVYSGGSTYYADSVKG





388
2H7 HCDR3
YTRASYFYDAMDV





389
2H7 LCDR1
RASQSIGKSFLA





390
2H7 LCDR2
DASTRAA





391
2H7 LCDR3
QQYYDWPPLS





392
C51E6-5 VH
CAGGTTCAGCTGGTTCAGTCTGGCAGCGAGCTGAAGAAACCTGGCGCCTCTGTGAAGGTGTCCTGCAAG




GCCTCTGGCTACAGCCTGTACGGCACCTCTATGCACTGGGTCCGACAGGCTCCAGGACAGGGACTTGAG




TGGATGGGCTACATCAGCCCCTTTACCGGCAGAGCCACATACGCCCAGGGCTTCACAGGCAGATTCGTG




TTCAGCCTGGACACCAGCGTGTCCACAGCCTACCTGCAGATCAGCTCTCTGAAGGCCGAGGACACCGCC




GTGTACTACTGCGCCAGAGACTACGACTACCGGTACTACTATGCCATGGACTACTGGGGCCAGGGCACC




ACAGTTACAGTGTCCTCA





393
C51E6-5 VL
GAAATTGTGCTGACACAGAGCCCCGACTTCCAGAGCGTGACCCCTAAAGAAAAAGTGACCATCACCTGT




ACCGCCAGCGAGTCCGTGCCTCCTCAGTTCCTGCATTGGTATCAGCAGAAGCCCGATCAGAGCCCCAAG




CTGCTGATCTACGCCAGCAGAGAAAGAGCCAGCGGCGTCCCAAGCAGATTTTCTGGCTCTGGCAGCGGC




ACCGACTTCACCCTGACAATCAATAGCCTGGAAGCCGAGGACGCCGCCACCTACTACTGCCACCAGTTT




CACAGAAGCCCTCTGACCTTTGGCGGAGGCACCAAGCTGGAAATCAAG





394
C51E6-5 VH
QVQLVQSGSELKKPGASVKVSCKASGYSLYGTSMHWVRQAPGQGLEWMGYISPFTGRATYAQGFTGRFV




FSLDTSVSTAYLQISSLKAEDTAVYYCARDYDYRYYYAMDYWGQGTTVTVSS





395
C51E6-5 VL
EIVLTQSPDFQSVTPKEKVTITCTASESVPPQFLHWYQQKPDQSPKLLIYASRERASGVPSRESGSGSG




TDFTLTINSLEAEDAATYYCHQFHRSPLTFGGGTKLEIK





396
C51E6-5 HCDR1
GYSLYGTSMH





397
C51E6-5 HCDR2
YISPFTGRATYAQGFTG





398
C51E6-5 HCDR3
DYDYRYYYAMDY





399
C51E6-5 LCDR1
TASESVPPQFLH





400
C51E6-5 LCDR2
ASRERAS





401
C51E6-5 LCDR3
HQFHRSPLT





402
A2 VH
GACGTGCAGCTGGTGGAAAGCGGCGGAGGCCTGGTCCAGCCCGGCGGCTCTCTGAGACTGAGCTGCGCC




GCCAGCGGCTTCACCTTCGACATCAGCGCCATGAGCTGGGTGCGGCAGGCCCCTGGCAAGGGCCTGGAA




TGGGTCAGCACAATCAGCGGATCTGCCTACAGCACCTACTACGCCGACAGCGTGAAGGGCAGATTCACC




ATCTCAAGAGATAACAGCAAGAGCACCCTGTACCTGCAGATGAACAGCCTGCGGGCCGAGGACACCGCC




GTGTACTACTGCGCCAGAGAGATCTTCAGCGACTACTGGGGCTTGGGCACCCTGGTGACAGTGTCCTCA





403
A2 VL
CAAAGCGTGCTGACACAGCCCCCCAGCGCTTCTGGCACCCCTGGCCAGAGAGTGACCATCTCATGCAGC




GGGTCAACAAGCAACATCGGCAGAGAGAGCGTGTACTGGTACCAGCAGCTGCCTGGAACCGCCCCTAAG




CTGCTGATCTACAGCAACGTGCAGCGGCCTAGCGGCGCCCCTAACAGATTCAGCGGCAGCAAGAGCGGC




ACCAGCGCCAGCCTGGCCATCAGCGGCCTGCAGAGCGAGGACGAGGCCGACTACTACTGCGGCACATGG




GACGACAGCCTGAACGGCTGGGTGTTCGGCGGCGGAACTAAGCTGACCGTCCTA





404
A2 VH
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFT




ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSS





405
A2 VL
QSVLTQPPSASGTPGQRVTISCSGSTSNIGRESVYWYQQLPGTAPKLLIYSNVQRPSGAPNRESGSKSG



(OMC479p1.A2VL)
TSASLAISGLQSEDEADYYCGTWDDSLNGWVFGGGTKLTVL





406
A2 HCDR1
GFTFDISAMS





407
A2 HCDR2
TISGSAYSTYYADSVKG





408
A2 HCDR3
EIFSDY





409
A2 LCDR1
SGSTSNIGRESVY





410
A2 LCDR2
SNVQRPS





411
A2 LCDR3
GTWDDSLNGWV





412
H7-767 HC
GAGGTGCAGCTGCTGGAAAGCGGCGGCGGCCTCGTGCAGCCTGGCGGATCTCTGCGGCTGAGCTGTGCT




GCCAGCGGCTTCACATTTAAATCCTACGCCATGCACTGGGTTAGACAAGCCCCCGGAAAGGGCCTGGAA




TGGGTGTCCGCCATCGTCTACAGCGGCGGATCTACATACTACGCCGACAGCGTGAAGGGCCGGTTCACC




ATCAGCAGAGATAATAGCAAGAACACCCTGTACCTGCAGATGAACAGCCTGAGAGCCGAGGACACCGCC




GTGTACTACTGCGCCAAGTACGACAGAGCTTCTTATTTCTACGATGCCATGGACGTGTGGGGCCAGGGC




ACCACCGTGACAGTGTCCTCAGCTAGCACCAAGGGCCCTAGCGTGTTTCCACTGGCCCCTAGCTCTAAA




AGCACAAGCGGCGGAACCGCCGCTCTGGGTTGTCTGGTGAAGGACTACTTCCCTGAGCCTGTGACCGTC




AGCTGGAACAGCGGCGCCCTGACCAGCGGCGTTCACACATTCCCCGCTGTGCTGCAGAGCTCTGGGCTG




TACAGCCTGAGCAGCGTGGTGACCGTGCCTTCTTCTTCTCTGGGCACACAAACATACATCTGCAACGTG




AACCACAAGCCCAGTAATACCAAAGTGGATAAGAAGGTGGAACCTAAGTCTTGCGACAAGACCCACACC




TGTCCTCCGTGCCCTGCTCCTGAACTGgctGGAgctCCCAGCGTGTTCCTGTTCCCCCCCAAACCTAAA




GACACCCTGATGATCAGCCGGACCCCTGAGGTGACCTGCGTGGTCGTCGACGTGTCCCACGAAGATCCT




GAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAAGTGCATAATGCCAAGACAAAGCCTAGAGAGGAA




CAGTACAACAGCACCTATAGAGTGGTGTCCGTGCTGACAGTGCTGCACCAGGACTGGCTGAACGGCAAG




GAATACAAGTGCAAGGTGTCCAACAAGGCCCTCCCCGCCCCTATCGAGAAGACCATCAGCAAGGCAAAG




GGCCAACCTAGAGAGCCCCAGGTGTACACCCTGCCTCCAAGCAGAGATGAGCTGACCAAGAACCAGGTT




AGCCTGACTTGTCTGGTGAAAGGCTTCTACCCCTCCGATATCGCCGTGGAATGGGAGAGCAACGGCCAG




CCTGAGAACAACTACAAGACCACACCTCCAGTGCTGGACAGCGACGGCAGCTTCTTCCTGTATAGCAAG




CTGACAGTGGACAAGAGCAGATGGCAGCAGGGCAACGTGTTCAGCTGCAGCGTCATGCACGAGGCCCTG




CACAACCACTACACCCAGAAGTCTCTGAGCCTGAGCCCTGGAAAGGCCCCTGCTTCTAGCAGCACCAAG




AAGACCCAGCTGCAGCTGGAACACCTGCTGCTGGCCCTGCAGATGATCCTGAACGGCATCAACAACTAC




AAGAACCCCAAGCTGACCGAGATGCTGACATTTAAGTTCTACATGCCTAAGAAAGCCACCGAGCTGAAG




CACCTGCAATGTCTGGAAGAAGAGCTGAAACCTCTGGAAGAGGTGCTGAATCTGGCTCAGTCAAAGAAC




TTCCACCTTAGACCTAGAGATCTGATCAGCAACATCAACGTGATCGTGCTGGAACTGAAGGGCAGCGAG




ACGACCTTCATGTGCGAGTACGCCGACGAGACAGCCACAATCGTGGAGTTCCTGAACAGATGGATCACC




TTCGCCCAGAGCATCATCTCCACCCTGACC





413
H7-767 LC
GAGATCGTGCTGACCCAGTCCCCAGGCACACTGAGCCTGAGCCCCGGCGAGCGGGCCACCCTGAGCTGT




AGAGCTAGCCAGAGCATCTCCAGCAGCTTCCTGGCCTGGTACCAGCAGAAACCTGGCCAGGCCCCTAGA




CTGCTGATCTACGACGCCTCTGATAGAGCTACAGGCATCCCCGACCGGTTCAGCGGCAGCGGATCTGGC




ACCGACTTCACCCTGACCATCAGCAGACTCGAGCCTGAAGATTTCGCCGTGTACTACTGCCAGCAATAC




TATGACTGGCCTCCTCTGTCTTTTGGCGGCGGAACAAAGGTGGAAATTAAGCGTACGGTGGCGGCGCCC




AGCGTGTTCATCTTCCCACCCAGCGACGAGCAGCTGAAGTCCGGCACAGCCAGCGTGGTGTGCCTGCTG




AACAACTTCTACCCCCGCGAGGCCAAGGTGCAGTGGAAGGTGGACAACGCCCTGCAGAGCGGCAACAGC




CAGGAAAGCGTGACCGAGCAGGACAGCAAGGACTCCACCTACAGCCTGAGCAGCACCCTGACCCTGAGC




AAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGAAGTGACCCACCAGGGCCTGTCCAGCCCCGTG




ACCAAGAGCTTCAACCGGGGCGAGTGC





414
H7-632 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFKSYAMHWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



CDRs solid


embedded image





underlined


embedded image





Constant


embedded image





region dashed


embedded image





underlined


embedded image








embedded image







415
H7-632 LC
EIVLTQSPGTLSLSPGERATLSCRASQSISSSFLAWYQQKPGQAPRLLIYDASDRATGIPDRESGSGSG



CDRs solid


embedded image





underlined


embedded image





Constant


embedded image





region dashed




underlined






416
H7-632 VH
EVQLLESGGGLVQPGGSLRLSCAASGFTFKSYAMHWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET




ISRDNSKNTLYLQMNSLRAEDTAVYYCAKYDRASYFYDAMDVWGQGTTVTVSS





417
H7-632 VL
EIVLTQSPGTLSLSPGERATLSCRASQSISSSFLAWYQQKPGQAPRLLIYDASDRATGIPDRESGSGSG




TDFTLTISRLEPEDFAVYYCQQYYDWPPLSFGGGTKVEIK





418
H7-632 HCDR1
GFTFKSYAMH





419
H7-632 HCDR2
AIVYSGGSTYYADSVKG





420
H7-632 HCDR3
YDRASYFYDAMDV





421
H7-632 LCDR1
RASQSISSSFLA





422
H7-632 LCDR2
DASDRAT





423
H7-632 LCDR3
QQYYDWPPLS





424
2H7-hIgG4 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT




ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVEPLAPCSR




STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV




DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ




FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





425
2H7-hkappa LC
EIVLTQSPGTLSLSPGERATLSCRASQSIGKSFLAWYQQKPGQAPRLLIYDASTRAADIPARESGSGSG




TDFTLTISSLEPEDFAVYYCQQYYDWPPLSFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLL




NNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV




TKSENRGEC





426
C51E6-5-hIgG4
QVQLVQSGSELKKPGASVKVSCKASGYSLYGTSMHWVRQAPGQGLEWMGYISPFTGRATYAQGFTGREV



HC
FSLDTSVSTAYLQISSLKAEDTAVYYCARDYDYRYYYAMDYWGQGTTVTVSSASTKGPSVEPLAPCSRS




TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVD




HKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF




NWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPR




EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD




KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





427
C51E6-5-hKappa
EIVLTQSPDFQSVTPKEKVTITCTASESVPPQFLHWYQQKPDQSPKLLIYASRERASGVPSRESGSGSG



LC
TDFTLTINSLEAEDAATYYCHQFHRSPLTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN




NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVT




KSENRGEC





428
A2-hIgG4 HC
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFT




ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT




KVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG




VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLG





429
A2-hLambda LC
QSVLTQPPSASGTPGQRVTISCSGSTSNIGRESVYWYQQLPGTAPKLLIYSNVQRPSGAPNRESGSKSG




TSASLAISGLQSEDEADYYCGTWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLEPPSSEELQANKATLVC




LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE




KTVAPTECS





430
2H7-hIgG4-df-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR



(D20A/R38E) HC
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



hIL-2 in
DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



italics
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTE






MCEYADETATIVEFLNRWITFCQSIISTLT






431
H7-632-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKSYAMHWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



LAGA-df-hIL-2
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKYDRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/C125A) HC
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV




NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVFLFPPKPKDTIMISRTPEVTCVVVDVSHEDP




EVKENWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWINGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLDLQMIINGINNY




KNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVINLAQSKNFHERPRDLISNINVIVLELKGSE




ITEMCEYADETATIVEFLNRWITFAQSIISTLT





432
C51E6-5-hIgG4-
QVQLVQSGSELKKPGASVKVSCKASGYSLYGTSMHWVRQAPGQGLEWMGYISPFTGRATYAQGFTGRFV



L6-hIL-2
FSLDTSVSTAYLQISSLKAEDTAVYYCARDYDYRYYYAMDYWGQGTTVTVSSASTKGPSVFPLAPCSRS



(D20A/R38E) HC
TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVD



Linker in
HKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF



dashed
NWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPR



underline
EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD



hIL-2 in


embedded image





italics

NYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKG






SETTEMCEYADETATIVEFLNRWITFCQSIISTLT






433
A2-hIgG4-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFT



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(D20A/R38E) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLT





FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






434
1H3-hIgG4-df-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPCSRSTSES



(D20A/R38E) HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



hIL-2 in
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYV



italics
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV




YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEM





LTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYA






DETATIVEFLNRWITFCQSIISTLT






435
2H7-hIgG4-df-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVEPLAPCSR



(T3A/D20A/R38E/
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



C125A) HC
DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



hIL-2 in
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



italics
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTE






MCEYADETATIVEFLNRWITFAQSIISTLT






436
hPD-1
CCAGGATGGTTCTTAGACTCCCCAGACAGGCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTG



extracellular
GTGACCGAAGGGGACAACGCCACCTTCACCTGCAGCTTCTCCAACACATCGGAGAGCTTCGTGCTAAAC



domain
TGGTACCGCATGAGCCCCAGCAACCAGACGGACAAGCTGGCCGCCTTCCCCGAGGACCGCAGCCAGCCC




GGCCAGGACTGCCGCTTCCGTGTCACACAACTGCCCAACGGGCGTGACTTCCACATGAGCGTGGTCAGG




GCCCGGCGCAATGACAGCGGCACCTACCTCTGTGGGGCCATCTCCCTGGCCCCCAAGGCGCAGATCAAA




GAGAGCCTGCGGGCAGAGCTCAGGGTGACAGAGAGAAGGGCAGAAGTGCCCACAGCCCACCCCAGCCCC




TCACCCAGGCCAGCCGGCCAGTTCCAA





437
hPD-1
PGWFLDSPDRPWNPPTFSPALLVVTEGDNATFTCSFSNTSESFVLNWYRMSPSNQTDKLAAFPEDRSQP



extracellular
GQDCRFRVTQLPNGRDFHMSVVRARRNDSGTYLCGAISLAPKAQIKESLRAELRVTERRAEVPTAHPSP



domain HC
SPRPAGQFQ





438
OMC. 1. B6-hIgG4
EVQLLESGGGLVQPGGSLRLSCAASGFTESSNYMSWVRQAPGKGLEWVSAISSSGGTIFYADSVKGRFT



HC
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKHKWNAVYYDGMDVWGQGTTVTVSSASTKGPSVFPLAPCSR




STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV




DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ




FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





439
OMC.1. B6-
QSVLTQPPSASGTPGQRVTISCSGSNSNIGRNLVNWYQQLPGTAPKLLIYTIDQRPSGVPDRESGSKSG



hLambda LC
TSASLVISGLQSEDEADYYCAAWDGSLNAWVFGGGTKLTVLGQPKAAPSVTLEPPSSEELQANKATLVC




LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE




KTVAPTECS





440
OMC.2. C6-hIgG4
EVQLLESGGGLVQPGGSLRLSCTASGFTESSYEMQWVRQAPGKGLEWVLGITSSSSHIFYADSVKGRET



HC
VSRDNSKNTLYLQMNSLRAEDTAVYYCTKDLNSYYGLDVWGQGTTVTVSSASTKGPSVFPLAPCSRSTS




ESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHK




PSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENW




YVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREP




QVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKS




RWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





441
OMC.2.C6-
QSVMTQPPSASGTPGQRVTISCSGSTSNLGNNYVSWYQHLPGTAPKLLIYGNDQRPSGVPDRESGSKSG



hLambda LC
TSASLAISGLQSDDEADYYCSSWDASLNVWVFGGGTKLTVLGQPKAAPSVTLEPPSSEELQANKATLVC




LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE




KTVAPTECS





442
OMC. 1. D6-hIgG4
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYYMSWVRQAPGKGLEWVSAISSSGGTIFYADSVKGRFI



HC
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKHKWNDVYYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR




STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV




DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ




FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





443
OMC.1.D6-
QSVLTQPPSASGTPGQRVTISCSGSNSNIGRNLVNWYQQLPGTAPKLLIYTVDQRPSGVPDRESGSKSG



hLambda LC
TSASLAISGLASEDEADYYCAAWDSSLNSWVFGGGTKLTVLGQPKAAPSVTLEPPSSEELQANKATLVC




LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE




KTVAPTECS





444
D12-hIgG4 HC
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRET




ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT




KVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG




VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLG





445
D12-hLambda LC
QSVLTQPPSASGTPGQRVTISCSGNTSNIGRESVYWYQQLPGTAPKLLIYSNVQRPSGVPDRESGSKSG




TSASLAISGLQSEDEADYYCGTWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLEPPSSEELQANKATLVC




LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE




KTVAPTECS





446
G12-hIgG4 HC
DSLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFTI




SRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTAA




LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTK




VDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGV




EVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTL




PPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEG




NVFSCSVMHEALHNHYTQKSLSLSLG





447
G12-hLambda LC
QSVLTQPPSASGTPGQRVTISCSGSTSNIGRESVYWYQQLPGTAPKLLIYLNSQRPSGVPDRESGSKSG




TSASLAISGLQSEDVADYYCGTWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLEPPSSEELQANKATLVC




LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE




KTVAPTECS





448
pCMV6-hygro-
aacaaaatattaacgcttacaatttccattcgccattcaggctgcgcaactgttgggaagggcgatcgg



HA-cyno-PD-1
tgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaa



(1-185)
cgccagggttttcccagtcacgacgttgtaaaacgacggccagtgccaagctgatctatacattgaatc




aatattggcaattagccatattagtcattggttatatagcataaatcaatattggctattggccattgc




atacgttgtatctatatcataatatgtacatttatattggctcatgtccaatatgaccgccatgttgac




attgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagt




tccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgt




caataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatt




tacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtccgccccctattgacgtca




atgacggtaaatggcccgcctggcattatgcccagtacatgaccttacgggactttcctacttggcagt




acatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacaccaatgggcgtggat




agcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcacc




aaaatcaacgggactttccaaaatgtcgtaataaccccgccccgttgacgcaaatgggcggtaggcgtg




tacggtgggaggtctatataagcagagctcgtttagtgaaccgtcagaattttgtaatacgactcacta




tagggcggccgggaattcgtcgactggatccggtaccgaggagatctgccgccgcgatcgccggcgcgc




cagatctcaagcttatggacatgcgggtgccagcacaacttctcggattactattgttatggctgcgag




gtgcgcgctgttatccttacgacgtgcctgactacgccccaggatggttcttagagtccccagacaggc




cctggaacgcccccaccttctccccagccctgctcctggtgaccgaaggggacaacgccaccttcacct




gcagcttctccaacgcatcggagagcttcgtgctaaactggtacaggatgagccccagcaaccagacgg




acaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacgcc




tgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctct




gtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag




agagaagggcagaagtgcccacagcccaccccagcccctcacccaggccagccggccagttccaagccc




tggtggttggtgtcgtgggcggcctgctgggcagcctggtgctgctagtctgggtcctggccgtcatct




gctcccgcgccgcacaagggacaatagaagccaggcgcacctgacgcgttaagcggccgcactcgaggt




ttaaacggccggccgcggtcatagctgtttcctgaacagatcccgggtggcatccctgtgacccctccc




cagtgcctctcctggccctggaagttgccactccagtgcccaccagccttgtcctaataaaattaagtt




gcatcattttgtctgactaggtgtccttctataatattatggggtggaggggggtggtatggagcaagg




ggcaagttgggaagacaacctgtagggcctgcggggtctattgggaaccaagctggagtgcagtggcac




aatcttggctcactgcaatctccgcctcctgggttcaagcgattctcctgcctcagcctcccgagttgt




tgggattccaggcatgcatgaccaggctcagctaatttttgtttttttggtagagacggggtttcacca




tattggccaggctggtctccaactcctaatctcaggtgatctacccaccttggcctcccaaattgctgg




gattacaggcgtgaaccactgctcccttccctgtccttctgattttaaaataactataccagcaggagg




acgtccagacacagcataggctacctggccatgcccaaccggtgggacatttgagttgcttgcttggca




ctgtcctctcatgcgttgggtccactcagtagatgcctgttgaattgggtacgcggccagcttggctgt




ggaatgtgtgtcagttagggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgc




atctcaattagtcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagca




tgcatctcaattagtcagcaaccatagtcccgcccctaactccgcccatcccgcccctaactccgccca




gttccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctcgg




cctctgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcaaaaagctcccgg




gagcttgtatatccattttcggatctgatcaagagacacgtacgaccatgaaaaagcctgaactcaccg




cgacgtctgttgagaagtttctgatcgaaaagttcgacagcgtctccgacctgatgcagctctcggagg




gcgaagaatctcgtgctttcagcttcgatgtaggagggcgtggatatgtcctgcgggtaaatagctgcg




ccgatggtttctacaaagatcgttatgtttatcggcactttgcatcggccgcgctcccgattccggaag




tgcttgacattggggaatttagcgagagcctgacctattgcatctcccgccgtgcacagggtgtcacgt




tgcaagacctgcctgaaaccgaactgcccgctgttctgcaaccggtcgcggaggccatggatgcaatcg




ctgcggccgatcttagccagacgagcgggttcggcccattcggaccgcaaggaatcggtcaatacacta




catggcgtgatttcatatgcgcgattgctgatccccatgtgtatcactggcaaactgtgatggacgaca




ccgtcagtgcgtccgtcgcgcaggctctcgatgagctgatgctttgggccgaggactgccccgaagtcc




ggcacctcgtgcacgcggatttcggctccaacaatgtcctgacggacaatggccgcataacagcggtca




ttgactggagcgaggcgatgttcggggattcccaatacgaggtcgccaacatcttcttctggaggccgt




ggttggcttgtatggagcagcagacgcgctacttcgagcggaggcatccggagcttgcaggatcgccgc




ggctccgggcgtatatgctccgcattggtcttgaccaactctatcagagcttggttgacggcaatttcg




atgatgcagcttgggcgcagggtcgatgcgacgcaatcgtccgatccggagccgggactgtcgggcgta




cacaaatcgcccgcagaagcgcggccgtctggaccgatggctgtgtagaagtactcgccgatagtggaa




accgacgccccagcactcgtccgagggcaaaggaatagctgcagcgggactctggggttcgaaatgacc




gaccaagcgacgcccaacctgccatcacgagatttcgattccaccgccgccttctatgaaaggttgggc




ttcggaatcgttttccgggacgccggctggatgatcctccagcgcggggatctcatgctggagttcttc




gcccaccccaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcaca




aataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtc




tgtataccgtcgacctctagctagagcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgt




tatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatga




gtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccag




ctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcg




ctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaata




cggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccagg




aaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaat




cgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagc




tccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcggga




agcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctg




ggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtcc




aacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtat




gtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggt




atctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaacc




accgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaa




gatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtc




atgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaa




agtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatc




tgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggctta




ccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaata




aaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctatt




aattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgct




acaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaagg




cgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcaga




agtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgcca




tccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcga




ccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctc




atcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatg




taacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaa




acaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttc




ctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatt




tagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgcgccctgtagc




ggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcg




cccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaat




cgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggt




gatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttc




tttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgattta




taagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaat




ttt





449
Abz1mod-hIgG4
QVQLVQSGSELKKPGASVKVSCKASGYTFTSYAMHWVRQAPGQGLEWMGYISPFTGRATYAQGFTGREV



HC
FSLDTSVSTAYLQISSLKAEDTAVYYCARDYDYRYYYAMDYWGQGTTVTVSSASTKGPSVFPLAPCSRS




TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVD




HKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF




NWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPR




EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD




KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





450
Abz1mod-hKappa
EIVLTQSPDFQSVTPKEKVTITCRASQSIPPQFLHWYQQKPDQSPKLLIKAASQRASGVPSRESGSGSG



LC
TDFTLTINSLEAEDAATYYCHQFHSSPLTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN




NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVT




KSENRGEC





451
Anti-hPD-1 #1-
QVQLVESGGGVVQPGRSLRLDCKASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRET



hIgG4-L6-hIL-2
ISRDNSKNTLFLQMNSLRAEDTAVYYCATNDDYWGQGTLVTVSSASTKGPSVEPLAPCSRSTSESTAAL



(D20A/R38E) HC
GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKV



Linker in
DKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVE



dashed
VHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLP



underline
PSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGN



hIL-2 in


embedded image





italics

EMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCE






YADETATIVEFLNRWITFCQSIISTLT






452
Anti-hPD-1 #1-
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARESGSGSGT



hKappa LC
DFTLTISSLEPEDFAVYYCQQSSNWPRTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNN




FYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK




SENRGEC





453
OMC.1.B6-
EVQLLESGGGLVQPGGSLRLSCAASGFTESSNYMSWVRQAPGKGLEWVSAISSSGGTIFYADSVKGRET



hIgG4-L6-hIL-2
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKHKWNAVYYDGMDVWGQGTTVTVSSASTKGPSVFPLAPCSR



