Anti-rotation cartridge pin

Information

  • Patent Grant
  • 11338090
  • Patent Number
    11,338,090
  • Date Filed
    Wednesday, December 21, 2016
    8 years ago
  • Date Issued
    Tuesday, May 24, 2022
    3 years ago
Abstract
A system is disclosed for inserting a pharmaceutical cartridge into a delivery device. Optionally the cartridge is inserted in an arbitrary orientation. Optionally, the system reorients the cartridge to a locked orientation. For example, a driver applies a torque to the cartridge to cause the reorienting. For example, said torque rotates the cartridge around an axis thereof until the cartridge reaches the locked orientation. Optionally, when the cartridge reaches the locked orientation an interference element on the cartridge interlocks with a complementary interference element on the delivery device to lock the cartridge in the locked orientation. Optionally when the cartridge is locked in the second orientation, the torque causes discharge the pharmaceutical.
Description
FIELD AND BACKGROUND OF THE INVENTION

The present invention, in some embodiments thereof, relates a method and system for loading a cartridge into a pharmaceutical device and particularly, but not exclusively, to a system and method for facilitating proper stabilization of the cartridge.


U.S. Pat. No. 8,157,769 relates to “A cartridge insertion assembly including apparatus with a pathway formed therein, a cartridge insertable into the pathway, the cartridge including a cartridge coupling element connectable to an activation mechanism disposed in the apparatus operative to cause a substance contained in the cartridge to be metered out of the cartridge, and a door pivoted to the apparatus that includes a door coupling element arranged with respect to the cartridge such that when the door is in a fully closed position, the door coupling element couples the cartridge coupling element with a coupling element of the activation mechanism”.


U.S. Pat. No. 7,967,795 relates to “A cartridge interface assembly including a driving plunger including an outer shaft, and a driver including an inner shaft, the inner shaft mating with an intermediate shaft, the intermediate shaft mating with the outer shaft, so that the shafts are movable telescopically with respect to one another, wherein rotation of the driver causes the driving plunger to advance in a direction away from the driver”.


U.S. Pat. No. 9,173,997 relates to an apparatus “For administering a substance to a subject. A vial contains the substance and a stopper is disposed within the vial and is slidably coupled to the vial. A first threaded element is (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element. A second threaded element is threadably coupled to the first threaded element. At least a distal end of the second threaded element is substantially non-rotatable with respect to the vial, and the distal end of the second threaded element defines a coupling portion that couples the second threaded element to the stopper. The first threaded element, by rotating, linearly advances the stopper and at least the distal end of the second threaded element toward a distal end of the vial. Other embodiments are also described.”


SUMMARY OF THE INVENTION

Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.


According to an aspect of some embodiments of the invention, there is provided a system for loading pharmaceutical into a pharmaceutical delivery device including: a cartridge including a cylindrical reservoir having a longitudinal axis and containing the pharmaceutical; a cartridge bay in the pharmaceutical delivery device, the bay sized and shaped to receive the cartridge with the cylindrical reservoir rotated in any of a first orientation and a second orientation rotated around the longitudinal axis; a first interference element on the cartridge and a second complementary interference element on the delivery device, wherein the first interference element on the cartridge and a second complementary interference element are disengaged when the cartridge is fully received by the bay and the reservoir is in any of the first orientation and the second orientation; the first interference element and second complementary interface element interlocking when the cartridge is fully loaded into the bay and the cartridge is in a third orientation around the longitudinal axis, the interlocking preventing rotation of the reservoir around the longitudinal axis in at least one direction.


According to some embodiments of the invention, in the cartridge fits into the bay by longitudinal insertion.


According to some embodiments of the invention, the first interference element is located on a leading face of the cartridge.


According to some embodiments of the invention, the complementary interference element contacts the cartridge only when the cartridge is more than 97% inserted into the bay.


According to some embodiments of the invention, the complementary interference element is longitudinally displaced by the cartridge after the cartridge is inserted into the bay at least 97% of its full insertion.


According to some embodiments of the invention, in the first orientation the first interference element and the second complementary interference element overlap in and at least one element of the first interference element and the second complementary interference element is configured for elastically displacing to accommodate the overlap.


According to some embodiments of the invention, when the at least one element is configured to apply a resistance to insertion of the cartridge into the cartridge bay as a result of the elastically displacing.


According to some embodiments of the invention, the system further includes a lock configured for counteracting the resistance.


According to some embodiments of the invention, the lock includes a latch.


According to some embodiments of the invention, in the first orientation the first interference element and the second complementary interference element are disengaged facilitating rotation either direction around the longitudinal axis with respect to the delivery device around.


According to some embodiments of the invention, in the third orientation the interlocking of the first interference element and the second complementary interference element inhibits rotation of the cartridge around the longitudinal axis with respect to the delivery device in two opposite directions.


According to some embodiments of the invention, the system further includes a driver for imparting a torque between the pharmaceutical delivery device and the cartridge around the longitudinal axis.


According to some embodiments of the invention, the driver is configured to drive discharge of the pharmaceutical when the cartridge is prevented from rotating around axis in the at least one direction.


According to some embodiments of the invention, the driver includes a threaded element.


According to some embodiments of the invention, the drive pushes a plunger axially inside of the cylindrical reservoir.


According to some embodiments of the invention, the driver includes a telescoping screw assembly.


According to some embodiments of the invention, the driver applies the torque to the threaded element and the threaded element is threadably connected to a second threaded element and the second threaded element is inhibited from rotating around the longitudinal axis with respect to the cartridge.


According to an aspect of some embodiments of the invention, there is provided a method of loading a pharmaceutical cartridge having a cylindrical reservoir into a delivery device including; inserting the cartridge longitudinally into a cartridge bay of the delivery device in a first orientation; applying a torque to the cartridge with a driver; reorienting the cartridge to a second orientation around a longitudinal axis of the reservoir as a result of the applying a torque; interlocking an interference element on the cartridge to a complementary interference element on the delivery device to lock the cartridge in the second orientation; discharging a pharmaceutical from the cartridge as a result of continuing the applying and the interlocking.


According to some embodiments of the invention, the method further includes: elastically displacing an interference element as a result of the inserting; at least partially releasing the elastically displacing when the cartridge reaches the second orientation.


According to some embodiments of the invention, the elastically displacing produces a resistance to the inserting and further including: fixing the cartridge in the cartridge bay after the elastically displacing and wherein the fixing at least partially counteracts the resistance.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.


In the drawings:



FIG. 1 is a flow chart of illustration of inserting and/or orientating and/or locking a cartridge in accordance with an embodiment of the current invention;



FIGS. 2A and 2B are a block diagram of illustrations of cartridge stabilization systems in accordance with embodiments of the current invention;



FIGS. 3A-3D are schematic illustrations of a cartridge stabilization system in accordance with an embodiment of the current invention;



FIGS. 4A and 4B are schematic illustrations of an alternative cartridge stabilization system in accordance with an embodiment of the current invention;



FIG. 5 is a flow chart of illustration of inserting and/or orientating and/or locking a cartridge in accordance with an embodiment of the current invention;



FIG. 6 is a perspective cut-away illustrations of a pharmaceutical delivery device including a cartridge stabilization system in accordance with an embodiment of the current invention;



FIG. 7 is a schematic proximal cut-away illustration of a pharmaceutical delivery device including a cartridge stabilization system in accordance with an embodiment of the current invention;



FIGS. 8A and 8B are perspective cut-away illustrations of a pharmaceutical delivery device including a cartridge stabilization system in accordance with an embodiment of the current invention;



FIGS. 9A-9C are photographs of a cartridge stabilization system in accordance with an embodiment of the current invention.



FIG. 10 is a schematic illustration of a pharmaceutical cartridge in accordance with an embodiment of the current invention;



FIG. 11 is a schematic illustration of a pharmaceutical cartridge in accordance with an embodiment of the current invention.





DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION

The present invention, in some embodiments thereof, relates a method and system for loading a cartridge into a pharmaceutical device and particularly, but not exclusively, to a system and method for facilitating proper stabilization of the cartridge.


Overview


An aspect of some embodiments of the current invention relates to system for stabilizing a pharmaceutical cartridge into a fixed orientation. The cartridge stabilization system optionally allows introduction of a cartridge into a cartridge bay in either the locked orientation and/or another orientation and/or reorients the cartridge to the locked orientation and/or stabilization the cartridge in the locked orientation.


In some embodiments, a stabilization system will be configured to avoid interference with insertion of a cartridge. For example, the stabilization system may allow insertion of the cartridge in a locked orientation and/or in another orientation and/or in an arbitrary orientation.


In some embodiments, the mechanism by which the cartridge is locked will not apply against the insertion of the cartridge. For example, for a longitudinally inserted cartridge, an interference force may resist rotation around the longitudinal axis, but not longitudinal movement. Alternatively, or additionally the force of the locking mechanism may resist insertion only in a portion of the insertion trajectory. For example, resistance to insertion may be at the beginning or end of the insertion process. Optionally, the force resisting insertion may be less than 1/100 the force resisting the locking direction and/or the insertion resistance may range between 1/100 to 1/50 of the force of locking, and/or the insertion resistance may range between 1/50 to 1/10 of the force of locking, and/or the insertion resistance may range between 1/10 to ½ of the force of locking. For example, a resistance to insertion may be applied to less than ½ of the insertion trajectory and/or over less than ¼ of the insertion trajectory and/or less than ⅛ of the insertion trajectory and/or less than 1/20 of the insertion trajectory.


In some embodiments, a cartridge stabilization system may assist cartridge insertion. For example, a cartridge stabilization system may add a resistance force that stops when a cartridge is fully inserted into a pharmaceutical delivery device. For example, the stabilization system may serve as a tactile indication to a user indicating that the cartridge is fully installed. For example, the interference element may exert a force ranging between 200 to 400 g and/or between 400 to 800 g and/or between 800 to 2000 g when it is deflected. For example the interference element may deflect between 0.5 to 1.0 mm and/or between 1.0 to 1.5 mm and/or between 1.5 to 3 mm. For example the ratio between the force and/or distance of deflection of the interference element when it interlocks to a complementary interference element to the force and/or distance of deflection when the interference element overlaps the complementary interference element may range between 0 to 0.3 and/or between 0.3 to 0.6 and/or between 0.6 to 0.9 and/or between 0.9 to 1.0. Optionally, the interlocked interference elements may hold a cartridge immobile and/or stable for a torque ranging between 0 to 200 g-cm and/or between 0 to 500 g-cm and/or between 0 to 1000 g-cm. In some embodiments the axial force developed by a driver on a plunger, for example during pharmaceutical delivery ranges between 0.5 to 2 kg and/or between 2 to 4 kg and/or between 4 to 10 kg.


In some embodiments, the cartridge is reoriented to a final and/or locked position after insertion. Optionally, a driver, which drives delivery of a pharmaceutical, will also drive reorientation of a cartridge. For example, a drive may apply a torque to a cartridge. The torque my reorient the cartridge until the stabilization system stabilizes the cartridge in the locked orientation. Optionally, when the cartridge is locked, the driver may begin continue to drive the cartridge.


Optionally, after locking the force of the driver may perform a different function from reorienting. For example, once the cartridge is locked and/or resists rotation, the torque of the driver may be converted into a force discharging and/or delivering the pharmaceutical and/or drive a preparation for discharge, for example pushing a plunger driver and/or a plunger and/or piercing a septum.


In some embodiments, a locking mechanism includes an interference element.


Optionally, the interference element does not interfere with movement when the cartridge is not in the locked position. Alternatively or additionally, the interference element may be elastically pushed out of a locking position when the cartridge is not in a locked position. Alternatively or additionally, an interference element will produce a force in one direction (for example, a resistance to insertion due to friction and/or elastic forcing of the interference element) while the cartridge is out of the locked position and/or the interference element will produce a different force (for example blocking rotation) in the locked position. In some embodiments, the non-locking positions may include for example angles covering between 359 to 300 degrees of orientations and/or between 300 to 200 degrees and/or between 200 to 100 degrees and/or between 100 to 50 degrees and/or between 50 to 2 degrees.


In some embodiments, a cartridge will include an interference element on a leading face and/or surface thereof (a leading face and/or surface may include a surface that is facing the direction of travel as the cartridge is inserted into the delivery device). For example, for a cartridge that is optionally pushed distally into a cartridge bay the interference element may optionally be located on a distal face of the cartridge. Optionally, the interference element does not interlock with a complementary element and/or does not interfere with insertion of the cartridge until the distal face is inserted to reach a complementary interference element of the delivery device. For example, the interference elements may interact in an area ranging between the last ½ to the last 1/10 of the insertion and/or between the last 1/10 to the last 1/100 of the insertion. For example, the interference elements may interact in an area ranging between the last 2 cm to the last 4 mm of the insertion and/or between the last 4 mm to the last 0.4 mm of the insertion.


In some embodiments, a driver includes an antirotational connection to a pharmaceutical reservoir. For example, a plunger and/or a friction pad may supply anti-rotational friction between an inner wall of a reservoir and the driver.


Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.


Flow Chart of an Exemplary Method of Stabilizing a Cartridge



FIG. 1 is a flow chart illustration of inserting and/or orientating and/or locking a cartridge in accordance with an embodiment of the current invention. In some embodiments, a user inserts 102 a pharmaceutical cartridge into a delivery device in an arbitrary orientation. Optionally, the device reorients 104 the cartridge until it reaches a locked orientation 106 and locks 108. For example, the driver that drives discharge 110 of the pharmaceutical also drives orientation of the cartridge.


In some embodiments, a user inserts 102 a pharmaceutical cartridge into a delivery device. For example, a pharmaceutical cartridge may include a tubular reservoir that is inserted longitudinally into a cartridge bay. For example, a cartridge may include a syringe and/or a vial and/or an ampoule. In some embodiments, during delivery the cartridge may be stabilized in the cartridge bay at a fixed orientation. Nevertheless, it may be desirable that the device perform properly when the user inserts 102 the cartridge in an arbitrary orientation. Furthermore, it may be desirable that the locking mechanism not impede cartridge insertion. For example, a friction based stabilization may impede insertion of the cartridge. Optionally, the cartridge is inserted 102 while the locking mechanism is disengaged.


In some embodiments, a user initiates the device. For example, initiating the device may include activating 103 a driver of pharmaceutical delivery. Optionally, initially, for example while the cartridge in unlocked, the driver may not drive delivery of the pharmaceutical. For example, initially, the driver may drive reorientation 104 of the cartridge. Optionally, the cartridge will continue to reorient 104 until it reaches a locked orientation 106 and/or is locked 108.


In some embodiments, a delivery driver will continue to operate 109 after a cartridge is locked 108 and/or in its locked orientation 106. Optionally, continued operation 109 of the driver discharges 110 the pharmaceutical and/or delivers the pharmaceutical to a subject.


Embodiments of a Cartridge Stabilize



FIG. 2A is a block diagram of illustration of cartridge stabilization system in accordance with an embodiment of the current invention. In some embodiments, a delivery device 201 includes a cartridge bay 204 that accommodates a pharmaceutical reservoir 202. For example, bay 204 may accommodate reservoir 202 in more than one possible orientation. Optionally, when reservoir 202 is in a locked orientation, complementary interference elements 218 and 208 on the cartridge and bay respectively interlock and/or lock the cartridge into the locked orientation. Optionally, when the cartridge is in a non-locked orientation, interference elements 218 and 208 overlap. Optionally, when the cartridge is in a non-locked orientation at least one of interference elements 218 and 208 is elastically displaced.


