This disclosure relates to anti-reflective coatings, articles including anti-reflective coatings, and methods of forming the same. In particular, this disclosure relates to articles having anti-reflective coatings, and more particularly to articles having anti-reflective coatings with reduced color shift across a wide range of viewing angles.
Cover articles are often used to protect critical devices within electronic products, to provide a user interface for input and/or display, and/or many other functions. Such products include mobile devices, such as smart phones, mp3 players, and computer tablets. Cover articles also include architectural articles, transportation articles (e.g., articles used in automotive applications, trains, aircraft, sea craft, etc.), and appliance articles. Some applications require that the color exhibited or perceived, in reflection and/or transmission, does not change appreciably as the viewing angle is changed. If the color in reflection or transmission does change with viewing angle to an appreciable degree, the user of the product will perceive a change in color or brightness of the display, which can diminish the perceived quality of the display. In other applications, changes in color may negatively impact the aesthetic requirements or other functional requirements.
The optical performance of cover articles can be improved by using various anti-reflective coatings. However, even when using anti-reflective coatings, color in reflection or transmission may still change appreciably with different viewing angles, particularly when extended to wide viewing angles. In some applications, this decreased optical performance at wide viewing angles can be mitigated because the user of the product can somewhat control the viewing angle to minimize noticeable color changes. For example, when using a mobile device such as a phone or tablet, the user can easily orient the display of the device to reduce viewing angles or variations in viewing angle. In other applications, however, a user may not have the same level of control of the viewing angle due to, for example, the user's viewpoint being fixed relative to the article, the orientation of the article being fixed relative to the user, or both. This can be the case in automobile or other vehicular applications, were the user's viewpoint is relatively fixed and a given article, such as a dashboard, control panel or display, may extend across a wide range of viewing angles from user's perspective and/or may be relatively fixed in orientation relative to the user.
Accordingly, there is a need for new anti-reflective coatings, cover articles with anti-reflective coatings, and methods for their manufacture, which have improved color uniformity at wide ranges of viewing angles.
Embodiments of an anti-reflective article are described. In one or more embodiments, the article includes an anti-reflective coating that is near-neutral in color across a wide range of viewing angles. In one or more embodiments, the article is a substrate on which the anti-reflective coating is disposed.
In one or more embodiments, the substrate includes a first major surface and a second major surface opposite the first major surface and separated from the first major surface by a thickness of the substrate. The anti-reflective coating is disposed on the first major surface of the substrate, and at a point on the anti-reflective coating opposite the first major surface (at the reflective surface, described herein), the article exhibits a single-surface reflectance under a D65 illuminant having an angular color variation, ΔEθ, defined as:
ΔEθ=√{(a*θ1−a*θ2)2+(b*θ1−b*θ2)2}
where a*θ1 and b*θ1 are a* and b* values of the point measured from a first angle θ1, and a*θ2 and b*θ2 are a* and b* values of the point measured from a second angle θ2, θ1 and θ2 being any two different viewing angles at least 5 degrees apart in a range from about 10° to about 60° relative to a normal vector of the reflective surface. In one or more embodiments, ΔEθ is less than 5.
In one or more embodiments, the reflective surface of the substrate exhibits a single-sided reflected color with an a* value from about −2 to about 1, and a b* value from about −4 to about 1 at a viewing angle in a range from about 10° to about 60°, or at all viewing angels in a range from about 10° to about 60°. In some embodiments, the reflective surface exhibits a single-side reflected color with an a* value from about −2 to about 0, and a b* value from about −4 to about −1 at a viewing angle of about 10°, and/or a single-sided reflected color with an a* value from about −1 to about 1, and a b* value from about −2 to about 1 at a viewing angle of about 60°.
According to one or more embodiments, the anti-reflective coating includes a stack of alternating high- and low-index materials. The low index material can be silica (SiO2), and the high index material can be niobium oxide (Nb2O5) or titanium oxide (TiOx). In some embodiments, the stack is a four-layer stack, and can be a four-layer stack including a first niobium oxide (Nb2O5) layer disposed on the buffer layer, a first silica (SiO2) layer disposed on the first niobium oxide layer, a second niobium oxide (Nb2O5) layer disposed on the first silica layer, and a second silica (SiO2) layer disposed on the second niobium oxide layer.
In one or more embodiments, a vehicle includes the substrate discussed above, where the substrate is a vehicle interior surface such as a dashboard cover, an instrument panel cover, a control panel cover, a center console cover, a steering wheel cover, a side door component cover, an entertainment unit over, or a graphical or video display cover.
According to one or more embodiments, an anti-reflective coating is provided. The anti-reflective coating includes a stack of alternating high- and low-index materials, and includes a reflective surface configured to face an observer. At a point on the reflective surface, the anti-reflective coating exhibits a single-surface reflectance under a D65 illuminant having an angular color variation, ΔEθ, defined as:
ΔEθ=√{(a*θ1−a*θ2)2+(b*θ1−b*θ2)2}
where a*θ1 and b*θ1 are a* and b* values of the point measured from a first angle θ1, and a*θ2 and b*θ2 are a* and b* values of the point measured from a second angle θ2, θ1 and θ2 being any two different viewing angles at least 5 degrees apart in a range from about 10° to about 60° relative to a normal vector of the reflective surface, and where ΔEθ is less than 5.
One or more embodiments include a method of producing an anti-reflective coating. The method includes providing a substrate having a first major surface, and depositing an anti-reflective coating on the first major surface. The anti-reflective coating including a stack disposed on the first major surface, and having alternating layers of silica (SiO2) and niobium oxide (Nb2O5). At a point on the first major surface having the anti-reflective coating, the anti-reflective coating exhibits a single-surface reflectance under a D65 illuminant having an angular color variation, ΔEθ, defined as:
ΔEθ=√{(a*θ1−a*θ2)2+(b*θ1−b*θ2)2}
where a*θ1 and b*θ1 are a* and b* values of the point measured from a first angle θ1, and a*θ2 and b*θ2 are a* and b* values of the point measured from a second angle θ2, θ1 and θ2 being any two different viewing angles at least 5 degrees apart in a range from about 10° to about 60° relative to a normal vector of the first major surface, and where ΔEθ is less than 5.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.
Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings.
Embodiments discussed herein are directed to anti-reflective (AR) coatings with substantially no color change at a variety of viewing angles, including large viewing angles. As a result, it is possible to achieve an improved, stable reflective-color surface coating that provides uniform neutral color, especially for wide view angle and/or over a large surface area or curved surface. Such AR coatings can be used with large cover glass that may have inked decoration or other decorative or design elements. By providing uniform neutral color over wide viewing angles and/or a large or curved surface area, such decorations or designs can be enjoyed by users without distracting or unpleasing color variation across the surface or at different viewing angles.
The above concerns are particularly relevant in automotive or vehicle interiors, where the interior surfaces of the vehicle are exposed to harsh and dynamic lighting conditions. In addition, vehicles are being equipped with an increasing number of displays and other surfaces having cover glass. For example, current or future vehicles may have cover glass covering all or part of a vehicle dashboard, instrument panel, center console, steering wheel, side doors, roofs, seat backs, and other vehicle interior surfaces. Displays may be present in any or all of these surfaces. However, users of vehicles are relatively fixed in position and/or viewing angle relative to vehicle interior surfaces. This lack of control of viewing position and/or angle, coupled with the harsh and ever-changing lighting conditions, create special challenges in vehicle interiors. For instance, in addition to the desire of manufacturers and users of vehicles to have uniform and aesthetically pleasing vehicle interior surfaces and displays, the utility of vehicle interior surfaces and displays is important. Poor optical performance or color variation over ranging viewing angles or large surface areas can negatively impact a user's ability to take full advantage of information that may be displayed on these vehicle interior surfaces. Accordingly, the ability to provide uniform neutral color over wide viewing angles and/or a large surface area, as provided by embodiments disclosed herein, can allow for improved user experiences in vehicles.
While vehicle interiors represent a particularly useful application of the AR coatings described herein, embodiments of the present disclosure are not limited to these scenarios and can be used in any scenario in which an anti-reflective coating can be applied. Thus, the following discusses AR coatings on articles, which can include any number of objects, substrates, or surfaces, including glass surfaces and glass used in vehicle interiors.
Referring to
The anti-reflective coating 120 includes at least one layer of at least one material. The term “layer” may include a single layer or may include one or more sub-layers. Such sub-layers may be in direct contact with one another. The sub-layers may be formed from the same material or two or more different materials. In one or more alternative embodiments, such sub-layers may have intervening layers of different materials disposed therebetween. In one or more embodiments a layer may include one or more contiguous and uninterrupted layers and/or one or more discontinuous and interrupted layers (i.e., a layer having different materials formed adjacent to one another). A layer or sub-layers may be formed by any known method in the art, including discrete deposition or continuous deposition processes. In one or more embodiments, the layer may be formed using only continuous deposition processes, or, alternatively, only discrete deposition processes.
The thickness of the anti-reflective coating 120 may be about 200 nm or greater while still providing an article that exhibits the optical performance described herein. In some examples, the optical coating 120 thickness may be in the range from about 200 nm to about 300 nm, from about 240 nm to about 300 nm, from about 240 nm to about 280 nm, from about 240 nm to about 260 nm, about 250 nm to about 260 nm, or about 250 nm to about 255 nm, and all ranges and sub-ranges therebetween.
As used herein, the term “dispose” includes coating, depositing, and/or forming a material onto a surface using any known method in the art. The disposed material may constitute a layer, as defined herein. The phrase “disposed on” includes the instance of forming a material onto a surface such that the material is in direct contact with the surface and also includes the instance where the material is formed on a surface, with one or more intervening material(s) between the disposed material and the surface. The intervening material(s) may constitute a layer, as defined herein.
As shown in
In general, anti-reflective coatings can include a variety of numbers of layers (e.g., 4 layers, 6 layers, etc.). One or more embodiments disclosed herein can achieve the advantage of the improved color neutrality and limited or no angular color variation with only four layers in the anti-reflective coating. The embodiment in
As used herein, the term “RI” refers to refractive index, and the terms “low RI” and “high RI” refer to the relative magnitude of RI values to one another (e.g., low RI<high RI). In one or more embodiments, the term “low RI” when used with the first layer 120B includes a range from about 1.3 to about 1.7 or 1.75, or from about 1.4 to about 1.55 or 1.5. In one or more embodiments, the term “high RI” when used with the second layer 120A includes a range from about 1.7 to about 2.5 (e.g., about 1.85 or greater). In some instances, the ranges for low RI and high RI may overlap; however, in most instances, the layers of the anti-reflective coating 120 have the general relationship regarding RI of: low RI<high RI.
Exemplary materials suitable for use in the anti-reflective coating 120 include: silica (SiO2) and niobium oxide (Nb2O5). Other suitable materials include Al2O3, GeO2, SiO, AlOxNy, AlN, SiNx, SiOxNy, SiuAlvOxNy, Ta2O5, TiOx or TiO2, ZrO2, TiN, MgO, MgF2, BaF2, CaF2, SnO2, HfO2, Y2O3, MoO3, DyF3, YbF3, YF3, CeF3, polymers, fluoropolymers, plasma-polymerized polymers, siloxane polymers, silsesquioxanes, polyimides, fluorinated polyimides, polyetherimide, polyethersulfone, polyphenylsulfone, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, acrylic polymers, urethane polymers, polymethylmethacrylate, other materials cited below as suitable for use in a scratch-resistant layer, and other materials known in the art. Some examples of suitable materials for use in the first layer 120A include Nb2O5, SiuAlvOxNy, Ta2O5, AlN, Si3N4, AlOxNy, SiOxNy, HfO2, TiO2, ZrO2, Y2O3, Al2O3, MoO3 and diamond-like carbon. The oxygen content of the materials for the first layer 120A may be minimized, especially in SiNx or AlNx materials. AlOxNy materials may be considered to be oxygen-doped AlNx, such that they may have an AlNx crystal structure (e.g. wurtzite) and need not have an AlON crystal structure. Some examples of suitable materials for use in the second layer 120B include SiO2, Al2O3, GeO2, SiO, AlOxNy, SiOxNy, SiuAlvOxNy, MgO, MgAl2O4, MgF2, BaF2, CaF2, DyF3, YbF3, YF3, and CeF3. The nitrogen content of the materials for use in the second layer 120B may be minimized (e.g., in materials such as Al2O3 and MgAl2O4). Where a material having a medium refractive index is desired, some embodiments may utilize AlN and/or SiOxNy.
In the embodiment shown in
As shown in
As shown in
The anti-reflective coatings of the present disclosure can be used with any type of anti-glare surface, or without an anti-glare surface. According to one or more preferred embodiments, an anti-glare treatment is used that is a two-step etching of a substrate surface and the treated surface is characterized by a “flat bottom” topography as opposed to some anti-glare surfaces having a hemispherical texture. The combination of such an anti-glare surface with the anti-reflective coating can result in increased ghost image reduction compared to bare glass or an anti-reflective coating without an anti-glare surface. For example, the ghost image reduction factor for such an anti-glare surface on its own can be about 4, while for an anti-reflection surface alone the ghost image reduction factor can be about 2.5. With the combination of anti-glare and anti-reflection, the ghost image reduction factor can be about 3 to about 3.5. The contrast ratio of the combination AG and AR can be about 5.1, compared to 5.4 for AR alone, about 2 for AG alone, or about 3 for bare glass. The tactile feel for combined AG and AR can be about 7, compared to 6 for AG alone, 3 for AR alone, or 1 for bare glass.
In some embodiments, the anti-reflective coating 120 exhibits an average light reflectance of about 9% or less, about 8% or less, about 7% or less, about 6% or less, about 5% or less, about 4% or less, about 3% or less, or about 2% or less over the optical wavelength regime, when measured at the anti-reflective surface 122 only (e.g., when removing the reflections from an uncoated back surface (e.g., 114 in
Optical interference between reflected waves from the optical coating 130/air interface and the optical coating 130/substrate 110 interface can lead to spectral reflectance and/or transmittance oscillations that create apparent color in the article 100. As used herein, the term “transmittance” is defined as the percentage of incident optical power within a given wavelength range transmitted through a material (e.g., the article, the substrate or the optical film or portions thereof). The term “reflectance” is similarly defined as the percentage of incident optical power within a given wavelength range that is reflected from a material (e.g., the article, the substrate, or the optical film or portions thereof). Transmittance and reflectance are measured using a specific linewidth. In one or more embodiments, the spectral resolution of the characterization of the transmittance and reflectance is less than 5 nm or 0.02 eV. The color may be more pronounced in reflection. The angular color shifts in reflection with viewing angle due to a shift in the spectral reflectance oscillations with incident illumination angle. Angular color shifts in transmittance with viewing angle are also due to the same shift in the spectral transmittance oscillation with incident illumination angle. The observed color and angular color shifts with incident illumination angle are often distracting or objectionable to device users, particularly under illumination with sharp spectral features such as fluorescent lighting and some LED lighting, or in conditions with uncontrollable ambient lighting conditions and/or a wide range of viewing angles, which can occur in vehicle interiors. Angular color shifts in transmission may also play a factor in color shift in reflection and vice versa. Factors in angular color shifts in transmission and/or reflection may also include angular color shifts due to viewing angle or angular color shifts away from a certain white point that may be caused by material absorption (somewhat independent of angle) defined by a particular illuminant or test system.
The oscillations may be described in terms of amplitude. As used herein, the term “amplitude” includes the peak-to-valley change in reflectance or transmittance. The phrase “average amplitude” includes the peak-to-valley change in reflectance or transmittance averaged over several oscillation cycles or wavelength sub-ranges within the optical wavelength regime. As used herein, the “optical wavelength regime” includes the wavelength range from about 400 nm to about 800 nm (and more specifically from about 450 nm to about 650 nm).