(D20A/R38E) HC
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



Linker in
DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



dashed
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



underline
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV



hIL-2 in


embedded image





italics

NNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELK






GSETTEMCEYADETATIVEFLNRWITFCQSIISTLT






454
OMC.2.C6-
EVQLLESGGGLVQPGGSLRLSCTASGFTFSSYEMQWVRQAPGKGLEWVLGITSSSSHIFYADSVKGRET



hIgG4-L6-hIL-2
VSRDNSKNTLYLQMNSLRAEDTAVYYCTKDLNSYYGLDVWGQGTTVTVSSASTKGPSVEPLAPCSRSTS



(D20A/R38E) HC
ESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHK



Linker in
PSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENW



dashed
YVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREP



underline
QVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKS



hIL-2 in


embedded image





italics

KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSE






TTFMCEYADETATIVEFLNRWITFCQSIISTLT






455
OMC.1.D6-
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYYMSWVRQAPGKGLEWVSAISSSGGTIFYADSVKGRFI



hIgG4-L6-hIL-2
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKHKWNDVYYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR



(D20A/R38E) HC
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



Linker in
DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



dashed
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



underline
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV



hIL-2 in


embedded image





italics

NNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELK






GSETTEMCEYADETATIVEFLNRWITFCQSIISTLT






456
D12-hIgG4-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFT



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVEPLAPCSRSTSESTA



(D20A/R38E) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLT





FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






457
G12-hIgG4-df-
DSLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFTI



hIL-2
SRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTAA



(D20A/R38E) HC
LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTK



hIL-2 in
VDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGV



italics
EVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTL




PPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEG




NVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLTE





KFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADET






ATIVEFLNRWITFCQSIISTLT






458
2H7-hIgG4-LE
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



HC
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR




STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV




DHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ




FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





459
2H7-hIgG4-LAGA
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



HC
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR




STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV




DHKPSNTKVDKRVESKYGPPCPPCPAPEFAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ




FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





460
OMC.2-A3-
EVQLLESGGCLVQPGGSLRLSCAASGFTESDYYMSWVRQAPGKGLEWVSAISSSGGTIFYADSVKGRFI



hIgG4/A HC
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKHKWNDVYYDAMDVWGQGTTVTVSSASTKGPSVEPLAPCSR




STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV




DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ




FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





461
OMC476pH7-
DMQLVESGGGVVRPGESLRLSCTASGFTFSISAMSWVRQAPGKGLEWVSAISGTAYSTYYADSVRGRET



hIgG4 HC
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKDNFFDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT




KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG




VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLG





462
OMC476pB11.H7
QSVMTQPPSASGTPGQRVTISCSGVTSNIGSNSVYWYQQLPGTAPKLLIYLNSQRPSGVPDRESGSKSG



LC
TSASLAISGLQSEDEADYYCGTWDDSLNGWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVC




LISDEYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE




KTVAPTECS





463
OMC476pB11-
DVQLVESGGGVVRPGESLRLSCTASGFTFSISAMSWVRQAPGKGLEWVSAISGTAYSTYYADSVRGRET



hIgG4 HC
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKDNFFDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT




KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG




VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLG





464
OMC476pG10-
DVQLVESGGGVVRPGGSLRLSCAASGFTFSIYAMSWVRQAPGEGLEWVSHISASGGSTYYADSVKGRFA



hIgG4 HC
ISRDNSKNTLYLQMNSLRAEDTAVYYCTTNLGSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT




KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG




VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLG





465
OMC476pH10-
DVQLVESGGGVVRPGGSLRLSCAASGFTFSIYAVSWVRQAPGEGLEWVSHISASGGSTYYADSVKGRFA



hIgG4 HC
ISRDNSKNTLYLQMNSLRAEDTAVYYCTTNLGSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT




KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG




VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLG





466
OMC476pG10.H10
QSVLTQPPSASGTPGQRVTISCSGSYSDIGTNYVYWYQQLPGTAPKLLIFATDRRPSGVPDRESGSKSG



LC
TSASLAISGLQSEDEADYYCGTWDDSLNVWVFGGGTKLTVLGQPKAAPSVTLEPPSSEELQANKATLVC




LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE




KTVAPTECS





467
OMC476pE4-
DVQLVESGGGVVRPGESLRLSCAASGFTFSTDAMGWVRQAPGEGLEWVSLISGSGYSTYYADSVKGRFT



hIgG4 HC
ISRDNSKNTLYLQMNSLTAEDTAVYYCAKNSLAFFDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSES




TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS




NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV




DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV




YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLG





468
OMC476pE4 LC
QSVLTQPPSASGTPGQRVTISCSGGSSNIGRESVNWYQQLPGTAPKLLIYSTDRRPSGVPDRESGSKSG




TSASLAISGLQSEDEADYYCGTWDNDLNGWVFGGGTKLTVLGQPKAAPSVTLEPPSSEELQANKATLVC




LISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE




KTVAPTECS





469
J110-hIgG1 HC
DVQLQESGPGLVKPSQSLSLTCTVTGHSITSDYAWNWIRQFPGDKLEWMGYISYSGYTTYNPSLKSRVS




ITRDTSKNQFFLQLNSVTTEDTATYFCARDLDYGPWFAYWGQGTLVTVSAASTKGPSVFPLAPSSKSTS




GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK




PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK




FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP




REPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV




DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





470
J110-hKappa
DIQMTQSPASLSASVGETVTLTCRASENIHNYLAWYQQKQGKSPQLLVYNVKTLADGVPSRFSGSGSGT



LC
QYSLKINSLQPEDFGSYYCQHFWSSPWTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNN




FYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK




SENRGEC





471
2H7-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



LAGA-df-hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/D20A/R38E/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLALQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






472
2H7-hIgG4-LE-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



df-hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR



(T3A/D20A/R38E/
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



C125A) HC
DHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



hIL-2 in
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



italics
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTE






MCEYADETATIVEFLNRWITFAQSIISTLT






473
2H7-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



LAGA--df-hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVEPLAPCSR



(T3A/D20A/R38E/
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



C125A) HC
DHKPSNTKVDKRVESKYGPPCPPCPAPEFAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



hIL-2 in
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



italics
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTE






MCEYADETATIVEFLNRWITFAQSIISTLT






474
2H7-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



LAGA-df-hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/R38E/I92K/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLDLQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVKVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






475
2H7-hIgG4-LE-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



df-hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR



(T3A/R38E/192K/
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



C125A) HC
DHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



hIL-2 in
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



italics
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVKVLELKGSETTE






MCEYADETATIVEFLNRWITFAQSIISTLT






476
2H7-hIgG4-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



LAGA-df-hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR



(T3A/R38E/192K/
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



C125A) HC
DHKPSNTKVDKRVESKYGPPCPPCPAPEFAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



hIL-2 in
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



italics
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVKVLELKGSETTE






MCEYADETATIVEFLNRWITFAQSIISTLT






477
2H7-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



LAGA-df-hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/R38E/D84K/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKENWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLDLQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRKLISNINVIVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






478
2H7-hIgG4-LE-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



df-hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVEPLAPCSR



(T3A/R38E/D84K/
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



C125A) HC
DHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



hIL-2 in
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



italics
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRKLISNINVIVLELKGSETTE






MCEYADETATIVEFLNRWITFAQSIISTLT






479
2H7-hIgG4-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



LAGA-df-hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR



(T3A/R38E/D84K/
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



C125A) HC
DHKPSNTKVDKRVESKYGPPCPPCPAPEFAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



hIL-2 in
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



italics
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRKLISNINVIVLELKGSETTE






MCEYADETATIVEFLNRWITFAQSIISTLT






480
1H3-hIgG4-df-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hIL-2 (WT) HC
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPCSRSTSES



hIL-2 in
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



italics
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYV




DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV




YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRM





LTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYA






DETATIVEFLNRWITFCQSIISTLT






481
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2 (WT) HC
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVEPLAPCSRSTSES



Linker in
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



dashed
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYV



underline
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



hIL-2 in
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



italics


embedded image







PKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETT






FMCEYADETATIVEFLNRWITFCQSIISTLT






482
1H3-hIgG4 HC
EVQLVESGGGLVQPGRSLKLSCAVSGFTESDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT




ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPCSRSTSES




TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS




NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV




DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV




YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLG





483
1H3-hKappa-df-
DTVLTQSPALAVSPGERVTISCRASESVRTGVHWYQQKPGQQPKLLIYGASNLESGVPARFSGSGSGTD



hIL-2 (WT) LC
FTLTIDPVEADDTATYFCQQSWNDPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNE



hIL-2 in
YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS



italics
FNRGECAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTEKFYMPKKATELKHLQCLEEEL





KPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTL






T






484
1H3-hKappa-L6-
DTVLTQSPALAVSPGERVTISCRASESVRTGVHWYQQKPGQQPKLLIYGASNLESGVPARFSGSGSGTD



hIL-2 (WT) LC
FTLTIDPVEADDTATYFCQQSWNDPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNE



Linker in
YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS



dashed


embedded image





underline

CLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITECQ




hIL-2 in

SIISTLT




italics






485
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2 (D20Y)
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPCSRSTSES



HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



Linker in
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYV



dashed
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



underline
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



hIL-2 in


embedded image





italics

PKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETT






FMCEYADETATIVEFLNRWITFCQSIISTLT






486
1H3-hIgG4-df-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2 (D20Y)
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPCSRSTSES



HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



hIL-2 in
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



italics
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV




YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLYLQMILNGINNYKNPKLTRM





LTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYA






DETATIVEFLNRWITFCQSIISTLT






487
1H3-hIgG1-df-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2 (D20Y)
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



hIL-2 in
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN



italics
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPTSSSTKKTQLQLEHLLLYLQMILNGINNYKNPKL





TRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMC






EYADETATIVEFLNRWITFCQSIISTLT






488
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPCSRSTSES



(D20A/R38P) HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



Linker in
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



dashed
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



underline
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



hIL-2 in


embedded image





italics

PKLTPMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETT






FMCEYADETATIVEFLNRWITFCQSIISTLT






489
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPCSRSTSES



(D20A/R38S) HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



Linker in
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



dashed
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



underline
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



hIL-2 in


embedded image





italics

PKLTSMLTEKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETT






FMCEYADETATIVEFLNRWITFCQSIISTLT






490
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVEPLAPCSRSTSES



(D20A/R38D) HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



Linker in
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



dashed
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



underline
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



hIL-2 in


embedded image





italics

PKLTDMLTEKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETT






FMCEYADETATIVEFLNRWITFCQSIISTLT






491
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVEPLAPCSRSTSES



(D20A/R38Q/
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



E95A) HC
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



Linker in
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



dashed
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



underline


embedded image





hIL-2 in

PKLTQMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLALKGSETT




italics

FMCEYADETATIVEFLNRWITFCQSIISTLT






492
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPCSRSTSES



(D20A/F42H/
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



E95A) HC
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



Linker in
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



dashed
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



underline


embedded image





hIL-2 in

PKLTRMLTHKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLALKGSETT




italics

FMCEYADETATIVEFLNRWITFCQSIISTLT






493
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPCSRSTSES



(R38D/I92D) HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



Linker in
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



dashed
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



underline
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



hIL-2 in


embedded image





italics

PKLTDMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVDVLELKGSETT






FMCEYADETATIVEFLNRWITFCQSIISTLT






494
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVEPLAPCSRSTSES



(R38E/192D) HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



Linker in
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



dashed
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



underline
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



hIL-2 in


embedded image





italics

PKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVDVLELKGSETT






FMCEYADETATIVEFLNRWITFCQSIISTLT






495
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVEPLAPCSRSTSES



(F42H/I92D) HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



Linker in
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



dashed
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



underline
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



hIL-2 in


embedded image





italics

PKLTRMLTHKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVDVLELKGSETT






FMCEYADETATIVEFLNRWITFCQSIISTLT






496
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVEPLAPCSRSTSES



(D20A/R38E) HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



Linker in
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



dashed
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



underline
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



hIL-2 in


embedded image





italics

PKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETT






FMCEYADETATIVEFLNRWITFCQSIISTLT






497
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVEPLAPCSRSTSES



(T3A/D20A/
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



R38E) HC
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYV



Linker in
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



dashed
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



underline


embedded image





hIL-2 in

PKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETT




italics

FMCEYADETATIVEFLNRWITFCQSIISTLT






498
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPCSRSTSES



(D20A/R38E/C12
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



5A) HC
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



Linker in
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



dashed
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



underline


embedded image





hIL-2 in

PKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETT




italics

FMCEYADETATIVEFLNRWITFAQSIISTLT






499
1H3-hIgG4-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPCSRSTSES



(T3A/D20A/R38E/
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



C125A) HC
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



Linker in
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV



dashed
YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



underline


embedded image





hIL-2 in

PKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETT




italics

FMCEYADETATIVEFLNRWITFAQSIISTLT






500
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



(D20A/R38E) HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



Linker in
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN



dashed
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE



underline
PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK



hIL-2 in


embedded image





italics

YKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGS






ETTEMCEYADETATIVEFLNRWITFCQSIISTLT






501
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



(T3A/D20A/R38E)
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN



Linker in
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE



dashed
PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK



underline


embedded image





hIL-2 in

YKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGS




italics

ETTEMCEYADETATIVEFLNRWITFCQSIISTLT






502
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



(D20A/R38E/C12
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



5A) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN



Linker in
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE



dashed
PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK



underline


embedded image





hIL-2 in

YKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNEHLRPRDLISNINVIVLELKGS




italics

ETTEMCEYADETATIVEFLNRWITFAQSIISTLT






503
1H3-hKappa-df-
DTVLTQSPALAVSPGERVTISCRASESVRTGVHWYQQKPGQQPKLLIYGASNLESGVPARFSGSGSGTD



hIL-2
FTLTIDPVEADDTATYFCQQSWNDPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNE



(D20A/R38E) LC
YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS



hIL-2 in
FNRGECAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEEL



italics

KPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTL






T






504
1H3-hKappa-L6-
DTVLTQSPALAVSPGERVTISCRASESVRTGVHWYQQKPGQQPKLLIYGASNLESGVPARFSGSGSGTD



hIL-2
FTLTIDPVEADDTATYFCQQSWNDPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNE



(D20A/R38E) LC
YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS



Linker in


embedded image





dashed

CLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITECQ




underline

SIISTLT




hIL-2 in




italics






505
OMC476pB11-
DVQLVESGGGVVRPGESLRLSCTASGFTFSISAMSWVRQAPGKGLEWVSAISGTAYSTYYADSVRGRFT



hIgG4-df-hIL-2
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKDNFFDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(D20A/R38E) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLT





FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNEHLRPRDLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






506
OMC476pE4-
DVQLVESGGGVVRPGESLRLSCAASGETESTDAMGWVRQAPGEGLEWVSLISGSGYSTYYADSVKGRET



hIgG4-df-hIL-2
ISRDNSKNTLYLQMNSLTAEDTAVYYCAKNSLAFFDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSES



(D20A/R38E) HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS



hIL-2 in
NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYV



italics
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQV




YTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEM





LTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYA






DETATIVEFLNRWITFCQSIISTLT






507
OMC476pG10-
DVQLVESGGGVVRPGGSLRLSCAASGFTFSIYAMSWVRQAPGEGLEWVSHISASGGSTYYADSVKGRFA



hIgG4-df-hIL-2
ISRDNSKNTLYLQMNSLRAEDTAVYYCTTNLGSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(D20A/R38E) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLT





FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






508
OMC476pH10-
DVQLVESGGGVVRPGGSLRLSCAASGFTFSIYAVSWVRQAPGEGLEWVSHISASGGSTYYADSVKGRFA



hIgG4-df-hIL-2
ISRDNSKNTLYLQMNSLRAEDTAVYYCTTNLGSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(D20A/R38E) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLT





FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






509
A2-hIgG4-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRET



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(D20A/F42A) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLT





AKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






510
A2-hIgG4-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRET



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVEPLAPCSRSTSESTA



(D20A/F42S) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTRMLT





SKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






511
A2-hIgG4-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFT



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(D20S/R38E) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLSLQMILNGINNYKNPKLTEMLT





FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






512
A2-hIgG4-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFT



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(F42A/N88R) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLT





AKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISRINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






513
A2-hIgG4-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRET



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(F42I/I92D) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLT





IKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






514
A2-hIgG4-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFT



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(F42Q/I92D) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLT





QKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






515
A2-hIgG4-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRET



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(F42T/I92D) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLT





TKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






516
A2-hIgG4-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRET



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(F42W/I92D) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLT





WKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVDVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






517
A2-hIgG4-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFT



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(R38E/D84K) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLT





FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRKLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






518
A2-hIgG4-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFT



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVEPLAPCSRSTSESTA



(R38E/192K) HC
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



hIL-2 in
KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



italics
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTEMLT





FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVKVLELKGSETTEMCEYADE






TATIVEFLNRWITFCQSIISTLT






519
C51E6-5-hIgG4-
QVQLVQSGSELKKPGASVKVSCKASGYSLYGTSMHWVRQAPGQGLEWMGYISPFTGRATYAQGFTGREV



df-hIL-2
FSLDTSVSTAYLQISSLKAEDTAVYYCARDYDYRYYYAMDYWGQGTTVTVSSASTKGPSVFPLAPCSRS



(D20A/R38E) HC
TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVD



hIL-2 in
HKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF



italics
NWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPR




EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD




KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNPK





LTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEM






CEYADETATIVEFLNRWITFCQSIISTLT






520
C51E6-5-hIgG4-
QVQLVQSGSELKKPGASVKVSCKASGYSLYGTSMHWVRQAPGQGLEWMGYISPFTGRATYAQGFTGREV



LE-df-hIL-2
FSLDTSVSTAYLQISSLKAEDTAVYYCARDYDYRYYYAMDYWGQGTTVTVSSASTKGPSVFPLAPCSRS



(T3A/D20A/R38E/
TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVD



C125A) HC
HKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF



hIL-2 in
NWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPR



italics
EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD




KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNPK





LTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEM






CEYADETATIVEFLNRWITFAQSIISTLT






521
C51E6-5-hIgG4-
QVQLVQSGSELKKPGASVKVSCKASGYSLYGTSMHWVRQAPGQGLEWMGYISPFTGRATYAQGFTGREV



LAGA-df-hIL-2
FSLDTSVSTAYLQISSLKAEDTAVYYCARDYDYRYYYAMDYWGQGTTVTVSSASTKGPSVEPLAPCSRS



(T3A/D20A/R38E/
TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVD



C125A) HC
HKPSNTKVDKRVESKYGPPCPPCPAPEFAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF



hIL-2 in
NWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPR



italics
EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD




KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNPK





LTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEM






CEYADETATIVEFLNRWITFAQSIISTLT






522
1H3-hIgG1-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



LAGA-L6-hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



(T3A/D20A/R38E/
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



C125A)
NTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLIVLHQDWINGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKITPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSAPASSSTKKTQLQLEHLLLALQMILNGINN




YKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVINLAQSKNFHLRPRDLISNINVIVLELKGS




ETTFMCEYADETATIVEFLNRWITFAQSIISTLT





523
2A3-hKappa LC
EIVLTQSPGTLSLSPGERATLSCRASQSIGRSFLAWYQQKPGQAPRLLIYDASTRAADIPARFSGSGSG




TDFTLTISSLEPEDFAVYYCQQYYDWPPLSFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLL




NNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV




TKSENRGEC





524
1H9-hIgG4-df-
EVQLLESGGGLVQPGGSLRLSCVGSGFNLKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



hIL-2
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKYTRGSYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR



(D20A/R38E) HC
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



hIL-2 in
DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



italics
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTE






MCEYADETATIVEFLNRWITFCQSIISTLT






525
1H9-hkappa LC
EIVLTQSPGTLSLSPGERATLSCRASQSIGRSFLAWYQQKPGQAPRLLIYDASTRAADIPDRESGSGSG




TDFTLTINRLEPEDFAVYYCQQYYDWPPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLL




NNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV




TKSENRGEC





526
1D5-hIgG4-df-
EVQLLESGGGLVQPGGSLRLSCVGSGENFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



hIL-2
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKYTRGSYFYDAMDVWGQGTTVTVSSASTKGPSVEPLAPCSR



(D20A/R38E) HC
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



hIL-2 in
DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



italics
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPTSSSTKKTQLQLEHLLLALQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTE






MCEYADETATIVEFLNRWITFCQSIISTLT






527
1D5-hKappa LC
EIVLTQSPGTLSLSPGERATLSCRASQSIGRSFLAWYQQKPGQAPRLLIYDASTRATDIPDRESGSGSG




TEFTLTISSLQSEDFAVYYCQQYYDWPPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLL




NNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV




TKSENRGEC





528
1D5-hIgG4-LE-
EVQLLESGGGLVQPGGSLRLSCVGSGENFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



df-hIL-2
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKYTRGSYFYDAMDVWGQGTTVTVSSASTKGPSVEPLAPCSR



(T3A/D20A/R38E/
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



C125A) HC
DHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



hIL-2 in
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



italics
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTE






MCEYADETATIVEFLNRWITFAQSIISTLT






529
1D5-hIgG4-
EVQLLESGGGLVQPGGSLRLSCVGSGENFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



LAGA-df-hIL-2
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKYTRGSYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR



(T3A/D20A/R38E/
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



C125A) HC
DHKPSNTKVDKRVESKYGPPCPPCPAPEFAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



hIL-2 in
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



italics
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTE






MCEYADETATIVEFLNRWITFAQSIISTLT






530
2H7-hIgG1-df-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/D20A/R38E/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLALQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






531
2H7-hIgG1-LE-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



df-hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/D20A/R38E/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLALQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






532
H7-767 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFKSYAMHWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT




ISRDNSKNTLYLQMNSLRAEDTAVYYCAKYDRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK




STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV




NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVFLFPPKPKDTIMISRTPEVTCVVVDVSHEDP




EVKENWYVDGVEVHNAKIKPREEQYNSTYRVVSVLTVLHQDWINGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVESCSVMHEALHNHYTQKSISLSPGKAPASSSTKKTQLQLEHLLLALQMILNGINNY




KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHIRPRDLISNINVIVLELKGSE




TTFMCEYADETATIVEFLNRWITFAQSIISTLT





533
2H7-hIgG1-LE-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



df-hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/R38E/D84K/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLDLQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRKLISNINVIVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






534
2H7-hIgG4-df-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVEPLAPCSR



(T3A/R38E/D84K/
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



C125A) HC
DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



hIL-2 in
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



italics
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRKLISNINVIVLELKGSETTE






MCEYADETATIVEFLNRWITFAQSIISTLT






535
2H7-hIgG1-df-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/R38E/192K/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLDLQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVKVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






536
2H7-hIgG1-LE-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



df-hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/R38E/192K/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELEGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLDLQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVKVLELKGSE






TTEMCEYADETATIVEFLNRWITFAQSIISTLT






537
2H7-hIgG4-df-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



hIL-2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVEPLAPCSR



(T3A/R38E/192K/
STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV



C125A) HC
DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ



hIL-2 in
FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP



italics
REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNP





KLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVKVLELKGSETTF






MCEYADETATIVEFLNRWITFAQSIISTLT






538
2H7-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



LAGA-df-hIL2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/D20S/R38E/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLSLQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSE






TTEMCEYADETATIVEFLNRWITFAQSIISTLT






539
2H7-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



LAGA-df-hIL2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/R38E/D84F/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKENWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLDLQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRFLISNINVIVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






540
2H7-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



LAGA-df-hIL2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/R38E/I92R/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLDLQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVRVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






541
2H7-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



LAGA-df-hIL2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/R38E/I92E/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLDLQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVEVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






542
2H7-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



LAGA-df-hIL2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/R38E/192S/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLDLQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVSVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






543
2H7-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



LAGA-df-hIL2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/R38E/I92D/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLDLQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVDVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






544
2H7-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET



LAGA-df-hIL2
ISRDNSKNTLYLQMNNLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/H16E/R38E/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



hIL-2 in
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



italics
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEELLLDLQMILNGINNY





KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSE






TTFMCEYADETATIVEFLNRWITFAQSIISTLT






545
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



(T3A/D20A/R38E/
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



C125A) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN



Linker in
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE



dashed
PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK



underline


embedded image





hIL-2 in

YKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGS




italics

ETTEMCEYADETATIVEFLNRWITFAQSIISTLT






546
1H3-hIgG1-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



LAGA-df-hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



(T3A/D20A/R38E/
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



C125A) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN



hIL-2 in
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE



italics
PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNPKL





TEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMC






EYADETATIVEFLNRWITFAQSIISTLT






547
C51E6-5-
QVQLVQSGSELKKPGASVKVSCKASGYSLYGTSMHWVRQAPGQGLEWMGYISPFTGRATYAQGFTGREV



hIgG4/k-LE HC
FSLDTSVSTAYLQISSLKAEDTAVYYCARDYDYRYYYAMDYWGQGTTVTVSSASTKGPSVFPLAPCSRS




TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVD




HKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF




NWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPR




EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD




KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





548
C51E6-5-
QVQLVQSGSELKKPGASVKVSCKASGYSLYGTSMHWVRQAPGQGLEWMGYISPFTGRATYAQGFTGREV



hIgG4/k-LAGA
FSLDTSVSTAYLQISSLKAEDTAVYYCARDYDYRYYYAMDYWGQGTTVTVSSASTKGPSVEPLAPCSRS



HC
TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVD




HKPSNTKVDKRVESKYGPPCPPCPAPEFAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF




NWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPR




EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD




KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





549
C51E6-5-
QVQLVQSGSELKKPGASVKVSCKASGYSLYGTSMHWVRQAPGQGLEWMGYISPFTGRATYAQGFTGREV



hIgG4/k-LEPG
FSLDTSVSTAYLQISSLKAEDTAVYYCARDYDYRYYYAMDYWGQGTTVTVSSASTKGPSVFPLAPCSRS



HC
TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVD




HKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF




NWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLGSSIEKTISKAKGQPR




EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD




KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





550
C51E6-5-
QVQLVQSGSELKKPGASVKVSCKASGYSLYGTSMHWVRQAPGQGLEWMGYISPFTGRATYAQGFTGREV



hIgG4/k-df-
FSLDTSVSTAYLQISSLKAEDTAVYYCARDYDYRYYYAMDYWGQGTTVTVSSASTKGPSVEPLAPCSRS



hIL-2
TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVD



(T3A/D20A/R38E/
HKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF



C125A) HC
NWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPR



hIL-2 in
EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD



italics
KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNPK





LTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEM






CEYADETATIVEFLNRWITFAQSIISTLT






551
C51E6-5-
QVQLVQSGSELKKPGASVKVSCKASGYSLYGTSMHWVRQAPGQGLEWMGYISPFTGRATYAQGFTGRFV



hIgG4/k-LEPG-
FSLDTSVSTAYLQISSLKAEDTAVYYCARDYDYRYYYAMDYWGQGTTVTVSSASTKGPSVEPLAPCSRS



hIL-2
TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVD



(T3A/D20A/R38E/
HKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQF



C125A) HC
NWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLGSSIEKTISKAKGQPR



hIL-2 in
EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD



italics
KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNPK





LTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEM






CEYADETATIVEFLNRWITFAQSIISTLT






552
A2-hIgG4/k-LE
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFT



HC
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVEPLAPCSRSTSESTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT




KVDKRVESKYGPPCPPCPAPEFeGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG




VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLG





553
A2-hIgG4/k-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFT



LAGA HC
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT




KVDKRVESKYGPPCPPCPAPEFaGaPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG




VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLG





554
A2-hIgG4/k-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRET



LEPG HC
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT




KVDKRVESKYGPPCPPCPAPEFeGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG




VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLgSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLG





555
A2-hIgG4/k-df-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRET



hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(T3A/D20A/R38E/
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



C125A) HC
KVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYVDG



hIL-2 in
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT



italics
LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLT





FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFAQSIISTLT






556
A2-hIgG4/k-LE-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRET



df-hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(T3A/D20A/R38E/
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



C125A) HC
KVDKRVESKYGPPCPPCPAPEFEGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



hIL-2 in
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT



italics
LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLT





FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFAQSIISTLT






557
A2-hIgG4/k-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRET



LAGA-df-hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(T3A/D20A/R38E/
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



C125A) HC
KVDKRVESKYGPPCPPCPAPEFAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



hIL-2 in
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT



italics
LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLT





FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFAQSIISTLT






558
A2-hIgG4/k-
DVQLVESGGGLVQPGGSLRLSCAASGFTFDISAMSWVRQAPGKGLEWVSTISGSAYSTYYADSVKGRFT



LEPG-df-hIL-2
ISRDNSKSTLYLQMNSLRAEDTAVYYCAREIFSDYWGLGTLVTVSSASTKGPSVFPLAPCSRSTSESTA



(T3A/D20A/R38E/
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNT



C125A) HC
KVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG



hIL-2 in
VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLGSSIEKTISKAKGQPREPQVYT



italics
LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGKAPASSSTKKTQLQLEHLLLALQMILNGINNYKNPKLTEMLT





FKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNEHLRPRDLISNINVIVLELKGSETTEMCEYADE






TATIVEFLNRWITFAQSIISTLT






559
Anti-hPD-1 #1
QVQLVESGGGVVQPGRSLRLDCKASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRET



HC
ISRDNSKNTLFLQMNSLRAEDTAVYYCATNDDYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAAL




GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKV




DKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQENWYVDGVE




VHNAKTKPREEQFNSTYRVVSVLIVLHQDWINGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLP




PSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGN




VFSCSVMHEALHNHYTQKSLSLSLG





560
Anti-CD20-
QVQLQQPGAELVKPGASVKMSCKASGYTFTSYNMHWVKQTPGRGLEWIGAIYPGNGDTSYNQKEKGKAT



hIgG1/k HC
LTADKSSSTAYMQLSSLTSEDSAVYYCARSTYYGGDWYFNVWGAGTTVTVSAASTKGPSVFPLAPSSKS




TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN




HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE




VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





561
Anti-CD20-
QVQLQQPGAELVKPGASVKMSCKASGYTFTSYNMHWVKQTPGRGLEWIGAIYPGNGDTSYNQKEKGKAT



hIgG1/k-LAGA
LTADKSSSTAYMQLSSLTSEDSAVYYCARSTYYGGDWYFNVWGAGTTVTVSAASTKGPSVFPLAPSSKS



HC
TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN




HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDPE




VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG





562
Anti-CD20-
QIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWFQQKPGSSPKPWIYATSNLASGVPVRESGSGSGTS



hKappa LC
YSLTISRVEAEDAATYYCQQWTSNPPTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNE




YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS




ENRGEC





563
1H3-hIgG1-
EVQLVESGGGLVQPGRSLKLSCAVSGFTESDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



LAGA-df-hIL-2
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



(T3A/C125A) HC
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



hIL-2 in
NTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN



italics
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNPKL





TRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMC






EYADETATIVEFLNRWITFAQSIISTLT






564
anti-mPD-1
EVQLQESGPGLVKPSQSLSLTCSVTGYSITSSYRWNWIRKFPGNRLEWMGYINSAGISNYNPSLKRRIS



RMP1-14
ITRDTSKNQFFLQVNSVTTEDAATYYCARSDNMGTTPFTYWGQGTLVTVSSAKTTPPSVYPLAPGCGDT



mIgG2b-N297A
TGSSVTLGCLVKGYFPESVTVTWNSGSLSSSVHTFPALLQSGLYTMSSSVTVPSSTWPSQTVTCSVAHP



HC
ASSTTVDKKLEPSGPISTINPCPPCKECHKCPAPNLEGGPSVFIFPPNIKDVLMISLTPKVTCVVVDVS




EDDPDVQISWFVNNVEVHTAQTQTHREDYASTIRVVSTLPIQHQDWMSGKEFKCKVNNKDLPSPIERTI




SKIKGLVRAPQVYILPPPAEQLSRKDVSLTCLVVGENPGDISVEWTSNGHTEENYKDTAPVLDSDGSYF




IYSKLNMKTSKWEKTDSFSCNVRHEGLKNYYLKKTISRSPGK





565
anti-mPD-1
EVQLQESGPGLVKPSQSLSLTCSVTGYSITSSYRWNWIRKFPGNRLEWMGYINSAGISNYNPSLKRRIS



RMP1-14
ITRDTSKNQFFLQVNSVTTEDAATYYCARSDNMGTTPFTYWGQGTLVTVSSAKTTPPSVYPLAPGCGDT



mIgG2b-N297A-
TGSSVTLGCLVKGYFPESVTVTWNSGSLSSSVHTFPALLQSGLYTMSSSVTVPSSTWPSQTVTCSVAHP



L6-hIL-2
ASSTTVDKKLEPSGPISTINPCPPCKECHKCPAPNLEGGPSVFIFPPNIKDVLMISLTPKVTCVVVDVS



(F42K/Y45R/
EDDPDVQISWFVNNVEVHTAQTQTHREDYASTIRVVSTLPIQHQDWMSGKEFKCKVNNKDLPSPIERTI



V69R) HC
SKIKGLVRAPQVYILPPPAEQLSRKDVSLTCLVVGENPGDISVEWTSNGHTEENYKDTAPVLDSDGSYF



linker in


embedded image





dashed

QMILNGINNYKNPKLTRMLTKKERMPKKATELKHLQCLEEELKPLEERLNLAQSKNFHLRPRDLISNIN




underline

VIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT




hIL-2 in




italics






566
anti-mPD-1
DIVMTQGTLPNPVPSGESVSITCRSSKSLLYSDGKTYLNWYLQRPGQSPQLLIYWMSTRASGVSDRESG



RMP1-14 mKappa
SGSGTDFTLKISGVEAEDVGIYYCQQGLEFPTFGGGTKLELKRADAAPTVSIFPPSSEQLTSGGASVVC



LC
FLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTS




PIVKSENRNEC





567
anti-mPD-1
EVQLVESGGGLVQPGRSLKLSCAASGFTFGDYSMAWVRQAPKRGLEWVANIIYDGSRTFYRDSVKGRFT



RMP1-30
ISRDNAKPTLYLQMDSLRPEDTATYYCATHNYPGYAMEAWGQGTSVTVSSAKTTPPSVYPLAPGCGDTT



mIgG2b-N297A
GSSVTLGCLVKGYFPESVTVTWNSGSLSSSVHTFPALLQSGLYTMSSSVTVPSSTWPSQTVTCSVAHPA



HC
SSTTVDKKLEPSGPISTINPCPPCKECHKCPAPNLEGGPSVFIFPPNIKDVLMISLTPKVTCVVVDVSE




DDPDVQISWFVNNVEVHTAQTQTHREDYASTIRVVSTLPIQHQDWMSGKEFKCKVNNKDLPSPIERTIS




KIKGLVRAPQVYILPPPAEQLSRKDVSLTCLVVGENPGDISVEWTSNGHTEENYKDTAPVLDSDGSYFI




YSKLNMKTSKWEKTDSFSCNVRHEGLKNYYLKKTISRSPGK





568
anti-mPD-1
DTVLTQSPALPVSLGQRVNISCRATKSVSRYVHWYQQKSGQQPRLLIYTTSNLESGVPSRFSGSGSGTD



RMP1-30 mKappa
FTLTIDPVEADDIANYYCQQSNEIPYTFGAGTKLELKRADAAPTVSIFPPSSEQLTSGGASVVCELNNE



LC
YPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKS




ENRNEC





569
anti-mPD-1
EVQLVESGGGLVQPGRSLKLSCAASGFTFGDYSMAWVRQAPKRGLEWVANITYDGSRTFYRDSVKGRFT



RMP1-30
ISRDNAKPTLYLQMDSLRPEDTATYYCATHNYPGYAMEAWGQGTSVTVSSAKTTPPSVYPLAPGCGDTT



mIgG2b-N297A-
GSSVTLGCLVKGYFPESVTVTWNSGSLSSSVHTFPALLQSGLYTMSSSVTVPSSTWPSQTVTCSVAHPA



L6-hIL-2
SSTTVDKKLEPSGPISTINPCPPCKECHKCPAPNLEGGPSVFIFPPNIKDVLMISLTPKVTCVVVDVSE



(F42K/Y45R/
DDPDVQISWFVNNVEVHTAQTQTHREDYASTIRVVSTLPIQHQDWMSGKEFKCKVNNKDLPSPIERTIS



V69R) HC
KIKGLVRAPQVYILPPPAEQLSRKDVSLTCLVVGENPGDISVEWTSNGHTEENYKDTAPVLDSDGSYF



linker in


embedded image





dashed

MILNGINNYKNPKLTRMLTKKFrMPKKATELKHLQCLEEELKPLEErLNLAQSKNFHLRPRDLISNINV




underline

IVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT




hIL-2 in




italics






570
anti-KLH-C3-
EVQLVGSGGGLVQPGGSLKLSCAASGFTFSDFYMAWVRQAPTKGLEWVASISTGGGNTHYRDSVKGRFT



mIgG2b-N297A-
ISRDNAKSTLYLQMDSLRSEETATYYCARLLSTISTPFDYWGQGVIVTVSSAKTTPPSVYPLAPGCGDT



L6-hIL-2
TGSSVTLGCLVKGYFPESVTVTWNSGSLSSSVHTFPALLQSGLYTMSSSVTVPSSTWPSQTVTCSVAHP



(F42K/Y45R/
ASSTTVDKKLEPSGPISTINPCPPCKECHKCPAPNLEGGPSVFIFPPNIKDVLMISLTPKVTCVVVDVS



V69R) HC
EDDPDVQISWFVNNVEVHTAQTQTHREDYASTIRVVSTLPIQHQDWMSGKEFKCKVNNKDLPSPIERTI



linker in
SKIKGLVRAPQVYILPPPAEQLSRKDVSLTCLVVGENPGDISVEWTSNGHTEENYKDTAPVLDSDGSYF



dashed


embedded image





underline

QMILNGINNYKNPKLTRMLTKKFrMPKKATELKHLQCLEEELKPLEErLNLAQSKNFHLRPRDLISNIN




hIL-2 in

VIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT




italics






571
KLH-C3-mKappa
DVVLIQSPTTLSVTPGETVSLSCRASHSVGTNLHWYQQRTNESPSLLIKYSSHSTSGIPSRESATGSGT



LC
DFTLNISNVEFDDVASYFCQQSQKWPLTFGSGTKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCELNN




FYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVK




SENRNEC





572
2D12-hIgG1-L6-
EVQLQQSGPELVKPGASVKISCKTSGYTFTEYTMHWVKQSHGKSLEWIGGINPNNGGTTYNQKFKGKAT



hIL-2 HC
LTVDKSSSTAYMELRSLTSQDSAVYYCARDYYRYGHYYAMDYWGQGTSVTVSSASTKGPSVFPLAPSSK



linker in
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



dashed
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP



underline
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK



hIL-2 in
GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK



italics


embedded image







NGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVL






ELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT






573
2D12-hKappa LC
QIVLTQSPAIMSASPGEKVTMTCSVSSSVREMHWYQQKSGTSPKRWIYDTSKLASGVPARFSGSGSGTS




YSLTISSMEAEDAATYYCQQWSSNPPTFGGGTKLKIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNE




YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS




FNRGEC





574
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFAMPKKATELKHLQCLEEELKPLEEV



F42A/Y45A/L72G
LNGAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





575
hIL-2
APTSSSTKKTQLQLEALLLDLQMILNGINNYKNPKLTRMLTAKFYMPKKATELKHLQCLEEELKPLEEV



H16A/F42A
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





576
1H9-hIgG4 HC
EVQLLESGGGLVQPGGSLRLSCVGSGFNLKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT




ISRDNSKNTLYLQMNSLRAEDTAVYYCAKYTRGSYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR




STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV




DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVELFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ




FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





577
1D5-hIgG4 HC
EVQLLESGGGLVQPGGSLRLSCVGSGENFKDYCMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRET




ISRDNSKNTLYLQMNSLRAEDTAVYYCAKYTRGSYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPCSR




STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNV




DHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQ




FNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTV




DKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





578
Anti-hPD-1 #2
QVQLVQSGVEVKKPGASVKVSCKASGYTFTNYYMYWVRQAPGQGLEWMGGINPSNGGTNFNEKFKNRVT



HC
LTTDSSTTTAYMELKSLQFDDTAVYYCARRDYRFDMGFDYWGQGTTVTVSSASTKGPSVFPLAPCSRST




SESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH




KPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFN




WYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWINGKEYKCKVSNKGLPSSIEKTISKAKGQPRE




PQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDK




SRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





579
Anti-hPD-1 #2
EIVLTQSPATLSLSPGERATLSCRASKGVSTSGYSYLHWYQQKPGQAPRLLIYLASYLESGVPARFSGS



LC
GSGTDFTLTISSLEPEDFAVYYCQHSRDLPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVC




LINNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSS




PVTKSENRGEC





580
human PD-1
gtcgacggatcgggagatctcccgatcccctatggtgcactctcagtacaatctgctctgatgccgcat



receptor
agttaagccagtatctgctccctgcttgtgtgttggaggtcgctgagtagtgcgcgagcaaaatttaag



lentiviral
ctacaacaaggcaaggcttgaccgacaattgcatgaagaatctgcttagggttaggcgttttgcgctgc



vector
ttcgcgatgtacgggccagatatacgcgttgacattgattattgactagttattaatagtaatcaatta




cggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctg




gctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatag




ggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgt




atcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagt




acatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtga




tgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccacc




ccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaact




ccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagcgcgttttgcc




tgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaactagggaacccactg




cttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggt




aactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtggcgcccgaacagggact




tgaaagcgaaagggaaaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaa




gaggcgaggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagatg




ggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggttaaggccag




ggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagctagaacgattcgcagtta




atcctggcctgttagaaacatcagaaggctgtagacaaatactgggacagctacaaccatcccttcaga




caggatcagaagaacttagatcattatataatacagtagcaaccctctattgtgtgcatcaaaggatag




agataaaagacaccaaggaagctttagacaagatagaggaagagcaaaacaaaagtaagaccaccgcac




agcaagcggccgctgatcttcagacctggaggaggagatatgagggacaattggagaagtgaattatat




aaatataaagtagtaaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcag




agagaaaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcactatg




ggcgcagcgtcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcagcagcagaac




aatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtctggggcatcaagcagctc




caggcaagaatcctggctgtggaaagatacctaaaggatcaacagctcctggggatttggggttgctct




ggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctggaacagatt




tggaatcacacgacctggatggagtgggacagagaaattaacaattacacaagcttaatacactcctta




attgaagaatcgcaaaaccagcaagaaaagaatgaacaagaattattggaattagataaatgggcaagt




ttgtggaattggtttaacataacaaattggctgtggtatataaaattattcataatgatagtaggaggc




ttggtaggtttaagaatagtttttgctgtactttctatagtgaatagagttaggcagggatattcacca




ttatcgtttcagacccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggt




ggagagagagacagagacagatccattcgattagtgaacggatcggcactgcgtgcgccaattctgcag




acaaatggcagtattcatccacaattttaaaagaaaaggggggattggggggtacagtgcaggggaaag




aatagtagacataatagcaacagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaa




ttttcgggtttattacagggacagcagagatccagtttggttaattaagtaattcgctagctaggtctt




gaaaggagtgggaattggctccggtgcccgtcagtgggcagagcgcacatcgcccacagtccccgagaa




gttggggggaggggtcggcaattgatccggtgcctagagaaggtggcgcggggtaaactgggaaagtga




tgtcgtgtactggctccgcctttttcccgagggtgggggagaaccgtatataagtgcagtagtcgccgt




gaacgttctttttcgcaacgggtttgccgccagaacacaggaccggttctagagcgctgccaccatgca




gatcccacaggcgccctggccagtcgtctgggcggtgctacaactgggctggcggccaggatggttctt




agactccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaagggga




caacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgag




ccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccg




cttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatga




cagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggc




agagctcagggtgacagagagaagggcagaagtgcccacagcccaccccagcccctcacccaggccagc




cggccagttccaaaccctggtggttggtgtcgtgggcggcctgctgggcagcctggtgctgctagtctg




ggtcctggccgtcatctgctcccgggccgcacgagggacaataggagccaggcgcaccggccagcccct




gaaggaggacccctcagccgtgcctgtgttctctgtggactatggggagctggatttccagtggcgaga




gaagaccccggagccccccgtgccctgtgtccctgagcagacggagtatgccaccattgtctttcctag




cggaatgggcacctcatcccccgcccgcaggggctcagctgacggccctcggagtgcccagccactgag




gcctgaggatggacactgctcttggcccctctgagcccctctccctccccccccctaacgttactggcc




gaagccgcttggaataaggccggtgtgcgtttgtctatatgttattttccaccatattgccgtcttttg




gcaatgtgagggcccggaaacctggccctgtcttcttgacgagcattcctaggggtctttcccctctcg




ccaaaggaatgcaaggtctgttgaatgtcgtgaaggaagcagttcctctggaagcttcttgaagacaaa




caacgtctgtagcgaccctttgcaggcagcggaaccccccacctggcgacaggtgcctctgcggccaaa




agccacgtgtataagatacacctgcaaaggcggcacaaccccagtgccacgttgtgagttggatagttg




tggaaagagtcaaatggctctcctcaagcgtattcaacaaggggctgaaggatgcccagaaggtacccc




attgtatgggatctgatctggggcctcggtgcacatgctttacatgtgtttagtcgaggttaaaaaaac




gtctaggccccccgaaccacggggacgtggttttcctttgaaaaacacgatgataatatggccacaatg




accgagtacaagcccacggtgcgcctcgccacccgcgacgacgtccccagggccgtacgcaccctcgcc




gccgcgttcgccgactaccccgccacgcgccacaccgtcgatccggaccgccacatcgagcgggtcacc




gagctgcaagaactcttcctcacgcgcgtcgggctcgacatcggcaaggtgtgggtcgcggacgacggc




gccgcggtggcggtctggaccacgccggagagcgtcgaagcgggggcggtgttcgccgagatcggcccg




cgcatggccgagttgagcggttcccggctggccgcgcagcaacagatggaaggcctcctggcgccgcac




cggcccaaggagcccgcgtggttcctggccaccgtcggagtctcgcccgaccaccagggcaagggtctg




ggcagcgccgtcgtgctccccggagtggaggcggccgagcgcgccggggtgcccgccttcctggagacc




tccgcgccccgcaacctccccttctacgagcggctcggcttcaccgtcaccgccgacgtcgaggtgccc




gaaggaccgcgcacctggtgcatgacccgcaagcccggtgcctgaacgcgttaagtcgacaatcaacct




ctggattacaaaatttgtgaaagattgactggtattcttaactatgttgctccttttacgctatgtgga




tacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtat




aaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcact




gtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcctttccgggactttc




gctttccccctccctattgccacggcggaactcatcgccgcctgccttgcccgctgctggacaggggct




cggctgttgggcactgacaattccgtggtgttgtcggggaaatcatcgtcctttccttggctgctcgcc




tgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggac




cttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagt




cggatctccctttgggccgcctccccgcgtcgactttaagaccaatgacttacaaggcagctgtagatc




ttagccactttttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagatctgc




tttttgcttgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaactaggga




acccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtg




actctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagggcccgtttaa




acccgctgatcagcctcgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgcct




tccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgt




ctgagtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagac




aatagcaggcatgctggggatgcggtgggctctatggcttctgaggcggaaagaaccagctggggctct




agggggtatccccacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtg




accgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttc




gccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcac




ctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggttttt




cgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaac




cctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgag




ctgatttaacaaaaatttaacgcgaattaattctgtggaatgtgtgtcagttagggtgtggaaagtccc




caggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagt




ccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccatagtcccgc




ccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgccccatggctgactaa




ttttttttatttatgcagaggccgaggccgcctctgcctctgagctattccagaagtagtgaggaggct




tttttggaggcctaggcttttgcaaaaagctcccgggagcttgtatatccattttcggatctgatcagc




acgtgttgacaattaatcatcggcatagtatatcggcatagtataatacgacaaggtgaggaactaaac




catggccaagttgaccagtgccgttccggtgctcaccgcgcgcgacgtcgccggagcggtcgagttctg




gaccgaccggctcgggttctcccgggacttcgtggaggacgacttcgccggtgtggtccgggacgacgt




gaccctgttcatcagcgcggtccaggaccaggtggtgccggacaacaccctggcctgggtgtgggtgcg




cggcctggacgagctgtacgccgagtggtcggaggtcgtgtccacgaacttccgggacgcctccgggcc




ggccatgaccgagatcggcgagcagccgtgggggcgggagttcgccctgcgcgacccggccggcaactg




cgtgcacttcgtggccgaggagcaggactgacacgtgctacgagatttcgattccaccgccgccttcta




tgaaaggttgggcttcggaatcgttttccgggacgccggctggatgatcctccagcgcggggatctcat




gctggagttcttcgcccaccccaacttgtttattgcagcttataatggttacaaataaagcaatagcat




cacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgt




atcttatcatgtctgtataccgtcgacctctagctagagcttggcgtaatcatggtcatagctgtttcc




tgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctg




gggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaa




cctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctc




ttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactc




aaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggcca




gcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacga




gcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtt




tccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctt




tctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgt




tcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaacta




tcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattag




cagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaag




aacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatc




cggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaa




aggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgtta




agggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttt




taaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacc




tatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgat




acgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccaga




tttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctc




catccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgt




tgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttc




ccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctcc




gatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctct




tactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaata




gtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaac




tttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgag




atccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttc




tgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaat




actcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacat




atttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctga




c





581
hIL-2 V69R
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEER




LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





582
H7-02-hIgG1-
EVQLLESGGGLVQPGGSLRLSCAASGFTFKSYAMTWVRQAPGKGLEWVSAIVYSGGSTYYADSVKGRFT



LAGA-df-hIL-2
ISRDNSKNTLYLQMNSLRAEDTAVYYCAKYTRASYFYDAMDVWGQGTTVTVSSASTKGPSVFPLAPSSK



(T3A/D20A/R38E/
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV



C125A) HC
NHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELAGAPSVELFPPKPKDTLMISRTPEVTCVVVDVSHEDP




EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK




GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAPASSSTKKTQLQLEHLLLALQMILNGINNY




KNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSE




TTFMCEYADETATIVEFLNRWITFAQSIISTLT





583
H7-02-hKappa
EIVLTQSPGTLSLSPGERATLSCRASQSISSSFLAWYQQKPGQAPRLLIYDASTRATGIPDRESGSGSG



LC
TDFTLTISRLEPEDFAVYYCQQYYDWPPLSFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLL




NNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV




TKSENRGEC





584
hPD-L1
MRIFAVEIFMTYWHLLNAFTVTVPKDLYVVEYGSNMTIECKFPVEKQLDLAALIVYWEMEDKNIIQFVH




GEEDLKVQHSSYRQRARLLKDQLSLGNAALQITDVKLQDAGVYRCMISYGGADYKRITVKVNAPYNKIN




QRILVVDPVTSEHELTCQAEGYPKAEVIWTSSDHQVLSGKTTTTNSKREEKLENVTSTLRINTTTNEIE




YCTFRRLDPEENHTAELVIPELPLAHPPNERTHLVILGAILLCLGVALTFIERLRKGRMMDVKKCGIQD




TNSKKQSDTHLEET





585
KLH-C3-hIgG4
EVQLVGSGGGLVQPGGSIKLSCAASGFTFSDFYMAWVRQAPTKGLEWVASISTGGGNTHYRDSVKGRFT



HC
ISRDNAKSTLYLQMDSLRSEETATYYCARLISTISTPFDYWGQGVIVTVSSASTKGPSVEPLAPCSRST




SESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSIGTKTYTCNVDH




KPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQEN




WYVDGVEVHNAKTKPREEQENSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPRE




PQVYTIPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDK




SRWQEGNVESCSVMHEALHNHYTQKSLSLSLGK





586
KLH-C3-hKappa
DVVLIQSPTTLSVTPGETVSLSCRASHSVGTNLHWYQQRTNESPSLLIKYSSHSTSGIPSRFSATGSGT



LC
DETINISNVEFDDVASYFCQQSQKWPLTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLINN




FYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK




SENRGEC





587
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGETESDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVEPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSIGTQTYICNVNHKPS



(E15A) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVESCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLAHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWI




TFCQSIISTLT





588
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGETESDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSIGTQTYICNVNHKPS



(D20I) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGERRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




IPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICISGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLILQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWI




TFCQSIISTET





589
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(D20S) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMLNCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLSLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWI




TFCQSIISTLT





590
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTESDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSIGTQTYICNVNHKPS



(D20H) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTIPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVESCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMLNCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLHLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWI




TFCQSIISTLT





591
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSIKLSCAVSGETFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSIGTQTYICNVNHKPS



(D20W) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGFRRIKSGSLYMLCIGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLWLQMILNGINNYKNPKLTRMLTEKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWI




TFCQSIISTLT





592
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(D20Y) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWINGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLYLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWI




TFCQSIISTLT





593
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVEPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(D20R) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWINGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLRLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVENLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWI




TFCQSIISTLT





594
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALISGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(D20F) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLIVLHQDWINGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKITVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGERRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLFLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWI




TFCQSIISTIT





595
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(D84K) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTIPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRKLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWI




TFCQSIISTLT





596
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTESDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSIGTQTYICNVNHKPS



(S87A) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTIPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRDLIANINVIVLELKGSETTEMCEYADETATIVEFLNRWI




TFCQSIISTLT





597
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGETESDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYEDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSIGTQTYICNVNHKPS



(N88Y) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKITVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTEKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRDLISYINVIVLELKGSETTEMCEYADETATIVEFLNRWI




IFCQSIISTIT





598
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(N88D) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVESCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMLNCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISDINVIVLELKGSETTFMCEYADETATIVEFLNRWI




