Antibody libraries

Information

  • Patent Grant
  • 9354228
  • Patent Number
    9,354,228
  • Date Filed
    Thursday, July 14, 2011
    12 years ago
  • Date Issued
    Tuesday, May 31, 2016
    8 years ago
Abstract
The present invention overcomes the inadequacies inherent in the known methods for generating libraries of antibody-encoding polynucleotides by specifically designing the libraries with directed sequence and length diversity.
Description
SEQUENCE LISTING

In accordance with 37 CFR 1.52(e)(5), a Sequence Listing in the form of a text file (entitled “2009186-0093 ST25”created on Dec. 22, 2015, and 2,508,849 bytes in size) is incorporated by reference in its entirety.


BACKGROUND

Antibodies have profound relevance as research tools and in diagnostic and therapeutic applications. However, the identification of useful antibodies is difficult and once identified, antibodies often require considerable redesign or “humanization” before they are suitable for therapeutic applications in humans.


Many methods for identifying antibodies involve display of libraries of antibodies derived by amplification of nucleic acids from B cells or tissues. Some of these methods have utilized synthetic libraries. However, many of these approaches have limitations. For example, most human antibody libraries known in the art contain only the antibody sequence diversity that can be experimentally captured or cloned from a biological source (e.g., B cells). Accordingly, such libraries may over-represent some sequences, while completely lacking or under-representing other sequences, particularly those binding human antigens. Most synthetic libraries known in the art have other limitations, such as the occurrence of unnatural (i.e., non-human) amino acid sequence motifs that have the potential to be immunogenic.


Accordingly, a need exists for diverse antibody libraries that contain candidate antibodies that are non-immunogenic (i.e., are human) and have desired properties (e.g., the ability to recognize a broad variety of antigens). However, obtaining such libraries requires balancing the competing objectives of generating diverse libraries while still maintaining the human character of the sequences within the library. The current invention provides antibody libraries that have these and other desirable features, and methods of making and using such libraries.


SUMMARY

The invention provides, among other things, improvements in the design and production of synthetic libraries that mimic the diversity of the natural human repertoire of CDRH3, CDRL3, heavy chain, light chain, and/or full-length (intact) antibody sequences. In some embodiments the invention defines and provides methods of generating theoretical segment pools of TN1, DH, N2, and H3-JH segments to consider for inclusion in a physical manifestation of a library (e.g., polynucleotide or polypeptide) comprising or encoding CDRH3 sequences (e.g., an antibody library). In certain embodiments the invention defines and provides methods of matching the individual members of these theoretical segment pools to a reference set of CDRH3 sequences, to determine the frequency of occurrence (or segment usage weight) of each of the segments in the theoretical segment pool in the reference set. While any set of CDRH3 sequences may be used as a reference set, the invention also defines and provides methods of generating particular reference sets or subsets of interest. For example, among other things, the present invention provides methods for filtering an original reference set to obtain a provided reference set with a preimmune character. Also provided are methods to define and/or identify segments that occur within the CDRH3 sequences in the reference set but not in the theoretical segment pool. Such segments can be added to a theoretical segment pool, for example in order to be considered for inclusion in a physical library. Although the frequency of occurrence of a particular segment in a reference set is useful to select segments for inclusion in a physical library, the invention also provides a number of physicochemical and biological properties that can be used (alone or together with any other criterion or criteria) to select segments for inclusion in a physical library.


In some embodiments the invention provides libraries that differ from certain other libraries known in the art in that they are not sitewise-stochastic in composition or sequence, and are therefore intrinsically less random than these certain other libraries of the art (see e.g., Example 14 of US Pub. No. 2009/0181855, incorporated by reference in its entirety, for a discussion of information content and randomness). In some embodiments, degenerate oligonucleotides may be used to further increase the diversity of the members of a library while further improving matching with a reference set of sequences (e.g., CDRH3, CDRL3, heavy chain, light chain, and/or full-length (intact) antibody sequences).


The invention also provides libraries whose members have sequences that are related to one another in that they would be selected for inclusion in a physical library by performing the analyses described herein, for example by generating a CDRH3 reference set as in Example 3; generating theoretical segment pools as in Examples 5-7; matching the members of a theoretical segment pool to the reference set as in Examples 4 and 8; and selecting members of the theoretical segment pool for inclusion in a physical library as in Examples 8-9. Also provided are methods of further increasing diversity in certain sequences by utilizing degenerate oligonucleotides as in Examples 12-16.


In some embodiments, the present invention provides polynucleotide and polypeptide libraries comprising CDRH3, CDRL3, heavy chain, light chain, and/or full-length (intact) antibody sequences, and methods of making and using such libraries.


In some embodiments, the invention provides libraries comprising, consisting essentially of, or consisting of any of the libraries or theoretical segment pools described herein.


In some embodiments, the present invention recognizes that by mimicking the in vivo activity of the enzyme TdT computationally, theoretical segment pools can be generated and subsequently matched to large reference datasets of CDR sequences to choose, for inclusion in a library, those theoretical segments that best recapitulate the CDR sequences in the reference data sets.


In certain embodiments, the invention provides libraries of polynucleotides comprising at least about 104 polynucleotides encoding CDRH3 polypeptides with the structure: [TN1]-[DH]-[N2]-[H3-JH], wherein: TN1 is a polypeptide corresponding to any of the TN1 polypeptides of Tables 9-10 and 18-26, or a polypeptide produced by translation of any of the TN1 polynucleotides of Tables 25-26; DH is a polypeptide corresponding to any of the DH polypeptides of Tables 9, 11, 17-25 and 28, or a polypeptide produced by translation of any of the DH-encoding polynucleotides of Tables 16, 25 and 27; N2 is a polypeptide corresponding to any of the N2 polypeptides of Tables 9, 12, 18-25 and 30, or a polypeptide produced by translation of any of the N2-encoding polynucleotides of Tables 25 and 29; and H3-JH is a polypeptide corresponding to any of the H3-JH polypeptides of Tables 9, 13, 15, 18-25 and 32, or a polypeptide produced by translation of any of the H3-JH-encoding polynucleotides of Tables 14, 25 and 31.


In some embodiments, the invention provides libraries wherein at least about 1%, 5%, or 10% of the sequences in the library have the structure provided above, or that of any of the libraries provided herein.


In certain embodiments, the invention provides libraries comprising polynucleotides encoding CDRH3 polypeptides produced by the sets of TN1, DH, N2, and H3-JH polypeptides provided in any one of Tables 23-25.


In some embodiments, the invention provides libraries comprising polynucleotides encoding CDRH3 polypeptides produced by the set of TN1 polypeptides provided in Table 26, the set of DH polypeptides provided in Table 28, the set of N2 polypeptides provided in Table 30 and the set of H3-JH polypeptides provided in Table 32.


In certain embodiments, the invention provides libraries whose members show (or encode polypeptides that show) at least a certain percent identity with the polypeptides described above, for example, a library comprising at least about 104 polynucleotides encoding CDRH3 polypeptides with the structure: [TN1]-[DH]-[N2]-[H3-JH], wherein: TN1 is a polypeptide at least about 80%, 90%, or 95% identical to any of the TN1 polypeptides of Tables 9-10 and 18-26, or a polypeptide at least about 80%, 90%, or 95% identical to a polypeptide produced by translation of any of the TN1 polynucleotides of Tables 25-26; DH is a polypeptide at least about 80%, 90%, or 95% identical to any of the DH polypeptides of Tables 9, 11, 17-25 and 28, or a polypeptide at least about 80%, 90%, or 95% identical to a polypeptide produced by translation of any of the DH-encoding polynucleotides of Tables 16, 25 and 27; N2 is a polypeptide at least about 80%, 90%, or 95% identical to any of the N2 polypeptides of Tables 9, 12, 18-25 and 30, or a polypeptide at least about 80%, 90%, or 95% identical to a polypeptide produced by translation of any of the N2-encoding polynucleotides of Tables 25 and 29; and H3-JH is a polypeptide at least about 80%, 90%, or 95% identical to any of the H3-JH polypeptides of Tables 9, 13, 15, 18-25 and 32, or a polypeptide at least about 80%, 90%, or 95% identical to a polypeptide produced by translation of any of the H3-JH-encoding polynucleotides of Tables 14, 25 and 31.


In some embodiments, the invention provides libraries comprising polynucleotides encoding light chain variable regions, wherein the light chain variable regions are selected from the group consisting of: (a) a VK1-05 sequence varied at one or more of positions 4, 49, and 46; (b) a VK1-12 sequence varied at one or more of positions 4, 49, 46, and 66; (c) a VK1-33 sequence varied at one or more of positions 4, 49, and 66; (d) a VK1-39 sequence varied at one or more of positions 4, 49, and 46; (e) a VK2-28 sequence varied at one or more of positions 2, 4, 46, and 49; (f) a VK3-11 sequence varied at one or more of positions 2, 4, 36, and 49; (g) a VK3-15 sequence varied at one or more of positions 2, 4, 48, and 49; (h) a VK3-20 sequence varied at one or more of positions 2, 4, 48, and 49; and/or (i) a VK4-1 sequence varied at one or more of positions 4, 46, 49, and 66.


In certain embodiments, the invention provides libraries comprising polynucleotides encoding light chain variable regions that comprise polypeptide sequences at least about 80%, 90%, or 95% identical to two or more of the light chain polypeptide sequences provided in Table 3.


In some embodiments, the invention provides libraries wherein the light chain variable regions comprise the polypeptide sequences provided in Table 3.


In certain embodiments, the invention provides libraries comprising polynucleotides encoding light chain variable regions, wherein the L3-VL polypeptide sequences of the light chain variable regions are varied at two or three residues between positions 89 to 94, inclusive, in comparison to an L3-VL germline sequence. In some embodiments, libraries containing a single light chain germline sequence and its variants are provided. In certain embodiments, variants produced from different light chain germline sequences can be combined to produce libraries encoding multiple light chain germline sequences and their variants. Any of the light chain L3-VL germline sequences provided herein may be varied at two or three residues between positions 89 to 94, inclusive, and one of ordinary skill in the art will recognize that any other L3-VL sequence can also be varied according to the principles described herein to produce libraries provided by the invention. In some embodiments, the present invention comprises libraries containing polynucleotides that encode antibody light chain variable regions, wherein the antibody light chain variable regions comprise one or more of the following L3-VL sequences: (i) an amino acid sequence that is identical to an L3-VL germline sequence (e.g., see Table 1); (ii) an amino acid sequence that contains two substitutions between residues 89-94, inclusive, in comparison to an L3-VL germline sequence; and (iii) an amino acid sequence that contains three substitutions between residues 89-94, inclusive, in comparison to an L3-VL germline sequence. In some embodiments, each antibody light chain variable region on a library includes one or more of the above L3-VL sequences. In some embodiments, such a library is combined with one or more sets of other nucleic acids that may or may not encode antibody light chain variable regions, and may or may not contain such L3-VL sequences. In some embodiments, the present invention comprises libraries containing polynucleotides that encode an antibody light chain variable region having an amino acid sequence as set forth in Table 4, or a polynucleotide sequence as set forth in one or more of Tables 5-7, wherein two or three residues at positions 89-94, inclusive, are varied.


In some embodiments, the present invention comprises libraries containing polynucleotides that encode an antibody light chain variable region, wherein, across the library, all encoded antibody light chain variable regions are identical to one another except for substitutions of residues at positions between residue 89 and residue 94, inclusive and further wherein, across the library, sequences of any two encoded antibody light chain variable regions differ from one another at not more than 3 positions.


In some embodiments, the invention provides libraries comprising polynucleotides encoding light chain variable regions comprising polypeptide sequences at least about 80%, 90%, or 95% identical to polypeptides produced by translation of two or more of the polynucleotide sequences provided in Tables 5-7. In certain embodiments all members of the library are at least about 80%, 90%, or 95% identical to polypeptides produced by translation of two or more of the polynucleotide sequences provided in Tables 5-7.


In certain embodiments, the invention provides a library comprising light chain variable regions that comprise the polypeptides produced by translation of the polynucleotide sequences provided in Tables 5-7. In certain embodiments, all members of the library comprise the polypeptides produced by translation of the polynucleotide sequences provided in Tables 5-7.


In some embodiments, any of the libraries described herein as containing or encoding CDRL3 and/or light chain variable regions, contains or encodes such CDRL3 and/or light chain variable regions in the context of complete light chains. Furthermore, in some embodiments, such libraries (and/or complete light chain libraries) further contain or encode one or more heavy chain CDRH3, variable domains, or intact heavy chains. In some embodiments, provided libraries include or encode intact antibodies such as, for example, intact IgGs.


In some embodiments, provided libraries include or encode human antibodies or antibody fragments; in some such embodiments, provided libraries include or encode intact human antibodies.


In certain embodiments, the invention provides libraries that comprise nucleic acid vectors containing library nucleic acids described herein. In many embodiments, each such library member comprises the same vector.


In some embodiments, the invention provides host cells containing one or more provided libraries, for example including a vector. In some embodiments the host cell is a yeast, and in certain embodiments the yeast is Saccharomyces cerevisiae.


In some embodiments, the invention provides antibodies isolated from the libraries described herein.


In certain embodiments, the invention provides kits containing any of the libraries described herein.


In some embodiments, the invention provides representations of libraries and/or theoretical segment pools in a computer readable format, for example, the TN1 polypeptides of Tables 10, 23-25 and 26; the DH polypeptides of Tables 11, 23-25 and 28; the N2 polypeptides of Tables 12, 23-25 and 30; the H3-JH polypeptides of Tables 13, 15, 17, 23-25 and 32; the TN1 polynucleotides of Tables 25-26; the DH polynucleotides of Tables 25 and 27; the N2 polynucleotides of Tables 25 and 29; and/or the H3-JH polynucleotides of Tables 25 and 31.


In certain embodiments, the invention provides a representation of the polynucleotide sequences of the Human Preimmune Set (Appendix A), or the polypeptide expression products thereof, in a computer readable format.


In some embodiments, the invention provides a method of making synthetic polynucleotides encoding a CDRH3 library, comprising: (a) providing a theoretical segment pool containing TN1, DH, N2, and H3-JH segments; (b) providing a reference set of CDRH3 sequences; (c) utilizing the theoretical segment pool of (a) to identify the closest match(es) to each CDRH3 sequence in the reference set of (b); (d) selecting segments from the theoretical segment pool for inclusion in a synthetic library; and (e) synthesizing the synthetic CDRH3 library. In certain embodiments, the invention provides libraries made by this method. In some embodiments, the segments selected for inclusion in the synthetic library are selected according to their segment usage weight in the reference set of CDRH3 sequences.


In certain embodiments, the invention provides a method of making synthetic polynucleotides encoding a CDRL3 library, comprising: (i) obtaining a reference set of light chain sequences, wherein the reference set contains light chain sequences with VL segments originating from the same IGVL germline gene and/or its allelic variants; (ii) determining which amino acids occur at each of the CDRL3 positions in the reference set that are encoded by the IGVL gene; (iii) synthesizing light chain variable domain encoding sequences wherein two positions between positions 89 and 94, inclusive, contain degenerate codons encoding two or more of the five most frequently occurring amino acid residues at the corresponding positions in the reference set; and (iv) synthesizing the polynucleotides encoding the CDRL3 library. In certain embodiments, the invention provides libraries made by this method.


In some embodiments, the invention provides a method of using any of the libraries of the invention to isolate an antibody binding an antigen, comprising contacting the polypeptide expression products of said libraries with an antigen and isolating polypeptide expression products that bind to the antigen.


In certain embodiments, the number of N-linked glycosylation sites, deamidation motifs, and/or Cys residues in the libraries of the invention are reduced or eliminated in comparison to libraries produced by amplification of a repertoire from a biological source.


The invention provides a number of polynucleotide and polypeptide sequences and segments that can be used to build larger polynucleotide and polypeptide sequences (e.g., TN1, DH, N2, and H3-JH segments that can be used to build CDRH3). One of ordinary skill in the art will readily recognize that in some instances these sequences can be more succinctly represented by providing consensus sequences after alignment of the sequences provided by the invention, and that these consensus sequences fall within the scope of the invention and may be used to more succinctly represent any of the sequences provided herein.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 shows that Vernier residues 4 and 49 (starred) in VK1-39 have a diversity index comparable to or greater than the diversity indices of the CDR positions (i.e., at or above 0.07, in this example).



FIG. 2 shows that clinically validated CDRL3 sequences deviate little from germline-like sequences (n=35).



FIG. 3 shows the percent of sequences in the jumping dimer CDRL3 libraries of the invention and a previous CDRL3 library, VK-v1.0, with X or fewer mutations from germline. Here, FX is the percentage of sequences in a library with X or fewer mutations from germline.



FIG. 4 shows the application of a provided method used to generate nucleotide sequences (SEQ ID NOS 8748-8759, respectively, in order of appearance) encoding the parent H3-JH segments.



FIG. 5 shows the general schematic of an approach used to select segments from a theoretical segment pool for inclusion in a theoretical and/or synthetic library.



FIG. 6 shows the frequency of “Good” and “Poor” expressing CDRH3 sequences isolated from yeast-based libraries described in US 2009/0181855, and their comparison to the sequences contained in the library design described therein (“Design”), as a function of the DH segment hydrophobicity (increasing to the right).



FIG. 7 shows the percentage of CDRH3 sequences in the LUA-141 library and Exemplary Library Design 3 (ELD-3) that match CDRH3 sequences from Lee-666 and Boyd-3000 with zero, one, two, three, or more than three amino acid mismatches.



FIG. 8 shows that Exemplary Library Design 3 (ELD-3) and the Extended Diversity Library Design both return better matches to clinically relevant CDRH3 sequences than the LUA-141 library.



FIG. 9 shows that the combinatorial efficiency of Exemplary Library Design 3 (ELD-3) is greater than that of the LUA-141 library. Specifically, the ELD-3 segments are more likely to yield a unique CDRH3 than the LUA-141 library segments.



FIG. 10 shows the amino acid compositions of the Kabat-CDRH3s of LUA-141, Exemplary Library Design 3 (ELD-3), and Human CDRH3 sequences from the HPS (Human H3).



FIG. 11 shows the Kabat-CDRH3 length distribution of LUA-141, Exemplary Library Design 3 (ELD-3), and Human CDRH3 sequences from the HPS (Human H3).



FIG. 12 shows the percentage of CDRH3 sequences in the Extended Diversity library that match CDRH3 sequences from Boyd et al. with zero to thirty-two amino acid mismatches



FIG. 13 shows the Kabat-CDRH3 length distribution of Exemplary Library Design 3 (“ELD-3”), the Extended Diversity Library Design (“Extended Diversity”) and human CDRH3 sequences from the Boyd et al. data set (“Boyd 2009”).



FIG. 14 shows the amino acid compositions of the Kabat-CDRH3s of the Extended Diversity Library Design (“Extended Diversity”) and human CDRH3 sequences from the Boyd et al. dataset (“Boyd 2009”).



FIG. 15 shows the combinatorial efficiency of the Extended Diversity Library Design by matching 20,000 randomly selected sequences from the (same) design. About 65% of the sequences appear only once in the design and about 17% appear twice.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS OF THE INVENTION

The present invention provides, among other things, polynucleotide and polypeptide libraries, methods of producing and using the libraries, kits containing the libraries, and computer readable forms of representations of libraries and/or theoretical segment pools disclosed herein. Libraries taught in this application can be described, at least in part, in terms of components (e.g., polynucleotide or polypeptide “segments”) from which they are assembled. Among other things, the present invention specifically provides and contemplates these polynucleotide or polypeptide segments, methods of producing and using such segments, and kits and computer readable forms of representations that include such library segments.


In certain embodiments, the invention provides antibody libraries specifically designed based on sequences and CDR length distribution in a naturally occurring human antibody repertoire. It is estimated that, even in the absence of antigenic stimulation, an individual human makes at least about 107 different antibody molecules (Boyd et al., Science Translational Medicine, 2009, 1: 1). The antigen-binding sites of many antibodies can cross-react with a variety of related but different epitopes. In addition, the human antibody repertoire is large enough to ensure that there is an antigen-binding site to fit almost any potential epitope, albeit potentially with low affinity.


The mammalian immune system has evolved unique genetic mechanisms that enable it to generate an almost unlimited number of different light and heavy chains in a remarkably economical way, by combinatorially joining chromosomally separated gene segments prior to transcription. Each type of immunoglobulin (Ig) chain (i.e., kappa light, lambda light, and heavy) is synthesized by combinatorial assembly of DNA sequences, selected from two or more families of gene segments, to produce a single polypeptide chain. Specifically, the heavy chains and light chains each consist of a variable region and a constant (C) region. The variable regions of the heavy chains are encoded by DNA sequences assembled from three families of gene sequences: variable (IGHV), diversity (IGHD), and joining (IGHJ). The variable regions of light chains are encoded by DNA sequences assembled from two families of gene sequences for each of the kappa and lambda light chains: variable (IGLV) and joining (IGLJ). Each variable region (heavy and light) is also recombined with a constant region, to produce a full-length immunoglobulin chain.


While combinatorial assembly of the V, D and J gene segments make a substantial contribution to antibody variable region diversity, further diversity is introduced in vivo, at the pre-B cell stage, via imprecise joining of these gene segments and the introduction of non-templated nucleotides at the junctions between the gene segments (see e.g., U.S. Pub. No. 2009/0181855, which is incorporated by reference in its entirety, for more information).


After a B cell recognizes an antigen, it is induced to proliferate. During proliferation, the B cell receptor locus undergoes an extremely high rate of somatic mutation that is far greater than the normal rate of genomic mutation. The mutations that occur are primarily localized to the Ig variable regions and comprise substitutions, insertions and deletions. This somatic hypermutation enables the production of B cells that express antibodies possessing enhanced affinity toward an antigen. Such antigen-driven somatic hypermutation fine-tunes antibody responses to a given antigen.


Synthetic antibody libraries of the instant invention have the potential to recognize any antigen, including antigens of human origin. The ability to recognize antigens of human origin may not be present in other antibody libraries, such as antibody libraries prepared from human biological sources (e.g., from human cDNA), because self-reactive antibodies are removed by the donor's immune system via negative selection.


Still further, the present invention provides strategies that streamline and/or simplify certain aspects of library development and/or screening. For example, in some embodiments, the present invention permits use of cell sorting technologies (e.g., fluorescence activated cell sorting, FACS) to identify positive clones, and therefore bypasses or obviates the need for the standard and tedious methodology of generating a hybridoma library and supernatant screening.


Yet further, in some embodiments, the present invention provides libraries and/or sublibraries that accommodate multiple screening passes. For example, in some embodiments, provided libraries and/or sublibraries can be screened multiple times. In some such embodiments, individual provided libraries and/or sublibraries can be used to discover additional antibodies against many targets.


Before further description of the invention, certain terms are defined.


Definitions


Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by one of ordinary skill in the art relevant to the invention. Unless otherwise specified, the Kabat numbering system is used throughout the application. The definitions below supplement those in the art and are directed to the embodiments described in the current application.


The term “amino acid” or “amino acid residue,” as would be understood by one of ordinary skill in the art, typically refers to an amino acid having its art recognized definition such as an amino acid selected from the group consisting of: alanine (Ala or A); arginine (Arg or R); asparagine (Asn or N); aspartic acid (Asp or D); cysteine (Cys or C); glutamine (Gln or Q); glutamic acid (Glu or E); glycine (Gly or G); histidine (H is or H); isoleucine (Ile or I): leucine (Leu or L); lysine (Lys or K); methionine (Met or M); phenylalanine (Phe or F); proline (Pro or P); serine (Ser or S); threonine (Thr or T); tryptophan (Trp or W); tyrosine (Tyr or Y); and valine (Val or V), although modified, synthetic, or rare amino acids may be used as desired. Generally, amino acids can be grouped as having a non-polar side chain (e.g., Ala, Cys, Ile, Leu, Met, Phe, Pro, Val); a negatively charged side chain (e.g., Asp, Glu); a positively charged side chain (e.g., Arg, His, Lys); or an uncharged polar side chain (e.g., Asn, Cys, Gln, Gly, His, Met, Phe, Ser, Thr, Trp, and Tyr).


As would be understood by those of ordinary skill in the art, the term “antibody” is used herein in the broadest sense and specifically encompasses at least monoclonal antibodies, polyclonal antibodies, multi-specific antibodies (e.g., bispecific antibodies), chimeric antibodies, humanized antibodies, human antibodies, and antibody fragments. An antibody is a protein comprising one or more polypeptides substantially or partially encoded by immunoglobulin genes or fragments of immunoglobulin genes. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as myriad immunoglobulin variable region genes.


The term “antibody binding region” refers to one or more portions of an immunoglobulin or antibody variable region capable of binding an antigen(s). Typically, the antibody binding region is, for example, an antibody light chain (or variable region or one or more CDRs thereof), an antibody heavy chain (or variable region or one or more CDRs thereof), a heavy chain Fd region, a combined antibody light and heavy chain (or variable regions thereof) such as a Fab, F(ab′)2, single domain, or single chain antibodies (scFv), or any region of a full length antibody that recognizes an antigen, for example, an IgG (e.g., an IgG1, IgG2, IgG3, or IgG4 subtype), IgA1, IgA2, IgD, IgE, or IgM antibody.


“Antibody fragments” comprise a portion of an intact antibody, for example, one or more portions of the antigen-binding region thereof. Examples of antibody fragments include Fab, Fab′, F(ab′)2, and Fv fragments, diabodies, linear antibodies, single-chain antibodies, and multi-specific antibodies formed from intact antibodies and antibody fragments.


The term “antibody of interest” refers to an antibody that has a property of interest that is identified and/or isolated from a library of the invention. Exemplary properties of interest include, for example, but are not limited to, binding to a particular antigen or epitope, binding with a certain affinity, cross-reactivity, blocking a binding interaction between two molecules, and/or eliciting a certain biological effect.


The term “canonical structure,” as understood by those of ordinary skill in the art, refers to the main chain conformation that is adopted by the antigen binding (CDR) loops. From comparative structural studies, it has been found that five of the six antigen binding loops have only a limited repertoire of available conformations. Each canonical structure can be characterized by the torsion angles of the polypeptide backbone. Correspondent loops between antibodies may, therefore, have very similar three dimensional structures, despite high amino acid sequence variability in most parts of the loops (Chothia and Lesk, J. Mol. Biol., 1987, 196: 901; Chothia et al., Nature, 1989, 342: 877; Martin and Thornton, J. Mol. Biol., 1996, 263: 800, each of which is incorporated by reference in its entirety). Furthermore, there is a relationship between the adopted loop structure and the amino acid sequences surrounding it. As is known in the art, the conformation of a particular canonical class is determined by the length of the loop and the amino acid residues residing at key positions within the loop, as well as within the conserved framework (i.e., outside of the loop). Assignment to a particular canonical class can therefore be made based on the presence of these key amino acid residues. The term “canonical structure” may also include considerations as to the linear sequence of the antibody, for example, as catalogued by Kabat (Kabat et al., in “Sequences of Proteins of Immunological Interest,” 5th Edition, U.S. Department of Heath and Human Services, 1992). The Kabat numbering scheme is a widely adopted standard for numbering the amino acid residues of an antibody variable domain in a consistent manner, and is used herein unless indicated otherwise. Additional structural considerations can also be used to determine the canonical structure of an antibody. For example, those differences not fully reflected by Kabat numbering can be described by the numbering system of Chothia et al. and/or revealed by other techniques, for example, crystallography and two or three-dimensional computational modeling. Accordingly, a given antibody sequence may be placed into a canonical class which allows for, among other things, identifying appropriate chassis sequences (e.g., based on a desire to include a variety of canonical structures in a library). Kabat numbering of antibody amino acid sequences and structural considerations as described by Chothia et al., and their implications for construing canonical aspects of antibody structure, are described in the literature.


The terms “CDR”, and its plural “CDRs”, refer to a complementarity determining region (CDR) of which three make up the binding character of a light chain variable region (CDRL1, CDRL2 and CDRL3) and three make up the binding character of a heavy chain variable region (CDRH1, CDRH2 and CDRH3). CDRs contribute to the functional activity of an antibody molecule and are separated by amino acid sequences that comprise framework regions. The exact definitional CDR boundaries and lengths are subject to different classification and numbering systems. CDRs may therefore be referred to by Kabat, Chothia, contact or other boundary definitions, including for example the CDRH3 numbering system described below. Despite differing boundaries, each of these systems has some degree of overlap in what constitutes the so called “hypervariable regions” within the variable region. CDR definitions according to these systems may therefore differ in length and boundary areas with respect to the adjacent framework region. See, for example Kabat et al., in “Sequences of Proteins of Immunological Interest,” 5th Edition, U.S. Department of Health and Human Services, 1992; Chothia et al., J. Mol. Biol., 1987, 196: 901; and MacCallum et al., J. Mol. Biol., 1996, 262: 732, each of which is incorporated by reference in its entirety.


The “CDRH3 numbering system” used herein defines the first amino acid of CDRH3 as being at position 95 and the last amino acid of CDRH3 as position 102. Note that this is a custom numbering system that is not according to Kabat. The amino acid segment, beginning at position 95 is called “TN1” and, when present, is assigned numbers 95, 96, 96A, 96B, etc. Note that the nomenclature used in the current application is slightly different from that used in U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379. In those applications, position 95 was designated a “Tail” residue, while here, the Tail (T) has been combined with the N1 segment, to produce one segment, designated “TN1.” The TN1 segment is followed by the “DH” segment, which is assigned numbers 97, 97A, 97B, 97C, etc. The DH segment is followed by the “N2” segment, which, when present, is numbered 98, 98A, 98B, etc. Finally, the most C-terminal amino acid residue of the “H3-JH” segment is designated as number 102. The residue directly before (N-terminal) it, when present, is 101, and the one before (if present) is 100. The rest of the H3-JH amino acids are numbered in reverse order, beginning with 99 for the amino acid just N-terminal to 100, 99A for the residue N-terminal to 99, and so forth for 99B, 99C, etc. Examples of CDRH3 sequence residue numbers may therefore include the following:




embedded image


“Chassis” of the invention are portions of the antibody heavy chain variable (IGHV) or light chain variable (IGLV) domains that are not part of CDRH3 or CDRL3, respectively. A chassis of the invention is defined as the portion of the variable region of an antibody beginning with the first amino acid of FRM1 and ending with the last amino acid of FRM3. In the case of the heavy chain, the chassis includes the amino acids including from position 1 to position 94. In the case of the light chains (kappa and lambda), the chassis are defined as including from position 1 to position 88. The chassis of the invention may contain certain modifications relative to the corresponding germline variable domain sequences. These modifications may be engineered (e.g., to remove N-linked glycosylation sites) or naturally occurring (e.g., to account for naturally occurring allelic variation). For example, it is known in the art that the immunoglobulin gene repertoire is polymorphic (Wang et al., Immunol. Cell. Biol., 2008, 86: 111; Collins et al., Immunogenetics, 2008, 60: 669, each incorporated by reference in its entirety); chassis, CDRs and constant regions representative of these allelic variants are also encompassed by the invention. In some embodiments, the allelic variant(s) used in a particular embodiment of the invention may be selected based on the allelic variation present in different patient populations, for example, to identify antibodies that are non-immunogenic in these patient populations. In certain embodiments, the immunogenicity of an antibody of the invention may depend on allelic variation in the major histocompatibility complex (MHC) genes of a patient population. Such allelic variation may also be considered in the design of libraries of the invention. In certain embodiments of the invention, the chassis and constant regions are contained in a vector, and a CDR3 region is introduced between them via homologous recombination.


As used herein, a sequence designed with “directed diversity” has been specifically designed to contain both sequence diversity and length diversity. Directed diversity is not stochastic.


As used herein, the term “diversity” refers to a variety or a noticeable heterogeneity. The term “sequence diversity” refers to a variety of sequences which are collectively representative of several possibilities of sequences, for example, those found in natural human antibodies. For example, CDRH3 sequence diversity may refer to a variety of possibilities of combining the known human TN1, DH, N2, and H3-JH segments to form CDRH3 sequences. The CDRL3 sequence diversity (kappa or lambda) may refer to a variety of possibilities of combining the naturally occurring light chain variable region contributing to CDRL3 (i.e., “L3-VL”) and joining (i.e., “L3-JL”) segments, to form CDRL3 sequences. As used herein, “H3-JH” refers to the portion of the IGHJ gene contributing to CDRH3. As used herein, “L3-VL” and “L3-JL” refer to the portions of the IGLV and IGLJ genes (kappa or lambda) contributing to CDRL3, respectively.


As used herein, the term “expression” refers to steps involved in the production of a polypeptide including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.


The term “framework region” refers to the art-recognized portions of an antibody variable region that exist between the more divergent (i.e., hypervariable) CDRs. Such framework regions are typically referred to as frameworks 1 through 4 (FRM1, FRM2, FRM3, and FRM4) and provide a scaffold for the presentation of the six CDRs (three from the heavy chain and three from the light chain) in three dimensional space, to form an antigen-binding surface.


The term “full-length heavy chain” refers to an immunoglobulin heavy chain that contains each of the canonical structural domains of an immunoglobulin heavy chain, including the four framework regions, the three CDRs, and the constant region.


The term “full-length light chain” refers to an immunoglobulin light chain that contains each of the canonical structural domains of an immunoglobulin light chain, including the four framework regions, the three CDRs, and the constant region.


The term “germline-like,” when used with respect to the CDRL3 sequences of the light chains of the invention, means those sequences consisting of combinations of: (i) the first six wild-type residues contributed to CDRL3 by the IGVL germline gene (i.e., positions 89 to 94 in the Kabat numbering system; “L” is kappa or lambda); and (ii) one of several amino acid sequences, two one to four amino acids in length, largely, but not exclusively, derived from the JL segment (“L,” again is kappa or lambda). For kappa CDRL3 sequences of the most common lengths (i.e., 8, 9, and 10 residues), the sequences of (ii) number twenty and are: FT, LT, IT, RT, WT, YT, [X]T, [X]PT, [X]FT, [X]LT, [X]IT, [X]RT, [X]WT, [X]YT, [X]PFT, [X]PLT, [X]PIT, [X]PRT, [X]PWT and [X]PYT, where [X]corresponds to the amino acid residue found at position 95 (Kabat) in the respective VK germline sequence. X is most commonly P, but may also be S or any other amino acid residue found at position 95 of a VK germline sequence. For eight exemplified VK chassis exemplified herein, the corresponding 160 germline-like sequences, (i.e., 20 sequences of two to four amino acids in length combined with positions 89 to 94 of each of eight VK germline sequences) are provided in Table 1. A similar approach is applied to define germline-like CDRL3 sequences for lambda light chains. As for the kappa sequences described above, the intact, un-mutated portions of CDRL3 encoded by the IGVL genes (in this case, IGVλ) would be combined with the sequences largely, but not exclusively, derived from the Jλ segment. Here, the latter sequences (corresponding to (ii), above), number five and are: YV, VV, WV, AV or V. In addition, and as described in Example 7 of US 2009/0818155, one could further allow for variation at the last position of the Vλ-gene-encoded portion of CDRL3 by considering partial codons, while still considering the resulting sequences “germline-like.” More specifically, the entire “minimalist library” of Example 7 in US 2009/0818155 would be defined as “germline-like.” One of ordinary skill in the art will readily recognize that these methods can be extended to other VK and Vλ sequences.


The term “genotype-phenotype linkage,” as understood by those of ordinary skill in the art, refers to the fact that the nucleic acid (genotype) encoding a protein with a particular phenotype (e.g., binding an antigen) can be isolated from a library. For the purposes of illustration, an antibody fragment expressed on the surface of a phage can be isolated based on its binding to an antigen (e.g., U.S. Pat. No. 5,837,500). The binding of the antibody to the antigen simultaneously enables the isolation of the phage containing the nucleic acid encoding the antibody fragment. Thus, the phenotype (antigen-binding characteristics of the antibody fragment) has been “linked” to the genotype (nucleic acid encoding the antibody fragment). Other methods of maintaining a genotype-phenotype linkage include those of Wittrup et al. (U.S. Pat. Nos. 6,300,065, 6,331,391, 6,423,538, 6,696,251, 6,699,658, and U.S. Pub. No. 20040146976, each of which is incorporated by reference in its entirety), Miltenyi (U.S. Pat. No. 7,166,423, incorporated by reference in its entirety), Fandl (U.S. Pat. No. 6,919,183, US Pub No. 20060234311, each incorporated by reference in its entirety), Clausell-Tormos et al. (Chem. Biol., 2008, 15: 427, incorporated by reference in its entirety), Love et al. (Nat. Biotechnol., 2006, 24: 703, incorporated by reference in its entirety), and Kelly et al. (Chem. Commun., 2007, 14: 1773, incorporated by reference in its entirety). The term can be used to refer to any method which localizes an antibody protein together with the gene encoding the antibody protein, in a way in which they can both be recovered while the linkage between them is maintained.


The term “heterologous moiety” is used herein to indicate the addition of a moiety to an antibody wherein the moiety is not part of a naturally-occurring antibody. Exemplary heterologous moieties include drugs, toxins, imaging agents, and any other compositions which might provide an activity that is not inherent in the antibody itself.


As used herein, the term “host cell” is intended to refer to a cell comprising a polynucleotide of the invention. It should be understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


As used herein, the term “human antibody CDR library” includes at least a polynucleotide or polypeptide library which has been designed to represent the sequence diversity and length diversity of naturally occurring CDRs in human antibodies (e.g., the term “CDR” in “human antibody CDR library” may be substituted with “CDRL1,” “CDRL2,” “CDRL3,” “CDRH1,” “CDRH2,” and/or “CDRH3”). Known human CDR sequences are represented in various data sets, including Jackson et al., J. Immunol. Methods, 2007, 324: 26; Martin, Proteins, 1996, 25: 130; Lee et al., Immunogenetics, 2006, 57: 917, Boyd et al., Science Translational Medicine, 2009, 1: 1, and WO/2009/036379, each of which is incorporated by reference in its entirety, and the HPS, which is provided in Appendix A.


The term “Human Preimmune Set,” or “HPS,” refers to a reference set of 3,571 curated human preimmune heavy chain sequences corresponding to the GI Nos. provided in Appendix A.


An “intact antibody” is one comprising full-length heavy- and light-chains (i.e., four frameworks, three CDRs, and a constant region for each of the heavy and light chains). An intact antibody is also referred to as a “full-length” antibody.


The term “length diversity” refers to a variety in the length of a family of nucleotide or amino acid sequence. For example, in naturally occurring human antibodies, the heavy chain CDR3 sequence varies in length, for example, from about 2 amino acids to over about 35 amino acids, and the light chain CDR3 sequence varies in length, for example, from about 5 to about 16 amino acids.


The term “library” refers to a set of entities comprising two or more entities having diversity as described herein, and/or designed according to the methods of the invention. For example, a “library of polynucleotides” refers to a set of polynucleotides comprising two or more polynucleotides having diversity as described herein, and/or designed according to the methods of the invention. A “library of polypeptides” refers to a set of polypeptides comprising two or more polypeptides having diversity as described herein, and/or designed according to the methods of the invention. A “library of synthetic polynucleotides” refers to a set of polynucleotides comprising two or more synthetic polynucleotides having diversity as described herein, and/or designed according to the methods of the invention. Libraries where all members are synthetic are also encompassed by the invention. A “human antibody library” refers to a set of polypeptides comprising two or more polypeptides having diversity as described herein, and/or designed according to the methods of the invention, for example a library designed to represent the sequence diversity and length diversity of naturally occurring human antibodies. In some embodiments, the term “library” may refer to a set of entities sharing similar structural or sequence characteristics, for example, a “heavy chain library,” “light chain library,” “antibody library,” and/or “CDRH3 library.”


The term “physical realization” refers to a portion of a theoretical (e.g., computer-based) or synthetic (e.g., oligonucleotide-based) diversity that can actually be physically sampled, for example, by any display methodology. Exemplary display methodology include: phage display, ribosomal display, and yeast display. For synthetic sequences, the size of the physical realization of a library depends on (1) the fraction of the theoretical diversity that can actually be synthesized, and (2) the limitations of the particular screening method. Exemplary limitations of screening methods include the number of variants that can be screened in a particular assay (e.g., ribosome display, phage display, yeast display) and the transformation efficiency of the host cells (e.g., yeast, mammalian cells, bacteria) which are used in a screening assay. For the purposes of illustration, given a library with a theoretical diversity of 1012 members, an exemplary physical realization of the library (e.g., in yeast, bacterial cells, or ribosome display) that can maximally include 1011 members will, therefore, sample about 10% of the theoretical diversity of the library. However, if fewer than 1011 members of the library with a theoretical diversity of 1012 are synthesized, and the physical realization of the library can maximally include 1011 members, less than 10% of the theoretical diversity of the library is sampled in the physical realization of the library. Similarly, a physical realization of the library that can maximally include more than 1012 members would “oversample” the theoretical diversity, meaning that each member may be present more than once (assuming that the entire 1012 theoretical diversity is synthesized).


The term “polynucleotide(s)” refers to nucleic acids such as DNA molecules and RNA molecules and analogs thereof (e.g., DNA or RNA generated using nucleotide analogs or using nucleic acid chemistry). As desired, the polynucleotides may be made synthetically, e.g., using art-recognized nucleic acid chemistry or enzymatically using, e.g., a polymerase, and, if desired, be modified. Typical modifications include methylation, biotinylation, and other art-known modifications. In addition, the nucleic acid molecule can be single-stranded or double-stranded and, where desired, linked to a detectable moiety. The representation of nucleotide bases herein follows International Union of Pure and Applied Chemistry (IUPAC) nomenclature (see U.S. Pub. No. 2009/0181855, incorporated by reference in its entirety).


“Preimmune” antibody libraries have sequence diversities and length diversities similar to naturally occurring human antibody sequences before these sequences have undergone negative selection and/or somatic hypermutation. For example, the set of sequences described in Lee et al. (Immunogenetics, 2006, 57: 917, incorporated by reference in its entirety) and the Human Preimmune Set (HPS) described herein (see Appendix A) are believed to represent sequences from the preimmune repertoire. In certain embodiments of the invention, the sequences of the invention will be similar to these sequences (e.g., in terms of composition and length).


As used herein, the term “sitewise stochastic” describes a process of generating a sequence of amino acids, where only the amino acid occurrences at the individual positions are considered, and higher order motifs (e.g., pair-wise correlations) are not accounted for (e.g., see Knappik, et al., J Mol Biol, 2000, 296: 57, and analysis provided in U.S. Publication No. 2009/0181855, each incorporated by reference in its entirety).


The term “split-pool synthesis” refers to a procedure in which the products of a plurality of individual first reactions are combined (pooled) and then separated (split) before participating in a plurality of second reactions. For example, U.S. Publication No. 2009/0181855 (incorporated by reference in its entirety) describes the synthesis of 278 DH segments (products), each in a separate reaction. After synthesis, these 278 segments are combined (pooled) and then distributed (split) amongst 141 columns for the synthesis of the N2 segments. This enables the pairing of each of the 278 DH segments with each of 141 N2 segments.


As used herein, “stochastic” describes a process of generating a random sequence of nucleotides or amino acids, which is considered as a sample of one element from a probability distribution (e.g., see U.S. Pat. No. 5,723,323).


As used herein, the term “synthetic polynucleotide” refers to a molecule formed through a chemical process, as opposed to molecules of natural origin, or molecules derived via template-based amplification of molecules of natural origin (e.g., immunoglobulin chains cloned from populations of B cells via PCR amplification are not “synthetic” as used herein). In some instances, for example, when referring to libraries of the invention that comprise multiple segments (e.g., TN1, DH, N2, and/or H3-JH), the invention encompasses libraries in which at least one, two, three, or four of the aforementioned components is synthetic. By way of illustration, a library in which certain components are synthetic, while other components are of natural origin or derived via template-based amplification of molecules of natural origin, would be encompassed by the invention. Libraries that are fully synthetic would, of course, also be encompassed by the invention.


The term “theoretical diversity” refers to the maximum number of variants in a library design. For example, given an amino acid sequence of three residues, where residues one and three may each be any one of five amino acid types and residue two may be any one of 20 amino acid types, the theoretical diversity is 5×20×5=500 possible sequences. Similarly if sequence X is constructed by combination of 4 amino acid segments, where segment 1 has 100 possible sequences, segment 2 has 75 possible sequences, segment 3 has 250 possible sequences, and segment 4 has 30 possible sequences, the theoretical diversity of fragment X would be 100×75×200×30, or 5.6×105 possible sequences.


The term “theoretical segment pool” refers to a set of polynucleotide or polypeptide segments that can be used as building blocks to assemble a larger polynucleotide or polypeptide. For example, a theoretical segment pool containing TN1, DH, N2, and H3-JH segments can be used to assemble a library of CDRH3 sequences by concatenating them combinatorially to form a sequence represented by [TN1]-[DH]-[N2]-[H3-JH], and synthesizing the corresponding oligonucleotide(s). The term “theoretical segment pool” can apply to any set of polynucleotide or polypeptide segments. Thus, while a set of TN1, DH, N2, and H3-JH segments are collectively considered a theoretical segment pool, each of the individual sets of segments also comprise a theoretical segment pool, specifically a TN1 theoretical segment pool, a DH theoretical segment pool, an N2 theoretical segment pool, and an H3-JH theoretical segment pool. Any subsets of these theoretical segment pools containing two or more sequences can also be considered theoretical segment pools.


The term “unique,” as used herein, refers to a sequence that is different (e.g., has a different chemical structure) from every other sequence within the designed set (e.g., the theoretical diversity). It should be understood that there are likely to be more than one copy of many unique sequences from the theoretical diversity in a particular physical realization. For example, a library comprising three unique sequences at the theoretical level may comprise nine total members if each sequence occurs three times in the physical realization of the library. However, in certain embodiments, each unique sequence may occur only once, less than once, or more than once.


The term “variable” refers to the portions of the immunoglobulin domains that exhibit variability in their sequence and that are involved in determining the specificity and binding affinity of a particular antibody (i.e., the “variable domain(s)”). Variability is not evenly distributed throughout the variable domains of antibodies; it is concentrated in sub-domains of each of the heavy and light chain variable regions. These sub-domains are called “hypervariable” regions or “complementarity determining regions” (CDRs). The more conserved (i.e., non-hypervariable) portions of the variable domains are called the “framework” regions (FRM). The variable domains of naturally occurring heavy and light chains each comprise four FRM regions, largely adopting a 13-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the 13-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRM and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site (see Kabat et al. Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md., 1991, incorporated by reference in its entirety). The constant domains are not directly involved in antigen binding, but exhibit various effector functions, such as, for example, antibody-dependent, cell-mediated cytotoxicity and complement activation.


Libraries of the invention containing “VKCDR3” sequences and “VλCDR3” sequences refer to the kappa and lambda sub-sets of the light chain CDR3 (CDRL3) sequences, respectively. Such libraries may be designed with directed diversity, to collectively represent the length and sequence diversity of the human antibody CDRL3 repertoire. “Preimmune” versions of these libraries have similar sequence diversities and length diversities as naturally occurring human antibody CDRL3 sequences before these sequences undergo negative selection and/or somatic hypermutation. Known human CDRL3 sequences are represented in various data sets, including the NCBI database, WO/2009/036379, and Martin, Proteins, 1996, 25: 130 each incorporated by reference in its entirety.


General Design of Libraries


Antibody libraries provided by the present invention may be designed to reflect certain aspects of the preimmune repertoire as created by the human immune system. Certain libraries of the invention are based on rational design informed by collections of human V, D, and J genes, and large databases of human heavy and light chain sequences (e.g., publicly known germline sequences and sequences from Jackson et al., J. Immunol. Methods, 2007, 324: 26; Lee et al., Immunogenetics, 2006, 57: 917; Boyd et al., Science Translational Medicine, 2009, 1: 1-8, each incorporated by reference in its entirety; and sequences compiled from rearranged VK and Vλ sequences (see WO/2009/036379, also incorporated by reference in its entirety). Additional information may be found, for example, in Scaviner et al., Exp. Clin. Immunogenet., 1999, 16: 234; Tomlinson et al., J. Mol. Biol., 1992, 227: 799; and Matsuda et al., J. Exp. Med., 1998, 188: 2151, each incorporated by reference in its entirety.


In certain embodiments of the invention, segments representing the possible V, D, and J diversity found in the human repertoire, as well as junctional diversity (i.e., TN1 and N2), are synthesized de novo as single or double-stranded DNA oligonucleotides. In certain embodiments of the invention, oligonucleotides encoding CDR sequences are introduced into yeast along with one or more acceptor vectors containing heavy or light chain chassis sequences and constant domains. No primer-based PCR amplification or template-directed cloning steps from mammalian cDNA or mRNA are employed. Through standard homologous recombination, the recipient yeast recombines the CDR segments with the acceptor vectors containing the chassis sequences and constant regions, to create a properly ordered synthetic, full-length human heavy chain and/or light chain immunoglobulin library that can be genetically propagated, expressed, presented, and screened. One of ordinary skill in the art will readily recognize that the acceptor vector can be designed so as to produce constructs other than full-length human heavy chains and/or light chains. For example, in certain embodiments of the invention, the chassis may be designed to encode portions of a polypeptide encoding an antibody fragment or subunit of an antibody fragment, so that a sequence encoding an antibody fragment, or subunit thereof, is produced when the oligonucleotide cassette containing the CDR is recombined with the acceptor vector.


Thus, in certain embodiments, the invention provides a synthetic, preimmune human antibody repertoire the repertoire comprising:


(a) one or more selected human antibody heavy chain chassis (i.e., amino acids 1 to 94 of the heavy chain variable region, using Kabat's definition);


(b) a CDRH3 repertoire (described more fully below), designed based on the human IGHD and IGHJ germline sequences, and the extraction of TN1 and N2 sequences from reference sets of human CDRH3 sequences, the CDRH3 repertoire comprising (i) a TN1 segment; (ii) a DH segment; (iii) an N2 segment; (iv) an H3-JH segment.


(c) one or more selected human antibody kappa and/or lambda light chain chassis; and


(d) a CDRL3 repertoire designed based on the human IGLV and IGLJ germline sequences, wherein “L” may be a kappa or lambda light chain.


The instant invention also provides methods for producing and using such libraries, as well as libraries comprising one or more immunoglobulin domains or antibody fragments. Design and synthesis of each component of the antibody libraries of the invention is provided in more detail below.


Design of Antibody Library Chassis Sequences


In certain embodiments, provided libraries are constructed from selected chassis sequences that are based on naturally occurring variable domain sequences (e.g., IGHV and IGLV genes). The selection of such chassis sequences can be done arbitrarily, or through the definition of certain pre-determined criteria. For example, the Kabat database, an electronic database containing non-redundant rearranged antibody sequences, can be queried for those heavy and light chain germline sequences that are most frequently represented. An algorithm such as BLAST, or a more specialized tool such as SoDA (Volpe et al., Bioinformatics, 2006, 22: 438-44, incorporated by reference in its entirety), can be used to compare rearranged antibody sequences with germline sequences (e.g., using the V BASE2 database; see, for example, Retter et al., Nucleic Acids Res., 2005, 33: D671-D674, incorporated by reference in its entirety), or similar collections of human V, D, and J genes, to identify germline families that are most frequently used to generate functional antibodies.


Several criteria can be utilized for the selection of chassis for inclusion in the libraries of the invention. For example, sequences that are known (or have been determined) to express poorly in yeast, or other organisms used in the invention (e.g., bacteria, mammalian cells, fungi, or plants) can be excluded from the libraries. Chassis may also be chosen based on the representation of their corresponding germline genes in the peripheral blood of humans. In certain embodiments of the invention, it may be desirable to select chassis that correspond to germline sequences that are highly represented in the peripheral blood of humans. In some embodiments, it may be desirable to select chassis that correspond to germline sequences that are less frequently represented, for example, to increase the canonical diversity of the library. Therefore, chassis may be selected to produce libraries that represent the largest and most structurally diverse group of functional human antibodies.


In certain embodiments of the invention, less diverse chassis may be utilized, for example, if it is desirable to produce a smaller, more focused library with less chassis variability and greater CDR variability. In some embodiments of the invention, chassis may be selected based on both their expression in a cell of the invention (e.g., a yeast cell) and the diversity of canonical structures represented by the selected sequences. One may therefore produce a library with a diversity of canonical structures that express well in a cell of the invention.


Design of Heavy Chain Chassis Sequences


The design and selection of heavy chain chassis sequences that can be used in the current invention is described in detail in U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379, each of which is incorporated by reference in its entirety, and is therefore described only briefly here.


In general, VH domains of the library comprise three components: (1) a VH “chassis,” which includes amino acids 1 to 94 (using Kabat numbering), (2) the CDRH3, which is defined herein to include the Kabat CDRH3 proper (positions 95-102), and (3) the FRM4 region, including amino acids 103 to 113 (Kabat numbering). The overall VH domain structure may therefore be depicted schematically (not to scale) as:




embedded image


In certain embodiments of the invention, the VH chassis of the libraries may comprise from about Kabat residue 1 to about Kabat residue 94 of one or more of the following IGHV germline sequences: IGHV1-2, IGHV1-3, IGHV1-8, IGHV1-18, IGHV1-24, IGHV1-45, IGHV1-46, IGHV1-58, IGHV1-69, IGH8, IGH56, IGH100, IGHV3-7, IGHV3-9, IGHV3-11, IGHV3-13, IGHV3-15, IGHV3-20, IGHV3-21, IGHV3-23, IGHV3-30, IGHV3-33, IGHV3-43, IGHV3-48, IGHV3-49, IGHV3-53, IGHV3-64, IGHV3-66, IGHV3-72, IGHV3-73, IGHV3-74, IGHV4-4, IGHV4-28, IGHV4-31, IGHV4-34, IGHV4-39, IGHV4-59, IGHV4-61, IGHV4-B, IGHV5-51, IGHV6-1, and/or IGHV7-4-1. In some embodiments of the invention, a library may contain one or more of these sequences, one or more allelic variants of these sequences, or encode an amino acid sequence at least about 99.9%, 99.5%, 99%, 98.5%, 98%, 97.5%, 97%, 96.5%, 96%, 95.5%, 95%, 94.5%, 94%, 93.5%, 93%, 92.5%, 92%, 91.5%, 91%, 90.5%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 77.5%, 75%, 73.5%, 70%, 65%, 60%, 55%, or 50% identical to one or more of these sequences. One of ordinary skill in the art will recognize that given the chassis definition provided above, any IGHV-encoding sequence can be adapted for use as a chassis of the invention. As exemplified in U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379 (each incorporated by reference in its entirety), these chassis can also be varied, particularly by altering the amino acid residues in the CDRH1 and CDRH2 regions, further increasing the diversity of the library.