In some embodiments, delivery device 201 includes a driver 203. Optionally driver 203 drives reorientation of reservoir 202 in bay 204. For example, driver 203 may produce a torque that rotates reservoir 202. Optionally, the torque may reorient cartridge, for example by rotating reservoir 202 around an axis inside bay 204. Optionally, when reservoir 202 reaches a particular orientation (for example a locked orientation), interference element 218 on the cartridge interlocks with interference element 208 on the delivery device and/or stops reorientation of the cartridge with respect to the device.


In some embodiments, when reservoir 202 is locked, further torque of driver 203 drives delivery of the pharmaceutical. For example, reservoir 202 may include a pharmaceutical reservoir and/or a pump for discharging a pharmaceutical from the reservoir. For example, driver 203 may impel a plunger into the reservoir to discharge the pharmaceutical from reservoir 202.


In some embodiments, driver 203 may include a telescoping screw assembly (TSA) and/or a plunger interface. For example, driver 203 may include a motor (for example a DC electric motor and/or a brushless electric motor and/or a chemical powered motor). The motor optionally applies a torque between the TSA and a chassis 212 of the delivery device. Optionally the TSA applies the torque to the plunger; the plunger optionally applies the torque to the reservoir. For example, as long as reservoir 202 is free to rotate, the torque of the motor rotates reservoir 202. When reservoir 202 is locked by interlocked interference elements 208 and/or 218, to the cartridge produces a counter torque, which is transmitted to the TSA. Optionally the torque and counter torque on the TSA may cause screw threads in the TSA to rotate with respect to each other expanding the telescoping assembly and/or driving the plunger and/or discharging the pharmaceutical. Alternatively or additionally, a driver may include a linear actuator and/or a piston assembly, which drives discharge. Alternatively or additionally, torque may be transferred between the cartridge and the driver by friction between the plunger and the inner wall of the reservoir and/or by a friction element (for example a friction pad contacting and inner wall of the reservoir) and/or by an interference element.



FIG. 2B is a block diagram illustrating and alternative pharmaceutical delivery device in accordance with an embodiment of the current invention. In some embodiments, a drug delivery device 201 may include a motor 230. Optionally, motor 230 drives a transmission 205. For example, transmission 205 may transmit rotational energy to a telescoping screw assembly, TSA 233. Optionally TSA 233 is connected to a plunger 286 of a reservoir 202. For example, torque from motor 230 may rotate an entire cartridge (for example including transmission 205, TSA 233, plunger 286 and/or reservoir 202). Alternatively or additionally, when reservoir 202 and/or plunger 286 are prevented from rotating, rotating transmission 205 may rotate on part of TSA 233 with respect to a threadably connected second part of TSA 233. Rotation of the threadably connected parts with respect to one another optionally expands TSA 233 and/or pushes plunger 286 into the reservoir, for example driving discharge of a pharmaceutical.


Exemplary Surfaces of Contact with a Cartridge



FIGS. 3A-3D are schematic illustrations of a cartridge stabilization system in accordance with an embodiment of the current invention. Optionally, a cartridge may include a cylindrical reservoir 302, which is inserted longitudinally into a delivery device in an arbitrary orientation. Cylindrical reservoir 302 optionally is free to rotate until an interference element 308 of the delivery device interlocks with a complementary feature on the cartridge inhibiting further rotation of the cartridge with respect to the delivery device.


In some embodiments, reservoir 302 includes a groove 317 and/or a complementary interference element, for example a protruding section 318 configured to interlock with an interference element 308 on the delivery device. Optionally, interference element 308 is elastic. For example when groove 317 is not aligned with interference element 308 and/or when protruding section 318 overlaps interference element 308 (for example as illustrated in FIGS. 3A and 3B) then element 308 may flex out of the way of cartridge 302 allowing insertion of cartridge 302 into the delivery device and/or allowing rotation of cartridge 302 with respect to the delivery device.


In some embodiments, when groove 317 is aligned with element 308, then element 308 and protruding section 318 interlock. For example, element 308 may be biased toward groove 317 such that when they are aligned element 308 snaps into groove 317 and/or interlocks (for example as illustrated in FIGS. 3C and/or 3D). Optionally, interlocking may allow longitudinal movement of the cartridge with respect to the device. Optionally, interlocking may inhibit further rotation of cartridge with respect to the device.



FIGS. 4A and 4B are schematic illustrations of an alternative cartridge stabilization system in accordance with an embodiment of the current invention. In some embodiments, a cartridge includes a complementary interference element on a leading face of the cartridge. For example, the cartridge may be inserted distally into a cartridge bay. The complementary interference element of the cartridge may be on a distal face of the cartridge. For example, the distal face may encounter an interference element of the delivery device when as the cartridge approaches complete insertion into the delivery device. Optionally, the interference elements will not inhibit (and/or affect) the beginning of cartridge insertion.


In some embodiments, a cartridge may include a reservoir 402 having a proximal flange 416. Optionally, an interference element 408 on the delivery device interacts with a complementary element on the cartridge. For example, the distal face 419 of flange 416 may include a groove and/or a protrusion that interlocks with element 408 when cartridge is in a particular orientation. For example, when element 408 overlaps with the protrusions either element 408 or the protrusion may be elastically displaced. For example, when element 408 is aligned with the groove it may snap into the groove and/or interlock with the protrusion and/or lock the orientation of reservoir 402. Optionally, element 408 will contact flange 416 during the last 1 mm of cartridge insertion. For example, at the end of insertion, elastic forces of element 408 may push the cartridge outward from the cartridge bay until the cartridge reaches a fully in inserted position. At the fully inserted position, the cartridge may be fixed in place, fixing the cartridge may include an opposing force to the outward force of element 408. For example, the resistance force of element 408 and/or the nullification of the resistance may serve as a tactile sign to the user that the cartridge has been fully inserted.


In some embodiments, a cartridge includes a TSA 403. For example, TSA 403 may be connected to a transmission, for example including a drive gear 405.


Optionally, when the cartridge is inserted into the delivery device, the transmission connects to a motor that drives TSA to rotate the cartridge and/or to discharge the pharmaceutical.


Exemplary Stabilizing of a Cartridge and/or Discharging of a Pharmaceutical



FIG. 5 is a flow chart of illustration of inserting and/or orientating and/or locking a cartridge in accordance with an embodiment of the current invention. In some embodiments, the locking mechanism does not affect cartridge insertion until the cartridge is close to the end of insertion. At the end of insertion, the interference element of the delivery device optionally contacts a complementary surface and/or element of the cartridge. For example, the complementary surface may be a surface with a portion that interlocks to the interference element and/or a portion that facilitate reorientation of the cartridge until an interlocking portion of the surface contacts the interference element.


In some embodiment, a cartridge is freely inserted 502 into a delivery device.


Optionally, the cartridge may be inserted 502 in various and/or arbitrary orientations. For example, for a cartridge with a cylindrical reservoir, the cartridge optionally is inserted in any rotational orientation around the longitudinal axis of the reservoir. Optionally, a stabilization system does not interfere with insertion at least for insertion to between 50 to 90% and/or between 90 to 97% and/or between 97 to 99% of its fully inserted depth. For example, the stabilization system may not interfere with the orientation of the cartridge and/or apply a force to the cartridge before it is inserted to the stated depth. Alternatively or additionally, the stabilization system may apply an average force over the beginning portion of insertion that is less than ½ and/or less than 1/10 and/or less than 1/100 the average force over the final portion of insertion.


In some embodiments, the cartridge may contact 524 an interference element of a stabilization system during a final portion of insertion after an initial portion of insertion.


For example, the initial portion of insertion may range between 50% inserted to 90% inserted and/or between 90% to 95% and/or between 95% to 99% and/or greater than 99% of the fully inserted depth. For example, after the cartridge contacts 524 the interference element, the element may produce resistance to further insertion and/or an outward force. For example, the outward force may push the cartridge out from the cartridge bay. Optionally, when the cartridge is fully inserted it may be fixed 526 in the cartridge bay. For example, the fixing 526 may counteract and/or nullify the outward force of contact 526 with the interference element.


Optionally, the resistance resulting from contact 524 with the interference element may serve the user as a sign that the cartridge is approaching full insertion and/or has not reached full insertions. Optionally, fixing 526 may serve the user as a sign that the cartridge is properly and/or fully inserted.


In some embodiments, after a cartridge is fully inserted 502 and/or fixed 526, a user may place the pharmaceutical delivery device onto a delivery site and/or activate 503 the device. Optionally, when the device is active and the cartridge is in a non-locked orientation [no in decision box 506] (for example, an interference element in the cartridge bay in not aligned and/or not interlocking with a complementary feature on the cartridge and/or an interference elements on the delivery device overlaps an interference element on the cartridge) then one of the interference element may be displaced elastically 520. For example, elastic displacement 520 may be by elastic deformation of the interference element and/or the interference element may have an elastic mount (for example a spring and/or an elastic joint) that deforms elastically. For example, the displacement may be caused by overlap of the interference element with a complementary interference element. Optionally, when the cartridge is in a non-locked orientation [no in decision box 506], action of a driver on the cartridge may reorient 504 (for example rotate) the cartridge. Optionally, the driver continues to reorient 504 the cartridge with respect to the delivery device until the cartridge reaches the locked orientation.


In some embodiments, when the cartridge is in a locked orientation [yes in decision box 506], an interference elements on the cartridge and/or delivery device may interlock 522. Interlocking 522 may orientationally lock 508 the cartridge in the locked orientation. Optionally, when the cartridge is orientationally locked 508, the driver may continue to operate 109. For example, continued operation 109 of the driver when the cartridge in orientationally locked 508 may cause delivery and/or discharge 110 of the pharmaceutical.


Detailed Embodiments of a Cartridge Stabilizing System



FIG. 6 is a perspective cut-away illustration of a pharmaceutical delivery device including a cartridge stabilization system in accordance with an embodiment of the current invention. In some embodiments, a reservoir fits into a cartridge bay. As reservoir is inserted, a leading face optionally contacts an interference element of the delivery device. Optionally, in some orientations, a protrusion on the leading face contacts the interference element and/or elastically displaces the interference element.


Optionally, in some orientations, a depression on the leading face contacts the interference element. For example, a depression and/or a protrusion may include a complementary interference element that optionally interlocks with the interference element of the delivery device and/or locks the orientation of reservoir.


In some embodiments, when a reservoir is almost fully inserted, an interference element 608 of the delivery device contacts a leading face 619 including complementary element 618. For example, face 619 may include protrusions and/or depressions 617 (for example, a complementary interference element 618 may include a protrusion in face 619). When interference element 608 contacts face 619, element 608 is elastically displaced. For example, when element 608 contacts face 619, element 608 bends distally. Optionally, displacing element 608 causes resistance to cartridge insertion. In some embodiments, inserting the reservoir further after contacting element 608, further displaces element 608 and/or activates a longitudinal fixing mechanism that fixes the cartridge in the cartridge bay.


In some embodiments, a reservoir 602 of the cartridge includes a connector. For example, reservoir 602 includes a septum 638. Optionally, the delivery device 650 includes a complimentary connector, for example, a hollow needle 636.


Optionally, as the cartridge reaches its locked position needle 636 punctures septum 638 and creates a fluid path between reservoir 602 and the delivery device 650.


In some embodiments, the pharmaceutical delivery device 650 includes a closure element. For example, the pharmaceutical delivery device 650 may include a door 640 to the cartridge bay 604. For example, the door 640 rotates around an axle 640 to open and/or close.


In some embodiments, a closure element, for example door 640 may includes parts of a driver of the delivery device. For example, door 640 includes a second axle 642, which optionally supports a connection between the cartridge and the delivery device 650. For example, the connection may include a gear that connects a TSA of the cartridge to a motor of the delivery device 650. An exemplary, the drive system of device 650 and/or reservoir 602 is shown, for example in more detail in FIG. 7.


In some embodiments, a cartridge includes a flange 616. For example, a latch in device 650 may block flange 616 when reservoir 602 is fully inserted into bay 604 and/or longitudinally fix reservoir 602 into bay 604.



FIG. 7 is a schematic proximal cross sectional illustration of pharmaceutical delivery device 650 including a cartridge stabilization system in accordance with an embodiment of the current invention. In some embodiments, delivery device 650 includes a motor 730. For example, motor 730 is connected by a transmission 616 to a TSA 703. Optionally, when motor 730 is connected to TSA 703, motor 730 rotates TSA 703.


In some embodiments, a motor 730 is mounted to chassis 612 of the delivery device 650. Optionally, motor 730 rotates a gear 786 with respect to chassis 612. Another gear 784 is optionally mounted on axle 641 of door 640. For example when door 640 is closed (for example as illustrated in FIG. 7), gear 784 interconnects between gear 786 and transmission 705. Optionally, when gear 786 is connected to transmission 705, rotating gear 786 causes TSA 703 to rotate with respect to chassis 612.


In some embodiments, TSA 703 is rotationally interlocked to reservoir 602.


Optionally, when reservoir 602 can rotate with respect to chassis 612 then rotating transmission 705 rotates reservoir 602. Alternatively or additionally, when reservoir 602 is rotationally locked with respect to chassis 612, then rotating transmission 705 rotates one end of TSA 703 with respect to the other end of TSA 703. Rotating one end of TSA 703 with respect to the other end of TSA 703 optionally causes TSA 703 to expand or contract. For example, expanding TSA 703 may push a plunger into the reservoir and/or discharge a pharmaceutical.


In some embodiments, a latch 788 fixes the cartridge into bay 604. For example, when the cartridge is inserted into bay 604, latch 788 flexes downward to allow flange 616 to enter bay 604. Alternatively or additionally, when the cartridge it's fully inserted into bay 604, latch 788 snaps upward, blocking flange 616 into position and/or fixing the cartridge inside bay 604. Optionally, latch 788 produces a counter force at least partially negating the resistance to insertion of the elastic displacement of interference element 608.



FIGS. 8A and 8B are perspective cut-away illustrations of pharmaceutical delivery device 650 including a cartridge stabilization system in accordance with an embodiment of the current invention. In some embodiments, when leading face 619 of a cartridge contacts interference element 608, the face 619 and/or the interference element 608 may be elastically displaced. Optionally, elastic displacement may occur when an interference element 618 on the cartridge is interlocks with a complementary element 608 on the delivery device 650, for example when interference element 608 overlaps an indentation 617 on face 619. Alternatively or additionally, elastic displacement may occur when an interference element 618 on the cartridge is not aligned with a complementary element 608 on the delivery device, for example, when interference element overlaps with a projection. The elastic displacement force may give a tactile feedback to a user helping him know when the cartridge has been completely inserted. In some orientations, the elements 608 and/or 618 may stabilize the orientation of the cartridge.



FIG. 8A illustrates an exemplary embodiment of the current invention with a reservoir 602 fully inserted into a bay 604. In FIG. 8A reservoir 602 is optionally oriented such that interference elements 608 and 618 are not aligned. For example, interference element 608 may overlap and/or be elastically displaced by a protrusion on face 619 of the cartridge. In some embodiments, when reservoir 602 is fully inserted into bay 604 a latch 788 fixes flange 616 into the delivery device.


In some embodiments, a protrusion on leading face 619 of reservoir 602 pushes interference element 608 and/or elastically displaces element 608. Element 608, optionally, forces reservoir 602 backwards giving a tactile resistance to the user.


Optionally, when interference element 608 is not aligned with interference element 618, reservoir 602 is free to rotate around its axis.


In some embodiments, a driver, for example TSA 703 causes the reservoir 602 to rotate. Optionally, reservoir 602 rotates until interference element 608 is aligned with interference element 618. Alternatively or additionally, reservoir 602 may be inserted into bay 604 in an orientation with interference elements 608 and 618 already aligned.


