The present invention is directed to methods and compositions for treating cancer, including, specifically, hematologic malignancies, and including, more specifically, B-cell malignancies, with anti-tumor antibody-tumor suppressor fusion proteins in order to selectively restore tumor suppressor gene function to cancer cells in which such tumor suppressor gene function has been lost. The present invention is also directed to methods and compositions for diagnosing cancer and for predicting and assessing response to treatment.
Conventional approaches to treating malignancies and to predicting and assessing their responses to specific treatment regimens rely on properly classifying the type of tumor present. Proper classification, in turn, relies primarily on clinical features, tumor cell morphology, tumor cell immunophenotype and, to a lesser extent, tumor cell chromosomal abnormalities. However, even within a given tumor type, response to specific treatment regimens is, often, quite variable, and analyses at the molecular level reveal that the tumor types defined by conventional classification schemes are, often, quite heterogeneous.
Recent efforts to classify tumors, including hematologic malignancies, have, therefore, focused on identifying the specific genetic abnormalities that drive the growth of specific tumor types. Such genetic abnormalities can then serve as markers of disease and/or as targets for therapy.
Follicular lymphomas (FLs) are among the most common B-cell malignancies. FLs are characterized by a t(14;18)(q32;q21) chromosomal translocation that results in constitutive expression of the anti-apoptotic B-cell CLL/lymphoma 2 (Bcl2) protein. However, lymphomagenesis and disease progression require additional genetic lesions (Bende, Smit and van Noesel 2007). Amplification of c-MYC, loss of p53 and deletions of chromosome 6q have all been associated with progression of B-cell lymphomas and shortened survival (Johnson, et al. 2009) (Nanjangud, et al. 2007). The exact nature of these molecular events is only incompletely understood. Clinical outcome for patients with B-cell lymphomas has improved with the addition of anti-CD20 antibody (e.g., rituximab) to conventional chemotherapeutic regimens. However, transplantation remains the only curative option for FL (Relander, et al. 2010).
Recent technological advances have facilitated the genome-wide detection of genetic and epigenetic changes in cancer. In parallel, RNA-interference (RNAi) technology and its adaptation to genetic screens have enabled the execution of rapid and unbiased loss-of-function studies in mammalian cells and in vivo (McCaffrey, et al. 2002). Together, these technologies can help uncover tumor suppressor genes that might not have been identified by genomic data analyses alone (Oricchio, et al. 2010).
The protein products of tumor suppressor genes can directly or indirectly prevent cell division or lead to cell death. Functional loss of tumor suppressor genes and/or their protein products through gene deletion, inactivating mutation or epigenetic mechanisms can result in uncontrolled cell growth and the development of cancer. Many tumors are known to result primarily from the functional loss of a tumor suppressor. However, due to the difficulties inherent in targeting tumor suppressor function specifically to those cancer cells in which such tumor suppressor function has been lost, restoration of tumor suppressor function to tumor cells has not, heretofore, been viewed as a practicable approach to the treatment of cancer.
This invention is drawn to methods and compositions for diagnosing and treating cancer, including B-cell malignancies, and for predicting and assessing response to treatment. In some embodiments, deletion of the ephrin receptor A7 gene (EPHA7) or loss of EphA7 expression can be used to identify a subset of lymphomas that will respond to treatment with a secreted, truncated EphA7 isoform comprising the extracellular domains of EphA7 (EphA7ECD; sometimes referred to as EphA7TR) or analogues thereof. In other embodiments, administration of a pharmaceutical composition comprising an anti-CD20 antibody-EphA7ECD fusion protein (anti-CD20-EphA7), in which EphA7ECD is fused downstream of the rituximab (Rituxan®/MabThera®) immunoglobulin G1 (IgG1) constant region, can be used to treat such lymphomas. In some other embodiments, deletion of EPHA7, loss of EphA7 expression and/or increased cell surface expression of EphA receptors, including EphA2, can be used to identify tumors likely to respond to treatment with EphA7ECD or analogues thereof. In yet other embodiments, administration of a pharmaceutical composition comprising an anti-tumor antibody-EphA7ECD fusion protein can be used to treat such tumors.