Design of Light Chain Chassis Sequences


The design and selection of light chain chassis sequences that can be used in the current invention is described in detail in U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379, each of which is incorporated by reference in its entirety, and is therefore described only briefly here. The light chain chassis of the invention may be based on kappa and/or lambda light chain sequences.


The VL domains of the library comprise three primary components: (1) a VL “chassis”, which includes amino acids 1 to 88 (using Kabat numbering), (2) the CDRL3, which is defined herein to include the Kabat CDRL3 proper (positions 89-97), and (3) the FRM4 region, including amino acids 98 to 107 (Kabat numbering). The overall VL domain structure may therefore be depicted schematically (not to scale) as:




embedded image


In certain embodiments of the invention, the VL chassis of the libraries include one or more chassis based on IGKV germline sequences. In certain embodiments of the invention, the VL chassis of the libraries may comprise from about Kabat residue 1 to about Kabat residue 88 of one or more of the following IGKV germline sequences: IGKV1-05, IGKV1-06, IGKV1-08, IGKV1-09, IGKV1-12, IGKV1-13, IGKV1-16, IGKV1-17, IGKV1-27, IGKV1-33, IGKV1-37, IGKV1-39, IGKV1D-16, IGKV1D-17, IGKV1D-43, IGKV1D-8, IGK54, IGK58, IGK59, IGK60, IGK70, IGKV2D-26, IGKV2D-29, IGKV2D-30, IGKV3-11, IGKV3-15, IGKV3-20, IGKV3D-07, IGKV3D-11, IGKV3D-20, IGKV4-1, IGKV5-2, IGKV6-21, and/or IGKV6D-41. In some embodiments of the invention, a library may contain one or more of these sequences, one or more allelic variants of these sequences, or encode an amino acid sequence at least about 99.9%, 99.5%, 99%, 98.5%, 98%, 97.5%, 97%, 96.5%, 96%, 95.5%, 95%, 94.5%, 94%, 93.5%, 93%, 92.5%, 92%, 91.5%, 91%, 90.5%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 77.5%, 75%, 73.5%, 70%, 65%, 60%, 55%, or 50% identical to one or more of these sequences.


In certain embodiments of the invention, the VL chassis of the libraries include one or more chassis based on IGλV germline sequences. In certain embodiments of the invention, the VL chassis of the libraries may comprise from about Kabat residue 1 to about Kabat residue 88 of one or more of the following IGλV germline sequences: IGλV3-1, IGλV3-21, IGλ44, IGλV1-40, IGλV3-19, IGλV1-51, IGλV1-44, IGλV6-57, IGλ11, IGλV3-25, IGλ53, IGλV3-10, IGλV4-69, IGλV1-47, IGλ41, IGλV7-43, IGλV7-46, IGλV5-45, IGλV4-60, IGλV10-54, IGλV8-61, IGλV3-9, IGλV1-36, IGλ48, IGλV3-16, IGλV3-27, IGλV4-3, IGλV5-39, IGλV9-49, and/or IGλV3-12. In some embodiments of the invention, a library may contain one or more of these sequences, one or more allelic variants of these sequences, or encode an amino acid sequence at least about 99.9%, 99.5%, 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, or 50% identical to one or more of these sequences.


One of ordinary skill in the art will recognize that given the chassis definition provided above, any IGKV- or IGλV-encoding sequence can be adapted for use as a chassis of the invention.


Design and Selection of TN1, DH, N2, and H3-JH Segments


The human germline repertoire contains at least six IGHJ genes (IGHJ1, IGHJ2, IGHJ3, IGHJ4, IGHJ5, and IGHJ6; included in Table 14, where the primary allele is designated “01,” and selected allelic variants are designated “02” or “03”), and at least 27 IGHD genes (Table 16, including allelic variants). In some embodiments, the invention comprises a library of CDRH3 polypeptide sequences, or polynucleotide sequences encoding CDRH3 sequences, the library comprising members of any of the theoretical segment pools disclosed herein.


A person of ordinary skill in the art will recognize that not every segment in a theoretical segment pool provided herein is necessary to produce a functional CDRH3 library of the invention. Therefore, in certain embodiments, a CDRH3 library of the invention will contain a subset of the segments of any of the theoretical segment pools described herein. For example, in certain embodiments of the invention, at least about 15, 30, 45, 60, 75, 90, 100, 105, 120, 135, 150, 165, 180, 195, 200, 210, 225, 240, 255, 270, 285, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 500, 520, 540, 560, 580, 600, 620, 640, or 643 of the H3-JH segments of any of the theoretical segment pools provided herein, or generated by the methods described herein, are included in a library. In some embodiments of the invention, at least about 15, 30, 45, 60, 75, 90, 100, 105, 120, 135, 150, 165, 180, 195, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1111, 2000, 3000, 4000, 5000, 6000, 7000, 14000, 21000, 28000, 35000, 42000, 49000, 56000, 63000, or 68374 of the DH segments of any of the theoretical segment pools provided herein, or generated by the methods described herein, are included in a library. In some embodiments of the invention, at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 141, 150, 160, 170, 180, 190, or 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 420, 424, 440, 460, 480, 500, 550, 600, 650, 700, 727, 750, 800, 850, 900, 950, or 1000 of the TN1 and/or N2 segments of any of the theoretical segment pools provided herein, or generated by the methods described herein, are included in a library. In certain embodiments, a library of the invention may contain less than a particular number of polynucleotide or polypeptide segments, where the number of segments is defined using any one of the integers provided above for the respective segment. In some embodiments of the invention, a particular numerical range is defined, using any two of the integers provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the integers provided, which define an upper and lower boundary, are contemplated.


In certain embodiments, the invention provides CDRH3 libraries comprising at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the segments from any of the theoretical segment pools provided herein. For example, the invention provides libraries comprising at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the TN1, DH, N2, and/or H3-JH segments from any of the theoretical segment pools provided herein. In some embodiments of the invention, a particular percentage range is defined, using any two of the percentages provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the percentages provided, which define an upper and lower boundary, are contemplated.


In some embodiments of the invention, at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the H3-JH, DH, TN1, and/or N2 segments in a CDRH3 library are H3-JH, DH, TN1, and/or N2 segments of any of the theoretical segment pools provided herein, or generated by the methods described herein. In some embodiments of the invention, at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the H3-JH, DH, TN1, and/or N2 segments of antibodies isolated from a CDRH3 library (e.g., by binding to a particular antigen and/or generic ligand through one or more rounds of selection) are H3-JH, DH, TN1, and/or N2 segments of any of the theoretical segment pools provided herein, or generated by methods described herein. In certain embodiments, a CDRH3 library of the invention may contain less than a particular percentage of H3-JH, DH, TN1, and/or N2 segments of any of the theoretical segment pools provided herein, or generated by the methods described herein, where the number of segments is defined using any one of the percentages provided above for the respective segment. In some embodiments of the invention, a particular percentage range is defined, using any two of the percentages provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the percentages provided, which define an upper and lower boundary, are contemplated.


One of ordinary skill in the art will appreciate, upon reading the disclosure herein. that given the TN1, DH, N2, and/or H3-JH segments of any of the theoretical segment pools provided herein, or generated by the methods described herein, similar TN1, DH, N2, and/or H3-JH segments, and corresponding CDRH3 libraries, could be produced which, while not 100% identical to those provided in terms of their sequences, may be functionally very similar. Such theoretical segment pools and CDRH3 libraries also fall within the scope of the invention. A variety of techniques well-known in the art could be used to obtain these additional sequences, including the mutagenesis techniques provided herein. Therefore, each of the explicitly enumerated embodiments of the invention can also be practiced using segments that share a particular percent identity to any of the segments of any of the theoretical segment pools provided herein, or generated by the methods described herein. For example, each of the previously described embodiments of the invention can be practiced using TN1, DH, N2, and/or H3-JH segments that are at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 99.9% identical to the TN1, DH, N2, and/or H3-JH segments of any of the theoretical segment pools provided herein, or generated by the methods described herein.


In some embodiments, the invention provides libraries produced from one or more VH chassis sequences combined with one or more TN1 segments, one or more DH segments, one or more N2 segments, and one or more H3-JH segments. In certain embodiments at least 1, 2, 5, 10, 20, 50, 75, or 100, of each chassis, TN1, DH, N2, or H3-JH segments are included in a library of the invention.


In some embodiments, the invention provides a method of selecting TN1, DH, N2, and H3-JH segments from a theoretical segment pool for inclusion in a synthetic CDRH3 library, comprising:

    • (i) providing a theoretical segment pool containing one or more of TN1, DH, N2, and H3-JH segments;
    • (ii) providing a reference set of CDRH3 sequences;
    • (iii) utilizing the theoretical segment pool of (i) to identify the closest match(es) to each CDRH3 sequence in the reference set of (ii); and
    • (iv) selecting segments from the theoretical segment pool for inclusion in a synthetic library.


In some embodiments, the selection process of (iv) can optionally involve any number of additional criteria, including the frequency of occurrence of the segments of (i) in the reference set of (ii); the corresponding segmental usage weights; and any physicochemical properties (see all numerical indices at www.genome.jp/aaindex/) of the segments (e.g., hydrophobicity, alpha-helical propensity, and/or isoelectric point). Optionally, TN1 and/or N2 segments that do not occur in the theoretical segment pool of (i) but that are found in the reference set of (ii) may be identified and added to prospective theoretical segment pools to produce theoretical segment pools with increased TN1 and/or N2 diversity in the prospective theoretical segment pools and/or synthetic libraries of the invention.


Any characteristic or set of characteristics of the segments can be used to choose them for inclusion in the library, including for example one or more biological properties (e.g., immunogenicity, stability, half-life) and/or one or more physicochemical properties such as the numerical indices provided above. In some embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more such properties is used to select segments for inclusion in a library of the invention.


Physiochemical properties included in the index provided above can include, for example, ANDN920101 alpha-CH chemical shifts (Andersen et al., 1992); ARGP820101 Hydrophobicity index (Argos et al., 1982); ARGP820102 Signal sequence helical potential (Argos et al., 1982); ARGP820103 Membrane-buried preference parameters (Argos et al., 1982); BEGF750101 Conformational parameter of inner helix (Beghin-Dirkx, 1975); BEGF750102 Conformational parameter of beta-structure (Beghin-Dirkx, 1975); BEGF750103 Conformational parameter of beta-turn (Beghin-Dirkx, 1975); BHAR880101Average flexibility indices (Bhaskaran-Ponnuswamy, 1988); BIGC670101 Residue volume (Bigelow, 1967); BIOV880101 Information value for accessibility; average fraction 35% (Biou et al., 1988); BIOV880102 Information value for accessibility; average fraction 23% (Biou et al., 1988); BROC820101 Retention coefficient in TFA (Browne et al., 1982); BROC820102 Retention coefficient in HFBA (Browne et al., 1982); BULH740101 Transfer free energy to surface (Bull-Breese, 1974); BULH740102 Apparent partial specific volume (Bull-Breese, 1974); BUNA790101 alpha-NH chemical shifts (Bundi-Wuthrich, 1979); BUNA790102 alpha-CH chemical shifts (Bundi-Wuthrich, 1979); BUNA790103 Spin-spin coupling constants 3JHalpha-NH (Bundi-Wuthrich, 1979); BURA740101 Normalized frequency of alpha-helix (Burgess et al., 1974); BURA740102 Normalized frequency of extended structure (Burgess et al., 1974); CHAM810101 Steric parameter (Charton, 1981); CHAM820101 Polarizability parameter (Charton-Charton, 1982); CHAM820102 Free energy of solution in water, kcal/mole (Charton-Charton, 1982); CHAM830101 The Chou-Fasman parameter of the coil conformation (Charton-Charton, 1983); CHAM830102 A parameter defined from the residuals obtained from the best correlation of the Chou-Fasman parameter of beta-sheet (Charton-Charton, 1983); CHAM830103 The number of atoms in the side chain labelled 1+1 (Charton-Charton, 1983); CHAM830104 The number of atoms in the side chain labelled 2+1 (Charton-Charton, 1983); CHAM830105 The number of atoms in the side chain labelled 3+1 (Charton-Charton, 1983); CHAM830106 The number of bonds in the longest chain (Charton-Charton, 1983); CHAM830107 A parameter of charge transfer capability (Charton-Charton, 1983); CHAM830108 A parameter of charge transfer donor capability (Charton-Charton, 1983); CHOC750101 Average volume of buried residue (Chothia, 1975); CHOC760101 Residue accessible surface area in tripeptide (Chothia, 1976); CHOC760102 Residue accessible surface area in folded protein (Chothia, 1976); CHOC760103 Proportion of residues 95% buried (Chothia, 1976); CHOC760104 Proportion of residues 100% buried (Chothia, 1976); CHOP780101 Normalized frequency of beta-turn (Chou-Fasman, 1978a); CHOP780201 Normalized frequency of alpha-helix (Chou-Fasman, 1978b); CHOP780202 Normalized frequency of beta-sheet (Chou-Fasman, 1978b); CHOP780203 Normalized frequency of beta-turn (Chou-Fasman, 1978b); CHOP780204 Normalized frequency of N-terminal helix (Chou-Fasman, 1978b); CHOP780205 Normalized frequency of C-terminal helix (Chou-Fasman, 1978b); CHOP780206 Normalized frequency of N-terminal non helical region (Chou-Fasman, 1978b); CHOP780207 Normalized frequency of C-terminal non helical region (Chou-Fasman, 1978b); CHOP780208 Normalized frequency of N-terminal beta-sheet (Chou-Fasman, 1978b); CHOP780209 Normalized frequency of C-terminal beta-sheet (Chou-Fasman, 1978b); CHOP780210 Normalized frequency of N-terminal non beta region (Chou-Fasman, 1978b); CHOP780211 Normalized frequency of C-terminal non beta region (Chou-Fasman, 1978b); CHOP780212 Frequency of the 1st residue in turn (Chou-Fasman, 1978b); CHOP780213 Frequency of the 2nd residue in turn (Chou-Fasman, 1978b); CHOP780214 Frequency of the 3rd residue in turn (Chou-Fasman, 1978b); CHOP780215 Frequency of the 4th residue in turn (Chou-Fasman, 1978b); CHOP780216 Normalized frequency of the 2nd and 3rd residues in turn (Chou-Fasman, 1978b); CIDH920101 Normalized hydrophobicity scales for alpha-proteins (Cid et al., 1992); CIDH920102 Normalized hydrophobicity scales for beta-proteins (Cid et al., 1992); CIDH920103 Normalized hydrophobicity scales for alpha+beta-proteins (Cid et al., 1992); CIDH920104 Normalized hydrophobicity scales for alpha/beta-proteins (Cid et al., 1992); CIDH920105 Normalized average hydrophobicity scales (Cid et al., 1992); COHE430101 Partial specific volume (Cohn-Edsall, 1943); CRAJ730101 Normalized frequency of middle helix (Crawford et al., 1973); CRAJ730102 Normalized frequency of beta-sheet (Crawford et al., 1973); CRAJ730103 Normalized frequency of turn (Crawford et al., 1973); DAWD720101 Size (Dawson, 1972); DAYM780101 Amino acid composition (Dayhoff et al., 1978a); DAYM780201 Relative mutability (Dayhoff et al., 1978b); DESM900101 Membrane preference for cytochrome b: MPH89 (Degli Esposti et al., 1990); DESM900102 Average membrane preference: AMP07 (Degli Esposti et al., 1990); EISD840101 Consensus normalized hydrophobicity scale (Eisenberg, 1984); EISD860101 Solvation free energy (Eisenberg-McLachlan, 1986); EISD860102 Atom-based hydrophobic moment (Eisenberg-McLachlan, 1986); EISD860103 Direction of hydrophobic moment (Eisenberg-McLachlan, 1986); FASG760101 Molecular weight (Fasman, 1976); FASG760102 Melting point (Fasman, 1976); FASG760103 Optical rotation (Fasman, 1976); FASG760104 pK-N (Fasman, 1976); FASG760105 pK-C (Fasman, 1976); FAUJ830101 Hydrophobic parameter pi (Fauchere-Pliska, 1983); FAUJ880101 Graph shape index (Fauchere et al., 1988); FAUJ880102 Smoothed upsilon steric parameter (Fauchere et al., 1988); FAUJ880103 Normalized van der Waals volume (Fauchere et al., 1988); FAUJ880104 STERIMOL length of the side chain (Fauchere et al., 1988); FAUJ880105 STERIMOL minimum width of the side chain (Fauchere et al., 1988); FAUJ880106 STERIMOL maximum width of the side chain (Fauchere et al., 1988); FAUJ880107 N.m.r. chemical shift of alpha-carbon (Fauchere et al., 1988); FAUJ880108 Localized electrical effect (Fauchere et al., 1988); FAUJ880109 Number of hydrogen bond donors (Fauchere et al., 1988); FAUJ880110 Number of full nonbonding orbitals (Fauchere et al., 1988); FAUJ880111 Positive charge (Fauchere et al., 1988); FAUJ880112 Negative charge (Fauchere et al., 1988); FAUJ880113 pK-a(RCOOH) (Fauchere et al., 1988); FINA770101 Helix-coil equilibrium constant (Finkelstein-Ptitsyn, 1977); FINA910101 Helix initiation parameter at posision i−1 (Finkelstein et al., 1991); FINA910102 Helix initiation parameter at posision i, i+1, i+2 (Finkelstein et al., 1991); FINA910103 Helix termination parameter at posision j−2, j−1,j (Finkelstein et al., 1991); FINA910104 Helix termination parameter at posision j+1 (Finkelstein et al., 1991); GARJ730101 Partition coefficient (Garel et al., 1973); GEIM800101 Alpha-helix indices (Geisow-Roberts, 1980); GEIM800102 Alpha-helix indices for alpha-proteins (Geisow-Roberts, 1980); GEIM800103 Alpha-helix indices for beta-proteins (Geisow-Roberts, 1980); GEIM800104 Alpha-helix indices for alpha/beta-proteins (Geisow-Roberts, 1980); GEIM800105 Beta-strand indices (Geisow-Roberts, 1980); GEIM800106 Beta-strand indices for beta-proteins (Geisow-Roberts, 1980); GEIM800107 Beta-strand indices for alpha/beta-proteins (Geisow-Roberts, 1980) GEIM800108 Aperiodic indices (Geisow-Roberts, 1980); GEIM800109 Aperiodic indices for alpha-proteins (Geisow-Roberts, 1980); GEIM800110 Aperiodic indices for beta-proteins (Geisow-Roberts, 1980); GEIM800111 Aperiodic indices for alpha/beta-proteins (Geisow-Roberts, 1980); GOLD730101 Hydrophobicity factor (Goldsack-Chalifoux, 1973); GOLD730102 Residue volume (Goldsack-Chalifoux, 1973); GRAR740101 Composition (Grantham, 1974); GRAR740102Polarity (Grantham, 1974) GRAR740103 Volume (Grantham, 1974); GUYH850101 Partition energy (Guy, 1985); HOPA770101 Hydration number (Hopfinger, 1971), Cited by Charton-Charton (1982) HOPT810101 Hydrophilicity value (Hopp-Woods, 1981); HUTJ700101 Heat capacity (Hutchens, 1970); HUTJ700102 Absolute entropy (Hutchens, 1970); HUTJ700103 Entropy of formation (Hutchens, 1970); ISOY800101 Normalized relative frequency of alpha-helix (Isogai et al., 1980); ISOY800102 Normalized relative frequency of extended structure (Isogai et al., 1980); ISOY800103 Normalized relative frequency of bend (Isogai et al., 1980); ISOY800104 Normalized relative frequency of bend R (Isogai et al., 1980); ISOY800105 Normalized relative frequency of bend S (Isogai et al., 1980); ISOY800106 Normalized relative frequency of helix end (Isogai et al., 1980); ISOY800107 Normalized relative frequency of double bend (Isogai et al., 1980); ISOY800108 Normalized relative frequency of coil (Isogai et al., 1980); JANJ780101 Average accessible surface area (Janin et al., 1978); JANJ780102 Percentage of buried residues (Janin et al., 1978); JANJ780103 Percentage of exposed residues (Janin et al., 1978); JANJ790101 Ratio of buried and accessible molar fractions (Janin, 1979); JANJ790102 Transfer free energy (Janin, 1979); JOND750101 Hydrophobicity (Jones, 1975); JOND750102 pK (—COOH) (Jones, 1975); JOND920101 Relative frequency of occurrence (Jones et al., 1992); JOND920102 Relative mutability (Jones et al., 1992) JUKT750101 Amino acid distribution (Jukes et al., 1975); JUNJ780101 Sequence frequency (Jungck, 1978); KANM800101 Average relative probability of helix (Kanehisa-Tsong, 1980); KANM800102 Average relative probability of beta-sheet (Kanehisa-Tsong, 1980); KANM800103 Average relative probability of inner helix (Kanehisa-Tsong, 1980); KANM800104 Average relative probability of inner beta-sheet (Kanehisa-Tsong, 1980); KARP850101 Flexibility parameter for no rigid neighbors (Karplus-Schulz, 1985); KARP850102 Flexibility parameter for one rigid neighbor (Karplus-Schulz, 1985); KARP850103 Flexibility parameter for two rigid neighbors (Karplus-Schulz, 1985); KHAG800101 The Kerr-constant increments (Khanarian-Moore, 1980); KLEP840101 Net charge (Klein et al., 1984); KRIW710101 Side chain interaction parameter (Krigbaum-Rubin, 1971); KRIW790101 Side chain interaction parameter (Krigbaum-Komoriya, 1979); KRIW790102 Fraction of site occupied by water (Krigbaum-Komoriya, 1979); KRIW790103 Side chain volume (Krigbaum-Komoriya, 1979); KYTJ820101 Hydropathy index (Kyte-Doolittle, 1982); LAWE840101 Transfer free energy, CHP/water (Lawson et al., 1984); LEVM760101 Hydrophobic parameter (Levitt, 1976); LEVM760102 Distance between C-alpha and centroid of side chain (Levitt, 1976); LEVM760103 Side chain angle theta(AAR) (Levitt, 1976); LEVM760104 Side chain torsion angle phi(AAAR) (Levitt, 1976); LEVM760105 Radius of gyration of side chain (Levitt, 1976); LEVM760106 van der Waals parameter R0 (Levitt, 1976) LEVM760107 van der Waals parameter epsilon (Levitt, 1976); LEVM780101 Normalized frequency of alpha-helix, with weights (Levitt, 1978); LEVM780102 Normalized frequency of beta-sheet, with weights (Levitt, 1978); LEVM780103 Normalized frequency of reverse turn, with weights (Levitt, 1978); LEVM780104 Normalized frequency of alpha-helix, unweighted (Levitt, 1978); LEVM780105 Normalized frequency of beta-sheet, unweighted (Levitt, 1978); LEVM780106 Normalized frequency of reverse turn, unweighted (Levitt, 1978); LEWP710101 Frequency of occurrence in beta-bends (Lewis et al., 1971); LIFS790101 Conformational preference for all beta-strands (Lifson-Sander, 1979); LIFS790102 Conformational preference for parallel beta-strands (Lifson-Sander, 1979); LIFS790103 Conformational preference for antiparallel beta-strands (Lifson-Sander, 1979); MANP780101 Average surrounding hydrophobicity (Manavalan-Ponnuswamy, 1978); MAXF760101 Normalized frequency of alpha-helix (Maxfield-Scheraga, 1976); MAXF760102 Normalized frequency of extended structure (Maxfield-Scheraga, 1976); MAXF760103 Normalized frequency of zeta R (Maxfield-Scheraga, 1976); MAXF760104 Normalized frequency of left-handed alpha-helix (Maxfield-Scheraga, 1976); MAXF760105 Normalized frequency of zeta L (Maxfield-Scheraga, 1976); MAXF760106 Normalized frequency of alpha region (Maxfield-Scheraga, 1976); MCMT640101 Refractivity (McMeekin et al., 1964), Cited by Jones (1975); MEEJ800101 Retention coefficient in HPLC, pH7.4 (Meek, 1980); MEEJ800102 Retention coefficient in HPLC, pH2.1 (Meek, 1980); MEEJ810101 Retention coefficient in NaClO4 (Meek-Rossetti, 1981); MEEJ810102 Retention coefficient in NaH2PO4 (Meek-Rossetti, 1981); MEIH800101 Average reduced distance for C-alpha (Meirovitch et al., 1980); MEIH800102 Average reduced distance for side chain (Meirovitch et al., 1980); MEIH800103 Average side chain orientation angle (Meirovitch et al., 1980); MIYS850101 Effective partition energy (Miyazawa-Jernigan, 1985); NAGK730101 Normalized frequency of alpha-helix (Nagano, 1973); NAGK730102 Normalized frequency of bata-structure (Nagano, 1973) NAGK730103 Normalized frequency of coil (Nagano, 1973); NAKH900101 AA composition of total proteins (Nakashima et al., 1990); NAKH900102 SD of AA composition of total proteins (Nakashima et al., 1990); NAKH900103 AA composition of mt-proteins (Nakashima et al., 1990); NAKH900104 Normalized composition of mt-proteins (Nakashima et al., 1990); NAKH900105 AA composition of mt-proteins from animal (Nakashima et al., 1990); NAKH900106 Normalized composition from animal (Nakashima et al., 1990); NAKH900107 AA composition of mt-proteins from fungi and plant (Nakashima et al., 1990); NAKH900108 Normalized composition from fungi and plant (Nakashima et al., 1990); NAKH900109 AA composition of membrane proteins (Nakashima et al., 1990); NAKH900110 Normalized composition of membrane proteins (Nakashima et al., 1990); NAKH900111 Transmembrane regions of non-mt-proteins (Nakashima et al., 1990); NAKH900112 Transmembrane regions of mt-proteins (Nakashima et al., 1990); NAKH900113 Ratio of average and computed composition (Nakashima et al., 1990); NAKH920101 AA composition of CYT of single-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920102 AA composition of CYT2 of single-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920103 AA composition of EXT of single-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920104 AA composition of EXT2 of single-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920105 AA composition of MEM of single-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920106 AA composition of CYT of multi-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920107 AA composition of EXT of multi-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920108 AA composition of MEM of multi-spanning proteins (Nakashima-Nishikawa, 1992); NISK800101 8 A contact number (Nishikawa-Ooi, 1980); NISK860101 14 A contact number (Nishikawa-Ooi, 1986); NOZY710101 Transfer energy, organic solvent/water (Nozaki-Tanford, 1971); OOBM770101 Average non-bonded energy per atom (Oobatake-Ooi, 1977); OOBM770102 Short and medium range non-bonded energy per atom (Oobatake-Ooi, 1977); OOBM770103 Long range non-bonded energy per atom (Oobatake-Ooi, 1977) OOBM770104 Average non-bonded energy per residue (Oobatake-Ooi, 1977); OOBM770105 Short and medium range non-bonded energy per residue (Oobatake-Ooi, 1977); OOBM850101 Optimized beta-structure-coil equilibrium constant (Oobatake et al., 1985); OOBM850102 Optimized propensity to form reverse turn (Oobatake et al., 1985); OOBM850103 Optimized transfer energy parameter (Oobatake et al., 1985); OOBM850104 Optimized average non-bonded energy per atom (Oobatake et al., 1985); OOBM850105 Optimized side chain interaction parameter (Oobatake et al., 1985); PALJ810101 Normalized frequency of alpha-helix from LG (Palau et al., 1981); PALJ810102 Normalized frequency of alpha-helix from CF (Palau et al., 1981); PALJ810103 Normalized frequency of beta-sheet from LG (Palau et al., 1981); PALJ810104 Normalized frequency of beta-sheet from CF (Palau et al., 1981); PALJ810105 Normalized frequency of turn from LG (Palau et al., 1981); PALJ810106 Normalized frequency of turn from CF (Palau et al., 1981); PALJ810107 Normalized frequency of alpha-helix in all-alpha class (Palau et al., 1981); PALJ810108 Normalized frequency of alpha-helix in alpha+beta class (Palau et al., 1981); PALJ810109 Normalized frequency of alpha-helix in alpha/beta class (Palau et al., 1981); PALJ810110 Normalized frequency of beta-sheet in all-beta class (Palau et al., 1981); PALJ810111 Normalized frequency of beta-sheet in alpha+beta class (Palau et al., 1981); PALJ810112 Normalized frequency of beta-sheet in alpha/beta class (Palau et al., 1981); PALJ810113 Normalized frequency of turn in all-alpha class (Palau et al., 1981); PALJ810114 Normalized frequency of turn in all-beta class (Palau et al., 1981); PALJ810115 Normalized frequency of turn in alpha+beta class (Palau et al., 1981); PALJ810116 Normalized frequency of turn in alpha/beta class (Palau et al., 1981); PARJ860101 HPLC parameter (Parker et al., 1986); PLIV810101 Partition coefficient (Pliska et al., 1981); PONP800101 Surrounding hydrophobicity in folded form (Ponnuswamy et al., 1980); PONP800102 Average gain in surrounding hydrophobicity (Ponnuswamy et al., 1980); PONP800103 Average gain ratio in surrounding hydrophobicity (Ponnuswamy et al., 1980); PONP800104 Surrounding hydrophobicity in alpha-helix (Ponnuswamy et al., 1980); PONP800105 Surrounding hydrophobicity in beta-sheet (Ponnuswamy et al., 1980); PONP800106 Surrounding hydrophobicity in turn (Ponnuswamy et al., 1980); PONP800107 Accessibility reduction ratio (Ponnuswamy et al., 1980); PONP800108 Average number of surrounding residues (Ponnuswamy et al., 1980); PRAM820101 Intercept in regression analysis (Prabhakaran-Ponnuswamy, 1982); PRAM820102 Slope in regression analysis ×1.0E1 (Prabhakaran-Ponnuswamy, 1982); PRAM820103 Correlation coefficient in regression analysis (Prabhakaran-Ponnuswamy, 1982); PRAM900101 Hydrophobicity (Prabhakaran, 1990); PRAM900102 Relative frequency in alpha-helix (Prabhakaran, 1990); PRAM900103 Relative frequency in beta-sheet (Prabhakaran, 1990); PRAM900104 Relative frequency in reverse-turn (Prabhakaran, 1990); PTIO830101 Helix-coil equilibrium constant (Ptitsyn-Finkelstein, 1983); PTIO830102 Beta-coil equilibrium constant (Ptitsyn-Finkelstein, 1983); QIAN880101 Weights for alpha-helix at the window position of −6 (Qian-Sejnowski, 1988); QIAN880102 Weights for alpha-helix at the window position of −5 (Qian-Sejnowski, 1988); QIAN880103 Weights for alpha-helix at the window position of −4 (Qian-Sejnowski, 1988); QIAN880104 Weights for alpha-helix at the window position of −3 (Qian-Sejnowski, 1988); QIAN880105 Weights for alpha-helix at the window position of −2 (Qian-Sejnowski, 1988); QIAN880106 Weights for alpha-helix at the window position of −1 (Qian-Sejnowski, 1988); QIAN880107 Weights for alpha-helix at the window position of 0 (Qian-Sejnowski, 1988); QIAN880108 Weights for alpha-helix at the window position of 1 (Qian-Sejnowski, 1988); QIAN880109 Weights for alpha-helix at the window position of 2 (Qian-Sejnowski, 1988); QIAN880110 Weights for alpha-helix at the window position of 3 (Qian-Sejnowski, 1988); QIAN880111 Weights for alpha-helix at the window position of 4 (Qian-Sejnowski, 1988); QIAN880112 Weights for alpha-helix at the window position of 5 (Qian-Sejnowski, 1988); QIAN880113 Weights for alpha-helix at the window position of 6 (Qian-Sejnowski, 1988); QIAN880114 Weights for beta-sheet at the window position of −6 (Qian-Sejnowski, 1988); QIAN880115 Weights for beta-sheet at the window position of −5 (Qian-Sejnowski, 1988); QIAN880116 Weights for beta-sheet at the window position of −4 (Qian-Sejnowski, 1988); QIAN880117 Weights for beta-sheet at the window position of −3 (Qian-Sejnowski, 1988); QIAN880118 Weights for beta-sheet at the window position of −2 (Qian-Sejnowski, 1988); QIAN880119 Weights for beta-sheet at the window position of −1 (Qian-Sejnowski, 1988); QIAN880120 Weights for beta-sheet at the window position of 0 (Qian-Sejnowski, 1988); QIAN880121 Weights for beta-sheet at the window position of 1 (Qian-Sejnowski, 1988); QIAN880122 Weights for beta-sheet at the window position of 2 (Qian-Sejnowski, 1988); QIAN880123 Weights for beta-sheet at the window position of 3 (Qian-Sejnowski, 1988); QIAN880124 Weights for beta-sheet at the window position of 4 (Qian-Sejnowski, 1988); QIAN880125 Weights for beta-sheet at the window position of 5 (Qian-Sejnowski, 1988); QIAN880126 Weights for beta-sheet at the window position of 6 (Qian-Sejnowski, 1988); QIAN880127 Weights for coil at the window position of −6 (Qian-Sejnowski, 1988); QIAN880128 Weights for coil at the window position of −5 (Qian-Sejnowski, 1988); QIAN880129 Weights for coil at the window position of −4 (Qian-Sejnowski, 1988); QIAN880130 Weights for coil at the window position of −3 (Qian-Sejnowski, 1988); QIAN880131 Weights for coil at the window position of −2 (Qian-Sejnowski, 1988); QIAN880132 Weights for coil at the window position of −1 (Qian-Sejnowski, 1988); QIAN880133 Weights for coil at the window position of 0 (Qian-Sejnowski, 1988); QIAN880134 Weights for coil at the window position of 1 (Qian-Sejnowski, 1988); QIAN880135 Weights for coil at the window position of 2 (Qian-Sejnowski, 1988); QIAN880136 Weights for coil at the window position of 3 (Qian-Sejnowski, 1988); QIAN880137 Weights for coil at the window position of 4 (Qian-Sejnowski, 1988); QIAN880138 Weights for coil at the window position of 5 (Qian-Sejnowski, 1988); QIAN880139 Weights for coil at the window position of 6 (Qian-Sejnowski, 1988); RACS770101 Average reduced distance for C-alpha (Rackovsky-Scheraga, 1977); RACS770102 Average reduced distance for side chain (Rackovsky-Scheraga, 1977); RACS770103 Side chain orientational preference (Rackovsky-Scheraga, 1977); RACS820101 Average relative fractional occurrence in A0(i) (Rackovsky-Scheraga, 1982); RACS820102 Average relative fractional occurrence in AR(i) (Rackovsky-Scheraga, 1982); RACS820103 Average relative fractional occurrence in AL(i) (Rackovsky-Scheraga, 1982); RACS820104 Average relative fractional occurrence in EL(i) (Rackovsky-Scheraga, 1982); RACS820105 Average relative fractional occurrence in E0(i) (Rackovsky-Scheraga, 1982); RACS820106 Average relative fractional occurrence in ER(i) (Rackovsky-Scheraga, 1982); RACS820107 Average relative fractional occurrence in A0(i−1) (Rackovsky-Scheraga, 1982); RACS820108 Average relative fractional occurrence in AR(i−1) (Rackovsky-Scheraga, 1982); RACS820109 Average relative fractional occurrence in AL(i−1) (Rackovsky-Scheraga, 1982); RACS820110 Average relative fractional occurrence in EL(i−1) (Rackovsky-Scheraga, 1982); RACS820111 Average relative fractional occurrence in E0(1-1) (Rackovsky-Scheraga, 1982); RACS820112 Average relative fractional occurrence in ER(i−1) (Rackovsky-Scheraga, 1982); RACS820113 Value of theta(i) (Rackovsky-Scheraga, 1982); RACS820114 Value of theta(i−1) (Rackovsky-Scheraga, 1982); RADA880101 Transfer free energy from chx to wat (Radzicka-Wolfenden, 1988); RADA880102 Transfer free energy from oct to wat (Radzicka-Wolfenden, 1988); RADA880103 Transfer free energy from vap to chx (Radzicka-Wolfenden, 1988); RADA880104 Transfer free energy from chx to oct (Radzicka-Wolfenden, 1988); RADA880105 Transfer free energy from vap to oct (Radzicka-Wolfenden, 1988); RADA880106 Accessible surface area (Radzicka-Wolfenden, 1988); RADA880107 Energy transfer from out to in (95% buried) (Radzicka-Wolfenden, 1988); RADA880108 Mean polarity (Radzicka-Wolfenden, 1988); RICJ880101 Relative preference value at N″ (Richardson-Richardson, 1988); RICJ880102 Relative preference value at N′ (Richardson-Richardson, 1988); RICJ880103 Relative preference value at N-cap (Richardson-Richardson, 1988); RICJ880104 Relative preference value at N1 (Richardson-Richardson, 1988); RICJ880105 Relative preference value at N2 (Richardson-Richardson, 1988); RICJ880106 Relative preference value at N3 (Richardson-Richardson, 1988); RICJ880107 Relative preference value at N4 (Richardson-Richardson, 1988); RICJ880108 Relative preference value at N5 (Richardson-Richardson, 1988); RICJ880109 Relative preference value at Mid (Richardson-Richardson, 1988); RICJ880110 Relative preference value at C5 (Richardson-Richardson, 1988); RICJ880111 Relative preference value at C4 (Richardson-Richardson, 1988); RICJ880112 Relative preference value at C3 (Richardson-Richardson, 1988); RICJ880113 Relative preference value at C2 (Richardson-Richardson, 1988); RICJ880114 Relative preference value at C1 (Richardson-Richardson, 1988); RICJ880115 Relative preference value at C-cap (Richardson-Richardson, 1988); RICJ880116 Relative preference value at C′ (Richardson-Richardson, 1988); RICJ880117 Relative preference value at C″ (Richardson-Richardson, 1988); ROBB760101 Information measure for alpha-helix (Robson-Suzuki, 1976); ROBB760102 Information measure for N-terminal helix (Robson-Suzuki, 1976); ROBB760103 Information measure for middle helix (Robson-Suzuki, 1976); ROBB760104 Information measure for C-terminal helix (Robson-Suzuki, 1976); ROBB760105 Information measure for extended (Robson-Suzuki, 1976); ROBB760106 Information measure for pleated-sheet (Robson-Suzuki, 1976); ROBB760107 Information measure for extended without H-bond (Robson-Suzuki, 1976); ROBB760108 Information measure for turn (Robson-Suzuki, 1976); ROBB760109 Information measure for N-terminal turn (Robson-Suzuki, 1976); ROBB760110 Information measure for middle turn (Robson-Suzuki, 1976); ROBB760111 Information measure for C-terminal turn (Robson-Suzuki, 1976); ROBB760112 Information measure for coil (Robson-Suzuki, 1976); ROBB760113 Information measure for loop (Robson-Suzuki, 1976); ROBB790101 Hydration free energy (Robson-Osguthorpe, 1979); ROSG850101 Mean area buried on transfer (Rose et al., 1985); ROSG850102 Mean fractional area loss (Rose et al., 1985); ROSM880101 Side chain hydropathy, uncorrected for solvation (Roseman, 1988); ROSM880102 Side chain hydropathy, corrected for solvation (Roseman, 1988); ROSM880103 Loss of Side chain hydropathy by helix formation (Roseman, 1988); SIMZ760101 Transfer free energy (Simon, 1976), Cited by Charton-Charton (1982); SNEP660101 Principal component I (Sneath, 1966); SNEP660102 Principal component II (Sneath, 1966); SNEP660103 Principal component III (Sneath, 1966); SNEP660104 Principal component IV (Sneath, 1966); SUEM840101 Zimm-Bragg parameter s at 20 C (Sueki et al., 1984); SUEM840102 Zimm-Bragg parameter sigma ×1.0E4 (Sueki et al., 1984); SWER830101 Optimal matching hydrophobicity (Sweet-Eisenberg, 1983); TANS770101 Normalized frequency of alpha-helix (Tanaka-Scheraga, 1977); TANS770102 Normalized frequency of isolated helix (Tanaka-Scheraga, 1977); TANS770103 Normalized frequency of extended structure (Tanaka-Scheraga, 1977); TANS770104 Normalized frequency of chain reversal R (Tanaka-Scheraga, 1977); TANS770105 Normalized frequency of chain reversal S (Tanaka-Scheraga, 1977); TANS770106 Normalized frequency of chain reversal D (Tanaka-Scheraga, 1977); TANS770107 Normalized frequency of left-handed helix (Tanaka-Scheraga, 1977); TANS770108 Normalized frequency of zeta R (Tanaka-Scheraga, 1977); TANS770109 Normalized frequency of coil (Tanaka-Scheraga, 1977) TANS770110 Normalized frequency of chain reversal (Tanaka-Scheraga, 1977); VASM830101 Relative population of conformational state A (Vasquez et al., 1983); VASM830102 Relative population of conformational state C (Vasquez et al., 1983); VASM830103 Relative population of conformational state E (Vasquez et al., 1983); VELV850101 Electron-ion interaction potential (Veljkovic et al., 1985); VENT840101 Bitterness (Venanzi, 1984); VHEG790101 Transfer free energy to lipophilic phase (von Heijne-Blomberg, 1979); WARP780101 Average interactions per side chain atom (Warme-Morgan, 1978); WEBA780101 RF value in high salt chromatography (Weber-Lacey, 1978); WERD780101 Propensity to be buried inside (Wertz-Scheraga, 1978); WERD780102 Free energy change of epsilon(i) to epsilon(ex) (Wertz-Scheraga, 1978); WERD780103 Free energy change of alpha(R1) to alpha(Rh) (Wertz-Scheraga, 1978); WERD780104 Free energy change of epsilon(i) to alpha(Rh) (Wertz-Scheraga, 1978); WOEC730101 Polar requirement (Woese, 1973); WOLR810101Hydration potential (Wolfenden et al., 1981); WOLS870101 Principal property value z1 (Wold et al., 1987); WOLS870102 Principal property value z2 (Wold et al., 1987); WOLS870103 Principal property value z3 (Wold et al., 1987); YUTK870101 Unfolding Gibbs energy in water, pH7.0 (Yutani et al., 1987); YUTK870102 Unfolding Gibbs energy in water, pH9.0 (Yutani et al., 1987); YUTK870103 Activation Gibbs energy of unfolding, pH7.0 (Yutani et al., 1987); YUTK870104 Activation Gibbs energy of unfolding, pH9.0 (Yutani et al., 1987); ZASB820101 Dependence of partition coefficient on ionic strength (Zaslaysky et al., 1982); ZIMJ680101 Hydrophobicity (Zimmerman et al., 1968); ZIMJ680102 Bulkiness (Zimmerman et al., 1968); ZIMJ680103 Polarity (Zimmerman et al., 1968); ZIMJ680104 Isoelectric point (Zimmerman et al., 1968); ZIMJ680105 RF rank (Zimmerman et al., 1968); AURR980101 Normalized positional residue frequency at helix termini N4′(Aurora-Rose, 1998); AURR980102 Normalized positional residue frequency at helix termini N′″ (Aurora-Rose, 1998); AURR980103Normalized positional residue frequency at helix termini N″ (Aurora-Rose, 1998); AURR980104 Normalized positional residue frequency at helix termini N′(Aurora-Rose, 1998); AURR980105 Normalized positional residue frequency at helix termini Nc (Aurora-Rose, 1998); AURR980106 Normalized positional residue frequency at helix termini N1 (Aurora-Rose, 1998); AURR980107 Normalized positional residue frequency at helix termini N2 (Aurora-Rose, 1998); AURR980108 Normalized positional residue frequency at helix termini N3 (Aurora-Rose, 1998); AURR980109 Normalized positional residue frequency at helix termini N4 (Aurora-Rose, 1998); AURR980110 Normalized positional residue frequency at helix termini N5 (Aurora-Rose, 1998); AURR980111 Normalized positional residue frequency at helix termini C5 (Aurora-Rose, 1998); AURR980112 Normalized positional residue frequency at helix termini C4 (Aurora-Rose, 1998); AURR980113 Normalized positional residue frequency at helix termini C3 (Aurora-Rose, 1998); AURR980114 Normalized positional residue frequency at helix termini C2 (Aurora-Rose, 1998); AURR980115 Normalized positional residue frequency at helix termini C1 (Aurora-Rose, 1998); AURR980116 Normalized positional residue frequency at helix termini Cc (Aurora-Rose, 1998); AURR980117 Normalized positional residue frequency at helix termini C′ (Aurora-Rose, 1998); AURR980118 Normalized positional residue frequency at helix termini C″ (Aurora-Rose, 1998); AURR980119 Normalized positional residue frequency at helix termini C′″ (Aurora-Rose, 1998); AURR980120 Normalized positional residue frequency at helix termini C4′ (Aurora-Rose, 1998); ONEK900101 Delta G values for the peptides extrapolated to 0 M urea (O'Neil-DeGrado, 1990); ONEK900102 Helix formation parameters (delta delta G) (O'Neil-DeGrado, 1990); VINM940101 Normalized flexibility parameters (B-values), average (Vihinen et al., 1994); VINM940102 Normalized flexibility parameters (B-values) for each residue surrounded by none rigid neighbours (Vihinen et al., 1994); VINM940103 Normalized flexibility parameters (B-values) for each residue surrounded by one rigid neighbours (Vihinen et al., 1994); VINM940104 Normalized flexibility parameters (B-values) for each residue surrounded by two rigid neighbours (Vihinen et al., 1994); MUNV940101 Free energy in alpha-helical conformation (Munoz-Serrano, 1994); MUNV940102 Free energy in alpha-helical region (Munoz-Serrano, 1994); MUNV940103 Free energy in beta-strand conformation (Munoz-Serrano, 1994); MUNV940104 Free energy in beta-strand region (Munoz-Serrano, 1994); MUNV940105 Free energy in beta-strand region (Munoz-Serrano, 1994) WIMW960101 Free energies of transfer of AcW1-X-LL peptides from bilayer interface to water (Wimley-White, 1996); KIMC930101 Thermodynamic beta sheet propensity (Kim-Berg, 1993); MONM990101 Turn propensity scale for transmembrane helices (Monne et al., 1999); BLAM930101 Alpha helix propensity of position 44 in T4 lysozyme (Blaber et al., 1993); PARS000101 p-Values of mesophilic proteins based on the distributions of B values (Parthasarathy-Murthy, 2000); PARS000102 p-Values of thermophilic proteins based on the distributions of B values (Parthasarathy-Murthy, 2000); KUMS000101 Distribution of amino acid residues in the 18 non-redundant families of thermophilic proteins (Kumar et al., 2000); KUMS000102 Distribution of amino acid residues in the 18 non-redundant families of mesophilic proteins (Kumar et al., 2000); KUMS000103 Distribution of amino acid residues in the alpha-helices in thermophilic proteins (Kumar et al., 2000); KUMS000104 Distribution of amino acid residues in the alpha-helices in mesophilic proteins (Kumar et al., 2000); TAKK010101 Side-chain contribution to protein stability (kJ/mol) (Takano-Yutani, 2001); FODMO20101 Propensity of amino acids within pi-helices (Fodje-Al-Karadaghi, 2002); NADH010101 Hydropathy scale based on self-information values in the two-state model (5% accessibility) (Naderi-Manesh et al., 2001); NADH010102 Hydropathy scale based on self-information values in the two-state model (9% accessibility) (Naderi-Manesh et al., 2001); NADH010103 Hydropathy scale based on self-information values in the two-state model (16% accessibility) (Naderi-Manesh et al., 2001); NADH010104 Hydropathy scale based on self-information values in the two-state model (20% accessibility) (Naderi-Manesh et al., 2001); NADH010105 Hydropathy scale based on self-information values in the two-state model (25% accessibility) (Naderi-Manesh et al., 2001); NADH010106 Hydropathy scale based on self-information values in the two-state model (36% accessibility) (Naderi-Manesh et al., 2001); NADH010107 Hydropathy scale based on self-information values in the two-state model (50% accessibility) (Naderi-Manesh et al., 2001); MONM990201 Averaged turn propensities in a transmembrane helix (Monne et al., 1999); KOEP990101 Alpha-helix propensity derived from designed sequences (Koehl-Levitt, 1999); KOEP990102 Beta-sheet propensity derived from designed sequences (Koehl-Levitt, 1999); CEDJ970101 Composition of amino acids in extracellular proteins (percent) (Cedano et al., 1997); CEDJ970102 Composition of amino acids in anchored proteins (percent) (Cedano et al., 1997); CEDJ970103 Composition of amino acids in membrane proteins (percent) (Cedano et al., 1997); CEDJ970104 Composition of amino acids in intracellular proteins (percent) (Cedano et al., 1997); CEDJ970105 Composition of amino acids in nuclear proteins (percent) (Cedano et al., 1997); FUKS010101 Surface composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010102 Surface composition of amino acids in intracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010103 Surface composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010104 Surface composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001); FUKS010105 Interior composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010106 Interior composition of amino acids in intracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010107 Interior composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010108 Interior composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001); FUKS010109 Entire chain composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010110 Entire chain composition of amino acids in intracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010111 Entire chain composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010112 Entire chain composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001); AVBF000101 Screening coefficients gamma, local (Avbelj, 2000); AVBF000102 Screening coefficients gamma, non-local (Avbelj, 2000); AVBF000103 Slopes tripeptide, FDPB VFF neutral (Avbelj, 2000); AVBF000104 Slopes tripeptides, LD VFF neutral (Avbelj, 2000); AVBF000105 Slopes tripeptide, FDPB VFF noside (Avbelj, 2000); AVBF000106 Slopes tripeptide FDPB VFF all (Avbelj, 2000); AVBF000107 Slopes tripeptide FDPB PARSE neutral (Avbelj, 2000); AVBF000108 Slopes dekapeptide, FDPB VFF neutral (Avbelj, 2000); AVBF000109 Slopes proteins, FDPB VFF neutral (Avbelj, 2000); YANJ020101 Side-chain conformation by gaussian evolutionary method (Yang et al., 2002); MITS020101 Amphiphilicity index (Mitaku et al., 2002); TSAJ990101 Volumes including the crystallographic waters using the ProtOr (Tsai et al., 1999); TSAJ990102 Volumes not including the crystallographic waters using the ProtOr (Tsai et al., 1999); COSI940101 Electron-ion interaction potential values (Cosic, 1994); PONP930101 Hydrophobicity scales (Ponnuswamy, 1993); WILM950101 Hydrophobicity coefficient in RP-HPLC, C18 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995); WILM950102 Hydrophobicity coefficient in RP-HPLC, C8 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995); WILM950103 Hydrophobicity coefficient in RP-HPLC, C4 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995); WILM950104 Hydrophobicity coefficient in RP-HPLC, C18 with 0.1% TFA/2-PrOH/MeCN/H2O (Wilce et al. 1995); KUHL950101 Hydrophilicity scale (Kuhn et al., 1995); GUOD860101 Retention coefficient at pH 2 (Guo et al., 1986); JURD980101 Modified Kyte-Doolittle hydrophobicity scale (Juretic et al., 1998); BASU050101 Interactivity scale obtained from the contact matrix (Bastolla et al., 2005); BASU050102 Interactivity scale obtained by maximizing the mean of correlation coefficient over single-domain globular proteins (Bastolla et al., 2005); BASU050103 Interactivity scale obtained by maximizing the mean of correlation coefficient over pairs of sequences sharing the TIM barrel fold (Bastolla et al., 2005); SUYM030101 Linker propensity index (Suyama-Ohara, 2003); PUNT030101 Knowledge-based membrane-propensity scale from 1D_Helix in MPtopo databases (Punta-Maritan, 2003); PUNT030102 Knowledge-based membrane-propensity scale from 3D_Helix in MPtopo databases (Punta-Maritan, 2003); GEOR030101 Linker propensity from all dataset (George-Heringa, 2003); GEOR030102 Linker propensity from 1-linker dataset (George-Heringa, 2003); GEOR030103 Linker propensity from 2-linker dataset (George-Heringa, 2003); GEOR030104 Linker propensity from 3-linker dataset (George-Heringa, 2003); GEOR030105 Linker propensity from small dataset (linker length is less than six residues) (George-Heringa, 2003); GEOR030106 Linker propensity from medium dataset (linker length is between six and 14 residues) (George-Heringa, 2003); GEOR030107 Linker propensity from long dataset (linker length is greater than 14 residues) (George-Heringa, 2003); GEOR030108 Linker propensity from helical (annotated by DSSP) dataset (George-Heringa, 2003); GEOR030109 Linker propensity from non-helical (annotated by DSSP) dataset (George-Heringa, 2003); ZHOH040101 The stability scale from the knowledge-based atom-atom potential (Zhou-Zhou, 2004); ZHOH040102 The relative stability scale extracted from mutation experiments (Zhou-Zhou, 2004); ZHOH040103 Buriability (Zhou-Zhou, 2004); BAEK050101 Linker index (Bae et al., 2005); HARY940101 Mean volumes of residues buried in protein interiors (Harpaz et al., 1994); PONJ960101 Average volumes of residues (Pontius et al., 1996); DIGM050101 Hydrostatic pressure asymmetry index, PAI (Di Giulio, 2005); WOLR790101 Hydrophobicity index (Wolfenden et al., 1979); OLSK800101 Average internal preferences (Olsen, 1980); KIDA850101 Hydrophobicity-related index (Kidera et al., 1985); GUYH850102 Apparent partition energies calculated from Wertz-Scheraga index (Guy, 1985); GUYH850103 Apparent partition energies calculated from Robson-Osguthorpe index (Guy, 1985); GUYH850104 Apparent partition energies calculated from Janin index (Guy, 1985); GUYH850105 Apparent partition energies calculated from Chothia index (Guy, 1985); ROSM880104 Hydropathies of amino acid side chains, neutral form (Roseman, 1988); ROSM880105 Hydropathies of amino acid side chains, pi-values in pH 7.0 (Roseman, 1988); JACR890101Weights from the IFH scale (Jacobs-White, 1989); COWR900101Hydrophobicity index, 3.0 pH (Cowan-Whittaker, 1990) BLAS910101 Scaled side chain hydrophobicity values (Black-Mould, 1991); CASG920101 Hydrophobicity scale from native protein structures (Casari-Sippl, 1992); CORJ870101 NNEIG index (Cornette et al., 1987); CORJ870102 SWEIG index (Cornette et al., 1987); CORJ870103 PRIFT index (Cornette et al., 1987); CORJ870104 PRILS index (Cornette et al., 1987); CORJ870105 ALTFT index (Cornette et al., 1987) CORJ870106 ALTLS index (Cornette et al., 1987); CORJ870107 TOTFT index (Cornette et al., 1987); CORJ870108 TOTLS index (Cornette et al., 1987); MIYS990101 Relative partition energies derived by the Bethe approximation (Miyazawa-Jernigan, 1999); MIYS990102 Optimized relative partition energies—method A (Miyazawa-Jernigan, 1999); MIYS990103 Optimized relative partition energies—method B (Miyazawa-Jernigan, 1999); MIYS990104 Optimized relative partition energies—method C (Miyazawa-Jernigan, 1999); MIYS990105 Optimized relative partition energies—method D (Miyazawa-Jernigan, 1999); ENGD860101 Hydrophobicity index (Engelman et al., 1986); and FASG890101 Hydrophobicity index (Fasman, 1989)


In some embodiments of the invention, degenerate oligonucleotides are used to synthesize one or more of the TN1, DH, N2, and/or H3-JH segments of the invention. In certain embodiments of the invention, the codon at or near the 5′ end of the oligonucleotide encoding the H3-JH segment is a degenerate codon. Such degenerate codons may be the first codon from the 5′ end, the second codon from the 5′ end, the third codon from the 5′ end, the fourth codon from the 5′ end, the fifth codon from the 5′ end, and/or any combination of the above. In some embodiments of the invention, one or more of the codons at or near the 5′ and/or 3′ ends of the DH segment are degenerate. Such degenerate codons may be the first codon from the 5′ and/or 3′ end(s), the second codon from the 5′ and/or 3′ end(s), the third codons from the 5′ and/or 3′ end(s), the fourth codon from the 5′ and/or 3′ end(s), the fifth codon from the 5′ and/or 3′ end(s), and/or any combination of the above. Degenerate codons used in each of the oligonucleotides encoding the segments may be selected for their ability to optimally recapitulate sequences in a theoretical segment pool and/or CDRH3 reference set.