In some embodiments, for example, as Illustrated in FIG. 8B, when interference element 608 is aligned with element 618, then interference element 608 snaps into a groove and/or indentation 617 of face 619 and/or interlocks with a complementary interference element 618 and/or locks the orientation of reservoir 602.


Optionally, interference element 608 is less displaced or not all displaced when it is aligned with element 618 than when it overlaps element 618. For example, when the interference elements are aligned the elastic displacement and/or elastic force may range between 50% to 90% the displacement when the elements are not aligned (for example when they overlap) and/or between 20% to 50% and/or between 1% to 20% and/or when aligned there may be no elastic displacement of the interference elements and/or not elastic force between the cartridge and the delivery device.


In some embodiments, when reservoir 602 is fully inserted into bay 604, a connection and/or a fluid path may be created between reservoir 602 and delivery device 650. For example, a hollow needle 636 may puncture a septum 638 of a reservoir 602. Optionally, puncturing septum 638 may create a fluid path between device 650 and reservoir 602. Illustrated, for example, in FIGS. 8A and 8B is a hinge 841 of device 650 around which hinge 641 and/or door 640 revolve



FIGS. 9A-9C are photographs of a cartridge stabilization system in accordance with an embodiment of the current invention. In some embodiments, a cartridge 902 is inserted into a cartridge bay. Optionally, a leading face 919 of cartridge 902 approaches an interference element 908. As the cartridge approaches full insertion, face 919 optionally contacts the interference element 908 either in alignment (with an interference element 917 of the cartridge aligned to interference element 908) or not in alignment. For example, when the face 919 contacts the interference element 908 not in alignment (for example as illustrated in FIG. 9B), the cartridge 902 is optionally reoriented 955 until it aligns with the interference element 908. For example, when the cartridge 902 is in alignment, an interference element 917 on the leading face 919 of the cartridge may in interlock with the interference element 908 of the delivery device (for example as illustrated in FIG. 9C). Once the interface elements are interlocked, the orientation of the cartridge 902 is optionally locked with respect to the delivery device. In some embodiments, when the cartridge 902 is locked further action of the driver powers pharmaceutical delivery.



FIG. 9A shows leading face 919 of a cartridge 902 approaching interference element 908 in accordance with an embodiment of the current invention. Optionally, leading face 919 of cartridge 902 includes protruding sections 917 and indentations 918a, 918b and 918c. For example, in FIG. 9A protrusions 917 include complementary interference elements that interlock with interference element 908. In the example of FIG. 9A, leading face 919 is approaching interference element 908 out of alignment. For example, complimentary interference elements 917 are not aligned to interlock with interference element 908 in the illustrated orientation of cartridge 902.


In some embodiments, the interference element 908 includes a pin. For example in the embodiment of FIGS. 9A-9C, the complimentary interference elements include a protrusion 917. Optionally a protruding interference element may be part of the cartridge and/or the delivery device. Optionally an interference element of the delivery device may include an elastic part. Alternatively or additionally, an interference element on the cartridge may include an elastic part. Optionally cartridge 902 includes a connector 938. For example, connector 938 may include a septum. For example, septum may connect to a needle 638 of the delivery device. Alternatively or additionally, a connector on a cartridge may include a needle. For example, the needle may connect to a septum of a delivery device.


In some embodiments, a leading face of a cartridge reaches the interference elements 908 of the delivery device out of alignment. Optionally, the driver realigns the cartridge 902 into alignment with interference element 908. For example, when the cartridge 902 is fully inserted, protrusion 917 overlaps and/or pushes interference element 908 out of the way. For example, interference element 908 is displaced elastically. Pushing interference element 908 optionally adds a resistance to insertion of the cartridge. For example, displacement of interference element 908 may be by elastic flexing of element 908 (for example as illustrated in FIG. 9B). Optionally, elastic displacement of interference element 908 allows cartridge 902 to be fully inserted until it is fixed longitudinally in the cartridge bay.


In some embodiments, after insertion of the cartridge 902 into the cartridge bay, a driver is activated. Optionally, the driver reorients cartridge 902. For example, cartridge 902 is rotated as Illustrated by arrow 955 in FIG. 9B. Optionally rotation of the cartridge continues until interference element 908 is overlaps with indentation 918b. Once the interference element 908 is overlaps indentation 918b, interference element 908 optionally snaps into indentation 918b. For example, by snapping into the indentation 918b, interference element 908 locks the orientation of cartridge 902, for example as illustrated in FIG. 9C. Optionally, both edges of an indentation 918b may be at a sharp incline. For example, both sides of an interference element may be sharply angled, for example to lock in either direction. Alternatively or additionally, one side of an indentation 918b may be steeply angled (for example to prevent rotation in that direction) and/or another side may be at a shallow angle (for example to allow rotation in that direction). For example, rotation in a preferred direction require between 100% to 50% the torque of rotation in an opposite direction and/or between 50% to 20% and/or between 20% to 5% and/or between 5% to 1% and/or less that 1% as much force as rotating in the opposite (prevented) direction.


In some embodiments, when interference element 908 is interlocked with complimentary interference element 917, cartridge 902 is locked and it is orientation with respect to the delivery device, for example, as Illustrated in FIG. 9C. For example, when interference elements 908 overlaps a protrusion 917, cartridge 902 may rotate until an indentation 918b overlaps with interference element 908 and/or interference element 908 is in alignment for locking with complimentary interference 917. For example, when indentation 918b overlaps with interference element 908, interference element 908 optionally snaps into indentation 918b locking the orientation of cartridge 902. Alternatively or additionally, the cartridge 902 may be inserted with interference elements 908 and 917 already in locking alignment. For example, interference element 908 may immediately slip into an indentation 918a-918c. When indentations 918a-918c and 908 overlap and cartridge 902 it is fully inserted, interference element 908 may be unstressed. Alternately or additionally, interference element 908 may be displaced elastically when it is overlaps with an indentation 918a-918c. For example, this may give a tactile sign when the cartridge is fully inserted when the two interference elements 908 and 917 are aligned to interlock.


Exemplary Interfaces Between a Driver and a Reservoir



FIG. 10 is a schematic illustration of a pharmaceutical cartridge in accordance with an embodiment of the current invention. In some embodiments, a cartridge may include a driver. Optionally a drive may include one part of the driver that is orientationally stabilized with respect to the reservoir and/or a second part that is translationally stabilized with respect to the reservoir.


In some embodiments, a cartridge includes a driver. For example, a driver may include a TSA. For example, the TSA may include an internally threaded element 1033, which is threadably connected to an externally threaded pushing rod 1003. When element 1033 rotates with respect to rod 1003 the rod is optionally translated with respect to element 1033. Optionally the element is connected to a reservoir NU of the cartridge, such that element 1033 does not translate linearly with respect to reservoir 1002 and/or does not separate from reservoir 1002. In some embodiments element 1033 can rotate with respect to reservoir 1002. In some embodiments, rod 1003 is rotationally stabilized with respect to reservoir 1002. Alternatively or additionally, an internally threaded element may be translationally stabilized and/or an externally threaded element may be rotationally stabilized.


In some embodiments, element 1033 is connected to a transmission 1005. For example, transmission 1005 may connect to a motor, which optionally rotates transmission 1005 and/or element 1033 with respect to a delivery device.


In some embodiments rod 1003 is rotationally stabilized with respect to a reservoir 1002. For example, the rod may be connected to a stabilizer pad 1093. Pad 1093 may cause friction between rod 1003 and an inner wall of reservoir 1002. For example when element 1033 is rotated with respect to a reservoir 1002, rod 1003 may rotate with element 1033 and/or alternatively rod 1003 make move linearly with respect to element 1033. Whether rod moves linearly or rotates is optionally controlled by the pitch of the screw threads connecting rod 1003 to element 1033 and/or by the friction between pad 1093 and reservoir 1002.


In some embodiments, rod 1003 is connected to a plunger interface 1092.


Optionally, driving rod 1003 into reservoir 1002 couples plunger interface 1092 to a plunger 1086 in the reservoir 1002. Further driving rod 1003 into reservoir 1002, optionally drives plunger 1086 into reservoir 1002 and/or discharges a pharmaceutical 1089. For example, pharmaceutical 1089 may be discharged out a distal end of reservoir 1002 opposite element 1033. Alternatively or additionally, a cartridge may not include a friction pad 1093. For example, plunger 1086 be connected to rod 1003 and/or plunger 1086 may supply friction between the inner wall of reservoir 1002 and rod 1003.


The cartridge of the exemplary embodiment of FIG. 10 includes a hollow needle 1036. For example when cartridge is inserted into a delivery device, needle 1036 may puncture a septum of the delivery device and/or supply fluid path between reservoir 1002 and the delivery device. A cartridge optionally includes a proximal flange 1016.


In some embodiments, when reservoir 1002 is held stable with respect to a delivery device (for example by means of a cartridge stabilization system) and/or transmission 1005 is rotated with respect to the delivery device, the pharmaceutical is discharged. Alternatively or additionally, when reservoir 1002 is not prevented from rotating with respect to the delivery device, rotating transmission 1005 with respect to the delivery device may rotate reservoir 1002 with respect to the delivery device and/or may not cause discharge of the pharmaceutical 1089.



FIG. 11 is a schematic illustration of a pharmaceutical cartridge in accordance with an embodiment of the current invention. In some embodiments, a cartridge may include a driver. Optionally a drive may include one part of the driver that is orientationally stabilized with respect to the reservoir and/or a second part that is translationally stabilized with respect to the reservoir.


In some embodiments, a cartridge includes a driver. For example, a driver may include a TSA. For example, the TSA may include a containing element 1133, which is irrotationally connected to an externally threaded pushing rod 1103a. When element 1133 rotates, rod 1103a is optionally also rotated. Optionally element 1133 is connected to a reservoir 1102 of the cartridge, such that element 1133 does not translate linearly with respect to reservoir 1102 and/or does not separate from reservoir 1102. For example, a shoulder of element 1133 may rest on a flange 1116 of reservoir 1102. In some embodiments element 1133 can rotate with respect to reservoir 1102. In some embodiments, rod 1103a threadably connected to a second rod 1103b. For example, rod 1103b includes an inner thread, which is coupled to the outer thread of rod 1103a. Additionally or alternatively, rod 1103b includes an out thread that is coupled to an inner thread of a plunger interface 1192.


In some embodiments, element 1133 is connected to a transmission 1105. For example, transmission 1105 may connect to a motor, which optionally rotates transmission 1105 and/or element 1133 with respect to a delivery device.


In some embodiments, plunger interface 1192 is connected to a plunger 1186. Plunger 1186 is optionally in friction contact with an inner wall of reservoir 1102. For example when element 1133 is rotated with respect to a reservoir 1102, rod 1103a may rotate with rod 1103b and/or alternatively rod 1103a rotate with respect to and/or move linearly with respect to rod 1103b. Alternatively or additionally, when rod 1103b is rotated with respect to a reservoir 1102, rod 1103b may rotate with plunger interface 1192 and/or alternatively rod 1103b rotate with respect to and/or move linearly with respect to plunger interface 1192. Whether parts moves linearly or rotate is optionally controlled by the pitch of the screw threads and/or by the friction between plunger 1186 and reservoir 1102.


Optionally, driving interface 1192 into reservoir 1102, optionally drives plunger 1186 into reservoir 1102 and/or discharges a pharmaceutical 1189. For example, pharmaceutical 1189 may be discharged out a distal end of reservoir 1102 opposite element 1133. For example, plunger 1186 be connected to interface 1192 and/or plunger 1186 may supply friction between the inner wall of reservoir 1102 and interface 1192 for example inhibiting rotation of interface 1192 with respect to reservoir 1102.


The cartridge of the exemplary embodiment of FIG. 11 includes a septum 1138. For example when cartridge is inserted into a delivery device, a needle of the delivery device may puncture a septum of the delivery device and/or supply fluid path between reservoir 1102 and the delivery device.


In some embodiments, when reservoir 1102 is held stable with respect to a delivery device (for example by means of a cartridge stabilization system) and/or transmission 1105 is rotated with respect to the delivery device, the pharmaceutical is discharged. Alternatively or additionally, when reservoir 1102 is not prevented from rotating with respect to the delivery device, rotating transmission 1105 with respect to the delivery device may rotate reservoir 1102 with respect to the delivery device and/or may not cause discharge of the pharmaceutical 1189.



FIG. 11 shows leading face 1119 of reservoir 1102 in accordance with an embodiment of the current invention. Optionally, leading face 1119 of reservoir 1102 includes protruding sections 1117 and/or indentations 1118. For example, a protrusion 1117 may include a complementary interference element that interlocks with an interference element of the delivery device.


Exemplary Dimensions of a Drug Delivery Device


In some embodiments the payload of a reservoir (for example a syringe) may include, for example between 0.5 and 2 m; and/or between 2 and 5 ml and/or between 5 and 7 ml and/or between 7 and 10 ml of a drug and/or more. In some embodiments, the injector may discharge the entire payload as a single dose. A drug delivery device may include, for example, a patch injector, and/or an internally powered driver to drive the plunger and/or discharge the payload.


For the sake of this application, an internally powered injector driver may be defined as a drive mechanism powered by energy stored at least temporarily within the injector. Power may be stored in a power supply, for instance as chemical potential (for example a chemical that produces an expanding gas and/or a battery) and/or mechanical potential (for example stored in an elastic member and/or a spring and/or a pressurized gas). For example, the driver may be designed to discharge the payload over a time period ranging between 20 and 120 seconds and/or between 120 and 600 seconds and/or between 600 seconds and an hour and/or between an hour and a day and/or longer.


In some embodiments, the apparatus may be preprogrammed to wait a fixed time delay ranging between 2 to 20 minutes and/or 20 minutes to an hour and/or an hour to 6 hours and/or 6 hours to 2 days after activation before beginning delivery of the substance. Optionally the length of the time delay may be an estimated time for a temperature sensitive component of the apparatus to reach a preferred working temperature. For example, the temperature sensitive component may include the drug and/or a battery.


In general, discharge may be driven by a driver. An internally powered driver may be powered by various mechanisms including for example a motor as discussed, including for example a DC motor, an actuator, a brushless motor, and/or a transmission including for example a telescoping assembly and/or a threaded interference element and/or a gear and/or a coupling and/or an elastic mechanism (for example a spring and/or a rubber band) and/or an expanding gas and/or a hydraulic actuator).


A drug delivery device in accordance with some embodiments of the present invention may include a reservoir part as discussed. For example, a reservoir may include a medicine container and/or a syringe. Optionally a syringe may be preloaded with medicine using standard equipment and/or in an aseptic room. A preloaded syringe may optionally include a proximal opening. A plunger may optionally seal the proximal opening and/or protect the sterility of the contents of the syringe. A sterile needle, typically hollow, may optionally be connected to the syringe barrel. For example, the hollow of the needle may be in fluid communication with the interior of the barrel.


The needle may optionally be rigidly attached to the extension at the distal end of the barrel. The sterility of all and/or part of the needle may for example be protected by a protective cap. The protective cap may remain on the needle when the syringe is supplied and/or installed into an injector. For example, the medicine container may optionally include a cylindrical barrel rigidly attached to a needle. In some embodiments, a plunger may slide axially along the inside of the barrel to discharge a medicine payload. For example, the medicine may be discharged through the hollow needle. The protruding tip of the needle may be oriented at an angle to the axis of the barrel.