Thus, in one embodiment, the invention provides an anti-tumor antibody-tumor suppressor fusion protein comprising: (1) a recombinant immunoglobulin (Ig) heavy chain or portion thereof having an amino-terminal variable region (Fv) specific for a cell-surface antigen of a tumor cell; and (2) said heavy chain or portion thereof being joined at its carboxy-terminus by a peptide bond to the amino-terminal amino acid of a tumor suppressor protein or functional portion thereof. In one embodiment, the Ig heavy chain of the anti-tumor antibody-tumor suppressor fusion protein comprises the Fv of rituximab. In another embodiment, the Ig heavy chain Fv of the anti-tumor antibody-tumor suppressor fusion protein is specific for CD20. In a particular embodiment, the Ig heavy chain Fv is specific for a cell-surface antigen found on malignant B-cells. In a further embodiment, the Ig heavy chain Fv is specific for a cell-surface antigen found on the cells of a hematologic tumor. In another embodiment, the Ig heavy chain Fv is specific for a cell-surface antigen of the cells of a solid tumor. In another embodiment, the tumor suppressor protein is EphA7ECD. In yet a further embodiment, the tumor suppressor protein is EphA7 or an EphA2-binding portion thereof.
The invention also provides a method for treating cancer comprising administering a therapeutically effective amount of any one or more of the anti-tumor antibody-tumor suppressor fusion proteins described herein.
The invention additionally provides a DNA construct or constructs encoding any one or more of the anti-tumor antibody-tumor suppressor fusion proteins described herein.
Also provided by the invention is a tumor suppressor immunoconjugate comprising: (1) a recombinant Ig heavy chain or portion thereof having an Fv specific for a cell-surface antigen of a tumor cell joined at its carboxy-terminus by a peptide bond to the amino-terminal amino acid of a tumor suppressor protein or functional portion thereof; and (2) an Ig light chain or portion thereof having an Fv specific for said cell-surface antigen, said Ig heavy and light chains or portions thereof forming together a functional antigen-binding site, such that said immunoconjugate displays both antigen-binding specificity and tumor suppressor activity.
The invention further provides a method for treating cancer comprising administering a therapeutically effective amount of any one or more of the tumor suppressor immunoconjugates described herein. In one embodiment, the antigen-binding site is the antigen-binding site of rituximab. In another embodiment, the antigen-binding site is specific for CD20. In a further embodiment, the antigen-binding site is specific for a cell-surface antigen found on malignant B-cells. In another embodiment, the antigen-binding site is specific for a cell-surface antigen found on the cells of a hematologic tumor. In yet an alternate embodiment, the antigen-binding site is specific for a cell-surface antigen of the cells of a solid tumor. In a further embodiment, the tumor suppressor protein is EphA7ECD. In an alternative embodiment, the tumor suppressor protein is EphA7 or an EphA2-binding portion thereof.
The invention additionally provides a DNA construct or constructs encoding any one or more of the tumor suppressor immunoconjugates described herein.
The invention further provides a method to identify tumors responsive to treatment with any one or more of the anti-tumor antibody-tumor suppressor fusion proteins described herein, by measuring the deletion or inactivation of the gene for said tumor suppressor and/or the loss of expression of said tumor suppressor protein. In one embodiment, the tumor suppressor protein is EphA7ECD.
Also provided by the invention is a method to identify tumors responsive to treatment with any one or more of the tumor suppressor immunoconjugates described herein, by measuring the deletion or inactivation of the gene for said tumor suppressor and/or the loss of expression of said tumor suppressor protein. In a particular embodiment, the tumor suppressor protein is EphA7ECD.
The invention also provides a method to identify tumors responsive to treatment with any one or more of the anti-tumor antibody-tumor suppressor fusion proteins described herein, by measuring cell-surface EphA receptor expression.
Also provided by the invention is a method to identify tumors responsive to treatment with any one or more of the tumor suppressor immunoconjugates described herein, by measuring cell-surface EphA receptor expression.
The invention further provides a fusion protein comprising a recombinant immunoglobulin (Ig) heavy chain or portion thereof having an amino-terminal variable region (Fv) that specifically binds to a tumor cell surface marker antigen, wherein the Ig heavy chain or portion thereof is linked at its carboxy-terminus by a peptide bond to the amino-terminal amino acid of tumor suppressor protein EphA7ECD. In one embodiment, the tumor suppressor protein EphA7ECD comprises SEQ ID NO: 02.