The embodiments of this disclosure include an anti-reflective coating to provide improved optical performance, in terms of colorlessness or neutral color, and/or little to no color shift when viewed at varying viewing angles and/or wide viewing angles under an illuminant. Exemplary illuminants include any one of CIE F2, CIE F10, CIE F11, CIE F12 and CIE D65. In one or more embodiments, the article exhibits an angular color shift (or angular color variation) in reflectance of about 5 or less, about 4 or less, about 3 or less, or about 2 or less between a reference viewing angle and any other viewing angle in the ranges provided herein. As used herein, the phrase “color shift” or “color variation” (angular or reference point) refers to the change in both a* and b*, under the CIE L*, a*, b* colorimetry system in reflectance. It should be understood that unless otherwise noted, the L* coordinate of the articles described herein are the same at any angle or reference point and do not influence color shift. For example, angular color shift ΔEθ may be determined using the following Equation (1):
ΔEθ(a*,b*)=√{(a*θ1−a*θ2)2+(b*θ1−b*θ2)2}, (1)
with a*θ1 and b*θ1 representing the a* and b* coordinates of a point on the article when viewed at a first viewing angle θ1 or reference viewing angle (which may include normal incidence or any viewing angle in the ranges described herein) and a*θ2 and b*θ2 representing the a* and b* coordinates of the same point on the article when viewed at a second viewing angle θ2, where the first viewing angle θ1 and the second viewing angle θ2 are different. In some instances, an angular color shift in reflectance of about 10 or less (e.g., 5 or less, 4 or less, 3 or less, or 2 or less) is exhibited by the article when viewed at various viewing angles from a reference viewing angle, under an illuminant. In some instances the angular color shift in reflectance is about 4.1 or less, about 4.0 or less, about 3.9 or less, about 3.8 or less, about 3.7 or less, about 3.6 or less, about 3.5 or less, about 3.4 or less, about 3.3 or less, about 3.2 or less, about 3.1 or less, about 3.0 or less, about 2.9 or less, about 2.8 or less, about 2.7 or less, about 2.6 or less, about 2.5 or less, about 2.4 or less, about 2.3 or less, about 2.2 or less, about 2.1 or less, about 2.0 or less, about 1.9 or less, 1.8 or less, 1.7 or less, 1.6 or less, 1.5 or less, 1.4 or less, 1.3 or less, 1.2 or less, 1.1 or less, 1 or less, 0.9 or less, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, 0.4 or less, 0.3 or less, 0.2 or less, or 0.1 or less. In some embodiments, the angular color shift may be about 0. The illuminant can include standard illuminants as determined by the CIE, including A illuminants (representing tungsten-filament lighting), B illuminants (daylight simulating illuminants), C illuminants (daylight simulating illuminants), D series illuminants (representing natural daylight), and F series illuminants (representing various types of fluorescent lighting). In specific examples, the articles exhibit an angular color shift in reflectance of about 4 or less, about 3 or less, about 2 or less, or about 1 or less when viewed at incident illumination angle from the reference illumination angle under a CIE F2, F10, F11, F12 or D65 illuminant, or more specifically, under a CIE D65 illuminant. In particular, the angular color shift is measured under a CIE D65 1964 illuminant. More specifically, in some examples of embodiments, the angular color shift in reflectance according to Equation (1) is about 4 or less when viewed at angles in a range from about 10° to about 60°, about 3 or less when viewed at angles in a range from about 10° to about 60°, or about 2 or less when viewed at angles in a range from about 10° and about 60°, where the reference viewing angle can range from about 10° to about 60° and is different than the viewing angle upon which the color shift is based. For example, for a reference viewing angle of about 10°, the angular color shift can fall within the above series of ranges for viewing angles from about 10° to about 60°. Similarly, for reference viewing angles of about 15°, about 30°, about 45°, or about 60°, the angular color shift can fall within the above series of ranges for viewing angles from about 10° to about 60°. Examples are included below for viewing angles of 10°, 15°, 30°, 45°, and 60°, but the viewing angle is not limited to these specific examples and can include any angle in the range from about 10° to about 60°.
Although reference viewing angles of 10°, 15°, 30°, 45°, and 60° are mentioned above, these are used as examples only and embodiments of this disclosure can include any reference viewing angle in the range from about 0° to about 60°, or from about 10° to about 60°. For example, the reference viewing angle may include normal incidence (i.e., from about 0 degrees to about 10 degrees), or 5 degrees from normal incidence, 10 degrees from normal incidence, 15 degrees from normal incidence, 20 degrees from normal incidence, 25 degrees from normal incidence, 30 degrees from normal incidence, 35 degrees from normal incidence, 40 degrees from normal incidence, 50 degrees from normal incidence, 55 degrees from normal incidence, or 60 degrees from normal incidence, provided the difference between the first or reference viewing angle and the second viewing angle is at least about 1 degree, 2 degrees or about 5 degrees. The incident viewing angle may be, with respect to the reference illumination angle, in the range from about 5 degrees to about 80 degrees, from about 5 degrees to about 70 degrees, from about 5 degrees to about 65 degrees, from about 5 degrees to about 60 degrees, from about 5 degrees to about 55 degrees, from about 5 degrees to about 50 degrees, from about 5 degrees to about 45 degrees, from about 5 degrees to about 40 degrees, from about 5 degrees to about 35 degrees, from about 5 degrees to about 30 degrees, from about 5 degrees to about 25 degrees, from about 5 degrees to about 20 degrees, from about 5 degrees to about 15 degrees, and all ranges and sub-ranges therebetween, away from the reference illumination angle.
In one or more embodiments, the article exhibits a color in the CIE L*, a*, b* colorimetry system in reflectance such that the distance or reference point color shift at a given angle between the reflectance coordinates from a reference point is less than about 5 or less than about 2 under an illuminant (which can include standard illuminants as determined by the CIE, including A illuminants (representing tungsten-filament lighting), B illuminants (daylight simulating illuminants), C illuminants (daylight simulating illuminants), D series illuminants (representing natural daylight), and F series illuminants (representing various types of fluorescent lighting)). In specific examples, the articles exhibit a color shift in reflectance of about 2 or less when viewed at incident illumination angle from the reference illumination angle under a CIE F2, F10, F11, F12 or D65 illuminant or more specifically under a CIE F2 illuminant. Stated another way, the article may exhibit a reflectance color (or reflectance color coordinates) measured at the anti-reflective surface 122 having a reference point color shift of less than about 2 from a reference point, as defined herein. Unless otherwise noted, the reflectance color or reflectance color coordinates are measured on only the anti-reflective surface 122 of the article. However, the reflectance color or reflectance color coordinates described herein can be measured on both the anti-reflective surface 122 of the article and the opposite side of the article (i.e., major surface 114 in
In one or more embodiments, the reference point may be the origin (0, 0) in the CIE L*, a*, b* colorimetry system (or the color coordinates a*=0, b*=0), the coordinates (a*=−2, b*=−2), or the reflectance color coordinates of the substrate. It should be understood that unless otherwise noted, the L* coordinate of the articles described herein are the same as the reference point and do not influence color shift. Where the reference point color shift of the article is defined with respect to the substrate, the reflectance color coordinates of the article are compared to the reflectance color coordinates of the substrate.
In one or more specific embodiments, the reference point color shift of the reflectance color may be less than 1 or even less than 0.5. In one or more specific embodiments, the reference point color shift for the reflectance color may be 1.8, 1.6, 1.4, 1.2, 0.8, 0.6, 0.4, 0.2, 0 and all ranges and sub-ranges therebetween. Where the reference point is the color coordinates a*=0, b*=0, the reference point color shift is calculated by Equation (2).
reference point color shift=√((a*article)2+(b*article)2) (2)
Where the reference point is the color coordinates a*=−2, b*=−2, the reference point color shift is calculated by Equation (3).
reference point color shift=√((a*article+2)2+(b*article+2)2) (3)
Where the reference point is the color coordinates of the substrate, the reference point color shift is calculated by Equation (4).
reference point color shift=√((a*article−a*substrate)2+(b*article−b*substrate)2) (4)
In some embodiments, the article may exhibit a reflectance color (or reflectance color coordinates) such that the reference point color shift is less than 2 when the reference point is any one of the color coordinates of the substrate, the color coordinates a*=0, b*=0 and the coordinates a*=−2, b*=−2.
In one or more embodiment, the article may exhibit a b* value in reflectance (as measured at the anti-reflective surface only) in the range from about −5 to about 1, from about −5 to about 0, from about −4 to about 1, or from about −4 to about 0, in the CIE L*, a*, b* colorimetry system at all incidence illumination angles in the range from about 0 to about 60 degrees (or from about 0 degrees to about 40 degrees or from about 0 degrees to about 30 degrees).
In some embodiments, the article exhibits an a* value in reflectance (at only the anti-reflective surface) in the range from about −5 to about 2 (e.g., −4.5 to 1.5, −3 to 0, −2.5 to 0.25) at incident illumination angles in the range from about 0 degrees to about 60 degrees under illuminants D65, A, and F2. In some embodiments, the article exhibits a b* value in reflectance (at only the anti-reflective surface) in the range from about −7 to about 0 at incident illumination angles in the range from about 0 degrees to about 60 degrees under illuminants D65, A, and F2.
In some preferred embodiments, the article may exhibit color coordinate values in single-sided reflectance with an a* value in the range of about −2 to about 0 and a b* value in the range of about −4 to about −1 at a viewing angle of about 10 degrees. The article of these embodiments may further also exhibit an a* value in reflectance in the range of about −2.5 to about 1 and a b* value in the range of about −3.5 to about 1 at a viewing angle of about 60 degrees.
The article of one or more embodiments, or the anti-reflective surface 122 of one or more articles, may exhibit an average light transmittance of about 95% or greater (e.g., about 9.5% or greater, about 96% or greater, about 96.5% or greater, about 97% or greater, about 97.5% or greater, about 98% or greater, about 98.5% or greater or about 99% or greater) over the optical wavelength regime in the range from about 400 nm to about 800 nm. In some embodiments, the article, or the anti-reflective surface 122 of one or more articles, may exhibit an average light reflectance of about 2% or less (e.g., about 1.5% or less, about 1% or less, about 0.75% or less, about 0.5% or less, or about 0.25% or less) over the optical wavelength regime in the range from about 400 nm to about 800 nm. These light transmittance and light reflectance values may be observed over the entire optical wavelength regime or over selected ranges of the optical wavelength regime (e.g., a 100 nm wavelength range, 150 nm wavelength range, a 200 nm wavelength range, a 250 nm wavelength range, a 280 nm wavelength range, or a 300 nm wavelength range, within the optical wavelength regime). In some embodiments, these light reflectance and transmittance values may be a total reflectance or total transmittance (taking into account reflectance or transmittance on both the anti-reflective surface 122 and the opposite major surface 114) or may be observed on a single side of the article, as measured on the anti-reflective surface 122 only (without taking into account the opposite surface). Unless otherwise specified, the average reflectance or transmittance is measured at an incident illumination angle in the range from about 0 degrees to about 10 degrees (however, such measurements may be provided at incident illumination angles of 45 degrees or 60 degrees).
In some embodiments, the article of one or more embodiments, or the anti-reflective surface 122 of one or more articles, may exhibit an average visible photopic reflectance of about 1% or less, about 0.7% or less, about 0.5% or less, or about 0.45% or less over the optical wavelength regime. These photopic reflectance values may be exhibited at viewing angles in the range from about 0° to about 20°, from about 0° to about 40° or from about 0° to about 60°. As used herein, photopic reflectance mimics the response of the human eye by weighting the reflectance versus wavelength spectrum according to the human eye's sensitivity. Photopic reflectance may also be defined as the luminance, or tristimulus Y value of reflected light, according to known conventions such as CIE color space conventions. The average photopic reflectance is defined in Equation (5) as the spectral reflectance R(λ) multiplied by the illuminant spectrum I(λ) and the CIE's color matching function
Rp=∫380 nm720 nmR(λ)×I(λ)×
In some embodiments, the article exhibits a single-side average photopic reflectance, measured at normal or near-normal incidence (e.g. 0-10 degrees) on the anti-reflective surface only of less than about 10%. In some embodiments, the single-side average photopic reflectance is about 9% or less, about 8% or less, about 7% or less, about 6% or less, about 5% or less, about 4% or less, about 3%, or about 2% or less. In a specific embodiment, the anti-reflective surface 122 of one or more articles (i.e., when measuring the anti-reflective surface only through a single-sided measurement), may exhibit the above average photopic reflectance values, while simultaneously exhibiting a maximum reflectance color shift, over the entire viewing angle range from about 10 degrees to about 60 degrees using D65 illumination, of less than about 5.0, less than about 4.0, less than about 3.0, less than about 2.0, less than about 1.5, less than about 1.3, less than about 1.2, less than about 1.1, less than about 1.0, less than about 0.9, or less than about 0.8. These maximum reflectance color shift values represent the lowest color point value measured at any angle from about 10 degrees to about 60 degrees from normal incidence, subtracted from the highest color point value measured at any angle in the same range. The values may represent a maximum change in a* value (a*highest−a*lowest), a maximum change in b* value (b*highest−b*lowest), a maximum change in both a* and b* values, or a maximum change in the quantity √(a*highest−a*lowest)2+(b*highest−b*lowest)2).
Substrate
The substrate 110 may include an inorganic material and may include an amorphous substrate, a crystalline substrate or a combination thereof. The substrate 110 may be formed from man-made materials and/or naturally occurring materials (e.g., quartz and polymers). For example, in some instances, the substrate 110 may be characterized as organic and may specifically be polymeric. Examples of suitable polymers include, without limitation: thermoplastics including polystyrene (PS) (including styrene copolymers and blends), polycarbonate (PC) (including copolymers and blends), polyesters (including copolymers and blends, including polyethyleneterephthalate and polyethyleneterephthalate copolymers), polyolefins (PO) and cyclicpolyolefins (cyclic-PO), polyvinylchloride (PVC), acrylic polymers including polymethyl methacrylate (PMMA) (including copolymers and blends), thermoplastic urethanes (TPU), polyetherimide (PEI) and blends of these polymers with each other. Other exemplary polymers include epoxy, styrenic, phenolic, melamine, and silicone resins.
In some specific embodiments, the substrate 110 may specifically exclude polymeric, plastic and/or metal substrates. The substrate may be characterized as alkali-including substrates (i.e., the substrate includes one or more alkalis). In one or more embodiments, the substrate exhibits a refractive index in the range from about 1.45 to about 1.55.
In one or more embodiments, the amorphous substrate may include glass, which may be strengthened or non-strengthened. Examples of suitable glass include soda lime glass, alkali aluminosilicate glass, alkali containing borosilicate glass and alkali aluminoborosilicate glass. In some variants, the glass may be free of lithia. In one or more alternative embodiments, the substrate 110 may include crystalline substrates such as glass ceramic substrates (which may be strengthened or non-strengthened) or may include a single crystal structure, such as sapphire. In one or more specific embodiments, the substrate 110 includes an amorphous base (e.g., glass) and a crystalline cladding (e.g., sapphire layer, a polycrystalline alumina layer and/or or a spinel (MgAl2O4) layer).
The substrate 110 may be substantially planar or sheet-like, or may be a curved or otherwise shaped or sculpted substrate. In some preferred embodiments, the substrate 110 is a glass and glass-based material as described above, including a glass-ceramic material, and have a thickness of less than 2.0 mm, or from about 0.1 mm to about 2.0 mm, or from about 0.3 mm to about 1.7 mm, or about 0.5 mm to a about 1.1 mm, or about 0.7 mm to about 1.0 mm. The glass material of the substrate may be chemically strengthened. In some embodiments, the substrate 110 includes a glass or glass-based material that is conformable to a surface at a temperature below the glass-transition temperature of the glass or glass-based material, which is referred to herein as a glass, material, or substrate that is “cold-formable,” “cold-formed,” “cold-bent,” or “cold-bendable.” The surface to which the material is cold-formed can be non-planar, and may include a radius of curvature over all or part of the surface that is at least 900 mm, at least 500 mm, or at least 100 mm. The surface may include multiple radii of curvature in one or more areas of the surface, and the multiple radii of curvature may be one or more axes of curvature that are parallel, non-parallel, co-planar, or non-co-planar. In such a case, the substrate 110 may be cold-formable to one or more of those curved portions resulting in a complexly-curved substrate.