In some embodiments, the invention provides methods of producing a theoretical segment pool of H3-JH segments, as described in the Examples. Theoretical segment pools generated utilizing NNN triplets, instead of or in addition to the NN doublets described in Example 5 also fall within the scope of the invention, as do synthetic libraries incorporating segments from these theoretical segment pools.


In some embodiments, the invention provides methods of producing a theoretical segment pool of DH segments, as described in the Examples. In particular, for example, the invention provides methods of producing a theoretical segment pool of DH segments described by the PYTHON program of Example 6. Example 6 describes the application of this program to produce the 68K theoretical segment pool (minimum length of DNA sequences after progressive deletions=4 bases; and minimum length of peptide sequences for inclusion in the theoretical segment pool=2). An alternative example is provided wherein the minimum length of the DNA sequences after progressive deletions was one base and the minimum length of the peptide sequence is one amino acid. It is also contemplated that other values could be used for these parameters. For example, the minimum length of the DNA sequences after progressive deletions could be set as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15, and the minimum length of the peptide sequences in the theoretical segment pool could be set as 1, 2, 3, 4, or 5.


Design of CDRH3 Libraries Using the TN1, DH, N2, and H3-JH Segments


The CDRH3 libraries of the invention comprise TN1, DH, N2, and H3-JH segments. Thus, in certain embodiments of the invention, the overall design of the CDRH3 libraries can be represented by the following formula:

[TN1]-[DH]-[N2]-[H3-JH].


In certain embodiments of the invention, a synthetic CDRH3 repertoire is combined with selected VH chassis sequences and heavy chain constant regions, via homologous recombination. Therefore, in certain embodiments of the invention, it may be desirable to include DNA sequences flanking the 5′ and 3′ ends of the synthetic CDRH3 libraries, to facilitate homologous recombination between the synthetic CDRH3 libraries and vectors containing the selected chassis and constant regions. In certain embodiments, the vectors also contain a sequence encoding at least a portion of the non-truncated region of the IGHJ gene (i.e., FRM4-JH). Thus, a polynucleotide encoding an N-terminal sequence (e.g., CA(K/R/T)) may be added to the synthetic CDRH3 sequences, wherein the N-terminal polynucleotide is homologous with FRM3 of the chassis, while a polynucleotide encoding a C-terminal sequence (e.g., WG(Q/R/K)G) may be added to the synthetic CDRH3, wherein the C-terminal polynucleotide is homologous with FRM4-JH. Although the sequence WG(Q/R)G is presented in this exemplary embodiment, additional amino acids, C-terminal to this sequence in FRM4-JH may also be included in the polynucleotide encoding the C-terminal sequence. The purpose of the polynucleotides encoding the N-terminal and C-terminal sequences, in this case, is to facilitate homologous recombination, and one of ordinary skill in the art would recognize that these sequences may be longer or shorter than depicted below. Accordingly, in certain embodiments of the invention, the overall design of the CDRH3 repertoire, including the sequences required to facilitate homologous recombination with the selected chassis, can be represented by the following formula (regions homologous with vector underlined):


CA[R/K/T]-[TN1]-[DH]-[N2]-[H3-JH]-[WG(Q/R/K)G] (SEQ ID NO. 8762, SEQ ID NO. 8763, and SEQ ID NO. 8764, respectively).


In some embodiments of the invention, the CDRH3 repertoire can be represented by the following formula, which excludes the T residue presented in the schematic above:


CA[R/K]-[TN1]-[DH]-[N2]-[H3-JH]-[WG(Q/R/K)G] (SEQ ID NO. 8762, SEQ ID NO. 8763, and SEQ ID NO. 8764, respectively).


References describing collections of V, D, and J genes include Scaviner et al., Exp. Clin, Immunogenet., 1999, 16: 243 and Ruiz et al., Exp. Clin. Immunogenet, 1999, 16: 173, each incorporated by reference in its entirety.


Although homologous recombination is one method of producing the libraries of the invention, a person of ordinary skill in the art will readily recognize that other methods of DNA assembly, such as ligation or site-specific recombination, and/or DNA synthesis, can also be used to produce the libraries of the invention.


CDRH3 Lengths


The lengths of the segments may also be varied, for example, to produce libraries with a particular distribution of CDRH3 lengths. In one embodiment of the invention, the H3-JH segments are about 0 to about 10 amino acids in length, the DH segments are about 0 to about 12 amino acids in length, the TN1 segments are about 0 to about 4 amino acids in length, and the N2 segments are about 0 to about 4 amino acids in length. In certain embodiments, the H3-JH segments are at least about 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and/or 10 amino acids in length. In some embodiments, the DH segments are at least about 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and/or 12 amino acids in length. In certain embodiments, the TN1 segments are at least about 0, 1, 2, 3, or 4 amino acids in length. In some embodiments, the N2 amino acids are at least about 0, 1, 2, 3, or 4 amino acids in length. In certain embodiments of the invention, the CDRH3 is about 2 to about 35, about 2 to about 28, or about 5 to about 26 amino acids in length. In some embodiments, the CDRH3 is at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, and/or 35 amino acids in length. In some embodiments, the length of any of the segments or CDRH3s of the invention may be less than a particular number of amino acids, where the number of amino acids is defined using any one of the integers provided above for the respective segment or CDRH3. In certain embodiments of the invention, a particular numerical range is defined, using any two of the integers provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the integers provided, which define an upper and lower boundary, are contemplated.


Design of CDRL3 Libraries


The design of CDRL3 libraries, and light chain sequences, is described in detail in U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379, each of which is incorporated by reference in its entirety, and is therefore only described briefly herein. Libraries described herein are designed according to similar principles, with three important differences, namely that the libraries of the current invention contain (1) variability in CDRL1 and CDRL2; (2) variability in the framework regions; and/or (3) variability in CDRL3 that is designed to produce light chain libraries with CDRL3s that closely resemble human germline-like CDRL3 sequences, as defined above (Table 1).


A CDRL3 library of the invention may be a VKCDR3 library and/or a VλCDR3 library. In certain embodiments of the invention, patterns of occurrence of particular amino acids at defined positions within VL sequences are determined by analyzing data available in public or other databases, for example, the NCBI database (see, for example, WO/2009/036379). In certain embodiments of the invention, these sequences are compared on the basis of identity and assigned to families on the basis of the germline genes from which they are derived. The amino acid composition at each position of the sequence, in each germline family, may then be determined. This process is illustrated in the Examples provided herein.


Light Chains with Framework Variability


In some embodiments, the invention provides a library of light chain variable domains wherein the light chain variable domains are varied at one or more of framework positions 2, 4, 36, 46, 48, 49, and 66. In some embodiments, the invention provides a library of light chain variable domains comprising at least a plurality of light chain variable domains whose amino acid sequences are identical to one another except for substitutions at one or more of positions 2, 4, 36, 46, 48, 49, and 66. In certain embodiments, the invention provides a library of light chain variable domains comprising at least a plurality of light chain variable domains whose amino acid sequences are at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, and/or 99.5% to any of the light chain variable domain sequences disclosed herein, and further have substitutions at one or more of positions 2, 4, 36, 46, 48, 49, and 66. In some embodiments, the amino acids selected for inclusion in these positions are selected from amongst about the most 2, 3, 4, 5, 6, 7, 8, 9, and/or 10 most frequently occurring amino acids at the corresponding position in a reference set of light chain variable domains.


In some embodiments, the invention provides systems and methods of selecting framework positions to be varied in a light chain variable domain, comprising:

    • (i) obtaining a reference set of light chain sequences, wherein the reference set contains light chain sequences with VL segments selected from the group consisting of sequences found in, or encoded by, a single IGVL germline gene and/or sequences found in, or encoded by, allelic variants of the single IGVL germline gene;
    • (ii) determining which framework positions within the reference set have a degree of variability that is similar to the degree of variability occurring in one more CDR positions of the sequences in the reference set (e.g., the variability in a framework position is at least about 70%, 80%, 90%, or 95%, 100%, or more of the variability found in a CDR position of the sequences in the reference set);
    • (iii) determining the frequency of occurrence of amino acid residues for each of the framework positions identified in (ii);
    • (iv) synthesizing light chain variable domain encoding sequences wherein the framework positions identified in (ii) are varied to include the 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 most frequently occurring amino acid residues (identified in (iii)) at the corresponding position.


One of ordinary skill in the art, reading the present disclosure will appreciate that the present invention provides analogous methods for developing framework variants of heavy chain sequences.


Light Chains with CDR1 and/or CDR2Variability


In some embodiments, the invention provides a library of light chain variable domains wherein the light chain variable domains are varied at one or more of CDRL1 positions 28, 29, 30, 30A, 30B, 30E, 31, and 32 (Chothia-Lesk numbering scheme; Chothia and Lesk, J. Mol. Biol., 1987, 196: 901). In some embodiments, the invention provides a library of light chain variable domains wherein the light chain variable domains are varied at one or more of CDRL2 positions 50, 51, 53, and 55. In some embodiments, the amino acids selected for inclusion in these CDRL1 and/or CDRL2 positions are selected from amongst about the most 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and/or 20 most frequently occurring amino acids at the corresponding position in a reference set of light chain variable domains.


In some embodiments, the invention provides systems and methods for selecting CDRL1 and/or CDRL2 positions to be varied in a light chain variable domain, comprising:

    • (i) obtaining a reference set of light chain sequences, wherein the reference set contains light chain sequences with VL segments selected from the group consisting of sequences found in, or encoded by, a single IGVL germline gene and sequences found in, or encoded by, allelic variants of the single IGVL germline gene;
    • (ii) determining which CDRL1 and/or CDRL2 positions are variable within the reference set;
    • (iii) synthesizing light chain variable domain encoding sequences wherein the CDRL1 and/or CDRL2 positions identified in (ii) are varied to include the 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 most frequently occurring amino acid residues at the corresponding position.


One of ordinary skill in the art, reading the present disclosure will appreciate that the present invention provides analogous methods for developing CDRH2 and/or CDRH2 variants of heavy chain sequences.


Light Chain Sequences


In some embodiments, the invention provides a light chain library comprising one or more of any of the light chain sequences provided herein, for example, the polypeptide sequences of Table 3 and/or Table 4 and/or the polynucleotide sequences of Table 5, Table 6, and/or Table 7. A person of ordinary skill in the art will recognize that not every light chain sequence provided herein is necessary to produce a functional light chain library of the invention. Therefore, in certain embodiments, a light chain library of the invention will contain a subset of the sequences described above. For example, in certain embodiments of the invention, at least about 10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 103, 104, and/or 105 of the light chain polynucleotide and/or polypeptide sequences provided herein are included in a library. In some embodiments, a library of the invention may contain less than a particular number of polynucleotide or polypeptide segments, where the number of segments is defined using any one of the integers provided above for the respective segment. In certain embodiments of the invention, a particular numerical range is defined, using any two of the integers provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the integers provided, which define an upper and lower boundary, are contemplated.


In certain embodiments, the invention provides light chain libraries comprising at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the sequences from any of the sets of light chain sequences provided herein. For example, the invention provides libraries comprising at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the light chain sequences provided in Table 3, Table 4, Table 5, Table 6, and/or Table 7. In some embodiments of the invention, a particular percentage range is defined, using any two of the percentages provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the percentages provided, which define an upper and lower boundary, are contemplated.


In some embodiments of the invention, at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the light chain sequences in a library are light chain sequences provided herein. In certain embodiments of the invention, at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the light chain sequences isolated from a light chain library (e.g., by binding to a particular antigen and/or generic ligand) are light chain sequences provided herein. In some embodiments, a light chain library of the invention may contain less than a particular percentage of light chain sequences provided herein, where the percentage of light chain sequences is defined using any one of the percentages provided above. In certain embodiments of the invention, a particular percentage range is defined, using any two of the percentages provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the percentages provided, which define an upper and lower boundary, are contemplated.


One of ordinary skill in the art will further recognize that given the light chain sequences provided herein, similar light chain sequences could be produced which share a designated level of overall sequence identity and/or one or more characteristic sequence elements described herein, which overall degree of sequence identity and/or characteristic sequence elements may confer common functional attributes. Those of ordinary skill in the art will be well familiar with a variety of techniques for preparing such related sequences, including the mutagenesis techniques provided herein. Therefore, each of the explicitly enumerated embodiments of the invention can also be practiced using light chain sequences that share a particular percent identity to any of the light chain sequences provided herein. For example, each of the previously described embodiments of the invention can be practiced using light chain sequences that are at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 99.9% identical to the light chain sequences provided herein. For example, in some embodiments, light chain libraries provided by the invention comprise light chain variable domains at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 99.9% identical to the light chain sequences provided herein, with substitutions in one or more of framework positions 2, 4, 36, 46, 48, 49, and 66, CDRL1 positions 28, 29, 30, 30A, 30B, 30E, 31, and 32 (Chothia-Lesk numbering scheme), and/or CDRL2 positions 50, 51, 53, and 55.


In some embodiments, the invention provides systems and methods for varying positions within the portion of CDRL3s encoded by a particular IGVL germline gene, comprising:

    • (i) obtaining a reference set of light chain sequences, wherein the reference set contains light chain sequences with VL segments originating from the same IGVL germline gene and/or its allelic variants;
    • (ii) determining which amino acids occur at each of the CDRL3 positions in the reference set that are encoded by the IGVL gene (i.e., positions 89-94, inclusive);
    • (iii) synthesizing light chain variable domain encoding sequences wherein two positions in each light chain variable domain encoding sequence contain degenerate codons encoding the 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 most frequently occurring amino acid residues at the corresponding positions in the reference set.


As described in the examples, the degenerate codons of (iii) can be chosen to best reproduce the amino acid diversity contained in the reference set for each of the two positions varied in each light chain. Finally, while the methods and systems described above are described with respect to CDRL3, one of ordinary skill in the art will readily recognize that the same principles can be applied to CDRH1 and/or CDRH2 of the heavy chain, which are encoded entirely by the IGHV gene.


CDRL3 Lengths


In some embodiments, as an alternative or in addition to other features described herein, the present invention provides libraries in which lengths of CDRL3s may be varied. The present invention therefore provides, among other things, libraries with a particular distribution of CDRL3 lengths. Although CDRL3 libraries of lengths 8, 9, and 10 are exemplified, one of ordinary skill in the art will readily recognize that the methods described herein can be applied to produce light chains with CDRL3s of different lengths (e.g., about 5, 6, 7, 11, 12, 13, 14, 15, and/or 16) that also fall within the scope of the invention. In some embodiments, the length of any of the CDRL3s of the invention may be less than a particular number of amino acids, where the number of amino acids is defined using any one of the integers provided above. In some embodiments of the invention, a particular numerical range is defined, using any two of the integers provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the integers provided, which define an upper and lower boundary, are contemplated.


Synthetic Antibody Libraries


In some embodiments of the invention, provided libraries include one or more synthetic polynucleotides. In some embodiments, provided libraries may comprise synthetic polynucleotides selected from (a) heavy chain chassis polynucleotides; (b) light chain chassis polynucleotides; (c) CDR3 polynucleotides; (d) constant domain polynucleotides; and (e) combinations thereof. Those of ordinary skill in the art will appreciate that such synthetic polynucleotides may be linked to other synthetic or non-synthetic polynucleotides in provided libraries.


Synthetic polynucleotides provided herein may be prepared by any available method. For example, in some embodiments, synthetic polynucleotides can be synthesized by split pool DNA synthesis as described in Feldhaus et al., Nucleic Acids Research, 2000, 28: 534; Omstein et al., Biopolymers, 1978, 17: 2341; Brenner and Lerner, PNAS, 1992, 87: 6378, U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379 (each incorporated by reference in its entirety).


In some embodiments of the invention, segments representing the possible TN1, DH, N2, and JH diversity found in the human repertoire are synthesized de novo either as double-stranded DNA oligonucleotides, single-stranded DNA oligonucleotides representative of the coding strand, or single-stranded DNA oligonucleotides representative of the non-coding strand. Such sequences can then be introduced into a host cell along with an acceptor vector containing a chassis sequence and, in some cases a portion of FRM4 and a constant region. No primer-based PCR amplification from mammalian cDNA or mRNA or template-directed cloning steps from mammalian cDNA or mRNA need be employed.


Construction of Libraries by Yeast Homologous Recombination


In certain embodiments, the invention exploits the inherent ability of yeast cells to facilitate homologous recombination at high efficiency. The mechanism of homologous recombination in yeast and its applications are briefly described below (also see e.g., U.S. Pat. Nos. 6,406,863; 6,410,246; 6,410,271; 6,610,472; and 7,700,302, each of which is incorporated by reference in its entirety).


As an illustrative embodiment, homologous recombination can be carried out in, for example, Saccharomyces cerevisiae, which has genetic machinery designed to carry out homologous recombination with high efficiency. Exemplary S. cerevisiae strains include EM93, CEN.PK2, RM11-1a, YJM789, and BJ5465. This mechanism is believed to have evolved for the purpose of chromosomal repair, and is also called “gap repair” or “gap filling”. By exploiting this mechanism, mutations can be introduced into specific loci of the yeast genome. For example, a vector carrying a mutant gene can contain two sequence segments that are homologous to the 5′ and 3′ open reading frame (ORF) sequences of a gene that is intended to be interrupted or mutated. The vector may also encode a positive selection marker, such as a nutritional enzyme allele (e.g., URA3) and/or an antibiotic resistant marker (e.g., Geneticin/G418), flanked by the two homologous DNA segments. Other selection markers and antibiotic resistance markers are known to one of ordinary skill in the art.


In some embodiments of the invention, this vector (e.g., a plasmid) is linearized and transformed into the yeast cells. Through homologous recombination between the plasmid and the yeast genome, at the two homologous recombination sites, a reciprocal exchange of the DNA content occurs between the wild type gene in the yeast genome and the mutant gene (including the selection marker gene(s)) that is flanked by the two homologous sequence segments. By selecting for the one or more selection markers, the surviving yeast cells will be those cells in which the wild-type gene has been replaced by the mutant gene (Pearson et al., Yeast, 1998, 14: 391, incorporated by reference in its entirety). This mechanism has been used to make systematic mutations in all 6,000 yeast genes, or open reading frames (ORFs), for functional genomics studies. Because the exchange is reciprocal, a similar approach has also been used successfully to clone yeast genomic DNA fragments into a plasmid vector (Iwasaki et al., Gene, 1991, 109: 81, incorporated by reference in its entirety).


By utilizing the endogenous homologous recombination machinery present in yeast, gene fragments or synthetic oligonucleotides can also be cloned into a plasmid vector without a ligation step. In this application of homologous recombination, a target gene fragment (i.e., the fragment to be inserted into a plasmid vector, e.g., a CDR3) is obtained (e.g., by oligonucleotides synthesis, PCR amplification, restriction digestion out of another vector, etc.). DNA sequences that are homologous to selected regions of the plasmid vector are added to the 5′ and 3′ ends of the target gene fragment. These homologous regions may be fully synthetic, or added via PCR amplification of a target gene fragment with primers that incorporate the homologous sequences. The plasmid vector may include a positive selection marker, such as a nutritional enzyme allele (e.g., URA3), or an antibiotic resistance marker (e.g., Geneticin/G418). The plasmid vector is then linearized by a unique restriction cut located in-between the regions of sequence homology shared with the target gene fragment, thereby creating an artificial gap at the cleavage site. The linearized plasmid vector and the target gene fragment flanked by sequences homologous to the plasmid vector are co-transformed into a yeast host strain. The yeast is then able to recognize the two stretches of sequence homology between the vector and target gene fragment and facilitate a reciprocal exchange of DNA content through homologous recombination at the gap. As a consequence, the target gene fragment is inserted into the vector without ligation.


The method described above has also been demonstrated to work when the target gene fragments are in the form of single stranded DNA, for example, as a circular M13 phage derived form, or as single stranded oligonucleotides (Simon and Moore, Mol. Cell. Biol., 1987, 7: 2329; Ivanov et al., Genetics, 1996, 142: 693; and DeMarini et al., 2001, 30: 520., each incorporated by reference in its entirety). Thus, the form of the target that can be recombined into the gapped vector can be double stranded or single stranded, and derived from chemical synthesis, PCR, restriction digestion, or other methods.


Several factors may influence the efficiency of homologous recombination in yeast. For example, the efficiency of the gap repair is correlated with the length of the homologous sequences flanking both the linearized vector and the target gene. In certain embodiments, about 20 or more base pairs may be used for the length of the homologous sequence, and about 80 base pairs may give a near-optimized result (Hua et al., Plasmid, 1997, 38: 91; Raymond et al., Genome Res., 2002, 12: 190, each incorporated by reference in its entirety). In certain embodiments of the invention, at least about 5, 10, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 187, 190, or 200 homologous base pairs may be used to facilitate recombination. In certain embodiments, between about 20 and about 40 base pairs are utilized. In addition, the reciprocal exchange between the vector and gene fragment is strictly sequence-dependent, i.e. it does not cause a frame shift. Therefore, gap-repair cloning assures the insertion of gene fragments with both high efficiency and precision. The high efficiency makes it possible to clone two, three, or more targeted gene fragments simultaneously into the same vector in one transformation attempt (Raymond et al., Biotechniques, 1999, 26: 134, incorporated by reference in its entirety). Moreover, the nature of precision sequence conservation through homologous recombination makes it possible to clone selected genes or gene fragments into expression or fusion vectors for direct functional examination (El-Deiry et al., Nature Genetics, 1992, 1: 4549; Ishioka et al., PNAS, 1997, 94: 2449, each incorporated by reference in its entirety).


Libraries of gene fragments have also been constructed in yeast using homologous recombination. For example, a human brain cDNA library was constructed as a two-hybrid fusion library in vector pJG4-5 (Guidotti and Zervos, Yeast, 1999, 15: 715, incorporated by reference in its entirety). It has also been reported that a total of 6,000 pairs of PCR primers were used for amplification of 6,000 known yeast ORFs for a study of yeast genomic protein interactions (Hudson et al., Genome Res., 1997, 7: 1169, incorporated by reference in its entirety). In 2000, Uetz et al. conducted a comprehensive analysis-of protein-protein interactions in Saccharomyces cerevisiae (Uetz et al., Nature, 2000, 403: 623, incorporated by reference in its entirety). The protein-protein interaction map of the budding yeast was studied by using a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins (Ito et al., PNAS, 2000, 97: 1143, incorporated by reference in its entirety), and the genomic protein linkage map of Vaccinia virus was studied using this system (McCraith et al., PNAS, 2000, 97: 4879, incorporated by reference in its entirety).


In certain embodiments of the invention, a synthetic CDR3 (heavy or light chain) may be joined by homologous recombination with a vector encoding a heavy or light chain chassis, a portion of FRM4, and a constant region, to form a full-length heavy or light chain. In certain embodiments of the invention, the homologous recombination is performed directly in yeast cells. In some embodiments, such a method comprises:

    • (a) transforming into yeast cells:
      • (i) a linearized vector encoding a heavy or light chain chassis, a portion of FRM4, and a constant region, wherein the site of linearization is between the end of FRM3 of the chassis and the beginning of the constant region; and
      • (ii) a library of CDR3 insert nucleotide sequences that are linear and double stranded, wherein each of the CDR3 insert sequences comprises a nucleotide sequence encoding CDR3 and 5′- and 3′-flanking sequences that are sufficiently homologous to the termini of the vector of (i) at the site of linearization to enable homologous recombination to occur between the vector and the library of CDR3 insert sequences; and
    • (b) allowing homologous recombination to occur between the vector and the CDR3 insert sequences in the transformed yeast cells, such that the CDR3 insert sequences are incorporated into the vector, to produce a vector encoding full-length heavy chain or light chain.


As specified above, CDR3 inserts may have a 5′ flanking sequence and a 3′ flanking sequence that are homologous to the termini of the linearized vector. When the CDR3 inserts and the linearized vectors are introduced into a host cell, for example, a yeast cell, the “gap” (the linearization site) created by linearization of the vector is filled by the CDR3 fragment insert through recombination of the homologous sequences at the 5′ and 3′ termini of these two linear double-stranded DNAs (i.e., the vector and the insert). Through this event of homologous recombination, libraries of circular vectors encoding full-length heavy or light chains comprising variable CDR3 inserts is generated. Particular instances of these methods are presented in the Examples.


Subsequent analysis may be carried out to determine, for example, the efficiency of homologous recombination that results in correct insertion of the CDR3 sequences into the vectors. For example, PCR amplification of the CDR3 inserts directly from selected yeast clones may reveal how many clones are recombinant. In certain embodiments, libraries with minimum of about 90% recombinant clones are utilized. In certain embodiments libraries with a minimum of about 1%, 5% 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% recombinant clones are utilized. The same PCR amplification of selected clones may also reveal the insert size.


To verify the sequence diversity of the inserts in the selected clones, a PCR amplification product with the correct size of insert may be “fingerprinted” with restriction enzymes known to cut or not cut within the amplified region. From a gel electrophoresis pattern, it may be determined whether the clones analyzed are of the same identity or of the distinct or diversified identity. The PCR products may also be sequenced directly to reveal the identity of inserts and the fidelity of the cloning procedure, and to prove the independence and diversity of the clones.


Expression and Screening Systems


Libraries of polynucleotides generated by any of the techniques described herein, or other suitable techniques, can be expressed and screened to identify antibodies having desired structure and/or activity. Expression of the antibodies can be carried out, for example, using cell-free extracts (and e.g., ribosome display), phage display, prokaryotic cells (e.g., bacterial display), or eukaryotic cells (e.g., yeast display). In certain embodiments of the invention, the antibody libraries are expressed in yeast.


In some embodiments, polynucleotides are engineered to serve as templates that can be expressed in a cell-free extract. Vectors and extracts as described, for example in U.S. Pat. Nos. 5,324,637; 5,492,817; 5,665,563, (each incorporated by reference in its entirety) can be used and many are commercially available. Ribosome display and other cell-free techniques for linking a polynucleotide (i.e., a genotype) to a polypeptide (i.e., a phenotype) can be used, e.g., Profusion™ (see, e.g., U.S. Pat. Nos. 6,348,315; 6,261,804; 6,258,558; and 6,214,553, each incorporated by reference in its entirety).


Alternatively or additionally, polynucleotides of the invention can be expressed in an E. coli expression system, such as that described by Pluckthun and Skerra. (Meth. Enzymol., 1989, 178: 476; Biotechnology, 1991, 9: 273, each incorporated by reference in its entirety). Mutant proteins can be expressed for secretion in the medium and/or in the cytoplasm of the bacteria, as described by Better and Horwitz, Meth. Enzymol., 1989, 178: 476, incorporated by reference in its entirety. In some embodiments, the single domains encoding VH and VL are each attached to the 3′ end of a sequence encoding a signal sequence, such as the ompA, phoA or pelB signal sequence (Lei et al., J. Bacteriol., 1987, 169: 4379, incorporated by reference in its entirety). These gene fusions are assembled in a dicistronic construct, so that they can be expressed from a single vector, and secreted into the periplasmic space of E. coli where they will refold and can be recovered in active form. (Skerra et al., Biotechnology, 1991, 9: 273, incorporated by reference in its entirety). For example, antibody heavy chain genes can be concurrently expressed with antibody light chain genes to produce antibodies or antibody fragments.


In some embodiments of the invention, antibody sequences are expressed on the membrane surface of a prokaryote, e.g., E. coli, using a secretion signal and lipidation moiety as described, e.g., in US2004/0072740; US2003/0100023; and US2003/0036092 (each incorporated by reference in its entirety).


Higher eukaryotic cells, such as mammalian cells, for example myeloma cells (e.g., NS/0 cells), hybridoma cells, Chinese hamster ovary (CHO), and human embryonic kidney (HEK) cells, can also be used for expression of the antibodies of the invention. Typically, antibodies expressed in mammalian cells are designed to be secreted into the culture medium, or expressed on the surface of the cell. Antibody or antibody fragments can be produced, for example, as intact antibody molecules or as individual VH and VL fragments, Fab fragments, single domains, or as single chains (scFv) (Huston et al., PNAS, 1988, 85: 5879, incorporated by reference in its entirety).


Alternatively or additionally, antibodies can be expressed and screened by anchored periplasmic expression (APEx 2-hybrid surface display), as described, for example, in Jeong et al., PNAS, 2007, 104: 8247 (incorporated by reference in its entirety) or by other anchoring methods as described, for example, in Mazor et al., Nature Biotechnology, 2007, 25: 563 (incorporated by reference in its entirety).


In some embodiments of the invention, antibodies can be selected using mammalian cell display (Ho et al., PNAS, 2006, 103: 9637, incorporated by reference in its entirety).


Screening of the antibodies derived from the libraries of the invention can be carried out by any appropriate means. For example, binding activity can be evaluated by standard immunoassay and/or affinity chromatography. Screening of antibodies of the invention for catalytic function, e.g., proteolytic function can be accomplished using a standard assays, e.g., the hemoglobin plaque assay as described in U.S. Pat. No. 5,798,208 (incorporated by reference in its entirety). Determining the ability of candidate antibodies to bind therapeutic targets can be assayed in vitro using, e.g., a BIACORE™ instrument, which measures binding rates of an antibody to a given target or antigen based on surface plasmon resonance. In vivo assays can be conducted using any of a number of animal models and then subsequently tested, as appropriate, in humans. Cell-based biological assays are also contemplated.


One feature of the instant invention is the speed at which the antibodies of the library can be expressed and screened. In certain embodiments of the invention, the antibody library can be expressed in yeast, which have a doubling time of less than about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 hours. In some embodiments, the doubling times are about 1 to about 3 hours, about 2 to about 4, about 3 to about 8 hours, about 3 to about 24, about 5 to about 24, about 4 to about 6 about 5 to about 22, about 6 to about 8, about 7 to about 22, about 8 to about 10 hours, about 7 to about 20, about 9 to about 20, about 9 to about 18, about 11 to about 18, about 11 to about 16, about 13 to about 16, about 16 to about 20, or about 20 to about 30 hours. In certain embodiments of the invention, an antibody library is expressed in yeast with a doubling time of about 16 to about 20 hours, about 8 to about 16 hours, or about 4 to about 8 hours. Thus, an antibody library of the instant invention can be expressed and screened in a matter of hours, as compared to previously known techniques which take several days to express and screen antibody libraries. A limiting step in the throughput of such screening processes in mammalian cells is typically the time required to iteratively regrow populations of isolated cells, which, in some cases, have doubling times greater than the doubling times of the yeast used in the current invention.


In certain embodiments of the invention, the composition of a library may be defined after one or more enrichment steps (for example by screening for antigen binding, binding to a generic ligand, or other properties). For example, a library with a composition comprising about ×% sequences or libraries of the invention may be enriched to contain about 2×%, 3×%, 4×%, 5×%, 6×%, 7×%, 8×%, 9×%, 10×%, 20×%, 25×%, 40×%, 50×%, 60×% 75×%, 80×%, 90×%, 95×%, or 99×% sequences or libraries of the invention, after one or more screening steps. In some embodiments of the invention, the sequences or libraries of the invention may be enriched about 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 100-fold, 1,000-fold, or more, relative to their occurrence prior to the one or more enrichment steps. In certain embodiments of the invention, a library may contain at least a certain number of a particular type of sequence(s), such as CDRH3s, CDRL3s, heavy chains, light chains, or whole antibodies (e.g., at least about 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, or 1020). In certain embodiments, these sequences may be enriched during one or more enrichment steps, to provide libraries comprising at least about 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, or 1019 of the respective sequence(s).


Mutagenesis Approaches for Affinity Maturation


As described above, antibody leads can be identified through a selection process that involves screening the antibodies of a library of the invention for binding to one or more antigens, or for a biological activity. Coding sequences of these antibody leads may be further mutagenized in vitro or in vivo to generate secondary libraries with diversity introduced in the context of the initial antibody leads. Such mutagenized antibody leads can then be further screened for binding to target antigens or biological activity, in vitro or in vivo, following procedures similar to those used for the selection of the initial antibody lead from the primary library. Such mutagenesis and selection of primary antibody leads effectively mimics the affinity maturation process naturally occurring in a mammal that produces antibodies with progressive increases in the affinity to an antigen.


In some embodiments of the invention, only the CDRH3 region is mutagenized. In some embodiments of the invention, the whole variable region is mutagenized. In some embodiments of the invention one or more of CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and/CDRL3 may be mutagenized. In some embodiments of the invention, “light chain shuffling” may be used as part of the affinity maturation protocol. In certain embodiments, this may involve pairing one or more heavy chains with a number of light chains, to select light chains that enhance the affinity and/or biological activity of an antibody. In certain embodiments of the invention, the number of light chains to which the one or more heavy chains can be paired is at least about 2, 5, 10, 100, 103, 104, 105, 106, 107, 108, 109, or 1010. In certain embodiments of the invention, these light chains are encoded by plasmids. In some embodiments of the invention, the light chains may be integrated into the genome of the host cell.


Coding sequences of antibody leads may be mutagenized using any of wide variety of methods. Examples of methods of mutagenesis include, but are not limited to site-directed mutagenesis, error-prone PCR mutagenesis, cassette mutagenesis, and random PCR mutagenesis. Alternatively or additionally, oligonucleotides encoding regions with the desired mutations can be synthesized and introduced into the sequence to be mutagenized, for example, via recombination or ligation.


Site-directed mutagenesis or point mutagenesis may be used to gradually change the CDR sequences in specific regions. For example, this may be accomplished by using oligonucleotide-directed mutagenesis or PCR. For example, a short sequence of an antibody lead may be replaced with a synthetically mutagenized oligonucleotide in either the heavy chain or light chain region, or both. Such a method may not be efficient for mutagenizing large numbers of CDR sequences, but may be used for fine tuning of a particular lead to achieve higher affinity toward a specific target protein.


Cassette mutagenesis may alternatively or additionally be used to mutagenize the CDR sequences in specific regions. In a typical cassette mutagenesis, a sequence block, or a region, of a single template is replaced by a completely or partially randomized sequence. However, the maximum information content that can be obtained may be statistically limited by the number of random sequences of the oligonucleotides. Similar to point mutagenesis, this method may also be used for fine tuning of a particular lead to achieve higher affinity towards a specific target protein.


Error-prone PCR, or “poison” PCR, may be used to mutagenize the CDR sequences, for example, by following protocols described in U.S. Pat. No. 6,153,745; Caldwell and Joyce, PCR Methods and Applications, 1992, 2: 28; Leung et al., Technique, 1989, 1: 11; Shafikhani et al., Biotechniques, 1997, 23: 304; and Stemmer et al., PNAS, 1994, 91: 10747 (each of which is incorporated by reference in its entirety).


Conditions for error prone PCR may include, for example, (a) high concentrations of Mn2 (e.g., about 0.4 to about 0.6 mM) that efficiently induces malfunction of Taq DNA polymerase; and/or (b) a disproportionally high concentration of one nucleotide substrate (e.g., dGTP) in the PCR reaction that causes incorrect incorporation of this high concentration substrate into the template and produces mutations. Alternatively or additionally, other factors such as, the number of PCR cycles, the species of DNA polymerase used, and the length of the template, may affect the rate of misincorporation of “wrong” nucleotides into the PCR product. Commercially available kits may be utilized for the mutagenesis of the selected antibody library, such as the “Diversity PCR random mutagenesis kit” (CLONTECH™).


Primer pairs used in PCR-based mutagenesis may, in certain embodiments, include regions matched with the homologous recombination sites in the expression vectors. Such a design allows facile re-introduction of the PCR products back into the heavy or light chain chassis vectors, after mutagenesis, via homologous recombination.


Other PCR-based mutagenesis methods can also be used, alone or in conjunction with the error prone PCR described above. For example, the PCR amplified CDR segments may be digested with DNase to create nicks in the double stranded DNA. These nicks can be expanded into gaps by other exonucleases such as Bal 31. Gaps may then be filled by random sequences by using DNA Klenow polymerase at a low concentration of regular substrates dGTP, dATP, dTTP, and dCTP with one substrate (e.g., dGTP) at a disproportionately high concentration. This fill-in reaction should produce high frequency mutations in the filled gap regions. Such methods of DNase digestion may be used in conjunction with error prone PCR to create a high frequency of mutations in the desired CDR segments.


CDR or antibody segments amplified from the primary antibody leads may also be mutagenized in vivo by exploiting the inherent ability of mutation in pre-B cells. The Ig genes in pre-B cells are specifically susceptible to a high-rate of mutation. The Ig promoter and enhancer facilitate such high rate mutations in a pre-B cell environment while the pre-B cells proliferate. Accordingly, CDR gene segments may be cloned into a mammalian expression vector that contains a human Ig enhancer and promoter. Such a construct may be introduced into a pre-B cell line, such as 38B9, which allows the mutation of the VH and VL gene segments naturally in the pre-B cells (Liu and Van Ness, Mol. Immunol., 1999, 36: 461, incorporated by reference in its entirety). The mutagenized CDR segments can be amplified from the cultured pre-B cell line and re-introduced back into the chassis-containing vector(s) via, for example, homologous recombination.


In some embodiments, a CDR “hit” isolated from screening the library can be re-synthesized, for example using degenerate codons or trinucleotides, and re-cloned into the heavy or light chain vector using gap repair.


Other Variants of Polynucleotide Sequences of the Invention


In certain embodiments, the invention provides a polynucleotide that hybridizes with a polynucleotide taught herein, or that hybridizes with the complement of a polynucleotide taught herein. For example, an isolated polynucleotide that remains hybridized after hybridization and washing under low, medium, or high stringency conditions to a polynucleotide taught herein or the complement of a polynucleotide taught herein is encompassed by the present invention.


Exemplary low stringency conditions include hybridization with a buffer solution of about 30% to about 35% formamide, about 1 M NaCl, about 1% SDS (sodium dodecyl sulphate) at about 37° C., and a wash in about 1× to about 2×SSC (20×SSC=3.0 M NaCl/0.3 M trisodium citrate) at about 50° C. to about 55° C.


Exemplary moderate stringency conditions include hybridization in about 40% to about 45% formamide, about 1 M NaCl, about 1% SDS at about 37° C., and a wash in about 0.5× to about 1×SSC at abut 55° C. to about 60° C.


Exemplary high stringency conditions include hybridization in about 50% formamide, about 1 M NaCl, about 1% SDS at about 37° C., and a wash in about 0.1×SSC at about 60° C. to about 65° C.


Optionally, wash buffers may comprise about 0.1% to about 1% SDS.


The duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours.


Sublibraries and Larger Libraries Comprising Libraries or Sub-Libraries of the Invention


Libraries comprising combinations of the libraries described herein (e.g., CDRH3 and CDRL3 libraries) are encompassed by the invention. Sublibraries comprising portions of the libraries described herein are also encompassed by the invention (e.g., a CDRH3 library in a particular heavy chain chassis or a sub-set of the CDRH3 libraries, for example based on length).


Moreover, libraries containing one of the libraries or sublibraries of the invention also fall within the scope of the invention. For example, in certain embodiments of the invention, one or more libraries or sublibraries of the invention may be contained within a larger library (theoretical or physical), which may include sequences derived by other means, for example, non-human or human sequence derived by stochastic or sitewise-stochastic synthesis. In certain embodiments of the invention, at least about 1% of the sequences in a polynucleotide library may be those of the invention (e.g., CDRH3 sequences, CDRL3 sequences, VH sequences, VL sequences), regardless of the composition of the other 99% of sequences. For the purposes of illustration only, one of ordinary skill in the art would readily recognize that a library containing 109 total members, where 107 members are members of the libraries of the invention (i.e., 1%) would have utility, and that members of the libraries of the invention could be isolated from such a library. In some embodiments of the invention, at least about 0.001%, 0.01%, 0.1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91,%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% of the sequences in any polynucleotide library may be those of the invention, regardless of the composition of the other sequences. In some embodiments, the sequences of the invention may comprise about 0.001% to about 1%, about 1% to about 2%, about 2% to about 5%, about 5% to about 10%, about 10% to about 15%, about 15% to about 20%, about 20% to about 25%, about 25% to about 30%, about 30% to about 35%, about 35% to about 40%, about 40% to about 45%, about 45% to about 50%, about 50% to about 55%, about 55% to about 60%, about 60% to about 65%, about 65% to about 70%, about 70% to about 75%, about 75% to about 80%, about 80% to about 85%, about 85% to about 90%, about 90% to about 95%, or about 95% to about 99% of the sequences in any polynucleotide library, regardless of the composition of the other sequences. Thus, libraries more diverse than one or more libraries or sublibraries of the invention, but yet still comprising one or more libraries or sublibraries of the invention, in an amount in which the one or more libraries or sublibraries of the invention can be effectively screened and from which sequences encoded by the one or more libraries or sublibraries of the invention can be isolated, also fall within the scope of the invention.


Alternative Scaffolds


As would be evident to one of ordinary skill in the art, the CDRH3 and/or CDRL3 polypeptides provided by the invention may also be displayed on alternative scaffolds. Several such scaffolds have been shown to yield molecules with specificities and affinities that rival those of antibodies. Exemplary alternative scaffolds include those derived from fibronectin (e.g., AdNectin), the β-sandwich (e.g., iMab), lipocalin (e.g., Anticalin), EETI-II/AGRP, BPTI/LACI-D1/ITI-D2 (e.g., Kunitz domain), thioredoxin (e.g., peptide aptamer), protein A (e.g., Affibody), ankyrin repeats (e.g., DARPin), γB-crystallin/ubiquitin (e.g., Affilin), CTLD3 (e.g., Tetranectin), and (LDLR-A module)3 (e.g., Avimers). Additional information on alternative scaffolds is provided, for example, in Binz et al., Nat. Biotechnol., 2005 23: 1257 and Skerra, Current Opin. in Biotech., 2007 18: 295-304, each of which is incorporated by reference in its entirety.


Additional Embodiments of the Invention


Library Sizes


In some embodiments of the invention, a library comprises about 101 to about 1020 different polynucleotide or polypeptide sequences (encoding or comprising e.g., antibodies, heavy chains, CDRH3s, light chains, and/or CDRL3s). In some embodiments, the libraries of the invention are designed to include at least about 101, 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, or 1020, or more different antibody, heavy chain, CDRH3, light chain, and/or CDRL3 polynucleotide or polypeptide sequences. In some embodiments, a library of the invention may contain less than a particular number of polynucleotide or polypeptide sequences, where the number of sequences is defined using any one of the integers provided above. In certain embodiments of the invention, a particular numerical range is defined, using any two of the integers provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the integers provided, which define an upper and lower boundary, are contemplated.


In some embodiments, the invention provides libraries wherein a fraction of the members of the library are members produced according to the methods, systems, and compositions provided herein. One important property of the libraries of the invention is that they favorably mimic certain aspects of the human preimmune repertoire, including length diversity and sequence diversity. One or ordinary skill in the art will readily recognize that libraries provided by the invention include libraries where a subset of the members of the library are members produced according to the methods, systems, and compositions provided herein. For example, a library containing 108 members wherein 106 members are produced according to the methods, systems, and compositions provided herein, would contain 1% sequences produced according to the methods, systems, and compositions provided herein. One of ordinary skill in the art would recognize that one or more of the 106 members could readily be isolated using screening techniques known in the art. Therefore, said libraries fall within the scope of the invention. More specifically, libraries comprising at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% CDRH3, CDRL3, light chain, or heavy chain, and/or full-length antibody sequences provided herein fall within the scope of the invention. Libraries comprising at least about 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015 CDRH3, CDRL3, light chain, heavy chain, and/or full-length antibody sequences provided herein also fall within the scope of the invention.


Human Preimmune Set


In some embodiments, the invention comprises the set of 3,571 curated human preimmune antibody sequences contained within the HPS, their corresponding CDRH3 sequences (Appendix A), and/or a representation of these CDRH3 sequences (and/or TN1, DH, N2, and/or H3-JH segments thereof) in a computer readable format. In certain embodiments, the invention comprises a method of producing a CDRH3 library, the method comprising matching candidate segments (i.e., TN1, DH, N2, and H3-JH) from a theoretical segment pool with CDRH3 sequences in the HPS and/or any other repertoire of CDRH3 sequences. In some embodiments, the invention comprises the candidate segments from the theoretical segment pools disclosed herein and/or the segments selected for inclusion in a physical library.


Embodiments


While the methods described herein demonstrate the production of theoretical segment pools of H3-JH and DH segments using a limited number of allelic variants, one of ordinary skill in the art will recognize that methods taught herein may be applied to any IGHJ and IGHD genes, including any other allelic variants and all non-human IGHJ and IGHD genes. Alternatively or additionally, methods described herein may be applied to any reference set of CDRH3 sequences, for example to extract additional TN1 and/or N2 segments. Alternatively or additionally, one of ordinary skill in the art will recognize that each of the described embodiments of the invention may be in polynucleotide or polypeptide form, within a vector, virus, or microorganism (e.g., a yeast or bacteria). Furthermore, since the invention involves synthetic libraries that are fully enumerated, certain embodiments of the invention relate to any of the embodiments described above in a computer readable format, and uses thereof.


Non-human antibody libraries also fall within the scope of the invention.


The present disclosure describes the removal of sequences containing Cys residues, N-linked glycosylation motifs, deamidation motifs, and highly hydrophobic sequences from the libraries of the invention. One of ordinary skill in the art will recognize that one or more of these criteria (i.e., not necessarily all) can be applied to remove undesirable sequences from any library of the invention. However, libraries containing one or more of these types of sequences also fall within the scope of the invention. Other criteria can also be used; those described herein are not limiting.


In certain embodiments, the invention provides libraries in which the number of times a particular sequence is repeated within the library (either theoretical, synthetic, or physical realization) is limited. For example, in some embodiments, the invention provides libraries wherein the frequency of occurrence of any of the sequences in the library (e.g., CDRH3, CDRL3, heavy chain, light chain, full-length antibody) is less than about 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000. In some embodiments, the frequency of occurrence of any of the sequences in the library is less than a multiple of the frequency of occurrence of any other sequence in the library, for examples less than about 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 times the frequency of occurrence of any other sequence in the library.


In some embodiments, libraries are defined by the combinatorial diversity of the segments used to produce CDRH3 sequences, in particular the number of non-degenerate segment combinations that can be used to produce a particular CDRH3 sequence. In some embodiments, this metric may be calculated using, for example, a sample of about 2000, 5000, 10000, 20000, 50000, 100000, or more sequences from the CDRH3 library and “self-matching” using the segments used to generate the CDRH3 sequences of that library. In certain embodiments, the invention provides libraries wherein at least about 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% of the CDRH3 sequences in the library may be formed by a single combination of segments.


In certain embodiments of the invention, a statistical bootstrap analysis was used to generate CDRH3 reference sets. While it may be advantageous to use this method, it is not required for every embodiment of the invention.


In some embodiments, the invention provides methods and systems of selecting polynucleotides to encode polypeptides of the invention, comprising selecting polynucleotide segments lacking (or containing) certain restriction sites individually and/or after combinatorial concatenation with other segments (e.g., see Example 9.3.7).


The exemplary libraries provided herein are not limiting and provided for exemplification only.


EXAMPLES

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application are hereby incorporated by reference.


In general, the practice of the present invention employs, unless otherwise indicated, conventional techniques of chemistry, molecular biology, recombinant DNA technology, PCR technology, immunology (especially, e.g., antibody technology), expression systems (e.g., yeast expression, cell-free expression, phage display, ribosome display, and PROFUSION™), and any necessary cell culture that are within the skill of the art and are explained in the literature. See, e.g., Sambrook, Fritsch and Maniatis, Molecular Cloning Cold Spring Harbor Laboratory Press (1989); DNA Cloning, Vols. 1 and 2, (D. N. Glover, Ed. 1985); Oligonucleotide Synthesis (M. J. Gait, Ed. 1984); PCR Handbook Current Protocols in Nucleic Acid Chemistry, Beaucage, Ed. John Wiley & Sons (1999) (Editor); Oxford Handbook of Nucleic Acid Structure, Neidle, Ed., Oxford Univ Press (1999); PCR Protocols: A Guide to Methods and Applications, Innis et al., Academic Press (1990); PCR Essential Techniques: Essential Techniques, Burke, Ed., John Wiley & Son Ltd (1996); The PCR Technique: RT-PCR, Siebert, Ed., Eaton Pub. Co. (1998); Antibody Engineering Protocols (Methods in Molecular Biology), 510, Paul, S., Humana Pr (1996); Antibody Engineering: A Practical Approach (Practical Approach Series, 169), McCafferty, Ed., Irl Pr (1996); Antibodies: A Laboratory Manual, Harlow et al., C.S.H.L. Press, Pub. (1999); Current Protocols in Molecular Biology, eds. Ausubel et al., John Wiley & Sons (1992); Large-Scale Mammalian Cell Culture Technology, Lubiniecki, A., Ed., Marcel Dekker, Pub., (1990); Phage Display: A Laboratory Manual, C. Barbas (Ed.), CSHL Press, (2001); Antibody Phage Display, P O'Brien (Ed.), Humana Press (2001); Border et al., Nature Biotechnology, 1997, 15: 553; Border et al., Methods Enzymol., 2000, 328: 430; ribosome display as described by Pluckthun et al. in U.S. Pat. No. 6,348,315, and Profusion™ as described by Szostak et al. in U.S. Pat. Nos. 6,258,558; 6,261,804; and 6,214,553; and bacterial periplasmic expression as described in US20040058403A1. Each of the references cited in this paragraph is incorporated by reference in its entirety.


Further details regarding antibody sequence analysis using Kabat conventions and programs to analyze aligned nucleotide and amino acid sequences may be found, e.g., in Johnson et al., Methods Mol. Biol., 2004, 248: 11; Johnson et al., Int. Immunol., 1998, 10: 1801; Johnson et al., Methods Mol. Biol., 1995, 51: 1; Wu et al., Proteins, 1993, 16: 1; and Martin, Proteins, 1996, 25: 130. Each of the references cited in this paragraph is incorporated by reference in its entirety.


Further details regarding antibody sequence analysis using Chothia conventions may be found, e.g., in Chothia et al., J. Mol. Biol., 1998, 278: 457; Morea et al., Biophys. Chem., 1997, 68: 9; Morea et al., J. Mol. Biol., 1998, 275: 269; Al-Lazikani et al., J. Mol. Biol., 1997, 273: 927. Bane et al., Nat. Struct. Biol., 1994, 1: 915; Chothia et al., J. Mol. Biol., 1992, 227: 799; Chothia et al., Nature, 1989, 342: 877; and Chothia et al., J. Mol. Biol., 1987, 196: 901. Further analysis of CDRH3 conformation may be found in Shirai et al., FEBS Lett., 1999, 455: 188 and Shirai et al., FEBS Lett., 1996, 399: 1. Further details regarding Chothia analysis are described, for example, in Chothia et al., Cold Spring Harb. Symp. Quant Biol., 1987, 52: 399. Each of the references cited in this paragraph is incorporated by reference in its entirety.


Further details regarding CDR contact considerations are described, for example, in MacCallum et al., J. Mol. Biol., 1996, 262: 732, incorporated by reference in its entirety.


Further details regarding the antibody sequences and databases referred to herein are found, e.g., in Tomlinson et al., J. Mol. Biol., 1992, 227: 776, VBASE2 (Retter et al., Nucleic Acids Res., 2005, 33: D671); BLAST (www.ncbi.nlm.nih.gov/BLAST/); CDHIT (bioinformatics.ljcrf.edu/cd-hi/); EMBOSS (www.hgmp.mrc.ac.uk/Software/EMBOSS/); PHYLIP (evolution.genetics.washington.edu/phylip.html); and FASTA (fasta.bioch.virginia.edu). Each of the references cited in this paragraph is incorporated by reference in its entirety.