The invention also provides a recombinant expression vector comprising a nucleotide sequence encoding a fusion protein comprising a recombinant immunoglobulin (Ig) heavy chain or portion thereof having an amino-terminal variable region (Fv) that specifically binds to a tumor cell surface marker antigen, wherein the Ig heavy chain or portion thereof is linked at its carboxy-terminus by a peptide bond to the amino-terminal amino acid of tumor suppressor protein EphA7ECD.
The invention additionally provides a method for reducing one or more symptoms of cancer comprising administering to a subject in need thereof a therapeutically effective amount of at least one of (a) a fusion protein comprising a recombinant immunoglobulin (Ig) heavy chain or portion thereof having an amino-terminal variable region (Fv) that specifically binds to a tumor cell surface marker antigen, wherein the Ig heavy chain or portion thereof is linked at its carboxy-terminus by a peptide bond to the amino-terminal amino acid of tumor suppressor protein EphA7ECD, and (b) a recombinant expression vector comprising a nucleotide sequence encoding a fusion protein comprising a recombinant immunoglobulin (Ig) heavy chain or portion thereof having an amino-terminal variable region (Fv) that specifically binds to a tumor cell surface marker antigen, wherein the Ig heavy chain or portion thereof is linked at its carboxy-terminus by a peptide bond to the amino-terminal amino acid of tumor suppressor protein EphA7ECD. In one embodiment, the cancer is lymphoma. In another embodiment, the cancer comprises cancer cells that a) express CD20 protein, and b) comprise one or more of i) deletion of ephrin receptor A7 (EPHA7) gene, ii) reduced expression of EphA7 protein, and iii) increased expression of EphA2 protein. In a further embodiment, the cancer cells comprise B cells. In a particular embodiment, the cancer is lymphoma. In a more particular embodiment, the subject is human.
In the present disclosure, the invention is described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader scope and spirit of the invention. The summary, description, materials and methods and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense.
Numerous references have been made to patents and printed publications throughout this document. Each of the cited references and printed publications is individually incorporated herein by reference in its entirety.
FLs are among the most common types of non-Hodgkin's lymphoma (NHL). They are characterized by the translocation t(14;18)(q32;q21) and increased expression of BCL2 (Bende, Smit and van Noesel 2007). Amplification of c-MYC, loss of p53 and deletions of chromosome 6q have all been associated with progression and shortened survival in FL (Nanjangud, et al. 2007). Up to 20% of FLs sustain large and hemizygous deletions of chromosome 6q11-27, suggesting the presence of one or more tumor suppressor genes in this region (Offit, et al. 1993) (Gaidano, et al. 1992). Clinically, FL shows persistent growth and eventual progression. Outcomes have improved with the addition of the anti-CD20 antibody rituximab to standard chemotherapeutic regimens, but transplantation remains the only curative option for FL (Relander, et al. 2010).
We used an unbiased loss-of-function screen to complement genomic analyses of tumors. Using an RNAi library tailored to the 6q deletions seen in FL, we identified a secreted form of the EphA7 receptor (EphA7ECD) (Holmberg, Clarke and Frisén 2000) as a tumor suppressor. Hemizygous loss of EPHA7 occurs in 12% of FLs, and the gene is differentially silenced in up to 72% of FLs. In vivo knockdown of EPHA7 accelerates lymphoma development in mouse models of FL. Conversely, the purified EphA7ECD protein has striking anti-tumor effects on xenografted human lymphoma cells. Moreover, by fusing EphA7 to an anti-CD20 antibody, we are able to target EphA7's tumor suppressive activity to CD20+ lymphoma cells in vivo. Thus, we identify a surprising role for EphA7ECD as an antitumor protein with significant therapeutic potential in lymphoma, and we describe a new strategy, use of anti-tumor antibody-tumor suppressor fusion proteins, to selectively restore tumor suppressor gene function to cancer cells in which such function has been lost.