An aspect ratio of the base may be defined as the ratio of the length of the longest axis of the base to the shortest axis. Optionally the axis ratio may range between 1 to 1.5 and/or 1.5 to 2 and/or between 2 to 3 and/or greater than 3. In some embodiments, the height of the injector may range between half the length of the short axis of the base to the length of the short axis of the base and/or between the length of the short axis of the base to twice the length of the short axis of the base and/or greater than the twice length of the short axis of the base. The height of the injector may supply leverage for pivoting the adhesive off the skin of a patient after use.


In some embodiments, the force to insert the needle to the skin of a patient may range for example between 0.02 to 0.2 N and/or between 0.2 and 0.5 N and/or between .5 to 5 N. Optionally, the force required to inject the drug (for example the force on a syringe plunger) may range for example between 5 to 60 N. For example, the force required to inject the drug may depend on the injection rate and/or the viscosity of the drug and/or the syringe geometry and/or the needle dimensions.


In some embodiments, injection of medicine may be driven by a plunger. The plunger may optionally be driven by a threaded assembly, for example a threaded screw and/or teeth and/or a telescoping assembly. Optionally the pitch of the teeth and/or an associated screw may range for example between 0.5 and 2 mm. The diameter of the screw may range for example between 2.5 and 15 mm. The torque to power injection may range for example between 0.2 and 1.0 N*cm. The trigger torque (the torque at which the needle safeguarding is triggered) may range for example between to 0.5 to 2 and/or from 2 to 7 and/or from 7 to 10 N*cm.


During injection, the linear movement of a plunger may range for example between 10-50 mm. The length of movement of the plunger may vary for example with the volume of medicine to be injected that may range for example between 0.5 to 3 ml.


In some embodiments a time of discharge may range may depend on the fill volume and/or viscosity For example the expected injection speeds may be Injection speed depend on viscosity, for example for viscosity ranging from 1 cp to 15 cp the expected injection rage may range between 30 to 70 sec/lml, for example for viscosity ranging from 15 cp to 60 cp the expected injection rate may range between 35 to 60 sec/ml for viscosity above 60 cp the expected injection rate may range between 53 to 67 sec/lml. The maximum and/or minimum expected injection time may for example be the maximum and/or minimum allowed fill volume divided by an injection rate.


For example an expected time of discharge may range for example between 24 to 78 seconds (for example for between 0.8 and 1.2 ml of fluid having a viscosity ranging between 1 to 15 cp) and/or between 36 to 68 seconds (for example for between 1.2 and 1.7 ml of fluid having a viscosity ranging between 1 to 15 cp) and/or between 51 to 92 seconds (for example for between 1.7 and 2.3 ml of fluid having a viscosity between 1 to 15 cp) and/or between 70 to 150 seconds (for example for 2.0 to 2.5 ml of fluid having a viscosity of between 15 and 70 cp) and/or between 120 seconds and 3 minutes for larger volumes and/or viscosities. In some embodiments, injection times may be longer. The length of the injection time may be determined by considerations other than viscosity and/or volume.


In some embodiments, the reservoir may have a length ranging for example between 20 and 72 and/or 72 and 78 mm and/or 78 and 80 mm and/or 80 and 200 mm. In some embodiments an internal cylindrical space of a reservoir may have an average width ranging for example between 1 and 3 mm and/or 3 and 10 and/or 10 and 15 mm and/or 15 and 25 mm and/or 25 and 50 mm. Optionally a reservoir may have a circular cross section such that width is the diameter of the circle. In some embodiments, an extension may have a straight end portion with a length ranging for example between 1 and 3 mm or 3 and 7 mm or 7 and 8 or 8 and 10 mm or 10 and 15 mm or 15 and 50 mm. In some embodiments, the exposed straight portion of a needle may have a length ranging for example between 1 and 5 mm or 5 and 7 mm or 7 and 10 mm or 10 and 20 mm.


It is expected that during the life of a patent maturing from this application many relevant technologies and/or materials will be developed and the scope of the terms are intended to include all such new technologies and materials a priori.


As used herein the terms “about”, “approximately” and “substantially” refer to ±5%


The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.


The term “consisting of” means “including and limited to”.


The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.


As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.


Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 7, from 1 to 5, from 2 to 7, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 7, 5, and 6. This applies regardless of the breadth of the range.


Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those interference elements.


Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.


All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.