Light Chain Libraries


Example 1
Light Chain Libraries with Framework and/or CDRL1 and/or CDRL2 Variability

Although the diversity in antibody sequences is concentrated in the CDRs, certain residues in the framework regions can also influence antigen recognition and/or modulate affinity (Queen et al., Proc. Natl. Acad. Sci. USA, 1989, 86: 10029; Carter et al., Proc. Natl. Acad. Sci. USA, 1992, 89: 4285, each incorporated by reference in its entirety). These residues have been cataloged and used to make framework substitutions that improve antibody affinity, for example, during the process of antibody humanization (e.g., see the “Vernier” residues in Foote and Winter, J. Mol. Biol., 1992, 224: 487, incorporated by reference in its entirety). In the heavy chain, the Vernier residues include Kabat-numbered residues 2, 27-30, 47-49, 67, 69, 71, 73, 78, 93-94, and 103. In the light chain, the Vernier residues include Kabat residues 2, 4, 35-36, 46-49, 64, 66, 68-69, 71, and 98. The Vernier residue numbers are the same for kappa and lambda light chain sequences (see Table 4 in Chothia et al., J. Mol. Biol., 1985, 186: 651, which is incorporated by reference in its entirety). Additionally, framework positions at the VL-VH interface may also influence affinity. In the heavy chain, the interface residues include Kabat residues 35, 37, 39, 45, 47, 91, 93, 95, 100, and 103 (Chothia et al., J. Mol. Biol., 1985, 186: 651, incorporated by reference in its entirety). In the light chain, the interface residues include Kabat residues 34, 36, 38 44, 46, 87, 89, 91, 96, and 98.


The following procedure was used to select the framework residues to be varied and the amino acids to which they should be varied:

    • a. A collection of human VK light chain DNA sequences was obtained from NCBI (see Appendix A of WO/2009/036379 for GI Nos.). These sequences were classified according to the germline origin of their VK germline segment.
    • b. Patterns of variation at each of the Vernier and interface positions were examined as follows:
      • i. Equation 1 (from Makowski & Soares, Bioinformatics, 2003, 19: 483, incorporated by reference in its entirety) was used to calculate a diversity index for the Vernier positions, interface positions, CDRL1, and CDRL2.









d
=

1

N




p

i





2








Equation





1











      • Here, d is the diversity index, N is 20, the total number of amino acid types, and pi is the fraction of amino acid of type “i” at the position of interest. The sum is carried out over the 20 amino acid types. The parameter d will attain its minimum value of 0.05 or 1/20, when a single amino acid type is observed at a given position: pi is 1 for one type and zero for all the rest. Conversely, when all the amino acid types are equally probable (e.g., pi is 0.05 for all i), d will attain its maximum value of 1.0.

      • ii. The diversity index for each of the Vernier and interface positions were compared to the diversity index for the positions in CDRL1 and CDRL2.

      • iii. The interface positions were found to be relatively invariant, with d values very close to the minimum of 0.05, and were thus not altered. The Vernier residues with a diversity index comparable to or larger than that of the CDR positions (i.e., at or above 0.07 for the particular example provided in FIG. 1) were selected as candidates for variance (see FIG. 1). The amino acid residues included in these positions were selected from amongst the two to three amino acids most frequently occurring in that position in the sequences in the collection of human VK light chains, for each particular VK germline.

      • iv. Table 2 shows the positions selected for variance in each of nine exemplified light chain germlines. The alternative framework positions represent positions with a diversity index less than the primary framework positions, but where variability may still be incorporated to influence antigen binding.

      • v. The amino acid residues in the framework positions selected for variance were varied as follows (Table 3 provides the polypeptide sequences of these variants):
        • 1. Position 2: Germline I was optionally changed to V.
        • 2. Position 4: Germline M or L was optionally changed to L or M. In some embodiments, changes from M to L, but not the reverse, may be preferred, because M may undergo oxidation during production, processing, or storage, potentially altering the properties of the antibody.
        • 3. Position 36: Germline Y was optionally changed to F and H.
        • 4. Position 46: Germline L was optionally changed to V.
        • 5. Position 48: Germline I was optionally changed to L.
        • 6. Position 49: Germline Y was optionally changed to S, F, and H.
        • 7. Position 66: Germline G was optionally changed to R and E.







One of ordinary skill in the art would readily recognize that the procedure outlined above could also be used to select positions to vary in Vλ germline sequences, and that libraries containing Vλ chains also fall within the scope of the invention.


In addition to the framework mutations, variability was also introduced into CDRL1 and CDRL2. This was performed by determining which residues in CDRL1 and CDRL2 were variable, within a particular germline, in the VK dataset used above and incorporating the most frequently occurring 2 to 4 variants into CDRL1 and CDRL2 in the synthetic libraries of the invention. With the exception of position 50 of CDRL2 of the VK1-5 germline, these alternatives did not arise from allelic variation. Table 3 shows the polypeptide sequences of nine light chain chassis and their framework and CDR L1/L2 variants for the currently exemplified embodiment of the invention. The amino acid residues in the CDRL1/L2 positions selected for variance were varied as follows (using the Chothia-Lesk numbering system; Chothia and Lesk, J. Mol. Biol., 1987, 196: 901):

    • 1. Position 28: Germline S or G were optionally changed to G, A, or D.
    • 2. Position 29: Germline V was optionally changed to I.
    • 3. Position 30: Germline S was optionally changed to N, D, G, T, A, or R.
    • 4. Position 30A: Germline H was optionally changed to Y
    • 5. Position 30B: Germline S was optionally changed to R or T.
    • 6. Position 30E: Germline Y was optionally changed to N.
    • 7. Position 31: Germline S was optionally changed to D, R, I, N, or T.
    • 8. Position 32: Germline Y or N were optionally changed to F, S, or D.
    • 9. Position 50: Germline A, D, or G were optionally changed to G, S, E, K, or D.
    • 10. Position 51: Germline G or A were optionally changed to A, S, or T.
    • 11. Position 53: Germline S or N were optionally changed to N, H, S, K, or R.
    • 12. Position 55: Germline E was optionally changed to A or Q.


Example 2
Light Chain Libraries with Enhanced Diversity in CDRL3

A variety of methods of producing light chain libraries are known in the art (e.g., see U.S. Publication Nos. 2009/0181855, 2010/0056386, and WO/2009/036379). An analysis of clinically validated antibody sequences indicated that these sequences have very little deviation from germline-like VL-JL (where “L” can be a kappa or lambda germline sequence) rearrangements prior to somatic mutation (FIG. 2). Here, a germline-like rearrangement is one where neither the V nor J portion differ from the respective germline genes and, for the purposes of this particular example, where the length of CDRL3 is restricted to 8, 9 or 10 amino acids (see U.S. Publication Nos. 2009/0181855, 2010/0056386, and WO/2009/036379). For the IGHJK1 gene, however, both WT (Trp-Thr) and RT (Arg-Thr) sequences (the first two N-terminal residues) are considered “germline-like” and so are full L3 rearrangements containing such sequences. Therefore, new light chain libraries were designed and constructed with the objectives of simultaneously (1) minimizing deviation from germline-like sequences, as defined above; and (2) generating maximal diversity. In particular, the overarching goal was to maximize the type of diversity that is indicated to be most favorable by clinically validated antibody sequences. In particular, the designed library sought to maximize the diversity of CDRL3 sequences that differ from length-matched germline sequences by two amino acids or fewer.


This was accomplished by utilizing a “jumping dimer” or “jumping trimer” approach to light chain oligonucleotide design. The jumping dimer approach involves the incorporation of degenerate codons at each of the six positions of CDRL3 encoded by the VL segment (L3-VL). At most two positions vary from germline in each individual L3-VL sequence, but the two positions do not have to be adjacent to one another. Thus, the total number of designed degenerate oligonucleotides synthesized per VL chassis is 6!/(4!2!), or fifteen (accounting for six of the most commonly occurring amino acids at the junction (position 96) between VL and JL for each kappa germline chassis (namely F, L, I, R, W, Y, and P; see U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379, each of which is incorporated by reference in its entirety, for more details on the junctional amino acids at position 96). The jumping trimer approach is analogous to the jumping dimer approach, but with three positions varying from germline in each individual L3-VL sequence, instead of two as in the jumping dimer. The degenerate codons selected for each position in the jumping dimer and trimer approaches were chosen to (1) to reproduce the diversity contained in the known repertoire of publicly available human VK sequences (see Appendix A of WO/2009/036379); and (2) to minimize or eliminate undesirable sequences within the CDRL3s of the resulting synthetic light chains, such as N-linked glycosylation motifs (NXS/NXT), Cys residues, stop codons, and deamidation-prone NG motifs. Table 4 shows the fifteen degenerate oligonucleotides encoding the VK1-39 CDRL3 sequences with a length of nine amino acids and F or Y as the junctional amino acid, and the corresponding degenerate polypeptide sequences. Table 5, Table 6, and Table 7 provide the oligonucleotide sequences for each of the VK sequences of the exemplary jumping dimer and trimer libraries, for CDRL3 lengths of 8, 9, and 10, respectively, and the sequences for the corresponding CDRL3s.


The number of unique CDRL3 sequences within each germline library was then enumerated and compared to the number of unique CDRL3 sequences in a different light chain library, designated “VK-v1.0” (see Example 6.2 in US Publication No. 2009/0181855), for each of the three lengths. Table 8 provides the number of unique CDRL3 sequences in each of the respective germline libraries.



FIG. 3 provides the percentage of sequences in the jumping dimer and VK-v1.0 libraries with CDRL3 length of nine amino acids that contain no mutations from germline-like sequences (Table 1) or 1, 2, 3, or 4 or fewer mutations from germline-like sequences. Naturally-occurring VK1-05 sequences are almost as likely to have Ser (germline amino acid type) as Pro at Kabat position 95, thus both residues (S and P) were incorporated in the synthetic libraries representing VK1-05 repertoires. However, as indicated in Table 1, only Ser was considered to be a germline-like residue at position 95 for the purposes of this analysis when the VK gene is VK1-05. The plot for VK3-20 is representative of the remaining chassis in the library for a length nine. All of the sequences in the VK1-05 library were within three amino acids of human germline sequences, and approximately 63% of the sequences were within two amino acids of human germline-like sequences. For the rest of the libraries, and as designed, 100% of the sequences were within two amino acids of human germline-like sequences; thus, over 95% of the sequences of length 9 in the jumping dimer library considered as a whole were within 2 amino acids of germline-like sequences. By comparison, only 16% of the members of the VK-v1.0 libraries of length nine amino acids are within two amino acids of the corresponding human germline-like sequences. For length 8, about 98% of the sequences in the jumping dimer libraries were within two amino acids of germline-like, versus about 19% for VK-v1.0. For length 10, more than 95% of the sequences of the jumping dimer library were within two amino acids of germline-like, versus about 8% for VK-v1.0.


In some embodiments, to concentrate the diversity in positions most likely to be solvent-exposed in the folded antibody, positions 89 and 90 (Kabat numbering) are not modified from germline—these are most often QQ, but the sequence is MQ for the VK2-28 chassis. Other VK germline genes have different sequences at positions 88-89, and the use of these genes as chassis also falls within the scope of the invention. For example, VK1-27 has QK, VK1-17 and VK1-6 both have LQ, and so on. The sequences in these positions are known in the art and can be obtained, for example, from Scaviner et al., Exp. Clin. Immunogenet., 1999, 16: 234 (see FIG. 2), which is incorporated by reference in its entirety.


CDRH3 Libraries


The following examples describe methods and compositions useful for the design and synthesis of antibody libraries with improved CDRH3 sequences in comparison to libraries known in the art. The CDRH3 sequences of the invention have enhanced diversity in comparison to libraries known in the art, while retaining the character of human sequences, improving combinatorial efficiency of the synthetic CDRH3 segments, and/or improving the matching between synthetic CDRH3 sequences and human CDRH3 sequences in one or more reference sets.


Example 3
Generating a Curated Reference Set of Human Preimmune CDRH3 Sequences

A file containing approximately 84,000 human and mouse heavy chain DNA sequences was downloaded from the BLAST public resource (ftp.ncbi.nih.gov/blast/db/FASTA/; filename: igSeqNt.gz; download date: Aug. 29, 2008). Of these approximately 84,000 sequences, approximately 34,000 sequences were identified as human heavy chain sequences based on analysis of the sequence header annotation. These sequences were then filtered as follows: First, all sequences were classified, via their VH-region, according to their corresponding (closest matched) VH germline. Sequences that were of an incorrect or insufficient length, or that could not be matched due to extensive mutation, were discarded. Second, any sequences containing more than five mutations, at the DNA level, when compared to their corresponding germline VH sequence were also discarded. It was assumed, consistent with Rada and Milstein, EMBO J., 2001, 20: 4570, that mutations (or lack thereof) in the N-terminal portion of the variable region may be used as conservative surrogates for mutations (or lack thereof) in the C-terminal portion of the variable region, in particular in CDRH3. Therefore, selecting only sequences with five or fewer nucleotide mutations in VH, which is N-terminal to CDRH3 is highly likely to also select for CDRH3 sequences that are either lightly mutated or not mutated at all (i.e., having preimmune character).


After translating the remaining DNA sequences into their amino acid counterparts, the appropriate reading frame containing the heavy chain germline amino acid sequence was identified and used to identify the sequences of the CDRs, including that of the CDRH3. The list of CDRH3 sequences obtained at this point was further filtered to eliminate members that did not differ from any other sequence in the set by at least three amino acids (after matching for length). This process yielded 11,411 CDRH3 sequences, with 3,571 sequences annotated as originating from healthy adults (“Healthy Preimmune Set” or “HPS”; see Appendix A for GI Nos.) and the other 7,840 sequences annotated as originating from individuals suffering from disease, of fetal origin, or of antigen-specific origin. The methods described below were then used to deconvolute each of the sequences in the HPS into the four segments that constitute the CDRH3: (1) TN1, (2) DH, (3) N2, and (4) H3-JH.


Example 4
Method to Match Segments from a Theoretical Segment Pool to CDRH3s in a Reference Set

This example describes the method used to identify the TN1, DH, N2, and H3-JH segments of the CDRH3s in the HPS. The currently exemplified approach to the design and synthesis of human CDRH3 sequences mimics the segmental V-D-J gene recombination processes by which the human immune system generates the preimmune CDRH3 repertoire. The matching method described here determines which TN1, DH, N2 and H3-JH segments have been used to produce a particular CDRH3 across a reference set of CDRH3s (e.g., the HPS). This information is then used, optionally in conjunction with other information described below (e.g., physicochemical properties), to determine which TN1, DH, N2, and H3-JH segments from a theoretical segment pool (or segments extracted from the CDRH3 sequences in the reference set, in the case of the TN1 and N2) should be included in a synthetic CDRH3 library.


The inputs to the matching method are: (1) a reference set of CDRH3 sequences (e.g., the human CDRH3 sequences in the HPS), and (2) a theoretical segment pool, containing a plurality of TN1, DH, N2 and/or H3-JH segments. Methods by which the members of the theoretical segment pool are generated are more fully described below. For each CDRH3 in the reference set, the matching method generates two outputs: (i) a list of the closest matched CDRH3 sequences that can be generated using the segments of the theoretical segment pool, and (ii) the one or more segment combinations from the theoretical segment pool that can be used to create these closest matched CDRH3 sequences.


The matching method was performed as follows: Each TN1 segment in the theoretical segment pool was aligned at its first amino acid with the first amino acid (position 95) of the CDRH3 sequence from the reference set. For each segment length, all (i.e., one or more) of the segments returning the best matches are retained, and the remaining segments are discarded. The retained TN1 segments are then concatenated with all DH segments from the theoretical segment pool, to create [TN1]-[DH] segments. These segments are then aligned as above, and all the best matches for each of the [TN1]-[DH] segments are retained. The procedure is repeated with [TN1]-[DH]-[N2] and [TN1]-[DH]-[N2]-[H3-JH] segments until the length of the CDRH3 sequence from the reference set is identically recapitulated by the segment combinations from the theoretical segment pool. All segment combinations returning the best match to the CDRH3s in the reference set are retained as the output of the matching method.


Table 9 provides an example of the output of the matching method, specifically the output for four individual sequences from the HPS, using a theoretical segment pool designated “Theoretical Segment Pool 1,” or “TSP1”. TSP1 contains several theoretical segment pools, namely: 212 TN1 segments (Table 10), 1,111 DH segments (Table 11), 141 N2 segments (Table 12), and 285 H3-JH segments (Table 13). The CDRH3 sequence in Test Case 1 contains an identical match in TSP1 that is reached via a unique combination of the four segments. Test Cases 2.1 and 2.2 each return an identical match, but via two distinct combinations that differ in the TN1 and DH segments. In Test Cases 3.1, 4.1, and 4.2, the closest matches are all a single amino acid away from the reference CDRH3, and can be reached via one (3.1) or two (4.1 and 4.2) combinations of segments from TSP1. This approach can be generalized to find all of the closest matches to any reference CDRH3 sequence within any theoretical segment pool and all combinations of the segments within the theoretical segment pool that can produce the reference CDRH3 sequence exactly and/or its closest matches.


Example 5
Deriving Theoretical Segment Pools of H3-JH Segments

In order to produce theoretical segment pools of H3-JH segments for consideration for inclusion in a synthetic CDRH3 library, the following method was applied to generate mutants of seven (IGHJ1-01, IGHJ2-01, IGHJ3-02, IGHJ4-02, IGHJ5-02, IGHJ6-02 and IGHJ6-03) of the twelve germline IGHJ sequences of Table 14. These seven alleles were chosen because they were among the most commonly occurring alleles in human sequences. Libraries where all sequences of Table 14 (some differing only in FRM4) are used to generate H3-JH and/or JH (i.e., H3-JH and FRM4) also fall within the scope of the invention. The method is intended to simulate the creation of junctional diversity during the V-D-J recombination process in vivo, which occurs via enzyme-mediated addition and deletion of nucleotides to the germline gene segments. The method proceeds as follows, and results in a fully enumerated theoretical segment pool of H3-JH segments:

    • 1. A pre-treatment was applied to the IGHJ genes that contain a partial codon consisting of two nucleotide bases at their 5′ terminus (IGHJ3-02, IGHJ4-02, IGHJ5-02, IGHJ6-02 and IGHJ6-03), prior to the first nucleotide encoding the translation of the JH segment that produces the well-known JH framework regions. For example, the IGHJ3-02 gene contains an AT dinucleotide sequence prior to the first nucleotide encoding the translation of the JH segment that produces the JH framework region (FIG. 4, top). All partial codons consisting of two nucleotide bases were completed, using all possible nucleotide doublets (i.e., NN) at their two most 5′ positions (FIG. 4, top, second row for IGHJ3-02). More specifically, the most 5′ nucleotide in the germline sequence was mutated to N and an additional N was added 5′ to that nucleotide.
    • 2. IGHJ genes IGHJ1-01 (FIG. 4, center) and IGHJ2-01 (FIG. 4, bottom) contain zero and one nucleotide base(s) at their 5′ termini, prior to the first nucleotide encoding the translation of the JH segment that produces the JH framework region. For these genes, the pre-treatment described in step 1 was not performed. Instead, the 5′ doublets were mutated to NN (FIG. 4, middle and bottom, second row of each). Therefore, after performing this step, each of the seven IGHJ genes enumerated above was converted to a variant with an NN doublet as its first two 5′ positions.
    • 3. The 5′ codons of the sequences produced via steps 1 and 2 were then deleted, and the first two bases of the resulting DNA sequence were subsequently mutated to an NN doublet (FIG. 4, rows 3-4 for all).
    • 4. The 5′ codons of the sequences produced in step 3 were then deleted, and the first two bases of the resulting DNA sequence were subsequently mutated to an NN doublet (FIG. 4, rows 5-6 for all).
    • 5. Each of the polynucleotide sequences generated by steps (1)-(4) were then translated, to obtain a theoretical segment pool consisting of 248 parent H3-JH polypeptide segments (Table 15) from the reading frame for each sequence that produced the JH framework region.
    • 6. The parent H3-JH polypeptide segments were truncated at their N-termini, by removing one amino acid at a time until only the portion of the JH segment comprising FW4 remains (i.e., an H3-JH segment with a length of zero amino acids).


The methods described above resulted in the production of a theoretical segment pool of 285 H3-JH segments (Table 13).


Example 6
Deriving Theoretical Segment Pools of DH Segments

Two theoretical pools of DH segments were generated, using one or more of two translation methods, designated “Translation Method 0” (TM0), or “Translation Method 1” (“TM1”), each performed in the three forward reading frames of 27 human germline IGHD DNA sequences or segments derived therefrom (Table 16).


The 1K DH Theoretical Segment Pool (1K DH)


TM1 was used to generate the “1K DH Theoretical Segment Pool” (“1K DH”; see the 1,111 DH segments of Table 11). In TM1, IGHD sequences that had a partial codon containing two untranslated bases after translation in any of the three forward reading frames were completed to produce a full codon only if the two bases could encode only a single amino acid upon completion. For example, a DNA sequence such as TTA-GCT-CG has two full codons that would be translated to LA, and a remaining partial codon (CG) that can only encode R, as any of CGA, CGC, CGG, or CGT will encode R. Thus, applying TM1 to this sequence will yield LAR. For sequences with partial codons that could encode more than one amino acid (e.g., GA or AG), the partial codons were ignored. Applying TM1 to the 27 IGHD sequences of Table 16 generated a theoretical segment pool containing the 73 DH parent segments of Table 17 (some containing stop codons (“Z”) and unpaired Cys residues). These sequences were then progressively deleted at the amino acid level, at their N- and C-termini, until only two amino acids remained. Truncated segments were discarded if they contained a stop codon, unpaired Cys residues, N-linked glycosylation motifs, or deamidation motifs. This process yielded the 1,111 DH segments of Table 11.


The 68K DH Theoretical Segment Pool (68K DH)


The 27 IGHD genes and alleles of Table 16 were progressively deleted on either or both of their 5′ and 3′ ends until four bases remained, yielding 5,076 unique polynucleotide sequences of four or more nucleotides. These 5,076 sequences were subjected to systematic addition of 0, 1 and/or 2 N nucleotides their 5′ and/or 3′ ends. The resulting sequences were translated using TM0. In TM0, only full codons are translated; partial codons (i.e., 1 or 2 bases) are ignored. This method yielded 68,374 unique DH polypeptide segments after elimination of segments with stop codons, unpaired Cys residues, Asn in the last or next to last position that can lead to N-linked glycosylation motifs, and deamidation motifs (the “68K DH Theoretical Segment Pool”). Using the IGHD genes of Table 16 as an input for the PYTHON computer code provided below will reproduce the exact theoretical segment pool of 68,374 DH segments. There are two free parameters in this program: (1) the minimum length of the DNA sequences remaining after progressive deletions (4 bases in this example), and (2) the minimum length of the peptide sequences (2 amino acids in this example) acceptable for inclusion in the theoretical segment pool. These parameters can be changed to alter the output of the program. For example, changing the first parameter to one base and the second parameter to one amino acid would lead to a larger theoretical segment pool with 68,396 unique sequences, including 18 single-amino acid segments. DH segments progressively truncated to different lengths also fall within the scope of the invention; for example those truncated to 1, 2, 3, or 4 or more amino acids, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more nucleotides prior to translation.












PYTHON Computer Program to Generate 68,374 DH Segments

















import math, sys, string



class genes:



  name = ′x′



  seq = ′x′



  progdel = set( )



class table:



 name = ′x′



 dna = ′x′



 dna_n = 20 * [′x′]



 prot = 60 * [′x′]



 uprot = set( )



pepcod = {′A′:0, ′C′:1, ′D′:2, ′E′:3, ′F′:4, ′G′:5, ′H′:6,



′I′:7, ′K′:8, ′L′:9, ′M′:10,



′N′:11, ′P′:12, ′Q′:13, ′R′:14, ′S′:15, ′T′:16, ′V′:17, ′W′:18,



′Y′:19, ′Z′:20}



codpep = 21 * [″]



codpep[0] = ′A′



codpep[1] = ′C′



codpep[2] = ′D′



codpep[3] = ′E′



codpep[4] = ′F′



codpep[5] = ′G′



codpep[6] = ′H′



codpep[7] = ′I′



codpep[8] = ′K′



codpep[9] = ′L′



codpep[10] = ′M′



codpep[11] = ′N′



codpep[12] = ′P′



codpep[13] = ′Q′



codpep[14] = ′R′



codpep[15] = ′S′



codpep[16] = ′T′



codpep[17] = ′V′



codpep[18] = ′W′



codpep[19] = ′Y′



# Z represents a stop codon



codpep[20] = ′Z′



bases = ′ACGT′



def translate_dna(sequence):



# Translation of input DNA sequence using standard genetic code



# Only full codons are considered with any remaining 1 or 2 bp



being ignored



# Z represents a stop codon



  code = {



  ′ATA′:′I′, ′ATC′:′I′, ′ATT′:′I′, ′ATG′:′M′,



  ′ACA′:′T′, ′ACC′:′T′, ′ACG′:′T′, ′ACT′:′T′,



  ′AAC′:′N′, ′AAT′:′N′, ′AAA′:′K′, ′AAG′:′K′,



  ′AGC′:′S′, ′AGT′:′S′, ′AGA′:′R′, ′AGG′:′R′,



  ′CTA′:′L′, ′CTC′:′L′, ′CTG′:′L′, ′CTT′:′L′,



  ′CCA′:′P′, ′CCC′:′P′, ′CCG′:′P′, ′CCT′:′P′,



  ′CAC′:′H′, ′CAT′:′H′, ′CAA′:′Q′, ′CAG′:′Q′,



  ′CGA′:′R′, ′CGC′:′R′, ′CGG′:′R′, ′CGT′:′R′,



  ′GTA′:′V′, ′GTC′:′V′, ′GTG′:′V′, ′GTT′:′V′,



  ′GCA′:′A′, ′GCC′:′A′, ′GCG′:′A′, ′GCT′:′A′,



  ′GAC′:′D′, ′GAT′:′D′, ′GAA′:′E′, ′GAG′:′E′,



  ′GGA′:′G′, ′GGC′:′G′, ′GGG′:′G′, ′GGT′:′G′,



  ′TCA′:′S′, ′TCC′:′S′, ′TCG′:′S′, ′TCT′:′S′,



  ′TTC′:′F′, ′TTT′:′F′, ′TTA′:′L′, ′TTG′:′L′,



  ′TAC′:′Y′, ′TAT′:′Y′, ′TAA′:′Z′, ′TAG′:′Z′,



  ′TGC′:′C′, ′TGT′:′C′, ′TGA′:′Z′, ′TGG′:′W′,



  }



  proteinseq ″



  for n in range(0, len(sequence), 3):



   if code.has_key(sequence[n:n+3]) == True:



    proteinseq += code[sequence[n:n+3]]



  return proteinseq



# main body starts here



# open input and output files



in1 = open(sys.argv[1], ′r′)



ou1 = open(sys.argv[2], ′w′)



# read DNA sequences for input DH segments



data = in1.readlines( )



nseg = len(data)



seqs = [ genes( ) for i in range(nseg) ]



for i in range(nseg):



 line = data[i]



 words = string.split(line)



 seqs[i].name = words[0]



 seqs[i].seq = words[1]



 seqs[i].progdel = set( )



# Define here minimum length for DNA (4) and for protein (2)



minlen = 4



minp = 2



# Implement progressive base by base deletion from 5' or 3' or



both ends



alln = 0



for i in range(nseg):



  seq = seqs[i].seq



  lseq = len(seq)



  nt = ct = lseq



  for n in range(nt):



   for c in range(ct):



    nseq = seq[n:lseq−c]



    if (len(nseq) >= minlen):



     seqs[i].progdel.add(nseq)



  alln += len(seqs[i].progdel)



# Collect unique DNA sequences across all DH genes of origin and



ignore redundant ones



progdel = [ table( ) for i in range(alln) ]



n = 0



for i in range(nseg):



  for kk in seqs[i].progdel:



   unix = 1



   for j in range(n):



    if (kk == progdel[j].dna):



     unix = 0



     break



   if (unix == 1):



    progdel[n].name = seqs[i].name



    progdel[n].dna = kk



    n +=1



# Add none, 1 or 2 bp on one or both ends



# extras 20 + 20 * (21) = 20 + 420 = 440



# allocate memory for all variants



for i in range(n):



   progdel[i].dna_n = 440 * [′x′]



   progdel[i].prot = 441 *3 * [′x′]



   progdel[i].uprot = set( )



# add 1 or 2 bases at each end of input segment



tot = 0



for i in range(n):



# Step over each unique DNA sequence



 k = 0



# One base on 5' end combined with 1 or 2 bases added to 3' end



 for 15 in range(4):



  progdel[i].dna_n[k] = bases[15] + progdel[i].dna



  k +=1



  for 13 in range(4):



   progdel[i].dna_n[k] = bases[15] + progdel[i].dna + bases[13]



   k +=1



  for 13 in range(4):



   for m3 in range(4):



    progdel[i].dna_n[k] = bases[15] + progdel[i].dna +



  bases[13] + bases[m3]



    k +=1



# One or two bases added to 3' only in this part



 for 13 in range(4):



  progdel[i].dna_n[k] = progdel[i].dna + bases[13]



  k +=1



 for 13 in range(4):



  for m3 in range(4):



   progdel[i].dna_n[k] = progdel[i].dna + bases[13] +



   bases[m3]



   k +=1



# Two bases on 5' end combined with 1 or 2 bp on 3' end



 for 15 in range(4):



  for m5 in range(4):



   progdel[i].dna_n[k] = bases[15] + bases[m5] +



   progdel[i].dna



   k +=1



   for 13 in range(4):



    progdel[i].dna_n[k] = bases[15] + bases[m5] +



progdel[i].dna + bases[13]



    k +=1



   for 13 in range(4):



    for m3 in range(4):



    progdel[i].dna_n[k] = bases[15] + bases[m5] +



progdel[i].dna + bases[13] + bases[m3]



    k +=1



# Now translate in all 3 forwared reading frames



# Save unique peptide sequences



 for fr in range(3):



  piece = progdel[i].dna



  piece = piece[fr:]



  tpiece = translate_dna(piece)



  progdel[i].prot[fr] = tpiece



  progdel[i].uprot.add(tpiece)



 for k in range(440):



  piece = progdel[i].dna_n[k]



  piece = piece[fr:]



  tpiece = translate_dna(piece)



  progdel[i].uprot.add(tpiece)



  progdel[i].prot[3+440*fr +k] = tpiece



 tot += len(progdel[i].uprot)



# Collect unique sequences with no ASN at last or next to last



position, no unpaired or consecutive CYS, no stops



unset = set( )



segm = [ genes( ) for i in range(tot) ]



lux = 0



nn = 0



for i in range(n):



  k = 0



  for kk in progdel[i].uprot:



# Filter out sequences with undesired features, including length



being too short (under “minp” defined above)



    if (len(kk) < minp): continue



    if (kk[len(kk)−1] == “N” or kk[len(kk)−2] == “N”):



continue



    if (kk.count(“Z”) > 0 or kk.count(“CC”) >0 or



kk.count(“C”) % 2 >0): continue



    unset.add(kk)



    lux1 = len(unset)



    if (lux1 > lux):



     segm[nn].name = progdel[i].name + “_” +



str(nn)



     segm[nn].seq = kk



     nn += 1



    lux = lux1



    k +=1



# Print out unique peptide sequences that pass all the filters



for i in range(nn):



ou1.write(″%s\t%s\n″ % (segm[i].name, segm[i].seq))









Example 7
Deriving Theoretical Segment Pools of TN1 and N2 Segments

The libraries of this example are designed to, in some instances, have a greater diversity in their TN1 and N2 segments in comparison to other libraries known in the art. The diversity of the TN1 and N2 segments was increased by using the matching method described in Example 4 to deconvolute the CDRH3 sequences in the HPS into their constituent segments (i.e., TN1, DH, N2, and H3-JH), followed by extraction of “novel” TN1 and N2 segments in the manner described below. For the purposes of the invention, “novel” TN1 and N2 segments are TN1 and N2 segments that do not appear in a theoretical segment pool that is matched to a reference set of CDRH3 sequences. Following is an example of the method used to extract novel TN1 and N2 segments from the HPS. This method can be generalized to extract novel TN1 and N2 segments from any reference set of CDRH3 sequences, using any theoretical segment pool containing TN1, DH, N2, and/or H3-JH segments.


Table 9 provides the matching results for the reference CDRH3 sequence ERTINWGWGVYAFDI (SEQ ID NO: 8760) (Test Cases 5.1-5.4) from the HPS, using Theoretical Segment Pool 1 (“TSP1”). The best matches to the reference CDRH3 are four CDRH3 sequences, each within three amino acids of the reference CDRH3 sequence. In each of these matches, the TN1, DH, N2 and H3-JH segments are of length 4, 3, 3 and 5 amino acids, respectively. Thus the reference CDRH3 can be deconvoluted into the following segments: ERTI-NWG-WGW-YAFDI (SEQ ID NO: 8761) (i.e. [TN1]-[DH]-[N2]-[H3-JH], respectively). The DH and H3-JH segments from the reference CDRH3, NWG and YAFDI (SEQ ID NO: 4540) respectively, are identically present in TSP1. However, the TN1 (ERTI) (SEQ ID NO: 8718) and N2 (WGW) segments from the reference CDRH3 are absent in TSP1 and match TSP1 segments with one or more amino acid mismatches. These “novel”TN1 and N2 segments are extracted from the reference CDRH3 and considered for inclusion prospective theoretical segment pools and/or synthetic libraries. Additional novel TN1 and N2 segments were accumulated by applying this analysis to all members of the HPS. In order to robustly identify TN1 and N2 sequences, the extraction was performed only for those CDRH3 sequences in which the DH and H3-JH segments in the reference CDRH3 and TSP1 cumulatively return no more than 3 amino acid mismatches, implying that the DH and H3-JH segments of the reference CDRH3 had been reliably assigned.


Example 8
Calculation of Segment Usage Weights

Segment usage weights were calculated for their utility in determining which segments from the theoretical segment pools (e.g., TSP1 and TSP1 plus novel TN1 and N2 segments identified as described in Example 7) should be included in a synthetic library. Segment usage weights were obtained by utilization of the matching method described above and Equation 2:










w


(
i
)


=


1

S
m







j
=
1


S
m





1

g


(
j
)








k
=
1


g


(
j
)






f
i



(
k
)










Equation





2








where,

    • w(i): Weight for segment i. 0≦w(i)≦1.
    • Sm: Number of sequences (out of total Sin the reference CDRH3 set) which contain one or more best matches with no more than m amino acid mismatches in the specified region of the reference CDRH3 sequence. Here, the mismatches are computed over the Kabat-CDRH3 region, but other fragments of the CDRH3 sequences may also be considered. A constant value of m=3 was used here, but other values may be used, or the value may depend on the length of the reference CDRH3 sequence.
    • g(j): Total number of degenerate segment combinations producing the best match to the reference CDRH3 sequence j.
    • fi (k): Fractional amino acid identity of TN1, DH, N2 or H3-JH segment in degenerate match k, relative to the corresponding sequence fragment in the reference CDRH3 sequence j. The fractional amino acid identity equals zero if the segment does not appear in match k. Other definitions off, such as amino acid similarity (e.g., based on physicochemical properties of the amino acids such as hydrophobicity), instead of identity, may be also used.


The procedure for calculating segment usage weights will be further exemplified below. In each of these examples, the best match combinations from TSP1 are provided for a single CDRH3 sequence (Sm=1) and the degeneracy (k) and fractional mismatch (f) dependent weight calculations are explained.


Example 8.1
Segment usage weights for Test Case 1 in Table 9

Refer to Test Case 1 in Table 9. The CDRH3 sequence RTAHHFDY (SEQ ID NO: 3660) is identically located in TSP1 (f =1, subscripts dropped for simplicity) via a unique segment combination (g =1). Table 18 provides the usage weights for the segments corresponding to the best match from TSP1 for the CDRH3 of Test Case 1.


Example 8.2
Segment usage weights for Test Cases 2.1 and 2.2 in Table 9

Refer to Test Cases 2.1 and 2.2 in Table 9. The CDRH3 sequence VGIVGAASY (SEQ ID NO: 3661) may be identically located in TSP1 (f=1) via two distinct segment combinations (g =2). Table 19 provides the usage weights for the segments corresponding to the best match from TSP1 for the CDRH3 of Test Cases 2.1 and 2.2.


Example 8.3
Segment usage weights for Test Case 3.1 in Table 9

Refer to Test Case 3.1 in Table 9. The CDRH3 sequence DRYSGHDLGY (SEQ ID NO: 3662) may be identically located in TSP1 via a unique segment combination (g =1) with a single amino acid difference. As provided below, the TN1, N2 and H3-JH segments match the corresponding reference sequence fragments identically, while four of the five DH amino acids match identically.











(SEQ ID NO: 3662)










Sequence from the HPS:
DR-YSGHD-LG-Y












(SEQ ID NO: 8719)










Nearest Neighbor in TSP1:
DR-YSGYD-LG-Y







Thus, here










f
=



4


/


5





for





the





DH





segment


;
and







=



1





for





the





TN





1


,

N





2

,





and





H





3


-


JH





segments







(

Table





20

)

.









Example 8.4
Matching of Test Cases 4.1 and 4.2 in Table 9

Refer to test cases 4.1 and 4.2 in Table 9. The CDRH3 sequence GIAAADSNWLDP (SEQ ID NO: 3663) may be located in TSP1 via two distinct segment combinations (g=2), each with a single amino acid difference. As provided below, the TN1, DH and N2 segments match the corresponding reference sequence fragments identically, while five of the six H3-JH amino acids match identically.











(SEQ ID NO: 3663)










Sequence from HPS:
(−)-GIAAA-D-SNWLDP












(SEQ ID NO: 8720)










Nearest Neighbor in TSP1:
(−)-GIAAA-D-SNWFDP












(SEQ ID NO: 3663)










Sequence from HPS:
G-IAAA-D-SNWLDP












(SEQ ID NO: 8720)










Nearest Neighbor in TSP1:
G-IAAA-D-SNWFDP







Here, (−) represents the “empty” TN1 segment.







Applying Equation 2 results in the segment usage weights provided in Table 21.


Example 8.5
Calculating the Segment Usage Weights for Test Cases 1 to 4.2 of Table 9

Extending the individual calculations described above to simultaneously include all of Test Cases 1 to 4.2 of Table 9 results in the segment usage weights of Table 22.


Example 8.6
Calculating the Segment Usage Weights for Test Cases 5.1 to 5.4 of Table 9

Refer to the CDRH3 sequence ERTINWGWGVYAFDI (SEQ ID NO: 8760) and the novel TN1 and N2 segments extracted from the CDRH3 sequence, in Example 7. In this case, the novel TN1 and N2 segments (ERTI (SEQ ID NO: 8718) and WGV respectively), and the DH and H3-JH segments from TSP1 (NWG and YAFDI (SEQ ID NO: 4540) respectively) are each assigned usage weights of unity.


Example 9
Selection of TN1, DH, N2 and JH Segments for Inclusion in Synthetic Libraries


FIG. 5 provides the general method used for the design of synthetic CDRH3 libraries. The method uses as input: (1) a theoretical segment pool containing TN1, DH, N2, and H3-JH segments (e.g., TSP plus novel TN1 and N2 segments); and (2) a collection of reference CDRH3 sequences (e.g., the HPS). From these inputs, a particular subset of segments from the theoretical segment pool is selected for inclusion in a physical CDRH3 library.


First, the best matches to the CDRH3s of the HPS were obtained, from within the TSP1 set, with or without the novel TN1 and N2 segments, using the matching method described above. This data was then used to compute the segment usage weights via Equation 2. Segments were prioritized for inclusion in the physical library based on their relative frequency of occurrence in the CDRH3 sequences of the HPS (as indicated by the segment usage weights), as well as other factors (more fully described below), such as hydrophobicity, alpha-helical propensity, and expressibility in yeast.


Example 9.1
Exemplary Library Design (ELD-1)

ELD-1 uses the HPS and the segments from TSP1 1 (9.5×109 members) as inputs and produces an output of 100 TN1, 200 DH, 141 N2 and 100 H3-JH segments, each from TSP1, ranked in order by their usage weights in the HPS, to produce a library with theoretical complexity of 2.82×108. The segments corresponding to ELD-1 are provided in Table 23. Note that here the combination of all of the segments (i.e., TN1, DH, N2, and H3-JH), and the individual sets of segments (i.e., TN1 only, DH only, N2 only, and H3-JH only) each constitute theoretical segment pools.


Example 9.2
Exemplary Library Design 2 (ELD-2)

The inputs for this design are the HPS and the segments from TSP1 plus the novel TN1 and N2 segments extracted from the HPS (Example 7). The outputs are (1) 200 DH and 100 H3-JH segments, each from TSP1; and (2) 100 TN1 and 200 N2 segments including TN1 and N2 segments originally in TSP1 and those extracted from the sequences in the HPS. Applying the method described in Example 7 to extract novel TN1 and N2 segments (i.e., those not included in TSP1) resulted in the identification of 1,710 novel TN1 segments and 1,024 novel N2 segments. The segments corresponding to ELD-2 are provided in Table 24. Note that here the combination of all of the segments (i.e., TN1, DH, N2, and H3-JH), and the individual sets of segments (i.e., TN1 only, DH only, N2 only, and H3-JH only) each constitute theoretical segment pools. As in ELD-1, all segments in ELD-2 were selected for inclusion based solely on their usage weights in the HPS.


Example 9.3
Exemplary Library Design 3 (ELD-3)

The inputs for this design are identical to those for ELD-2. As in ELD-2, the outputs are (1) a set of 200 DH and 100 H3-JH segments, each from TSP1; and (2) a set of 100 TN1 and 200 N2 segments, including TN1 and N2 segments originally in TSP1 and those extracted from the sequences in the HPS (Example 7). However, the approach used for the selection of the segments for ELD-3 differs in two respects. First, selected physicochemical properties of the segments (hydrophobicity, isoelectric point, and alpha-helix propensity) were used, in addition to the segment usage weights, to prioritize segments for inclusion in the physical library. Hydrophobicity was used to de-prioritize hydrophobic DH segments that are empirically over-represented in poorly expressed antibodies isolated from yeast-based libraries. Isoelectric point and propensity for alpha-helix formation were utilized to identify segments located in regions of physicochemical property space that were relatively unexplored in CDRH3 libraries known in the art (e.g., U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379). Second, the segment usage weights were calculated via a bootstrap analysis of the HPS dataset. These methods are more fully described below. The segments corresponding to ELD-3 are provided in Table 25. Note that here the combination of all of the segments (i.e., TN1, DH, N2, and H3-JH), and the individual sets of segments (i.e., TN1 only, DH only, N2 only, and H3-JH only) each constitute theoretical segment pools.


Example 9.3.1
Generation of Segment Usage Weights Via Bootstrap Analysis

Bootstrap analysis (Efron & Tibshirani, An Introduction to the Bootstrap, 1994 Chapman Hill, New York) is a widely used statistical procedure for estimating the variability of a statistic of a given sample. This estimate is based on the value of the statistic calculated for several sub-samples, equal in size to the original sample and derived from it via sampling with replacement. Members of the original sample are chosen at random to form the sub-samples, and are typically included multiple times in each sub-sample (hence, “sampling with replacement”).


Here, the original sample is the HPS dataset with n=3,571 members and the statistic is the segment usage weight. One-thousand sub-samples, each with 3,571 members, were generated by randomly choosing sequences from the HPS dataset (no more than 10 repeats of a given sequence were allowed in each sub-sample). The matching method described above was then applied to each sub-sample, and the final segment usage weights were calculated as the average of the values obtained for the individual sub-samples. Average values derived via this bootstrap procedure are more robust than values calculated from the parent HPS dataset alone. Unless indicated otherwise, these average values of the 1,000 sub-samples were used in the selection of segments for ELD-3.


Example 9.3.2
Amino Acid Property Indices

The AAindex database, available online at www.genome.ip/aaindex/, provides more than 500 numerical indices representing various physicochemical and biochemical properties of amino acids and pairs of amino acids. These properties include hydrophobicity, electrostatic behavior, secondary structure propensities and other characteristics, with several indices often available for a given property. The following three indices were chosen by starting with the well-understood Kyte-Doolittle hydropathy index (KYJT820101) and adding the indices most numerically de-correlated from it and each other. They thus potentially describe non-overlapping regions of amino acid property space and were used for analysis and selection of the DH and H3-JH segments for ELD-3:


1. KYTJ820101 (hydropathy index)


2. LEVM780101(normalized frequency of alpha helix)


3. ZIMJ680104 (isoelectric point)


Example 9.3.3
Hydrophobic DH Segments are Over-Represented in Poorly Expressed Antibodies Isolated from Yeast-Based Libraries

Based on protein expression levels from approximately 1200 antibodies expressed in S. cerevisiae, antibodies were classified as either “Good” or “Poor” expressors. The CDRH3 sequence of each antibody in each category was examined to identify sequence features that correlated with the expression level. One such sequence feature is the hydrophobicity of the DH segments calculated using the KYTJ820101 index. FIG. 6 provides the frequency of “Good” and “Poor” expressors as a function of the DH segment hydrophobicity (increasing to the right). The distribution expected from the synthetic library used to isolate these antibodies is also provided as a reference (“Design”). DH segments with the highest hydrophobicity values (far right of the plot) are over-represented (relative to the expectation based on the design) among “Poor” expressors and under-represented among “Good” expressors. Similarly, hydrophilic DH segments (far left) are over-represented among “Good” expressors and under-represented among “Poor” expressors. From this data, it was inferred that the overall expressibility of the antibodies of the library may be improved by synthesizing CDRH3 sequences with fewer hydrophobic DH segments.


Example 9.3.4
Selection of the 200 DH Segments for Inclusion in ELD-3

A set of 71 DH segments from TSP1 were designated as “core” DH segments for automatic inclusion in ELD-3. These segments had the following desirable properties:

    • 1. Fifty-three of seventy-one were present within the top 7% of DH segments rank-ordered by segment usage weights from the bootstrap analysis.
    • 2. Eighteen of seventy-one were present within the top 7% of DH segments rank-ordered by usage weights derived from antibodies isolated from libraries expressed in S. cerevisiae.


The remaining 1,040 segments were designated as “non-core.” To complete the set of 200 segments in ELD-3, 129 segments were chosen from the “non-core” pool of segments in the following manner:

    • 1. Sixty-five segments were eliminated because they contain either (a) an Asn residue at the last or next-to-last position with the potential to form N-linked glycosylation motifs via combination with N2 amino acids or (b) the amino acid sequence NG, implicated in de-amidation.
    • 2. Segments with higher than median values for the KYTJ820101 hydropathy index (median=2.9 for 1K DH) were eliminated from further consideration. In view of the known importance of Tyr for antigen recognition (Fellouse et al., PNAS, 2004, 101: 12467; and Hofstadter et al., J. Mol. Biol., 1999, 285: 805, each incorporated by reference in its entirety), segments containing at least one Tyr residue were retained unless located in the highest hydrophobicity quartile (KYTJ820101 value higher than 9.4). This eliminated 443 segments.
    • 3. The final set of 129 segments was obtained by using an objective function that aimed to maximize the Euclidean distance, between the “core” and the remaining 443 “non-core” segments, in a multi-dimensional space defined by the following variables: (1) amino acid mismatches to nearest neighbor; and (2) values of the three physicochemical property indices.


Example 9.3.5
Selection of the 100 H3-JH Segments for Inclusion in ELD-3

One-hundred H3-JH segments were chosen for inclusion in ELD-3 in the following manner.

    • 1. Twenty-eight H3-JH segments were selected after being experimentally validated in other libraries containing only these H3-JH segments (see U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379).
    • 2. Fifty-seven segments were selected based on their presence within the top 25% of H3-JH segments rank-ordered by usage weights from the bootstrap analysis described above. These 57 H3-JH segments, plus the 28 H3-JH segments of (1) (i.e., 85 segments total) were designated as the “core” H3-JH segments, which, like the core DH segments, were automatically included in ELD-3.
    • 4. Fifteen additional segments were chosen by using an objective function that aimed to maximize the Euclidian distance, between the “core” and the remaining 200 “non-core” segments, in a multi-dimensional space defined by the following variables: (1) amino acid mismatches to nearest neighbor; and (2) values of the three physicochemical property indices.


Example 9.3.6
Selection of 100 TN1 and 200 N2 Segments for Inclusion in ELD-3

TN1 and N2 segments were extracted from the sequences in each sub-sample of the bootstrap procedure, and the 100 TN1 and 200 N2 segments with the highest average segment usage weights were chosen for inclusion into the library, after elimination of sequences with undesirable motifs, namely Cys and Asn residues.


Example 9.3.7
Selection of Nucleotide Sequences to Encode the Segments Chosen for Inclusion in ELD-3

Each of the polypeptide segments chosen for inclusion in the library must be back translated (polypeptide to DNA) into a corresponding oligonucleotide sequence. While a large number of oligonucleotides could possibly encode each polypeptide segment, due to the degeneracy of the genetic code, certain constraints were imposed to select oligonucleotides that were more desirable. First, since ELD-3 was expressed in yeast (S. cerevisiae), codons that are rarely used in yeast were avoided. For example, of the six possible codons for Arg, three: CGA, CGC and CGG are used to encode yeast proteins at rates of under 10% (see, for example, Nakamura et al., Nucleic Acids Res., 2000, 28:292), and therefore those three codons were avoided to the extent possible. Second, since many antibodies are produced in Chinese Hamster Ovary (CHO) cells (after discovery e.g., in yeast), the CCG codon (encoding Pro) was also avoided, since it is rarely used by hamsters (Nakamura et al.)


A number of restriction enzymes are employed during the actual construction of the CDRH3 oligonucleotide library (see Example 10 of U.S. Pub. No. 2009/0181855). It is thus desirable to avoid the occurrence of recognition motifs for these restriction enzymes within the CDRH3 polynucleotide sequences. Codons are selected at the individual segment level to avoid introducing recognition motifs for restriction enzymes that may be used downstream. Since such motifs may also be generated by combinatorial assembly of the segments, the segment combinations are also checked and, whenever possible, codons are changed to eliminate the occurrence of such motifs. Specifically, three restriction enzymes were used during the construction of the currently exemplified CDRH3 library: BsrDI, BbsI, and AvrII. The first two are type II enzymes with non-palindromic recognition sites. The reverse strand of the oligonucleotides encoding the segments was checked explicitly for recognition sites for these two enzymes. In particular, the reverse strands were checked for the motifs GCAATG and CATTGC (for BsrDI) and GAAGAC and GTCTTC (for BbsI). The recognition motif for AvrII is palindromic so the oligonucleotides were only checked for the sequence CCTAGG. However, AvrII is used only to treat TN1 segments, and thus it is not necessary to evaluate its presence in the other segments or their combinations.


An additional constraint that was imposed to improve engineering of the polypeptide to polynucleotide conversion was avoidance of consecutive runs of 6 or more of the same type of base, as this is believed to increase errors during solid phase oligonucleotide synthesis. Therefore, DNA sequences for the segments of ELD-3 were chosen to avoid such motifs. The DNA sequences for the ELD-3 segments are included, with the respective polypeptide sequences, in Table 25. One of ordinary skill in the art will readily recognize that these methods can also be applied to any other library, any restriction sites, any number of nucleotide repeats, and/or to avoid the occurrence of any codons considered undesirable in any organism.


Example 10
Matching of ELD-3 to Human CDRH3 Datasets and Clinically Relevant Antibodies

Among the objectives of the invention is to mimic the V-D-J recombination processes underlying the creation of the human CDRH3 repertoire in vivo, thereby increasing the diversity of the CDRH3 library in comparison to other libraries known in the art, while maintaining the human character of CDRH3. One measure of success is the extent to which collections of human reference CDRH3 sequences are represented identically, or via close matches (e.g., less than about 5, 4, 3, or 2 amino acid differences) in any library of the invention. We evaluated this metric using two human CDRH3 sequence reference datasets, both non-overlapping with each other and the HPS: (1) a collection of 666 human CDRH3 sequences (Lee et al., Immunogenetics, 2006, 57: 917; “Lee-666”); and (2) a collection of 3,000 human CDRH3 sequences randomly chosen from the over 200,000 sequences disclosed in Boyd et al., Science Translational Medicine, 2009, 1: 1-8 (“Boyd-3000”). The results of the random sample of the 3,000 human CDRH3 sequences from Boyd et al. was representative of the results of the same analysis as applied to all members of the Boyd et al. set (>200,000 CDRH3 sequences).



FIG. 7 provides the percentage of CDRH3 sequences in two synthetic libraries, “LUA-141” and ELD-3, that match a sequence from the Lee-666 or Boyd-3000 sets with zero, one, two, three, or more than three amino acid mismatches. Here, “LUA-141” represents a library containing 212 TN1, 278 DH, 141 N2, and 28 H3-JH (see U.S. Publication No. 2009/0181855 for details). In particular, it is notable that ELD-3 exhibits a higher percentage of sequences (12.9% and 12.1% for the Lee-666 and Boyd-3000 sets, respectively) that identically match a reference CDRH3 sequence than LUA-141 (8.4% and 6.3% for the Lee-666 and Boyd-3000 sets, respectively). It is also notable that ELD-3 exhibits a higher cumulative percentage of human CDRH3 sequences found with no more than two amino acid mismatches (54.1% and 52.5% for the Lee-666 and Boyd-3000 sets, respectively) relative to LUA-141 (41.2% and 43.7% for the Lee-666 and Boyd-3000 sets, respectively).


Another metric by which antibody libraries can be evaluated is their ability to match “clinically relevant” reference CDRH3 sequences. FIG. 8 demonstrates that ELD-3 returns better matches to clinically relevant CDRH3 sequences than the LUA-141 library. Specifically, ELD-3 matches 34 of 55 (62%) clinically validated antibodies within one amino acid, while the LUA-141 library only matches 20 of 55 (37%).