We conducted a systematic functional genomics study into the molecular pathogenesis of FL (
Cumulative analyses revealed CRDs that ranged from 5 kilobases (kb) (CRD11) to 27 megabases (Mb) (CRD4) and harbored between one and 78 genes (
Unbiased RNAi Screen Identifies EPHA7 as a Tumor Suppressor Gene in 6q11-27
Given the complexity of 6q deletions in FL, we wondered whether an unbiased deletion-specific loss-of-function screen could point to potential tumor suppressor genes. We constructed a library of 260 short hairpin RNAs (shRNAs) targeting 84 genes (1-7 shRNAs per gene) in a murine stem cell virus (MSCV)-based, green fluorescent protein (GFP)-expressing vector. We used non-transformed murine pro-B lymphocytes (FL5-12 cells) engineered to express increased levels of Bcl2 as a surrogate in vitro system and screened for shRNAs that protect cells from cytokine (interleukin-3; IL-3) depletion (Mavrakis, et al. 2010) (
Next, we tested the effect of EPHA7 in a mouse model of FL. Briefly, the vavP-BCL2 model recapitulates the genetics and morphology of human FL (Egle, et al. 2004). We transduced vavP-BCL2 transgenic hematopoietic progenitor cells (HPCs) with retroviral shRNA constructs and transplanted these genetically engineered cells into irradiated recipients (Wendel, et al. 2004) (
We made similar observations regarding EphA7 in the Eμ-MYC model of pre-B-cell lymphoma (Adams, et al. 1985). Knockdown of EPHA7 (n=11) accelerated tumor development compared to vector (p<0.001; n=60) (
EPHA7 is Inactivated by Deletion and/or Promoter Methylation in Lymphoma
EPHA7 is affected by hemizygous deletions in 12% of FL, and we wondered whether EPHA7 might also be subject to epigenetic silencing or mutational inactivation. We noted a differential reduction of EPHA7 expression levels in lymphoma cells compared to GC B-cells (
Mass spectrometric analysis (MassARRAY) of the EPHA7 promoter in 32 primary FLs and 16 lymphoma cell lines revealed extensive CpG island methylation consistent with epigenetic gene silencing (
Ephrin receptors are tyrosine kinases that form dimers and are activated upon contact with ephrin-expressing cells (Seiradake, et al. 2010) (Himanen, et al. 2010). The role of ephrin signaling in cancer is unclear; both oncogenic and tumor suppressive functions have been proposed (Noren, et al. 2006) (Pasquale 2010). Alternate splicing of EPHA7 produces a truncated protein (designated EphA7ECD or EphA7TR), which lacks the intracellular domains and the kinase activity of the full-length protein (Holmberg, Clarke and Frisén 2000) (Dawson, et al. 2007) (Valenzuela, et al. 1995). Murine B-lymphocytes and 5-aza-2′-deoxycytidine-treated SU-DHL-10 cells express only EphA7ECD (
Immunoprecipitation of immunoglobulin Fc fragment-tagged EphA7ECD (EphA7Fc) demonstrates binding of EphA7 to the EphA2 receptor in Raji (
We modeled the interaction between EphA7 and EphA2 based on the known structure of EphA2 (Seiradake, et al. 2010) (Himanen, et al. 2010) and its homology with the EphA7 sequence (51%) and domain structure. Our model suggests an interaction through the receptors' Sushi and ligand binding domains (
Restoration of EPHA7 activity, by retroviral transduction or application of EphA7Fc, has anti-proliferative effects against Raji, SU-DHL-10, DoHH2 and Karpas 422 cells in vitro (
Anti-Lymphoma Activity of Anti-CD20-EphA7ECD Fusion Antibody Surpasses that of Anti-CD20 Antibody or EphA7ECD
Next, we tested whether fusing EphA7ECD to an anti-CD20 antibody (rituximab) could further enhance the therapeutic potential of EphA7ECD (
Array-Comparative Genomic Hybridization (a-CGH)
DNA from fresh frozen or optimal cutting temperature compound-embedded tissue was isolated by the standard phenol-chloroform extraction method. DNA was quantified using a NanoDrop spectrophotometer (Thermo Fisher Scientific Inc.; www.nanodrop.com), its purity assessed by the ratio of absorptions at 260 nm vs. 280 nm and its integrity visualized on a 1% agarose gel with ethidium bromide. Prior to labeling each DNA sample and hybridizing it to an Agilent (Agilent Technologies; www.agilent.com) 244K oligonucleotide array, digestion efficiency was checked by incubating 1 μg of DNA with 1 μl of HaeIII restriction enzyme (10 U/μl) at 37° C. for 2 hours and running the undigested and digested DNA (100 ng each) on a 1% agarose gel in parallel with a 1 kb DNA ladder. Human male DNA obtained from Promega Corporation (www.promega.com; Catalog# G147A) served as the reference DNA. Labeling and hybridization were performed according to protocols provided by Agilent. The slides were analyzed at 5 μm resolution using the Agilent G2565 Microarray Scanner System and Agilent Feature Extraction software (v9.1).