TFCQSIISTLT





599
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(N88R) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWINGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRDLISRINVIVLELKGSETTEMCEYADETATIVEFLNRWI




TFCQSIISTLT





600
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTESDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(N88E) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLIVLHQDWINGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKITPPVLDSDGSFFLYSKITVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGERRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




IPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRDLISEINVIVLELKGSETTEMCEYADETATIVEFLNRWI




TFCQSIISTIT





601
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(N88F) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVESCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMLNCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISFINVIVLELKGSETTFMCEYADETATIVEFLNRWI




TFCQSIISTLT





602
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(N88I) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLEPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLIVLHQDWINGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKITPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMLNCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRDLISIINVIVLELKGSETTEMCEYADETATIVEFLNRWI




TFCQSIISTLT





603
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRET



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(I92A) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWINGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGERRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGGGGGSGGGSAPTSSSTKKTQLQLEHLLIDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVINLAQSKNFHLRPRDLISNINVAVIELKGSETTEMCEYADETATIVEFLNRWI




TFCQSIISTIT





604
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(E95A) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWINGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVESCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLALKGSETTFMCEYADETATIVEFLNRWI




TFCQSIISTLT





605
1H3-hIgG1-L6-
EVQLVESGGGLVQPGRSLKLSCAVSGFTFSDYAMAWVRQAPKKGLEWVATISYDGSRTYYRDSVKGRFT



hCD25 (1-164)-
ISRDNAKITLYLQMDSLRSEDTATYYCARHGSGYFDYWGQGVMVTVSSASTKGPSVFPLAPSSKSTSGG



L20-hIL-2
TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS



(E95K) HC
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKEN




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLIVLHQDWINGKEYKCKVSNKALPAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK




SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGGGGSELCDDDPPEIPHATFKAMAYKEGTMINCEC




KRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQAS




LPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTSGGG




GSGGGGSGGGGSGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLKLKGSETTFMCEYADETATIVEFLNRWI




TFCQSIISTLT





606
hIL-2
APTSSSTKKTQLQLEHLLLRLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20R/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





607
hIL-2
APTSSSTKKTQLQLEHLLLNLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20N/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





608
hIL-2
APTSSSTKKTQLQLEHLLLQLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20Q/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





609
hIL-2
APTSSSTKKTQLQLEHLLLELQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20E/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





610
hIL-2
APTSSSTKKTQLQLEHLLLGLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20G/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





611
hIL-2
APTSSSTKKTQLQLEHLLLILQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20I/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





612
hIL-2
APTSSSTKKTQLQLEHLLLLLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20L/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





613
hIL-2
APTSSSTKKTQLQLEHLLLKLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20K/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





614
hIL-2
APTSSSTKKTQLQLEHLLLMLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20M/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





615
hIL-2
APTSSSTKKTQLQLEHLLLFLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20F/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





616
hIL-2
APTSSSTKKTQLQLEHLLLPLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20P/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





617
hIL-2
APTSSSTKKTQLQLEHLLLTLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20T/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT





618
hIL-2
APTSSSTKKTQLQLEHLLLWLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20W/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





619
hIL-2
APTSSSTKKTQLQLEHLLLYLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20Y/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





620
hIL-2
APTSSSTKKTQLQLEHLLLVLQMILNGINNYKNPKLTEMLTFKFYMPKKATELKHLQCLEEELKPLEEV



D20V/R38E
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT





621
hIL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTKKFRMPKKATELKHLQCLEEELKPLEER



F42K/Y45R/V69R
LNLAQSKNFHLRPRDLISNINVIVLELKGSETTEMCEYADETATIVEFLNRWITFCQSIISTLT









EMBODIMENTS

The following list of embodiments is intended to complement, rather than displace or supersede, the previous descriptions.


Embodiment 1. A modified human interleukin-2 (hIL-2) protein, comprising a substitution at amino acid position 20 and a substitution at amino acid position 38 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345, wherein the modified hIL-2 protein exhibits reduced potency on both a high affinity hIL-2 receptor and on an intermediate affinity hIL-2 receptor relative to a non-modified hIL-2.


Embodiment 2. The modified hIL-2 protein of embodiment 1, wherein the substitution at amino acid position 20 is selected from a D20A, D20S, D20Q, D20M, D20I, D20V, D20N, D20G, D20T, or D20E substitution.


Embodiment 3. The modified hIL-2 protein of embodiment 1 or 2, wherein the substitution at amino acid position 38 is selected from an R38E, R38N, R38G, R38H, R38I, R38L, R38M, R38F, R38P, R38S, R38T, R38W, R38Y, R38V, R38A, R38Q, R38D, and R38K substitution.


Embodiment 4. The modified hIL-2 protein of any one of the previous embodiments, further comprising a deletion or substitution at amino acid position 3 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345.


Embodiment 5. The modified hIL-2 protein of embodiment 4, wherein the substitution at amino acid position 3 is T3A.


Embodiment 6. The modified hIL-2 protein of any one of the previous embodiments, further comprising a deletion or substitution at amino acid position 125 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345.


Embodiment 7. The modified hIL-2 protein of embodiment 6, wherein the substitution at amino acid position 125 is C125A.


Embodiment 8. The modified hIL-2 protein of any one of the previous embodiments, wherein the modified hIL-2 protein exhibits about a 1,000-fold reduction in potency on the high affinity IL-2 receptor (hIL-2Rαβγ).


Embodiment 9. The modified hIL-2 protein of any one of the previous embodiments, wherein the modified hIL-2 protein exhibits about a 10,000-fold reduction in potency on the intermediate affinity IL-2 receptor (hIL-2Rβγ).


Embodiment 10. The modified hIL-2 protein of any one of embodiments 1 to 9, wherein the modified hIL-2 protein is fused to an anti-PD-1 antibody or an antigen-binding fragment thereof.


Embodiment 11. The modified hIL-2 protein of embodiment 10, wherein the modified hIL-2 protein is fused to the antibody or an antigen-binding fragment thereof at the N-terminus of an antibody light chain, the C-terminus of an antibody light chain, the N-terminus of an antibody heavy chain, the C-terminus of an antibody heavy chain, the N-terminus of the antigen-binding fragment, or the C-terminus of the antigen-binding fragment.


Embodiment 12. The modified hIL-2 protein of embodiment 10 or 11, wherein the modified hIL-2 protein is directly fused by a peptide bond to the antibody or an antigen-binding fragment thereof.


Embodiment 13. The modified hIL-2 protein of embodiment 12, wherein the modified hIL-2 is directly fused by a peptide bond to the C-terminal amino acid residue of the antibody heavy chain.


Embodiment 14. The modified hIL-2 protein of embodiment 10 or 11, wherein the modified hIL-2 protein is fused to the antibody or an antigen-binding fragment thereof through a linker.


Embodiment 15. A modified human interleukin-2 (hIL-2) protein, comprising a D20A, D20S, D20Q, D20M, D20I, D20V, D20N, D20G, D20T, or D20E substitution at amino acid position 20 and a R38E substitution at amino acid position 38 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345.


Embodiment 16. The modified hIL-2 protein of embodiment 15, comprising the amino acid sequence of any one of SEQ ID NOs: 307, 607-611, 614, 617, or 620.


Embodiment 17. The modified hIL-2 protein of embodiment 15 or 16, comprising a D20A substitution and a R38E substitution.


Embodiment 18. The modified hIL-2 protein of embodiment 17, comprising the amino acid sequence of SEQ ID NO: 149.


Embodiment 19. The modified hIL-2 protein of any one of embodiments 15-18, further comprising a deletion or substitution at amino acid position 3 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345.


Embodiment 20. The modified hIL-2 protein of embodiment 19, wherein the substitution at amino acid position 3 is T3A.


Embodiment 21. The modified hIL-2 protein of embodiment 20, comprising the amino acid sequence of SEQ ID NO: 216.


Embodiment 22. The modified hIL-2 protein of embodiment 19, comprising the amino acid sequence of SEQ ID NO: 218.


Embodiment 23. The modified hIL-2 protein of any one of embodiments 15-22, further comprising a deletion or substitution at amino acid position 125 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345.


Embodiment 24. The modified hIL-2 protein of embodiment 23, wherein the substitution at amino acid position 125 is C125A.


Embodiment 25. The modified hIL-2 protein of embodiment 24, comprising the amino acid sequence of SEQ ID NO: 215, 217, or 219.


Embodiment 26. The modified hIL-2 protein of embodiment 25, comprising the amino acid sequence of SEQ ID NO: 217.


Embodiment 27. The modified hIL-2 protein of any one of embodiments 15 to 26, wherein the modified hIL-2 protein is fused to an anti-PD-1 antibody or an antigen-binding fragment thereof.


Embodiment 28. The modified hIL-2 protein of embodiment 27, wherein the modified hIL-2 protein is fused to the antibody or an antigen-binding fragment thereof at the N-terminus of an antibody light chain, the C-terminus of an antibody light chain, the N-terminus of an antibody heavy chain, the C-terminus of an antibody heavy chain, the N-terminus of the antigen-binding fragment, or the C-terminus of the antigen-binding fragment.


Embodiment 29. The modified hIL-2 protein of embodiment 27 or 28, wherein the modified hIL-2 protein is directly fused by a peptide bond to the antibody or an antigen-binding fragment thereof.


Embodiment 30. The modified hIL-2 protein of embodiment 29, wherein the modified hIL-2 is directly fused by a peptide bond to the C-terminal amino acid residue of the antibody heavy chain.


Embodiment 31. The modified hIL-2 protein of embodiment 27 or 28, wherein the modified hIL-2 protein is fused to the antibody or an antigen-binding fragment thereof through a linker.


Embodiment 32. A human antibody molecule, or antigen-binding fragment thereof, that immunospecifically binds to human programmed cell death protein-1 (hPD-1), wherein the human antibody molecule or antigen-binding fragment thereof comprises:

    • a) a heavy chain complementarity determining region 1 (CDR1) comprising the amino acid sequence of SEQ ID NO: 418, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 419, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 420, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 421, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 422, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 423;
    • b) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 386, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 387, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 388, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 389, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 390, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 391;
    • c) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 396, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 397, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 398, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 399, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 400, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 401; or
    • d) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 406, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 407, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 408, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 409, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 410, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 411.


Embodiment 33. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 32, comprising:

    • a) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 416 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 417;
    • b) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 384 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 385;
    • c) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 394 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 395; or
    • d) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 404 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 405.


Embodiment 34. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 32 or 33, comprising a human IgG1 heavy chain constant region.


Embodiment 35. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 34, comprising an L235A substitution and a G237A substitution, according to EU numbering.


Embodiment 36. The human antibody molecule, or antigen-binding fragment thereof, of any one of embodiments 32-35, comprising:

    • a) a heavy chain comprising the amino acid sequence of SEQ ID NO: 414 and a light chain comprising the amino acid sequence of SEQ ID NO: 415;
    • b) a heavy chain comprising the amino acid sequence of SEQ ID NO: 424 and a light chain comprising the amino acid sequence of SEQ ID NO: 425;
    • c) a heavy chain comprising the amino acid sequence of SEQ ID NO: 426 and a light chain comprising the amino acid sequence of SEQ ID NO: 427; or
    • d) a heavy chain comprising the amino acid sequence of SEQ ID NO: 428 and a light chain comprising the amino acid sequence of SEQ ID NO: 429.


Embodiment 37. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 36, comprising a heavy chain comprising the amino acid sequence of SEQ ID NO: 414 and a light chain comprising the amino acid sequence of SEQ ID NO: 415.


Embodiment 38. The human antibody molecule, or antigen-binding fragment thereof, of any one of embodiments 32-37, fused to a modified human interleukin-2 (hIL-2) protein comprising a substitution at amino acid position 20 and a substitution at amino acid position 38 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345.


Embodiment 39. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 38, wherein the modified hIL-2 protein comprises the amino acid sequence of any one of SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620.


Embodiment 40. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 39, wherein the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 149.


Embodiment 41. The human antibody molecule, or antigen-binding fragment thereof, of any one of embodiments 38-40, wherein the modified hIL-2 protein further comprises a deletion or substitution at amino acid position 3 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345.


Embodiment 42. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 41, wherein the substitution at amino acid position 3 is T3A.


Embodiment 43. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 42, wherein the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 216.


Embodiment 44. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 41, wherein the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 218.


Embodiment 45. The human antibody molecule, or antigen-binding fragment thereof, of any one of embodiments 38-44, wherein the modified hIL-2 protein further comprises a deletion or substitution at amino acid position 125 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345.


Embodiment 46. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 45, wherein the substitution at amino acid position 125 is C125A.


Embodiment 47. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 46, wherein the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 215, 217, or 219.


Embodiment 48. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 47, wherein the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 217.


Embodiment 49. The human antibody molecule, or antigen-binding fragment thereof, of any one of embodiments 38-48, wherein the modified hIL-2 protein is fused to the antibody or antigen-binding fragment thereof at the N-terminus of an antibody light chain, the C-terminus of an antibody light chain, the N-terminus of an antibody heavy chain, the C-terminus of an antibody heavy chain, the N-terminus of the antigen-binding fragment, or the C-terminus of the antigen-binding fragment.


Embodiment 50. The human antibody molecule, or antigen-binding fragment thereof, of any one of embodiments 38-49, wherein the modified hIL-2 protein is directly fused by a peptide bond to the antibody or antigen-binding fragment thereof.


Embodiment 51. The human antibody molecule, or antigen-binding fragment thereof, of embodiment 50, wherein the modified hIL-2 protein is directly fused by a peptide bond to the C-terminal amino acid residue of the antibody heavy chain.