The substrate 110 may be substantially optically clear, transparent and free from light scattering. In such embodiments, the substrate may exhibit an average light transmission over the optical wavelength regime of about 85% or greater, about 86% or greater, about 87% or greater, about 88% or greater, about 89% or greater, about 90% or greater, about 91% or greater or about 92% or greater. In one or more alternative embodiments, the substrate 110 may be opaque or exhibit an average light transmission over the optical wavelength regime of less than about 10%, less than about 9%, less than about 8%, less than about 7%, less than about 6%, less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, or less than about 0%. In some embodiments, these light reflectance and transmittance values may be a total reflectance or total transmittance (taking into account reflectance or transmittance on both major surfaces of the substrate) or may be observed on a single side of the substrate (i.e., on the anti-reflective surface 122 only, without taking into account the opposite surface). Unless otherwise specified, the average reflectance or transmittance is measured at an incident illumination angle of 0 degrees (however, such measurements may be provided at incident illumination angles of 45 degrees or 60 degrees). The substrate 110 may optionally exhibit a color, such as white, black, red, blue, green, yellow, orange, etc.
The substrate 110 may be provided using a variety of different processes. For instance, where the substrate 110 includes an amorphous substrate such as glass, various forming methods can include float glass processes and down-draw processes such as fusion draw and slot draw.
Once formed, a substrate 110 may be strengthened to form a strengthened substrate. As used herein, the term “strengthened substrate” may refer to a substrate that has been chemically strengthened, for example through ion-exchange of larger ions for smaller ions in the surface of the substrate. However, other strengthening methods known in the art, such as thermal tempering, or utilizing a mismatch of the coefficient of thermal expansion between portions of the substrate to create compressive stress and central tension regions, may be utilized to form strengthened substrates.
Where the substrate is chemically strengthened by an ion exchange process, the ions in the surface layer of the substrate are replaced by—or exchanged with—larger ions having the same valence or oxidation state. Ion exchange processes are typically carried out by immersing a substrate in a molten salt bath containing the larger ions to be exchanged with the smaller ions in the substrate. It will be appreciated by those skilled in the art that parameters for the ion exchange process, including, but not limited to, bath composition and temperature, immersion time, the number of immersions of the substrate in a salt bath (or baths), use of multiple salt baths, additional steps such as annealing, washing, and the like, are generally determined by the composition of the substrate and the desired compressive stress (CS), depth of compressive stress layer (or depth of layer) of the substrate that result from the strengthening operation. By way of example, ion exchange of alkali metal-containing glass substrates may be achieved by immersion in at least one molten bath containing a salt such as, but not limited to, nitrates, sulfates, and chlorides of the larger alkali metal ion. The temperature of the molten salt bath typically is in a range from about 380° C. up to about 450° C., while immersion times range from about 15 minutes up to about 40 hours. However, temperatures and immersion times different from those described above may also be used.
The degree of chemical strengthening achieved by ion exchange may be quantified based on the parameters of central tension (CT), surface CS, and depth of layer (DOL). Surface CS may be measured near the surface or within the strengthened glass at various depths. A maximum CS value may include the measured CS at the surface (CSs) of the strengthened substrate. The CT, which is computed for the inner region adjacent the compressive stress layer within a glass substrate, can be calculated from the CS, the physical thickness t, and the DOL. CS and DOL are measured using those means known in the art. Such means include, but are not limited to, measurement of surface stress (FSM) using commercially available instruments such as the FSM-6000, manufactured by Luceo Co., Ltd. (Tokyo, Japan), or the like, and methods of measuring CS and DOL are described in ASTM 1422C-99, entitled “Standard Specification for Chemically Strengthened Flat Glass,” and ASTM 1279.19779 “Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully-Tempered Flat Glass,” the contents of which are incorporated herein by reference in their entirety. Surface stress measurements rely upon the accurate measurement of the stress optical coefficient (SOC), which is related to the birefringence of the glass substrate. SOC in turn is measured by those methods that are known in the art, such as fiber and four point bend methods, both of which are described in ASTM standard C770-98 (2008), entitled “Standard Test Method for Measurement of Glass Stress-Optical Coefficient,” the contents of which are incorporated herein by reference in their entirety, and a bulk cylinder method. The relationship between CS and CT is given by the expression (1):
CT=(CS·DOL)/(t−2DOL) (1),
wherein t is the physical thickness (μm) of the glass article. In various sections of the disclosure, CT and CS are expressed herein in megaPascals (MPa), physical thickness t is expressed in either micrometers (μm) or millimeters (mm) and DOL is expressed in micrometers (μm).
In one embodiment, a strengthened substrate 110 can have a surface CS of 250 MPa or greater, 300 MPa or greater, e.g., 400 MPa or greater, 450 MPa or greater, 500 MPa or greater, 550 MPa or greater, 600 MPa or greater, 650 MPa or greater, 700 MPa or greater, 750 MPa or greater or 800 MPa or greater. The strengthened substrate may have a DOL of 10 μm or greater, 15 μm or greater, 20 μm or greater (e.g., 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm or greater) and/or a CT of 10 MPa or greater, 20 MPa or greater, 30 MPa or greater, 40 MPa or greater (e.g., 42 MPa, 45 MPa, or 50 MPa or greater) but less than 100 MPa (e.g., 95, 90, 85, 80, 75, 70, 65, 60, 55 MPa or less). In one or more specific embodiments, the strengthened substrate has one or more of the following: a surface CS greater than 500 MPa, a DOL greater than 15 μm, and a CT greater than 18 MPa.
Example glasses that may be used in the substrate may include alkali aluminosilicate glass compositions or alkali aluminoborosilicate glass compositions, though other glass compositions are contemplated. Such glass compositions are capable of being chemically strengthened by an ion exchange process. One example glass composition comprises SiO2, B2O3 and Na2O, where (SiO2+B2O3)≥66 mol. %, and Na2O≥9 mol. %. In an embodiment, the glass composition includes at least 6 wt. % aluminum oxide. In a further embodiment, the substrate includes a glass composition with one or more alkaline earth oxides, such that a content of alkaline earth oxides is at least 5 wt. %. Suitable glass compositions, in some embodiments, further comprise at least one of K2O, MgO, and CaO. In a particular embodiment, the glass compositions used in the substrate can comprise 61-75 mol. % SiO2; 7-15 mol. % Al2O3; 0-12 mol. % B2O3; 9-21 mol. % Na2O; 0-4 mol. % K2O; 0-7 mol. % MgO; and 0-3 mol. % CaO.
A further example glass composition suitable for the substrate comprises: 60-70 mol. % SiO2; 6-14 mol. % Al2O3; 0-15 mol. % B2O3; 0-15 mol. % Li2O; 0-20 mol. % Na2O; 0-10 mol. % K2O; 0-8 mol. % MgO; 0-10 mol. % CaO; 0-5 mol. % ZrO2; 0-1 mol. % SnO2; 0-1 mol. % CeO2; less than 50 ppm As2O3; and less than 50 ppm Sb2O3; where 12 mol. % (Li2O+Na2O+K2O)≤20 mol. % and 0 mol. %≤(MgO+CaO)≤10 mol. %.
A still further example glass composition suitable for the substrate comprises: 63.5-66.5 mol. % SiO2; 8-12 mol. % Al2O3; 0-3 mol. % B2O3; 0-5 mol. % Li2O; 8-18 mol. % Na2O; 0-5 mol. % K2O; 1-7 mol. % MgO; 0-2.5 mol. % CaO; 0-3 mol. % ZrO2; 0.05-0.25 mol. % SnO2; 0.05-0.5 mol. % CeO2; less than 50 ppm As2O3; and less than 50 ppm Sb2O3; where 14 mol. % (Li2O+Na2O+K2O)≤18 mol. % and 2 mol. %≤(MgO+CaO)≤7 mol. %.
In a particular embodiment, an alkali aluminosilicate glass composition suitable for the substrate comprises alumina, at least one alkali metal and, in some embodiments, greater than 50 mol. % SiO2, in other embodiments at least 58 mol. % SiO2, and in still other embodiments at least 60 mol. % SiO2, wherein the ratio (Al2O3+B2O3)/Σmodifiers (i.e., sum of modifiers) is greater than 1, where in the ratio the components are expressed in mol. % and the modifiers are alkali metal oxides. This glass composition, in particular embodiments, comprises: 58-72 mol. % SiO2; 9-17 mol. % Al2O3; 2-12 mol. % B2O3; 8-16 mol. % Na2O; and 0-4 mol. % K2O, wherein the ratio (Al2O3+B2O3)/Σmodifiers (i.e., sum of modifiers) is greater than 1.
In still another embodiment, the substrate may include an alkali aluminosilicate glass composition comprising: 64-68 mol. % SiO2; 12-16 mol. % Na2O; 8-12 mol. % Al2O3; 0-3 mol. % B2O3; 2-5 mol. % K2O; 4-6 mol. % MgO; and 0-5 mol. % CaO, wherein: 66 mol. %≤SiO2+B2O3+CaO≤69 mol. %; Na2O+K2O+B2O3+MgO+CaO+SrO>10 mol. %; 5 mol. %≤MgO+CaO+SrO≤8 mol. %; (Na2O+B2O3)−Al2O3≤2 mol. %; 2 mol. %≤Na2O−Al2O3≤6 mol. %; and 4 mol. % (Na2O+K2O)−Al2O3≤10 mol. %.
In an alternative embodiment, the substrate may comprise an alkali aluminosilicate glass composition comprising: 2 mol % or more of Al2O3 and/or ZrO2, or 4 mol % or more of Al2O3 and/or ZrO2.
Various embodiments will be further clarified by the following examples.
According to one or more embodiments, an anti-reflective coating is provided that has superior optical performance, in terms of color shift in single-side reflectance, as compared to alternative or pre-existing anti-reflective coatings. For example, as shown in
Examples of one or more embodiments were produced using a reactive sputtering coater. Exemplary embodiments of the anti-reflective coatings are described herein and provided below in Table 1, for example. Anti-reflective coating Example 1 and Example 2 are inventive examples both having a buffer layer of silica, followed by a 1st Nb2O5 layer, a 1st SiO2 layer, a 2nd Nb2O5 layer, and a 2nd SiO2 layer, in that order.
Examples 1 and 2 from Table 1 were analyzed for their optical performance in terms of angular color shift from 0° to 60°, and the optical performance results are shown in
The optical performance of Examples 1 and 2 were measured for confirmation, and the results are provided in Table 2, and the results for Example 1 are shown in
Due in part to the above-described upward and rightward shift in values of a* and b* in
Further examples and comparative examples of the thicknesses of the anti-reflective coating are provided below in Tables 3 and 4. In particular, one hundred anti-reflective coating samples were prepared according to various aspects of embodiments of this disclosure. The AR coating samples were designed to have a* values in a range from about −2 to about 0, and b* values in a range from about −4 to about −1 at a viewing angle of about 10°. This target range for a* and b* at the viewing angle of 10° is represented in
Measurements were also performed using an Agilent Cary5000 UV-Vis-NIR Spectrophotometer from 800 to 380 nm. The spectrophotometer was used with a universal measurement accessory (UMA), in advanced measurement mode of absolute, and at angles of incidence of 10°, 15°, 30°, 45°, and 60°. Specular reflectance measurements were performed with samples inserted in sample holder in UMA compartment. A background scan was performed before each new measurement configuration (i.e. polarization). Measurements performed with samples coated surface incident to instrument beam at varying angles in s and p polarizations. First-surface reflectance was achieved by coupling the sample to a 3390 black glass using index matching oil close to that of the sample. The coupling allows light to enter the sample and pass in to the black glass where it is absorbed, thereby removing the second surface contribution. Reflectance measurements at each polarization and angle were corrected to the corresponding ratio of the calculated (true) 1st surface reflectance of 7980 fused silica to the measured first-surface reflectance of 7980 fused silica. The standard Fresnel equations for reflected intensity of s- and p-polarizations was used (found under ‘Corrections’ tab). The s and p values were averaged to result in unpolarized light. All measurements made with coated surface incident to incoming beam. The UV-Vis-NIR spectrophotometer was configured with integrating sphere (required for scattering media) or standard axial detector. The wavelength range was typically 380-780 nm, but at least inclusive of 400-700 nm.
For calculations, color or chromaticity is a weighting and summation of the object spectral transmittance (or reflectance), the human eye “standard observer” spectral functions and the illuminant power spectral distribution. D65, A, and F2 illuminants were used at both 2° and 10° observer. The color coordinates for Illuminant D65, A and F2 w/10° observer were calculated from the visible transmittance data. A wavelength range of 770 nm-380 nm (2 nm interval) was used for the color calculations.
The SCI a* and b* values from Table 3 are plotted in
Of the one hundred samples in Table 3, seventeen samples were chosen to determine precise layer thicknesses. These chosen samples were sample nos. 04, 10, 12, 20, 21, 22, 25, 33, 65, 66, 67, 69, 71, 72, 74, 90, and 93. Layer thicknesses were modeled based on the measured optical/color data. The modeled thickness of each samples' silica buffer layer, 1st Nb2O5 layer, 1st SiO2 layer, 2nd Nb2O5 layer, and 2nd SiO2 layer are shown in Table 4. Table 4 also shows the average thickness of the silica buffer layers, 1st Nb2O5 layers, 1st SiO2 layers, 2nd Nb2O5 layers, and 2nd SiO2 layers across all seventeen samples, as well as the deviation in thickness for each of those layers, expressed as a difference between the maximum thickness and the average thickness.
The thicknesses in Table 4 can be considered physical thicknesses (i.e., the physical dimension, measured in units of distance). However, according to one or more embodiments, the layer thicknesses of the anti-reflective coating can be defined by their optical thickness, as opposed to their physical thicknesses. The optical thickness to, as used herein, is defined as the physical thickness (nm) multiplied by the refractive index, and, unless otherwise specified, the optical thickness is based on a wavelength of 550 nm. Therefore, considering low refractive index materials having a refractive index from about 1.4 to about 1.5, and high refractive index materials having a refractive index from about 1.7 to about 2.5, embodiments of the present disclosure include a four-layer anti-reflective coating with, in order from bottom to top, a 1st high-index layer with an optical thickness ranging from about 15 nm to about 40 nm; a 1st low-index layer with an optical thickness ranging from about 50 nm to about 70 nm; a 2nd high-index layer with an optical thickness ranging from about 75 nm to about 310 nm; and a 2nd low-index layer with an optical thickness ranging from about 105 nm to about 135 nm. In further embodiments of the present disclosure, the four-layer anti-reflective coating can have, in order from bottom to top, a 1st high-index layer with an optical thickness ranging from about 20 nm to about 35 nm; a 1st low-index layer with an optical thickness ranging from about 55 nm to about 65 nm; a 2nd high-index layer with an optical thickness ranging from about 80 nm to about 305 nm; and a 2nd low-index layer with an optical thickness ranging from about 110 nm to about 130 nm.
As shown in Table 5 below, the samples of Table 4 were further analyzed for their first-surface reflectance values, including the CIE color values of a*, b*, L*, the CIE tristimulus of X, Y, Z, and the CIE chromaticity values of x, y, and z, all at viewing angles of 10°, 15°, 30°, 45°, and 60° under a D65 illuminant. The a* and b* values of Sample Nos. 4, 10, 12, 20, 21, 22, 25, 33, 65, 66, 67, 69, 71, 72, 74, 90, and 93 are shown in
According to some specific embodiments, certain ranges of a* and b* values may be considered exemplary. Therefore, some embodiments of the present disclosure can be interpreted as being exemplary for certain application, due to the a* and b* values staying within certain ranges, either at one or more particular viewing angles or over a range of viewing examples. For example, in one or more embodiments, the a* value can range from about −2 to about 0 and a b* value from about −4 to about −1 at a viewing angle of 10°. In one or more embodiments, the a* value can range from about −1 to about 1 and a b* value from about −2 to about 1 at a viewing angle of 60°. In one or more embodiments, the a* value can range from about −2 to about 1, and a b* value from about −4 to about 1 at a particular viewing angle in a range from about 10° to about 60°, or at all viewing angels in a range from about 10° to about 60°. These exemplary ranges are determined to be useful for applications discussed herein, such as anti-reflective coatings in vehicle interiors. However, it is possible for the desirable ranges of a* and b* for various viewing angles to vary based on the desired use, as some users or designers may prefer certain color shifts, or certain viewing angles may less likely in some application. In any case, the a* and b* values in Table 5 can be used to determine if the anti-reflective coating of a sample is desirable for a given use. For example, Sample Nos. 33, 65, 66, 67, 69, 71, 72, and 74 have a* values that are greater than 0 at 10°, which falls outside of the above-discussed preferred range. Sample Nos. 65, 67, and 69 have a* values less than −1 at 60°, which also falls outside of the above-discussed preferred range. Sample Nos. 65, 67, and 90 also have maximum a* values of 1.29, 1.10, and 1.62, respectively, at a viewing angle of 45°, which fall outside of the above-discussed preferred range. In contrast, Sample Nos. 4, 10, 12, 20, 21, 22, 25, 69, and 93 are within or closer to the desired ranges for a* and b*.