With the exception of
Genomic DNA was extracted from the lymphomas arising in transgenic vavP-BCL2 mice and from the lymphomas derived from transplanted vavP-BCL2 HSC. For DNA extraction, frozen tissue was submerged in liquid nitrogen then pulverized. The resulting powder was collected and transferred to a microfuge tube on ice. DNA was purified using the Gentra Puregene Cell Kit (Qiagen; www.qiagem.com) and diluted in water, and DNA quality was assessed by visualization after electrophoresis in a 1% agarose gel. DJ recombination in murine tumors was analyzed by nested PCR as described (Yu and Thomas-Tikhonenko 2002), and samples were analyzed using an Agilent 2100 Bioanalyzer and DNA 1000 Kit. For analysis of somatic hypermutation analyses, DNA samples were amplified as described (McBride, et al. 2008), and the PCR products were directly sequenced exactly as reported (Mandelbaum, et al. 2010).
Quantitative DNA methylation analysis was carried out using MassARRAY EpiTYPER from Sequenom, Inc. (www.sequenom.com). The MassARRAY EpiTYPER is a tool for the detection and quantitative analysis of DNA methylation using base-specific cleavage of bisulfite-treated DNA and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Specific PCR primers for bisulfite-converted DNA were designed using Sequenom's EpiDesigner program (www.epidesigner.com). T7-promoter tags were added to the reverse primer to obtain a product that could be transcribed in vitro, and a 10-mer tag was added to the forward primer to balance the PCR conditions. Unmethylated cytosine in 1 μg of tumor DNA was converted into uracil by bisulfite treatment with the EZ-96 DNA Methylation Kit (Zymo Research Corporation; www.zymoresearch.com) according to the manufacturer's instructions. PCR reactions were carried out in duplicate with each of the two selected primer pairs, for a total of four replicates per sample. For each replicate, 1 ml of bisulfite-treated DNA was used as template for a 5-ml PCR reaction in a 384-well microtiter plate, using 0.2 units of KAPA2G Fast HotStart DNA Polymerase (Kapa Biosystems; www.kapabiosystems.com), 200 mM dNTPs and 400 nM of each primer. Cycling conditions were: 94° C. for 15 minutes; 45 cycles of 94° C. for 20 seconds, 56° C. for 30 seconds, 72° C. for 1 minute; and one final cycle at 72° C. for 3 minutes. Unincorporated dNTPs were deactivated using 0.3 U of shrimp alkaline phosphatase (SAP) in 2 ml, at 37° C. for 20 minutes, followed by heat inactivation at 85° C. for 5 minutes. Two ml of SAP-treated reaction were transferred into a fresh 384-well microtiter plate, and in vitro transcription and T cleavage were carried out in a single 5-ml reaction mix, using the MassCLEAVE kit (Sequenom) containing 1× T7 polymerase buffer, 3 mM dithiothreitol (DTT), 0.24 ml of T Cleavage mix, 22 U T7 RNA and DNA polymerase and 0.09 mg/ml RNAse A. The reaction was incubated at 37° C. for 3 hours. After the addition of a cation exchange resin to remove residual salt from the reactions, 10 nl of EpiTYPER reaction product was loaded onto a 384-element SpectroCHIP II array (Sequenom). SpectroCHIs were analyzed using a Bruker Biflex III MALDI-TOF mass spectrometer (SpectroREADER, Sequenom). Results were analyzed using the EpiTYPER Analyzer software and manually inspected for spectra quality and peak quantification. In vitro treatment with 5-aza-2′-deoxycytidine was as described (Mavrakis, et al. 2008).