Claims
  • 1. A system for loading pharmaceutical into a pharmaceutical delivery device comprising: a cartridge including a cylindrical reservoir having a longitudinal axis and containing the pharmaceutical;a cartridge bay in the pharmaceutical delivery device, said bay sized and shaped to receive said cartridge with said cylindrical reservoir rotated in any of a first orientation and a second orientation rotated around said longitudinal axis;a first interference element on said cartridge and a second complementary interference element on said delivery device, whereinsaid first interference element on said cartridge and a second complementary interference element are disengaged when said cartridge is fully received by said bay and said reservoir is in any of said first orientation and said second orientation;said first interference element and second complementary interface element interlocking when said cartridge is fully loaded into said bay and said cartridge is in a third orientation around said longitudinal axis, said interlocking preventing rotation of said reservoir around said longitudinal axis in at least one direction,wherein the second complementary interference element is longitudinally displaced by said cartridge after the cartridge is inserted into the bay.
  • 2. The system of claim 1, wherein in said cartridge fits into said bay by longitudinal insertion.
  • 3. The system of claim 2, wherein said first interference element is located on a leading face of said cartridge.
  • 4. The system of claim 1, wherein said complementary interference element contacts said cartridge only when the cartridge is more than 97% inserted into said bay.
  • 5. The system of claim 1, wherein in said first orientation said first interference element and said second complementary interference element overlap in and at least one element of said first interference element and said second complementary interference element is configured for elastically displacing to accommodate said overlap.
  • 6. The system of claim 5, wherein when said at least one element is configured to apply a resistance to insertion of said cartridge into said cartridge bay as a result of said elastically displacing.
  • 7. The system of claim 6, further comprising a lock configured for counteracting said resistance.
  • 8. The system of claim 7, wherein said lock includes a latch.
  • 9. The system of claim 1, wherein in said first orientation said first interference element and said second complementary interference element are disengaged facilitating rotation either direction around said longitudinal axis with respect to said delivery device around.
  • 10. The system of claim 9, wherein in said third orientation said interlocking of said first interference element and said second complementary interference element inhibits rotation of said cartridge around said longitudinal axis with respect to said delivery device in two opposite directions.
  • 11. The system of claim 1, further comprising a driver for imparting a torque between said pharmaceutical delivery device and said cartridge around said longitudinal axis.
  • 12. The system of claim 11, wherein said driver is configured to drive discharge of said pharmaceutical when said cartridge is prevented from rotating around axis in said at least one direction.
  • 13. The system of claim 12, wherein said driver includes a threaded element.
  • 14. The system of claim 13, wherein said drive pushes a plunger axially inside of said cylindrical reservoir.
  • 15. The system of claim 14, wherein said driver includes a telescoping screw assembly.
  • 16. The system of claim 14, wherein said driver applies said torque to said threaded element and said threaded element is threadably connected to a second threaded element and said second threaded element is inhibited from rotating around said longitudinal axis with respect to said cartridge.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a section 371 of International Application No. PCT/US16/068065, filed Dec. 21, 2016, which was published Feb. 8, 2018 under International Publication No. WO 2018/026387 A1, which claims the benefit of U.S. Provisional Application No. 62/369,492, filed Aug. 1, 2016, the contents of which are incorporated herein by their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2016/068065 12/21/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2018/026387 2/8/2018 WO A
US Referenced Citations (903)
Number Name Date Kind
232432 Allison Sep 1880 A
1125887 Schimmel Jan 1915 A
1321550 Frank et al. Nov 1919 A
1704921 Nicoll Mar 1929 A
1795630 Wilson Mar 1931 A
2453590 Poux Nov 1948 A
2589426 Ogle Mar 1952 A
2677373 Barradas May 1954 A
2702547 Glass Feb 1955 A
2860635 Wilburn Nov 1958 A
3203269 Perrine Aug 1965 A
3212685 Swan et al. Oct 1965 A
3623474 Heilman et al. Nov 1971 A
3705582 Stumpf et al. Dec 1972 A
3708945 Klettke Jan 1973 A
3794028 Mueller et al. Feb 1974 A
3834387 Brown Sep 1974 A
3994295 Wulff Nov 1976 A
4085747 Lee Apr 1978 A
4189065 Herold Feb 1980 A
4195636 Behnke Apr 1980 A
4218724 Kaufman Aug 1980 A
4254768 Ty Mar 1981 A
4273122 Whitney et al. Jun 1981 A
4300554 Hessberg et al. Nov 1981 A
4324262 Hall Apr 1982 A
4403987 Gottinger Sep 1983 A
4425120 Sampson et al. Jan 1984 A
4435173 Siposs et al. Mar 1984 A
4465478 Sabelman et al. Aug 1984 A
4502488 Degironimo et al. Mar 1985 A
4504263 Steuer et al. Mar 1985 A
4549554 Markham Oct 1985 A
4564054 Gustavsson Jan 1986 A
4565543 Bekkering et al. Jan 1986 A
4583974 Kokernak Apr 1986 A
4585439 Michel Apr 1986 A
4599082 Grimard Jul 1986 A
4601702 Hudson Jul 1986 A
4636201 Ambrose et al. Jan 1987 A
4664654 Strauss May 1987 A
4685903 Cable et al. Aug 1987 A
4695274 Fox Sep 1987 A
4698055 Sealfon Oct 1987 A
4702738 Spencer Oct 1987 A
4704105 Adorjan et al. Nov 1987 A
4710178 Henri et al. Dec 1987 A
4729208 Galy et al. Mar 1988 A
4735311 Lowe et al. Apr 1988 A
4737144 Choksi Apr 1988 A
4772272 McFarland Sep 1988 A
4810215 Kaneko Mar 1989 A
4810249 Haber et al. Mar 1989 A
4813426 Haber et al. Mar 1989 A
4840185 Hernandez Jun 1989 A
4850966 Grau et al. Jul 1989 A
4861341 Woodburn Aug 1989 A
4863434 Bayless Sep 1989 A
4867743 Vaillancourt Sep 1989 A
4874383 McNaughton Oct 1989 A
4882575 Kawahara Nov 1989 A
4886499 Cirelli et al. Dec 1989 A
4892521 Laico et al. Jan 1990 A
4897083 Martell Jan 1990 A
4900310 Ogle, II Feb 1990 A
4915702 Haber Apr 1990 A
4919569 Wittenzellner Apr 1990 A
4919596 Slate et al. Apr 1990 A
4923446 Page et al. May 1990 A
4929241 Kulli May 1990 A
4950241 Ranford Aug 1990 A
4950246 Muller Aug 1990 A
4957490 Byrne et al. Sep 1990 A
4964866 Szwarc Oct 1990 A
4994045 Ranford Feb 1991 A
4998924 Ranford Mar 1991 A
5019051 Hake May 1991 A
5051109 Simon Sep 1991 A
5062828 Waltz Nov 1991 A
D322671 Szwarc Dec 1991 S
5088988 Talonn et al. Feb 1992 A
5109850 Blanco et al. May 1992 A
5112317 Michel May 1992 A
5114406 Gabriel et al. May 1992 A
5127910 Talonn et al. Jul 1992 A
5131816 Brown et al. Jul 1992 A
5147326 Talonn et al. Sep 1992 A
5156599 Ranford et al. Oct 1992 A
5190521 Hubbard et al. Mar 1993 A
5217437 Talonn et al. Jun 1993 A
5246670 Haber et al. Sep 1993 A
5254096 Rondelet et al. Oct 1993 A
5267977 Feeney, Jr. Dec 1993 A
5269762 Armbruster et al. Dec 1993 A
5275582 Wimmer Jan 1994 A
5282593 Fast Feb 1994 A
5295966 Stern et al. Mar 1994 A
5298023 Haber et al. Mar 1994 A
5300045 Plassche, Jr. Apr 1994 A
5318522 D'Antonio Jun 1994 A
5338311 Mahurkar Aug 1994 A
5342313 Campbell et al. Aug 1994 A
5348544 Sweeney et al. Sep 1994 A
5366498 Brannan et al. Nov 1994 A
5376785 Chin et al. Dec 1994 A
5383865 Michel Jan 1995 A
D356150 Duggan et al. Mar 1995 S
5415645 Friend et al. May 1995 A
5456360 Griffin Oct 1995 A
5478315 Brothers et al. Dec 1995 A
5478316 Bitdinger et al. Dec 1995 A
5482446 Williamson et al. Jan 1996 A
5496274 Graves et al. Mar 1996 A
5501665 Jhuboo et al. Mar 1996 A
5505709 Funderburk et al. Apr 1996 A
5562624 Righi et al. Oct 1996 A
5562686 Sauer et al. Oct 1996 A
5593390 Castellano et al. Jan 1997 A
5609580 Kwiatkowski et al. Mar 1997 A
5611785 Mito et al. Mar 1997 A
5616132 Newman Apr 1997 A
5624400 Firth et al. Apr 1997 A
5637095 Nason et al. Jun 1997 A
5643218 Lynn et al. Jul 1997 A
5645530 Boukhny et al. Jul 1997 A
5645955 Maglica Jul 1997 A
5647853 Feldmann et al. Jul 1997 A
5658256 Shields Aug 1997 A
5662678 Macklin Sep 1997 A
5672160 Oesterlind et al. Sep 1997 A
5690618 Smith et al. Nov 1997 A
5697908 Imbert et al. Dec 1997 A
5697916 Schraga Dec 1997 A
5725500 Micheler Mar 1998 A
5728075 Levander Mar 1998 A
D393314 Meisner et al. Apr 1998 S
5741275 Wyssmann Apr 1998 A
5766186 Faraz et al. Jun 1998 A
5776103 Kriesel et al. Jul 1998 A
5795675 Maglica Aug 1998 A
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5810167 Fujii Sep 1998 A
5810784 Tamaro Sep 1998 A
5814020 Gross Sep 1998 A
5830187 Kriesel et al. Nov 1998 A
5836920 Robertson Nov 1998 A
5848991 Gross et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5858008 Capaccio Jan 1999 A
5868710 Battiato et al. Feb 1999 A
5893842 Imbert Apr 1999 A
5894015 Rechtin Apr 1999 A
5919167 Mulhauser et al. Jul 1999 A
5926596 Edwards et al. Jul 1999 A
5931814 Alex et al. Aug 1999 A
5941850 Shah et al. Aug 1999 A
5944699 Barrelle et al. Aug 1999 A
5948392 Haslwanter et al. Sep 1999 A
5954697 Srisathapat et al. Sep 1999 A
5957895 Sage et al. Sep 1999 A
5968011 Larsen et al. Oct 1999 A
5989221 Hjertman Nov 1999 A
5993423 Choi Nov 1999 A
6004296 Jansen et al. Dec 1999 A
6004297 Steenfeldt-Jensen et al. Dec 1999 A
6033245 Yamkovoy Mar 2000 A
6033377 Rasmussen et al. Mar 2000 A
6045533 Kriesel et al. Apr 2000 A
6064797 Crittendon et al. May 2000 A
6074369 Sage et al. Jun 2000 A
6162197 Mohammad Dec 2000 A
6186979 Dysarz Feb 2001 B1
6186982 Gross et al. Feb 2001 B1
6189292 Dell et al. Feb 2001 B1
6200289 Hochman et al. Mar 2001 B1
6200296 Dibiasi et al. Mar 2001 B1
6224569 Brimhall May 2001 B1
6248093 Moberg Jun 2001 B1
6270481 Mason et al. Aug 2001 B1
6277095 Kriesel et al. Aug 2001 B1
6277098 Klitmose et al. Aug 2001 B1
6277099 Strowe et al. Aug 2001 B1
6287283 Ljunggreen et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6302633 Poe Oct 2001 B1
6336729 Pavelle et al. Jan 2002 B1
6345968 Shupe Feb 2002 B1
6377848 Garde et al. Apr 2002 B1
6391005 Lum et al. May 2002 B1
6423029 Elsberry Jul 2002 B1
D461243 Niedospial Aug 2002 S
D465026 May et al. Oct 2002 S
6458102 Mann et al. Oct 2002 B1
6485461 Mason et al. Nov 2002 B1
6485465 Moberg et al. Nov 2002 B2
6500150 Gross et al. Dec 2002 B1
6503231 Prausnitz et al. Jan 2003 B1
6511336 Turek et al. Jan 2003 B1
6517517 Farrugia et al. Feb 2003 B1
D471274 Diaz et al. Mar 2003 S
D471983 Hippolyte et al. Mar 2003 S
6554800 Nezhadian et al. Apr 2003 B1
6558351 Steil et al. May 2003 B1
6565541 Sharp May 2003 B2
6589229 Connelly et al. Jul 2003 B1
6595956 Gross et al. Jul 2003 B1
6595960 West et al. Jul 2003 B2
6645181 Lavi et al. Nov 2003 B1
6652482 Hochman Nov 2003 B2
6656158 Mahoney et al. Dec 2003 B2
6656159 Flaherty Dec 2003 B2
6659980 Moberg et al. Dec 2003 B2
6673033 Sciulli et al. Jan 2004 B1
6679862 Diaz et al. Jan 2004 B2
6685678 Evans et al. Feb 2004 B2
6689118 Alchas et al. Feb 2004 B2
6699218 Flaherty et al. Mar 2004 B2
6719141 Heinz et al. Apr 2004 B2
6722916 Buccinna et al. Apr 2004 B2
6743211 Prausnitz et al. Jun 2004 B1
6749587 Flaherty Jun 2004 B2
6752783 Hung et al. Jun 2004 B2
6752787 Causey et al. Jun 2004 B1
6767336 Kaplan Jul 2004 B1
6768425 Flaherty et al. Jul 2004 B2
6786890 Preuthun et al. Sep 2004 B2
6800071 McConnell et al. Oct 2004 B1
6805687 Dextradeur et al. Oct 2004 B2
6824529 Gross et al. Nov 2004 B2
6843782 Gross et al. Jan 2005 B2
6854620 Ramey Feb 2005 B2
6905298 Haring Jun 2005 B1
6907679 Yarborough et al. Jun 2005 B2
6908452 Diaz et al. Jun 2005 B2
6960192 Flaherty et al. Nov 2005 B1
6979316 Rubin et al. Dec 2005 B1
6997727 Legrady et al. Feb 2006 B1
7001360 Veasey et al. Feb 2006 B2
7004104 Kundus Feb 2006 B1
7004929 McWethy et al. Feb 2006 B2
7025226 Ramey Apr 2006 B2
7033338 Vilks et al. Apr 2006 B2
7034223 Fan et al. Apr 2006 B2
7048715 Diaz et al. May 2006 B2
7060054 Nissels Jun 2006 B2
7060059 Keith et al. Jun 2006 B2
7066909 Peter et al. Jun 2006 B1
7094221 Veasey et al. Aug 2006 B2
7097637 Triplett et al. Aug 2006 B2
7112187 Karlsson Sep 2006 B2
7128727 Flaherty et al. Oct 2006 B2
7144384 Gorman et al. Dec 2006 B2
D544092 Lewis Jun 2007 S
7225694 Said Jun 2007 B2
7247149 Beyerlein Jul 2007 B2
7250037 Shermer et al. Jul 2007 B2
7267669 Staunton et al. Sep 2007 B2
RE39923 Blom Nov 2007 E
7291132 DeRuntz et al. Nov 2007 B2
7291159 Schmelzeisen-Redeker et al. Nov 2007 B2
7303549 Flaherty et al. Dec 2007 B2
7326194 Zinger et al. Feb 2008 B2
7344385 Chen Mar 2008 B2
7364570 Gerondale et al. Apr 2008 B2
7377912 Graf et al. May 2008 B2
7390312 Barrelle Jun 2008 B2
7390314 Stutz et al. Jun 2008 B2
7407493 Cane′ Aug 2008 B2
7418880 Smith Sep 2008 B1
D578210 Muta et al. Oct 2008 S
7442186 Blomquist Oct 2008 B2
7455663 Bikovsky Nov 2008 B2
7465290 Reilly Dec 2008 B2
7468055 Prais et al. Dec 2008 B2
7488181 van Haaster Feb 2009 B2
7497842 Diaz et al. Mar 2009 B2
7500963 Westbye et al. Mar 2009 B2
7501587 English Mar 2009 B2
7503786 Kato et al. Mar 2009 B2
7530964 Lavi et al. May 2009 B2
7540858 DiBiasi Jun 2009 B2
7547281 Hayes et al. Jun 2009 B2
7565208 Harris et al. Jul 2009 B2
7569050 Moberg et al. Aug 2009 B2
D600341 Loerwald Sep 2009 S
7585287 Bresina et al. Sep 2009 B2
7588559 Aravena et al. Sep 2009 B2
7589974 Grady et al. Sep 2009 B2
D602155 Foley et al. Oct 2009 S
D602586 Foley et al. Oct 2009 S
D604835 Conley Nov 2009 S
7611491 Pickhard Nov 2009 B2