Using the a* and b* values in Table 5, ΔEθ was calculated using Equation (1) for angular color variation between each of the angles at which measurement were taken. For example, ΔEθ was calculated where the reference viewing angle or first angle θ1 was each of 10°, 15°, 30°, 45°, and 60°, and the second viewing angle θ2 was each of the other viewing angles not equal to the current θ1. The results are shown in Table 6. The right-most column of Table 6 shows the maximum ΔEθ value for reference viewing angle θ1 (expressed as ΔEθ(θ1)).
Anti-Glare Surface Example
According to one or more embodiments, an anti-reflective coating is used in combination with an anti-glare (AG) surface. Anti-glare surface treatments can impact the performance of anti-reflective coatings. Thus, selection of the proper anti-glare surface can be important for optimal performance, particular in difficult use environments, such as vehicle interiors. In such environments, anti-glare surfaces on a cover glass needs to have the minimum sparkle and provide the appropriate anti-glare effect and tactile while meeting a required Contrast Ratio (CR) under sunlight. In this example, a sample was prepared with a chemically-etched Ultra-Low Sparkle (ULS) AG surface on a glass substrate made of Corning® Gorilla® Glass with an anti-reflective coating according to embodiments of this disclosure, and an easy-to-clean (ETC) coating to provide stable color appearance with wide-viewing angles. The ambient contrast performance was evaluated at a system level to gauge the impact of AG/AR coating on sunlight viewablity.
The anti-glare surface was prepared on a Corning® Gorilla® Glass substrate by using a chemical etching method that enable ultra-low sparkle performance suitable for high resolution display up to 300 PPI. Then, the anti-glare glass optical properties were analyzed, including SCE/SCI, transmission haze, gloss, distinctness of image (DOI), and sparkle. Further information regarding these properties and how these measurement are made can be found in (1) C. Li and T. Ishikawa, Effective Surface Treatment on the Cover Glass for Auto-Interior Applications, SID Symposium Digest of Technical Papers Volume 1, Issue 36.4, pp. 467 (2016); (2) J. Gollier, G. A. Piech, S. D. Hart, J. A. West, H. Hovagimian, E. M. Kosik Williams, A. Stillwell and J. Ferwerda, Display Sparkle Measurement and Human Response, SID Symposium Digest of Technical Papers Volume 44, Issue 1 (2013); and (3) J. Ferwerda, A. Stillwell, H. Hovagimian and E. M. Kosik Williams, Perception of sparkle in anti-glare display screen, Journal of the SID, Vol 22, Issue 2 (2014), the contents of which are incorporated herein by reference.
The balance of the five metrics of SCE/SCI, transmission haze, gloss, distinctness of image (DOI), and sparkle is important for maximizing the benefits of an anti-glare for display readability, tactility on the glass surface, and the aesthetic appearance of high-performance touch displays in applications such as vehicle interiors. The sparkle is a micro-scattering interaction of the anti-glare surface with LCD pixels to create bright spots degrading image quality, especially at high resolution. The sparkle effect was studied using the method of the Pixel Power Deviation with reference (PPDr) to examine the sparkle effect on different resolution displays. For example, ultra-low sparkle anti-glare glass with less than 1% PPDr will have invisible sparkle effect on a display of less than 300 pixels-per-inch (PPI). However, up to 4% PPDr may be acceptable depending on the contents of display, based on the end-users preference. In vehicular or automotive interior settings, about 120 to about 300 PPI is acceptable, and displays over 300 PPI have diminishing value.
As shown in
Additional examples of one or more embodiments were produced using a reactive sputtering coater. Exemplary embodiments of the anti-reflective coatings are described herein and provided below in Table 7, for example. Anti-reflective coating Examples 3-10 are inventive examples both having a buffer layer of silica (adjacent the substrate), followed by a 1st Nb2O5 layer, a 1st SiO2 layer, a 2nd Nb2O5 layer, and a 2nd SiO2 layer, in that order.
Examples 3-6 from Table 7 were analyzed for their optical performance in terms of first surface reflectance angular color shift from 0° to 60°, using a D65 CIE 1964 illuminant. θ1=10° and θ2 was 15°, 30°, 45°, and 60°. The measured results are shown in Table 8.
A second aspect of this disclosure pertains to a method for forming the articles described herein. In one embodiment, the method includes providing a substrate having a major surface in a coating chamber, forming a vacuum in the coating chamber, forming an optical coating as described herein on the major surface, optionally forming an additional coating comprising at least one of an easy-to-clean coating and a scratch resistant coating, on the optical coating, and removing the substrate from the coating chamber. In one or more embodiments, the optical coating and the additional coating are formed in either the same coating chamber or without breaking vacuum in separate coating chambers.
In one or more embodiments, the method may include loading the substrate on carriers which are then used to move the substrate in and out of different coating chambers, under load lock conditions so that a vacuum is preserved as the substrate is moved.
The anti-reflective coating 120 and/or the additional coating 140 may be formed using various deposition methods such as vacuum deposition techniques, for example, chemical vapor deposition (e.g., plasma enhanced chemical vapor deposition (PECVD), low-pressure chemical vapor deposition, atmospheric pressure chemical vapor deposition, and plasma-enhanced atmospheric pressure chemical vapor deposition), physical vapor deposition (e.g., reactive or nonreactive sputtering or laser ablation), thermal or e-beam evaporation and/or atomic layer deposition. Liquid-based methods may also be used such as spraying, dipping, spin coating, or slot coating (for example, using sol-gel materials). Where vacuum deposition is utilized, inline processes may be used to form the anti-reflective coating 120 and/or the additional coating 131 in one deposition run. In some instances, the vacuum deposition can be made by a linear PECVD source.
In some embodiments, the method may include controlling the thickness of the anti-reflective coating 120 and/or the additional coating 131 so that it does not vary by more than about 4% along at least about 80% of the area of the anti-reflective surface 122 or from the target thickness for each layer at any point along the substrate area. In some embodiments, the thickness of the anti-reflective coating 120 and/or the additional coating 131 so that it does not vary by more than about 4% along at least about 95% of the area of the anti-reflective surface 122.
Aspect (1) of this disclosure pertains to an article comprising: a substrate comprising a first major surface and a second major surface opposite the first major surface and separated from the first side by a thickness of the substrate; and an anti-reflective coating disposed on the first major surface and comprising a reflective surface opposite the first major surface, wherein at a point on the reflective surface comprising the anti-reflective coating, the article comprises a single-surface reflectance under a D65 illuminant having an angular color variation, ΔEθ, defined as: ΔEθ√{(a*θ1−a*θ2)2+(b*θ1−b*θ2)2} where a*θ1 and b*θ1 are a* and b* values of the point measured from a first angle θ1, and a*θ2 and b*θ2 are a* and b* values of the point measured from a second angle θ2, θ1 and θ2 being any two different viewing angles at least 5 degrees apart in a range from about 10° to about 60° relative to a normal vector of the reflective surface, and wherein ΔEθ is less than 5.
Aspect (2) of this disclosure pertains to the article of Aspect (1), wherein the reflective surface comprises a single-sided reflected color with an a* value from about −2 to about 1, and a b* value from about −4 to about 1 at a viewing angle in a range from about 10° to about 60°, or at all viewing angels in a range from about 10° to about 60°.
Aspect (3) of this disclosure pertains to the article of Aspect (1) or Aspect (2), wherein the reflective surface comprises a single-side reflected color with an a* value from about −2 to about 0, and a b* value from about −4 to about −1 at a viewing angle of about 10°.
Aspect (4) of this disclosure pertains to the article of any one of Aspects (1) through (3), wherein the reflective surface comprises a single-sided reflected color with an a* value from about −1 to about 1, and a b* value from about −2 to about 1 at a viewing angle of about 60°.
Aspect (5) of this disclosure pertains to the article of any one of Aspects (2) through (4), wherein the reflective surface comprises a single-sided reflected color with an a* value from about −2 to about 1, and a b* value from about −4 to about 1 at all viewing angles from about 10° and to about 60°.
Aspect (6) of this disclosure pertains to the article of any one of Aspects (1) through (5), wherein θ1 and θ2 are any two different viewing angles in a range from about 10° to about 50°, from about 10° to about 40°, from about 10° to about 30°, from about 10° to about 20°, from about 20° to about 60°, from about 30° to about 60°, from about 40° to about 60°, or from about 50° to about 60°.
Aspect (7) of this disclosure pertains to the article of any one of Aspects (1) through (5), wherein θ1 and θ2 are any two different viewing angles in a range from about 20° to about 30°, from about 30° to about 40°, or from about 40° to about 50°.
Aspect (8) of this disclosure pertains to the article of any one of Aspects (1) through (7), wherein the anti-reflective coating comprises a stack of alternating high- and low-index materials.
Aspect (9) of this disclosure pertains to the article of Aspect (8), wherein the low index material comprises a refractive index in a range from about 1.3 to about 1.7, and the high index material comprises a refractive index in a range from about 1.7 to about 2.5.
Aspect (10) of this disclosure pertains to the article of Aspect (9), wherein the low index material comprises silica (SiO2) and the high index material comprises niobium oxide (Nb2O5) or titanium oxide (TiOn).
Aspect (11) of this disclosure pertains to the article of any one of Aspects (8) through (10), wherein the stack comprises four layers.
Aspect (12) of this disclosure pertains to the article of any one of Aspects (8) through (11), the anti-reflective coating further comprising a buffer layer, wherein the stack is disposed on the buffer layer.
Aspect (13) of this disclosure pertains to the article of Aspect (12), wherein the buffer layer comprises silica.
Aspect (14) of this disclosure pertains to the article of Aspect (12) or Aspect (13), wherein the buffer layer comprises a thickness in a range from about 20 nm to about 30 nm.
Aspect (15) of this disclosure pertains to the article of any one of Aspects (1) through (14), wherein the anti-reflective coating comprises a stack comprising a first niobium oxide (Nb2O5) layer disposed on the substrate, a first silica (SiO2) layer disposed on the first niobium oxide layer, a second niobium oxide (Nb2O5) layer disposed on the first silica layer, and a second silica (SiO2) layer disposed on the second niobium oxide layer.
Aspect (16) of this disclosure pertains to the article of Aspect (15), wherein the first niobium oxide layer has a thickness that is less than the second niobium oxide layer.
Aspect (17) of this disclosure pertains to the article of Aspect (15) or Aspect (16), wherein the first silica layer has a thickness that is less than the second silica layer.
Aspect (18) of this disclosure pertains to the article of any one of Aspects (15) through (17), wherein the first niobium oxide layer has a thickness from about 11 nm to about 13 nm.
Aspect (19) of this disclosure pertains to the article of Aspect (18), wherein the first niobium oxide layer has a thickness from about 11 nm to about 12 nm.
Aspect (20) of this disclosure pertains to the article of any one of Aspects (15) through (19), wherein the first silica layer has a thickness from about 40 nm to about 45 nm.
Aspect (21) of this disclosure pertains to the article of Aspect (20), wherein the first silica layer has a thickness from about 41 nm to about 44 nm.
Aspect (22) of this disclosure pertains to the article of any one of Aspects (15) through (21), wherein the second niobium oxide layer has a thickness from about 115 nm to about 125 nm.
Aspect (23) of this disclosure pertains to the article of Aspect (22), wherein the second niobium oxide layer has a thickness from about 116 nm to about 121 nm.
Aspect (24) of this disclosure pertains to the article of Aspect (23), wherein the second niobium oxide layer has a thickness from about 118 nm to about 120 nm.
Aspect (25) of this disclosure pertains to the article of any one of Aspects (15) through (24), wherein the second silica layer has a thickness from about 80 nm to about 88 nm.
Aspect (26) of this disclosure pertains to the article of Aspect (25), wherein the second silica layer has a thickness from about 83 nm to about 86 nm.
Aspect (27) of this disclosure pertains to the article of Aspect (15), wherein the first niobium oxide layer has a thickness of 12.4 nm, the first silica layer has a thickness of 40.4 nm, the second niobium oxide layer has a thickness of 116 nm, and the second silica layer has a thickness of 83.8 nm.
Aspect (28) of this disclosure pertains to the article of Aspect (15), wherein the first niobium oxide layer has a thickness of 11.9 nm, the first silica layer has a thickness of 40.4 nm, the second niobium oxide layer has a thickness of 116.8 nm, and the second silica layer has a thickness of 80.8 nm.
Aspect (29) of this disclosure pertains to the article of Aspect (27) or Aspect (28), further comprising a buffer layer having a thickness in a range from about 20 nm to about 30 nm.
Aspect (30) of this disclosure pertains to the article of any one of Aspects (15) through (29), wherein the stack further comprises additional layers of niobium oxide and silica in an alternating arrangement disposed on the second layer of silica.
Aspect (31) of this disclosure pertains to the article of any one of Aspects (1) through (30), wherein a variation in a thickness of any layer in the anti-reflective coating is +/−2% or less of the thickness.
Aspect (32) of this disclosure pertains to the article of Aspect (31), wherein a variation in a thickness of each layer in the anti-reflective coating is +/−2% of the thickness.
Aspect (33) of this disclosure pertains to the article of any one of Aspects (1) through (32), wherein the article further comprises a functional layer disposed on a top layer of the stack.
Aspect (34) of this disclosure pertains to the article of Aspect (33), wherein the functional layer is at least one of an easy-to-clean layer and an anti-fingerprint layer.
Aspect (35) of this disclosure pertains to the article of any one of Aspects (1) through (34), wherein the article has a width greater than or equal to 600 mm.
Aspect (36) of this disclosure pertains to the article of any one of Aspects (1) through (35), further comprising a decorative layer on at least one of the first major surface and second major surface of the substrate.
Aspect (37) of this disclosure pertains to the article of Aspect (36), wherein the decorative layer comprises a coating including ink or pigment.
Aspect (38) of this disclosure pertains to the article of any one of Aspects (1) through (37), wherein the first major surface or the second major surface of the substrate comprises an anti-glare surface.
Aspect (39) of this disclosure pertains to the article of Aspect (38), wherein the anti-glare surface is an etched region in the first major surface or the second major surface of the substrate or a film disposed on the first major surface.
Aspect (40) of this disclosure pertains to the article of Aspect (38) or Aspect (39), wherein the anti-glare surface is disposed on the first major surface of the substrate, and the anti-reflective coating is disposed on the anti-glare surface.
Aspect (41) of this disclosure pertains to the article of any one of Aspects (38) through (40), wherein the anti-glare surface comprises a micro-textured surface, the micro-textured surface comprising a flat-bottom valley structure.
Aspect (42) of this disclosure pertains to the article of Aspect (41), wherein the flat-bottom valley structure comprises a bottom surface with raised portions on at least two sides of the bottom surface.
Aspect (43) of this disclosure pertains to the article of Aspect (42), wherein the bottom surface comprises a region that is substantially flat over an average diameter of about 1 μm, or from about 0.5 μm to about 1 μm.
Aspect (44) of this disclosure pertains to the article of Aspect (42) or Aspect (43)
The article of claim 42 or claim 43 wherein an average distance between peaks of the raised portions is less than 10 μm.
Aspect (45) of this disclosure pertains to the article of any one of Aspects (38) through (44), wherein an ambient contrast ratio of the substrate with the anti-glare surface and the anti-reflective coating is greater than or equal to 5.
Aspect (46) of this disclosure pertains to the article of Aspect (45), wherein the ambient contrast ratio of the substrate with the anti-glare surface and the anti-reflective coating is 5.1.
Aspect (47) of this disclosure pertains to the article of any one of Aspects (38) through (46), wherein a ghost image reduction of the substrate with the anti-glare surface and the anti-reflective coating is greater than or equal to 30.