DLBCL specimens were obtained from patients at the BC Cancer Agency in Vancouver or at Weill Cornell Medical Center. The use of human tissue was in agreement with research ethics boards of the Vancouver Cancer Center/University of British Columbia and Weill Cornell Medical Center. The HELP assay was performed as previously published (Shaknovich, Figueroa and Melnick 2010) using two probes located upstream of, and overlapping with, the transcriptional start site of the EPHA7 gene. Products of HELP were hybridized to human HG17 custom promoter arrays (Roche NimbleGen, Inc.; www.nimblegen.com) covering 25,626 HpaII amplifiable fragments. Data quality control and analysis were performed as described (Thompson, et al. 2008). After quality control processing, a quintile normalization was performed on each array. DNA samples profiled by HELP were also subjected to bisulfite treatment and MassARRAY EpiTYPER analysis as previously described. In order to cover all possible sites of digestion, primers were designed to cover the outermost HpaII sites of the selected HpaII amplifiable fragments (HAF) as well as any other HpaII sites up to 2,000 base pairs upstream or downstream of the HAF. Correlation of MassARRAY results with normalized data from HELP assay revealed a Spearman's rank correlation of R=0.88. The adjusted linear regression model was used to obtain the conversion formula.
The study cohort for analysis of EphA7 expression comprised FLs consecutively ascertained at the Memorial Sloan-Kettering Cancer Center (MSKCC) between 1985 and 2000. All cancer biopsies were evaluated at MSKCC, and the histological diagnosis was based on hematoxylin and eosin (H&E) staining. Use of tissue samples was approved by MSKCC's Institutional Review Board and Human Biospecimen Utilization Committee. TMAs were constructed as previously described (Scott, et al. 2007) except that a fully automated arrayer (Beecher Instruments ATA-27) was used. TMAs were pre-treated with Cell Conditioning Solution 1 (Ventana Medical Systems, Inc.; www.ventanamed.com), incubated with EphA7 rabbit polyclonal antibody from Abgent (www.abgent.com) at 1:50 dilution for 60 minutes and then stained with secondary anti-rabbit antibody from Vector Laboratories, Inc. (www.vectorlabs.com) at 1:200 dilution for 60 minutes. Cores were scored as 0, 1 or 2 where 0=no staining; 1=focal, weak staining; and 2=moderate-to-strong staining in more than 50% of tumor cells.
To construct the anti-CD20-EphA7 antibody, we amplified the EphA7ECD coding sequence by PCR from human genomic DNA. The PCR product was cloned into pAH6747, which contains an IgG1 constant region with an anti-CD20 heavy chain variable region (Dr. Sherie Morrison, UCLA). For antibody production, the anti-CD20-EphA7 heavy chain construct derived from pAH6747 and an anti-CD20 light chain (pAG10818) construct (Dr. Sherie Morrison, UCLA) were co-transfected into 293T cells, and the media in which the cells were growing was replaced every other day. Anti-CD20-EphA7 was purified from this conditioned media via affinity chromatography using recombinant Protein A. Briefly, the harvested media containing anti-CD20-EphA7 was dialyzed into 20 mM sodium phosphate (pH 7), passed over a 1 ml HiTrap rProtein A FF column (GE Healthcare Life Sciences; www.gelifessciences.com) and eluted with 100 mM glycine-HCl (pH 2.7). Eluant was collected in glass fraction tubes and immediately neutralized with 75 μl 1M Tris-HCl (pH 9.0) per ml of eluant. The antibody-containing peak fractions were pooled, dialyzed into phosphate-buffered saline and sterile filtered. Purity was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and antibody-fusion product concentration was determined with a spectrophotometer (280 nm) using an extinction coefficient of 1.43. ELISA using anti-human IgG (H+L) (Jackson ImmunoResearch Laboratories, Inc.; www.jacksonimmuno.com; #709-005-149) and horseradish peroxidase-conjugated-anti-human IgG Fc (Jackson ImmunoResearch Laboratories, Inc.; #709-035-098) antibodies was used to verify protein purity and integrity.