7628770 Ethelfeld Dec 2009 B2
7628772 Mcconnell et al. Dec 2009 B2
7628782 Adair et al. Dec 2009 B2
7637891 Wall Dec 2009 B2
7637899 Woolston et al. Dec 2009 B2
7641649 Moberg et al. Jan 2010 B2
7660627 Mcnichols et al. Feb 2010 B2
7678079 Shermer et al. Mar 2010 B2
7682338 Griffin Mar 2010 B2
7686787 Moberg et al. Mar 2010 B2
7699829 Harris et al. Apr 2010 B2
7699833 Moberg et al. Apr 2010 B2
7704088 Sakamoto Apr 2010 B2
7704227 Moberg et al. Apr 2010 B2
7704229 Moberg et al. Apr 2010 B2
7704231 Pongpairochana et al. Apr 2010 B2
7708717 Estes et al. May 2010 B2
7713238 Mernoe May 2010 B2
7713240 Istoc et al. May 2010 B2
7717903 Estes et al. May 2010 B2
7717913 Novak et al. May 2010 B2
7722574 Toman et al. May 2010 B2
7736333 Gillespie, III Jun 2010 B2
7736344 Moberg et al. Jun 2010 B2
7744589 Mounce et al. Jun 2010 B2
7749194 Edwards et al. Jul 2010 B2
7758548 Gillespie et al. Jul 2010 B2
7758550 Bollenbach et al. Jul 2010 B2
7766867 Lynch et al. Aug 2010 B2
7776030 Estes et al. Aug 2010 B2
7780637 Jerde et al. Aug 2010 B2
7789857 Moberg et al. Sep 2010 B2
7794426 Briones et al. Sep 2010 B2
7794427 Estes et al. Sep 2010 B2
7801599 Young et al. Sep 2010 B2
7806868 De et al. Oct 2010 B2
7828528 Estes et al. Nov 2010 B2
7837659 Bush et al. Nov 2010 B2
7846132 Gravesen et al. Dec 2010 B2
7854723 Hwang et al. Dec 2010 B2
7857131 Vedrine Dec 2010 B2
7879025 Jacobson et al. Feb 2011 B2
7901382 Daily et al. Mar 2011 B2
7905867 Veasey et al. Mar 2011 B2
7918825 O'Connor et al. Apr 2011 B2
7935104 Yodfat et al. May 2011 B2
7935105 Miller et al. May 2011 B2
7938803 Mernoe et al. May 2011 B2
7955305 Moberg et al. Jun 2011 B2
7967784 Pongpairochana et al. Jun 2011 B2
7967795 Cabiri Jun 2011 B1
7976514 Abry et al. Jul 2011 B2
7981105 Adair et al. Jul 2011 B2
7988683 Adair et al. Aug 2011 B2
7993300 Nyholm et al. Aug 2011 B2
7993301 Boyd et al. Aug 2011 B2
7998111 Moberg et al. Aug 2011 B2
8002754 Kawamura et al. Aug 2011 B2
8021357 Tanaka et al. Sep 2011 B2
8025658 Chong et al. Sep 2011 B2
8029469 Ethelfeld Oct 2011 B2
8034019 Nair et al. Oct 2011 B2
8038666 Triplett et al. Oct 2011 B2
8057431 Woehr et al. Nov 2011 B2
8057436 Causey et al. Nov 2011 B2
8062253 Nielsen et al. Nov 2011 B2
8062255 Brunnberg et al. Nov 2011 B2
8066694 Wagener Nov 2011 B2
D650079 Presta et al. Dec 2011 S
D650903 Kosinski et al. Dec 2011 S
8086306 Katzman et al. Dec 2011 B2
D652503 Cameron et al. Jan 2012 S
8105279 Mernoe et al. Jan 2012 B2
8105293 Pickhard Jan 2012 B2
8114046 Covino et al. Feb 2012 B2
8114064 Alferness et al. Feb 2012 B2
8114066 Naef et al. Feb 2012 B2
8118781 Knopper et al. Feb 2012 B2
8121603 Zhi Feb 2012 B2
D657462 Siroky Apr 2012 S
8147446 Yodfat et al. Apr 2012 B2
8151169 Bieth et al. Apr 2012 B2
8152764 Istoc et al. Apr 2012 B2
8152770 Reid Apr 2012 B2
8152779 Cabiri Apr 2012 B2
8152793 Keinaenen et al. Apr 2012 B2
8157693 Waksmundzki Apr 2012 B2
8157769 Cabiri Apr 2012 B2
8162674 Cho et al. Apr 2012 B2
8162923 Adams et al. Apr 2012 B2
8167841 Teisen-Simony et al. May 2012 B2
8172591 Wertz May 2012 B2
8172804 Bikovsky May 2012 B2
8177749 Slate et al. May 2012 B2
8182462 Istoc et al. May 2012 B2
8197444 Bazargan et al. Jun 2012 B1
8206351 Sugimoto et al. Jun 2012 B2
8221356 Enggaard et al. Jul 2012 B2
8267921 Yodfat et al. Sep 2012 B2
8287520 Drew et al. Oct 2012 B2
8292647 Mcgrath et al. Oct 2012 B1
8308679 Hanson et al. Nov 2012 B2
8308695 Laiosa Nov 2012 B2
8323250 Chong et al. Dec 2012 B2
8348898 Cabiri Jan 2013 B2
8366668 Maritan Feb 2013 B2
8372039 Mernoe et al. Feb 2013 B2
8373421 Lindegger et al. Feb 2013 B2
8409141 Johansen et al. Apr 2013 B2
8409142 Causey et al. Apr 2013 B2
8409143 Lanigan et al. Apr 2013 B2
8409149 Hommann et al. Apr 2013 B2
8414533 Alexandersson Apr 2013 B2
8414557 Istoc et al. Apr 2013 B2
8425468 Weston Apr 2013 B2
8430847 Mernoe et al. Apr 2013 B2
8465455 Cabiri Jun 2013 B2
8469942 Kow et al. Jun 2013 B2
8474332 Bente et al. Jul 2013 B2
8475408 Mernoe et al. Jul 2013 B2
8479595 Vazquez et al. Jul 2013 B2
8490790 Cocheteux et al. Jul 2013 B2
8495918 Bazargan et al. Jul 2013 B2
8496862 Zelkovich et al. Jul 2013 B2
8512287 Cindrich et al. Aug 2013 B2
8512295 Evans et al. Aug 2013 B2
8517987 Istoc et al. Aug 2013 B2
8517992 Jones Aug 2013 B2
8523803 Favreau Sep 2013 B1
8551046 Causey et al. Oct 2013 B2
8556856 Bazargan et al. Oct 2013 B2
8562364 Lin et al. Oct 2013 B2
8568361 Yodfat et al. Oct 2013 B2
8574216 Istoc et al. Nov 2013 B2
8603026 Favreau Dec 2013 B2
8603027 Favreau Dec 2013 B2
8603028 Mudd et al. Dec 2013 B2
8622966 Causey et al. Jan 2014 B2
8628510 Bazargan et al. Jan 2014 B2
8647303 Cowe Feb 2014 B2
8674288 Hanson et al. Mar 2014 B2
8679060 Mernoe et al. Mar 2014 B2
D702834 Norton et al. Apr 2014 S
8690855 Alderete et al. Apr 2014 B2
8708961 Field et al. Apr 2014 B2
8721603 Lundquist May 2014 B2
8751237 Kubota Jun 2014 B2
8753326 Chong et al. Jun 2014 B2
8753331 Murphy Jun 2014 B2
8764707 Moberg et al. Jul 2014 B2
8764723 Chong et al. Jul 2014 B2
8771222 Kanderian et al. Jul 2014 B2
8777896 Starkweather et al. Jul 2014 B2
8777924 Kanderian et al. Jul 2014 B2
8777925 Patton Jul 2014 B2
8784369 Starkweather et al. Jul 2014 B2
8784370 Lebel et al. Jul 2014 B2
8784378 Weinandy Jul 2014 B2
8790295 Sigg et al. Jul 2014 B1
8795224 Starkweather et al. Aug 2014 B2
8795231 Chong et al. Aug 2014 B2
8795260 Drew Aug 2014 B2
8801668 Ali et al. Aug 2014 B2
8801679 Iio et al. Aug 2014 B2
8810394 Kalpin Aug 2014 B2
8814379 Griffiths et al. Aug 2014 B2
8858508 Lavi et al. Oct 2014 B2
8876778 Carrel Nov 2014 B2
8911410 Ekman et al. Dec 2014 B2
8915882 Cabiri Dec 2014 B2
8915886 Cowe Dec 2014 B2
8920374 Bokelman et al. Dec 2014 B2
8932266 Wozencroft Jan 2015 B2
8979802 Woehr Mar 2015 B2
8986250 Beebe Mar 2015 B2
9011164 Filman et al. Apr 2015 B2
9011387 Ekman et al. Apr 2015 B2
9061104 Daniel Jun 2015 B2
9061110 Avery et al. Jun 2015 B2
9072827 Cabiri Jul 2015 B2
9072845 Hiles Jul 2015 B2
9089475 Fangrow Jul 2015 B2
9089641 Kavazov Jul 2015 B2
9138534 Yodfat et al. Sep 2015 B2
9149575 Cabiri Oct 2015 B2
9173997 Gross et al. Nov 2015 B2
9180248 Moberg et al. Nov 2015 B2
9205199 Kemp et al. Dec 2015 B2
D747799 Norton et al. Jan 2016 S
9233215 Hourmand et al. Jan 2016 B2
9259532 Cabiri Feb 2016 B2
9283327 Hourmand et al. Mar 2016 B2
9308327 Marshall et al. Apr 2016 B2
9314569 Causey et al. Apr 2016 B2
9320849 Smith et al. Apr 2016 B2
9345834 Henley et al. May 2016 B2
9345836 Cabiri et al. May 2016 B2
9350634 Fadell May 2016 B2
9352090 Brereton et al. May 2016 B2
9364606 Cindrich et al. Jun 2016 B2
9381300 Smith et al. Jul 2016 B2
9393365 Cabiri Jul 2016 B2
9421323 Cabiri et al. Aug 2016 B2
9421337 Kemp et al. Aug 2016 B2
9427531 Hourmand et al. Aug 2016 B2
9446196 Hourmand et al. Sep 2016 B2
9452261 Alon Sep 2016 B2
9463280 Cabiri Oct 2016 B2
9463889 Schmitz et al. Oct 2016 B2
9468720 Mudd et al. Oct 2016 B2
9474859 Ekman et al. Oct 2016 B2
9492622 Brereton et al. Nov 2016 B2
9522234 Cabiri Dec 2016 B2
9539384 Servansky Jan 2017 B2
9539388 Causey et al. Jan 2017 B2
9539757 Ramirez et al. Jan 2017 B2
9572926 Cabiri Feb 2017 B2
9572927 Bruggemann et al. Feb 2017 B2
9579471 Carrel et al. Feb 2017 B2
9610407 Bruggemann et al. Apr 2017 B2
9656019 Cabiri et al. May 2017 B2
9656021 Brereton et al. May 2017 B2
9656025 Bostrom et al. May 2017 B2
9707356 Hourmand et al. Jul 2017 B2
9744306 Cowe Aug 2017 B2
9775948 Bechmann et al. Oct 2017 B2
9782545 Gross et al. Oct 2017 B2
9789247 Kamen et al. Oct 2017 B2
9814830 Mernoe et al. Nov 2017 B2
9814839 Eaton Nov 2017 B2
9849242 Henley et al. Dec 2017 B2
9862519 Deutschle et al. Jan 2018 B2
9999722 Yodfat et al. Jun 2018 B2
10010681 Koch et al. Jul 2018 B2
10076356 Hadvary et al. Sep 2018 B2
10143794 Lanigan et al. Dec 2018 B2
10149943 Bar-El et al. Dec 2018 B2
D838367 Norton et al. Jan 2019 S
10166335 Reber et al. Jan 2019 B2
10207051 Cereda et al. Feb 2019 B2
10227161 Auerbach Mar 2019 B2
10232116 Ekman et al. Mar 2019 B2
10258740 McLoughlin et al. Apr 2019 B2
10376641 Hirschel et al. Aug 2019 B2
10376647 Farris et al. Aug 2019 B2
10434262 Bendek et al. Oct 2019 B2
10576213 Gylleby Mar 2020 B2
10576220 Armes Mar 2020 B2
10583260 Kemp Mar 2020 B2
10603430 Shor et al. Mar 2020 B2
10722645 Kamen et al. Jul 2020 B2
10842942 Iibuchi et al. Nov 2020 B2
20010005781 Bergens et al. Jun 2001 A1
20010018937 Nemoto Sep 2001 A1
20010025168 Gross et al. Sep 2001 A1
20010034502 Moberg et al. Oct 2001 A1
20010041869 Causey et al. Nov 2001 A1
20020010423 Gross et al. Jan 2002 A1
20020016569 Critchlow et al. Feb 2002 A1
20020029018 Jeffrey Mar 2002 A1
20020040208 Flaherty et al. Apr 2002 A1
20020055711 Lavi et al. May 2002 A1
20020055718 Hunt May 2002 A1
20020065488 Suzuki et al. May 2002 A1
20020107487 Preuthun Aug 2002 A1
20020120186 Keimel Aug 2002 A1
20020123740 Flaherty et al. Sep 2002 A1
20020151855 Douglas et al. Oct 2002 A1
20020161332 Ramey Oct 2002 A1
20020169215 Meng Nov 2002 A1
20030009133 Ramey Jan 2003 A1
20030014018 Giambattista et al. Jan 2003 A1
20030050602 Pettis et al. Mar 2003 A1
20030069518 Daley et al. Apr 2003 A1
20030125671 Aramata et al. Jul 2003 A1
20030135159 Daily et al. Jul 2003 A1
20030160683 Blomquist Aug 2003 A1
20030167039 Moberg Sep 2003 A1
20030171717 Farrugia et al. Sep 2003 A1
20030199825 Flaherty et al. Oct 2003 A1
20030216683 Shekalim Nov 2003 A1
20030236498 Gross et al. Dec 2003 A1
20040000818 Preuthun et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040049160 Hsieh et al. Mar 2004 A1
20040049161 Sheam Mar 2004 A1
20040082911 Tiu et al. Apr 2004 A1
20040092873 Moberg May 2004 A1
20040116866 Gorman et al. Jun 2004 A1
20040122359 Wenz et al. Jun 2004 A1
20040122369 Schriver et al. Jun 2004 A1
20040127857 Shemesh et al. Jul 2004 A1
20040135078 Mandro et al. Jul 2004 A1
20040158172 Hancock Aug 2004 A1
20040158205 Savage Aug 2004 A1
20040186419 Cho Sep 2004 A1
20040186441 Graf et al. Sep 2004 A1
20040210196 Bush, Jr. et al. Oct 2004 A1
20040260233 Garibotto et al. Dec 2004 A1
20050027255 Lavi et al. Feb 2005 A1
20050033234 Sadowski et al. Feb 2005 A1
20050038391 Wittland et al. Feb 2005 A1
20050065466 Vedrine Mar 2005 A1
20050065472 Cindrich et al. Mar 2005 A1
20050071487 Lu et al. Mar 2005 A1
20050113761 Faust et al. May 2005 A1
20050124940 Martin et al. Jun 2005 A1
20050154353 Alheidt Jul 2005 A1
20050159706 Wilkinson et al. Jul 2005 A1
20050171476 Judson et al. Aug 2005 A1
20050171512 Flaherty Aug 2005 A1
20050177136 Miller Aug 2005 A1
20050197650 Sugimoto et al. Sep 2005 A1
20050203461 Flaherty et al. Sep 2005 A1
20050238507 Diianni et al. Oct 2005 A1
20050245956 Steinemann et al. Nov 2005 A1
20050283114 Bresina et al. Dec 2005 A1
20060013716 Nason et al. Jan 2006 A1
20060030816 Zubry Feb 2006 A1
20060036216 Rimlinger et al. Feb 2006 A1
20060095010 Westbye May 2006 A1
20060095014 Ethelfeld May 2006 A1
20060122577 Poulsen et al. Jun 2006 A1
20060124269 Miyazaki et al. Jun 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060173439 Thorne et al. Aug 2006 A1
20060184154 Moberg et al. Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060206054 Shekalim Sep 2006 A1
20060206057 Deruntz et al. Sep 2006 A1
20060211982 Prestrelski et al. Sep 2006 A1
20060229569 Lavi et al. Oct 2006 A1
20060264888 Moberg et al. Nov 2006 A1
20060264889 Moberg et al. Nov 2006 A1
20060264890 Moberg et al. Nov 2006 A1
20060264894 Moberg et al. Nov 2006 A1
20060270987 Peter Nov 2006 A1
20060283465 Nickel et al. Dec 2006 A1
20060293722 Slatkine et al. Dec 2006 A1
20070021733 Hansen et al. Jan 2007 A1
20070025879 Vandergaw Feb 2007 A1
20070049865 Radmer et al. Mar 2007 A1
20070073228 Mernoe et al. Mar 2007 A1
20070079894 Kraus et al. Apr 2007 A1
20070118405 Campbell et al. May 2007 A1
20070167912 Causey et al. Jul 2007 A1
20070179444 Causey et al. Aug 2007 A1
20070185449 Mernoe Aug 2007 A1
20070197954 Keenan Aug 2007 A1
20070197968 Pongpairochana et al. Aug 2007 A1
20070203454 Shermer et al. Aug 2007 A1
20070233038 Pruitt et al. Oct 2007 A1
20070265568 Tsals et al. Nov 2007 A1
20070282269 Carter et al. Dec 2007 A1
20080021439 Brittingham et al. Jan 2008 A1
20080033367 Haury et al. Feb 2008 A1
20080033369 Kohlbrenner et al. Feb 2008 A1
20080033393 Edwards et al. Feb 2008 A1
20080051711 Mounce et al. Feb 2008 A1
20080051730 Bikovsky Feb 2008 A1
20080059133 Edwards et al. Mar 2008 A1
20080097326 Moberg et al. Apr 2008 A1
20080097381 Moberg et al. Apr 2008 A1
20080097387 Spector Apr 2008 A1
20080108951 Jerde et al. May 2008 A1
20080140006 Eskuri et al. Jun 2008 A1
20080140014 Miller et al. Jun 2008 A1
20080140018 Enggaard et al. Jun 2008 A1
20080147004 Mann et al. Jun 2008 A1
20080167641 Hansen et al. Jul 2008 A1
20080188813 Miller et al. Aug 2008 A1
20080208138 Lim et al. Aug 2008 A1
20080215006 Thorkild Sep 2008 A1
20080215013 Felix-Faure Sep 2008 A1
20080215015 Cindrich et al. Sep 2008 A1
20080243087 Enggaard et al. Oct 2008 A1
20080249473 Rutti et al. Oct 2008 A1
20080262436 Olson Oct 2008 A1
20080269687 Chong et al. Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080274630 Shelton et al. Nov 2008 A1
20080294143 Tanaka et al. Nov 2008 A1
20080306449 Kristensen et al. Dec 2008 A1
20080312601 Cane Dec 2008 A1
20080319383 Byland et al. Dec 2008 A1
20080319416 Yodfat et al. Dec 2008 A1
20090012478 Weston Jan 2009 A1
20090041805 Walker Feb 2009 A1
20090048347 Cohen et al. Feb 2009 A1
20090054750 Jennewine Feb 2009 A1
20090069784 Estes et al. Mar 2009 A1
20090076383 Toews et al. Mar 2009 A1
20090076453 Mejlhede et al. Mar 2009 A1
20090088694 Carter et al. Apr 2009 A1
20090088731 Campbell et al. Apr 2009 A1
20090093763 Gonnelli et al. Apr 2009 A1
20090093792 Gross et al. Apr 2009 A1
20090093793 Gross et al. Apr 2009 A1