Example 11
Comparison of ELD-3 to LUA-141

ELD-3 has 73 TN1, 92 DH, 119 N2, and 28 H3-JH in common with LUA-141. Thus, 94.5% of the sequences in ELD-3 (4.0×108 members) are different from the LUA-141 library (2.3×108 members). FIG. 9 demonstrates that the combinatorial efficiency of the segments in ELD-3 is greater than that of the segments in LUA-141. Specifically, the ELD-3 segments are more likely to yield a unique CDRH3 than the LUA-141 library segments. This is advantageous, because it allows one to synthesize libraries with increased CDRH3 diversity using fewer segments.



FIG. 10 provides the amino acid compositions of the Kabat-CDRH3s of LUA-141, ELD-3, and Human CDRH3 sequences from the HPS.



FIG. 11 provides the Kabat-CDRH3 length distribution of LUA-141, ELD-3, and Human CDRH3 sequences from the HPS.


CDRH3 Libraries Synthesized with Degenerate Oligonucleotides


Example 12
Further Increasing CDRH3 Diversity by Utilizing Degenerate Oligonucleotides

The methods described in this example extend the methods taught above, to produce CDRH3 libraries with more members than those of the libraries described above. In particular, one or two degenerate codons were introduced into the DH and or N2 polynucleotide segments, and (generally) no degenerate codon or one degenerate codon were introduced into the H3-JH segments. Segments with different numbers of degenerate codons are also contemplated; for example DH segments with 0, 1, 2, 3, 4, 5, 6, 7, 8, or more degenerate codons, and H3-JH segments with 0, 1, 2, 3, 4, 5, or more degenerate codons. This results in CDRH3 libraries containing greater than about 1011 (about 2×1011) distinct CDRH3 amino acid sequences that closely reflect properties, such as length and composition among others, of a reference set of human CDRH3 sequences. As described below, the degenerate positions in the DH segments are usually, but not always, the very N- and/or C-terminal positions, or 5′ and 3′ end codons (i.e., not necessarily only the first or last base), respectively, when considering the corresponding oligonucleotide sequences. Degenerate codons were similarly used to synthesize N2 segments. Two hundred of the TN1 segments were as described in ELD-3, although libraries with degenerate TN1 segments, or with alternative choices of TN1 segment sequences, fall within the scope of the invention. An additional one hundred TN1 segments complete the set of 300 TN1 segments for this library. The amino acid and nucleotide sequences are listed in Table 26. It is also possible to use mixtures of trinucleotides instead of, or in addition to, degenerate oligonucleotides in order to allow amino acid type variation at one or more selected positions within “base” or “seed” segment sequences (defined below).


Example 13
Selection of DH Segments for Synthesis by Degenerate Oligonucleotides

The segment usage weights were calculated for the 68K DH Theoretical Segment Pool by comparison to the sequences contained in Boyd et al. The DH segments with a length of three or more amino acids were ranked according to their segment usage weights (as described above), and the top 201 were designated as “seed” sequences. These seed sequences were then varied by selecting certain positions to incorporate degenerate codons. The positions selected for variance, the amino acids types to which they were varied, were determined by comparing the seed sequences to a reference set of 9,171 DH segments that were a subset of the 68K DH Theoretical Segment Pool. These 9,171 DH segments were selected because their segment usage weight in Boyd et al. was significant, meaning that the cumulative segment usage weight (Example 8) is at least 1.0.


Each of the 201 seed sequences was compared to each of the sequences in the reference set of 9,171 DH segments, and those of identical length and differing at a single position were further considered to inform possible variants of the seed. In this manner, the most variable position for each seed was identified and a set of candidate amino acid types was also identified for each position. Finally, a set of degenerate codons was considered, to identify the codon that most faithfully represented the set of candidate amino acid types for each particular position. Degenerate codons encoding stop codons, Cys residues, N-linked glycosylation motifs (i.e., NXS or NXT, where X is any amino acid type), or deamidation motifs (NG) were eliminated from consideration. This process generated 149 unique degenerate oligonucleotide sequences, which collectively encode 3,566 unique polypeptide sequences. Alternative designs generated according to the same principles were also considered, and those having a larger diversity (in terms of the number of unique polypeptide sequences) and smaller RMAX values (see below) were given preference for inclusion in the libraries of the invention. However, it is also conceivable that different criteria could be used to select DH segments from the 68K DH Theoretical Segment Pool, and that libraries including DH segments selected by these different criteria would also fall within the scope of the invention.


Because not all degenerate oligonucleotides encode an identical number of polypeptides, the latter do not occur with uniformly identical weights over the entirety of a given theoretical segment pool (i.e., TN1, DH, N2 and H3-JH) contained within a CDRH3 library of the invention. For example, an individual amino acid sequence X encoded by an oligonucleotide of total degeneracy 4 will have a “weight” of ¼, while another individual amino acid sequence, Y, encoded by an oligonucleotide of degeneracy 6 will have a weight of ⅙. Moreover, certain amino acid sequences could be encoded by more than one degenerate oligonucleotide, so their weights will be the sum of the individual contributions by each oligonucleotide. Within a given theoretical segment pool, the ratio of the weight of the most heavily weighted polypeptide to that of the least heavily weighted one, RMAX, is an important design criterion that one would ideally like to minimize. The RMAX value may be defined by length, or overall for all of the segments of any given type (i.e., all the DH segments, or all the H3-JH segments, and so on for the TN1, and/or the N2 segments). Table 27 lists the degenerate oligonucleotide sequences, while Table 28 lists the unique polypeptide sequences resulting from these oligonucleotides. These two tables include the DH dimer segments the design of which is detailed below.


Example 13.1
Selection of DH Dimer Segments

A different method was employed to design a set of degenerate oligonucleotides encoding DH dimer sequences. The method aimed to include all of the 45 dimer sequences in ELD-3 plus as many of the other 400 theoretically possible dimer sequences (i.e., 20 residues possible in each of 2 positions=20*20), minus segments containing Asn (N) residues and excessively hydrophobic dimers (i.e., any dimer combination comprising only F, I, L, M, and/or V residues). This design process ultimately yielded 35 degenerate oligonucleotide sequences encoding 213 unique peptide dimer sequences. As with the selection processes used for all of the other segments of the invention, one or ordinary skill in the art will readily recognize that other criteria could be used to select the DH dimer segments, and that libraries including these segments also fall within the scope of the invention.


Combining the DH dimer segments with the longer DH segments of Example 13, yielded the final set of DH segments of the currently exemplified library, encoded by a total of 184 oligonucleotides (35 encoding dimers and 149 encoding segments having three or more amino acids) versus the 200 oligonucleotides of ELD-3. The 184 oligonucleotides encode a total of 3,779 unique polypeptide sequences: 213 dimers and 3,566 longer segments of three amino acids or greater.


Example 14
Generation of Expanded N2 Diversity

As described above, ELD-3 contains 200 N2 segments. In the currently exemplified library, the empty N2 segment (i.e., no N2, so that the DH segments are joined directly to the H3-JH segments) and monomer N2 segments were the same as in ELD-3. However, degenerate oligonucleotides were used to generate sets of two-, three-, and four-mers that not only recapitulated all of the corresponding sequences in ELD-3 but also resulted in additional diversity. As with the DH segments, these degenerate oligonucleotides were designed to eliminate Asn (in unsuitable positions) and Cys residues, and stop codons. More specifically, Asn residues were allowed at the first position of trimers and at the first or second position of tetramers whenever the subsequent amino acid was not Gly and the next amino acid was not Ser or Thr, thus avoiding deamidation or N-linked glycosylation motifs within the candidate N2 segments. The N2 theoretical segment pool for the currently exemplified library contains one zero-mer (i.e., no N2 segment), 18 monomer, 279 dimer, 339 trimers, and 90 tetramer N2 amino acid sequences, or 727 segments in total. These amino acid sequences are encoded by 1, 18, 81, 36, and 10 oligonucleotides, respectively, for a total of 146 oligonucleotides. All but the first 19 oligonucleotides, those encoding the zero- and one-mers, are degenerate. Table 29 lists the 146 oligonucleotide sequences, while Table 30 lists the resulting 727 unique polypeptide sequences.


Example 15
Generation of Expanded H3-JH Diversity

Application of nucleotide-level progressive deletions on the 5′ end of the human IGHJ polynucleotide segments down to the point where only the DNA sequence corresponding to FRM4 remained (i.e., no H3-JH remained), followed by systematic 1- or 2-bp completions on the same 5′ end, resulted in 643 unique H3-JH peptide segments after translation (“643 H3-JH Set”). As done with the DH segments, it is possible to rank order each of the 643 segments by their usage weights obtained after comparison to the approximately 237,000 human sequences from Boyd et al., and the top 200 individual sequences, from those devoid of the undesired motifs described above, were chosen to provide the set of H3-JH segments for the currently exemplified library.


In an alternatively exemplified embodiment, 46 of the 200 H3-JH segments were designed with a two-fold degenerate codon in the first position (i.e., N-terminal or 5′ end, respectively, at the peptide and oligonucleotide level), so that, overall, 200 oligonucleotides would encode 246 unique peptide sequences.


In yet other alternatively exemplified embodiments, further use of degenerate codons may be conceived to produce libraries encoded by 90, 100, 200 or more oligonucleotides representing up to 500 distinct polypeptide sequences. Preferably, but not necessarily, these up to 500 unique sequences could be a subset of the sequences in the 643 H3-JH reference set described above, or a subset of variants of these sequences. As exemplified above, H3-JH segments containing undesirable polypeptide motifs may be eliminated from the design. The oligonucleotide sequences for the JH segments are listed on Table 31, while the resulting unique polypeptide sequences are provided in Table 32. In Table 31, nucleotide sequences corresponding to the FRM4 region are also provided, but the “peptide length” value refers to the H3-JH portion only. For simplicity, only the H3-JH peptide sequences are included in Table 32.


Example 16
Extended Diversity Library Design (EDLD)

The TN1, DH, H3-JH, and N2 segments selected above, and provided in Tables 26 to 32, were combined to generate an Extended Diversity Library Design (EDLD) with theoretical diversity of about 2×1011 (300 TN1×3,779 DH×727 N2×246 H3-JH). The oligonucleotides encoding the selected segments were chosen according to the principles of Example 9.3.7.



FIGS. 12-15 illustrate certain characteristics of this design indicating, for example, that about 50% of the approximately 237,000 CDRH3 sequences in Boyd et al. may be recapitulated by library sequences with either one or no mismatches (i.e., by summing the “0” and “1” bins of FIG. 12). The theoretical length distributions (FIG. 13) and amino acid compositions (FIG. 14) of these libraries also match closely the respective characteristics observed in the same set of human CDRH3 sequences. FIG. 15 shows the combinatorial efficiency of the Extended Diversity Library Design. Approximately 65% of the sequences appear only once in the design (i.e., are generated via one non-degenerate combination of segments). FIG. 8, previously presented, shows that the Extended Diversity Library Design outperforms both LUA-141 and ELD-3 in terms of matching to clinically relevant human antibody sequences.









TABLE 1







Germline-like sequences for eight of the


VK chassis provided by the invention.














Germline-Like
SEQ ID



Germline
Junction
CDRL3 Sequence
NO















VK1-05
1
QQYNSYST
1






VK1-05
2
QQYNSYFT
2






VK1-05
3
QQYNSYLT
3






VK1-05
4
QQYNSYIT
4






VK1-05
5
QQYNSYRT
5






VK1-05
6
QQYNSYWT
6






VK1-05
7
QQYNSYYT
7






VK1-05
8
QQYNSYSPT
8






VK1-05
9
QQYNSYSFT
9






VK1-05
10
QQYNSYSLT
10






VK1-05
11
QQYNSYSIT
11






VK1-05
12
QQYNSYSRT
12






VK1-05
13
QQYNSYSWT
13






VK1-05
14
QQYNSYSYT
14






VK1-05
15
QQYNSYSPFT
15






VK1-05
16
QQYNSYSPLT
16






VK1-05
17
QQYNSYSPIT
17






VK1-05
18
QQYNSYSPRT
18






VK1-05
19
QQYNSYSPWT
19






VK1-05
20
QQYNSYSPYT
20






VK1-12
1
QQANSFPT
21






VK1-12
2
QQANSFFT
22






VK1-12
3
QQANSFLT
23






VK1-12
4
QQANSFIT
24






VK1-12
5
QQANSFRT
25






VK1-12
6
QQANSFWT
26






VK1-12
7
QQANSFYT
27






VK1-12
8
QQANSFPPT
28






VK1-12
9
QQANSFPFT
29






VK1-12
10
QQANSFPLT
30






VK1-12
11
QQANSFPIT
31






VK1-12
12
QQANSFPRT
32






VK1-12
13
QQANSFPWT
33






VK1-12
14
QQANSFPYT
34






VK1-12
15
QQANSFPPFT
35






VK1-12
16
QQANSFPPLT
36






VK1-12
17
QQANSFPPIT
37






VK1-12
18
QQANSFPPRT
38






VK1-12
19
QQANSFPPWT
39






VK1-12
20
QQANSFPPYT
40






VK1-33
1
QQYDNLPT
41






VK1-33
2
QQYDNLFT
42






VK1-33
3
QQYDNLLT
43






VK1-33
4
QQYDNLIT
44






VK1-33
5
QQYDNLRT
45






VK1-33
6
QQYDNLWT
46






VK1-33
7
QQYDNLYT
47






VK1-33
8
QQYDNLPPT
48






VK1-33
9
QQYDNLPFT
49






VK1-33
10
QQYDNLPLT
50






VK1-33
11
QQYDNLPIT
51






VK1-33
12
QQYDNLPRT
52






VK1-33
13
QQYDNLPWT
53






VK1-33
14
QQYDNLPYT
54






VK1-33
15
QQYDNLPPFT
55






VK1-33
16
QQYDNLPPLT
56






VK1-33
17
QQYDNLPPIT
57






VK1-33
18
QQYDNLPPRT
58






VK1-33
19
QQYDNLPPWT
59






VK1-33
20
QQYDNLPPYT
60






VK1-39
1
QQSYSTPT
61






VK1-39
2
QQSYSTFT
62






VK1-39
3
QQSYSTLT
63






VK1-39
4
QQSYSTIT
64






VK1-39
5
QQSYSTRT
65






VK1-39
6
QQSYSTWT
66






VK1-39
7
QQSYSTYT
67






VK1-39
8
QQSYSTPPT
68






VK1-39
9
QQSYSTPFT
69






VK1-39
10
QQSYSTPLT
70






VK1-39
11
QQSYSTPIT
71






VK1-39
12
QQSYSTPRT
72






VK1-39
13
QQSYSTPWT
73






VK1-39
14
QQSYSTPYT
74






VK1-39
15
QQSYSTPPFT
75






VK1-39
16
QQSYSTPPLT
76






VK1-39
17
QQSYSTPPIT
77






VK1-39
18
QQSYSTPPRT
78






VK1-39
19
QQSYSTPPWT
79






VK1-39
20
QQSYSTPPYT
80






VK4-01
1
QQYYSTPT
81






VK4-01
2
QQYYSTFT
82






VK4-01
3
QQYYSTLT
83






VK4-01
4
QQYYSTIT
84






VK4-01
5
QQYYSTRT
85






VK4-01
6
QQYYSTWT
86






VK4-01
7
QQYYSTYT
87






VK4-01
8
QQYYSTPPT
88






VK4-01
9
QQYYSTPFT
89






VK4-01
10
QQYYSTPLT
90






VK4-01
11
QQYYSTPIT
91






VK4-01
12
QQYYSTPRT
92






VK4-01
13
QQYYSTPWT
93






VK4-01
14
QQYYSTPYT
94






VK4-01
15
QQYYSTPPFT
95






VK4-01
16
QQYYSTPPLT
96






VK4-01
17
QQYYSTPPIT
97






VK4-01
18
QQYYSTPPRT
98






VK4-01
19
QQYYSTPPWT
99






VK4-01
20
QQYYSTPPYT
100






VK2-28
1
MQALQTPT
101






VK2-28
2
MQALQTFT
102






VK2-28
3
MQALQTLT
103






VK2-28
4
MQALQTIT
104






VK2-28
5
MQALQTRT
105






VK2-28
6
MQALQTWT
106






VK2-28
7
MQALQTYT
107






VK2-28
8
MQALQTPPT
108






VK2-28
9
MQALQTPFT
109






VK2-28
10
MQALQTPLT
110






VK2-28
11
MQALQTPIT
111






VK2-28
12
MQALQTPRT
112






VK2-28
13
MQALQTPWT
113






VK2-28
14
MQALQTPYT
114






VK2-28
15
MQALQTPPFT
115






VK2-28
16
MQALQTPPLT
116






VK2-28
17
MQALQTPPIT
117






VK2-28
18
MQALQTPPRT
118






VK2-28
19
MQALQTPPWT
119






VK2-28
20
MQALQTPPYT
120






VK3-11
1
QQRSNWPT
121






VK3-11
2
QQRSNWFT
122






VK3-11
3
QQRSNWLT
123






VK3-11
4
QQRSNWIT
124






VK3-11
5
QQRSNWRT
125






VK3-11
6
QQRSNWWT
126






VK3-11
7
QQRSNWYT
127






VK3-11
8
QQRSNWPPT
128






VK3-11
9
QQRSNWPFT
129






VK3-11
10
QQRSNWPLT
130






VK3-11
11
QQRSNWPIT
131






VK3-11
12
QQRSNWPRT
132






VK3-11
13
QQRSNWPWT
133






VK3-11
14
QQRSNWPYT
134






VK3-11
15
QQRSNWPPFT
135






VK3-11
16
QQRSNWPPLT
136






VK3-11
17
QQRSNWPPIT
137






VK3-11
18
QQRSNWPPRT
138






VK3-11
19
QQRSNWPPWT
139






VK3-11
20
QQRSNWPPYT
140






VK3-15
1
QQYNNWPT
141






VK3-15
2
QQYNNWFT
142






VK3-15
3
QQYNNWLT
143






VK3-15
4
QQYNNWIT
144






VK3-15
5
QQYNNWRT
145






VK3-15
6
QQYNNWWT
146






VK3-15
7
QQYNNWYT
147






VK3-15
8
QQYNNWPPT
148






VK3-15
9
QQYNNWPFT
149






VK3-15
10
QQYNNWPLT
150






VK3-15
11
QQYNNWPIT
151






VK3-15
12
QQYNNWPRT
152






VK3-15
13
QQYNNWPWT
153






VK3-15
14
QQYNNWPYT
154






VK3-15
15
QQYNNWPPFT
155






VK3-15
16
QQYNNWPPLT
156






VK3-15
17
QQYNNWPPIT
157






VK3-15
18
QQYNNWPPRT
158






VK3-15
19
QQYNNWPPWT
159






VK3-15
20
QQYNNWPPYT
160






VK3-20
1
QQYGSSPT
161






VK3-20
2
QQYGSSFT
162






VK3-20
3
QQYGSSLT
163






VK3-20
4
QQYGSSIT
164






VK3-20
5
QQYGSSRT
165






VK3-20
6
QQYGSSWT
166






VK3-20
7
QQYGSSYT
167






VK3-20
8
QQYGSSPPT
168






VK3-20
9
QQYGSSPFT
169






VK3-20
10
QQYGSSPLT
170






VK3-20
11
QQYGSSPIT
171






VK3-20
12
QQYGSSPRT
172






VK3-20
13
QQYGSSPWT
173






VK3-20
14
QQYGSSPYT
174






VK3-20
15
QQYGSSPPFT
175






VK3-20
16
QQYGSSPPLT
176






VK3-20
17
QQYGSSPPIT
177






VK3-20
18
QQYGSSPPRT
178






VK3-20
19
QQYGSSPPWT
179






VK3-20
20
QQYGSSPPYT
180
















TABLE 2







Summary of framework variants for exemplified light chain germlines.












Primary
Alternative




Framework
Framework



Number of
Positions
Positions


Light Chain
Sequences
Selected for
Selected for


Germline
Analyzed
Variance
Variance





VK1-5 
307
4, 49
46


VK1-12
113
4, 49
46, 66 


VK1-33
188
4, 66
49


VK1-39
656
4, 49
46


VK2-28
275
46, 49 
2, 4 


VK3-11
375
4, 36
2, 49


VK3-15
202
4, 49
2, 48


VK3-20
867
4, 49
2, 48


VK4-1 
368
4, 49
46, 66 
















TABLE 3







Polypeptide sequences of exemplified light chain chassis with variability in CDRL1,


CDRL2, and frameworks. The Kabat numbers for segment boundaries are


indicated. Here, L1 and L2 (in the “Category” column) indicate variability in


CDRL1 and CDRL2, respectively, while “F” indicates a framework variant.


Sequences designated with both L1 or L2 and F contain variability in both a CDR


and framework region.















Name
Chassis
Category
FRM1: 1-23
CDR1: 24-34
FRM2: 35-49
CDR2: 50-56
FRM3: 57-88
SEQ ID NOs:


















VK1-
VK1-39
Germline
DIQMTQSPSSLSAS
RASQSISSYLN
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
181


39


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
L1
DIQMTQSPSSLSAS
RASQSINSYLN
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
182


39.1


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
L1
DIQMTQSPSSLSAS
RASQSIDSYLN
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
183


39.2


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
L1
DIQMTQSPSSLSAS
RASQSISRYLN
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
184


39.3


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
L2
DIQMTQSPSSLSAS
RASQSISSYLN
WYQQKPGKAPK
GASSLQS
GVPSRFSGSGS
185


39.6


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
L2
DIQMTQSPSSLSAS
RASQSISSYLN
WYQQKPGKAPK
SASSLQS
GVPSRFSGSGS
186


39.7


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
L2
DIQMTQSPSSLSAS
RASQSISSYLN
WYQQKPGKAPK
AASNLQS
GVPSRFSGSGS
187


39.8


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
F
DIQLTQSPSSLSAS
RASQSISSYLN
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
188


39.10


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL1
DIQLTQSPSSLSAS
RASQSINSYLN
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
189


39.11


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL1
DIQLTQSPSSLSAS
RASQSIDSYLN
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
190


39.12


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL1
DIQLTQSPSSLSAS
RASQSISSFLN
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
191


39.15


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL2
DIQLTQSPSSLSAS
RASQSISSYLN
WYQQKPGKAPK
SASSLQS
GVPSRFSGSGS
192


39.17


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL2
DIQLTQSPSSLSAS
RASQSISSYLN
WYQQKPGKAPK
AASNLQS
GVPSRFSGSGS
193


39.18


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
F
DIQMTQSPSSLSAS
RASQSISSYLN
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
194


39.20


VGDRVTITC

LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL1
DIQMTQSPSSLSAS
RASQSISRYLN
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
195


39.23


VGDRVTITC

LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL1
DIQMTQSPSSLSAS
RASQSISIYLN
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
196


39.24


VGDRVTITC

LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL1
DIQMTQSPSSLSAS
RASQSISSFLN
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
197


39.25


VGDRVTITC

LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-05
Germline
DIQMTQSPSTLSAS
RASQSISSWLA
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
198


05


VGDRVTITC

LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
L1
DIQMTQSPSTLSAS
RASQGISSWLA
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
199


05.1


VGDRVTITC

LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
L2
DIQMTQSPSTLSAS
RASQSISSWLA
WYQQKPGKAPK
EASSLES
GVPSRFSGSGS
200


05.5


VGDRVTITC

LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
L2
DIQMTQSPSTLSAS
RASQSISSWLA
WYQQKPGKAPK
KASSLES
GVPSRFSGSGS
201


05.6


VGDRVTITC

LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
L12
DIQMTQSPSTLSAS
RASQAISSWLA
WYQQKPGKAPK
KASSLES
GVPSRFSGSGS
202


05.7


VGDRVTITC

LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
L12
DIQMTQSPSTLSAS
RASQSINSWLA
WYQQKPGKAPK
KASSLES
GVPSRFSGSGS
203


05.8


VGDRVTITC

LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
L12
DIQMTQSPSTLSAS
RASQSIGSWLA
WYQQKPGKAPK
KASSLES
GVPSRFSGSGS
204


05.9


VGDRVTITC

LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
F
DIQLTQSPSTLSAS
RASQSISSWLA
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
205


05.10


VGDRVTITC

LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
FL1
DIQLTQSPSTLSAS
RASQGISSWLA
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
206


05.11


VGDRVTITC

LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
FL1
DIQLTQSPSTLSAS
RASQAISSWLA
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
207


05.12


VGDRVTITC

LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
FL1
DIQLTQSPSTLSAS
RASQSIGSWLA
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
208


05.14


VGDRVTITC

LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
F
DIQMTQSPSTLSAS
RASQSISSWLA
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
209


05.20


VGDRVTITC

LLIS

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
FL1
DIQMTQSPSTLSAS
RASQSINSWLA
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
210


05.21


VGDRVTITC

LLIS

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
FL2
DIQLTQSPSTLSAS
RASQSIGSWLA
WYQQKPGKAPK
KASSLES
GVPSRFSGSGS
211


05.25


VGDRVTITC

LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
FL2
DIQMTQSPSTLSAS
RASQSISSWLA
WYQQKPGKAPK
KASSLES
GVPSRFSGSGS
212


05.26


VGDRVTITC

LLIS

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-12
Germline
DIQMTQSPSSVSAS
RASQGISSWLA
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
213


12


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
L1
DIQMTQSPSSVSAS
RASQGIGSWLA
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
214


12.2


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
L1
DIQMTQSPSSVSAS
RASQGIDSWLA
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
215


12.3


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
L1
DIQMTQSPSSVSAS
RASQGISRWLA
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
216


12.4


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
L2
DIQMTQSPSSVSAS
RASQGISSWLA
WYQQKPGKAPK
GASSLQS
GVPSRFSGSGS
217


12.5


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
L2
DIQMTQSPSSVSAS
RASQGISSWLA
WYQQKPGKAPK
SASSLQS
GVPSRFSGSGS
218


12.6


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
L2
DIQMTQSPSSVSAS
RASQGISSWLA
WYQQKPGKAPK
AASNLQS
GVPSRFSGSGS
219


12.7


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
F
DIQLTQSPSSVSAS
RASQGISSWLA
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
220


12.10


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL1
DIQLTQSPSSVSAS
RASQDISSWLA
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
221


12.11


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL1
DIQLTQSPSSVSAS
RASQGISRWLA
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
222


12.14


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL2
DIQLTQSPSSVSAS
RASQGISSWLA
WYQQKPGKAPK
GASSLQS
GVPSRFSGSGS
223


12.15


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL2
DIQLTQSPSSVSAS
RASQGISSWLA
WYQQKPGKAPK
SASSLQS
GVPSRFSGSGS
224


12.16


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL2
DIQLTQSPSSVSAS
RASQGISSWLA
WYQQKPGKAPK
AASNLQS
GVPSRFSGSGS
225


12.17


VGDRVTITC

LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
F
DIQMTQSPSSVSAS
RASQGISSWLA
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
226


12.20


VGDRVTITC

LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL1
DIQMTQSPSSVSAS
RASQDISSWLA
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
227


12.21


VGDRVTITC

LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL1
DIQMTQSPSSVSAS
RASQGIDSWLA
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
228


12.23


VGDRVTITC

LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL1
DIQMTQSPSSVSAS
RASQGISRWLA
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
229


12.24


VGDRVTITC

LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-33
Germline
DIQMTQSPSSLSAS
QASQDISNYLN
WYQQKPGKAPK
DASNLET
GVPSRFSGSGS
230


33


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
L1
DIQMTQSPSSLSAS
QASQDITNYLN
WYQQKPGKAPK
DASNLET
GVPSRFSGSGS
231


33.1


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
L1
DIQMTQSPSSLSAS
QASQDIANYLN
WYQQKPGKAPK
DASNLET
GVPSRFSGSGS
232


33.2


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
L2
DIQMTQSPSSLSAS
QASQDISNYLN
WYQQKPGKAPK
DASNLAT
GVPSRFSGSGS
233


33.8


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
F
DIQLTQSPSSLSAS
QASQDISNYLN
WYQQKPGKAPK
DASNLET
GVPSRFSGSGS
234


33.10


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL1
DIQLTQSPSSLSAS
QASQDISNSLN
WYQQKPGKAPK
DASNLET
GVPSRFSGSGS
235


33.13


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL1
DIQLTQSPSSLSAS
QASQDISNFLN
WYQQKPGKAPK
DASNLET
GVPSRFSGSGS
236


33.14


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL2
DIQLTQSPSSLSAS
QASQDISNYLN
WYQQKPGKAPK
DASNLQT
GVPSRFSGSGS
237


33.17


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
F
DIQMTQSPSSLSAS
QASQDISNYLN
WYQQKPGKAPK
DASNLET
GVPSRFSGSRS
238


33.20


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL1
DIQMTQSPSSLSAS
QASQDITNYLN
WYQQKPGKAPK
DASNLET
GVPSRFSGSRS
239


33.21


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL1
DIQMTQSPSSLSAS
QASQDIANYLN
WYQQKPGKAPK
DASNLET
GVPSRFSGSRS
240


33.22


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL1
DIQMTQSPSSLSAS
QASQDISNSLN
WYQQKPGKAPK
DASNLET
GVPSRFSGSRS
241


33.23


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL1
DIQMTQSPSSLSAS
QASQDISNFLN
WYQQKPGKAPK
DASNLET
GVPSRFSGSRS
242


33.24


VGDRVTITC

LLIY

GTDFTFTISSL










QPEDIATYYC






VK2-
VK2-28
Germline
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
243


28


PGEPASISC
GYNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L1
DIVMTQSPLSLPVT
RSSQSLLYSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
244


28.1


PGEPASISC
GYNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L1
DIVMTQSPLSLPVT
RSSQSLLHRN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
245


28.2


PGEPASISC
GYNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L1
DIVMTQSPLSLPVT
RSSQSLLHTN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
246


28.3


PGEPASISC
GYNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L1
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
247


28.4


PGEPASISC
GNNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L2
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LASNRAS
GVPDRFSGSGS
248


28.5


PGEPASISC
GYNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L2
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSHRAS
GVPDRFSGSGS
249


28.6


PGEPASISC
GYNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
F
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
250


28.10


PGEPASISC
GYNYLD
VLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L1
DIVMTQSPLSLPVT
RSSQSLLYSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
251


28.11


PGEPASISC
GYNYLD
VLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
FL2
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LASNRAS
GVPDRFSGSGS
252


28.15


PGEPASISC
GYNYLD
VLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
FL2
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSSRAS
GVPDRFSGSGS
253


28.17


PGEPASISC
GYNYLD
VLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
F
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
254


28.20


PGEPASISC
GYNYLD
LLIF

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
FL1
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
255


28.24


PGEPASISC
GNNYLD
LLIF

GTDFTLKISRV










EAEDVGVYYC






VK3-
VK3-11
Germline
EIVLTQSPATLSLS
RASQSVSSYLA
WYQQKPGQAPR
DASNRAT
GIPARFSGSGS
256


11


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
L1
EIVLTQSPATLSLS
RASQSVSRYLA
WYQQKPGQAPR
DASNRAT
GIPARFSGSGS
257


11.2


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
L1
EIVLTQSPATLSLS
RASQSVSNYLA
WYQQKPGQAPR
DASNRAT
GIPARFSGSGS
258


11.3


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
L2
EIVLTQSPATLSLS
RASQSVSSYLA
WYQQKPGQAPR
DSSNRAT
GIPARFSGSGS
259


11.4


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
L2
EIVLTQSPATLSLS
RASQSVSSYLA
WYQQKPGQAPR
DTSNRAT
GIPARFSGSGS
260


11.5


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
L2
EIVLTQSPATLSLS
RASQSVSSYLA
WYQQKPGQAPR
DASKRAT
GIPARFSGSGS
261


11.6


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
F
EIVMTQSPATLSLS
RASQSVSSYLA
WYQQKPGQAPR
DASNRAT
GIPARFSGSGS
262


11.10


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL1
EIVMTQSPATLSLS
RASQSVSNYLA
WYQQKPGQAPR
DASNRAT
GIPARFSGSGS
263


11.13


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL2
EIVMTQSPATLSLS
RASQSVSSYLA
WYQQKPGQAPR
DSSNRAT
GIPARFSGSGS
264


11.14


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL2
EIVMTQSPATLSLS
RASQSVSSYLA
WYQQKPGQAPR
DTSNRAT
GIPARFSGSGS
265


11.15


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL2
EIVMTQSPATLSLS
RASQSVSSYLA
WYQQKPGQAPR
DASKRAT
GIPARFSGSGS
266


11.16


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
F
EIVLTQSPATLSLS
RASQSVSSYLA
WFQQKPGQAPR
DASNRAT
GIPARFSGSGS
267


11.20


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL1
EIVLTQSPATLSLS
RASQSISSYLA
WFQQKPGQAPR
DASNRAT
GIPARFSGSGS
268


11.21


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL2
EIVLTQSPATLSLS
RASQSVSSYLA
WFQQKPGQAPR
DSSNRAT
GIPARFSGSGS
269


11.24


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL2
EIVLTQSPATLSLS
RASQSVSSYLA
WFQQKPGQAPR
DTSNRAT
GIPARFSGSGS
270


11.25


PGERATLSC

LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-15
Germline
EIVMTQSPATLSVS
RASQSVSSNLA
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
271


15


PGERATLSC

LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
L1
EIVMTQSPATLSVS
RASQSVGSNLA
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
272


15.1


PGERATLSC

LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
L1
EIVMTQSPATLSVS
RASQSVSSSLA
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
273


15.6


PGERATLSC

LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
L2
EIVMTQSPATLSVS
RASQSVSSNLA
WYQQKPGQAPR
DASTRAT
GIPARFSGSGS
274


15.7


PGERATLSC

LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
L2
EIVMTQSPATLSVS
RASQSVSSNLA
WYQQKPGQAPR
SASTRAT
GIPARFSGSGS
275


15.8


PGERATLSC

LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
F
EIVLTQSPATLSVS
RASQSVSSNLA
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
276


15.10


PGERATLSC

LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
FL1
EIVLTQSPATLSVS
RASQSVGSNLA
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
277


15.11


PGERATLSC

LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
FL1
EIVLTQSPATLSVS
RASQSVSTNLA
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
278


15.14


PGERATLSC

LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
FL1
EIVLTQSPATLSVS
RASQSVSSDLA
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
279


15.16


PGERATLSC

LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
F
EIVMTQSPATLSVS
RASQSVSSNLA
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
280


15.20


PGERATLSC

LLIF

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
FL1
EIVMTQSPATLSVS
RASQSVGSNLA
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
281


15.21


PGERATLSC

LLIF

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
FL1
EIVMTQSPATLSVS
RASQSVSSDLA
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
282


15.25


PGERATLSC

LLIF

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
FL1
EIVMTQSPATLSVS
RASQSVSSSL
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
283


15.26


PGERATLSC

LLIF

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-20
Germline
EIVLTQSPGTLSLS
RASQSVSSSY
WYQQKPGQAPR
GASSRAT
GIPDRFSGSGS
284


20


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
L1
EIVLTQSPGTLSLS
RASQSVRSSY
WYQQKPGQAPR
GASSRAT
GIPDRFSGSGS
285


20.1


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
L1
EIVLTQSPGTLSLS
RASQSVSSDY
WYQQKPGQAPR
GASSRAT
GIPDRFSGSGS
286


20.4


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
L2
EIVLTQSPGTLSLS
RASQSVSSSY
WYQQKPGQAPR
GASNRAT
GIPDRFSGSGS
287


20.7


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
L2
EIVLTQSPGTLSLS
RASQSVSSSY
WYQQKPGQAPR
GASRRAT
GIPDRFSGSGS
288


20.8


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
F
EIVMTQSPGTLSLS
RASQSVSSSY
WYQQKPGQAPR
GASSRAT
GIPDRFSGSGS
289


20.10


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
FL2
EIVMTQSPGTLSLS
RASQSVSSSY
WYQQKPGQAPR
GASNRAT
GIPDRFSGSGS
290


20.17


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
F
EIVLTQSPGTLSLS
RASQSVSSSY
WYQQKPGQAPR
GASSRAT
GIPDRFSGSGS
291


20.20


PGERATLSC
LA
LLIS

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
FL1
EIVLTQSPGTLSLS
RASQSVSSNY
WYQQKPGQAPR
GASSRAT
GIPDRFSGSGS
292


20.22


PGERATLSC
LA
LLIS

GTDFTLTISRL










EPEDFAVYYC






VK4-
VK4-01
Germline
DIVMTQSPDSLAVS
KSSQSVLYSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
293


01


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
L1
DIVMTQSPDSLAVS
KSSQSLLYSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
294


01.1


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
L1
DIVMTQSPDSLAVS
KSSQSILYSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
295


01.2


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
L1
DIVMTQSPDSLAVS
KSSQSVLHSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
296


01.3


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
L1
DIVMTQSPDSLAVS
KSSQSVLFSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
297


01.4


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
L1
DIVMTQSPDSLAVS
KSSQSVLYTS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
298


01.5


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
L2
DIVMTQSPDSLAVS
KSSQSVLYSS
WYQQKPGQPPK
WASSRES
GVPDRFSGSGS
299


01.7


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
F
DIVLTQSPDSLAVS
KSSQSVLYSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
300


01.10


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
FL1
DIVLTQSPDSLAVS
KSSQSVLHSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
301


01.13


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
FL2
DIVLTQSPDSLAVS
KSSQSVLYSS
WYQQKPGQPPK
WASSRES
GVPDRFSGSGS
302


01.17


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
F
DIVMTQSPDSLAVS
KSSQSVLYSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
303


01.20


LGERATINC
NNKNYLA
LLIS

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
FL1
DIVMTQSPDSLAVS
KSSQSVLHSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
304


01.23


LGERATINC
NNKNYLA
LLIS

GTDFTLTISSL










QAEDVAVYYC
















TABLE 4







Jumping dimer and trimer oligonucleotides for the VK1-39 sequences


with CDRL3 length nine and F as the junctional amino acid. i.e., The


sequences depicted below occur between YYC and FGG, to yield:


...YYC-[89-97]-FGG... .


The sequences in this table encompassed by positions “[89-97]” are disclosed as


















Name
Oligo
SEQ ID NO
89
90
91
92
93
94
95
96
97












Jumping Dimer


















VK1-39_1
SWMSWMAGC
305
DEHLQV
DEHLQV
S
Y
S
T
P
FY
T



TACAGTACT













CCTTWCACT















VK1-39_2
SWMCAAVNA
306
DEHLQV
Q
AEGIKLPQR
Y
S
T
P
FY
T



TACAGTACT



TV









CCTTWCACT















VK1-39_3
SWMCAAAGC
307
DEHLQV
Q
S
ADFHLPS
S
T
P
FY
T



BHCAGTACT




VY








CCTTWCACT















VK1-39_4
SWMCAAAGC
308
DEHLQV
Q
S
Y
ADFHILNP
T
P
FY
T



TACNHCACT





STVY







CCTTWCACT















VK1-39_5
SWMCAAAGC
309
DEHLQV
Q
S
Y
S
ADFHL
P
FY
T



TACAGTBHC






PSVY






CCTTWCACT















VK1-39_6
CAGSWMVNA
310
Q
DEHLQV
AEGIKLPQR
Y
S
T
P
FY
T



TACAGTACT



TV









CCTTWCACT















VK1-39_7
CAGSWMAGC
311
Q
DEHLQV
S
ADFHLPS
S
T
P
FY
T



BHCAGTACT




VY








CCTTWCACT















VK1-39_8
CAGSWMAGC
312
Q
DEHLQV
S
Y
ADFHILNP
T
P
FY
T



TACNHCACT





STVY







CCTTWCACT















VK1-39_9
CAGSWMAGC
313
Q
DEHLQV
S
Y
S
ADFHL
P
FY
T



TACAGTBHC






PSVY






CCTTWCACT















VK1-39_10
CAGCAAVNA
314
Q
Q
AEGIKLPQR
ADFHLPS
S
T
P
FY
T



BHCAGTACT



TV
VY








CCTTWCACT















VK1-39_11
CAGCAAVNA
315
Q
Q
AEGIKLPQR
Y
ADFHILNP
T
P
FY
T



TACNHCACT



TV

STVY







CCTTWCACT















VK1-39_12
CAGCAAVNA
316
Q
Q
AEGIKLPQR
Y
S
ADFHL
P
FY
T



TACAGTBHC



TV


PSVY






CCTTWCACT















VK1-39_13
CAGCAAAGC
317
Q
Q
S
ADFHLPS
ADFHILNP
T
P
FY
T



BHCNHCACT




VY
STVY







CCTTWCACT















VK1-39_14
CAGCAAAGC
318
Q
Q
S
ADFHLPS
S
ADFHL
P
FY
T



BHCAGTBHC




VY

PSVY






CCTTWCACT















VK1-39_15
CAGCAAAGC
319
Q
Q
S
Y
ADFHILNP
ADFHL
P
FY
T



TACNHCBHC





STVY
PSVY






CCTTWCACT






















Jumping Trimer


















VK1-
CAGCAAVNA
314
Q
Q
AEGIKLPQR
ADFHLPS
S
T
P
FY
T


39_10_0_9
BHCAGTACT



TV
VY








CCTTWCACT















VK1-
CAGCAAVNA
315
Q
Q
AEGIKLPQR
Y
ADFHILNP
T
P
FY
T


39_11_0_9
TACNHCACT



TV

STVY







CCTTWCACT















VK1-
CAGCAAVNA
316
Q
Q
AEGIKLPQR
Y
S
ADFHL
P
FY
T


39_12_0_9
TACAGTBHC



TV


PSVY






CCTTWCACT















VK1-
CAGCAAAGC
317
Q
Q
S
ADFHLPS
ADFHILNP
T
P
FY
T


39_13_0_9
BHCNHCACT




VY
STVY







CCTTWCACT















VK1-
CAGCAAAGC
318
Q
Q
S
ADFHLPS
S
ADFHL
P
FY
T


39_14_0_9
BHCAGTBHC




VY

PSVY






CCTTWCACT















VK1-
CAGCAAAGC
319
Q
Q
S
Y
ADFHILNP
ADFHL
P
FY
T


39_15_0_9
TACNHCBHC





STVY
PSVY






CCTTWCACT















VK1-
CAGCAAVNA
320
Q
Q
AEGIKLPQR
ADFHLPS
ADFHILNP
T
P
FY
T


39_t1_0_9
BHCNHCACT



TV
VY
STVY







CCTTWCACT















VK1-
CAGCAAVNA
321
Q
Q
AEGIKLPQR
ADFHLPS
S
ADFHL
P
FY
T


39_t2_0_9
BHCAGTBHC



TV
VY

PSVY






CCTTWCACT















VK1-
CAGCAAVNA
322
Q
Q
AEGIKLPQR
Y
ADFHILNP
ADFHL
P
FY
T


39_t3_0_9
TACNHCBHC



TV

STVY
PSVY






CCTTWCACT















VK1-
CAGCAAAGC
323
Q
Q
S
ADFHLPS
ADFHILNP
ADFHL
P
FY
T


39_t4_0_9
BHCNHCBHC




VY
STVY
PSVY






CCTTWCACT
















TABLE 5







Oligonucleotide sequences for exemplary VK jumping dimer and trimer sequences


with CDRL3 length 8.













Portion of






Oligonucleotide
SEQ ID
SEQ ID NO



Sequence of Synthesized
Corresponding to CDRL3
NO
(CDRL3


Name
Oligonucleotide
Proper
(Oligo)
Portion)










Jumping Dimer











VK1-05_1_0_8
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACA
SWMSWMTACAATAGTTACTWCACT
324
948



ATAGTTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTTACTWCACT
325
949


05_10_0_8
RMAGTTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCTACTWCACT
326
950


05_11_0_8
ATMBCTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATAGTYWCTWCACT
327
951


05_12_0_8
ATAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCTACTWCACT
328
952


05_13_0_8
RMMBCTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMAGTYWCTWCACT
329
953


05_14_0_8
RMAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACA
CAGCAGTACAATMBCYWCTWCACT
330
954


05_15_0_8
ATMBCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-05_2_0_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCA
SWMCAGBHCAATAGTTACTWCACT
331
955



ATAGTTACTWCACTTTTGGCGGAGGGACCAAG








VK1-05_3_0_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACV
SWMCAGTACVRMAGTTACTWCACT
332
956



RMAGTTACTWCACTTTTGGCGGAGGGACCAAG








VK1-05_4_0_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATMBCTACTWCACT
333
957



ATMBCTACTWCACTTTTGGCGGAGGGACCAAG








VK1-05_5_0_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATAGTYWCTWCACT
334
958



ATAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-05_6_0_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCA
CAGSWMBHCAATAGTTACTWCACT
335
959



ATAGTTACTWCACTTTTGGCGGAGGGACCAAG








VK1-05_7_0_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACV
CAGSWMTACVRMAGTTACTWCACT
336
960



RMAGTTACTWCACTTTTGGCGGAGGGACCAAG








VK1-05_8_0_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATMBCTACTWCACT
337
961



ATMBCTACTWCACTTTTGGCGGAGGGACCAAG








VK1-05_9_0_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATAGTYWCTWCACT
338
962



ATAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-05_1_1_8
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACA
SWMSWMTACAATAGTTACMTCACT
339
963



ATAGTTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTTACMTCACT
340
964


05_10_1_8
RMAGTTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCTACMTCACT
341
965


05_11_1_8
ATMBCTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATAGTYWCMTCACT
342
966


05_12_1_8
ATAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCTACMTCACT
343
967


05_13_1_8
RMMBCTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMAGTYWCMTCACT
344
968


05_14_1_8
RMAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACA
CAGCAGTACAATMBCYWCMTCACT
345
969


05_15_1_8
ATMBCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-05_2_1_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCA
SWMCAGBHCAATAGTTACMTCACT
346
970



ATAGTTACMTCACTTTTGGCGGAGGGACCAAG








VK1-05_3_1_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACV
SWMCAGTACVRMAGTTACMTCACT
347
971



RMAGTTACMTCACTTTTGGCGGAGGGACCAAG








VK1-05_4_1_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATMBCTACMTCACT
348
972



ATMBCTACMTCACTTTTGGCGGAGGGACCAAG








VK1-05_5_1_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATAGTYWCMTCACT
349
973



ATAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-05_6_1_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCA
CAGSWMBHCAATAGTTACMTCACT
350
974



ATAGTTACMTCACTTTTGGCGGAGGGACCAAG








VK1-05_7_1_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACV
CAGSWMTACVRMAGTTACMTCACT
351
975



RMAGTTACMTCACTTTTGGCGGAGGGACCAAG








VK1-05_8_1_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATMBCTACMTCACT
352
976



ATMBCTACMTCACTTTTGGCGGAGGGACCAAG








VK1-05_9_1_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATAGTYWCMTCACT
353
977



ATAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-05_1_2_8
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACA
SWMSWMTACAATAGTTACWGGACT
354
978



ATAGTTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTTACWGGACT
355
979


05_10_2_8
RMAGTTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCTACWGGACT
356
980


05_11_2_8
ATMBCTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATAGTYWCWGGACT
357
981


05_12_2_8
ATAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCTACWGGACT
358
982


05_13_2_8
RMMBCTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMAGTYWCWGGACT
359
983


05_14_2_8
RMAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACA
CAGCAGTACAATMBCYWCWGGACT
360
984


05_15_2_8
ATMBCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-05_2_2_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCA
SWMCAGBHCAATAGTTACWGGACT
361
985



ATAGTTACWGGACTTTTGGCGGAGGGACCAAG








VK1-05_3_2_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACV
SWMCAGTACVRMAGTTACWGGACT
362
986



RMAGTTACWGGACTTTTGGCGGAGGGACCAAG








VK1-05_4_2_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATMBCTACWGGACT
363
987



ATMBCTACWGGACTTTTGGCGGAGGGACCAAG








VK1-05_5_2_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATAGTYWCWGGACT
364
988



ATAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-05_6_2_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCA
CAGSWMBHCAATAGTTACWGGACT
365
989



ATAGTTACWGGACTTTTGGCGGAGGGACCAAG








VK1-05_7_2_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACV
CAGSWMTACVRMAGTTACWGGACT
366
990



RMAGTTACWGGACTTTTGGCGGAGGGACCAAG








VK1-05_8_2_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATMBCTACWGGACT
367
991



ATMBCTACWGGACTTTTGGCGGAGGGACCAAG








VK1-05_9_2_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATAGTYWCWGGACT
368
992



ATAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-05_1_3_8
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACA
SWMSWMTACAATAGTTACCCTACT
369
993



ATAGTTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTTACCCTACT
370
994


05_10_3_8
RMAGTTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCTACCCTACT
371
995


05_11_3_8
ATMBCTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATAGTYWCCCTACT
372
996


05_12_3_8
ATAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCTACCCTACT
373
997


05_13_3_8
RMMBCTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMAGTYWCCCTACT
374
998


05_14_3_8
RMAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACA
CAGCAGTACAATMBCYWCCCTACT
375
999


05_15_3_8
ATMBCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-05_2_3_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCA
SWMCAGBHCAATAGTTACCCTACT
376
1000



ATAGTTACCCTACTTTTGGCGGAGGGACCAAG








VK1-05_3_3_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACV
SWMCAGTACVRMAGTTACCCTACT
377
1001



RMAGTTACCCTACTTTTGGCGGAGGGACCAAG








VK1-05_4_3_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATMBCTACCCTACT
378
1002



ATMBCTACCCTACTTTTGGCGGAGGGACCAAG








VK1-05_5_3_8
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATAGTYWCCCTACT
379
1003



ATAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-05_6_3_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCA
CAGSWMBHCAATAGTTACCCTACT
380
1004



ATAGTTACCCTACTTTTGGCGGAGGGACCAAG








VK1-05_7_3_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACV
CAGSWMTACVRMAGTTACCCTACT
381
1005



RMAGTTACCCTACTTTTGGCGGAGGGACCAAG








VK1-05_8_3_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATMBCTACCCTACT
382
1006



ATMBCTACCCTACTTTTGGCGGAGGGACCAAG








VK1-05_9_3_8
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATAGTYWCCCTACT
383
1007



ATAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-12_1_0_8
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAA
SWMSWMGCAAATAGTTTCTWCACT
384
1008



ATAGTTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTTTCTWCACT
385
1009


12_10_0_8
HCAGTTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCTTCTWCACT
386
1010


12_11_0_8
ATNHCTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATAGTYWCTWCACT
387
1011


12_12_0_8
ATAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCTTCTWCACT
388
1012


12_13_0_8
HCNHCTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCAGTYWCTWCACT
389
1013


12_14_0_8
HCAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAA
CAGCAGGCAAATNHCYWCTWCACT
390
1014


12_15_0_8
ATNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-12_2_0_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAA
SWMCAGRNAAATAGTTTCTWCACT
391
1015



ATAGTTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-12_3_0_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAN
SWMCAGGCANHCAGTTTCTWCACT
392
1016



HCAGTTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-12_4_0_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATNHCTTCTWCACT
393
1017



ATNHCTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-12_5_0_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATAGTYWCTWCACT
394
1018



ATAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-12_6_0_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAA
CAGSWMRNAAATAGTTTCTWCACT
395
1019



ATAGTTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-12_7_0_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAN
CAGSWMGCANHCAGTTTCTWCACT
396
1020



HCAGTTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-12_8_0_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATNHCTTCTWCACT
397
1021



ATNHCTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-12_9_0_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATAGTYWCTWCACT
398
1022



ATAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-12_1_1_8
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAA
SWMSWMGCAAATAGTTTCMTCACT
399
1023



ATAGTTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTTTCMTCACT
400
1024


12_10_1_8
HCAGTTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCTTCMTCACT
401
1025


12_11_1_8
ATNHCTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATAGTYWCMTCACT
402
1026


12_12_1_8
ATAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCTTCMTCACT
403
1027


12_13_1_8
HCNHCTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCAGTYWCMTCACT
404
1028


12_14_1_8
HCAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAA
CAGCAGGCAAATNHCYWCMTCACT
405
1029


12_15_1_8
ATNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-12_2_1_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAA
SWMCAGRNAAATAGTTTCMTCACT
406
1030



ATAGTTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-12_3_1_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAN
SWMCAGGCANHCAGTTTCMTCACT
407
1031



HCAGTTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-12_4_1_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATNHCTTCMTCACT
408
1032



ATNHCTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-12_5_1_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATAGTYWCMTCACT
409
1033



ATAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-12_6_1_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAA
CAGSWMRNAAATAGTTTCMTCACT
410
1034



ATAGTTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-12_7_1_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAN
CAGSWMGCANHCAGTTTCMTCACT
411
1035



HCAGTTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-12_8_1_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATNHCTTCMTCACT
412
1036



ATNHCTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-12_9_1_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATAGTYWCMTCACT
413
1037



ATAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-12_1_2_8
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAA
SWMSWMGCAAATAGTTTCWGGACT
414
1038



ATAGTTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTTTCWGGACT
415
1039


12_10_2_8
HCAGTTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCTTCWGGACT
416
1040


12_11_2_8
ATNHCTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATAGTYWCWGGACT
417
1041


12_12_2_8
ATAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCTTCWGGACT
418
1042


12_13_2_8
HCNHCTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCAGTYWCWGGACT
419
1043


12_14_2_8
HCAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAA
CAGCAGGCAAATNHCYWCWGGACT
420
1044


12_15_2_8
ATNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-12_2_2_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAA
SWMCAGRNAAATAGTTTCWGGACT
421
1045



ATAGTTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-12_3_2_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAN
SWMCAGGCANHCAGTTTCWGGACT
422
1046



HCAGTTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-12_4_2_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATNHCTTCWGGACT
423
1047



ATNHCTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-12_5_2_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATAGTYWCWGGACT
424
1048



ATAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-12_6_2_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAA
CAGSWMRNAAATAGTTTCWGGACT
425
1049



ATAGTTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-12_7_2_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAN
CAGSWMGCANHCAGTTTCWGGACT
426
1050



HCAGTTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-12_8_2_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATNHCTTCWGGACT
427
1051



ATNHCTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-12_9_2_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATAGTYWCWGGACT
428
1052



ATAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-12_1_3_8
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAA
SWMSWMGCAAATAGTTTCCCTACT
429
1053



ATAGTTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTTTCCCTACT
430
1054


12_10_3_8
HCAGTTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCTTCCCTACT
431
1055


12_11_3_8
ATNHCTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATAGTYWCCCTACT
432
1056


12_12_3_8
ATAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCTTCCCTACT
433
1057


12_13_3_8
HCNHCTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCAGTYWCCCTACT
434
1058


12_14_3_8
HCAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAA
CAGCAGGCAAATNHCYWCCCTACT
435
1059


12_15_3_8
ATNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-12_2_3_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAA
SWMCAGRNAAATAGTTTCCCTACT
436
1060



ATAGTTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-12_3_3_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAN
SWMCAGGCANHCAGTTTCCCTACT
437
1061



HCAGTTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-12_4_3_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATNHCTTCCCTACT
438
1062



ATNHCTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-12_5_3_8
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATAGTYWCCCTACT
439
1063



ATAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-12_6_3_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAA
CAGSWMRNAAATAGTTTCCCTACT
440
1064



ATAGTTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-12_7_3_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAN
CAGSWMGCANHCAGTTTCCCTACT
441
1065



HCAGTTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-12_8_3_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATNHCTTCCCTACT
442
1066



ATNHCTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-12_9_3_8
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATAGTYWCCCTACT
443
1067



ATAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-33_1_0_8
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACG
SWMSWMTACGATAATCTCTWCACT
444
1068



ATAATCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATCTCTWCACT
445
1069


33_10_0_8
HCAATCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCCTCTWCACT
446
1070


33_11_0_8
ATNHCCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATAATYWCTWCACT
447
1071


33_12_0_8
ATAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCCTCTWCACT
448
1072


33_13_0_8
HCNHCCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCAATYWCTWCACT
449
1073


33_14_0_8
HCAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACG
CAGCAGTACGATNHCYWCTWCACT
450
1074


33_15_0_8
ATNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-33_2_0_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCG
SWMCAGBHCGATAATCTCTWCACT
451
1075



ATAATCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-33_3_0_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACN
SWMCAGTACNHCAATCTCTWCACT
452
1076



HCAATCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-33_4_0_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATNHCCTCTWCACT
453
1077



ATNHCCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-33_5_0_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATAATYWCTWCACT
454
1078



ATAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-33_6_0_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCG
CAGSWMBHCGATAATCTCTWCACT
455
1079



ATAATCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-33_7_0_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACN
CAGSWMTACNHCAATCTCTWCACT
456
1080



HCAATCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-33_8_0_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATNHCCTCTWCACT
457
1081



ATNHCCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-33_9_0_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATAATYWCTWCACT
458
1082



ATAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-33_1_1_8
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACG
SWMSWMTACGATAATCTCMTCACT
459
1083



ATAATCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATCTCMTCACT
460
1084


33_10_1_8
HCAATCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCCTCMTCACT
461
1085


33_11_1_8
ATNHCCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATAATYWCMTCACT
462
1086


33_12_1_8
ATAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCCTCMTCACT
463
1087


33_13_1_8
HCNHCCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCAATYWCMTCACT
464
1088


33_14_1_8
HCAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACG
CAGCAGTACGATNHCYWCMTCACT
465
1089


33_15_1_8
ATNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-33_2_1_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCG
SWMCAGBHCGATAATCTCMTCACT
466
1090



ATAATCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-33_3_1_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACN
SWMCAGTACNHCAATCTCMTCACT
467
1091



HCAATCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-33_4_1_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATNHCCTCMTCACT
468
1092



ATNHCCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-33_5_1_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATAATYWCMTCACT
469
1093



ATAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-33_6_1_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCG
CAGSWMBHCGATAATCTCMTCACT
470
1094



ATAATCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-33_7_1_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACN
CAGSWMTACNHCAATCTCMTCACT
471
1095



HCAATCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-33_8_1_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATNHCCTCMTCACT
472
1096



ATNHCCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-33_9_1_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATAATYWCMTCACT
473
1097



ATAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-33_1_2_8
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACG
SWMSWMTACGATAATCTCWGGACT
474
1098



ATAATCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATCTCWGGACT
475
1099


33_10_2_8
HCAATCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCCTCWGGACT
476
1100


33_11_2_8
ATNHCCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATAATYWCWGGACT
477
1101


33_12_2_8
ATAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCCTCWGGACT
478
1102


33_13_2_8
HCNHCCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCAATYWCWGGACT
479
1103


33_14_2_8
HCAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACG
CAGCAGTACGATNHCYWCWGGACT
480
1104


33_15_2_8
ATNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-33_2_2_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCG
SWMCAGBHCGATAATCTCWGGACT
481
1105



ATAATCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-33_3_2_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACN
SWMCAGTACNHCAATCTCWGGACT
482
1106



HCAATCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-33_4_2_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATNHCCTCWGGACT
483
1107



ATNHCCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-33_5_2_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATAATYWCWGGACT
484
1108



ATAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-33_6_2_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCG
CAGSWMBHCGATAATCTCWGGACT
485
1109



ATAATCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-33_7_2_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACN
CAGSWMTACNHCAATCTCWGGACT
486
1110



HCAATCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-33_8_2_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATNHCCTCWGGACT
487
1111



ATNHCCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-33_9_2_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATAATYWCWGGACT
488
1112



ATAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-33_1_3_8
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACG
SWMSWMTACGATAATCTCCCTACT
489
1113



ATAATCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATCTCCCTACT
490
1114


33_10_3_8
HCAATCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCCTCCCTACT
491
1115


33_11_3_8
ATNHCCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATAATYWCCCTACT
492
1116


33_12_3_8
ATAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCCTCCCTACT
493
1117


33_13_3_8
HCNHCCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCAATYWCCCTACT
494
1118


33_14_3_8
HCAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACG
CAGCAGTACGATNHCYWCCCTACT
495
1119


33_15_3_8
ATNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-33_2_3_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCG
SWMCAGBHCGATAATCTCCCTACT
496
1120



ATAATCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-33_3_3_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACN
SWMCAGTACNHCAATCTCCCTACT
497
1121



HCAATCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-33_4_3_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATNHCCTCCCTACT
498
1122



ATNHCCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-33_5_3_8
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATAATYWCCCTACT
499
1123



ATAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-33_6_3_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCG
CAGSWMBHCGATAATCTCCCTACT
500
1124



ATAATCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-33_7_3_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACN
CAGSWMTACNHCAATCTCCCTACT
501
1125



HCAATCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-33_8_3_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATNHCCTCCCTACT
502
1126



ATNHCCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-33_9_3_8
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATAATYWCCCTACT
503
1127



ATAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-39_1_0_8
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCT
SWMSWMAGCTACAGTACTTWCACT
504
1128



ACAGTACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTACTTWCACT
505
1129


39_10_0_8
HCAGTACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCACTTWCACT
506
1130


39_11_0_8
ACNHCACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACAGTBHCTWCACT
507
1131


39_12_0_8
ACAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCACTTWCACT
508
1132


39_13_0_8
HCNHCACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCAGTBHCTWCACT
509
1133


39_14_0_8
HCAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCT
CAGCAAAGCTACNHCBHCTWCACT
510
1134


39_15_0_8
ACNHCBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-39_2_0_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNAT
SWMCAAVNATACAGTACTTWCACT
511
1135



ACAGTACTTWCACTTTTGGCGGAGGGACCAAG








VK1-39_3_0_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCB
SWMCAAAGCBHCAGTACTTWCACT
512
1136



HCAGTACTTWCACTTTTGGCGGAGGGACCAAG








VK1-39_4_0_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACNHCACTTWCACT
513
1137



ACNHCACTTWCACTTTTGGCGGAGGGACCAAG








VK1-39_5_0_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACAGTBHCTWCACT
514
1138



ACAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-39_6_0_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNAT
CAGSWMVNATACAGTACTTWCACT
515
1139



ACAGTACTTWCACTTTTGGCGGAGGGACCAAG








VK1-39_7_0_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCB
CAGSWMAGCBHCAGTACTTWCACT
516
1140



HCAGTACTTWCACTTTTGGCGGAGGGACCAAG








VK1-39_8_0_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACNHCACTTWCACT
517
1141



ACNHCACTTWCACTTTTGGCGGAGGGACCAAG








VK1-39_9_0_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACAGTBHCTWCACT
518
1142



ACAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-39_1_1_8
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCT
SWMSWMAGCTACAGTACTMTCACT
519
1143



ACAGTACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTACTMTCACT
520
1144


39_10_1_8
HCAGTACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCACTMTCACT
521
1145


39_11_1_8
ACNHCACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACAGTBHCMTCACT
522
1146


39_12_1_8
ACAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCACTMTCACT
523
1147


39_13_1_8
HCNHCACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCAGTBHCMTCACT
524
1148


39_14_1_8
HCAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCT
CAGCAAAGCTACNHCBHCMTCACT
525
1149


39_15_1_8
ACNHCBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-39_2_1_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNAT
SWMCAAVNATACAGTACTMTCACT
526
1150



ACAGTACTMTCACTTTTGGCGGAGGGACCAAG








VK1-39_3_1_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCB
SWMCAAAGCBHCAGTACTMTCACT
527
1151



HCAGTACTMTCACTTTTGGCGGAGGGACCAAG








VK1-39_4_1_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACNHCACTMTCACT
528
1152



ACNHCACTMTCACTTTTGGCGGAGGGACCAAG








VK1-39_5_1_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACAGTBHCMTCACT
529
1153



ACAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-39_6_1_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNAT
CAGSWMVNATACAGTACTMTCACT
530
1154



ACAGTACTMTCACTTTTGGCGGAGGGACCAAG








VK1-39_7_1_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCB
CAGSWMAGCBHCAGTACTMTCACT
531
1155



HCAGTACTMTCACTTTTGGCGGAGGGACCAAG








VK1-39_8_1_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACNHCACTMTCACT
532
1156



ACNHCACTMTCACTTTTGGCGGAGGGACCAAG








VK1-39_9_1_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACAGTBHCMTCACT
533
1157



ACAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-39_1_2_8
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCT
SWMSWMAGCTACAGTACTWGGACT
534
1158



ACAGTACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTACTWGGACT
535
1159


39_10_2_8
HCAGTACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCACTWGGACT
536
1160


39_11_2_8
ACNHCACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACAGTBHCWGGACT
537
1161


39_12_2_8
ACAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCACTWGGACT
538
1162


39_13_2_8
HCNHCACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCAGTBHCWGGACT
539
1163


39_14_2_8
HCAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCT
CAGCAAAGCTACNHCBHCWGGACT
540
1164


39_15_2_8
ACNHCBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-39_2_2_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNAT
SWMCAAVNATACAGTACTWGGACT
541
1165



ACAGTACTWGGACTTTTGGCGGAGGGACCAAG








VK1-39_3_2_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCB
SWMCAAAGCBHCAGTACTWGGACT
542
1166



HCAGTACTWGGACTTTTGGCGGAGGGACCAAG








VK1-39_4_2_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACNHCACTWGGACT
543
1167



ACNHCACTWGGACTTTTGGCGGAGGGACCAAG








VK1-39_5_2_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACAGTBHCWGGACT
544
1168



ACAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-39_6_2_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNAT
CAGSWMVNATACAGTACTWGGACT
545
1169



ACAGTACTWGGACTTTTGGCGGAGGGACCAAG








VK1-39_7_2_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCB
CAGSWMAGCBHCAGTACTWGGACT
546
1170



HCAGTACTWGGACTTTTGGCGGAGGGACCAAG








VK1-39_8_2_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACNHCACTWGGACT
547
1171



ACNHCACTWGGACTTTTGGCGGAGGGACCAAG








VK1-39_9_2_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACAGTBHCWGGACT
548
1172



ACAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-39_1_3_8
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCT
SWMSWMAGCTACAGTACTCCTACT
549
1173



ACAGTACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTACTCCTACT
550
1174


39_10_3_8
HCAGTACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCACTCCTACT
551
1175


39_11_3_8
ACNHCACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACAGTBHCCCTACT
552
1176


39_12_3_8
ACAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCACTCCTACT
553
1177


39_13_3_8
HCNHCACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCAGTBHCCCTACT
554
1178


39_14_3_8
HCAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCT
CAGCAAAGCTACNHCBHCCCTACT
555
1179


39_15_3_8
ACNHCBHCCCTACTTTTGGCGGAGGGACCAAG








VK1-39_2_3_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNAT
SWMCAAVNATACAGTACTCCTACT
556
1180



ACAGTACTCCTACTTTTGGCGGAGGGACCAAG








VK1-39_3_3_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCB
SWMCAAAGCBHCAGTACTCCTACT
557
1181



HCAGTACTCCTACTTTTGGCGGAGGGACCAAG








VK1-39_4_3_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACNHCACTCCTACT
558
1182



ACNHCACTCCTACTTTTGGCGGAGGGACCAAG








VK1-39_5_3_8
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACAGTBHCCCTACT
559
1183



ACAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK1-39_6_3_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNAT
CAGSWMVNATACAGTACTCCTACT
560
1184



ACAGTACTCCTACTTTTGGCGGAGGGACCAAG








VK1-39_7_3_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCB
CAGSWMAGCBHCAGTACTCCTACT
561
1185



HCAGTACTCCTACTTTTGGCGGAGGGACCAAG








VK1-39_8_3_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACNHCACTCCTACT
562
1186



ACNHCACTCCTACTTTTGGCGGAGGGACCAAG








VK1-39_9_3_8
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACAGTBHCCCTACT
563
1187



ACAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK2-28_1_0_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCAC
DTSSWMGCACTCCAGACTTWCACT
564
1188



TCCAGACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGACTTWCACT
565
1189


28_10_0_8
NACAGACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMACTTWCACT
566
1190


28_11_0_8
TCSRMACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCCAGVBCTWCACT
567
1191


28_12_0_8
TCCAGVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMACTTWCACT
568
1192


28_13_0_8
NASRMACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNACAGVBCTWCACT
569
1193


28_14_0_8
NACAGVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAC
ATGCAGGCACTCSRMVBCTWCACT
570
1194


28_15_0_8
TCSRMVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-28_2_0_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNAC
DTSCAGVNACTCCAGACTTWCACT
571
1195



TCCAGACTTWCACTTTTGGCGGAGGGACCAAG








VK2-28_3_0_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAM
DTSCAGGCAMNACAGACTTWCACT
572
1196



NACAGACTTWCACTTTTGGCGGAGGGACCAAG








VK2-28_4_0_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCSRMACTTWCACT
573
1197



TCSRMACTTWCACTTTTGGCGGAGGGACCAAG








VK2-28_5_0_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCCAGVBCTWCACT
574
1198



TCCAGVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-28_6_0_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNAC
ATGSWMVNACTCCAGACTTWCACT
575
1199



TCCAGACTTWCACTTTTGGCGGAGGGACCAAG








VK2-28_7_0_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAM
ATGSWMGCAMNACAGACTTWCACT
576
1200



NACAGACTTWCACTTTTGGCGGAGGGACCAAG








VK2-28_8_0_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCSRMACTTWCACT
577
1201



TCSRMACTTWCACTTTTGGCGGAGGGACCAAG








VK2-28_9_0_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCCAGVBCTWCACT
578
1202



TCCAGVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-28_1_1_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCAC
DTSSWMGCACTCCAGACTMTCACT
579
1203



TCCAGACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGACTMTCACT
580
1204


28_10_1_8
NACAGACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMACTMTCACT
581
1205


28_11_1_8
TCSRMACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCCAGVBCMTCACT
582
1206


28_12_1_8
TCCAGVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMACTMTCACT
583
1207


28_13_1_8
NASRMACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNACAGVBCMTCACT
584
1208


28_14_1_8
NACAGVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAC
ATGCAGGCACTCSRMVBCMTCACT
585
1209


28_15_1_8
TCSRMVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-28_2_1_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNAC
DTSCAGVNACTCCAGACTMTCACT
586
1210



TCCAGACTMTCACTTTTGGCGGAGGGACCAAG








VK2-28_3_1_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAM
DTSCAGGCAMNACAGACTMTCACT
587
1211



NACAGACTMTCACTTTTGGCGGAGGGACCAAG








VK2-28_4_1_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCSRMACTMTCACT
588
1212



TCSRMACTMTCACTTTTGGCGGAGGGACCAAG








VK2-28_5_1_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCCAGVBCMTCACT
589
1213



TCCAGVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-28_6_1_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNAC
ATGSWMVNACTCCAGACTMTCACT
590
1214



TCCAGACTMTCACTTTTGGCGGAGGGACCAAG








VK2-28_7_1_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAM
ATGSWMGCAMNACAGACTMTCACT
591
1215



NACAGACTMTCACTTTTGGCGGAGGGACCAAG








VK2-28_8_1_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCSRMACTMTCACT
592
1216



TCSRMACTMTCACTTTTGGCGGAGGGACCAAG








VK2-28_9_1_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCCAGVBCMTCACT
593
1217



TCCAGVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-28_1_2_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCAC
DTSSWMGCACTCCAGACTWGGACT
594
1218



TCCAGACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGACTWGGACT
595
1219


28_10_2_8
NACAGACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMACTWGGACT
596
1220


28_11_2_8
TCSRMACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCCAGVBCWGGACT
597
1221


28_12_2_8
TCCAGVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMACTWGGACT
598
1222


28_13_2_8
NASRMACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNACAGVBCWGGACT
599
1223


28_14_2_8
NACAGVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAC
ATGCAGGCACTCSRMVBCWGGACT
600
1224


28_15_2_8
TCSRMVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-28_2_2_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNAC
DTSCAGVNACTCCAGACTWGGACT
601
1225



TCCAGACTWGGACTTTTGGCGGAGGGACCAAG








VK2-28_3_2_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAM
DTSCAGGCAMNACAGACTWGGACT
602
1226



NACAGACTWGGACTTTTGGCGGAGGGACCAAG








VK2-28_4_2_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCSRMACTWGGACT
603
1227



TCSRMACTWGGACTTTTGGCGGAGGGACCAAG








VK2-28_5_2_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCCAGVBCWGGACT
604
1228



TCCAGVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-28_6_2_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNAC
ATGSWMVNACTCCAGACTWGGACT
605
1229



TCCAGACTWGGACTTTTGGCGGAGGGACCAAG








VK2-28_7_2_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAM
ATGSWMGCAMNACAGACTWGGACT
606
1230



NACAGACTWGGACTTTTGGCGGAGGGACCAAG








VK2-28_8_2_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCSRMACTWGGACT
607
1231



TCSRMACTWGGACTTTTGGCGGAGGGACCAAG








VK2-28_9_2_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCCAGVBCWGGACT
608
1232



TCCAGVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-28_1_3_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCAC
DTSSWMGCACTCCAGACTCCTACT
609
1233



TCCAGACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGACTCCTACT
610
1234


28_10_3_8
NACAGACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMACTCCTACT
611
1235


28_11_3_8
TCSRMACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCCAGVBCCCTACT
612
1236


28_12_3_8
TCCAGVBCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMACTCCTACT
613
1237


28_13_3_8
NASRMACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNACAGVBCCCTACT
614
1238


28_14_3_8
NACAGVBCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAC
ATGCAGGCACTCSRMVBCCCTACT
615
1239


28_15_3_8
TCSRMVBCCCTACTTTTGGCGGAGGGACCAAG








VK2-28_2_3_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNAC
DTSCAGVNACTCCAGACTCCTACT
616
1240



TCCAGACTCCTACTTTTGGCGGAGGGACCAAG








VK2-28_3_3_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAM
DTSCAGGCAMNACAGACTCCTACT
617
1241



NACAGACTCCTACTTTTGGCGGAGGGACCAAG








VK2-28_4_3_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCSRMACTCCTACT
618
1242



TCSRMACTCCTACTTTTGGCGGAGGGACCAAG








VK2-28_5_3_8
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCCAGVBCCCTACT
619
1243



TCCAGVBCCCTACTTTTGGCGGAGGGACCAAG








VK2-28_6_3_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNAC
ATGSWMVNACTCCAGACTCCTACT
620
1244



TCCAGACTCCTACTTTTGGCGGAGGGACCAAG








VK2-28_7_3_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAM
ATGSWMGCAMNACAGACTCCTACT
621
1245



NACAGACTCCTACTTTTGGCGGAGGGACCAAG








VK2-28_8_3_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCSRMACTCCTACT
622
1246



TCSRMACTCCTACTTTTGGCGGAGGGACCAAG








VK2-28_9_3_8
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCCAGVBCCCTACT
623
1247



TCCAGVBCCCTACTTTTGGCGGAGGGACCAAG








VK3-11_1_0_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAA
SWMSWMAGAAGTAATTGGTWCACT
624
1248



GTAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATTGGTWCACT
625
1249


11_10_0_8
HCAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCTGGTWCACT
626
1250


11_11_0_8
GTNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTAATYWCTWCACT
627
1251


11_12_0_8
GTAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCTGGTWCACT
628
1252


11_13_0_8
HCNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCAATYWCTWCACT
629
1253


11_14_0_8
HCAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAA
CAGCAGAGAAGTNHCYWCTWCACT
630
1254


11_15_0_8
GTNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-11_2_0_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCA
SWMCAGBHCAGTAATTGGTWCACT
631
1255



GTAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-11_3_0_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAN
SWMCAGAGANHCAATTGGTWCACT
632
1256



HCAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-11_4_0_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTNHCTGGTWCACT
633
1257



GTNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-11_5_0_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTAATYWCTWCACT
634
1258



GTAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-11_6_0_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCA
CAGSWMBHCAGTAATTGGTWCACT
635
1259



GTAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-11_7_0_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAN
CAGSWMAGANHCAATTGGTWCACT
636
1260



HCAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-11_8_0_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTNHCTGGTWCACT
637
1261



GTNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-11_9_0_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTAATYWCTWCACT
638
1262



GTAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-11_1_1_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAA
SWMSWMAGAAGTAATTGGMTCACT
639
1263



GTAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATTGGMTCACT
640
1264


11_10_1_8
HCAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCTGGMTCACT
641
1265


11_11_1_8
GTNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTAATYWCMTCACT
642
1266


11_12_1_8
GTAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCTGGMTCACT
643
1267


11_13_1_8
HCNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCAATYWCMTCACT
644
1268


11_14_1_8
HCAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAA
CAGCAGAGAAGTNHCYWCMTCACT
645
1269


11_15_1_8
GTNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-11_2_1_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCA
SWMCAGBHCAGTAATTGGMTCACT
646
1270



GTAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-11_3_1_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAN
SWMCAGAGANHCAATTGGMTCACT
647
1271



HCAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-11_4_1_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTNHCTGGMTCACT
648
1272



GTNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-11_5_1_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTAATYWCMTCACT
649
1273



GTAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-11_6_1_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCA
CAGSWMBHCAGTAATTGGMTCACT
650
1274



GTAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-11_7_1_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAN
CAGSWMAGANHCAATTGGMTCACT
651
1275



HCAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-11_8_1_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTNHCTGGMTCACT
652
1276



GTNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-11_9_1_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTAATYWCMTCACT
653
1277



GTAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-11_1_2_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAA
SWMSWMAGAAGTAATTGGWGGACT
654
1278



GTAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATTGGWGGACT
655
1279


11_10_2_8
HCAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCTGGWGGACT
656
1280


11_11_2_8
GTNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTAATYWCWGGACT
657
1281


11_12_2_8
GTAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCTGGWGGACT
658
1282


11_13_2_8
HCNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCAATYWCWGGACT
659
1283


11_14_2_8
HCAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAA
CAGCAGAGAAGTNHCYWCWGGACT
660
1284


11_15_2_8
GTNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-11_2_2_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCA
SWMCAGBHCAGTAATTGGWGGACT
661
1285



GTAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-11_3_2_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAN
SWMCAGAGANHCAATTGGWGGACT
662
1286



HCAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-11_4_2_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTNHCTGGWGGACT
663
1287



GTNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-11_5_2_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTAATYWCWGGACT
664
1288



GTAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-11_6_2_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCA
CAGSWMBHCAGTAATTGGWGGACT
665
1289



GTAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-11_7_2_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAN
CAGSWMAGANHCAATTGGWGGACT
666
1290



HCAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-11_8_2_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTNHCTGGWGGACT
667
1291



GTNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-11_9_2_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTAATYWCWGGACT
668
1292



GTAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-11_1_3_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAA
SWMSWMAGAAGTAATTGGCCTACT
669
1293



GTAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATTGGCCTACT
670
1294


11_10_3_8
HCAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCTGGCCTACT
671
1295


11_11_3_8
GTNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTAATYWCCCTACT
672
1296


11_12_3_8
GTAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCTGGCCTACT
673
1297


11_13_3_8
HCNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCAATYWCCCTACT
674
1298


11_14_3_8
HCAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAA
CAGCAGAGAAGTNHCYWCCCTACT
675
1299


11_15_3_8
GTNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-11_2_3_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCA
SWMCAGBHCAGTAATTGGCCTACT
676
1300



GTAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-11_3_3_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAN
SWMCAGAGANHCAATTGGCCTACT
677
1301



HCAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-11_4_3_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTNHCTGGCCTACT
678
1302



GTNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-11_5_3_8
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTAATYWCCCTACT
679
1303



GTAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-11_6_3_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCA
CAGSWMBHCAGTAATTGGCCTACT
680
1304



GTAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-11_7_3_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAN
CAGSWMAGANHCAATTGGCCTACT
681
1305



HCAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-11_8_3_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTNHCTGGCCTACT
682
1306



GTNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-11_9_3_8
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTAATYWCCCTACT
683
1307



GTAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-15_1_0_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMT
SWMSWMTACAATAATTGGTWCACT
684
1308



ACAATAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATTGGTWCACT
685
1249


15_10_0_8
HCNHCAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCTGGTWCACT
686
1309


15_11_0_8
HCAATNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATAATYWCTWCACT
687
1310


15_12_0_8
HCAATAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCTGGTWCACT
688
1311


15_13_0_8
ACNHCNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCAATYWCTWCACT
689
1073


15_14_0_8
ACNHCAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACAATNHCYWCTWCACT
690
1312


15_15_0_8
ACAATNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-15_2_0_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGB
SWMCAGBHCAATAATTGGTWCACT
691
1313



HCAATAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-15_3_0_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACNHCAATTGGTWCACT
692
1314



ACNHCAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-15_4_0_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATNHCTGGTWCACT
693
1315



ACAATNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-15_5_0_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATAATYWCTWCACT
694
1316



ACAATAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-15_6_0_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMB
CAGSWMBHCAATAATTGGTWCACT
695
1317



HCAATAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-15_7_0_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACNHCAATTGGTWCACT
696
1318



ACNHCAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-15_8_0_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATNHCTGGTWCACT
697
1319



ACAATNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-15_9_0_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATAATYWCTWCACT
698
1320



ACAATAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-15_1_1_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMT
SWMSWMTACAATAATTGGMTCACT
699
1321



ACAATAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATTGGMTCACT
700
1264


15_10_1_8
HCNHCAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCTGGMTCACT
701
1322


15_11_1_8
HCAATNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATAATYWCMTCACT
702
1323


15_12_1_8
HCAATAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCTGGMTCACT
703
1324


15_13_1_8
ACNHCNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCAATYWCMTCACT
704
1088


15_14_1_8
ACNHCAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACAATNHCYWCMTCACT
705
1325


15_15_1_8
ACAATNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-15_2_1_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGB
SWMCAGBHCAATAATTGGMTCACT
706
1326



HCAATAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-15_3_1_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACNHCAATTGGMTCACT
707
1327



ACNHCAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-15_4_1_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATNHCTGGMTCACT
708
1328



ACAATNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-15_5_1_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATAATYWCMTCACT
709
1329



ACAATAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-15_6_1_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMB
CAGSWMBHCAATAATTGGMTCACT
710
1330



HCAATAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-15_7_1_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACNHCAATTGGMTCACT
711
1331



ACNHCAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-15_8_1_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATNHCTGGMTCACT
712
1332



ACAATNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-15_9_1_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATAATYWCMTCACT
713
1333



ACAATAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-15_1_2_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMT
SWMSWMTACAATAATTGGWGGACT
714
1334



ACAATAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATTGGWGGACT
715
1279


15_10_2_8
HCNHCAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCTGGWGGACT
716
1335


15_11_2_8
HCAATNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATAATYWCWGGACT
717
1336


15_12_2_8
HCAATAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCTGGWGGACT
718
1337


15_13_2_8
ACNHCNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCAATYWCWGGACT
719
1103


15_14_2_8
ACNHCAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACAATNHCYWCWGGACT
720
1338


15_15_2_8
ACAATNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-15_2_2_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGB
SWMCAGBHCAATAATTGGWGGACT
721
1339



HCAATAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-15_3_2_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACNHCAATTGGWGGACT
722
1340



ACNHCAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-15_4_2_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATNHCTGGWGGACT
723
1341



ACAATNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-15_5_2_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATAATYWCWGGACT
724
1342



ACAATAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-15_6_2_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMB
CAGSWMBHCAATAATTGGWGGACT
725
1343



HCAATAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-15_7_2_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACNHCAATTGGWGGACT
726
1344



ACNHCAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-15_8_2_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATNHCTGGWGGACT
727
1345



ACAATNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-15_9_2_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATAATYWCWGGACT
728
1346



ACAATAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-15_1_3_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMT
SWMSWMTACAATAATTGGCCTACT
729
1347



ACAATAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATTGGCCTACT
730
1294


15_10_3_8
HCNHCAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCTGGCCTACT
731
1348


15_11_3_8
HCAATNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATAATYWCCCTACT
732
1349


15_12_3_8
HCAATAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCTGGCCTACT
733
1350


15_13_3_8
ACNHCNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCAATYWCCCTACT
734
1118


15_14_3_8
ACNHCAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACAATNHCYWCCCTACT
735
1351


15_15_3_8
ACAATNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-15_2_3_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGB
SWMCAGBHCAATAATTGGCCTACT
736
1352



HCAATAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-15_3_3_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACNHCAATTGGCCTACT
737
1353



ACNHCAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-15_4_3_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATNHCTGGCCTACT
738
1354



ACAATNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-15_5_3_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATAATYWCCCTACT
739
1355



ACAATAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-15_6_3_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMB
CAGSWMBHCAATAATTGGCCTACT
740
1356



HCAATAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-15_7_3_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACNHCAATTGGCCTACT
741
1357



ACNHCAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-15_8_3_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATNHCTGGCCTACT
742
1358



ACAATNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-15_9_3_8
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATAATYWCCCTACT
743
1359



ACAATAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-20_1_0_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACG
SWMSWMTACGGAAGTAGTTWCACT
744
1360



GAAGTAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTAGTTWCACT
745
1361


20_10_0_8
HCAGTAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCAGTTWCACT
746
1362


20_11_0_8
GAVNCAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAAGTBHCTWCACT
747
1363


20_12_0_8
GAAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCAGTTWCACT
748
1364


20_13_0_8
HCVNCAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCAGTBHCTWCACT
749
1365


20_14_0_8
HCAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACG
CAGCAGTACGGAVNCBHCTWCACT
750
1366


20_15_0_8
GAVNCBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-20_2_0_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCG
SWMCAGBHCGGAAGTAGTTWCACT
751
1367



GAAGTAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-20_3_0_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACB
SWMCAGTACBHCAGTAGTTWCACT
752
1368



HCAGTAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-20_4_0_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAVNCAGTTWCACT
753
1369



GAVNCAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-20_5_0_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAAGTBHCTWCACT
754
1370



GAAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-20_6_0_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCG
CAGSWMBHCGGAAGTAGTTWCACT
755
1371



GAAGTAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-20_7_0_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACB
CAGSWMTACBHCAGTAGTTWCACT
756
1372



HCAGTAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-20_8_0_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAVNCAGTTWCACT
757
1373



GAVNCAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-20_9_0_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAAGTBHCTWCACT
758
1374



GAAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-20_1_1_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACG
SWMSWMTACGGAAGTAGTMTCACT
759
1375



GAAGTAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTAGTMTCACT
760
1376


20_10_1_8
HCAGTAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCAGTMTCACT
761
1377


20_11_1_8
GAVNCAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAAGTBHCMTCACT
762
1378


20_12_1_8
GAAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCAGTMTCACT
763
1379


20_13_1_8
HCVNCAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCAGTBHCMTCACT
764
1380


20_14_1_8
HCAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACG
CAGCAGTACGGAVNCBHCMTCACT
765
1381


20_15_1_8
GAVNCBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-20_2_1_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCG
SWMCAGBHCGGAAGTAGTMTCACT
766
1382



GAAGTAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-20_3_1_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACB
SWMCAGTACBHCAGTAGTMTCACT
767
1383



HCAGTAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-20_4_1_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAVNCAGTMTCACT
768
1384



GAVNCAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-20_5_1_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAAGTBHCMTCACT
769
1385



GAAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-20_6_1_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCG
CAGSWMBHCGGAAGTAGTMTCACT
770
1386



GAAGTAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-20_7_1_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACB
CAGSWMTACBHCAGTAGTMTCACT
771
1387



HCAGTAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-20_8_1_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAVNCAGTMTCACT
772
1388



GAVNCAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-20_9_1_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAAGTBHCMTCACT
773
1389



GAAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-20_1_2_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACG
SWMSWMTACGGAAGTAGTWGGACT
774
1390



GAAGTAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTAGTWGGACT
775
1391


20_10_2_8
HCAGTAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCAGTWGGACT
776
1392


20_11_2_8
GAVNCAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAAGTBHCWGGACT
777
1393


20_12_2_8
GAAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCAGTWGGACT
778
1394


20_13_2_8
HCVNCAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCAGTBHCWGGACT
779
1395


20_14_2_8
HCAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACG
CAGCAGTACGGAVNCBHCWGGACT
780
1396


20_15_2_8
GAVNCBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-20_2_2_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCG
SWMCAGBHCGGAAGTAGTWGGACT
781
1397



GAAGTAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-20_3_2_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACB
SWMCAGTACBHCAGTAGTWGGACT
782
1398



HCAGTAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-20_4_2_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAVNCAGTWGGACT
783
1399



GAVNCAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-20_5_2_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAAGTBHCWGGACT
784
1400



GAAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-20_6_2_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCG
CAGSWMBHCGGAAGTAGTWGGACT
785
1401



GAAGTAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-20_7_2_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACB
CAGSWMTACBHCAGTAGTWGGACT
786
1402



HCAGTAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-20_8_2_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAVNCAGTWGGACT
787
1403



GAVNCAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-20_9_2_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAAGTBHCWGGACT
788
1404



GAAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-20_1_3_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACG
SWMSWMTACGGAAGTAGTCCTACT
789
1405



GAAGTAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTAGTCCTACT
790
1406


20_10_3_8
HCAGTAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCAGTCCTACT
791
1407


20_11_3_8
GAVNCAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAAGTBHCCCTACT
792
1408


20_12_3_8
GAAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCAGTCCTACT
793
1409


20_13_3_8
HCVNCAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCAGTBHCCCTACT
794
1410


20_14_3_8
HCAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACG
CAGCAGTACGGAVNCBHCCCTACT
795
1411


20_15_3_8
GAVNCBHCCCTACTTTTGGCGGAGGGACCAAG








VK3-20_2_3_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCG
SWMCAGBHCGGAAGTAGTCCTACT
796
1412



GAAGTAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-20_3_3_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACB
SWMCAGTACBHCAGTAGTCCTACT
797
1413



HCAGTAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-20_4_3_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAVNCAGTCCTACT
798
1414



GAVNCAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-20_5_3_8
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAAGTBHCCCTACT
799
1415



GAAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK3-20_6_3_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCG
CAGSWMBHCGGAAGTAGTCCTACT
800
1416



GAAGTAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-20_7_3_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACB
CAGSWMTACBHCAGTAGTCCTACT
801
1417



HCAGTAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-20_8_3_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAVNCAGTCCTACT
802
1418



GAVNCAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-20_9_3_8
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAAGTBHCCCTACT
803
1419



GAAGTBHCCCTACTTTTGGCGGAGGGACCAAG













Jumping Trimer











VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMMBCTACTWCACT
804
1420


05_t1_0_8
RMMBCTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMMBCTACMTCACT
805
1421


05_t1_1_8
RMMBCTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMMBCTACWGGACT
806
1422


05_t1_2_8
RMMBCTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMMBCTACYCTACT
807
1423


05_t1_3_8
RMMBCTACYCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCYWCTWCACT
808
1424


05_t2_0_8
ATMBCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCYWCMTCACT
809
1425


05_t2_1_8
ATMBCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCYWCWGGACT
810
1426


05_t2_2_8
ATMBCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCYWCYCTACT
811
1427


05_t2_3_8
ATMBCYWCYCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTYWCTWCACT
812
1428


05_t3_0_8
RMAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTYWCMTCACT
813
1429


05_t3_1_8
RMAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTYWCWGGACT
814
1430


05_t3_2_8
RMAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTYWCYCTACT
815
1431


05_t3_3_8
RMAGTYWCYCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCYWCTWCACT
816
1432


05_t4_0_8
RMMBCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCYWCMTCACT
817
1433


05_t4_1_8
RMMBCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCYWCWGGACT
818
1434


05_t4_2_8
RMMBCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCYWCYCTACT
819
1435


05_t4_3_8
RMMBCYWCYCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCNHCTTCTWCACT
820
1436


12_t1_0_8
HCNHCTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCNHCTTCMTCACT
821
1437


12_t1_1_8
HCNHCTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCNHCTTCWGGACT
822
1438


12_t1_2_8
HCNHCTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCNHCTTCCCTACT
823
1439


12_t1_3_8
HCNHCTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTYWCTWCACT
824
1440


12_t2_0_8
HCAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTYWCMTCACT
825
1441


12_t2_1_8
HCAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTYWCWGGACT
826
1442


12_t2_2_8
HCAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTYWCCCTACT
827
1443


12_t2_3_8
HCAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCYWCTWCACT
828
1444


12_t3_0_8
ATNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCYWCMTCACT
829
1445


12_t3_1_8
ATNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCYWCWGGACT
830
1446


12_t3_2_8
ATNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCYWCCCTACT
831
1447


12_t3_3_8
ATNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCYWCTWCACT
832
1448


12_t4_0_8
HCNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCYWCMTCACT
833
1449


12_t4_1_8
HCNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCYWCWGGACT
834
1450


12_t4_2_8
HCNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCYWCCCTACT
835
1451


12_t4_3_8
HCNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCCTCTWCACT
836
1452


33_t1_0_8
HCNHCCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCCTCMTCACT
837
1453


33_t1_1_8
HCNHCCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCCTCWGGACT
838
1454


33_t1_2_8
HCNHCCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCCTCCCTACT
839
1455


33_t1_3_8
HCNHCCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCTWCACT
840
1456


33_t2_0_8
HCAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCMTCACT
841
1457


33_t2_1_8
HCAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCWGGACT
842
1458


33_t2_2_8
HCAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCCCTACT
843
1459


33_t2_3_8
HCAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCYWCTWCACT
844
1460


33_t3_0_8
ATNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCYWCMTCACT
845
1461


33_t3_1_8
ATNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCYWCWGGACT
846
1462


33_t3_2_8
ATNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCYWCCCTACT
847
1463


33_t3_3_8
ATNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCYWCTWCACT
848
1464


33_t4_0_8
HCNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCYWCMTCACT
849
1465


33_t4_1_8
HCNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCYWCWGGACT
850
1466


33_t4_2_8
HCNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCYWCCCTACT
851
1467


33_t4_3_8
HCNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCNHCACTTWCACT
852
1468


39_t1_0_8
HCNHCACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCNHCACTMTCACT
853
1469


39_t1_1_8
HCNHCACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCNHCACTWGGACT
854
1470


39_t1_2_8
HCNHCACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCNHCACTCCTACT
855
1471


39_t1_3_8
HCNHCACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTBHCTWCACT
856
1472


39_t2_0_8
HCAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTBHCMTCACT
857
1473


39_t2_1_8
HCAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTBHCWGGACT
858
1474


39_t2_2_8
HCAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTBHCCCTACT
859
1475


39_t2_3_8
HCAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCBHCTWCACT
860
1476


39_t3_0_8
ACNHCBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCBHCMTCACT
861
1477


39_t3_1_8
ACNHCBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCBHCWGGACT
862
1478


39_t3_2_8
ACNHCBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCBHCCCTACT
863
1479


39_t3_3_8
ACNHCBHCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCBHCTWCACT
864
1480


39_t4_0_8
HCNHCBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCBHCMTCACT
865
1481


39_t4_1_8
HCNHCBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCBHCWGGACT
866
1482


39_t4_2_8
HCNHCBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCBHCCCTACT
867
1483


39_t4_3_8
HCNHCBHCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNASRMACTTWCACT
868
1484


28_t1_0_8
NASRMACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNASRMACTMTCACT
869
1485


28_t1_1_8
NASRMACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNASRMACTWGGACT
870
1486


28_t1_2_8
NASRMACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNASRMACTCCTACT
871
1487


28_t1_3_8
NASRMACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGVBCTWCACT
872
1488


28_t2_0_8
NACAGVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGVBCMTCACT
873
1489


28_t2_1_8
NACAGVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGVBCWGGACT
874
1490


28_t2_2_8
NACAGVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGVBCCCTACT
875
1491


28_t2_3_8
NACAGVBCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMVBCTWCACT
876
1492


28_t3_0_8
TCSRMVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMVBCMTCACT
877
1493


28_t3_1_8
TCSRMVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMVBCWGGACT
878
1494


28_t3_2_8
TCSRMVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMVBCCCTACT
879
1495


28_t3_3_8
TCSRMVBCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMVBCTWCACT
880
1496


28_t4_0_8
NASRMVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMVBCMTCACT
881
1497


28_t4_1_8
NASRMVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMVBCWGGACT
882
1498


28_t4_2_8
NASRMVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMVBCCCTACT
883
1499


28_t4_3_8
NASRMVBCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCTGGTWCACT
884
1500


11_t1_0_8
HCNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCTGGMTCACT
885
1501


11_t1_1_8
HCNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCTGGWGGACT
886
1502


11_t1_2_8
HCNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCTGGCCTACT
887
1503


11_t1_3_8
HCNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCTWCACT
888
1456


11_t2_0_8
HCAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCMTCACT
889
1457


11_t2_1_8
HCAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCWGGACT
890
1458


11_t2_2_8
HCAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCCCTACT
891
1459


11_t2_3_8
HCAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCYWCTWCACT
892
1504


11_t3_0_8
GTNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCYWCMTCACT
893
1505


11_t3_1_8
GTNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCYWCWGGACT
894
1506


11_t3_2_8
GTNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCYWCCCTACT
895
1507


11_t3_3_8
GTNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCYWCTWCACT
896
1508


11_t4_0_8
HCNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCYWCMTCACT
897
1509


11_t4_1_8
HCNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCYWCWGGACT
898
1510


11_t4_2_8
HCNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCYWCCCTACT
899
1511


11_t4_3_8
HCNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCNHCTGGTWCACT
900
1500


15_t1_0_8
HCNHCNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCNHCTGGMTCACT
901
1501


15_t1_1_8
HCNHCNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCNHCTGGWGGACT
902
1502


15_t1_2_8
HCNHCNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCNHCTGGCCTACT
903
1503


15_t1_3_8
HCNHCNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATYWCTWCACT
904
1456


15_t2_0_8
HCNHCAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATYWCMTCACT
905
1457


15_t2_1_8
HCNHCAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATYWCWGGACT
906
1458


15_t2_2_8
HCNHCAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATYWCCCTACT
907
1459


15_t2_3_8
HCNHCAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCYWCTWCACT
908
1512


15_t3_0_8
HCAATNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCYWCMTCACT
909
1513


15_t3_1_8
HCAATNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCYWCWGGACT
910
1514


15_t3_2_8
HCAATNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCYWCCCTACT
911
1515


15_t3_3_8
HCAATNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCYWCTWCACT
912
1464


15_t4_0_8
ACNHCNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCYWCMTCACT
913
1465


15_t4_1_8
ACNHCNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCYWCWGGACT
914
1466


15_t4_2_8
ACNHCNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCYWCCCTACT
915
1467


15_t4_3_8
ACNHCNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCVNCAGTTWCACT
916
1516


20_t1_0_8
HCVNCAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCVNCAGTMTCACT
917
1517


20_t1_1_8
HCVNCAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCVNCAGTWGGACT
918
1518


20_t1_2_8
HCVNCAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCVNCAGTCCTACT
919
1519


20_t1_3_8
HCVNCAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCTWCACT
920
1520


20_t2_0_8
HCAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCMTCACT
921
1521


20_t2_1_8
HCAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCWGGACT
922
1522


20_t2_2_8
HCAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCCCTACT
923
1523


20_t2_3_8
HCAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCBHCTWCACT
924
1524


20_t3_0_8
GAVNCBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCBHCMTCACT
925
1525


20_t3_1_8
GAVNCBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCBHCWGGACT
926
1526


20_t3_2_8
GAVNCBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCBHCCCTACT
927
1527


20_t3_3_8
GAVNCBHCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCBHCTWCACT
928
1528


20_t4_0_8
HCVNCBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCBHCMTCACT
929
1529


20_t4_1_8
HCVNCBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCBHCWGGACT
930
1530


20_t4_2_8
HCVNCBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCBHCCCTACT
931
1531


20_t4_3_8
HCVNCBHCCCTACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCNHCACTTWCACT
932
1532


01_t1_0_8
HCNHCACTTWCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCNHCACTMTCACT
933
1533


01_t1_1_8
HCNHCACTMTCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCNHCACTWGGACT
934
1534


01_t1_2_8
HCNHCACTWGGACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCNHCACTCCTACT
935
1535


01_t1_3_8
HCNHCACTCCTACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCTWCACT
936
1520


01_t2_0_8
HCAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCMTCACT
937
1521


01_t2_1_8
HCAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCWGGACT
938
1522


01_t2_2_8
HCAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCCCTACT
939
1523


01_t2_3_8
HCAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCT
CAGCAGBHCTACNHCBHCTWCACT
940
1536


01_t3_0_8
ACNHCBHCTWCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCT
CAGCAGBHCTACNHCBHCMTCACT
941
1537


01_t3_1_8
ACNHCBHCMTCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCT
CAGCAGBHCTACNHCBHCWGGACT
942
1538


01_t3_2_8
ACNHCBHCWGGACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCT
CAGCAGBHCTACNHCBHCCCTACT
943
1539


01_t3_3_8
ACNHCBHCCCTACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACB
CAGCAGTACBHCNHCBHCTWCACT
944
1540


01_t4_0_8
HCNHCBHCTWCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACB
CAGCAGTACBHCNHCBHCMTCACT
945
1541


01_t4_1_8
HCNHCBHCMTCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACB
CAGCAGTACBHCNHCBHCWGGACT
946
1542


01_t4_2_8
HCNHCBHCWGGACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACB
CAGCAGTACBHCNHCBHCCCTACT
947
1543


01_t4_3_8
HCNHCBHCCCTACTTTTGGCGGAGGGACCAAG
















TABLE 6







Oligonucleotide sequences for exemplary VK jumping dimer and trimer sequences with CDRL3 length 9.