Cell Culture, Cell Viability and Proliferation Assays, Vectors and Pooled shRNA Library Screen
FL5-12 murine lymphocytes were stably transduced with BCL2 (FL5-12/BCL2); IL-3 depletion studies and viral transductions were as described (Mavrakis, et al. 2008). Cell viability was assessed using the Guava Viacount Assay (Millipore Corporation; www.millipore.com and LDS751 cell-permeant nucleic acid stain (Invitrogen; www.invitrogen.com) as previously described (Mavrakis, et al. 2008). The retroviral constructs utilized are based on MSCV and include BCL2 (Wendel, et al. 2004) and individual or pooled shRNA constructs (Dickins, et al. 2005). Pooled shRNA screening technology has been described (Mavrakis, et al. 2010). Briefly, the shRNA library was constructed by pooling the individually cloned shRNAs. The screen design is depicted in
The vavP-BCL2 model of FL (Egle, et al. 2004) and the adoptive transfer of retrovirally transduced HPCs (Wendel, et al. 2004) have been described. Data were analyzed in Kaplan-Meier format using the log-rank (Mantel-Cox) test for statistical significance. H&E staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and analyses for Ki67, cleaved caspase, B220 and other surface markers were as described by Mavrakis, et al. (2008). Tumor xenografts were established by subcutaneous injection of 1×106 Raji or SU-DHL-10 human lymphoma cells mixed with Matrigel (BD Biosciences; www.bdbiosciences.com) into the flanks of NOD/SCID (NOD.CB17-Prkdc(scid)/J) mice. Once tumors exceeded 1 cm3 in size, mice were treated by three intratumoral injections of vehicle or 20 μg EphA7FC (Recombinant Mouse EphA7 Fc Chimera; R&D Systems; www.rndsystems.com). Tumors were weighed and volumes were measured as described (Bergers, et al. 1999). Systemic administration of EphA7FC and anti-CD20-EphA7 was by tail vein injection.
Immunoblots were performed from whole cell lysates or supernatant as described (Wendel, et al. 2004). Briefly, 50 μg of protein per sample were resolved on SDS-PAGE gels, transferred to Immobilon-P Transfer Membranes (Millipore) and probed with antibodies against EphA7 (Santa Cruz Biotechnology, Inc.; www.scbt.com; #sc-917 diluted 1:200), EphA2 (Millipore, Inc. #05-480 diluted 1:1000), Bcl2 (Santa Cruz Biotechnology, Inc. #sc-509 diluted 1:500), c-Myc (Santa Cruz Biotechnology, Inc. #sc-40 diluted 1:200), phosphorylated eIF4E-BP1 (Cell Signaling Technology, Inc.; www.cellsignal.com; #9451 diluted 1:1000), phosphorylated Erk1/2 (Cell Signaling Technology, Inc. #9101 diluted 1:800), Erk1/2 (Cell Signaling Technology, Inc. #9102 diluted: 1000), phosphorylated Src (Cell Signaling Technology, Inc. #2101 diluted 1:1000), phosphorylated S6 ribosomal protein (Cell Signaling Technology, Inc. #2215 diluted 1:1000), phosphorylated Akt (Cell Signaling Technology, Inc. #4058 diluted 1:1000) and tubulin (Sigma-Aldrich Co.; www.sigmaaldrich.com; #T5168 diluted 1:5000). Blots were developed chemiluminescently using the Amersham ECL Western Blotting System (GE Healthcare Life Sciences). ELISA for phosphorylated EphA2 in Raji cell lysates was performed utilizing the Human Phospho-EphA2 DuoSet IC (R&D Systems #DYC4056-2) according to the manufacturer's instructions. A human phosphoprotein detection array (R&D Systems #ARY003) was probed with cell lysates according to the manufacturer's instructions.
In addition to the EphA7Fc protein obtained from commercial sources (R&D Systems; see above), we produced an identical protein using a baculoviral expression system. A DNA fragment corresponding to EphA7 amino acids Lys31 through Asn525 was cloned into the BamH1/Not1 sites of the pAcGP67B-based (BD Biosciences) pMA152, a baculovirus vector with an IgG Fc-tag at the C-terminus of the protein-coding region (Antipenko, et al. 2003) (Xu, et al. 2008). The recombinant baculovirus constructs were co-transfected, with BaculoGold linearized baculovirus DNA (BD Biosciences), into Sf9 insect cells. Passage four recombinant baculovirus was used to infect Hi-5 cells in suspension at a density of 1.8×106 cells/ml in Sf-900 II SFM protein-free insect cell culture medium (Invitrogen). Infected cells were grown at 27° C. and 100 rpm and harvested after 64 hours. Hi-5 cell supernatant containing the secreted EphA7Fc was loaded onto a Protein A Sepharose column and eluted by a step-wise pH gradient fractionation in 100 mM glycine. The yield was 1-2 mg protein per liter of Hi-5 cell suspension (Antipenko, et al. 2003) (Xu, et al. 2008).
qRT-PCR
Total RNA was extracted from tumor samples and cell lines using the AllPrep DNA/RNA/Protein Mini Kit (Qiagen). cDNA synthesis, real-time-PCR and analysis by the ΔΔ Ct method were performed as described (Mavrakis, et al. 2008). EphA7 PCR utilized TTTCAAACTCGGTACCCTTCA as forward primer and CATTGGGTGGAGAGGAAATC as reverse primer and SYBR green detection; glyceraldehyde 3-phosphate dehydrogenase (gapdh) was used as a standard (GAGTCAACGGATTTGGTCGT forward primer, GACAAGCTTCCCGTTCTCAG reverse primer and SYBR green detection); and human beta glucuronidase (gusb; Applied Bio systems; www.appliedbiosystems.com; #4333767F) was used as an endogenous control.