Embodiment 52. The human antibody molecule, or antigen-binding fragment thereof, of any one of embodiments 38-49, wherein the modified hIL-2 protein is fused to the antibody or antigen-binding fragment through a linker.


Embodiment 53. An immunoconjugate comprising:

    • (a) a modified human interleukin-2 (hIL-2) protein comprising a substitution at amino acid position 20 and a substitution at amino acid position 38 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345; and
    • (b) a human antibody molecule, or antigen-binding fragment thereof, that immunospecifically binds to human programmed cell death protein-1 (hPD-1), wherein the human antibody molecule or antigen-binding fragment thereof comprises:
      • (i) a heavy chain complementarity determining region 1 (CDR1) comprising the amino acid sequence of SEQ ID NO: 418, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 419, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 420, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 421, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 422, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 423;
      • (ii) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 386, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 387, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 388, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 389, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 390, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 391;
      • (iii) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 396, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 397, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 398, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 399, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 400, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 401; or
      • (iv) a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO: 406, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 407, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 408, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 409, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 410, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 411.


Embodiment 54. The immunoconjugate of embodiment 53, wherein the substitution at amino acid position 20 of the modified hIL-2 protein is selected from a D20A, D20S, D20Q, D20M, D20I, D20V, D20N, D20G, D20T, or D20E substitution.


Embodiment 55. The immunoconjugate of embodiment 53 or 54, wherein the substitution at amino acid position 38 of the modified hIL-2 protein is selected from an R38E, R38N, R38G, R38H, R38I, R38L, R38M, R38F, R38P, R38S, R38T, R38W, R38Y, R38V, R38A, R38Q, R38D, and R38K substitution.


Embodiment 56. The immunoconjugate of any one of embodiments 53-55, wherein the substitution at amino acid position 20 of the modified hIL-2 protein is selected from a D20A, D20S, D20Q, D20M, D20I, D20V, D20N, D20G, D20T, or D20E substitution and the amino acid substitution at amino acid position 38 of the modified hIL-2 protein is R38E.


Embodiment 57. The immunoconjugate of any one of embodiments 53-56, wherein the modified hIL-2 protein comprises the amino acid sequence of any one of SEQ ID NOs: 134-150, 307, 344, 607-611, 614, 617, or 620.


Embodiment 58. The immunoconjugate of any one of embodiments 53-56, wherein the modified hIL-2 protein comprises a D20A and a R38E substitution.


Embodiment 59. The immunoconjugate of embodiment 58, wherein the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 149.


Embodiment 60. The immunoconjugate of any one of embodiments 53-57, comprising the amino acid sequence of any one of SEQ ID NOs: 608, 614, 611, 620, 607, 610, 617, 609, or 307.


Embodiment 61. The immunoconjugate of any one of embodiments 53-60, wherein the modified hIL-2 protein further comprises a deletion or substitution at amino acid position 3 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345.


Embodiment 62. The immunoconjugate of embodiment 61, wherein the substitution at amino acid position 3 of the modified hIL-2 protein is T3A.


Embodiment 63. The immunoconjugate of embodiment 62, wherein the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 216.


Embodiment 64. The immunoconjugate of embodiment 61, wherein the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 218.


Embodiment 65. The immunoconjugate of any one of embodiments 53-64, wherein the modified hIL-2 protein further comprises a deletion or substitution at amino acid position 125 relative to the non-modified hIL-2 amino acid sequence of SEQ ID NO: 345.


Embodiment 66. The immunoconjugate of embodiment 65, wherein the substitution at amino acid position 125 is C125A.


Embodiment 67. The immunoconjugate of embodiment 66, wherein the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 215, 217, or 219.


Embodiment 68. The immunoconjugate of embodiment 67, wherein the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 217.


Embodiment 69. The immunoconjugate of any one of embodiments 53-68, wherein the modified hIL-2 protein is fused to the antibody or antigen-binding fragment thereof at the N-terminus of an antibody light chain, the C-terminus of an antibody light chain, the N-terminus of an antibody heavy chain, the C-terminus of an antibody heavy chain, the N-terminus of the antigen-binding fragment, or the C-terminus of the antigen-binding fragment.


Embodiment 70. The immunoconjugate of any one of embodiments 53-69, wherein the modified hIL-2 protein is directly fused by a peptide bond to the antibody or antigen-binding fragment thereof.


Embodiment 71. The immunoconjugate of embodiment 70, wherein modified hIL-2 protein is directly fused by a peptide bond to the C-terminal amino acid residue of the antibody heavy chain.


Embodiment 72. The immunoconjugate of any one of embodiments 53-69, wherein the modified hIL-2 protein is fused to the antibody or antigen-binding fragment thereof through a linker.


Embodiment 73. The immunoconjugate of any one of embodiments 53-72, wherein the human antibody molecule, or antigen-binding fragment thereof, comprises:

    • a) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 416 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 417;
    • b) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 384 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 385;
    • c) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 394 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 395; or
    • d) a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 404 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 405.


Embodiment 74. The immunoconjugate of any one of embodiments 53-73, wherein the human antibody molecule, or antigen-binding fragment thereof, comprises an IgG1 heavy chain constant region.


Embodiment 75. The immunoconjugate of embodiment 74, wherein the human antibody molecule, or antigen-binding fragment thereof, comprises an L235A substitution and a G237A substitution, according to EU numbering.


Embodiment 76. The immunoconjugate of any one of embodiments 53-75, wherein the human antibody molecule, or antigen-binding fragment thereof, comprises:

    • a) a heavy chain comprising the amino acid sequence of SEQ ID NO: 414 and a light chain comprising the amino acid sequence of SEQ ID NO: 415;
    • b) a heavy chain comprising the amino acid sequence of SEQ ID NO: 424 and a light chain comprising the amino acid sequence of SEQ ID NO: 425;
    • c) a heavy chain comprising the amino acid sequence of SEQ ID NO: 426 and a light chain comprising the amino acid sequence of SEQ ID NO: 427; or
    • d) a heavy chain comprising the amino acid sequence of SEQ ID NO: 428 and a light chain comprising the amino acid sequence of SEQ ID NO: 429.


Embodiment 77. The immunoconjugate of embodiment 76, wherein the human antibody molecule, or antigen-binding fragment thereof, comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 414 and a light chain comprising the amino acid sequence of SEQ ID NO: 415.


Embodiment 78. The immunoconjugate of any one of embodiments 53-77, comprising a light chain comprising the amino acid sequence of SEQ ID NO: 415; and a heavy chain-modified hIL-2 protein fusion comprising the amino acid sequence of SEQ ID NO: 532.


Embodiment 79. A pharmaceutical composition comprising the modified hIL-2 protein of any one of embodiments 1-31, the human antibody molecule, or antigen-binding fragment thereof, of any one of embodiments 32-52, or the immunoconjugate of any one of embodiments 53-78.


Embodiment 80. A polynucleotide, comprising a nucleic acid sequence encoding the modified hIL-2 protein of any one of embodiments 1-31, the human antibody molecule, or antigen-binding fragment thereof, of any one of embodiments 32-52, or the immunoconjugate of any one of embodiments 53-78.


Embodiment 81. A vector comprising a polynucleotide comprising a nucleic acid sequence that encodes the modified hIL-2 protein of any one of embodiments 1-31, the human antibody molecule, or antigen-binding fragment thereof, of any one of embodiments 32-52, or the immunoconjugate of any one of embodiments 53-78.


Embodiment 82. A transformed cell comprising the vector of embodiment 81.


Embodiment 83. A method of treating a disease or disorder in a subject, the method comprising administering a therapeutically effective amount of the modified hIL-2 protein of any one of embodiments 10-14 and 27-31, the immunoconjugate of any one of embodiments 53-78, or the pharmaceutical composition of embodiment 79 to the subject to thereby treat the disease or disorder.


Embodiment 84. The method of embodiment 83, wherein the disease or disorder is cancer.


Embodiment 85. The method of embodiment 84, wherein the cancer is melanoma.


Embodiment 86. The method of embodiment 84, wherein the cancer is non-small cell lung carcinoma.


Embodiment 87. Use of the modified hIL-2 protein of any one of embodiments 10-14 and 27-31, the immunoconjugate of any one of embodiments 53-78, or the pharmaceutical composition of embodiment 79 in the preparation of a medicament for the treatment of a disease or disorder.


Embodiment 88. The use of embodiment 87, wherein the disease or disorder is cancer.


Embodiment 89. The use of embodiment 88, wherein the cancer is melanoma.


Embodiment 90. The use of embodiment 88, wherein the cancer is non-small cell lung carcinoma.


Embodiment 91. Use of the modified hIL-2 protein of any one of embodiments 10-14 and 27-31, the immunoconjugate of any one of embodiments 53-78, or the pharmaceutical composition of embodiment 79 for the treatment of a disease or disorder.


Embodiment 92. The use of embodiment 91, wherein the disease or disorder is cancer.


Embodiment 93. The use of embodiment 92, wherein the cancer is melanoma.


Embodiment 94. The use of embodiment 92, wherein the cancer is non-small cell lung carcinoma.

Claims
  • 1. An anti-human PD-1 (hPD-1) antibody-modified human interleukin-2 (hIL-2) immunoconjugate comprising: a modified hIL-2 protein comprising the amino acid sequence of SEQ ID NO: 149; andan anti-hPD-1 antibody, or antigen-binding fragment thereof, that immunospecifically binds to hPD-1, wherein the antibody or antigen-binding fragment thereof, comprises a heavy chain complementarity determining region 1 (CDR1) comprising the amino acid sequence of SEQ ID NO: 418, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO: 419, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO: 420, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO: 421, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO: 422, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO: 423.
  • 2. The immunoconjugate of claim 1, wherein the modified hIL-2 protein further comprises a deletion or substitution at amino acid position 3 relative to the amino acid sequence of SEQ ID NO: 149, a deletion or substitution at amino acid position 125 relative to the amino acid sequence of SEQ ID NO: 149, or a deletion or substitution at amino acid position 3 relative to the amino acid sequence of SEQ ID NO: 149 and a deletion or substitution at amino acid position 125 relative to the amino acid sequence of SEQ ID NO: 149.
  • 3. The immunoconjugate of claim 2, wherein the modified hIL-2 protein comprises a T3A substitution, a C125A substitution, or both a T3A substitution and a C125A substitution.
  • 4. The immunoconjugate of claim 3, wherein the modified hIL-2 protein comprises the amino acid sequence of SEQ ID NO: 217.
  • 5. The immunoconjugate of claim 1, wherein the anti-hPD-1 antibody, or antigen-binding fragment thereof, comprises a heavy chain variable region (VH) comprising the amino acid sequence of SEQ ID NO: 416 and a light chain variable region (VL) comprising the amino acid sequence of SEQ ID NO: 417.
  • 6. The immunoconjugate of claim 1, wherein the anti-hPD-1 antibody, or antigen-binding fragment thereof, comprises an IgG1 heavy chain constant region.
  • 7. The immunoconjugate of claim 6, wherein the anti-hPD-1 antibody, or antigen-binding fragment thereof, comprises an L235A substitution and a G237A substitution, according to EU numbering.
  • 8. The immunoconjugate of claim 7, wherein the anti-hPD-1 antibody, or antigen-binding fragment thereof, comprises a heavy chain (HC) comprising the amino acid sequence of SEQ ID NO: 414 and a light chain (LC) comprising the amino acid sequence of SEQ ID NO: 415.
  • 9. An anti-hPD-1 antibody-modified hIL-2 immunoconjugate comprising: a modified hIL-2 protein comprising the amino acid sequence of SEQ ID NO: 217; andan anti-hPD-1 antibody, or antigen-binding fragment thereof, comprising a VH comprising the amino acid sequence of SEQ ID NO: 416 and a VL comprising the amino acid sequence of SEQ ID NO: 417.
  • 10. The immunoconjugate of claim 9, wherein the anti-hPD-1 antibody, or antigen-binding fragment thereof, comprises an IgG1 heavy chain constant region.
  • 11. The immunoconjugate of claim 10, wherein the anti-hPD-1 antibody, or antigen-binding fragment thereof, comprises an L235A substitution and a G237A substitution, according to EU numbering.
  • 12. The immunoconjugate of claim 11, wherein the anti-hPD-1 antibody, or antigen-binding fragment thereof, comprises a HC comprising the amino acid sequence of SEQ ID NO: 414 and a LC comprising the amino acid sequence of SEQ ID NO: 415.
  • 13. An anti-hPD-1 antibody-modified hIL-2 immunoconjugate comprising: a modified hIL-2 protein comprising the amino acid sequence of SEQ ID NO: 217; andan anti-hPD-1 antibody, or antigen-binding fragment thereof, comprising a HC comprising the amino acid sequence of SEQ ID NO: 414 and a LC comprising the amino acid sequence of SEQ ID NO: 415.
  • 14. The immunoconjugate of claim 13, comprising a light chain comprising the amino acid sequence of SEQ ID NO: 415; and a heavy chain-modified hIL-2 protein fusion comprising the amino acid sequence of SEQ ID NO: 532.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 18/335,650, which was filed on Jun. 15, 2023, which claims priority to U.S. Provisional Application No. 63/352,842, which was filed on Jun. 16, 2022, U.S. Provisional Application No. 63/481,630, which was filed on Jan. 26, 2023, and U.S. Provisional Application No. 63/502,746, which was filed on May 17, 2023, the disclosure of each of which are hereby incorporated by reference in their entirety.

Provisional Applications (3)
Number Date Country
63352842 Jun 2022 US
63481630 Jan 2023 US
63502746 May 2023 US
Continuations (1)
Number Date Country
Parent 18335650 Jun 2023 US
Child 18823422 US