20090105650 Wiegel et al. Apr 2009 A1
20090105663 Brand et al. Apr 2009 A1
20090124977 Jensen May 2009 A1
20090143730 De Polo et al. Jun 2009 A1
20090143735 De et al. Jun 2009 A1
20090149830 Spector Jun 2009 A1
20090182277 Carter Jul 2009 A1
20090182284 Morgan Jul 2009 A1
20090204076 Liversidge Aug 2009 A1
20090209896 Selevan Aug 2009 A1
20090234319 Marksteiner Sep 2009 A1
20090240240 Hines et al. Sep 2009 A1
20090253973 Bashan et al. Oct 2009 A1
20090259176 Yair Oct 2009 A1
20090281585 Katzman et al. Nov 2009 A1
20090299288 Sie et al. Dec 2009 A1
20090299290 Moberg Dec 2009 A1
20090299397 Ruan et al. Dec 2009 A1
20090326459 Shipway et al. Dec 2009 A1
20090326509 Muse et al. Dec 2009 A1
20100010455 Elahi Jan 2010 A1
20100018334 Lessing Jan 2010 A1
20100030156 Beebe et al. Feb 2010 A1
20100030198 Beebe et al. Feb 2010 A1
20100049128 Mckenzie et al. Feb 2010 A1
20100049144 Mcconnell et al. Feb 2010 A1
20100057057 Hayter et al. Mar 2010 A1
20100076382 Weston Mar 2010 A1
20100076412 Rush et al. Mar 2010 A1
20100094255 Nycz et al. Apr 2010 A1
20100100076 Rush et al. Apr 2010 A1
20100100077 Rush et al. Apr 2010 A1
20100106098 Atterbury et al. Apr 2010 A1
20100121314 Iobbi May 2010 A1
20100137790 Yodrat Jun 2010 A1
20100137831 Tsals Jun 2010 A1
20100145303 Yodfat et al. Jun 2010 A1
20100145305 Alon Jun 2010 A1
20100160894 Julian et al. Jun 2010 A1
20100162548 Leidig Jul 2010 A1
20100168607 Miesel Jul 2010 A1
20100168683 Cabiri Jul 2010 A1
20100198157 Gyrn et al. Aug 2010 A1
20100204657 Yodfat et al. Aug 2010 A1
20100234767 Sarstedt Sep 2010 A1
20100234830 Straessler et al. Sep 2010 A1
20100241065 Moberg et al. Sep 2010 A1
20100256486 Savage Oct 2010 A1
20100264931 Lindegger et al. Oct 2010 A1
20100268169 Llewellyn-Hyde et al. Oct 2010 A1
20100274112 Hoss et al. Oct 2010 A1
20100274192 Mernoe Oct 2010 A1
20100280499 Yodfat et al. Nov 2010 A1
20100331826 Field et al. Dec 2010 A1
20110034900 Yodfat et al. Feb 2011 A1
20110054399 Chong et al. Mar 2011 A1
20110054400 Chong et al. Mar 2011 A1
20110066131 Cabiri Mar 2011 A1
20110092915 Olson et al. Apr 2011 A1
20110112504 Causey et al. May 2011 A1
20110125056 Merchant May 2011 A1
20110160654 Hanson et al. Jun 2011 A1
20110160666 Hanson et al. Jun 2011 A1
20110160669 Gyrn et al. Jun 2011 A1
20110172645 Moga et al. Jul 2011 A1
20110172745 Na et al. Jul 2011 A1
20110178463 Cabiri Jul 2011 A1
20110178472 Cabiri Jul 2011 A1
20110201998 Pongpairochana et al. Aug 2011 A1
20110224616 Slate et al. Sep 2011 A1
20110224646 Yodfat et al. Sep 2011 A1
20110238031 Adair et al. Sep 2011 A1
20110245773 Estes et al. Oct 2011 A1
20110270160 Mernoe Nov 2011 A1
20110282282 Lorenzen et al. Nov 2011 A1
20110282296 Harms et al. Nov 2011 A1
20110295205 Kaufmann et al. Dec 2011 A1
20110313238 Reichenbach et al. Dec 2011 A1
20110319861 Wilk Dec 2011 A1
20110319919 Curry et al. Dec 2011 A1
20120004602 Hanson et al. Jan 2012 A1
20120010594 Holt et al. Jan 2012 A1
20120022344 Kube Jan 2012 A1
20120022496 Causey et al. Jan 2012 A1
20120022499 Anderson et al. Jan 2012 A1
20120029431 Hwang et al. Feb 2012 A1
20120035546 Cabiri Feb 2012 A1
20120041364 Smith Feb 2012 A1
20120041387 Bruggemann et al. Feb 2012 A1
20120041414 Estes et al. Feb 2012 A1
20120071828 Tojo et al. Mar 2012 A1
20120096953 Bente et al. Apr 2012 A1
20120096954 Vazquez et al. Apr 2012 A1
20120101436 Bazargan et al. Apr 2012 A1
20120108933 Liang et al. May 2012 A1
20120109059 Ranalletta et al. May 2012 A1
20120118777 Kakiuchi et al. May 2012 A1
20120123387 Gonzalez et al. May 2012 A1
20120129362 Hampo et al. May 2012 A1
20120160033 Kow et al. Jun 2012 A1
20120165733 Bazargan et al. Jun 2012 A1
20120165780 Bazargan et al. Jun 2012 A1
20120172817 Bruggemann et al. Jul 2012 A1
20120184917 Bom et al. Jul 2012 A1
20120226234 Bazargan et al. Sep 2012 A1
20120238961 Julian et al. Sep 2012 A1
20120259282 Alderete et al. Oct 2012 A1
20130012875 Gross et al. Jan 2013 A1
20130068319 Plumptre et al. Mar 2013 A1
20130085457 Schiff et al. Apr 2013 A1
20130089992 Yang Apr 2013 A1
20130096509 Avery et al. Apr 2013 A1
20130110049 Cronenberg et al. May 2013 A1
20130131589 Mudd et al. May 2013 A1
20130131604 Avery May 2013 A1
20130133438 Kow et al. May 2013 A1
20130172808 Gilbert Jul 2013 A1
20130190693 Ekman et al. Jul 2013 A1
20130200549 Felts et al. Aug 2013 A1
20130204187 Avery Aug 2013 A1
20130204191 Cindrich et al. Aug 2013 A1
20130237953 Kow et al. Sep 2013 A1
20130245595 Kow et al. Sep 2013 A1
20130245596 Cabiri et al. Sep 2013 A1
20130245604 Kouyoumjian et al. Sep 2013 A1
20130253419 Favreau Sep 2013 A1
20130253420 Favreau Sep 2013 A1
20130253421 Favreau Sep 2013 A1
20130253434 Cabiri Sep 2013 A1
20130267895 Hemmingsen Oct 2013 A1
20130296799 Degtiar et al. Nov 2013 A1
20130296824 Mo et al. Nov 2013 A1
20130304021 Cabiri et al. Nov 2013 A1
20130310753 Cabiri Nov 2013 A1
20130323699 Edwards et al. Dec 2013 A1
20130331791 Gross et al. Dec 2013 A1
20130338584 Mounce et al. Dec 2013 A1
20140018735 Causey et al. Jan 2014 A1
20140031747 Ardehali Jan 2014 A1
20140055073 Favreau Feb 2014 A1
20140055076 Favreau Feb 2014 A1
20140058349 Bazargan et al. Feb 2014 A1
20140083517 Moia et al. Mar 2014 A1
20140094755 Bazargan et al. Apr 2014 A1
20140121633 Causey et al. May 2014 A1
20140128807 Moberg et al. May 2014 A1
20140128835 Moberg et al. May 2014 A1
20140135692 Alderete et al. May 2014 A1
20140135694 Moberg et al. May 2014 A1
20140142499 Moberg et al. May 2014 A1
20140148784 Anderson et al. May 2014 A1
20140148785 Moberg et al. May 2014 A1
20140163522 Alderete et al. Jun 2014 A1
20140163526 Cabiri et al. Jun 2014 A1
20140171881 Cabiri Jun 2014 A1
20140174223 Gross et al. Jun 2014 A1
20140194819 Maule et al. Jul 2014 A1
20140194854 Tsals Jul 2014 A1
20140207064 Yavorsky Jul 2014 A1
20140207065 Yavorsky Jul 2014 A1
20140207066 Yavorsky Jul 2014 A1
20140213975 Clemente et al. Jul 2014 A1
20140214001 Mortazavi Jul 2014 A1
20140228768 Eggert et al. Aug 2014 A1
20140236087 Alderete, Jr. et al. Aug 2014 A1
20140243786 Gilbert et al. Aug 2014 A1
20140261758 Wlodarczyk et al. Sep 2014 A1
20140343503 Holmqvist Nov 2014 A1
20150005703 Hutchinson et al. Jan 2015 A1
20150073344 Van Damme et al. Mar 2015 A1
20150088071 Cabiri Mar 2015 A1
20150112278 Ray et al. Apr 2015 A1
20150119798 Gross et al. Apr 2015 A1
20150157806 Knutsson Jun 2015 A1
20150202375 Schabbach et al. Jul 2015 A1
20150374926 Gross et al. Dec 2015 A1
20160030665 Cabiri Feb 2016 A1
20160051756 Cabiri Feb 2016 A1
20160144117 Chun May 2016 A1
20160151586 Kemp Jun 2016 A1
20160175515 Mccullough Jun 2016 A1
20160184512 Marbet et al. Jun 2016 A1
20160193406 Cabiri Jul 2016 A1
20160199590 Schabbach et al. Jul 2016 A1
20160213840 Schabbach et al. Jul 2016 A1
20160228652 Cabiri et al. Aug 2016 A1
20160296713 Schader et al. Oct 2016 A1
20160296716 Cabiri et al. Oct 2016 A1
20160331900 Wei Nov 2016 A1
20160346478 Bar-El et al. Dec 2016 A1
20160354553 Anderson et al. Dec 2016 A1
20170007774 Brockmeier Jan 2017 A1
20170043092 Murakami et al. Feb 2017 A1
20170058349 Levy et al. Mar 2017 A1
20170175859 Brockmeier Jun 2017 A1
20170246399 Forlani et al. Aug 2017 A1
20170246403 Cowe et al. Aug 2017 A1
20180028765 Waller et al. Feb 2018 A1
20180214637 Kemp et al. Aug 2018 A1
20190022306 Gibson et al. Jan 2019 A1
20190060578 Farris et al. Feb 2019 A1
20190071217 Brown et al. Mar 2019 A1
20190175821 Kamen et al. Jun 2019 A1
20190224415 Dugand et al. Jul 2019 A1
20190240417 Hostettler et al. Aug 2019 A1
20190328968 Giambattista Oct 2019 A1
20200009323 Nair et al. Jan 2020 A1
20200215270 Ogawa et al. Jul 2020 A1
20200297929 Zhang Sep 2020 A1
20210138157 Bar-El et al. May 2021 A1
20210220551 Dowd et al. Jul 2021 A1
Foreign Referenced Citations (213)
Number Date Country
1505535 Jun 2004 CN
1747683 Mar 2006 CN
1863566 Nov 2006 CN
101090749 Dec 2007 CN
101227943 Jul 2008 CN
101448536 Jun 2009 CN
101522235 Sep 2009 CN
101541362 Sep 2009 CN
101641126 Feb 2010 CN
201692438 Jan 2011 CN
201941304 Aug 2011 CN
102186733 Sep 2011 CN
102378638 Mar 2012 CN
105102025 Nov 2015 CN
0855313 Nov 1952 DE
1064693 Sep 1959 DE
19518807 Dec 1995 DE
19717107 Nov 1998 DE
0017412 Oct 1980 EP
0222656 May 1987 EP
0401179 Dec 1990 EP
0925082 Jun 1999 EP
1003581 Nov 2000 EP
1124600 Aug 2001 EP
1219312 Jul 2002 EP
1372762 Jan 2004 EP
1472477 Nov 2004 EP
1530979 May 2005 EP
1666080 Jun 2006 EP
1904130 Apr 2008 EP
1974759 Oct 2008 EP
2060606 May 2009 EP
2140897 Jan 2010 EP
2173413 Apr 2010 EP
2185227 May 2010 EP
2192935 Jun 2010 EP
2361648 Aug 2011 EP
2364739 Sep 2011 EP
2393534 Dec 2011 EP
2393535 Dec 2011 EP
2452708 May 2012 EP
2498589 Sep 2012 EP
2574355 Apr 2013 EP
2819724 Jan 2015 EP
2878321 Jun 2015 EP
2886144 Jun 2015 EP
2991705 Mar 2016 EP
3266478 Jan 2020 EP
2770136 Apr 1999 FR
2436526 Oct 2007 GB
62-112566 May 1987 JP
01-172843 Dec 1989 JP
05-062828 Mar 1993 JP
07-194701 Aug 1995 JP
3035448 Mar 1997 JP
H09-505758 Jun 1997 JP
11-507260 Jun 1999 JP
2000-107289 Apr 2000 JP
2000-515394 Nov 2000 JP
2001-512992 Aug 2001 JP
2002-505601 Feb 2002 JP
2002-507459 Mar 2002 JP
2002528676 Sep 2002 JP
2003-501157 Jan 2003 JP
2003-534061 Nov 2003 JP
2004-501721 Jan 2004 JP
2004-512100 Apr 2004 JP
2003-527138 Aug 2005 JP
2005-523127 Aug 2005 JP
2005-527249 Sep 2005 JP
2005-270629 Oct 2005 JP
2006-507067 Mar 2006 JP
2006-510450 Mar 2006 JP
2006-525046 Nov 2006 JP
2007-509661 Apr 2007 JP
2007-306990 Nov 2007 JP
2008-534131 Aug 2008 JP
2008-220961 Sep 2008 JP
2009502273 Jan 2009 JP
2009-101093 May 2009 JP
2010-540054 Dec 2010 JP
2010-540156 Dec 2010 JP
2011-136153 Jul 2011 JP
2012-100927 May 2012 JP
4947871 Jun 2012 JP
2013-500811 Jan 2013 JP
2013-505433 Feb 2013 JP
2013-517095 May 2013 JP
2013-519473 May 2013 JP
2013-530778 Aug 2013 JP
2013-531520 Aug 2013 JP
2013-531540 Aug 2013 JP
2014-030489 Feb 2014 JP
2014-515669 Jul 2014 JP
2014-518743 Aug 2014 JP
2015-514486 May 2015 JP
2016-525428 Aug 2016 JP
2016-530016 Sep 2016 JP
9009202 Aug 1990 WO
9307922 Apr 1993 WO
9407553 Apr 1994 WO
1994015660 Jul 1994 WO
9513838 May 1995 WO
9609083 Mar 1996 WO
9632975 Oct 1996 WO
9700091 Jan 1997 WO
9710012 Mar 1997 WO
9721457 Jun 1997 WO
9733638 Sep 1997 WO
9857683 Dec 1998 WO
9857686 Dec 1998 WO
9929151 Jun 1999 WO
9959665 Nov 1999 WO
0025844 May 2000 WO
0069509 Nov 2000 WO
0130415 May 2001 WO
200130421 May 2001 WO
0170304 Sep 2001 WO
200172357 Oct 2001 WO
0189607 Nov 2001 WO
0189613 Nov 2001 WO
0187384 Nov 2001 WO
0202165 Jan 2002 WO
0204049 Jan 2002 WO
0234315 May 2002 WO
200238204 May 2002 WO
0256934 Jul 2002 WO
0256943 Jul 2002 WO
02072182 Sep 2002 WO
0362672 Jul 2003 WO
0390833 Nov 2003 WO
04000397 Dec 2003 WO
2004032990 Apr 2004 WO
2004098684 Nov 2004 WO
2004105841 Dec 2004 WO
2005018703 Mar 2005 WO
2005037350 Apr 2005 WO
2005070485 Aug 2005 WO
2005072795 Aug 2005 WO
2006018617 Feb 2006 WO
2006037434 Apr 2006 WO
2006052737 May 2006 WO
06069380 Jun 2006 WO
2006102676 Sep 2006 WO
2006104806 Oct 2006 WO
2006121921 Nov 2006 WO
2007017052 Feb 2007 WO
2007056504 May 2007 WO
2007051563 May 2007 WO
2007066152 Jun 2007 WO
20070073228 Jun 2007 WO
2007119178 Oct 2007 WO
2008001377 Jan 2008 WO
2008014908 Feb 2008 WO
2008057976 May 2008 WO
2008072229 Jun 2008 WO
2008076459 Jun 2008 WO
2008078318 Jul 2008 WO
2009019438 Feb 2009 WO
2009022132 Feb 2009 WO
2009043000 Apr 2009 WO
2009043564 Apr 2009 WO
2009046989 Apr 2009 WO
2009044401 Apr 2009 WO
2009069064 Jun 2009 WO
2009125398 Oct 2009 WO
2009144085 Dec 2009 WO
2010078227 Jul 2010 WO
2010078242 Jul 2010 WO
2010089313 Aug 2010 WO
2011075105 Jun 2011 WO
2011090955 Jul 2011 WO
2011090956 Jul 2011 WO
2011101378 Aug 2011 WO
2011110872 Sep 2011 WO
2011129175 Oct 2011 WO
2011133823 Oct 2011 WO
2011124631 Oct 2011 WO
2011131778 Oct 2011 WO
2011131780 Oct 2011 WO
2011131781 Oct 2011 WO
2011156373 Dec 2011 WO
2012003221 Jan 2012 WO
2012032411 Mar 2012 WO
2012040528 Mar 2012 WO
2012145752 Oct 2012 WO
2012160157 Nov 2012 WO
2012168691 Dec 2012 WO
2013036602 Mar 2013 WO
2013058697 Apr 2013 WO
2013115843 Aug 2013 WO
2014132293 Sep 2014 WO
2014179117 Nov 2014 WO
2014179774 Nov 2014 WO
2014194183 Dec 2014 WO
2015048791 Apr 2015 WO
2015048803 Apr 2015 WO
2015078868 Jun 2015 WO
2015091758 Jun 2015 WO
2015091850 Jun 2015 WO
2015114428 Aug 2015 WO
2015118358 Aug 2015 WO
2015114158 Aug 2015 WO
2015163009 Oct 2015 WO
2016087626 Jun 2016 WO
2016087627 Jun 2016 WO
2016141082 Sep 2016 WO
2017022639 Feb 2017 WO
2017161076 Sep 2017 WO
2018222521 Dec 2018 WO
2019224782 Nov 2019 WO
2020120087 Jun 2020 WO
2020193468 Oct 2020 WO
Non-Patent Literature Citations (183)
Entry
Communication Pursuant to Rules 161 and 162 dated Apr. 6, 2018 in EP Application No. 16784688.0.
Daikyo Crystal Zenith(Registered) polymer, Manufactured by Daikyo Seiko, Lid. (Jun. 25, 2008).
Definition of Monolithic. In Merriam-Webster's online dictionary. Retrieved from https://www.merriam-webster.com/dictionary/monolithic (Year: 2021).
English translation of an Office Action dated Jan. 30, 2013 in CN Application No. 200880117084.X.
English translation of an Office Action dated Mar. 5, 2014 in CN Application No. 200880117084.X.
European Search Report (Partial) dated Mar. 8, 2017 in EP Application 16193157.1.
Extended European Search Report dated Aug. 7, 2014 in EP Application No. 1417477.4.
Extended European Search Report dated Feb. 12, 2018 in EP Application No. 17191756.0.
Extended European Search Report dated Feb. 13, 2017 in EP Application No. 16171626.1.
Extended European Search Report dated Feb. 23, 2015 in EP Application No. 14166591.9.
Extended European Search Report dated Feb. 23, 2015 in EP Application No. 14166596.8.
Extended European Search Report dated Jul. 3, 2017 in EP Application No. 16190054.3.