Portion of

SEQ ID




Oligonucleotide
SEQ ID
NO




Corresponding to CDRL3
NO
(CDRL3


Name
Sequence of Synthesized Oligonucleotide
Proper
(Oligo)
Portion)










Jumping Dimer











VK1-05_1_0_9
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYCTT
1544
2168



TTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYCTT
1545
2169


05_10_0_9
TTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMBCTACYCTT
1546
2170


05_11_0_9
CTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYCTT
1547
2171


05_12_0_9
TYWCYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYCTT
1548
2172


05_13_0_9
CTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYCTT
1549
2173


05_14_0_9
TYWCYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYCTT
1550
2174


05_15_0_9
CYWCYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-05_2_0_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYCTT
1551
2175



TTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-05_3_0_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYCTT
1552
2176



TTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-05_4_0_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYCTT
1553
2177



CTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-05_5_0_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYCTT
1554
2178



TYWCYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-05_6_0_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYCTT
1555
2179



TTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-05_7_0_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYCTT
1556
2180



TTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-05_8_0_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYCTT
1557
2181



CTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-05_9_0_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYCTT
1558
2182



TYWCYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-05_1_1_9
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYCTM
1559
2183



TTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYCTM
1560
2184


05_10_1_9
TTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMBCTACYCTM
1561
2185


05_11_1_9
CTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYCTM
1562
2186


05_12_1_9
TYWCYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYCTM
1563
2187


05_13_1_9
CTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYCTM
1564
2188


05_14_1_9
TYWCYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYCTM
1565
2189


05_15_1_9
CYWCYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-05_2_1_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYCTM
1566
2190



TTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-05_3_1_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYCTM
1567
2191



TTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-05_4_1_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYCTM
1568
2192



CTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-05_5_1_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYCTM
1569
2193



TYWCYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-05_6_1_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYCTM
1570
2194



TTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-05_7_1_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYCTM
1571
2195



TTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-05_8_1_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYCTM
1572
2196



CTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-05_9_1_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYCTM
1573
2197



TYWCYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-05_1_2_9
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYCTW
1574
2198



TTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYCTW
1575
2199


05_10_2_9
TTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMBCTACYCTW
1576
2200


05_11_2_9
CTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYCTW
1577
2201


05_12_2_9
TYWCYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYCTW
1578
2202


05_13_2_9
CTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYCTW
1579
2203


05_14_2_9
TYWCYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYCTW
1580
2204


05_15_2_9
CYWCYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-05_2_2_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYCTW
1581
2205



TTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-05_3_2_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYCTW
1582
2206



TTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-05_4_2_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYCTW
1583
2207



CTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-05_5_2_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYCTW
1584
2208



TYWCYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-05_6_2_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYCTW
1585
2209



TTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-05_7_2_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYCTW
1586
2210



TTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-05_8_2_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYCTW
1587
2211



CTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-05_9_2_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYCTW
1588
2212



TYWCYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-05_1_3_9
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYCTC
1589
2213



TTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYCTC
1590
2214


05_10_3_9
TTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMBCTACYCTC
1591
2215


05_11_3_9
CTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYCTC
1592
2216


05_12_3_9
TYWCYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYCTC
1593
2217


05_13_3_9
CTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYCTC
1594
2218


05_14_3_9
TYWCYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYCTC
1595
2219


05_15_3_9
CYWCYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-05_2_3_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYCTC
1596
2220



TTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-05_3_3_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYCTC
1597
2221



TTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-05_4_3_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYCTC
1598
2222



CTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-05_5_3_9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYCTC
1599
2223



TYWCYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-05_6_3_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYCTC
1600
2224



TTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-05_7_3_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYCTC
1601
2225



TTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-05_8_3_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYCTC
1602
2226



CTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-05_9_3_9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYCTC
1603
2227



TYWCYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-12_1_0_9
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCCTT
1604
2228



TTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCCTT
1605
2229


12_10_0_9
TTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCCTT
1606
2230


12_11_0_9
CTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCCTT
1607
2231


12_12_0_9
TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCCTT
1608
2232


12_13_0_9
CTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCCTT
1609
2233


12_14_0_9
TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCCTT
1610
2234


12_15_0_9
CYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-12_2_0_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCCTT
1611
2235



TTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-12_3_0_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCCTT
1612
2236



TTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-12_4_0_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCCTT
1613
2237



CTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-12_5_0_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCCTT
1614
2238



TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-12_6_0_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCCTT
1615
2239



TTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-12_7_0_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCCTT
1616
2240



TTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-12_8_0_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCCTT
1617
2241



CTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-12_9_0_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCCTT
1618
2242



TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-12_1_1_9
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCCTM
1619
2243



TTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCCTM
1620
2244


12_10_1_9
TTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCCTM
1621
2245


12_11_1_9
CTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCCTM
1622
2246


12_12_1_9
TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCCTM
1623
2247


12_13_1_9
CTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCCTM
1624
2248


12_14_1_9
TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCCTM
1625
2249


12_15_1_9
CYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-12_2_1_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCCTM
1626
2250



TTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-12_3_1_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCCTM
1627
2251



TTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-12_4_1_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCCTM
1628
2252



CTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-12_5_1_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCCTM
1629
2253



TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-12_6_1_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCCTM
1630
2254



TTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-12_7_1_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCCTM
1631
2255



TTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-12_8_1_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCCTM
1632
2256



CTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-12_9_1_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCCTM
1633
2257



TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-12_1_2_9
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCCTW
1634
2258



TTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCCTW
1635
2259


12_10_2_9
TTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCCTW
1636
2260


12_11_2_9
CTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCCTW
1637
2261


12_12_2_9
TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCCTW
1638
2262


12_13_2_9
CTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCCTW
1639
2263


12_14_2_9
TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCCTW
1640
2264


12_15_2_9
CYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-12_2_2_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCCTW
1641
2265



TTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-12_3_2_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCCTW
1642
2266



TTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-12_4_2_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCCTW
1643
2267



CTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-12_5_2_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCCTW
1644
2268



TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-12_6_2_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCCTW
1645
2269



TTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-12_7_2_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCCTW
1646
2270



TTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-12_8_2_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCCTW
1647
2271



CTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-12_9_2_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCCTW
1648
2272



TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-12_1_3_9
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCCTC
1649
2273



TTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCCTC
1650
2274


12_10_3_9
TTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCCTC
1651
2275


12_11_3_9
CTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCCTC
1652
2276


12_12_3_9
TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCCTC
1653
2277


12_13_3_9
CTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCCTC
1654
2278


12_14_3_9
TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCCTC
1655
2279


12_15_3_9
CYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-12_2_3_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCCTC
1656
2280



TTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-12_3_3_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCCTC
1657
2281



TTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-12_4_3_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCCTC
1658
2282



CTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-12_5_3_9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCCTC
1659
2283



TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-12_6_3_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCCTC
1660
2284



TTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-12_7_3_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCCTC
1661
2285



TTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-12_8_3_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCCTC
1662
2286



CTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-12_9_3_9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCCTC
1663
2287



TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-33_1_0_9
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCCTT
1664
2288



TCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCCTT
1665
2289


33_10_0_9
TCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCCTT
1666
2290


33_11_0_9
CCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCCTT
1667
2291


33_12_0_9
TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCCTT
1668
2292


33_13_0_9
CCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCCTT
1669
2293


33_14_0_9
TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCCTT
1670
2294


33_15_0_9
CYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-33_2_0_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCCTT
1671
2295



TCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-33_3_0_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCCTT
1672
2296



TCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-33_4_0_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCCTT
1673
2297



CCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-33_5_0_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCCTT
1674
2298



TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-33_6_0_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCCTT
1675
2299



TCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-33_7_0_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCCTT
1676
2300



TCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-33_8_0_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCCTT
1677
2301



CCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-33_9_0_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCCTT
1678
2302



TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-33_1_1_9
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCCTM
1679
2303



TCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCCTM
1680
2304


33_10_1_9
TCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCCTM
1681
2305


33_11_1_9
CCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCCTM
1682
2306


33_12_1_9
TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCCTM
1683
2307


33_13_1_9
CCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCCTM
1684
2308


33_14_1_9
TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCCTM
1685
2309


33_15_1_9
CYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-33_2_1_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCCTM
1686
2310



TCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-33_3_1_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCCTM
1687
2311



TCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-33_4_1_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCCTM
1688
2312



CCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-33_5_1_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCCTM
1689
2313



TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-33_6_1_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCCTM
1690
2314



TCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-33_7_1_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCCTM
1691
2315



TCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-33_8_1_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCCTM
1692
2316



CCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-33_9_1_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCCTM
1693
2317



TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-33_1_2_9
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCCTW
1694
2318



TCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCCTW
1695
2319


33_10_2_9
TCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCCTW
1696
2320


33_11_2_9
CCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCCTW
1697
2321


33_12_2_9
TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCCTW
1698
2322


33_13_2_9
CCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCCTW
1699
2323


33_14_2_9
TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCCTW
1700
2324


33_15_2_9
CYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-33_2_2_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCCTW
1701
2325



TCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-33_3_2_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCCTW
1702
2326



TCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-33_4_2_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCCTW
1703
2327



CCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-33_5_2_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCCTW
1704
2328



TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-33_6_2_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCCTW
1705
2329



TCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-33_7_2_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCCTW
1706
2330



TCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-33_8_2_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCCTW
1707
2331



CCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-33_9_2_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCCTW
1708
2332



TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-33_1_3_9
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCCTC
1709
2333



TCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCCTC
1710
2334


33_10_3_9
TCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCCTC
1711
2335


33_11_3_9
CCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCCTC
1712
2336


33_12_3_9
TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCCTC
1713
2337


33_13_3_9
CCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCCTC
1714
2338


33_14_3_9
TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCCTC
1715
2339


33_15_3_9
CYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-33_2_3_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCCTC
1716
2340



TCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-33_3_3_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCCTC
1717
2341



TCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-33_4_3_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCCTC
1718
2342



CCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-33_5_3_9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCCTC
1719
2343



TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-33_6_3_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCCTC
1720
2344



TCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-33_7_3_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCCTC
1721
2345



TCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-33_8_3_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCCTC
1722
2346



CCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-33_9_3_9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCCTC
1723
2347



TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-39_1_0_9
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCCTT
1724
305



TACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCCTT
1725
314


39_10_0_9
TACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCCTT
1726
315


39_11_0_9
CACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCCTT
1727
316


39_12_0_9
TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCCTT
1728
317


39_13_0_9
CACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCCTT
1729
318


39_14_0_9
TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCCTT
1730
319


39_15_0_9
CBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-39_2_0_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCCTT
1731
306



TACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-39_3_0_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCCTT
1732
307



TACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-39_4_0_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCCTT
1733
308



CACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-39_5_0_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCCTT
1734
309



TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-39_6_0_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCCTT
1735
310



TACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-39_7_0_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCCTT
1736
311



TACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-39_8_0_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCCTT
1737
312



CACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-39_9_0_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCCTT
1738
313



TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK1-39_1_1_9
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCCTM
1739
2348



TACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCCTM
1740
2349


39_10_1_9
TACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCCTM
1741
2350


39_11_1_9
CACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCCTM
1742
2351


39_12_1_9
TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCCTM
1743
2352


39_13_1_9
CACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCCTM
1744
2353


39_14_1_9
TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCCTM
1745
2354


39_15_1_9
CBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-39_2_1_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCCTM
1746
2355



TACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-39_3_1_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCCTM
1747
2356



TACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-39_4_1_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCCTM
1748
2357



CACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-39_5_1_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCCTM
1749
2358



TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-39_6_1_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCCTM
1750
2359



TACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-39_7_1_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCCTM
1751
2360



TACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-39_8_1_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCCTM
1752
2361



CACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-39_9_1_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCCTM
1753
2362



TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK1-39_1_2_9
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCCTW
1754
2363



TACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCCTW
1755
2364


39_10_2_9
TACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCCTW
1756
2365


39_11_2_9
CACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCCTW
1757
2366


39_12_2_9
TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCCTW
1758
2367


39_13_2_9
CACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCCTW
1759
2368


39_14_2_9
TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCCTW
1760
2369


39_15_2_9
CBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-39_2_2_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCCTW
1761
2370



TACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-39_3_2_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCCTW
1762
2371



TACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-39_4_2_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCCTW
1763
2372



CACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-39_5_2_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCCTW
1764
2373



TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-39_6_2_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCCTW
1765
2374



TACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-39_7_2_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCCTW
1766
2375



TACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-39_8_2_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCCTW
1767
2376



CACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-39_9_2_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCCTW
1768
2377



TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK1-39_1_3_9
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCCTC
1769
2378



TACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCCTC
1770
2379


39_10_3_9
TACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCCTC
1771
2380


39_11_3_9
CACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCCTC
1772
2381


39_12_3_9
TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCCTC
1773
2382


39_13_3_9
CACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCCTC
1774
2383


39_14_3_9
TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCCTC
1775
2384


39_15_3_9
CBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-39_2_3_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCCTC
1776
2385



TACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-39_3_3_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCCTC
1777
2386



TACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-39_4_3_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCCTC
1778
2387



CACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-39_5_3_9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCCTC
1779
2388



TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-39_6_3_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCCTC
1780
2389



TACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-39_7_3_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCCTC
1781
2390



TACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-39_8_3_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCCTC
1782
2391



CACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK1-39_9_3_9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCCTC
1783
2392



TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-28_1_0_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCCTT
1784
2393



GACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCCTT
1785
2394


28_10_0_9
GACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCCTT
1786
2395


28_11_0_9
MACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCCTT
1787
2396


28_12_0_9
GVBCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCCTT
1788
2397


28_13_0_9
MACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCCTT
1789
2398


28_14_0_9
GVBCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCCTT
1790
2399


28_15_0_9
MVBCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-28_2_0_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCCTT
1791
2400



GACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-28_3_0_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCCTT
1792
2401



GACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-28_4_0_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCCTT
1793
2402



MACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-28_5_0_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCCTT
1794
2403



GVBCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-28_6_0_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCCTT
1795
2404



GACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-28_7_0_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCCTT
1796
2405



GACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-28_8_0_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCCTT
1797
2406



MACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-28_9_0_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCCTT
1798
2407



GVBCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK2-28_1_1_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCCTM
1799
2408



GACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCCTM
1800
2409


28_10_1_9
GACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCCTM
1801
2410


28_11_1_9
MACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCCTM
1802
2411


28_12_1_9
GVBCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCCTM
1803
2412


28_13_1_9
MACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCCTM
1804
2413


28_14_1_9
GVBCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCCTM
1805
2414


28_15_1_9
MVBCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-28_2_1_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCCTM
1806
2415



GACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-28_3_1_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCCTM
1807
2416



GACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-28_4_1_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCCTM
1808
2417



MACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-28_5_1_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCCTM
1809
2418



GVBCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-28_6_1_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCCTM
1810
2419



GACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-28_7_1_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCCTM
1811
2420



GACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-28_8_1_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCCTM
1812
2421



MACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-28_9_1_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCCTM
1813
2422



GVBCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK2-28_1_2_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCCTW
1814
2423



GACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCCTW
1815
2424


28_10_2_9
GACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCCTW
1816
2425


28_11_2_9
MACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCCTW
1817
2426


28_12_2_9
GVBCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCCTW
1818
2427


28_13_2_9
MACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCCTW
1819
2428


28_14_2_9
GVBCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCCTW
1820
2429


28_15_2_9
MVBCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-28_2_2_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCCTW
1821
2430



GACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-28_3_2_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCCTW
1822
2431



GACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-28_4_2_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCCTW
1823
2432



MACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-28_5_2_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCCTW
1824
2433



GVBCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-28_6_2_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCCTW
1825
2434



GACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-28_7_2_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCCTW
1826
2435



GACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-28_8_2_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCCTW
1827
2436



MACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-28_9_2_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCCTW
1828
2437



GVBCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK2-28_1_3_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCCTC
1829
2438



GACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCCTC
1830
2439


28_10_3_9
GACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCCTC
1831
2440


28_11_3_9
MACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCCTC
1832
2441


28_12_3_9
GVBCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCCTC
1833
2442


28_13_3_9
MACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCCTC
1834
2443


28_14_3_9
GVBCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCCTC
1835
2444


28_15_3_9
MVBCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-28_2_3_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCCTC
1836
2445



GACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-28_3_3_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCCTC
1837
2446



GACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-28_4_3_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCCTC
1838
2447



MACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-28_5_3_9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCCTC
1839
2448



GVBCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-28_6_3_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCCTC
1840
2449



GACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-28_7_3_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCCTC
1841
2450



GACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-28_8_3_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCCTC
1842
2451



MACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK2-28_9_3_9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCCTC
1843
2452



GVBCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-11_1_0_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCCTT
1844
2453



TTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCCTT
1845
2454


11_10_0_9
TTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCCTT
1846
2455


11_11_0_9
CTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCCTT
1847
2456


11_12_0_9
TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCCTT
1848
2457


11_13_0_9
CTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCCTT
1849
2458


11_14_0_9
TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCCTT
1850
2459


11_15_0_9
CYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-11_2_0_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCCTT
1851
2460



TTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-11_3_0_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCCTT
1852
2461



TTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-11_4_0_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCCTT
1853
2462



CTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-11_5_0_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCCTT
1854
2463



TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-11_6_0_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCCTT
1855
2464



TTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-11_7_0_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCCTT
1856
2465



TTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-11_8_0_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCCTT
1857
2466



CTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-11_9_0_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCCTT
1858
2467



TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-11_1_1_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCCTM
1859
2468



TTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCCTM
1860
2469


11_10_1_9
TTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCCTM
1861
2470


11_11_1_9
CTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCCTM
1862
2471


11_12_1_9
TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCCTM
1863
2472


11_13_1_9
CTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCCTM
1864
2473


11_14_1_9
TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCCTM
1865
2474


11_15_1_9
CYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-11_2_1_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCCTM
1866
2475



TTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-11_3_1_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCCTM
1867
2476



TTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-11_4_1_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCCTM
1868
2477



CTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-11_5_1_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCCTM
1869
2478



TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-11_6_1_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCCTM
1870
2479



TTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-11_7_1_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCCTM
1871
2480



TTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-11_8_1_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCCTM
1872
2481



CTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-11_9_1_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCCTM
1873
2482



TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-11_1_2_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCCTW
1874
2483



TTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCCTW
1875
2484


11_10_2_9
TTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCCTW
1876
2485


11_11_2_9
CTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCCTW
1877
2486


11_12_2_9
TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCCTW
1878
2487


11_13_2_9
CTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCCTW
1879
2488


11_14_2_9
TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCCTW
1880
2489


11_15_2_9
CYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-11_2_2_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCCTW
1881
2490



TTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-11_3_2_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCCTW
1882
2491



TTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-11_4_2_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCCTW
1883
2492



CTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-11_5_2_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCCTW
1884
2493



TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-11_6_2_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCCTW
1885
2494



TTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-11_7_2_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCCTW
1886
2495



TTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-11_8_2_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCCTW
1887
2496



CTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-11_9_2_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCCTW
1888
2497



TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-11_1_3_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCCTC
1889
2498



TTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCCTC
1890
2499


11_10_3_9
TTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCCTC
1891
2500


11_11_3_9
CTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCCTC
1892
2501


11_12_3_9
TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCCTC
1893
2502


11_13_3_9
CTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCCTC
1894
2503


11_14_3_9
TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCCTC
1895
2504


11_15_3_9
CYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-11_2_3_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCCTC
1896
2505



TTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-11_3_3_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCCTC
1897
2506



TTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-11_4_3_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCCTC
1898
2507



CTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-11_5_3_9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCCTC
1899
2508



TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-11_6_3_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCCTC
1900
2509



TTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-11_7_3_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCCTC
1901
2510



TTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-11_8_3_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCCTC
1902
2511



CTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-11_9_3_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCCTC
1903
2512



TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-15_1_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCCTT
1904
2513



TAATTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCCTT
1905
2454


15_10_0_9
CAATTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCCTT
1906
2514


15_11_0_9
TNHCTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCCTT
1907
2515


15_12_0_9
TAATYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCCTT
1908
2516


15_13_0_9
CNHCTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCCTT
1909
2293


15_14_0_9
CAATYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCCTT
1910
2517


15_15_0_9
TNHCYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-15_2_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCCTT
1911
2518



TAATTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-15_3_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCCTT
1912
2519



CAATTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-15_4_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCCTT
1913
2520



TNHCTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-15_5_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCCTT
1914
2521



TAATYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-15_6_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCCTT
1915
2522



TAATTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-15_7_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCCTT
1916
2523



CAATTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-15_8_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCCTT
1917
2524



TNHCTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-15_9_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCCTT
1918
2525



TAATYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-15_1_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCCTM
1919
2526



TAATTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCCTM
1920
2469


15_10_1_9
CAATTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCCTM
1921
2527


15_11_1_9
TNHCTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCCTM
1922
2528


15_12_1_9
TAATYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCCTM
1923
2529


15_13_1_9
CNHCTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCCTM
1924
2308


15_14_1_9
CAATYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCCTM
1925
2530


15_15_1_9
TNHCYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-15_2_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCCTM
1926
2531



TAATTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-15_3_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCCTM
1927
2532



CAATTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-15_4_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCCTM
1928
2533



TNHCTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-15_5_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCCTM
1929
2534



TAATYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-15_6_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCCTM
1930
2535



TAATTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-15_7_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCCTM
1931
2536



CAATTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-15_8_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCCTM
1932
2537



TNHCTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-15_9_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCCTM
1933
2538



TAATYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-15_1_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCCTW
1934
2539



TAATTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCCTW
1935
2484


15_10_2_9
CAATTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCCTW
1936
2540


15_11_2_9
TNHCTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCCTW
1937
2541


15_12_2_9
TAATYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCCTW
1938
2542


15_13_2_9
CNHCTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCCTW
1939
2323


15_14_2_9
CAATYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCCTW
1940
2543


15_15_2_9
TNHCYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-15_2_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCCTW
1941
2544



TAATTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-15_3_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCCTW
1942
2545



CAATTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-15_4_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCCTW
1943
2546



TNHCTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-15_5_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCCTW
1944
2547



TAATYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-15_6_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCCTW
1945
2548



TAATTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-15_7_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCCTW
1946
2549



CAATTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-15_8_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCCTW
1947
2550



TNHCTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-15_9_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCCTW
1948
2551



TAATYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-15_1_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCCTC
1949
2552



TAATTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCCTC
1950
2499


15_10_3_9
CAATTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCCTC
1951
2553


15_11_3_9
TNHCTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCCTC
1952
2554


15_12_3_9
TAATYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCCTC
1953
2555


15_13_3_9
CNHCTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCCTC
1954
2338


15_14_3_9
CAATYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCCTC
1955
2556


15_15_3_9
TNHCYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-15_2_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCCTC
1956
2557



TAATTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-15_3_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCCTC
1957
2558



CAATTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-15_4_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCCTC
1958
2559



TNHCTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-15_5_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCCTC
1959
2560



TAATYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-15_6_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCCTC
1960
2561



TAATTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-15_7_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCCTC
1961
2562



CAATTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-15_8_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCCTC
1962
2563



TNHCTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-15_9_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCCTC
1963
2564



TAATYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-20_1_0_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCCTT
1964
2565



TAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCCTT
1965
2566


20_10_0_9
TAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCCTT
1966
2567


20_11_0_9
CAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCCTT
1967
2568


20_12_0_9
TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCCTT
1968
2569


20_13_0_9
CAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCCTT
1969
2570


20_14_0_9
TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCCTT
1970
2571


20_15_0_9
CBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-20_2_0_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCCTT
1971
2572



TAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-20_3_0_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCCTT
1972
2573



TAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-20_4_0_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCCTT
1973
2574



CAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-20_5_0_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCCTT
1974
2575



TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-20_6_0_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCCTT
1975
2576



TAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-20_7_0_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCCTT
1976
2577



TAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-20_8_0_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCCTT
1977
2578



CAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-20_9_0_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCCTT
1978
2579



TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT





VK3-20_1_1_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCCTM
1979
2580



TAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCCTM
1980
2581


20_10_1_9
TAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCCTM
1981
2582


20_11_1_9
CAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCCTM
1982
2583


20_12_1_9
TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCCTM
1983
2584


20_13_1_9
CAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCCTM
1984
2585


20_14_1_9
TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCCTM
1985
2586


20_15_1_9
CBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-20_2_1_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCCTM
1986
2587



TAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-20_3_1_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCCTM
1987
2588



TAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-20_4_1_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCCTM
1988
2589



CAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-20_5_1_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCCTM
1989
2590



TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-20_6_1_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCCTM
1990
2591



TAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-20_7_1_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCCTM
1991
2592



TAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-20_8_1_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCCTM
1992
2593



CAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-20_9_1_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCCTM
1993
2594



TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT





VK3-20_1_2_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCCTW
1994
2595



TAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCCTW
1995
2596


20_10_2_9
TAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCCTW
1996
2597


20_11_2_9
CAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCCTW
1997
2598


20_12_2_9
TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCCTW
1998
2599


20_13_2_9
CAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCCTW
1999
2600


20_14_2_9
TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCCTW
2000
2601


20_15_2_9
CBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-20_2_2_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCCTW
2001
2602



TAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-20_3_2_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCCTW
2002
2603



TAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-20_4_2_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCCTW
2003
2604



CAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-20_5_2_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCCTW
2004
2605



TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-20_6_2_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCCTW
2005
2606



TAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-20_7_2_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCCTW
2006
2607



TAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-20_8_2_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCCTW
2007
2608



CAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-20_9_2_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCCTW
2008
2609



TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT





VK3-20_1_3_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCCTC
2009
2610



TAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCCTC
2010
2611


20_10_3_9
TAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCCTC
2011
2612


20_11_3_9
CAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCCTC
2012
2613


20_12_3_9
TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCCTC
2013
2614


20_13_3_9
CAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCCTC
2014
2615


20_14_3_9
TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCCTC
2015
2616


20_15_3_9
CBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-20_2_3_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCCTC
2016
2617



TAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-20_3_3_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCCTC
2017
2618



TAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-20_4_3_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCCTC
2018
2619



CAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-20_5_3_9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCCTC
2019
2620



TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-20_6_3_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCCTC
2020
2621



TAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-20_7_3_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCCTC
2021
2622



TAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-20_8_3_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCCTC
2022
2623



CAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT





VK3-20_9_3_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCCTC
2023
2624



TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT










Jumping Trimer











VK1-05_t1_0_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMBCTAC
CAGCAGBHCVRMMBCTACYCTTWC
2024
2625



YCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t1_1_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMBCTAC
CAGCAGBHCVRMMBCTACYCTMTC
2025
2626



YCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t1_2_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMBCTAC
CAGCAGBHCVRMMBCTACYCTWGG
2026
2627



YCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t1_3_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMBCTAC
CAGCAGBHCVRMMBCTACYCTCCT
2027
2628



YCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t2_0_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMBCYWC
CAGCAGBHCAATMBCYWCYCTTWC
2028
2629



YCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t2_1_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMBCYWC
CAGCAGBHCAATMBCYWCYCTMTC
2029
2630



YCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t2_2_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMBCYWC
CAGCAGBHCAATMBCYWCYCTWGG
2030
2631



YCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t2_3_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMBCYWC
CAGCAGBHCAATMBCYWCYCTCCT
2031
2632



YCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t3_0_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAGTYWC
CAGCAGBHCVRMAGTYWCYCTTWC
2032
2633



YCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t3_1_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAGTYWC
CAGCAGBHCVRMAGTYWCYCTMTC
2033
2634



YCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t3_2_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAGTYWC
CAGCAGBHCVRMAGTYWCYCTWGG
2034
2635



YCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t3_3_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAGTYWC
CAGCAGBHCVRMAGTYWCYCTCCT
2035
2636



YCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t4_0_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMBCYWC
CAGCAGTACVRMMBCYWCYCTTWC
2036
2637



YCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t4_1_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMBCYWC
CAGCAGTACVRMMBCYWCYCTMTC
2037
2638



YCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t4_2_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMBCYWC
CAGCAGTACVRMMBCYWCYCTWGG
2038
2639



YCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-05_t4_3_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMBCYWC
CAGCAGTACVRMMBCYWCYCTCCT
2039
2640



YCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t1_0_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNHCTTC
CAGCAGRNANHCNHCTTCCCTTWC
2040
2641



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t1_1_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNHCTTC
CAGCAGRNANHCNHCTTCCCTMTC
2041
2642



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t1_2_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNHCTTC
CAGCAGRNANHCNHCTTCCCTWGG
2042
2643



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t1_3_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNHCTTC
CAGCAGRNANHCNHCTTCCCTCCT
2043
2644



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t2_0_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAGTYWC
CAGCAGRNANHCAGTYWCCCTTWC
2044
2645



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t2_1_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAGTYWC
CAGCAGRNANHCAGTYWCCCTMTC
2045
2646



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t2_2_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAGTYWC
CAGCAGRNANHCAGTYWCCCTWGG
2046
2647



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t2_3_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAGTYWC
CAGCAGRNANHCAGTYWCCCTCCT
2047
2648



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t3_0_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNHCYWC
CAGCAGRNAAATNHCYWCCCTTWC
2048
2649



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t3_1_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNHCYWC
CAGCAGRNAAATNHCYWCCCTMTC
2049
2650



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t3_2_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNHCYWC
CAGCAGRNAAATNHCYWCCCTWGG
2050
2651



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t3_3_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNHCYWC
CAGCAGRNAAATNHCYWCCCTCCT
2051
2652



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t4_0_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNHCYWC
CAGCAGGCANHCNHCYWCCCTTWC
2052
2653



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t4_1_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNHCYWC
CAGCAGGCANHCNHCYWCCCTMTC
2053
2654



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t4_2_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNHCYWC
CAGCAGGCANHCNHCYWCCCTWGG
2054
2655



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-12_t4_3_9
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNHCYWC
CAGCAGGCANHCNHCYWCCCTCCT
2055
2656



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t1_0_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNHCCTC
CAGCAGBHCNHCNHCCTCCCTTWC
2056
2657



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t1_1_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNHCCTC
CAGCAGBHCNHCNHCCTCCCTMTC
2057
2658



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t1_2_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNHCCTC
CAGCAGBHCNHCNHCCTCCCTWGG
2058
2659



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t1_3_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNHCCTC
CAGCAGBHCNHCNHCCTCCCTCCT
2059
2660



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t2_0_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTTWC
2060
2661



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t2_1_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTMTC
2061
2662



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t2_2_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTWGG
2062
2663



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t2_3_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTCCT
2063
2664



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t3_0_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNHCYWC
CAGCAGBHCGATNHCYWCCCTTWC
2064
2665



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t3_1_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNHCYWC
CAGCAGBHCGATNHCYWCCCTMTC
2065
2666



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t3_2_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNHCYWC
CAGCAGBHCGATNHCYWCCCTWGG
2066
2667



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t3_3_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNHCYWC
CAGCAGBHCGATNHCYWCCCTCCT
2067
2668



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t4_0_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNHCYWC
CAGCAGTACNHCNHCYWCCCTTWC
2068
2669



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t4_1_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNHCYWC
CAGCAGTACNHCNHCYWCCCTMTC
2069
2670



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t4_2_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNHCYWC
CAGCAGTACNHCNHCYWCCCTWGG
2070
2671



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-33_t4_3_9
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNHCYWC
CAGCAGTACNHCNHCYWCCCTCCT
2071
2672



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t1_0_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNHCACT
CAGCAAVNABHCNHCACTCCTTWC
2072
320



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t1_1_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNHCACT
CAGCAAVNABHCNHCACTCCTMTC
2073
2673



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t1_2_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNHCACT
CAGCAAVNABHCNHCACTCCTWGG
2074
2674



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t1_3_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNHCACT
CAGCAAVNABHCNHCACTCCTCCT
2075
2675



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t2_0_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAGTBHC
CAGCAAVNABHCAGTBHCCCTTWC
2076
321



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t2_1_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAGTBHC
CAGCAAVNABHCAGTBHCCCTMTC
2077
2676



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t2_2_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAGTBHC
CAGCAAVNABHCAGTBHCCCTWGG
2078
2677



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t2_3_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAGTBHC
CAGCAAVNABHCAGTBHCCCTCCT
2079
2678



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t3_0_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNHCBHC
CAGCAAVNATACNHCBHCCCTTWC
2080
322



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t3_1_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNHCBHC
CAGCAAVNATACNHCBHCCCTMTC
2081
2679



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t3_2_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNHCBHC
CAGCAAVNATACNHCBHCCCTWGG
2082
2680



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t3_3_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNHCBHC
CAGCAAVNATACNHCBHCCCTCCT
2083
2681



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t4_0_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNHCBHC
CAGCAAAGCBHCNHCBHCCCTTWC
2084
323



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t4_1_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNHCBHC
CAGCAAAGCBHCNHCBHCCCTMTC
2085
2682



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t4_2_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNHCBHC
CAGCAAAGCBHCNHCBHCCCTWGG
2086
2683



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK1-39_t4_3_9
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNHCBHC
CAGCAAAGCBHCNHCBHCCCTCCT
2087
2684



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t1_0_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASRMACT
ATGCAGVNAMNASRMACTCCTTWC
2088
2685



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t1_1_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASRMACT
ATGCAGVNAMNASRMACTCCTMTC
2089
2686



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t1_2_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASRMACT
ATGCAGVNAMNASRMACTCCTWGG
2090
2687



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t1_3_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASRMACT
ATGCAGVNAMNASRMACTCCTCCT
2091
2688



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t2_0_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACAGVBC
ATGCAGVNAMNACAGVBCCCTTWC
2092
2689



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t2_1_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACAGVBC
ATGCAGVNAMNACAGVBCCCTMTC
2093
2690



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t2_2_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACAGVBC
ATGCAGVNAMNACAGVBCCCTWGG
2094
2691



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t2_3_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACAGVBC
ATGCAGVNAMNACAGVBCCCTCCT
2095
2692



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t3_0_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSRMVBC
ATGCAGVNACTCSRMVBCCCTTWC
2096
2693



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t3_1_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSRMVBC
ATGCAGVNACTCSRMVBCCCTMTC
2097
2694



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t3_2_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSRMVBC
ATGCAGVNACTCSRMVBCCCTWGG
2098
2695



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t3_3_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSRMVBC
ATGCAGVNACTCSRMVBCCCTCCT
2099
2696



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t4_0_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASRMVBC
ATGCAGGCAMNASRMVBCCCTTWC
2100
2697



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t4_1_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASRMVBC
ATGCAGGCAMNASRMVBCCCTMTC
2101
2698



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t4_2_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASRMVBC
ATGCAGGCAMNASRMVBCCCTWGG
2102
2699



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK2-28_t4_3_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASRMVBC
ATGCAGGCAMNASRMVBCCCTCCT
2103
2700



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t1_0_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCTGG
CAGCAGBHCNHCNHCTGGCCTTWC
2104
2701



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t1_1_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCTGG
CAGCAGBHCNHCNHCTGGCCTMTC
2105
2702



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t1_2_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCTGG
CAGCAGBHCNHCNHCTGGCCTWGG
2106
2703



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t1_3_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCTGG
CAGCAGBHCNHCNHCTGGCCTCCT
2107
2704



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t2_0_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTTWC
2108
2661



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t2_1_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTMTC
2109
2662



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t2_2_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTWGG
2110
2663



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t2_3_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTCCT
2111
2664



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t3_0_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNHCYWC
CAGCAGBHCAGTNHCYWCCCTTWC
2112
2705



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t3_1_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNHCYWC
CAGCAGBHCAGTNHCYWCCCTMTC
2113
2706



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t3_2_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNHCYWC
CAGCAGBHCAGTNHCYWCCCTWGG
2114
2707



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t3_3_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNHCYWC
CAGCAGBHCAGTNHCYWCCCTCCT
2115
2708



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t4_0_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNHCYWC
CAGCAGAGANHCNHCYWCCCTTWC
2116
2709



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t4_1_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNHCYWC
CAGCAGAGANHCNHCYWCCCTMTC
2117
2710



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t4_2_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNHCYWC
CAGCAGAGANHCNHCYWCCCTWGG
2118
2711



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK3-11_t4_3_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNHCYWC
CAGCAGAGANHCNHCYWCCCTCCT
2119
2712



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t1_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHC
CAGCAGBHCNHCNHCTGGCCTTWC
2120
2701



TGGCCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t1_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHC
CAGCAGBHCNHCNHCTGGCCTMTC
2121
2702



TGGCCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t1_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHC
CAGCAGBHCNHCNHCTGGCCTWGG
2122
2703



TGGCCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t1_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHC
CAGCAGBHCNHCNHCTGGCCTCCT
2123
2704



TGGCCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t2_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAAT
CAGCAGBHCNHCAATYWCCCTTWC
2124
2661



YWCCCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t2_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAAT
CAGCAGBHCNHCAATYWCCCTMTC
2125
2662



YWCCCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t2_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAAT
CAGCAGBHCNHCAATYWCCCTWGG
2126
2663



YWCCCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t2_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAAT
CAGCAGBHCNHCAATYWCCCTCCT
2127
2664



YWCCCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t3_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAATNHC
CAGCAGBHCAATNHCYWCCCTTWC
2128
2713



YWCCCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t3_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAATNHC
CAGCAGBHCAATNHCYWCCCTMTC
2129
2714



YWCCCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t3_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAATNHC
CAGCAGBHCAATNHCYWCCCTWGG
2130
2715



YWCCCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t3_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAATNHC
CAGCAGBHCAATNHCYWCCCTCCT
2131
2716



YWCCCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t4_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNHCNHC
CAGCAGTACNHCNHCYWCCCTTWC
2132
2669



YWCCCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t4_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNHCNHC
CAGCAGTACNHCNHCYWCCCTMTC
2133
2670



YWCCCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t4_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNHCNHC
CAGCAGTACNHCNHCYWCCCTWGG
2134
2671



YWCCCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK3-15_t4_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNHCNHC
CAGCAGTACNHCNHCYWCCCTCCT
2135
2672



YWCCCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t1_0_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVNCAGT
CAGCAGBHCBHCVNCAGTCCTTWC
2136
2717



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t1_1_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVNCAGT
CAGCAGBHCBHCVNCAGTCCTMTC
2137
2718



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t1_2_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVNCAGT
CAGCAGBHCBHCVNCAGTCCTWGG
2138
2719



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t1_3_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVNCAGT
CAGCAGBHCBHCVNCAGTCCTCCT
2139
2720



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t2_0_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTTWC
2140
2721



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t2_1_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTMTC
2141
2722



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t2_2_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTWGG
2142
2723



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t2_3_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTCCT
2143
2724



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t3_0_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVNCBHC
CAGCAGBHCGGAVNCBHCCCTTWC
2144
2725



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t3_1_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVNCBHC
CAGCAGBHCGGAVNCBHCCCTMTC
2145
2726



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t3_2_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVNCBHC
CAGCAGBHCGGAVNCBHCCCTWGG
2146
2727



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t3_3_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVNCBHC
CAGCAGBHCGGAVNCBHCCCTCCT
2147
2728



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t4_0_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVNCBHC
CAGCAGTACBHCVNCBHCCCTTWC
2148
2729



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t4_1_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVNCBHC
CAGCAGTACBHCVNCBHCCCTMTC
2149
2730



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t4_2_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVNCBHC
CAGCAGTACBHCVNCBHCCCTWGG
2150
2731



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK3-20_t4_3_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVNCBHC
CAGCAGTACBHCVNCBHCCCTCCT
2151
2732



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t1_0_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNHCACT
CAGCAGBHCBHCNHCACTCCTTWC
2152
2733



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t1_1_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNHCACT
CAGCAGBHCBHCNHCACTCCTMTC
2153
2734



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t1_2_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNHCACT
CAGCAGBHCBHCNHCACTCCTWGG
2154
2735



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t1_3_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNHCACT
CAGCAGBHCBHCNHCACTCCTCCT
2155
2736



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t2_0_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTTWC
2156
2721



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t2_1_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTMTC
2157
2722



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t2_2_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTWGG
2158
2723



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t2_3_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTCCT
2159
2724



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t3_0_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNHCBHC
CAGCAGBHCTACNHCBHCCCTTWC
2160
2737



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t3_1_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNHCBHC
CAGCAGBHCTACNHCBHCCCTMTC
2161
2738



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t3_2_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNHCBHC
CAGCAGBHCTACNHCBHCCCTWGG
2162
2739



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t3_3_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNHCBHC
CAGCAGBHCTACNHCBHCCCTCCT
2163
2740



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t4_0_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNHCBHC
CAGCAGTACBHCNHCBHCCCTTWC
2164
2741



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t4_1_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNHCBHC
CAGCAGTACBHCNHCBHCCCTMTC
2165
2742



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t4_2_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNHCBHC
CAGCAGTACBHCNHCBHCCCTWGG
2166
2743



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT





VK4-01_t4_3_9
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNHCBHC
CAGCAGTACBHCNHCBHCCCTCCT
2167
2744



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT
















TABLE 7







Oligonucleotide sequences for exemplary VK jumping dimer and trimer sequences with CDRL3 length 10.













Portion of

SEQ ID




Oligonucleotide
SEQ ID
NO




Corresponding to
NO
(CDRL3


Name
Sequence of Synthesized Oligonucleotide
CDRL3 Proper
(Oligo)
Portion)










Jumping Dimer











VK1-05_1_0_10
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYC
2745
3213



TTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_10_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYC
2746
3214



TTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_11_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMBCTACYC
2747
3215



CTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_12_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYC
2748
3216



TYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_13_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYC
2749
3217



CTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_14_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYC
2750
3218



TYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_15_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYC
2751
3219



CYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_2_0_10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYC
2752
3220



TTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_3_0_10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYC
2753
3221



TTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_4_0_10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYC
2754
3222



CTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_5_0_10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYC
2755
3223



TYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_6_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYC
2756
3224



TTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_7_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYC
2757
3225



TTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_8_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYC
2758
3226



CTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_9_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYC
2759
3227



TYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-05_1_1_10
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYC
2760
3228



TTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_10_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYC
2761
3229



TTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_11_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMBCTACYC
2762
3230



CTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_12_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYC
2763
3231



TYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_13_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYC
2764
3232



CTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_14_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYC
2765
3233



TYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_15_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYC
2766
3234



CYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_2_1_10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYC
2767
3235



TTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_3_1_10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYC
2768
3236



TTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_4_1_10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYC
2769
3237



CTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_5_1_10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYC
2770
3238



TYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_6_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYC
2771
3239



TTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_7_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYC
2772
3240



TTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_8_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYC
2773
3241



CTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_9_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYC
2774
3242



TYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-05_1_2_10
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYC
2775
3243



TTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_10_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYC
2776
3244



TTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_11_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMBCTACYC
2777
3245



CTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_12_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYC
2778
3246



TYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_13_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYC
2779
3247



CTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_14_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYC
2780
3248



TYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_15_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYC
2781
3249



CYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_2_2_10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYC
2782
3250



TTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_3_2_10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYC
2783
3251



TTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_4_2_10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYC
2784
3252



CTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_5_2_10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYC
2785
3253



TYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_6_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYC
2786
3254



TTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_7_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYC
2787
3255



TTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_8_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYC
2788
3256



CTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-05_9_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYC
2789
3257



TYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_1_0_10
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCC
2790
3258



TTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_10_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCC
2791
3259



TTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_11_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCC
2792
3260



CTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_12_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCC
2793
3261



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_13_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCC
2794
3262



CTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_14_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCC
2795
3263



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_15_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCC
2796
3264



CYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_2_0_10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCC
2797
3265



TTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_3_0_10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCC
2798
3266



TTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_4_0_10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCC
2799
3267



CTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_5_0_10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCC
2800
3268



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_6_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCC
2801
3269



TTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_7_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCC
2802
3270



TTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_8_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCC
2803
3271



CTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_9_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCC
2804
3272



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-12_1_1_10
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCC
2805
3273



TTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_10_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCC
2806
3274



TTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_11_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCC
2807
3275



CTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_12_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCC
2808
3276



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_13_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCC
2809
3277



CTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_14_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCC
2810
3278



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_15_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCC
2811
3279



CYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_2_1_10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCC
2812
3280



TTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_3_1_10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCC
2813
3281



TTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_4_1_10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCC
2814
3282



CTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_5_1_10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCC
2815
3283



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_6_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCC
2816
3284



TTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_7_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCC
2817
3285



TTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_8_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCC
2818
3286



CTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_9_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCC
2819
3287



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-12_1_2_10
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCC
2820
3288



TTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_10_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCC
2821
3289



TTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_11_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCC
2822
3290



CTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_12_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCC
2823
3291



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_13_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCC
2824
3292



CTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_14_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCC
2825
3293



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_15_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCC
2826
3294



CYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_2_2_10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCC
2827
3295



TTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_3_2_10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCC
2828
3296



TTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_4_2_10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCC
2829
3297



CTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_5_2_10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCC
2830
3298



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_6_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCC
2831
3299



TTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_7_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCC
2832
3300



TTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_8_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCC
2833
3301



CTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-12_9_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCC
2834
3302



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_1_0_10
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCC
2835
3303



TCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_10_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCC
2836
3304



TCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_11_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCC
2837
3305



CCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_12_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCC
2838
3306



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_13_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCC
2839
3307



CCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_14_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCC
2840
3308



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT


VK1-33_15_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCC
2841
3309



CYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_2_0_10
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCC
2842
3310



TCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_3_0_10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCC
2843
3311



TCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_4_0_10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCC
2844
3312



CCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_5_0_10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCC
2845
3313



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_6_0_10
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCC
2846
3314



TCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_7_0_10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCC
2847
3315



TCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_8_0_10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCC
2848
3316



CCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_9_0_10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCC
2849
3317



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-33_1_1_10
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCC
2850
3318



TCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_10_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCC
2851
3319



TCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_11_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCC
2852
3320



CCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_12_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCC
2853
3321



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_13_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCC
2854
3322



CCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_14_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCC
2855
3323



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_15_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCC
2856
3324



CYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_2_1_10
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCC
2857
3325



TCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_3_1_10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCC
2858
3326



TCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_4_1_10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCC
2859
3327



CCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_5_1_10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCC
2860
3328



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_6_1_10
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCC
2861
3329



TCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_7_1_10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCC
2862
3330



TCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_8_1_10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCC
2863
3331



CCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_9_1_10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCC
2864
3332



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-33_1_2_10
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCC
2865
3333



TCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_10_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCC
2866
3334



TCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_11_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCC
2867
3335



CCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_12_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCC
2868
3336



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_13_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCC
2869
3337



CCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_14_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCC
2870
3338



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_15_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCC
2871
3339



CYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_2_2_10
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCC
2872
3340



TCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_3_2_10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCC
2873
3341



TCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_4_2_10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCC
2874
3342



CCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_5_2_10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCC
2875
3343



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_6_2_10
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCC
2876
3344



TCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_7_2_10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCC
2877
3345



TCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_8_2_10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCC
2878
3346



CCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-33_9_2_10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCC
2879
3347



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_1_0_10
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCC
2880
3348



TACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_10_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCC
2881
3349



TACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_11_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCC
2882
3350



CACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_12_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCC
2883
3351



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_13_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCC
2884
3352



CACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_14_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCC
2885
3353



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_15_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCC
2886
3354



CBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_2_0_10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCC
2887
3355



TACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_3_0_10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCC
2888
3356



TACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_4_0_10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCC
2889
3357



CACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_5_0_10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCC
2890
3358



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_6_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCC
2891
3359



TACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_7_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCC
2892
3360



TACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_8_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCC
2893
3361



CACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_9_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCC
2894
3362



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK1-39_1_1_10
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCC
2895
3363



TACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_10_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCC
2896
3364



TACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_11_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCC
2897
3365



CACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_12_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCC
2898
3366



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_13_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCC
2899
3367



CACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_14_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCC
2900
3368



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_15_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCC
2901
3369



CBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_2_1_10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCC
2902
3370



TACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_3_1_10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCC
2903
3371



TACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_4_1_10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCC
2904
3372



CACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_5_1_10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCC
2905
3373



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_6_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCC
2906
3374



TACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_7_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCC
2907
3375



TACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_8_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCC
2908
3376



CACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_9_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCC
2909
3377



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK1-39_1_2_10
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCC
2910
3378



TACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_10_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCC
2911
3379



TACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_11_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCC
2912
3380



CACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_12_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCC
2913
3381



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_13_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCC
2914
3382



CACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_14_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCC
2915
3383



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_15_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCC
2916
3384



CBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_2_2_10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCC
2917
3385



TACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_3_2_10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCC
2918
3386



TACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_4_2_10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCC
2919
3387



CACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_5_2_10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCC
2920
3388



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_6_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCC
2921
3389



TACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_7_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCC
2922
3390



TACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_8_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCC
2923
3391



CACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK1-39_9_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCC
2924
3392



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_1_0_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCC
2925
3393



GACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_10_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCC
2926
3394



GACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_11_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCC
2927
3395



MACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_12_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCC
2928
3396



GVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_13_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCC
2929
3397



MACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_14_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCC
2930
3398



GVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_15_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCC
2931
3399



MVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_2_0_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCC
2932
3400



GACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_3_0_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCC
2933
3401



GACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_4_0_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCC
2934
3402



MACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_5_0_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCC
2935
3403



GVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_6_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCC
2936
3404



GACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_7_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCC
2937
3405



GACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_8_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCC
2938
3406



MACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_9_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCC
2939
3407



GVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK2-28_1_1_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCC
2940
3408



GACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT


VK2-28_10_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCC
2941
3409



GACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_11_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCC
2942
3410



MACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_12_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCC
2943
3411



GVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_13_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCC
2944
3412



MACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_14_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCC
2945
3413



GVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_15_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCC
2946
3414



MVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_2_1_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCC
2947
3415



GACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_3_1_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCC
2948
3416



GACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_4_1_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCC
2949
3417



MACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_5_1_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCC
2950
3418



GVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_6_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCC
2951
3419



GACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_7_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCC
2952
3420



GACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_8_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCC
2953
3421



MACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_9_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCC
2954
3422



GVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK2-28_1_2_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCC
2955
3423



GACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_10_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCC
2956
3424



GACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_11_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCC
2957
3425



MACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_12_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCC
2958
3426



GVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_13_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCC
2959
3427



MACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_14_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCC
2960
3428



GVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_15_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCC
2961
3429



MVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_2_2_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCC
2962
3430



GACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_3_2_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCC
2963
3431



GACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_4_2_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCC
2964
3432



MACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_5_2_10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCC
2965
3433



GVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_6_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCC
2966
3434



GACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_7_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCC
2967
3435



GACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_8_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCC
2968
3436



MACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK2-28_9_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCC
2969
3437



GVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_1_0_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCC
2970
3438



TTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_10_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCC
2971
3439



TTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_11_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCC
2972
3440



CTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_12_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCC
2973
3441



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_13_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCC
2974
3442



CTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_14_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCC
2975
3443



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_15_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCC
2976
3444



CYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_2_0_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCC
2977
3445



TTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_3_0_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCC
2978
3446



TTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_4_0_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCC
2979
3447



CTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_5_0_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCC
2980
3448



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_6_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCC
2981
3449



TTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_7_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCC
2982
3450



TTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_8_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCC
2983
3451



CTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_9_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCC
2984
3452



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-11_1_1_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCC
2985
3453



TTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_10_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCC
2986
3454



TTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_11_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCC
2987
3455



CTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_12_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCC
2988
3456



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_13_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCC
2989
3457



CTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_14_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCC
2990
3458



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_15_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCC
2991
3459



CYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_2_1_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCC
2992
3460



TTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_3_1_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCC
2993
3461



TTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_4_1_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCC
2994
3462



CTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_5_1_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCC
2995
3463



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_6_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCC
2996
3464



TTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_7_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCC
2997
3465



TTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_8_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCC
2998
3466



CTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_9_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCC
2999
3467



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-11_1_2_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCC
3000
3468



TTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_10_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCC
3001
3469



TTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_11_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCC
3002
3470



CTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_12_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCC
3003
3471



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_13_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCC
3004
3472



CTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_14_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCC
3005
3473



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_15_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCC
3006
3474



CYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_2_2_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCC
3007
3475



TTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_3_2_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCC
3008
3476



TTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_4_2_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCC
3009
3477



CTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_5_2_10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCC
3010
3478



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_6_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCC
3011
3479



TTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_7_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCC
3012
3480



TTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_8_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCC
3013
3481



CTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-11_9_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCC
3014
3482



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_1_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCC
3015
3483



TAATTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_10_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCC
3016
3439



CAATTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_11_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCC
3017
3484



TNHCTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_12_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCC
3018
3485



TAATYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_13_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCC
3019
3486



CNHCTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_14_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCC
3020
3308



CAATYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_15_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCC
3021
3487



TNHCYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_2_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCC
3022
3488



TAATTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_3_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCC
3023
3489



CAATTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_4_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCC
3024
3490



TNHCTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_5_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCC
3025
3491



TAATYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_6_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCC
3026
3492



TAATTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_7_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCC
3027
3493



CAATTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_8_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCC
3028
3494



TNHCTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_9_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCC
3029
3495



TAATYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-15_1_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCC
3030
3496



TAATTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_10_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCC
3031
3454



CAATTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_11_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCC
3032
3497



TNHCTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_12_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCC
3033
3498



TAATYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_13_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCC
3034
3499



CNHCTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_14_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCC
3035
3323



CAATYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_15_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCC
3036
3500



TNHCYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_2_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCC
3037
3501



TAATTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_3_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCC
3038
3502



CAATTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_4_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCC
3039
3503



TNHCTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_5_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCC
3040
3504



TAATYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT


VK3-15_6_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCC
3041
3505



TAATTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_7_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCC
3042
3506



CAATTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_8_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCC
3043
3507



TNHCTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_9_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCC
3044
3508



TAATYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-15_1_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCC
3045
3509



TAATTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_10_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCC
3046
3469



CAATTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_11_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCC
3047
3510



TNHCTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_12_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCC
3048
3511



TAATYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_13_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCC
3049
3512



CNHCTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_14_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCC
3050
3338



CAATYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_15_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCC
3051
3513



TNHCYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_2_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCC
3052
3514



TAATTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_3_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCC
3053
3515



CAATTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_4_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCC
3054
3516



TNHCTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_5_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCC
3055
3517



TAATYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_6_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCC
3056
3518



TAATTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_7_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCC
3057
3519



CAATTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_8_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCC
3058
3520



TNHCTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-15_9_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCC
3059
3521



TAATYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_1_0_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCC
3060
3522



TAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_10_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCC
3061
3523



TAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_11_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCC
3062
3524



CAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_12_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCC
3063
3525



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_13_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCC
3064
3526



CAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_14_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCC
3065
3527



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_15_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCC
3066
3528



CBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_2_0_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCC
3067
3529



TAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_3_0_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCC
3068
3530



TAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_4_0_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCC
3069
3531



CAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_5_0_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCC
3070
3532



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_6_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCC
3071
3533



TAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_7_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCC
3072
3534



TAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_8_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCC
3073
3535



CAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_9_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCC
3074
3536



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT





VK3-20_1_1_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCC
3075
3537



TAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_10_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCC
3076
3538



TAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_11_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCC
3077
3539



CAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_12_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCC
3078
3540



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_13_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCC
3079
3541



CAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_14_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCC
3080
3542



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_15_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCC
3081
3543



CBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_2_1_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCC
3082
3544



TAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_3_1_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCC
3083
3545



TAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_4_1_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCC
3084
3546



CAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_5_1_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCC
3085
3547



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_6_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCC
3086
3548



TAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_7_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCC
3087
3549



TAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_8_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCC
3088
3550



CAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_9_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCC
3089
3551



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT





VK3-20_1_2_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCC
3090
3552



TAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_10_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCC
3091
3553



TAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_11_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCC
3092
3554



CAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_12_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCC
3093
3555



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_13_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCC
3094
3556



CAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_14_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCC
3095
3557



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_15_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCC
3096
3558



CBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_2_2_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCC
3097
3559



TAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_3_2_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCC
3098
3560



TAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_4_2_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCC
3099
3561



CAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_5_2_10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCC
3100
3562



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_6_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCC
3101
3563



TAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_7_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCC
3102
3564



TAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_8_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCC
3103
3565



CAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT





VK3-20_9_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCC
3104
3566



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT










Jumping Trimer











VK1-05_t1_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMBCTACY
CAGCAGBHCVRMMBCTACYCTCC
3105
3567



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-05_t1_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMBCTACY
CAGCAGBHCVRMMBCTACYCTCC
3106
3568



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-05_t1_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMBCTACY
CAGCAGBHCVRMMBCTACYCTCC
3107
3569



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-05_t2_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMBCYWCY
CAGCAGBHCAATMBCYWCYCTCC
3108
3570



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-05_t2_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMBCYWCY
CAGCAGBHCAATMBCYWCYCTCC
3109
3571



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-05_t2_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMBCYWCY
CAGCAGBHCAATMBCYWCYCTCC
3110
3572



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-05_t3_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAGTYWCY
CAGCAGBHCVRMAGTYWCYCTCC
3111
3573



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-05_t3_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAGTYWCY
CAGCAGBHCVRMAGTYWCYCTCC
3112
3574



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-05_t3_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAGTYWCY
CAGCAGBHCVRMAGTYWCYCTCC
3113
3575



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-05_t4_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMBCYWCY
CAGCAGTACVRMMBCYWCYCTCC
3114
3576



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-05_t4_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMBCYWCY
CAGCAGTACVRMMBCYWCYCTCC
3115
3577



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-05_t4_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMBCYWCY
CAGCAGTACVRMMBCYWCYCTCC
3116
3578



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-12_t1_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNHCTTCC
CAGCAGRNANHCNHCTTCCCTCC
3117
3579



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-12_t1_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNHCTTCC
CAGCAGRNANHCNHCTTCCCTCC
3118
3580



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-12_t1_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNHCTTCC
CAGCAGRNANHCNHCTTCCCTCC
3119
3581



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-12_t2_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAGTYWCC
CAGCAGRNANHCAGTYWCCCTCC
3120
3582



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-12_t2_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAGTYWCC
CAGCAGRNANHCAGTYWCCCTCC
3121
3583



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-12_t2_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAGTYWCC
CAGCAGRNANHCAGTYWCCCTCC
3122
3584



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-12_t3_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNHCYWCC
CAGCAGRNAAATNHCYWCCCTCC
3123
3585



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-12_t3_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNHCYWCC
CAGCAGRNAAATNHCYWCCCTCC
3124
3586



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-12_t3_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNHCYWCC
CAGCAGRNAAATNHCYWCCCTCC
3125
3587



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-12_t4_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNHCYWCC
CAGCAGGCANHCNHCYWCCCTCC
3126
3588



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-12_t4_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNHCYWCC
CAGCAGGCANHCNHCYWCCCTCC
3127
3589



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-12_t4_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNHCYWCC
CAGCAGGCANHCNHCYWCCCTCC
3128
3590



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-33_t1_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNHCCTCC
CAGCAGBHCNHCNHCCTCCCTCC
3129
3591



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-33_t1_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNHCCTCC
CAGCAGBHCNHCNHCCTCCCTCC
3130
3592



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-33_t1_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNHCCTCC
CAGCAGBHCNHCNHCCTCCCTCC
3131
3593



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-33_t2_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAATYWCC
CAGCAGBHCNHCAATYWCCCTCC
3132
3594



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-33_t2_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAATYWCC
CAGCAGBHCNHCAATYWCCCTCC
3133
3595



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-33_t2_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAATYWCC
CAGCAGBHCNHCAATYWCCCTCC
3134
3596



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-33_t3_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNHCYWCC
CAGCAGBHCGATNHCYWCCCTCC
3135
3597



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-33_t3_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNHCYWCC
CAGCAGBHCGATNHCYWCCCTCC
3136
3598



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-33_t3_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNHCYWCC
CAGCAGBHCGATNHCYWCCCTCC
3137
3599



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-33_t4_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNHCYWCC
CAGCAGTACNHCNHCYWCCCTCC
3138
3600



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-33_t4_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNHCYWCC
CAGCAGTACNHCNHCYWCCCTCC
3139
3601



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT


VK1-33_t4_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNHCYWCC
CAGCAGTACNHCNHCYWCCCTCC
3140
3602



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-39_t1_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNHCACTC
CAGCAAVNABHCNHCACTCCTCC
3141
3603



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-39_t1_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNHCACTC
CAGCAAVNABHCNHCACTCCTCC
3142
3604