Sequencing of genomic DNA was performed as described (Veeriah, et al. 2010). Genomic DNA was amplified using a REPLI-g Midi Kit (Qiagen). The exonic regions of interest (NCBI Build 36.1) were broken into amplicons of 500 bp or less, and the Primer3 program was used to design specific primers covering exonic regions plus at least 50 base pairs of flanking intronic sequence. M13 tails were added to facilitate Sanger sequencing. PCR reactions were carried out in 384-well plates in a Duncan DT-24 (KBiosystems Limited; www.kbiosystems.com) water bath thermal cycler, with 10 ng of amplified DNA as template, using a touchdown PCR protocol with Taq HotStart DNA Polymerase (Kapa Biosystems). The touchdown cycling conditions were: 95° C. for 5 minutes; three cycles of 95° C. for 30 seconds, 64° C. for 30 seconds, 72° C. for 60 seconds; three cycles of 95° C. for 30 seconds, 62° C. for 30 seconds, 72° C. for 60 sec; three cycles of 95° C. for 30 sec, 60° C. for 30 seconds, 72° C. for 60 seconds; 37 cycles of 95° C. for 30 seconds, 58° C. for 30 seconds, 72° C. for 60 seconds; and one final cycle at 70° C. for 5 minutes. The resulting DNA sequencing templates were purified using Agencourt AMPure (Beckman Coulter, Inc.; www.beckmangenomics.com). The purified PCR reaction products were split in two, and sequenced bidirectionally with M13 forward and reverse primers and BigDye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems). Dye terminators were removed using the Agencourt CleanSEQ kit (Beckman Coulter, Inc.), and sequence reactions were run on an ABI PRISM 3730xl sequencing apparatus (Applied Biosystems).
Mutations were detected using an automated detection pipeline at the MSKCC Bioinformatics Core. Bi-directional sequencing reads and mapping tables (to link read names to sample identifiers, gene names, read direction and amplicon) were subjected to a filter that excludes reads that have an average Phred score of <10 for bases 100-200. Passing reads were assembled against the reference sequences for each gene, containing all coding and untranslated exons including 5 kb upstream and downstream of the gene, using command line Consed 16.0 (Gordon, Abajian and Green 1998). Assemblies were passed on to PolyPhred 6.02b (Nickerson, Tobe and Taylor 1997), which generated a list of putative candidate mutations, and to PolyScan 3.0 (Chen, et al. 2007), which generated a second list of putative mutations. The lists were merged together into a combined report, and the putative mutation calls were normalized to ‘+’ genomic coordinates and annotated using the Genomic Mutation Consequence Calculator. The resulting list of annotated putative mutations was loaded into a PostgreSQL database along with select assembly details for each mutation call (assembly position, coverage and methods supporting mutation call). To reduce the number of false positives generated by the mutation detection software packages, only point mutations supported by at least one bi-directional read pair and at least one sample mutation called by PolyPhred were considered, and only putative mutations that are annotated as having nonsynonymous coding effects, occur within an exon or within 11 base pairs of an exon boundary, or have a conservation score >0.699 were included in the final candidate list. Indels called by any method were manually reviewed and included in the candidate list if found to hit an exon. All putative mutations were confirmed by a second PCR and sequencing reaction, in parallel with amplification and sequencing of matched normal tissue DNA. All traces for mutation calls were manually reviewed.
This application claims priority under 35 U.S.C. §119(e) to co-pending U.S. Provisional Application Ser. No. 61/516,738, filed on Apr. 7, 2011, herein incorporated by reference in its entirety.
This invention was made with government support under CA142798-01 awarded by the National Institutes for Health (NIH). The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61516738 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14009833 | Nov 2013 | US |
Child | 15665443 | US |