Aspect (48) of this disclosure pertains to the article of Aspect (47), wherein the ghost image reduction of the glass sheet with the anti-glare surface and the anti-reflective coating is 31.
Aspect (49) of this disclosure pertains to the article of any one of Aspects (38) through (48), wherein a color uniformity (ΔE/deg) of the substrate with the anti-glare surface and the anti-reflective coating is greater than or equal to 2.
Aspect (50) of this disclosure pertains to the article of Aspect (49), wherein the color uniformity (ΔE/deg) of the reflective surface with the anti-glare surface and the anti-reflective coating is 2.6.
Aspect (51) of this disclosure pertains to the article of any one of Aspects (1) through (50), wherein the first major surface of the substrate and the reflective surface is complexly curved.
Aspect (52) of this disclosure pertains to the article of any one of Aspects (1) through (51), further comprising: a base having a non-planar support surface, the substrate being disposed on the base with the second major surface of the substrate facing the non-planar support surface.
Aspect (53) of this disclosure pertains to the article of Aspect (52), wherein the substrate is cold-formed onto the non-planar support surface.
Aspect (54) of this disclosure pertains to the article of Aspect (52) or Aspect (53), wherein the non-planar support surface has a curved surface with a radius of curvature greater than or equal to 50 mm, greater than or equal to 100 mm, or greater than or equal to 500 mm.
Aspect (55) of this disclosure pertains to the article of any one of Aspects (1) through (54), wherein ΔEθ is less than 4, or less than 3, or less than 2.
Aspect (56) of this disclosure pertains to the article of any one of Aspects (1) through (55), wherein ΔEθ is less than or equal to about 1.7, less than or equal to about 1.5, less than or equal to about 1.4, or less than or equal to about 1.2 for any two values of θ1 and θ2 in a range from about 10° to about 30° that differ from one another.
Aspect (57) of this disclosure pertains to the article of any one of Aspects (1) through (56), wherein ΔEθ is less than or equal to about 2.9, less than or equal to about 2.6, less than or equal to about 2.5, less than or equal to about 2.4, less than or equal to about 2.3, less than or equal to about 2.1, less than or equal to about 2.0, less than or equal to about 1.9, or less than or equal to about 1.8 for any two values of θ1 and θ2 in a range from about 15° to about 45° that differ from one another.
Aspect (58) of this disclosure pertains to the article of any one of Aspects (1) through (57), wherein ΔEθ is less than or equal to about 1.0, less than or equal to about 0.8, less than or equal to about 0.7, less than or equal to about 0.6, less than or equal to about 0.5, or less than or equal to about 0.2 for any two values of θ1 and θ2 in a range from about 45° to about 60° that differ from one another.
Aspect (59) of this disclosure pertains to a vehicle comprising the article of any one of Aspects (1) through (58).
Aspect (60) pertains to the vehicle of Aspect (59), wherein the article is a vehicle interior surface.
Aspect (61) pertains to the vehicle of Aspect (59) or Aspect (60), wherein the article composes at least part of a dashboard, an instrument panel, a control panel, a center console, a steering wheel, a side door component, an entertainment unit, or a graphical or video display.
Aspect (62) pertains to the vehicle of any one of Aspects (59) through (61), wherein any two points on the reflective surface of the substrate comprising the anti-reflective coating have the same angular color variation, ΔEθ.
Aspect (63) pertains to an anti-reflective coating comprising a stack of alternating high- and low-index materials, the anti-reflective coating including reflective surface configured to face an observer, wherein at a point on the reflective surface, the anti-reflective coating comprises a single-surface reflectance under a D65 illuminant having an angular color variation, ΔEθ, defined as: ΔEθ=√{(a*θ1−a*θ2)2+(b*θ1−b*θ2)2}, where a*θ1 and b*θ1 are a* and b* values of the point measured from a first angle θ1, and a*θ2 and b*θ2 are a* and b* values of the point measured from a second angle θ2, θ1 and θ2 being any two different viewing angles at least 5 degrees apart in a range from about 10° to about 60° relative to a normal vector of the top side, and wherein ΔEθ is less than 5.
Aspect (64) pertains to the anti-reflective coating of Aspect (63), wherein the reflective surface comprises a single-sided reflected color with an a* value from about −2 to about 1, and a b* value from about −4 to about 1 at a viewing angle in a range from about 10° to about 60°, or at all viewing angles in a range from about 10° to about 60°.
Aspect (65) pertains to the anti-reflective coating of Aspect (64), wherein the reflective surface comprises a single-side reflected color with an a* value from about −2 to about 0, and a b* value from about −4 to about −1 at a viewing angle of about 10°.
Aspect (66) pertains to the anti-reflective coating of any one of Aspects (63) through (65), wherein the reflective surface comprises a single-sided reflected color with an a* value from about −1 to about 1, and a b* value from about −2 to about 1 at a viewing angle of about 60°.
Aspect (67) pertains to the anti-reflective coating of any one of Aspects (63) through (66), wherein the reflective surface comprises a single-sided reflected color with an a* value from about −2 to about 1, and a b* value from about −4 to about 1 at all viewing angles from about 10° and to about 60°.
Aspect (68) pertains to the anti-reflective coating of any one of Aspects (63) through (67), wherein θ1 and θ2 are any two different viewing angles in a range from about 10° to about 50°, from about 10° to about 40°, from about 10° to about 30°, from about 10° to about 20°, from about 20° to about 60°, from about 30° to about 60°, from about 40° to about 60°, or from about 50° to about 60°.
Aspect (69) pertains to the anti-reflective coating of any one of Aspects (63) through (67), wherein θ1 and θ2 are any two different viewing angles in a range from about 20° to about 30°, from about 30° to about 40°, or from about 40° to about 50°.
Aspect (70) pertains to the anti-reflective coating of any one of Aspects (63) through (69), wherein the low index material comprises a refractive index in a range from about 1.3 to about 1.7, and the high index material comprises a refractive index in a range from about 1.7 to about 2.5
Aspect (71) pertains to the anti-reflective coating of Aspect (70), wherein the stack comprises alternating layers of silica (SiO2) and niobium oxide (Nb2O5).
Aspect (72) pertains to the anti-reflective coating of any one of Aspects (63) through (71), wherein the stack comprises four layers.
Aspect (73) pertains to the anti-reflective coating of any one of Aspects (63) through (72), the anti-reflective coating further comprising a buffer layer, the stack being disposed on the buffer layer.
Aspect (74) pertains to the anti-reflective coating of Aspect (73), wherein the buffer layer comprises silica.
Aspect (75) pertains to the anti-reflective coating of Aspect (73) or Aspect (74), wherein the buffer layer comprises a thickness in a range from about 20 nm to about 30 nm.
Aspect (76) pertains to the anti-reflective coating of any one of Aspects (63) through (75), wherein the anti-reflective coating comprises a silica buffer layer and a stack comprising a first niobium oxide (Nb2O5) layer disposed on the buffer layer, a first silica (SiO2) layer disposed on the first niobium oxide layer, a second niobium oxide (Nb2O5) layer disposed on the first silica layer, and a second silica (SiO2) layer disposed on the second niobium oxide layer.
Aspect (77) pertains to the anti-reflective coating of Aspect (76), wherein the first niobium oxide layer has a thickness that is less than the second niobium oxide layer.
Aspect (78) pertains to the anti-reflective coating of Aspect (76) or Aspect (77), wherein the first silica layer has a thickness that is less than the second silica layer.
Aspect (79) pertains to the anti-reflective coating of any one of Aspects (76) through (78), wherein the first niobium oxide layer of has a thickness from about 11 nm to about 13 nm.
Aspect (80) pertains to the anti-reflective coating of Aspect (79), wherein the first niobium oxide layer has a thickness from about 11 nm to about 12 nm.
Aspect (81) pertains to the anti-reflective coating of any one of Aspects (76) through (80), wherein the first silica layer has a thickness from about 40 nm to about 45 nm.
Aspect (82) pertains to the anti-reflective coating of Aspect (81), wherein the first silica layer has a thickness from about 41 nm to about 44 nm.
Aspect (83) pertains to the anti-reflective coating of any one of Aspects (76) through (82), wherein the second niobium oxide layer has a thickness from about 115 nm to about 125 nm.
Aspect (84) pertains to the anti-reflective coating of Aspect (83), wherein the second niobium oxide layer has a thickness from about 116 nm to about 121 nm.
Aspect (85) pertains to the anti-reflective coating of Aspect (84), wherein the second niobium oxide layer has a thickness from about 118 nm to about 120 nm.
Aspect (86) pertains to the anti-reflective coating of any one of Aspects (76) through (85), wherein the second silica layer has a thickness from about 80 nm to about 88 nm.
Aspect (87) pertains to the anti-reflective coating of Aspect (86), wherein the second silica layer has a thickness from about 83 nm to about 86 nm.
Aspect (88) pertains to the anti-reflective coating of Aspect (76), wherein the first niobium oxide layer has a thickness of 12.4 nm, the first silica layer has a thickness of 40.4 nm, the second niobium oxide layer has a thickness of 116 nm, and the second silica layer has a thickness of 83.8 nm.
Aspect (89) pertains to the anti-reflective coating of Aspect (76), wherein the first niobium oxide layer has a thickness of 11.9 nm, the first silica layer has a thickness of 40.4 nm, the second niobium oxide layer has a thickness of 116.8 nm, and the second silica layer has a thickness of 80.8 nm.
Aspect (90) pertains to the anti-reflective coating of Aspect (88) or Aspect (89), wherein the silica buffer layer has a thickness in a range from about 20 nm to about 30 nm.
Aspect (91) pertains to the anti-reflective coating of any one of Aspects (76) through (90), wherein the stack further comprises additional layers of niobium oxide and silica in an alternating arrangement disposed on the second layer of silica.
Aspect (92) pertains to the anti-reflective coating of any one of Aspects (63) through (91), wherein a variation in a thickness of any layer in the anti-reflective coating is +/−2% of the thickness.
Aspect (93) pertains to the anti-reflective coating of Aspect (92), wherein a variation in a thickness of each layer in the anti-reflective coating is +/−2% of the thickness.
Aspect (94) pertains to the anti-reflective coating of any one of Aspects (63) through (93), wherein the reflective surface has a width greater than or equal to 600 mm.
Aspect (95) pertains to the anti-reflective coating of any one of Aspects (63) through (94), wherein ΔEθ is less than 4, or less than 3, or less than 2.
Aspect (96) pertains to the anti-reflective coating of any one of Aspects (63) through (95), wherein ΔEθ is less than or equal to about 1.7, less than or equal to about 1.5, less than or equal to about 1.4, or less than or equal to about 1.2 for any two values of θ1 and θ2 in a range from about 10° to about 30° that differ from one another.
Aspect (97) pertains to the anti-reflective coating of any one of Aspects (63) through (96), wherein ΔEθ is less than or equal to about 2.9, less than or equal to about 2.6, less than or equal to about 2.5, less than or equal to about 2.4, less than or equal to about 2.3, less than or equal to about 2.1, less than or equal to about 2.0, less than or equal to about 1.9, or less than or equal to about 1.8 for any two values of θ1 and θ2 in a range from about 15° to about 45° that differ from one another.
Aspect (98) pertains to the anti-reflective coating of any one of Aspects (63) through (97), wherein ΔEθ is less than or equal to about 1.0, less than or equal to about 0.8, less than or equal to about 0.7, less than or equal to about 0.6, less than or equal to about 0.5, or less than or equal to about 0.2 for any two values of θ1 and θ2 in a range from about 45° to about 60° that differ from one another.
Aspect (99) pertains to a method of producing an anti-reflective coating, comprising: providing a substrate comprising a first major surface; depositing an anti-reflective coating on the first major surface, the anti-reflective coating comprising a stack with a reflective surface opposite to the first major surface and alternating layers of silica (SiO2) and niobium oxide (Nb2O5), wherein at a point on the reflective surface, the anti-reflective coating comprises a single-surface reflectance under a D65 illuminant having an angular color variation, ΔEθ, defined as: ΔEθ=√{(a*θ1−a*θ2)2+(b*θ1−b*θ2)2}, where a*θ1 and b*θ1 are a* and b* values of the point measured from a first angle θ1, and a*θ2 and b*θ2 are a* and b* values of the point measured from a second angle θ2, θ1 and θ2 being any two different viewing angles at least 5 degrees apart in a range from about 10° to about 60° relative to a normal vector of the first major surface, and wherein ΔEθ is less than 5.
Aspect (100) pertains to the method of Aspect (99), wherein the anti-reflective coating further comprises a buffer layer disposed on the first major surface between the stack and the first major surface.
Aspect (101) pertains to the method of Aspect (99) or Aspect (100), wherein the reflective surface comprises a single-sided reflected color with an a* value from about −2 to about 1, and a b* value from about −4 to about 1 at a range from about 10° to about 60°, or at all viewing angles in a range from about 10° and to about 60°.
Aspect (102) pertains to the method of any one of Aspects (99) through (101), wherein the reflective surface comprises a single-side reflected color with an a* value from about −2 to about 0, and a b* value from about −4 to about −1 at a viewing angle of about 10°.
Aspect (103) pertains to the method of any one of Aspects (99) through (102), wherein the reflective surface comprises a single-sided reflected color with an a* value from about −1 to about 1, and a b* value from about −2 to about 1 at a viewing angle of about 60°.
Aspect (104) pertains to the method of any one of Aspects (99) through (103), wherein the reflective surface comprises a single-sided reflected color with an a* value from about −2 to about 1, and a b* value from about −4 to about 1 at all viewing angles from about 10° and to about 60°.
Aspect (105) pertains to the method of any one of Aspects (99) through (104), wherein θ1 and θ2 are any two different viewing angles in a range from about 10° to about 50°, from about 10° to about 40°, from about 10° to about 30°, from about 10° to about 20°, from about 20° to about 60°, from about 30° to about 60°, from about 40° to about 60°, or from about 50° to about 60°.
Aspect (106) pertains to the method of any one of Aspects (99) through (105), wherein θ1 and θ2 are any two different viewing angles in a range from about 20° to about 30°, from about 30° to about 40°, or from about 40° to about 50°.
Aspect (107) pertains to the method of any one of Aspects (99) through (106), wherein the alternating layers of silica and niobium oxide comprise: a first niobium oxide layer disposed on the buffer layer; a first silica layer disposed on the first niobium oxide layer; a second niobium oxide layer disposed on the first silica layer; and a second silica layer disposed on the second niobium oxide layer.
Aspect (108) pertains to the method of Aspect (107), wherein depositing the anti-reflective coating comprises: depositing the first niobium oxide layer on the buffer layer; depositing the first silica layer on the first niobium oxide layer; depositing the second niobium oxide layer on the first silica layer; and depositing the second silica layer disposed on the second niobium oxide layer.
Aspect (109) pertains to the method of Aspect (107) or Aspect (108), wherein the first niobium oxide layer has a thickness that is less than the second niobium oxide layer.
Aspect (110) pertains to the method of any one of Aspects (107) through (109), wherein the first silica layer has a thickness that is less than the second silica layer.
Aspect (111) pertains to the method of any one of Aspects (107) through (110), wherein the first niobium oxide layer has a thickness from about 11 nm to about 13 nm.
Aspect (112) pertains to the method of Aspect (111), wherein the first niobium oxide layer has a thickness from about 11 nm to about 12 nm.
Aspect (113) pertains to the method of any one of Aspects (107) through (112), wherein the first silica layer has a thickness from about 40 nm to about 45 nm.
Aspect (114) pertains to the method of Aspect (113), wherein the thickness of the first silica layer is 40.4 nm.
Aspect (115) pertains to the method of any one of Aspects (107) through (114), wherein the second niobium oxide layer has a thickness from about 115 nm to about 125 nm.
Aspect (116) pertains to the method of Aspect (115), wherein the second niobium oxide layer has a thickness from about 116 nm to about 121 nm.
Aspect (117) pertains to the method of Aspect (116), wherein the second niobium oxide layer has a thickness from about 118 nm to about 120 nm
Aspect (118) pertains to the method of any one of Aspects (107) through (117), wherein the second silica layer has a thickness from about 80 nm to about 88 nm.
Aspect (119) pertains to the method of Aspect (118), wherein the second silica layer has a thickness from about 83 nm to about 86 nm.