Extended European Search Report dated Mar. 27, 2014 in EP Application No. 14154717.4.
Extended European Search Report dated Mar. 8, 2016 in EP Application No. 14166592.7.
Extended European Search Report dated Nov. 10, 2016 in EP Application No. 08808111.2.
Extended European Search Report dated Jul. 28, 2020 in European Application No. 20172466.3.
Extended Search Report dated Aug. 7, 2014 in EP Application No. 14171477.4.
Extended Search Report dated Jul. 7, 2017 in EP Application No. 16193157.1.
Int'l Preliminary Report on Patentability dated Nov. 22, 2017 in Int'l Application No. PCT/US2016/068371.
Int'l Search Report and Written Opinion dated Jan. 12, 2011 in Int'l Application No. PCT/US2010/048556; Written Opinion.
Int'l Search Report and Written Opinion dated Jan. 26, 2017 in Int'l Application No. PCT/US2016/056213.
Int'l Search Report and Written Opinion dated Mar. 27, 2017 in Int'l Application No. PCT/US2016/056247.
Int'l Search Report and Written Opinion dated Apr. 21, 2017 in Int'l Application No. PCT/US2016/068367.
Int'l Search Report and Written Opinion dated May 15, 2017 in Int'l Application No. PCT/US2016/068371.
Int'l Search Report and Written Opinion dated Jul. 6, 2017 in Int'l Application No. PCT/US2017/022966.
Int'l Search Report and Written Opinion dated Nov. 28, 2016 in Int'l Application No. PCT/US2016/056218.
Int'l Search Report and Written Opinion dated Dec. 2, 2016 in Int'l Application No. PCT/US2016/056210.
Int'l Search Report and Written Opinion dated Dec. 5, 2016 in Int'l Application No. PCT/US2016/056233.
Int'l Search Report and Written Opinion dated Dec. 8, 2016 in Inl'l Application No. PCT/US2016/056227.
Int'l Search Report and Written Opinion dated Dec. 15, 2016 in Inl'l Application No. PCT/US2016/056258.
Int'l Search Repport (Partial), dated Dec. 20, 2016 in Int'l Application No. PCT/US2016/056247.
Int'l Preliminary Report on Patentability dated Jan. 8, 2018 in Int'l Application No. PCT/US2016/056218.
Int'l Preliminary Report on Patentability dated Apr. 7, 2010 in Int'l Application No. PCT/IL2008/001312.
Int'l Preliminary Report on Patentability dated Aug. 2, 2012 in Int'l Application No. PCT/US2011/021604.
Int'l Preliminary Report on Patentability dated Feb. 7, 2013 in Int'l Application No. PCT/US11/21605.
Int'l Preliminary Report on Patentability dated Jan. 18, 2018 in Int'l Application No. PCT/US2016/056210.
Int'l Preliminary Report on Patentability dated Jan. 18, 2018 in Int'l Application No. PCT/US2016/056213.
Int'l Preliminary Report on Patentability dated Jan. 18, 2018 in Int'l Application No. PCT/US2016/056223.
Int'l Preliminary Report on Patentability dated Jan. 18, 2018 in Int'l Application No. PCT/US2016/056227.
Int'l Preliminary Report on Patentability dated Jul. 16, 2015 in Int'l Application No. PCT/US2013/078040.
Int'l Preliminary Report on Patentability dated May 14, 2015 in Int'l Application No. PCT/US2013/065211.
Int'l Preliminary Report on Patentability dated Nov. 27, 2014 in Int'l Application No. PCT/US2013/039465.
Int'l Preliminary Report on Patentability dated Nov. 30, 2017 in Int'l Application No. PCT/US2016/068367.
Int'l Preliminary Report on Patentability dated Nov. 9, 2018 in Int'l Application No. PCT/US2016/056238.
Int'l Preliminary Report on Patentability dated Oct. 9, 2014 in Int'l Application No. PCT/US2013/033118.
Int'l Preliminary Report on Patentability dated Sep. 1, 2011 in Int'l Application No. PCT/US2010/048556.
Int'l Search Report and Written Opinion dated Apr. 3, 2014 in Int'l Application No. PCT/US2013/078040.
Int'l Search Report and Written Opinion dated Aug. 5, 2013 in Int'l Application No. PCT/US2013/033118.
Int'l Search Report and Written Opinion dated Jan. 7, 2014 in Int'l Application No. PCT/US2013/065211.
Int'l Search Report and Written Opinion dated Jul. 12, 2017 in Int'l Application No. PCT/US2016/056238.
West Introduces The Daikyo Crystal Zenith RU Prefillable Syringe, Pharmaceutical Online, Jun. 2008, downloaded from webpage: http://www.pharmaceuticalonline.com/article.mvc/west-introduces-prefillable-syringe-system, Download date: Jan. 2009, original posting date: Jun. 2008, 2 pages.
Copaxone®, Innovative Drugs, Teva Pharmaceuticals, downloaded from webpage: http://tevapharm.com/copaxone/, Download date: Jan. 2009, original posting date: unknown, 3 pages.
Office Action dated Jun. 9,2 017 in EP Application No. 14166596.8.
Office Action dated Mar. 1,2 018 in EP Application No. 14166592.7.
Office Action dated Mar. 10, 2015 in CN Application No. 201180006567.4.
Office Action dated Mar. 10, 2015 in U.S. Appl. No. 12/244,666 by Gross.
Office Action dated Mar. 10, 2015 in U.S. Appl. No. 13/643,470 by Alon.
Office Action dated Mar. 30, 2018 in U.S. Appl. No. 14/850,450 by Gross.
Office Action dated Mar. 31, 2015 in JP Application No. 2012-550068.
Office Action dated Mar. 5, 2014 in CN Application No. 200880117084.X.
Office Action dated May 1, 2015 in U.S. Appl. No. 14/638,525 by Filman.
Office Action dated May 13, 2015 in CN Application No. 201380025566.3.
Office Action dated May 14, 2018 in EP Application No. 088081112.
Office Action dated May 16, 2012 in U.S. Appl. No. 12/615,828.
Office Action dated May 18, 2018 in EP 14166591.9.
Office Action dated May 23, 2014 in U.S. Appl. No. 13/472,112 by Cabiri.
Office Action dated May 24, 2017 in U.S. Appl. No. 13/874,121, by Degtiar.
Office Action dated May 25, 2021 in Japanese Office Action 2018-538073.
Office Action dated May 3, 2012 in CN Application No. 200880117084.X.
Office Action dated May 31, 2016 in U.S. Appl. No. 14/593,051 by Gross.
Office Action dated May 4, 2017 in CN Application No. 2014101836665.
Office Action dated May 5, 2015 in CN Application No. 201180006571.0.
Office Action dated May 7, 2015 in JP Application No. 2012-550069.
Office Action dated Nov. 10, 2016 in U.S. Appl. No. 13/874,121, by Degtiar.
Office Action dated Nov. 13, 2017 in U.S. Appl. No. 14/193,692, by Gross.
Office Action dated Nov. 2, 2014 in CN Application No. 201180006571.0.
Office Action dated Nov. 21, 2014 in U.S. Appl. No. 13/429,840 by Cabiri.
Office Action dated Nov. 21, 2014 in U.S. Appl. No. 13/472,112 by Cabiri.
Office Action dated Nov. 25, 2016 in U.S. Appl. No. 13/874,017, by Cabiri.
Office Action dated Nov. 4, 2013 in EP Application No. 11 709 234.6.
Office Action dated Nov. 5, 2013 in JP Application No. 2010-527595.
Office Action dated Nov. 5, 2014 in U.S. Appl. No. 13/643,470 by Alon.
Office Action dated Nov. 8, 2017 in U.S. Appl. No. 13/874,121, by Degtiar.
Office Action dated Oct. 13, 2020 in Japanese Application No. 2018-538073.
Office Action dated Oct. 2, 2018 in JP Application No. 2018-535062 (Year: 2018).
Office Action dated Oct. 28, 2011 in U.S. Appl. No. 12/615,828.
Office Action dated Oct. 28, 2016 in CN Application No. 2014101783742.
Office Action dated Oct. 5, 2016 in U.S. Appl. No. 13/964,651, by Gross.
Office Action dated Oct. 6, 2017 in U.S. Appl. No. 14/861,478, by Cabiri.
Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/873,335.
Office Action dated Sep. 18, 2015 in U.S. Appl. No. 13/874,085 by Cabiri.
Office Action dated Sep. 2, 2010 in U.S. Appl. No. 12/244,688 by Gross.
Office Action dated Sep. 2, 2014 in JP Application No. 2012-550068.
Office Action dated Sep. 2, 2014 in JP Application No. 2012-550069.
Office Action dated Sep. 28, 2017 in IN Application No. 2528/DELNP/2010.
Office Action dated Sep. 29, 2013 in GN Application No. 201080040968.7.
Office Action dated Sep. 30, 2010 in U.S. Appl. No. 12/689,250, by Cabiri.
Office Action dated Sep. 30, 2015 in U.S. Appl. No. 13/667,739 by Cabiri.
Office Action dated Sep. 6, 2011 in U.S. Appl. No. 12/345,818.
Office Action dated Sep. 9, 2015 in U.S. Appl. No. 13/643,470 by Alon.
Office Action issued Aug. 17, 2021 in Indian Application No. 201827027625.
Office Action issued Feb. 20, 2015 in U.S. Appl. No. 13/521.181 by Cabiri.
Office Action issued Nov. 6, 2015 in U.S. Appl. No. 14/715,791 by Cabiri.
Office Action issued Oct. 6, 2020 in Japanese Application No. 2018-538527.
Partial European Search Report dated Nov. 24, 2015 in EP Application No. 14166592.7.
Search Report dated Oct. 14, 2016 in CN Application No. 2014101783742.
U.S. Appl. No. 12/559,563, filed Sep. 15, 2009.
U.S. Appl. No. 12/689,249, filed Jan. 19, 2010.
U.S. Appl. No. 12/689,250, filed Jan. 19, 2010.
U.S. Appl. No. 13/429,840 by Cabiri, filed Mar. 26, 2012.
U.S. Appl. No. 13/472,112 by Cabiri, filed May 15, 2012.
U.S. Appl. No. 13/521,167 by Cabiri, filed Jul. 9, 2012.
U.S. Appl. No. 13/521,181 by Cabiri, filed Jul. 9, 2012.
U.S. Appl. No. 13/643,470 by Alon, filed Oct. 25, 2012.
U.S. Appl. No. 13/733,516 by Cabiri, filed Jan. 3, 2013.
U.S. Appl. No. 13/873,335 by Filman, filed Apr. 30, 2013.
U.S. Appl. No. 13/874,017 by Cabiri, filed Apr. 30, 2013.
U.S. Appl. No. 13/874,085 by Cabiri, filed Apr. 30, 2013.
U.S. Appl. No. 13/874,121 by Degtiar, filed Apr. 30, 2013.
U.S. Appl. No. 13/892,905 by Cabiri, filed May 13, 2013.
U.S. Appl. No. 13/964,651 by Gross, filed Aug. 12, 2013.
U.S. Appl. No. 14/193,692 by Gross, filed Feb. 28, 2014.
U.S. Appl. No. 14/258,661 by Cabiri, filed Apr. 22, 2014.
U.S. Appl. No. 14/553,399 by Cabiri, filed Nov. 25, 2014.
U.S. Appl. No. 14/593,051 by Gross, filed Jan. 9, 2015.
U.S. Appl. No. 14/638,525 by Filman, filed Mar. 4, 2015.
U.S. Appl. No. 14/683,193 by Cabiri, filed Apr. 10, 2015.
U.S. Appl. No. 14/715,791 by Cabiri, filed May 19, 2015.
U.S. Appl. No. 14/725,009 by Bar-El, filed May 29, 2015.
U.S. Appl. No. 14/850,450 by Gross, filed Sep. 10, 2015.
U.S. Appl. No. 14/861,478 by Cabiri, filed Sep. 22, 2015.
U.S. Appl. No. 14/880,673 by Cabiri, filed Oct. 12, 2015.
U.S. Appl. No. 29/479,307 by Norton, filed Jan. 14, 2014.
U.S. Appl. No. 60/997,459, filed Oct. 2, 2007.
Int'l Search Report and Written Opinion dated Jul. 26, 2013 in Int'l Application No. PCT/US2012/039465.
Int'l Search Report and Written Opinion dated Jul. 31, 2014 in Int'l Application No. PCT/US2014/033598.
Int'l Search Report and Written Opinion dated May 13, 2009 in Int'l Application No. PCT/IL2008/001312.
Int'l Search Report dated Apr. 26, 2010 in Int'l Application No. PCT/US2009/069552.
Int'l Search Report dated Jun. 17, 2011 in Int'l Application No. PCT/US2011/021604.
Int'l Search Report dated Oct. 12, 2011 in Int'l Application No. PCT/US11/21605.
Int'l Search Report dated Sep. 22, 2011 in Int'l Application No. PCT/IL11/00368; Written Opinion.
Int'l Written Opinion dated Jul. 19, 2012 in Int'l Application No. PCT/US11/21605.
Inte'l Search Report and Written Opinion dated Nov. 30, 2016 in Int'l Application No. PCT/US2016/056223.
International Preliminary Report on Patentability and Written Opinion dated Jul. 5, 2011 in International Application No. PCT/US2009/069552.
Notice of Allowance dated Aug. 24, 2015 in U.S. Appl. No. 29/479,307 by Norton.
Offce Action dated Sep. 21, 2010 in U.S. Appl. No. 12/244,666 by Gross.
Office Action dated Apr. 22, 2016 in CN Application No. 2014102892041.
Office Action dated Apr. 5, 2010 in U.S. Appl. No. 12/244,666 by Gross.
Office Action dated Apr. 5, 2010 in U.S. Appl. No. 12/244,688 by Gross.
Office Action dated Aug. 13, 2015 in U.S. Appl. No. 14/553,399 by Cabiri.
Office Action dated Aug. 14, 2017 in CN Application No. 201410178318.9.
Office Action dated Aug. 15, 2013 in CN Application No. 200880117084.X.
Office Action dated Aug. 26, 2014 in CN Application No. 201180006567.4.
Office Action dated Aug. 6, 2014 in EP Appl. No. 11 707 942.6.
Office Action dated Dec. 1, 2015 in CN Application No. 201410289204.1.
Office Action dated Dec. 10, 2013 in CN Application No. 201180006567.4.
Office Action dated Dec. 15, 2017 in U.S. Appl. No. 15/269,248, by Cabiri.
Office Action dated Dec. 17, 2013 in JP Application No. 2012-529808.
Office Action dated Dec. 4, 2017 in CN Application No. 201410178374.2.
Office Action dated Dec. 9, 2016 in U.S. Appl. No. 14/593,051, by Gross.
Office Action dated Feb. 16, 2017 in CN Application No. 2014101783189.
Office Action dated Feb. 20, 2015 in U.S. Appl. No. 13/521,181 by Cabiri.
Office Action dated Feb. 21, 2012 in U.S. Appl. No. 12/689,249.
Office Action dated Feb. 24, 2015 in U.S. Appl. No. 14/258,661 by Cabiri.
Office Action dated Feb. 24, 2017 in U.S. Appl. No. 13/964,651, by Gross.
Office Action dated Feb. 28, 2014 in CN Application No. 201180006571.0.
Office Action dated Feb. 4, 2014 in EP Application No. 11 707 942.6.
Office Action dated Jan. 10, 2017 in U.S. Appl. No. 14/193,692, by Gross.
Office Action dated Jan. 30, 2013 in CN Application No. 200880117084.X.
Office Action dated Jan. 8, 2013 in JP Application No. 2010-527595.
Office Action dated Jan. 8, 2014 in U.S. Appl. No. 13/521,167 by Cabiri.
Office Action dated Jul. 13, 2011 in U.S. Appl. No. 12/559,563 by Cabiri.
Office Action dated Jul. 2, 2012 in U.S. Appl. No. 13/272,555 by Cabiri.
Office Action dated Jul. 28, 2020 in Japanese Application No. 2018-538074.
Office Action dated Jul. 3, 2017 in CN Application No. 2014101783742.
Office Action dated Jul. 31, 2015 in U.S. Appl. No. 13/521,181 by Cabiri.
Office Action dated Jul. 7, 2014 in U.S. Appl. No. 12/244,666 by Gross.
Office Action dated Jun. 10, 2016 in U.S. Appl. No. 13/964,651 by Gross.
Office Action dated Jun. 14, 2018 in U.S. Appl. No. 13/874,121, by Degtiar.
Office Action dated Jun. 2, 2016 in CN Application No. 2014101783189.
Office Action dated Jun. 3, 2014 in JP Application No. 2010-527595.
Office Action dated Jun. 4, 2015 in U.S. Appl. No. 13/667,739 by Cabiri.
Office Action dated Jun. 9, 2017 in EP Application No. 14166591.9.
Related Publications (1)
Number Date Country
20210275746 A1 Sep 2021 US
Provisional Applications (1)
Number Date Country
62369492 Aug 2016 US