Aspect (120) pertains to the method of Aspect (107), wherein the first niobium oxide layer has a thickness of 12.4 nm, the first silica layer has a thickness of 40.4 nm, the second niobium oxide layer has a thickness of 116 nm, and the second silica layer has a thickness of 83.8 nm.
Aspect (121) pertains to the method of Aspect (107), wherein the first niobium oxide layer has a thickness of 11.9 nm, the first silica layer has a thickness of 40.4 nm, the second niobium oxide layer has a thickness of 116.8 nm, and the second silica layer has a thickness of 80.8 nm.
Aspect (122) pertains to the method of any one of Aspects (100) through (121), wherein the buffer layer has a thickness in a range from about 20 nm to about 30 nm.
Aspect (123) pertains to the method of any one of Aspects (100) through (122), wherein the buffer layer is silica.
Aspect (124) pertains to the method of any one of Aspects (100) through (123), wherein a variation in thickness of each of the first and second silica layers, and the first and second niobium oxide layers is within +/−2% of the thickness.
Aspect (125) pertains to the method of any one of Aspects (100) through (124), wherein the stack comprises four layers.
Aspect (126) pertains to the method of any one of Aspects (99) through (125), wherein the substrate is a glass sheet comprising the first major surface, a second major surface opposite the first major surface, and a minor surface separating the first and second major surfaces.
Aspect (127) pertains to the method of Aspect (126), further comprising, prior to depositing the anti-reflective coating, forming an anti-glare surface on the first major surface of the glass sheet, wherein the anti-reflective surface is deposited on the anti-glare surface.
Aspect (128) pertains to the method of Aspect (127), wherein forming the anti-glare surface comprises etching at least a portion of the first major surface.
Aspect (129) pertains to the method of Aspect (127) or Aspect (128), wherein the anti-glare surface comprises a micro-textured surface, the micro-textured surface comprising a flat-bottom valley structure.
Aspect (130) pertains to the method of Aspect (129), wherein the bottom surface comprises a region that is substantially flat over an average diameter of about 1 μm.
Aspect (131) pertains to the method of Aspect (129) or Aspect (130), wherein an average distance between peaks of the raised portions is about 2 μm.
Aspect (132) pertains to the method of any one of Aspects (127) through (131), wherein an ambient contrast ratio of the substrate with the anti-glare surface and the anti-reflective coating is greater than or equal to 5.
Aspect (133) pertains to the method of Aspect (132), wherein the ambient contrast ratio of the substrate with the anti-glare surface and the anti-reflective coating is 5.1.
Aspect (134) pertains to the method of any one of Aspects (127) through (133), wherein a ghost image reduction of the substrate with the anti-glare surface and the anti-reflective coating is greater than or equal to 30.
Aspect (135) pertains to the method of any one of Aspects (127) through (134), wherein the ghost image reduction of the substrate with the anti-glare surface and the anti-reflective coating is 31.
Aspect (136) pertains to the method of any one of Aspects (127) through (135), wherein a color uniformity (ΔE/deg) of the substrate with the anti-glare surface and the anti-reflective coating is greater than or equal to 2.
Aspect (137) pertains to the method of any one of Aspects (127) through (136), wherein the color uniformity (ΔE/deg) of the substrate with the anti-glare surface and the anti-reflective coating is 2.6.
Aspect (138) pertains to the method of any one of Aspects (99) through (137), wherein ΔEθ is less than 4, or less than 3, or less than 2.
Aspect (139) pertains to the method of any one of Aspects (99) through (138), wherein ΔEθ is less than or equal to about 1.7, less than or equal to about 1.5, less than or equal to about 1.4, or less than or equal to about 1.2 for any two values of θ1 and θ2 in a range from about 10° to about 30° that differ from one another.
Aspect (140) pertains to the method of any one of Aspects (99) through (139), wherein ΔEθ is less than or equal to about 2.9, less than or equal to about 2.6, less than or equal to about 2.5, less than or equal to about 2.4, less than or equal to about 2.3, less than or equal to about 2.1, less than or equal to about 2.0, less than or equal to about 1.9, or less than or equal to about 1.8 for any two values of θ1 and θ2 in a range from about 15° to about 45° that differ from one another.
Aspect (141) pertains to the method of any one of Aspects (99) through (140), wherein ΔEθ is less than or equal to about 1.0, less than or equal to about 0.8, less than or equal to about 0.7, less than or equal to about 0.6, less than or equal to about 0.5, or less than or equal to about 0.2 for any two values of θ1 and θ2 in a range from about 45° to about 60° that differ from one another.
This application is a national stage application under 35 U.S.C. § 371 of International Application No.: PCT/US2019/020343 filed on Mar. 1, 2019, which claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/637,666 filed on Mar. 2, 2018, the content of which is relied upon and incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/020343 | 3/1/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/169293 | 9/6/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2068030 | Lieser | Jan 1937 | A |
2608030 | Jendrisak | Aug 1952 | A |
3197903 | Walley | Aug 1965 | A |
3338696 | Dockerty | Aug 1967 | A |
3582456 | Stolki | Jun 1971 | A |
3682609 | Dockerty | Aug 1972 | A |
3753840 | Plumat | Aug 1973 | A |
3778335 | Boyd | Dec 1973 | A |
3781090 | Sumita | Dec 1973 | A |
3790430 | Mochel | Feb 1974 | A |
3799817 | Laethem | Mar 1974 | A |
4147527 | Bystrov et al. | Apr 1979 | A |
4238265 | Deminet | Dec 1980 | A |
4445953 | Hawk | May 1984 | A |
4455338 | Henne | Jun 1984 | A |
4859636 | Aratani et al. | Aug 1989 | A |
4896928 | Perilloux | Jan 1990 | A |
4899507 | Mairlot | Feb 1990 | A |
4969966 | Norman | Nov 1990 | A |
4985099 | Mertens et al. | Jan 1991 | A |
5108480 | Sugiyama | Apr 1992 | A |
5154117 | Didelot et al. | Oct 1992 | A |
5173102 | Weber et al. | Dec 1992 | A |
5245468 | Demiryont et al. | Sep 1993 | A |
5250146 | Horvath | Oct 1993 | A |
5264058 | Hoagland et al. | Nov 1993 | A |
5300184 | Masunaga | Apr 1994 | A |
5711119 | Cornils et al. | Jan 1998 | A |
5891556 | Anderson | Apr 1999 | A |
5897937 | Cornils et al. | Apr 1999 | A |
6044662 | Morin | Apr 2000 | A |
6074730 | Laird | Jun 2000 | A |
6086983 | Yoshizawa | Jul 2000 | A |
6101748 | Cass et al. | Aug 2000 | A |
6165598 | Nelson | Dec 2000 | A |
6242931 | Hembree et al. | Jun 2001 | B1 |
6265054 | Bravet et al. | Jul 2001 | B1 |
6270605 | Doerfler | Aug 2001 | B1 |
6274219 | Schuster et al. | Aug 2001 | B1 |
6287674 | Verlinden et al. | Sep 2001 | B1 |
6302985 | Takahashi et al. | Oct 2001 | B1 |
6332690 | Murofushi | Dec 2001 | B1 |
6387515 | Joret et al. | May 2002 | B1 |
6420800 | Levesque et al. | Jul 2002 | B1 |
6426138 | Narushima et al. | Jul 2002 | B1 |
6582799 | Brown et al. | Jun 2003 | B1 |
6620365 | Odoi et al. | Sep 2003 | B1 |
6816225 | Colgan et al. | Nov 2004 | B2 |
6903871 | Page | Jun 2005 | B2 |
7297040 | Chang et al. | Nov 2007 | B2 |
7375782 | Yamazaki et al. | May 2008 | B2 |
7478930 | Choi | Jan 2009 | B2 |
7489303 | Pryor | Feb 2009 | B1 |
7542302 | Curnalia et al. | Jun 2009 | B1 |
7750821 | Taborisskiy et al. | Jul 2010 | B1 |
7955470 | Kapp et al. | Jun 2011 | B2 |
8298431 | Chwu et al. | Oct 2012 | B2 |
8344369 | Yamazaki et al. | Jan 2013 | B2 |
8521955 | Arulambalam et al. | Aug 2013 | B2 |
8549885 | Dannoux et al. | Oct 2013 | B2 |
8586492 | Barefoot et al. | Nov 2013 | B2 |
8652978 | Dejneka et al. | Feb 2014 | B2 |
8692787 | Imazeki | Apr 2014 | B2 |
8702253 | Lu et al. | Apr 2014 | B2 |
8765262 | Gross | Jul 2014 | B2 |
8814372 | Vandal et al. | Aug 2014 | B2 |
8833106 | Dannoux et al. | Sep 2014 | B2 |
8912447 | Leong et al. | Dec 2014 | B2 |
8923693 | Yeates | Dec 2014 | B2 |
8962084 | Brackley et al. | Feb 2015 | B2 |
8967834 | Timmerman et al. | Mar 2015 | B2 |
8969226 | Dejneka et al. | Mar 2015 | B2 |
8978418 | Balduin et al. | Mar 2015 | B2 |
9007226 | Chang | Apr 2015 | B2 |
9061934 | Bisson et al. | Jun 2015 | B2 |
9090501 | Okahata et al. | Jul 2015 | B2 |
9109881 | Roussev et al. | Aug 2015 | B2 |
9140543 | Allan et al. | Sep 2015 | B1 |
9156724 | Gross | Oct 2015 | B2 |
9223162 | Deforest et al. | Dec 2015 | B2 |
9240437 | Shieh et al. | Jan 2016 | B2 |
9278500 | Filipp | Mar 2016 | B2 |
9278655 | Jones et al. | Mar 2016 | B2 |
9290413 | Dejneka et al. | Mar 2016 | B2 |
9346703 | Bookbinder et al. | May 2016 | B2 |
9346706 | Bazemore et al. | May 2016 | B2 |
9357638 | Lee et al. | May 2016 | B2 |
9442028 | Roussev et al. | Sep 2016 | B2 |
9446723 | Stepanski | Sep 2016 | B2 |
9469561 | Kladias et al. | Oct 2016 | B2 |
9517967 | Dejneka et al. | Dec 2016 | B2 |
9573843 | Keegan et al. | Feb 2017 | B2 |
9593042 | Hu et al. | Mar 2017 | B2 |
9595960 | Wilford | Mar 2017 | B2 |
9606625 | Levesque et al. | Mar 2017 | B2 |
9617180 | Bookbinder et al. | Apr 2017 | B2 |
9663396 | Miyasaka et al. | May 2017 | B2 |
9694570 | Levasseur et al. | Jul 2017 | B2 |
9700985 | Kashima et al. | Jul 2017 | B2 |
9701564 | Bookbinder et al. | Jul 2017 | B2 |
9720450 | Choi et al. | Aug 2017 | B2 |
9724727 | Domey et al. | Aug 2017 | B2 |
9802485 | Masuda et al. | Oct 2017 | B2 |
9815730 | Marjanovic et al. | Nov 2017 | B2 |
9821509 | Kastell | Nov 2017 | B2 |
9895975 | Lee et al. | Feb 2018 | B2 |
9902640 | Dannoux et al. | Feb 2018 | B2 |
9931817 | Rickerl | Apr 2018 | B2 |
9933820 | Helot et al. | Apr 2018 | B2 |
9947882 | Zhang et al. | Apr 2018 | B2 |
9955602 | Wildner et al. | Apr 2018 | B2 |
9957190 | Finkeldey et al. | May 2018 | B2 |
9963374 | Jouanno et al. | May 2018 | B2 |
9972645 | Kim | May 2018 | B2 |
9975801 | Maschmeyer et al. | May 2018 | B2 |
9992888 | Moon et al. | Jun 2018 | B2 |
10005246 | Stepanski | Jun 2018 | B2 |
10017033 | Fisher et al. | Jul 2018 | B2 |
10042391 | Yun et al. | Aug 2018 | B2 |
10074824 | Han et al. | Sep 2018 | B2 |
10086762 | Uhm | Oct 2018 | B2 |
10131118 | Kang et al. | Nov 2018 | B2 |
10140018 | Kim et al. | Nov 2018 | B2 |
10153337 | Lee et al. | Dec 2018 | B2 |
10175802 | Boggs et al. | Jan 2019 | B2 |
10211416 | Jin et al. | Feb 2019 | B2 |
10222825 | Wang et al. | Mar 2019 | B2 |
10273184 | Garner et al. | Apr 2019 | B2 |
10303223 | Park et al. | May 2019 | B2 |
10303315 | Jeong et al. | May 2019 | B2 |
10326101 | Oh et al. | Jun 2019 | B2 |
10328865 | Jung | Jun 2019 | B2 |
10343377 | Levasseur et al. | Jul 2019 | B2 |
10347700 | Yang et al. | Jul 2019 | B2 |
10377656 | Dannoux et al. | Aug 2019 | B2 |
10421683 | Schillinger et al. | Sep 2019 | B2 |
10427383 | Levasseur et al. | Oct 2019 | B2 |
10444427 | Bookbinder et al. | Oct 2019 | B2 |
10483210 | Gross et al. | Nov 2019 | B2 |
10500958 | Cho et al. | Dec 2019 | B2 |
10606395 | Boggs et al. | Mar 2020 | B2 |
10649267 | Tuan et al. | May 2020 | B2 |
10788707 | Ai et al. | Sep 2020 | B2 |
10976607 | Huang et al. | Apr 2021 | B2 |
20010031365 | Anderson | Oct 2001 | A1 |
20020030882 | Vitt | Mar 2002 | A1 |
20020039229 | Hirose et al. | Apr 2002 | A1 |
20030021033 | Mitsuishi | Jan 2003 | A9 |
20030027001 | Kang et al. | Feb 2003 | A1 |
20030076465 | Shimoda | Apr 2003 | A1 |
20030175557 | Anderson | Sep 2003 | A1 |
20040026021 | Groh et al. | Feb 2004 | A1 |
20040069770 | Cary et al. | Apr 2004 | A1 |
20040071969 | Okamoto | Apr 2004 | A1 |
20040076835 | Watanabe | Apr 2004 | A1 |
20040107731 | Doehring et al. | Jun 2004 | A1 |
20040114248 | Hokazono | Jun 2004 | A1 |
20040258929 | Glaubitt et al. | Dec 2004 | A1 |
20050030629 | Kursawe | Feb 2005 | A1 |
20050178158 | Moulding et al. | Aug 2005 | A1 |
20050219724 | Teramoto | Oct 2005 | A1 |
20060165963 | Fleury | Jul 2006 | A1 |
20060227125 | Wong et al. | Oct 2006 | A1 |
20070178315 | Thomas | Aug 2007 | A1 |
20070188871 | Fleury et al. | Aug 2007 | A1 |
20070193876 | Chu | Aug 2007 | A1 |
20070195419 | Tsuda et al. | Aug 2007 | A1 |
20070210621 | Barton et al. | Sep 2007 | A1 |
20070221313 | Franck et al. | Sep 2007 | A1 |
20070223121 | Franck et al. | Sep 2007 | A1 |
20070259161 | Kato | Nov 2007 | A1 |
20070291384 | Wang | Dec 2007 | A1 |
20080002260 | Arrouy | Jan 2008 | A1 |
20080031991 | Choi et al. | Feb 2008 | A1 |
20080093753 | Schuetz | Apr 2008 | A1 |
20080285134 | Closset et al. | Nov 2008 | A1 |
20080303976 | Nishizawa et al. | Dec 2008 | A1 |
20090096937 | Bauer et al. | Apr 2009 | A1 |
20090101208 | Vandal et al. | Apr 2009 | A1 |
20090104385 | Reymond | Apr 2009 | A1 |
20090117332 | Ellsworth et al. | May 2009 | A1 |
20090179840 | Tanaka et al. | Jul 2009 | A1 |
20090185127 | Tanaka et al. | Jul 2009 | A1 |
20090201443 | Sasaki et al. | Aug 2009 | A1 |
20090246514 | Chiu | Oct 2009 | A1 |
20090311497 | Aoki | Dec 2009 | A1 |
20100000259 | Ukrainczyk et al. | Jan 2010 | A1 |
20100031590 | Buchwald et al. | Feb 2010 | A1 |
20100065342 | Shaikh | Mar 2010 | A1 |
20100103138 | Huang et al. | Apr 2010 | A1 |
20100182143 | Lynam | Jul 2010 | A1 |
20100245253 | Rhyu et al. | Sep 2010 | A1 |
20100328605 | Suzuki | Dec 2010 | A1 |
20110033681 | Adachi | Feb 2011 | A1 |
20110057465 | Beau et al. | Mar 2011 | A1 |
20110148267 | McDaniel et al. | Jun 2011 | A1 |
20110228214 | von Blanckenhagen | Sep 2011 | A1 |
20120050975 | Garelli et al. | Mar 2012 | A1 |
20120075705 | Beinat | Mar 2012 | A1 |
20120111056 | Prest | May 2012 | A1 |
20120128952 | Miwa et al. | May 2012 | A1 |
20120134025 | Hart | May 2012 | A1 |
20120144866 | Liu et al. | Jun 2012 | A1 |
20120152897 | Cheng et al. | Jun 2012 | A1 |
20120196110 | Murata et al. | Aug 2012 | A1 |
20120202030 | Kondo et al. | Aug 2012 | A1 |
20120212826 | Henn | Aug 2012 | A1 |
20120218640 | Gollier et al. | Aug 2012 | A1 |
20120263945 | Yoshikawa | Oct 2012 | A1 |
20120280368 | Garner et al. | Nov 2012 | A1 |
20120320509 | Kim et al. | Dec 2012 | A1 |
20130020007 | Niiyama et al. | Jan 2013 | A1 |
20130033885 | Oh et al. | Feb 2013 | A1 |
20130070340 | Shelestak et al. | Mar 2013 | A1 |
20130081428 | Liu et al. | Apr 2013 | A1 |
20130088441 | Chung et al. | Apr 2013 | A1 |
20130120850 | Lambert et al. | May 2013 | A1 |
20130135741 | Lee | May 2013 | A1 |
20130155496 | Mauvernay | Jun 2013 | A1 |
20130186141 | Henry | Jul 2013 | A1 |
20130209824 | Sun et al. | Aug 2013 | A1 |
20130271836 | Fukaya | Oct 2013 | A1 |
20130279188 | Entenmann et al. | Oct 2013 | A1 |
20130314642 | Timmerman et al. | Nov 2013 | A1 |
20130329346 | Dannoux et al. | Dec 2013 | A1 |
20130330495 | Maatta et al. | Dec 2013 | A1 |
20140014260 | Chowdhury | Jan 2014 | A1 |
20140065374 | Tsuchiya et al. | Mar 2014 | A1 |
20140141206 | Gillard et al. | May 2014 | A1 |
20140146538 | Zenker et al. | May 2014 | A1 |
20140153234 | Knoche et al. | Jun 2014 | A1 |
20140153894 | Jenkins et al. | Jun 2014 | A1 |
20140168153 | Deichmann et al. | Jun 2014 | A1 |
20140168546 | Magnusson et al. | Jun 2014 | A1 |
20140186598 | Ding | Jul 2014 | A1 |
20140234581 | Immerman et al. | Aug 2014 | A1 |
20140308464 | Levasseur et al. | Oct 2014 | A1 |
20140312518 | Levasseur et al. | Oct 2014 | A1 |
20140333848 | Chen | Nov 2014 | A1 |
20140334006 | Adib | Nov 2014 | A1 |
20140335330 | Bellman | Nov 2014 | A1 |
20140340609 | Taylor et al. | Nov 2014 | A1 |
20140376094 | Bellman | Dec 2014 | A1 |
20140377522 | Koch, III | Dec 2014 | A1 |
20150015807 | Franke et al. | Jan 2015 | A1 |
20150020745 | Imamura | Jan 2015 | A1 |
20150072129 | Okahata et al. | Mar 2015 | A1 |
20150077429 | Eguchi et al. | Mar 2015 | A1 |
20150138638 | Mashimo | May 2015 | A1 |
20150166394 | Marjanovic et al. | Jun 2015 | A1 |
20150168768 | Nagatani | Jun 2015 | A1 |
20150177443 | Faecke et al. | Jun 2015 | A1 |
20150210588 | Chang et al. | Jul 2015 | A1 |
20150246424 | Venkatachalam et al. | Sep 2015 | A1 |
20150246507 | Brown et al. | Sep 2015 | A1 |
20150249424 | Hody Le Caer | Sep 2015 | A1 |
20150274585 | Rogers et al. | Oct 2015 | A1 |
20150299470 | Ngo | Oct 2015 | A1 |
20150322270 | Amin | Nov 2015 | A1 |
20150323705 | Hart | Nov 2015 | A1 |
20150336357 | Kang et al. | Nov 2015 | A1 |
20150351272 | Wildner et al. | Dec 2015 | A1 |
20150357387 | Lee et al. | Dec 2015 | A1 |
20150369966 | Kishi | Dec 2015 | A1 |
20160002099 | Manz | Jan 2016 | A1 |
20160009066 | Nieber et al. | Jan 2016 | A1 |
20160009068 | Garner | Jan 2016 | A1 |
20160016849 | Allan | Jan 2016 | A1 |
20160039705 | Kato et al. | Feb 2016 | A1 |
20160052241 | Zhang | Feb 2016 | A1 |
20160054479 | Ho | Feb 2016 | A1 |
20160066463 | Yang et al. | Mar 2016 | A1 |
20160081204 | Park et al. | Mar 2016 | A1 |
20160083282 | Jouanno et al. | Mar 2016 | A1 |
20160083292 | Tabe et al. | Mar 2016 | A1 |
20160091645 | Birman et al. | Mar 2016 | A1 |
20160102015 | Yasuda et al. | Apr 2016 | A1 |
20160113135 | Kim et al. | Apr 2016 | A1 |
20160207290 | Cleary et al. | Jul 2016 | A1 |
20160214889 | Garner et al. | Jul 2016 | A1 |
20160216434 | Shih et al. | Jul 2016 | A1 |
20160250982 | Fisher et al. | Sep 2016 | A1 |
20160252656 | Waldschmidt et al. | Sep 2016 | A1 |
20160259365 | Wang et al. | Sep 2016 | A1 |
20160272529 | Hong et al. | Sep 2016 | A1 |
20160297176 | Rickerl | Oct 2016 | A1 |
20160306451 | Isoda et al. | Oct 2016 | A1 |
20160313494 | Hamilton et al. | Oct 2016 | A1 |
20160354996 | Alder et al. | Dec 2016 | A1 |
20160355091 | Lee et al. | Dec 2016 | A1 |
20160355901 | Isozaki et al. | Dec 2016 | A1 |
20160375808 | Etienne et al. | Dec 2016 | A1 |
20170008377 | Fisher | Jan 2017 | A1 |
20170010393 | Varanasi | Jan 2017 | A1 |
20170021661 | Pelucchi | Jan 2017 | A1 |
20170031063 | Kim | Feb 2017 | A1 |
20170066223 | Notsu et al. | Mar 2017 | A1 |
20170081238 | Jones et al. | Mar 2017 | A1 |
20170088454 | Fukushima et al. | Mar 2017 | A1 |
20170090071 | Fukaya | Mar 2017 | A1 |
20170094039 | Lu | Mar 2017 | A1 |
20170115944 | Oh et al. | Apr 2017 | A1 |
20170129806 | Fujii | May 2017 | A1 |
20170158551 | Bookbinder et al. | Jun 2017 | A1 |
20170160434 | Hart et al. | Jun 2017 | A1 |
20170184762 | Fujii | Jun 2017 | A1 |
20170185289 | Kim et al. | Jun 2017 | A1 |
20170190152 | Notsu et al. | Jul 2017 | A1 |
20170197561 | McFarland | Jul 2017 | A1 |
20170213872 | Jinbo et al. | Jul 2017 | A1 |
20170217290 | Yoshizumi et al. | Aug 2017 | A1 |
20170217815 | Dannoux et al. | Aug 2017 | A1 |
20170235020 | Bolshakov | Aug 2017 | A1 |
20170240772 | Dohner et al. | Aug 2017 | A1 |
20170247291 | Hatano et al. | Aug 2017 | A1 |
20170262057 | Knittl et al. | Sep 2017 | A1 |
20170263690 | Lee et al. | Sep 2017 | A1 |
20170274627 | Chang et al. | Sep 2017 | A1 |
20170285227 | Chen et al. | Oct 2017 | A1 |
20170299887 | Maury | Oct 2017 | A1 |
20170305786 | Roussev et al. | Oct 2017 | A1 |
20170307790 | Bellman et al. | Oct 2017 | A1 |
20170327402 | Fujii | Nov 2017 | A1 |
20170334770 | Luzzato et al. | Nov 2017 | A1 |
20170349473 | Moriya et al. | Dec 2017 | A1 |
20180009197 | Gross et al. | Jan 2018 | A1 |
20180014420 | Amin et al. | Jan 2018 | A1 |
20180031743 | Wakatsuki et al. | Feb 2018 | A1 |
20180050948 | Faik et al. | Feb 2018 | A1 |
20180067338 | Höfener et al. | Mar 2018 | A1 |
20180069053 | Bok | Mar 2018 | A1 |
20180072022 | Tsai et al. | Mar 2018 | A1 |
20180081085 | Ge | Mar 2018 | A1 |
20180103132 | Prushinskiy et al. | Apr 2018 | A1 |
20180111569 | Faik | Apr 2018 | A1 |
20180122863 | Bok | May 2018 | A1 |
20180125228 | Porter et al. | May 2018 | A1 |
20180134232 | Helot | May 2018 | A1 |
20180136367 | Fujii | May 2018 | A1 |
20180141850 | Dejneka et al. | May 2018 | A1 |
20180147985 | Brown et al. | May 2018 | A1 |
20180149777 | Brown | May 2018 | A1 |
20180149907 | Gahagan et al. | May 2018 | A1 |
20180164850 | Sim et al. | Jun 2018 | A1 |
20180186674 | Kumar et al. | Jul 2018 | A1 |
20180188869 | Boggs et al. | Jul 2018 | A1 |
20180208131 | Mattelet | Jul 2018 | A1 |
20180208494 | Mattelet et al. | Jul 2018 | A1 |
20180210118 | Gollier et al. | Jul 2018 | A1 |
20180215125 | Gahagan | Aug 2018 | A1 |
20180217296 | Weng | Aug 2018 | A1 |
20180245125 | Tsai et al. | Aug 2018 | A1 |
20180304825 | Mattelet | Oct 2018 | A1 |
20180324964 | Yoo et al. | Nov 2018 | A1 |
20180345644 | Kang et al. | Dec 2018 | A1 |
20180364760 | Ahn et al. | Dec 2018 | A1 |
20180374906 | Everaerts et al. | Dec 2018 | A1 |
20190034017 | Boggs et al. | Jan 2019 | A1 |
20190039352 | Zhao et al. | Feb 2019 | A1 |
20190039935 | Couillard et al. | Feb 2019 | A1 |
20190069451 | Myers et al. | Feb 2019 | A1 |
20190077337 | Gervelmeyer | Mar 2019 | A1 |
20190079339 | Fujii | Mar 2019 | A1 |
20190152831 | An et al. | May 2019 | A1 |
20190223309 | Amin et al. | Jul 2019 | A1 |
20190295494 | Wang et al. | Sep 2019 | A1 |
20190315648 | Kumar et al. | Oct 2019 | A1 |
20190329531 | Brennan et al. | Oct 2019 | A1 |
20190383971 | Tachibana | Dec 2019 | A1 |
20200018872 | Fujii | Jan 2020 | A1 |
20200064535 | Haan et al. | Feb 2020 | A1 |
20200231495 | Lee | Jul 2020 | A1 |
20200301192 | Huang et al. | Sep 2020 | A1 |
20200346973 | Akao | Nov 2020 | A1 |
20210055599 | Chen et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
1389346 | Jan 2003 | CN |
1400476 | Mar 2003 | CN |
1587132 | Mar 2005 | CN |
1860081 | Nov 2006 | CN |
101600846 | Dec 2009 | CN |
101684032 | Mar 2010 | CN |
101898871 | Dec 2010 | CN |
201989544 | Sep 2011 | CN |
102341356 | Feb 2012 | CN |
102464456 | May 2012 | CN |
102566841 | Jul 2012 | CN |
102909918 | Feb 2013 | CN |
103136490 | Jun 2013 | CN |
103395247 | Nov 2013 | CN |
103587161 | Feb 2014 | CN |
203825589 | Sep 2014 | CN |
104302589 | Jan 2015 | CN |
204111583 | Jan 2015 | CN |
104553126 | Apr 2015 | CN |
104656999 | May 2015 | CN |
104679341 | Jun 2015 | CN |
104691040 | Jun 2015 | CN |
204451390 | Jul 2015 | CN |
204463066 | Jul 2015 | CN |
104843976 | Aug 2015 | CN |
104908377 | Sep 2015 | CN |
105118391 | Dec 2015 | CN |
105511127 | Apr 2016 | CN |
105585253 | May 2016 | CN |
205239166 | May 2016 | CN |
105705330 | Jun 2016 | CN |
205501124 | Aug 2016 | CN |
106256794 | Dec 2016 | CN |
205905907 | Jan 2017 | CN |
106458683 | Feb 2017 | CN |
206114596 | Apr 2017 | CN |
206114956 | Apr 2017 | CN |
107076875 | Aug 2017 | CN |
107382090 | Nov 2017 | CN |
107613809 | Jan 2018 | CN |
107703567 | Feb 2018 | CN |
107735697 | Feb 2018 | CN |
107757516 | Mar 2018 | CN |
108519831 | Sep 2018 | CN |
108550587 | Sep 2018 | CN |
108725350 | Nov 2018 | CN |
109135605 | Jan 2019 | CN |
109383083 | Feb 2019 | CN |
109690662 | Apr 2019 | CN |
109743421 | May 2019 | CN |
113391380 | Sep 2021 | CN |
4415787 | Nov 1995 | DE |
4415878 | Nov 1995 | DE |
69703490 | May 2001 | DE |
102004022008 | Dec 2004 | DE |
102004002208 | Aug 2005 | DE |
102009021938 | Nov 2010 | DE |
102010007204 | Aug 2011 | DE |
102013214108 | Feb 2015 | DE |
102014116798 | May 2016 | DE |
102015114877 | Mar 2017 | DE |
0076924 | Apr 1983 | EP |
0316224 | May 1989 | EP |
0347049 | Dec 1989 | EP |
0418700 | Mar 1991 | EP |
0423698 | Apr 1991 | EP |
0525970 | Feb 1993 | EP |
0664210 | Jul 1995 | EP |
1013622 | Jun 2000 | EP |
1031409 | Aug 2000 | EP |
1046493 | Oct 2000 | EP |
0910721 | Nov 2000 | EP |
1647663 | Apr 2006 | EP |
2236281 | Oct 2010 | EP |
2385630 | Nov 2011 | EP |
2521118 | Nov 2012 | EP |
2852502 | Apr 2015 | EP |
2933718 | Oct 2015 | EP |
3093181 | Nov 2016 | EP |
3100854 | Dec 2016 | EP |
3118174 | Jan 2017 | EP |
3118175 | Jan 2017 | EP |
3144141 | Mar 2017 | EP |
3156286 | Apr 2017 | EP |
3189965 | Jul 2017 | EP |
3288791 | Mar 2018 | EP |
3426614 | Jan 2019 | EP |
3532442 | Sep 2019 | EP |
2750075 | Dec 1997 | FR |
2918411 | Jan 2009 | FR |
3012073 | Apr 2015 | FR |
0805770 | Dec 1958 | GB |
0991867 | May 1965 | GB |
1319846 | Jun 1973 | GB |
2011316 | Jul 1979 | GB |
2281542 | Mar 1995 | GB |
55-154329 | Dec 1980 | JP |
57-048082 | Mar 1982 | JP |
58-073681 | May 1983 | JP |
58-194751 | Nov 1983 | JP |
59-076561 | May 1984 | JP |
63-089317 | Apr 1988 | JP |
63-190730 | Aug 1988 | JP |
3059337 | Jun 1991 | JP |
03-059337 | Sep 1991 | JP |
03-228840 | Oct 1991 | JP |
04-119931 | Apr 1992 | JP |
05-116972 | May 1993 | JP |
06-340029 | Dec 1994 | JP |
10-218630 | Aug 1998 | JP |
11-001349 | Jan 1999 | JP |
11-006029 | Jan 1999 | JP |
11-060293 | Mar 1999 | JP |
11171596 | Jun 1999 | JP |
11204065 | Jul 1999 | JP |
2000-260330 | Sep 2000 | JP |
2002014203 | Jan 2002 | JP |
2002-255574 | Sep 2002 | JP |
2003-500260 | Jan 2003 | JP |
2003-276571 | Oct 2003 | JP |
2003-321257 | Nov 2003 | JP |
2004-101712 | Apr 2004 | JP |
2004138662 | May 2004 | JP |
2004-284839 | Oct 2004 | JP |
2005031297 | Feb 2005 | JP |
2005031298 | Feb 2005 | JP |
2005283730 | Oct 2005 | JP |
2006017870 | Jan 2006 | JP |
2006-181936 | Jul 2006 | JP |
2007-188035 | Jul 2007 | JP |
2007-197288 | Aug 2007 | JP |
2007256346 | Oct 2007 | JP |
2009075325 | Apr 2009 | JP |
2009122416 | Jun 2009 | JP |
2009244623 | Oct 2009 | JP |
2010-145731 | Jul 2010 | JP |
2011069995 | Apr 2011 | JP |
4739470 | Aug 2011 | JP |
2012-111661 | Jun 2012 | JP |
2013-084269 | May 2013 | JP |
2014-126564 | Jul 2014 | JP |
2015-502901 | Jan 2015 | JP |
2015-092422 | May 2015 | JP |
5748082 | Jul 2015 | JP |
5796561 | Oct 2015 | JP |
2016-500458 | Jan 2016 | JP |
2016-031696 | Mar 2016 | JP |
2016080857 | May 2016 | JP |
2016-517380 | Jun 2016 | JP |
2016-130810 | Jul 2016 | JP |
2016-144008 | Aug 2016 | JP |
5976561 | Aug 2016 | JP |
2016-173794 | Sep 2016 | JP |
2016-530204 | Sep 2016 | JP |
2016-203609 | Dec 2016 | JP |
2016-207200 | Dec 2016 | JP |
2017021293 | Jan 2017 | JP |
2017206392 | Nov 2017 | JP |
6281825 | Feb 2018 | JP |
6340029 | Jun 2018 | JP |
2002-0019045 | Mar 2002 | KR |
10-0479282 | Aug 2005 | KR |
10-2008-0023888 | Mar 2008 | KR |
10-2013-0005776 | Jan 2013 | KR |
10-2014-0111403 | Sep 2014 | KR |
10-2015-0026911 | Mar 2015 | KR |
10-2015-0033969 | Apr 2015 | KR |
10-2015-0051458 | May 2015 | KR |
10-1550833 | Sep 2015 | KR |
10-2015-0121101 | Oct 2015 | KR |
10-2016-0118746 | Oct 2016 | KR |
10-1674060 | Nov 2016 | KR |
10-2016-0144008 | Dec 2016 | KR |
10-2017-0000208 | Jan 2017 | KR |
10-2017-0106263 | Sep 2017 | KR |
10-2017-0107124 | Sep 2017 | KR |
10-2017-0113822 | Oct 2017 | KR |
10-2017-0121674 | Nov 2017 | KR |
10-2018-0028597 | Mar 2018 | KR |
10-2018-0049484 | May 2018 | KR |
10-2018-0049780 | May 2018 | KR |
10-2019-0001864 | Jan 2019 | KR |
10-2019-0081264 | Jul 2019 | KR |
200704268 | Jan 2007 | TW |
201438895 | Oct 2014 | TW |
201546006 | Dec 2015 | TW |
201636309 | Oct 2016 | TW |
201637857 | Nov 2016 | TW |
201715257 | May 2017 | TW |
58334 | Jul 2018 | VN |
9425272 | Nov 1994 | WO |
9739074 | Oct 1997 | WO |
9801649 | Jan 1998 | WO |
0073062 | Dec 2000 | WO |
WO-2006009065 | Jan 2006 | WO |
2006095005 | Sep 2006 | WO |
2007108861 | Sep 2007 | WO |
2008042731 | Apr 2008 | WO |
2008153484 | Dec 2008 | WO |
2009072530 | Jun 2009 | WO |
2011029852 | Mar 2011 | WO |
2011144359 | Nov 2011 | WO |
2011155403 | Dec 2011 | WO |
2012005307 | Jan 2012 | WO |
2012058084 | May 2012 | WO |
WO-2012147876 | Nov 2012 | WO |
2012166343 | Dec 2012 | WO |
2013072611 | May 2013 | WO |
2013072612 | May 2013 | WO |
WO-2013140811 | Sep 2013 | WO |
WO-2013141478 | Sep 2013 | WO |
2013174715 | Nov 2013 | WO |
2013175106 | Nov 2013 | WO |
2014085663 | Jun 2014 | WO |
2014107640 | Jul 2014 | WO |
2014172237 | Oct 2014 | WO |
2014175371 | Oct 2014 | WO |
WO-2015000534 | Jan 2015 | WO |
2015031594 | Mar 2015 | WO |
2015055583 | Apr 2015 | WO |
2015057552 | Apr 2015 | WO |
WO-2015070254 | May 2015 | WO |
2015084902 | Jun 2015 | WO |
WO-2015085283 | Jun 2015 | WO |
2015141966 | Sep 2015 | WO |
2016007815 | Jan 2016 | WO |
2016007843 | Jan 2016 | WO |
2016010947 | Jan 2016 | WO |
2016010949 | Jan 2016 | WO |
2016044360 | Mar 2016 | WO |
2016069113 | May 2016 | WO |
2016070974 | May 2016 | WO |
2016115311 | Jul 2016 | WO |
2016125713 | Aug 2016 | WO |
2016136758 | Sep 2016 | WO |
WO-2016152691 | Sep 2016 | WO |
2016173699 | Nov 2016 | WO |
2016183059 | Nov 2016 | WO |
2016195301 | Dec 2016 | WO |
2016196531 | Dec 2016 | WO |
2016196546 | Dec 2016 | WO |
2016202605 | Dec 2016 | WO |
2017015392 | Jan 2017 | WO |
2017019851 | Feb 2017 | WO |
2017023673 | Feb 2017 | WO |
2017106081 | Jun 2017 | WO |
2017146866 | Aug 2017 | WO |
2017155932 | Sep 2017 | WO |
2017158031 | Sep 2017 | WO |
2018005646 | Jan 2018 | WO |
2018009504 | Jan 2018 | WO |
2018015392 | Jan 2018 | WO |
2018075853 | Apr 2018 | WO |
2018081068 | May 2018 | WO |
2018102332 | Jun 2018 | WO |
2018125683 | Jul 2018 | WO |
2018160812 | Sep 2018 | WO |
WO-2018158464 | Sep 2018 | WO |
2018200454 | Nov 2018 | WO |
2018200807 | Nov 2018 | WO |
2018213267 | Nov 2018 | WO |
2019055469 | Mar 2019 | WO |
2019055652 | Mar 2019 | WO |
2019074800 | Apr 2019 | WO |
2019075065 | Apr 2019 | WO |
WO-2019064969 | Apr 2019 | WO |
2019151618 | Aug 2019 | WO |
WO-2020116757 | Jun 2020 | WO |
Entry |
---|
Machine Translation of CN-104553126-A, Apr. 2015 (Year: 2015). |
Machine Translation of CN-105585253-A, May 2016 (Year: 2016). |
Machine Translation of JP-2017206392-A, Jan. 2017 (Year: 2017). |
Machine Translation of WO-2018158464-A1, Sep. 2018 (Year: 2018). |
Author Unknown; “Stress Optics Laboratory Practice Guide” 2012; 11 Pages. |
Belis et al; “Cold Bending of Laminated Glass Panels”; Heron vol. 52 (2007) No. 1/2; 24 Pages. |
Doyle et al; “Manual on Experimental Stress Analysis”; Fifth Edition, Society for Experimental Mechanics; Unknown Year; 31 Pages. |
Elziere; “Laminated Glass: Dynamic Rupture of Adhesion”; Polymers; Universite Pierre Et Marie Curie—Paris VI, 2016. English; 181 Pages. |
Fildhuth et al; “Considerations Using Curved, Heat or Cold Bent Glass for Assembling Full Glass Shells”, Engineered Transparency, International Conference at Glasstec, Dusseldorf, Germany, Oct. 25 and 26, 2012; 11 Pages. |
Fildhuth et al; “Interior Stress Monitoring of Laminated Cold Bent Glass With Fibre Bragg Sensors”, Challenging Glass 4 & Cost Action TU0905 Final Conference Louter, Bos & Belis (Eds), 2014; 8 Pages. |
Fildhuth et al; “Layout Strategies and Optimisation of Joint Patterns in Full Glass Shells”, Challenging Glass 3—Conference on Architectural and Structural Applications of Glass, Bos, Louter, Nijsse, Veer (Eds.), Tu Delft, Jun. 2012; 13 Pages. |
Fildhuth et al; “Recovery Behaviour of Laminated Cold Bent Glass—Numerical Analysis and Testing”; Challenging Glass 4 & Cost Action TU0905 Final Conference—Louter, Bos & Beus (Eds) (2014); 9 Pages. |
Fildhuth; “Design and Monitoring of Cold Bent Lamination—Stabilised Glass”; ITKE 39 (2015) 270 Pages. |
Galuppi et al; “Cold-Lamination—Bending of Glass: Sinusoidal is Better Than Circular”, Composites Part B 79 (2015) 285-300. |
Galuppi et al; “Optical Cold Bending of Laminated Glass”; Internaitonal Journal of Solids and Structures, 67-68 (2015) pp. 231-243. |
Millard; “Bending Glass in the Parametric Age”; Enclos; (2015); pp. 1-6; http://www.enclos.com/site-info/news/bending-glass-in-the-parametric-age. |
Neugebauer et al; “Let Thin Glass in the FAADE Move Thin Glass—New Possibilities for Glass in the FAADE”, Conference Paper Jun. 2018; 12 Pages. |
Vakar et al; “Cold Bendable, Laminated Glass—New Possibilities in Design”; Structural Engineering International, Feb. 2004 pp. 95-97. |
Weijde; “Graduation Plan”; Jan. 2017; 30 Pages. |
Werner; “Display Materials and Processes,” Information Display; May 2015; 8 Pages. |
Chinese Patent Application No. 201980023273.9, Office Action dated Dec. 23, 2021, 13 pages English Translation, Chinese Patent Office. |
European Patent Application No. 19714264.9 Communication pursuant to Article 94(3) EPC dated Apr. 6, 2023; 9 Pages; European Patent Office. |
“Standard Test Method for Measurement of Glass Stress—Optical Coefficient”, ASTM International, Designation: C770-16, 2016. |
ASTM C1279-13 “Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully Tempered Flat Glass”; Downloaded Jan. 24, 2018; 11 Pages. |
ASTM C1422/C1422M-10 “Standard Specification for Chemically Strengthened Flat Glass”; Downloaded Jan. 24, 2018; 5 pages. |
Ferwerda et al., “Perception of sparkle in anti-glare display screens”, Journal of the SID, vol. 22, Issue 2, 2014, pp. 129-136. |
Gollier et al., “Display Sparkle Measurement and Human Response”, SID Symposium Digest of Technical Papers, vol. 44, Issue 1, 2013, pp. 295-297. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US19/020343; Mailed Jul. 19, 2019; 18 Pages; European Patent Office. |
Invitation to Pay Additional Fees of the International Searching Authority; PCT/US2019/020343; Mailed May 24, 2019; 15 Pages; European Patent Office. |
Li et al., “Effective Surface Treatment on the Cover Glass for AutoInterior Applications”, SID Symposium Digest of Technical Papers, vol. 47, 2016, pp. 467-469. |
Taiwanese Patent Application No. 108107064, Office Action dated Jan. 16, 2023, 2 pages (English Translation Only); Taiwanese Patent Office. |
“Stainless Steel—Grade 410 (UNS S41000)”, available online at <https://www.azom.com/article.aspx?ArticleID=970>, Oct. 23, 2001, 5 pages. |
Ashley Klamer, “Dead front overlays”, Marking Systems, Inc., Jul. 8, 2013, 2 pages. |
ASTM Standard C770-98 (2013), “Standard Test Method for Measurement of Glass Stress-Optical Coefficient”. |
Burchardt et al., (Editorial Team), Elastic Bonding: The basic principles of adhesive technology and a guide to its cost-effective use in industry, 2006, 71 pages. |
Byun et al; “A Novel Route for Thinning of LCD Glass Substrates”; SID 06 Digest; pp. 1786-1788, v37, 2006. |
Datsiou et al., “Behaviour of cold bent glass plates during the shaping process”, Engineered Transparency. International Conference atglasstec, Dusseldorf, Germany, Oct. 21 and 22, 2014, 9 pages. |
Engineering ToolBox, “Coefficients of Linear Thermal Expansion”, available online at <https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html>, 2003, 9 pages. |
Fauercia “Intuitive HMI for a Smart Life on Board” (2018); 8 Pages http://www.faurecia.com/en/innovation/smart-life-board/intuitive-HMI. |
Faurecia: Smart Pebbles, Nov. 10, 2016 (Nov. 10, 2016), XP055422209, Retrieved from the Internet: URL:https://web.archive.org/web/20171123002248/http://www.faurecia.com/en/innovation/discover-our-innovations/smart-pebbles [retrieved on Nov. 23, 2017]. |
Galuppi et al; “Buckling Phenomena in Double Curved Cold-Bent Glass;” Intl. J. Non-Linear Mechanics 64 (2014) pp. 70-84. |
Galuppi et al; “Large Deformations and Snap-Through Instability of Cold-Bent Glass”; Challenging Glass 4 & Cost Action TU0905 Final Conference; (2014) pp. 681-689. |
Galuppi L et al: “Optimal cold bending of laminated glass”, Jan. 1, 2007 vol. 52, No. 1/2 Jan. 1, 2007 (Jan. 1, 2007), pp. 123-146. |
Indian Patent Application No. 201917031293 Office Action dated May 24, 2021; 6 pages; Indian Patent Office. |
Jalopnik, “This Touch Screen Car Interior is a Realistic Vision of the Near Future”, jalopnik.com, Nov. 19, 2014, https://jalopnik.com/this-touch-screen-car-interior-is-a-realistic-vision-of-1660846024 (Year: 2014). |
Pambianchi et al; “Corning Incorporated: Designing a New Future With Glass and Optics”; Chapter 1 in “Materials Research for Manufacturing: An Industrial Perspective of Turning Materials Into New Products”; Springer Series Material Science 224, p. 12 (2016). |
Pegatron Corp. “Pegaton Navigate the Future”; Ecockpit/Center CNsole Work Premiere; Automotive World; Downloaded Jul. 12, 2017; 2 Pages. |
Photodon, “Screen Protectors for Your Car's Navi System That You're Gonna Love”, photodon.com, Nov. 6, 2015, https://www.photodon.com/blog/archives/screen-protectors-for-your-cars-navi-system-that-youre-gonna-love) (Year: 2015). |
Product Information Sheet: Coming® Gorilla® Glass 3 with Native Damage Resistance™, Coming Incorporated, 2015, Rev: F_090315, 2 pages. |
Scholze, H., “Glass-Water Interactions”, Journal of Non-Crystalline Solids vol. 102, Issues 1-3, Jun. 1, 1988, pp. 1-10. |
Stattler; “New Wave—Curved Glass Shapes Design”; Glass Magazine; (2013); 2 Pages. |
Stiles Custom Metal, Inc., Installation Recommendations, 2010 https://stilesdoors.com/techdata/pdf/Installation%20Recommendations%20HM%20Windows,%20Transoms%20&%>OSidelites%200710.pdf) (Year: 2010). |
Tomozawa et al., “Hydrogen-to-Alkali Ratio in Hydrated Alkali Aluminosilicate Glass Surfaces”, Journal of Non-Crystalline Solids, vol. 358, Issue 24, Dec. 15, 2012, pp. 3546-3550. |
Zhixin Wang, Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques, Graduate Theses and Dissertations, University of South Florida, 2011, 79 pages. |
Number | Date | Country | |
---|---|---|---|
20200408954 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62637666 | Mar 2018 | US |