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-39_t1_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNHCACTC
CAGCAAVNABHCNHCACTCCTCC
3143
3605



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-39_t2_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAGTBHCC
CAGCAAVNABHCAGTBHCCCTCC
3144
3606



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-39_t2_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAGTBHCC
CAGCAAVNABHCAGTBHCCCTCC
3145
3607



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-39_t2_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAGTBHCC
CAGCAAVNABHCAGTBHCCCTCC
3146
3608



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-39_t3_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNHCBHCC
CAGCAAVNATACNHCBHCCCTCC
3147
3609



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-39_t3_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNHCBHCC
CAGCAAVNATACNHCBHCCCTCC
3148
3610



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-39_t3_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNHCBHCC
CAGCAAVNATACNHCBHCCCTCC
3149
3611



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK1-39_t4_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNHCBHCC
CAGCAAAGCBHCNHCBHCCCTCC
3150
3612



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK1-39_t4_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNHCBHCC
CAGCAAAGCBHCNHCBHCCCTCC
3151
3613



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK1-39_t4_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNHCBHCC
CAGCAAAGCBHCNHCBHCCCTCC
3152
3614



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK2-28_t1_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASRMACTC
ATGCAGVNAMNASRMACTCCTCC
3153
3615



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK2-28_t1_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASRMACTC
ATGCAGVNAMNASRMACTCCTCC
3154
3616



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK2-28_t1_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASRMACTC
ATGCAGVNAMNASRMACTCCTCC
3155
3617



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK2-28_t2_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACAGVBCC
ATGCAGVNAMNACAGVBCCCTCC
3156
3618



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK2-28_t2_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACAGVBCC
ATGCAGVNAMNACAGVBCCCTCC
3157
3619



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK2-28_t2_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACAGVBCC
ATGCAGVNAMNACAGVBCCCTCC
3158
3620



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK2-28_t3_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSRMVBCC
ATGCAGVNACTCSRMVBCCCTCC
3159
3621



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK2-28_t3_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSRMVBCC
ATGCAGVNACTCSRMVBCCCTCC
3160
3622



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK2-28_t3_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSRMVBCC
ATGCAGVNACTCSRMVBCCCTCC
3161
3623



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK2-28_t4_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASRMVBCC
ATGCAGGCAMNASRMVBCCCTCC
3162
3624



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK2-28_t4_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASRMVBCC
ATGCAGGCAMNASRMVBCCCTCC
3163
3625



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK2-28_t4_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASRMVBCC
ATGCAGGCAMNASRMVBCCCTCC
3164
3626



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK3-11_t1_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCTGGC
CAGCAGBHCNHCNHCTGGCCTCC
3165
3627



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK3-11_t1_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCTGGC
CAGCAGBHCNHCNHCTGGCCTCC
3166
3628



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK3-11_t1_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCTGGC
CAGCAGBHCNHCNHCTGGCCTCC
3167
3629



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK3-11_t2_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATYWCC
CAGCAGBHCNHCAATYWCCCTCC
3168
3594



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK3-11_t2_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATYWCC
CAGCAGBHCNHCAATYWCCCTCC
3169
3595



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK3-11_t2_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATYWCC
CAGCAGBHCNHCAATYWCCCTCC
3170
3596



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK3-11_t3_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNHCYWCC
CAGCAGBHCAGTNHCYWCCCTCC
3171
3630



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK3-11_t3_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNHCYWCC
CAGCAGBHCAGTNHCYWCCCTCC
3172
3631



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK3-11_t3_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNHCYWCC
CAGCAGBHCAGTNHCYWCCCTCC
3173
3632



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK3-11_t4_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNHCYWCC
CAGCAGAGANHCNHCYWCCCTCC
3174
3633



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK3-11_t4_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNHCYWCC
CAGCAGAGANHCNHCYWCCCTCC
3175
3634



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK3-11_t4_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNHCYWCC
CAGCAGAGANHCNHCYWCCCTCC
3176
3635



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK3-15_t1_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCT
CAGCAGBHCNHCNHCTGGCCTCC
3177
3627



GGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK3-15_t1_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCT
CAGCAGBHCNHCNHCTGGCCTCC
3178
3628



GGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK3-15_t1_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCT
CAGCAGBHCNHCNHCTGGCCTCC
3179
3629



GGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK3-15_t2_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATY
CAGCAGBHCNHCAATYWCCCTCC
3180
3594



WCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK3-15_t2_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATY
CAGCAGBHCNHCAATYWCCCTCC
3181
3595



WCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK3-15_t2_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATY
CAGCAGBHCNHCAATYWCCCTCC
3182
3596



WCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK3-15_t3_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAATNHCY
CAGCAGBHCAATNHCYWCCCTCC
3183
3636



WCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK3-15_t3_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAATNHCY
CAGCAGBHCAATNHCYWCCCTCC
3184
3637



WCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK3-15_t3_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAATNHCY
CAGCAGBHCAATNHCYWCCCTCC
3185
3638



WCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK3-15_t4_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNHCNHCY
CAGCAGTACNHCNHCYWCCCTCC
3186
3600



WCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK3-15_t4_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNHCNHCY
CAGCAGTACNHCNHCYWCCCTCC
3187
3601



WCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK3-15_t4_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNHCNHCY
CAGCAGTACNHCNHCYWCCCTCC
3188
3602



WCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK3-20_t1_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVNCAGTC
CAGCAGBHCBHCVNCAGTCCTCC
3189
3639



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK3-20_t1_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVNCAGTC
CAGCAGBHCBHCVNCAGTCCTCC
3190
3640



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK3-20_t1_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVNCAGTC
CAGCAGBHCBHCVNCAGTCCTCC
3191
3641



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK3-20_t2_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAGTBHCC
CAGCAGBHCBHCAGTBHCCCTCC
3192
3642



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK3-20_t2_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAGTBHCC
CAGCAGBHCBHCAGTBHCCCTCC
3193
3643



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK3-20_t2_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAGTBHCC
CAGCAGBHCBHCAGTBHCCCTCC
3194
3644



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK3-20_t3_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVNCBHCC
CAGCAGBHCGGAVNCBHCCCTCC
3195
3645



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK3-20_t3_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVNCBHCC
CAGCAGBHCGGAVNCBHCCCTCC
3196
3646



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK3-20_t3_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVNCBHCC
CAGCAGBHCGGAVNCBHCCCTCC
3197
3647



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK3-20_t4_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVNCBHCC
CAGCAGTACBHCVNCBHCCCTCC
3198
3648



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK3-20_t4_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVNCBHCC
CAGCAGTACBHCVNCBHCCCTCC
3199
3649



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK3-20_t4_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVNCBHCC
CAGCAGTACBHCVNCBHCCCTCC
3200
3650



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK4-01_t1_0_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNHCACTC
CAGCAGBHCBHCNHCACTCCTCC
3201
3651



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK4-01_t1_1_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNHCACTC
CAGCAGBHCBHCNHCACTCCTCC
3202
3652



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK4-01_t1_2_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNHCACTC
CAGCAGBHCBHCNHCACTCCTCC
3203
3653



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK4-01_t2_0_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAGTBHCC
CAGCAGBHCBHCAGTBHCCCTCC
3204
3642



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK4-01_t2_1_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAGTBHCC
CAGCAGBHCBHCAGTBHCCCTCC
3205
3643



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK4-01_t2_2_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAGTBHCC
CAGCAGBHCBHCAGTBHCCCTCC
3206
3644



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK4-01_t3_0_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNHCBHCC
CAGCAGBHCTACNHCBHCCCTCC
3207
3654



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK4-01_t3_1_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNHCBHCC
CAGCAGBHCTACNHCBHCCCTCC
3208
3655



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK4-01_t3_2_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNHCBHCC
CAGCAGBHCTACNHCBHCCCTCC
3209
3656



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT





VK4-01_t4_0_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNHCBHCC
CAGCAGTACBHCNHCBHCCCTCC
3210
3657



CTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT





VK4-01_t4_1_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNHCBHCC
CAGCAGTACBHCNHCBHCCCTCC
3211
3658



CTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT





VK4-01_t4_2_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNHCBHCC
CAGCAGTACBHCNHCBHCCCTCC
3212
3659



CTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT
















TABLE 8







Number of unique CDRL3 amino acid sequences in exemplary jumping dimer (“JD”) and


jumping trimer (“JT”) VK libraries and comparison to VK-v1.0.











L = 8 aa
L = 9 aa
L = 10 aa










Jumping Dimer













Germline
JD
VK-v1.0
JD
VK-v1.0
JD
VK-v1.0





VK1-05
3549
3072
7098
6144
6084
13824


VK1-12
5250
2016
5250
2016
4500
5184


VK1-33
5502
4032
5502
4032
4716
10368


VK1-39
7224
3024
7224
3024
6192
7776


VK2-28
4396
2016
4396
2016
3768
5184


VK3-11
6048
2352
6048
2016
5184
6048


VK3-15
5789
2016
5789
2352
4962
5184


VK3-20
6405
2016
6671
2016
5490
5184


VK4-01
NPE*
2016
6405
2592
NPE*
5184


Total
4.42 * 104
2.26 * 104
5.44 * 104
2.62 * 104
4.09 * 104
6.39 * 104










Jumping Trimer













Germline
JT
VK-v1.0
JT
VK-v1.0
JT
VK-v1.0





VK1-05
7872
3072
13776
6144
11808
13824


VK1-12
14469
2016
14469
2016
12402
5184


VK1-33
15960
4032
15960
4032
13680
10368


VK1-39
28980
3024
28980
3024
24840
7776


VK2-28
12306
2016
12306
2016
10548
5184


VK3-11
18900
2352
18900
2016
16200
6048


VK3-15
18256
2016
18256
2352
15648
5184


VK3-20
23688
2016
23688
2016
20304
5184


VK4-01
23688
2016
23688
2592
20304
5184


Total
1.64 * 105
2.26 * 104
1.70 * 105
2.62 * 104
1.46 * 105
6.39 * 104





*Not Presently Exemplified. However, given the teachings of the specification, a person of ordinary skill in the art could readily produce a library of such lengths, and these lengths are included within the scope of the invention.













TABLE 9







Matching output for exemplary CDRH3 sequences from the HPS and TSP1.


Amino acid mismatches in the theoretical design are indicated in bold.

















Test
CDRH3 Sequence
SEQ


SEQ

SEQ


SEQ


Case
from HPS
ID NO
Mismatches
TN1
ID NO
DH
ID NO
N2
H3-JH
ID NO




















1
RTAHHFDY
3660
0
R

TA

H
HFDY
4582





2.1
VGIVGAASY
3661
0
V

GIVGA
3751
AS
Y






2.2
VGIVGAASY
3661
0
VG

IVGA
3755
AS
Y






3.1
DRYSGHDLGY
3662
1
DR

YSGYD
4389
LG
Y






4.1
GIAAADSNWLDP
3663
1


GIAAA
4448
D
SNWFDP
4600





4.2
GIAAADSNWLDP
3663
1


IAAA
4452
D
SNWFDP
4600





5.1
ERTINWGWGGVYAFDI
3664
3
EGTG
3707
NWG


GGV

YAFDI
4540





5.2
ERTINWGWGGVYAFDI
3663
3
EGTG
3707
NWG

WGT
YAFDI
4540





5.3
ERTINWGWGGVYAFDI
3664
3
ERGG
3719
NWG


GGV

YAFDI
4540





5.4
ERTINWGWGGVYAFDI
3664
3
ERGG
3719
NWG

WGT
YAFDI
4540
















TABLE 10







Theoretical segment pool of 212 TN1 sequences


contained in Theoretical Segment Pool 1 (TSP1).











TN1
Amino
TN1
Amino



Segment
Acid
Segment
Acid
SEQ


Name
Sequence
Name
Sequence
ID NO














P000

P107
PT
n/a





P001
E
P108
EPT
n/a





P002
D
P109
DPT
n/a





P003
G
P110
GPT
n/a





P004
EG
P111
PV
n/a





P005
DG
P112
EPV
n/a





P006
GG
P113
DPV
n/a





P007
R
P114
GPV
n/a





P008
ER
P115
RP
n/a





P009
DR
P116
ERP
n/a





P010
GR
P117
DRP
n/a





P011
S
P118
GRP
n/a





P012
ES
P119
SP
n/a





P013
DS
P120
ESP
n/a





P014
GS
P121
DSP
n/a





P015
P
P122
GSP
n/a





P016
EP
P123
LP
n/a





P017
DP
P124
ELP
n/a





P018
GP
P125
DLP
n/a





P019
L
P126
GLP
n/a





P020
EL
P127
AP
n/a





P021
DL
P128
EAP
n/a





P022
GL
P129
DAP
n/a





P023
A
P130
GAP
n/a





P024
EA
P131
TP
n/a





P025
DA
P132
ETP
n/a





P026
GA
P133
DTP
n/a





P027
T
P134
GTP
n/a





P028
ET
P135
VP
n/a





P029
DT
P136
EVP
n/a





P030
GT
P137
DVP
n/a





P031
V
P138
GVP
n/a





P032
EV
P139
AGG
n/a





P033
DV
P140
EAGG
3665





P034
GV
P141
DAGG
3666





P035
EGG
P142
GAGG
3667





P036
DGG
P143
EGAG
3668





P037
GGG
P144
DGAG
3669





P038
EGR
P145
GGAG
3670





P039
DGR
P146
EGGA
3671





P040
GGR
P147
DGGA
3672





P041
EGS
P148
GGGA
3673





P042
DGS
P149
EGGG
3674





P043
GGS
P150
DGGG
3675





P044
EGP
P151
GGGG
3676





P045
DGP
P152
EGGL
3677





P046
GGP
P153
DGGL
3678





P047
EGL
P154
GGGL
3679





P048
DGL
P155
EGGP
3680





P049
GGL
P156
DGGP
3681





P050
EGA
P157
GGGP
3682





P051
DGA
P158
EGGR
3683





P052
GGA
P159
DGGR
3684





P053
EGT
P160
GGGR
3685





P054
DGT
P161
EGGS
3686





P055
GGT
P162
DGGS
3687





P056
EGV
P163
GGGS
3688





P057
DGV
P164
EGGT
3689





P058
GGV
P165
DGGT
3690





P059
RG
P166
GGGT
3691





P060
ERG
P167
EGGV
3692





P061
DRG
P168
DGGV
3693





P062
GRG
P169
GGGV
3694





P063
SG
P170
EGLG
3695





P064
ESG
P171
DGLG
3696





P065
DSG
P172
GGLG
3697





P066
GSG
P173
EGPG
3698





P067
PG
P174
DGPG
3699





P068
EPG
P175
GGPG
3700





P069
DPG
P176
EGRG
3701





P070
GPG
P177
DGRG
3702





P071
LG
P178
GGRG
3703





P072
ELG
P179
EGSG
3704





P073
DLG
P180
DGSG
3705





P074
GLG
P181
GGSG
3706





P075
AG
P182
EGTG
3707





P076
EAG
P183
DGTG
3708





P077
DAG
P184
GGTG
3709





P078
GAG
P185
EGVG
3710





P079
TG
P186
DGVG
3711





P080
ETG
P187
GGVG
3712





P081
DTG
P188
LGG
n/a





P082
GTG
P189
ELGG
3713





P083
VG
P190
DLGG
3714





P084
EVG
P191
GLGG
3715





P085
DVG
P192
PGG
n/a





P086
GVG
P193
EPGG
3716





P087
PR
P194
DPGG
3717





P088
EPR
P195
GPGG
3718





P089
DPR
P196
RGG
n/a





P090
GPR
P197
ERGG
3719





P091
PS
P198
DRGG
3720





P092
EPS
P199
GRGG
3721





P093
DPS
P200
SGG
n/a





P094
GPS
P201
ESGG
3722





P095
PP
P202
DSGG
3723





P096
EPP
P203
GSGG
3724





P097
DPP
P204
TGG
n/a





P098
GPP
P205
ETGG
3725





P099
PL
P206
DTGG
3726





P100
EPL
P207
GTGG
3727





P101
DPL
P208
VGG
n/a





P102
GPL
P209
EVGG
3728





P103
PA
P210
DVGG
3729





P104
EPA
P211
GVGG
3730





P105
DPA








P106
GPA
















TABLE 11







1K DH Theoretical Segment Pool


sequences (1,111 DH segments).











DH Segment
Amino Acid
SEQ



Name
Sequence
ID NO







DHUNIV_001
GTTGTT
3731







DHUNIV_002
GTTGT
3732







DHUNIV_003
TTGTT
3733







DHUNIV_004
GTTG
3734







DHUNIV_005
TTGT
3735







DHUNIV_006
TGTT
3736







DHUNIV_007
GTT
n/a







DHUNIV_008
TTG
n/a







DHUNIV_009
TGT
n/a







DHUNIV_010
GT
n/a







DHUNIV_011
TT
n/a







DHUNIV_012
TG
n/a







DHUNIV_013
VQLER
3737







DHUNIV_014
VQLE
3738







DHUNIV_015
QLER
3739







DHUNIV_016
VQL
n/a







DHUNIV_017
QLE
n/a







DHUNIV_018
LER
n/a







DHUNIV_019
VQ
n/a







DHUNIV_020
QL
n/a







DHUNIV_021
LE
n/a







DHUNIV_022
ER
n/a







DHUNIV_023
YNWND
3740







DHUNIV_024
YNWN
3741







DHUNIV_025
NWND
3742







DHUNIV_026
YNW
n/a







DHUNIV_027
NWN
n/a







DHUNIV_028
WND
n/a







DHUNIV_029
YN
n/a







DHUNIV_030
NW
n/a







DHUNIV_031
WN
n/a







DHUNIV_032
ND
n/a







DHUNIV_033
GITGTT
3743







DHUNIV_034
GITGT
3744







DHUNIV_035
ITGTT
3745







DHUNIV_036
GITG
3746







DHUNIV_037
ITGT
3747







DHUNIV_038
GIT
n/a







DHUNIV_039
ITG
n/a







DHUNIV_040
GI
n/a







DHUNIV_041
IT
n/a







DHUNIV_042
GIVGATT
3748







DHUNIV_043
GIVGAT
3749







DHUNIV_044
IVGATT
3750







DHUNIV_045
GIVGA
3751







DHUNIV_046
IVGAT
3752







DHUNIV_047
VGATT
3753







DHUNIV_048
GIVG
3754







DHUNIV_049
IVGA
3755







DHUNIV_050
VGAT
3756







DHUNIV_051
GATT
3757







DHUNIV_052
GIV
n/a







DHUNIV_053
IVG
n/a







DHUNIV_054
VGA
n/a







DHUNIV_055
GAT
n/a







DHUNIV_056
ATT
n/a







DHUNIV_057
IV
n/a







DHUNIV_058
VG
n/a







DHUNIV_059
GA
n/a







DHUNIV_060
AT
n/a







DHUNIV_061
WELL
3758







DHUNIV_062
WEL
n/a







DHUNIV_063
ELL
n/a







DHUNIV_064
WE
n/a







DHUNIV_065
EL
n/a







DHUNIV_066
LL
n/a







DHUNIV_067
YSGSYY
3759







DHUNIV_068
YSGSY
3760







DHUNIV_069
SGSYY
3761







DHUNIV_070
YSGS
3762







DHUNIV_071
SGSY
3763







DHUNIV_072
GSYY
3764







DHUNIV_073
YSG
n/a







DHUNIV_074
SGS
n/a







DHUNIV_075
GSY
n/a







DHUNIV_076
SYY
n/a







DHUNIV_077
YS
n/a







DHUNIV_078
SG
n/a







DHUNIV_079
GS
n/a







DHUNIV_080
SY
n/a







DHUNIV_081
YY
n/a







DHUNIV_082
LEL
n/a







DHUNIV_083
YNWNY
3765







DHUNIV_084
NWNY
3766







DHUNIV_085
WNY
n/a







DHUNIV_086
NY
n/a







DHUNIV_087
RIL
n/a







DHUNIV_088
LLL
n/a







DHUNIV_089
RI
n/a







DHUNIV_090
IL
n/a







DHUNIV_091
WW
n/a







DHUNIV_092
GYCSGGSCYS
3767







DHUNIV_093
GYCSGGSCY
3768







DHUNIV_094
YCSGGSCYS
3769







DHUNIV_095
GYCSGGSC
3770







DHUNIV_096
YCSGGSCY
3771







DHUNIV_097
CSGGSCYS
3772







DHUNIV_098
YCSGGSC
3773







DHUNIV_099
CSGGSCY
3774







DHUNIV_100
CSGGSC
3775







DHUNIV_101
SGGS
3776







DHUNIV_102
SGG
n/a







DHUNIV_103
GGS
n/a







DHUNIV_104
GY
n/a







DHUNIV_105
GG
n/a







DHUNIV_106
DIVVVVAATP
3777







DHUNIV_107
DIVVVVAAT
3778







DHUNIV_108
IVVVVAATP
3779







DHUNIV_109
DIVVVVAA
3780







DHUNIV_110
IVVVVAAT
3781







DHUNIV_111
VVVVAATP
3782







DHUNIV_112
DIVVVVA
3783







DHUNIV_113
IVVVVAA
3784







DHUNIV_114
VVVVAAT
3785







DHUNIV_115
VVVAATP
3786







DHUNIV_116
DIVVVV
3787







DHUNIV_117
IVVVVA
3788







DHUNIV_118
VVVVAA
3789







DHUNIV_119
VVVAAT
3790







DHUNIV_120
VVAATP
3791







DHUNIV_121
DIVVV
3792







DHUNIV_122
IVVVV
3793







DHUNIV_123
VVVVA
3794







DHUNIV_124
VVVAA
3795







DHUNIV_125
VVAAT
3796







DHUNIV_126
VAATP
3797







DHUNIV_127
DIVV
3798







DHUNIV_128
IVVV
3799







DHUNIV_129
VVVV
3800







DHUNIV_130
VVVA
3801







DHUNIV_131
VVAA
3802







DHUNIV_132
VAAT
3803







DHUNIV_133
AATP
3804







DHUNIV_134
DIV
n/a







DHUNIV_135
IVV
n/a







DHUNIV_136
VVV
n/a







DHUNIV_137
VVA
n/a







DHUNIV_138
VAA
n/a







DHUNIV_139
AAT
n/a







DHUNIV_140
ATP
n/a







DHUNIV_141
DI
n/a







DHUNIV_142
VV
n/a







DHUNIV_143
VA
n/a







DHUNIV_144
AA
n/a







DHUNIV_145
TP
n/a







DHUNIV_146
YQLL
3805







DHUNIV_147
YQL
n/a







DHUNIV_148
QLL
n/a







DHUNIV_149
YQ
n/a







DHUNIV_150
GYCSSTSCYA
3806







DHUNIV_151
GYCSSTSCY
3807







DHUNIV_152
YCSSTSCYA
3808







DHUNIV_153
GYCSSTSC
3809







DHUNIV_154
YCSSTSCY
3810







DHUNIV_155
CSSTSCYA
3811







DHUNIV_156
YCSSTSC
3812







DHUNIV_157
CSSTSCY
3813







DHUNIV_158
CSSTSC
3814







DHUNIV_159
SSTS
3815







DHUNIV_160
SST
n/a







DHUNIV_161
STS
n/a







DHUNIV_162
SS
n/a







DHUNIV_163
ST
n/a







DHUNIV_164
TS
n/a







DHUNIV_165
YA
n/a







DHUNIV_166
DIVVVPAAMP
3816







DHUNIV_167
DIVVVPAAM
3817







DHUNIV_168
IVVVPAAMP
3818







DHUNIV_169
DIVVVPAA
3819







DHUNIV_170
IVVVPAAM
3820







DHUNIV_171
VVVPAAMP
3821







DHUNIV_172
DIVVVPA
3822







DHUNIV_173
IVVVPAA
3823







DHUNIV_174
VVVPAAM
3824







DHUNIV_175
VVPAAMP
3825







DHUNIV_176
DIVVVP
3826







DHUNIV_177
IVVVPA
3827







DHUNIV_178
VVVPAA
3828







DHUNIV_179
VVPAAM
3829







DHUNIV_180
VPAAMP
3830







DHUNIV_181
IVVVP
3831







DHUNIV_182
VVVPA
3832







DHUNIV_183
VVPAA
3833







DHUNIV_184
VPAAM
3834







DHUNIV_185
PAAMP
3835







DHUNIV_186
VVVP
3836







DHUNIV_187
VVPA
3837







DHUNIV_188
VPAA
3838







DHUNIV_189
PAAM
3839







DHUNIV_190
AAMP
3840







DHUNIV_191
VVP
n/a







DHUNIV_192
VPA
n/a







DHUNIV_193
PAA
n/a







DHUNIV_194
AAM
n/a







DHUNIV_195
AMP
n/a







DHUNIV_196
VP
n/a







DHUNIV_197
PA
n/a







DHUNIV_198
AM
n/a







DHUNIV_199
MP
n/a







DHUNIV_200
YQLLY
3841







DHUNIV_201
QLLY
3842







DHUNIV_202
LLY
n/a







DHUNIV_203
LY
n/a







DHUNIV_204
GYCSSTSCYT
3843







DHUNIV_205
YCSSTSCYT
3844







DHUNIV_206
CSSTSCYT
3845







DHUNIV_207
YT
n/a







DHUNIV_208
DIVVVPAAIP
3846







DHUNIV_209
DIVVVPAAI
3847







DHUNIV_210
IVVVPAAIP
3848







DHUNIV_211
IVVVPAAI
3849







DHUNIV_212
VVVPAAIP
3850







DHUNIV_213
VVVPAAI
3851







DHUNIV_214
VVPAAIP
3852







DHUNIV_215
VVPAAI
3853







DHUNIV_216
VPAAIP
3854







DHUNIV_217
VPAAI
3855







DHUNIV_218
PAAIP
3856







DHUNIV_219
PAAI
3857







DHUNIV_220
AAIP
3858







DHUNIV_221
AAI
n/a







DHUNIV_222
AIP
n/a







DHUNIV_223
AI
n/a







DHUNIV_224
IP
n/a







DHUNIV_225
WIL
n/a







DHUNIV_226
WI
n/a







DHUNIV_227
SILWW
3859







DHUNIV_228
SILW
3860







DHUNIV_229
ILWW
3861







DHUNIV_230
SIL
n/a







DHUNIV_231
ILW
n/a







DHUNIV_232
LWW
n/a







DHUNIV_233
LLF
n/a







DHUNIV_234
SI
n/a







DHUNIV_235
LW
n/a







DHUNIV_236
LF
n/a







DHUNIV_237
AYCGGDCYS
3862







DHUNIV_238
AYCGGDCY
3863







DHUNIV_239
YCGGDCYS
3864







DHUNIV_240
AYCGGDC
3865







DHUNIV_241
YCGGDCY
3866







DHUNIV_242
CGGDCYS
3867







DHUNIV_243
YCGGDC
3868







DHUNIV_244
CGGDCY
3869







DHUNIV_245
CGGDC
3870







DHUNIV_246
GGD
n/a







DHUNIV_247
AY
n/a







DHUNIV_248
GD
n/a







DHUNIV_249
HIVVVIAIP
3871







DHUNIV_250
HIVVVIAI
3872







DHUNIV_251
IVVVIAIP
3873







DHUNIV_252
HIVVVIA
3874







DHUNIV_253
IVVVIAI
3875







DHUNIV_254
VVVIAIP
3876







DHUNIV_255
HIVVVI
3877







DHUNIV_256
IVVVIA
3878







DHUNIV_257
VVVIAI
3879







DHUNIV_258
VVIAIP
3880







DHUNIV_259
HIVVV
3881







DHUNIV_260
IVVVI
3882







DHUNIV_261
VVVIA
3883







DHUNIV_262
VVIAI
3884







DHUNIV_263
VIAIP
3885







DHUNIV_264
HIVV
3886







DHUNIV_265
VVVI
3887







DHUNIV_266
VVIA
3888







DHUNIV_267
VIAI
3889







DHUNIV_268
IAIP
3890







DHUNIV_269
HIV
n/a







DHUNIV_270
VVI
n/a







DHUNIV_271
VIA
n/a







DHUNIV_272
IAI
n/a







DHUNIV_273
HI
n/a







DHUNIV_274
VI
n/a







DHUNIV_275
IA
n/a







DHUNIV_276
HIVVVTAIP
3891







DHUNIV_277
HIVVVTAI
3892







DHUNIV_278
IVVVTAIP
3893







DHUNIV_279
HIVVVTA
3894







DHUNIV_280
IVVVTAI
3895







DHUNIV_281
VVVTAIP
3896







DHUNIV_282
HIVVVT
3897







DHUNIV_283
IVVVTA
3898







DHUNIV_284
VVVTAI
3899







DHUNIV_285
VVTAIP
3900







DHUNIV_286
IVVVT
3901







DHUNIV_287
VVVTA
3902







DHUNIV_288
VVTAI
3903







DHUNIV_289
VTAIP
3904







DHUNIV_290
VVVT
3905







DHUNIV_291
VVTA
3906







DHUNIV_292
VTAI
3907







DHUNIV_293
TAIP
3908







DHUNIV_294
VVT
n/a







DHUNIV_295
VTA
n/a







DHUNIV_296
TAI
n/a







DHUNIV_297
VT
n/a







DHUNIV_298
TA
n/a







DHUNIV_299
RILY
3909







DHUNIV_300
ILY
n/a







DHUNIV_301
MLY
n/a







DHUNIV_302
ML
n/a







DHUNIV_303
GYCTNGVCYT
3910







DHUNIV_304
GYCTNGVCY
3911







DHUNIV_305
YCTNGVCYT
3912







DHUNIV_306
GYCTNGVC
3913







DHUNIV_307
YCTNGVCY
3914







DHUNIV_308
CTNGVCYT
3915







DHUNIV_309
YCTNGVC
3916







DHUNIV_310
CTNGVCY
3917







DHUNIV_311
CTNGVC
3918







DHUNIV_312
TNGV
3919







DHUNIV_313
TNG
n/a







DHUNIV_314
NGV
n/a







DHUNIV_315
TN
n/a







DHUNIV_316
NG
n/a







DHUNIV_317
GV
n/a







DHUNIV_318
DIVLMVYAIP
3920







DHUNIV_319
DIVLMVYAI
3921







DHUNIV_320
IVLMVYAIP
3922







DHUNIV_321
DIVLMVYA
3923







DHUNIV_322
IVLMVYAI
3924







DHUNIV_323
VLMVYAIP
3925







DHUNIV_324
DIVLMVY
3926







DHUNIV_325
IVLMVYA
3927







DHUNIV_326
VLMVYAI
3928







DHUNIV_327
LMVYAIP
3929







DHUNIV_328
DIVLMV
3930







DHUNIV_329
IVLMVY
3931







DHUNIV_330
VLMVYA
3932







DHUNIV_331
LMVYAI
3933







DHUNIV_332
MVYAIP
3934







DHUNIV_333
DIVLM
3935







DHUNIV_334
IVLMV
3936







DHUNIV_335
VLMVY
3937







DHUNIV_336
LMVYA
3938







DHUNIV_337
MVYAI
3939







DHUNIV_338
VYAIP
3940







DHUNIV_339
DIVL
3941







DHUNIV_340
IVLM
3942







DHUNIV_341
VLMV
3943







DHUNIV_342
LMVY
3944







DHUNIV_343
MVYA
3945







DHUNIV_344
VYAI
3946







DHUNIV_345
YAIP
3947







DHUNIV_346
IVL
n/a







DHUNIV_347
VLM
n/a







DHUNIV_348
LMV
n/a







DHUNIV_349
MVY
n/a







DHUNIV_350
VYA
n/a







DHUNIV_351
YAI
n/a







DHUNIV_352
VL
n/a







DHUNIV_353
LM
n/a







DHUNIV_354
MV
n/a







DHUNIV_355
VY
n/a







DHUNIV_356
VLLWFGELL
3948







DHUNIV_357
VLLWFGEL
3949







DHUNIV_358
LLWFGELL
3950







DHUNIV_359
VLLWFGE
3951







DHUNIV_360
LLWFGEL
3952







DHUNIV_361
LWFGELL
3953







DHUNIV_362
VLLWFG
3954







DHUNIV_363
LLWFGE
3955







DHUNIV_364
LWFGEL
3956







DHUNIV_365
WFGELL
3957







DHUNIV_366
VLLWF
3958







DHUNIV_367
LLWFG
3959







DHUNIV_368
LWFGE
3960







DHUNIV_369
WFGEL
3961







DHUNIV_370
FGELL
3962







DHUNIV_371
VLLW
3963







DHUNIV_372
LLWF
3964







DHUNIV_373
LWFG
3965







DHUNIV_374
WFGE
3966







DHUNIV_375
FGEL
3967







DHUNIV_376
GELL
3968







DHUNIV_377
VLL
n/a







DHUNIV_378
LLW
n/a







DHUNIV_379
LWF
n/a







DHUNIV_380
WFG
n/a







DHUNIV_381
FGE
n/a







DHUNIV_382
GEL
n/a







DHUNIV_383
WF
n/a







DHUNIV_384
FG
n/a







DHUNIV_385
GE
n/a







DHUNIV_386
YYYGSGSYYN
3969







DHUNIV_387
YYYGSGSYY
3970







DHUNIV_388
YYGSGSYYN
3971







DHUNIV_389
YYYGSGSY
3972







DHUNIV_390
YYGSGSYY
3973







DHUNIV_391
YGSGSYYN
3974







DHUNIV_392
YYYGSGS
3975







DHUNIV_393
YYGSGSY
3976







DHUNIV_394
YGSGSYY
3977







DHUNIV_395
GSGSYYN
3978







DHUNIV_396
YYYGSG
3979







DHUNIV_397
YYGSGS
3980







DHUNIV_398
YGSGSY
3981







DHUNIV_399
GSGSYY
3982







DHUNIV_400
SGSYYN
3983







DHUNIV_401
YYYGS
3984







DHUNIV_402
YYGSG
3985







DHUNIV_403
YGSGS
3986







DHUNIV_404
GSGSY
3987







DHUNIV_405
GSYYN
3988







DHUNIV_406
YYYG
3989







DHUNIV_407
YYGS
3990







DHUNIV_408
YGSG
3991







DHUNIV_409
GSGS
3992







DHUNIV_410
SYYN
3993







DHUNIV_411
YYY
n/a







DHUNIV_412
YYG
n/a







DHUNIV_413
YGS
n/a







DHUNIV_414
GSG
n/a







DHUNIV_415
YYN
n/a







DHUNIV_416
YG
n/a







DHUNIV_417
ITMVRGVIIT
3994







DHUNIV_418
ITMVRGVII
3995







DHUNIV_419
TMVRGVIIT
3996







DHUNIV_420
ITMVRGVI
3997







DHUNIV_421
TMVRGVII
3998







DHUNIV_422
MVRGVIIT
3999







DHUNIV_423
ITMVRGV
4000







DHUNIV_424
TMVRGVI
4001







DHUNIV_425
MVRGVII
4002







DHUNIV_426
VRGVIIT
4003







DHUNIV_427
ITMVRG
4004







DHUNIV_428
TMVRGV
4005







DHUNIV_429
MVRGVI
4006







DHUNIV_430
VRGVII
4007







DHUNIV_431
RGVIIT
4008







DHUNIV_432
ITMVR
4009







DHUNIV_433
TMVRG
4010







DHUNIV_434
MVRGV
4011







DHUNIV_435
VRGVI
4012







DHUNIV_436
RGVII
4013







DHUNIV_437
GVIIT
4014







DHUNIV_438
ITMV
4015







DHUNIV_439
TMVR
4016







DHUNIV_440
MVRG
4017







DHUNIV_441
VRGV
4018







DHUNIV_442
RGVI
4019







DHUNIV_443
GVII
4020







DHUNIV_444
VIIT
4021







DHUNIV_445
ITM
n/a







DHUNIV_446
TMV
n/a







DHUNIV_447
MVR
n/a







DHUNIV_448
VRG
n/a







DHUNIV_449
RGV
n/a







DHUNIV_450
GVI
n/a







DHUNIV_451
VII
n/a







DHUNIV_452
IIT
n/a







DHUNIV_453
TM
n/a







DHUNIV_454
VR
n/a







DHUNIV_455
RG
n/a







DHUNIV_456
II
n/a







DHUNIV_457
VLLWFRELL
4022







DHUNIV_458
VLLWFREL
4023







DHUNIV_459
LLWFRELL
4024







DHUNIV_460
VLLWFRE
4025







DHUNIV_461
LLWFREL
4026







DHUNIV_462
LWFRELL
4027







DHUNIV_463
VLLWFR
4028







DHUNIV_464
LLWFRE
4029







DHUNIV_465
LWFREL
4030







DHUNIV_466
WFRELL
4031







DHUNIV_467
LLWFR
4032







DHUNIV_468
LWFRE
4033







DHUNIV_469
WFREL
4034







DHUNIV_470
FRELL
4035







DHUNIV_471
LWFR
4036







DHUNIV_472
WFRE
4037







DHUNIV_473
FREL
4038







DHUNIV_474
RELL
4039







DHUNIV_475
WFR
n/a







DHUNIV_476
FRE
n/a







DHUNIV_477
REL
n/a







DHUNIV_478
FR
n/a







DHUNIV_479
RE
n/a







DHUNIV_480
ITMVQGVIIT
4040







DHUNIV_481
ITMVQGVII
4041







DHUNIV_482
TMVQGVIIT
4042







DHUNIV_483
ITMVQGVI
4043







DHUNIV_484
TMVQGVII
4044







DHUNIV_485
MVQGVIIT
4045







DHUNIV_486
ITMVQGV
4046







DHUNIV_487
TMVQGVI
4047







DHUNIV_488
MVQGVII
4048







DHUNIV_489
VQGVIIT
4049







DHUNIV_490
ITMVQG
4050







DHUNIV_491
TMVQGV
4051







DHUNIV_492
MVQGVI
4052







DHUNIV_493
VQGVII
4053







DHUNIV_494
QGVIIT
4054







DHUNIV_495
ITMVQ
4055







DHUNIV_496
TMVQG
4056







DHUNIV_497
MVQGV
4057







DHUNIV_498
VQGVI
4058







DHUNIV_499
QGVII
4059







DHUNIV_500
TMVQ
4060







DHUNIV_501
MVQG
4061







DHUNIV_502
VQGV
4062







DHUNIV_503
QGVI
4063







DHUNIV_504
MVQ
n/a







DHUNIV_505
VQG
n/a







DHUNIV_506
QGV
n/a







DHUNIV_507
QG
n/a







DHUNIV_508
LRLGEL
4064







DHUNIV_509
LRLGE
4065







DHUNIV_510
RLGEL
4066







DHUNIV_511
LRLG
4067







DHUNIV_512
RLGE
4068







DHUNIV_513
LGEL
4069







DHUNIV_514
LRL
n/a







DHUNIV_515
RLG
n/a







DHUNIV_516
LGE
n/a







DHUNIV_517
LR
n/a







DHUNIV_518
RL
n/a







DHUNIV_519
LG
n/a







DHUNIV_520
YYDYVWGSYAYT
4070







DHUNIV_521
YYDYVWGSYAY
4071







DHUNIV_522
YDYVWGSYAYT
4072







DHUNIV_523
YYDYVWGSYA
4073







DHUNIV_524
YDYVWGSYAY
4074







DHUNIV_525
DYVWGSYAYT
4075







DHUNIV_526
YYDYVWGSY
4076







DHUNIV_527
YDYVWGSYA
4077







DHUNIV_528
DYVWGSYAY
4078







DHUNIV_529
YVWGSYAYT
4079







DHUNIV_530
YYDYVWGS
4080







DHUNIV_531
YDYVWGSY
4081







DHUNIV_532
DYVWGSYA
4082







DHUNIV_533
YVWGSYAY
4083







DHUNIV_534
VWGSYAYT
4084







DHUNIV_535
YYDYVWG
4085







DHUNIV_536
YDYVWGS
4086







DHUNIV_537
DYVWGSY
4087







DHUNIV_538
YVWGSYA
4088







DHUNIV_539
VWGSYAY
4089







DHUNIV_540
WGSYAYT
4090







DHUNIV_541
YYDYVW
4091







DHUNIV_542
YDYVWG
4092







DHUNIV_543
DYVWGS
4093







DHUNIV_544
YVWGSY
4094







DHUNIV_545
VWGSYA
4095







DHUNIV_546
WGSYAY
4096







DHUNIV_547
GSYAYT
4097







DHUNIV_548
YYDYV
4098







DHUNIV_549
YDYVW
4099







DHUNIV_550
DYVWG
4100







DHUNIV_551
YVWGS
4101







DHUNIV_552
VWGSY
4102







DHUNIV_553
WGSYA
4103







DHUNIV_554
GSYAY
4104







DHUNIV_555
SYAYT
4105







DHUNIV_556
YYDY
4106







DHUNIV_557
YDYV
4107







DHUNIV_558
DYVW
4108







DHUNIV_559
YVWG
4109







DHUNIV_560
VWGS
4110







DHUNIV_561
WGSY
4111







DHUNIV_562
GSYA
4112







DHUNIV_563
SYAY
4113







DHUNIV_564
YAYT
4114







DHUNIV_565
YYD
n/a







DHUNIV_566
YDY
n/a







DHUNIV_567
DYV
n/a







DHUNIV_568
YVW
n/a







DHUNIV_569
VWG
n/a







DHUNIV_570
WGS
n/a







DHUNIV_571
SYA
n/a







DHUNIV_572
YAY
n/a







DHUNIV_573
AYT
n/a







DHUNIV_574
YD
n/a







DHUNIV_575
DY
n/a







DHUNIV_576
YV
n/a







DHUNIV_577
VW
n/a







DHUNIV_578
WG
n/a







DHUNIV_579
IMITFGGVMLIP
4115







DHUNIV_580
IMITFGGVMLI
4116







DHUNIV_581
MITFGGVMLIP
4117







DHUNIV_582
IMITFGGVML
4118







DHUNIV_583
MITFGGVMLI
4119







DHUNIV_584
ITFGGVMLIP
4120







DHUNIV_585
IMITFGGVM
4121







DHUNIV_586
MITFGGVML
4122







DHUNIV_587
ITFGGVMLI
4123







DHUNIV_588
TFGGVMLIP
4124







DHUNIV_589
IMITFGGV
4125







DHUNIV_590
MITFGGVM
4126







DHUNIV_591
ITFGGVML
4127







DHUNIV_592
TFGGVMLI
4128







DHUNIV_593
FGGVMLIP
4129







DHUNIV_594
IMITFGG
4130







DHUNIV_595
MITFGGV
4131







DHUNIV_596
ITFGGVM
4132







DHUNIV_597
TFGGVML
4133







DHUNIV_598
FGGVMLI
4134







DHUNIV_599
GGVMLIP
4135







DHUNIV_600
IMITFG
4136







DHUNIV_601
MITFGG
4137







DHUNIV_602
ITFGGV
4138







DHUNIV_603
TFGGVM
4139







DHUNIV_604
FGGVML
4140







DHUNIV_605
GGVMLI
4141







DHUNIV_606
GVMLIP
4142







DHUNIV_607
IMITF
4143







DHUNIV_608
MITFG
4144







DHUNIV_609
ITFGG
4145







DHUNIV_610
TFGGV
4146







DHUNIV_611
FGGVM
4147







DHUNIV_612
GGVML
4148







DHUNIV_613
GVMLI
4149







DHUNIV_614
VMLIP
4150







DHUNIV_615
IMIT
4151







DHUNIV_616
MITF
4152







DHUNIV_617
ITFG
4153







DHUNIV_618
TFGG
4154







DHUNIV_619
FGGV
4155







DHUNIV_620
GGVM
4156







DHUNIV_621
GVML
4157







DHUNIV_622
VMLI
4158







DHUNIV_623
MLIP
4159







DHUNIV_624
IMI
n/a







DHUNIV_625
MIT
n/a







DHUNIV_626
ITF
n/a







DHUNIV_627
TFG
n/a







DHUNIV_628
FGG
n/a







DHUNIV_629
GGV
n/a







DHUNIV_630
GVM
n/a







DHUNIV_631
VML
n/a







DHUNIV_632
MLI
n/a







DHUNIV_633
LIP
n/a







DHUNIV_634
IM
n/a







DHUNIV_635
MI
n/a







DHUNIV_636
TF
n/a







DHUNIV_637
VM
n/a







DHUNIV_638
LI
n/a







DHUNIV_639
WLLL
4160







DHUNIV_640
WLL
n/a







DHUNIV_641
WL
n/a







DHUNIV_642
YYYDSSGYYY
4161







DHUNIV_643
YYYDSSGYY
4162







DHUNIV_644
YYDSSGYYY
4163







DHUNIV_645
YYYDSSGY
4164







DHUNIV_646
YYDSSGYY
4165







DHUNIV_647
YDSSGYYY
4166







DHUNIV_648
YYYDSSG
4167







DHUNIV_649
YYDSSGY
4168







DHUNIV_650
YDSSGYY
4169







DHUNIV_651
DSSGYYY
4170







DHUNIV_652
YYYDSS
4171







DHUNIV_653
YYDSSG
4172







DHUNIV_654
YDSSGY
4173







DHUNIV_655
DSSGYY
4174







DHUNIV_656
SSGYYY
4175







DHUNIV_657
YYYDS
4176







DHUNIV_658
YYDSS
4177







DHUNIV_659
YDSSG
4178







DHUNIV_660
DSSGY
4179







DHUNIV_661
SSGYY
4180







DHUNIV_662
SGYYY
4181







DHUNIV_663
YYYD
4182







DHUNIV_664
YYDS
4183







DHUNIV_665
YDSS
4184







DHUNIV_666
DSSG
4185







DHUNIV_667
SSGY
4186







DHUNIV_668
SGYY
4187







DHUNIV_669
GYYY
4188







DHUNIV_670
YDS
n/a







DHUNIV_671
DSS
n/a







DHUNIV_672
SSG
n/a







DHUNIV_673
SGY
n/a







DHUNIV_674
GYY
n/a







DHUNIV_675
DS
n/a







DHUNIV_676
ITMIVVVITT
4189







DHUNIV_677
ITMIVVVIT
4190







DHUNIV_678
TMIVVVITT
4191







DHUNIV_679
ITMIVVVI
4192







DHUNIV_680
TMIVVVIT
4193







DHUNIV_681
MIVVVITT
4194







DHUNIV_682
ITMIVVV
4195







DHUNIV_683
TMIVVVI
4196







DHUNIV_684
MIVVVIT
4197







DHUNIV_685
IVVVITT
4198







DHUNIV_686
ITMIVV
4199







DHUNIV_687
TMIVVV
4200







DHUNIV_688
MIVVVI
4201







DHUNIV_689
IVVVIT
4202







DHUNIV_690
VVVITT
4203







DHUNIV_691
ITMIV
4204







DHUNIV_692
TMIVV
4205







DHUNIV_693
MIVVV
4206







DHUNIV_694
VVVIT
4207







DHUNIV_695
VVITT
4208







DHUNIV_696
ITMI
4209







DHUNIV_697
TMIV
4210







DHUNIV_698
MIVV
4211







DHUNIV_699
VVIT
4212







DHUNIV_700
VITT
4213







DHUNIV_701
TMI
n/a







DHUNIV_702
MIV
n/a







DHUNIV_703
VIT
n/a







DHUNIV_704
ITT
n/a







DHUNIV_705
VLRFLEWLLY
4214







DHUNIV_706
VLRFLEWLL
4215







DHUNIV_707
LRFLEWLLY
4216







DHUNIV_708
VLRFLEWL
4217







DHUNIV_709
LRFLEWLL
4218







DHUNIV_710
RFLEWLLY
4219







DHUNIV_711
VLRFLEW
4220







DHUNIV_712
LRFLEWL
4221







DHUNIV_713
RFLEWLL
4222







DHUNIV_714
FLEWLLY
4223







DHUNIV_715
VLRFLE
4224







DHUNIV_716
LRFLEW
4225







DHUNIV_717
RFLEWL
4226







DHUNIV_718
FLEWLL
4227







DHUNIV_719
LEWLLY
4228







DHUNIV_720
VLRFL
4229







DHUNIV_721
LRFLE
4230







DHUNIV_722
RFLEW
4231







DHUNIV_723
FLEWL
4232







DHUNIV_724
LEWLL
4233







DHUNIV_725
EWLLY
4234







DHUNIV_726
VLRF
4235







DHUNIV_727
LRFL
4236







DHUNIV_728
RFLE
4237







DHUNIV_729
FLEW
4238







DHUNIV_730
LEWL
4239







DHUNIV_731
EWLL
4240







DHUNIV_732
WLLY
4241







DHUNIV_733
VLR
n/a







DHUNIV_734
LRF
n/a







DHUNIV_735
RFL
n/a







DHUNIV_736
FLE
n/a







DHUNIV_737
LEW
n/a







DHUNIV_738
EWL
n/a







DHUNIV_739
RF
n/a







DHUNIV_740
FL
n/a







DHUNIV_741
EW
n/a







DHUNIV_742
YYDFWSGYYT
4242







DHUNIV_743
YYDFWSGYY
4243







DHUNIV_744
YDFWSGYYT
4244







DHUNIV_745
YYDFWSGY
4245







DHUNIV_746
YDFWSGYY
4246







DHUNIV_747
DFWSGYYT
4247







DHUNIV_748
YYDFWSG
4248







DHUNIV_749
YDFWSGY
4249







DHUNIV_750
DFWSGYY
4250







DHUNIV_751
FWSGYYT
4251







DHUNIV_752
YYDFWS
4252







DHUNIV_753
YDFWSG
4253







DHUNIV_754
DFWSGY
4254







DHUNIV_755
FWSGYY
4255







DHUNIV_756
WSGYYT
4256







DHUNIV_757
YYDFW
4257







DHUNIV_758
YDFWS
4258







DHUNIV_759
DFWSG
4259







DHUNIV_760
FWSGY
4260







DHUNIV_761
WSGYY
4261







DHUNIV_762
SGYYT
4262







DHUNIV_763
YYDF
4263







DHUNIV_764
YDFW
4264







DHUNIV_765
DFWS
4265







DHUNIV_766
FWSG
4266







DHUNIV_767
WSGY
4267







DHUNIV_768
GYYT
4268







DHUNIV_769
YDF
n/a







DHUNIV_770
DFW
n/a







DHUNIV_771
FWS
n/a







DHUNIV_772
WSG
n/a







DHUNIV_773
YYT
n/a







DHUNIV_774
DF
n/a







DHUNIV_775
FW
n/a







DHUNIV_776
WS
n/a







DHUNIV_777
ITIFGVVIIP
4269







DHUNIV_778
ITIFGVVII
4270







DHUNIV_779
TIFGVVIIP
4271







DHUNIV_780
ITIFGVVI
4272







DHUNIV_781
TIFGVVII
4273







DHUNIV_782
IFGVVIIP
4274







DHUNIV_783
ITIFGVV
4275







DHUNIV_784
TIFGVVI
4276







DHUNIV_785
IFGVVII
4277







DHUNIV_786
FGVVIIP
4278







DHUNIV_787
ITIFGV
4279







DHUNIV_788
TIFGVV
4280







DHUNIV_789
IFGVVI
4281







DHUNIV_790
FGVVII
4282







DHUNIV_791
GVVIIP
4283







DHUNIV_792
ITIFG
4284







DHUNIV_793
TIFGV
4285







DHUNIV_794
IFGVV
4286







DHUNIV_795
FGVVI
4287







DHUNIV_796
GVVII
4288







DHUNIV_797
VVIIP
4289







DHUNIV_798
ITIF
4290







DHUNIV_799
TIFG
4291







DHUNIV_800
IFGV
4292







DHUNIV_801
FGVV
4293







DHUNIV_802
GVVI
4294







DHUNIV_803
VVII
4295







DHUNIV_804
VIIP
4296







DHUNIV_805
ITI
n/a







DHUNIV_806
TIF
n/a







DHUNIV_807
IFG
n/a







DHUNIV_808
FGV
n/a







DHUNIV_809
GVV
n/a







DHUNIV_810
IIP
n/a







DHUNIV_811
TI
n/a







DHUNIV_812
IF
n/a







DHUNIV_813
VLRYFDWLL
4297







DHUNIV_814
VLRYFDWL
4298







DHUNIV_815
LRYFDWLL
4299







DHUNIV_816
VLRYFDW
4300







DHUNIV_817
LRYFDWL
4301







DHUNIV_818
RYFDWLL
4302







DHUNIV_819
VLRYFD
4303







DHUNIV_820
LRYFDW
4304







DHUNIV_821
RYFDWL
4305







DHUNIV_822
YFDWLL
4306







DHUNIV_823
VLRYF
4307







DHUNIV_824
LRYFD
4308







DHUNIV_825
RYFDW
4309







DHUNIV_826
YFDWL
4310







DHUNIV_827
FDWLL
4311







DHUNIV_828
VLRY
4312







DHUNIV_829
LRYF
4313







DHUNIV_830
RYFD
4314







DHUNIV_831
YFDW
4315







DHUNIV_832
FDWL
4316







DHUNIV_833
DWLL
4317







DHUNIV_834
LRY
n/a







DHUNIV_835
RYF
n/a







DHUNIV_836
YFD
n/a







DHUNIV_837
FDW
n/a







DHUNIV_838
DWL
n/a







DHUNIV_839
RY
n/a







DHUNIV_840
YF
n/a







DHUNIV_841
FD
n/a







DHUNIV_842
DW
n/a







DHUNIV_843
YYDILTGYYN
4318







DHUNIV_844
YYDILTGYY
4319







DHUNIV_845
YDILTGYYN
4320







DHUNIV_846
YYDILTGY
4321







DHUNIV_847
YDILTGYY
4322







DHUNIV_848
DILTGYYN
4323







DHUNIV_849
YYDILTG
4324







DHUNIV_850
YDILTGY
4325







DHUNIV_851
DILTGYY
4326







DHUNIV_852
ILTGYYN
4327







DHUNIV_853
YYDILT
4328







DHUNIV_854
YDILTG
4329







DHUNIV_855
DILTGY
4330







DHUNIV_856
ILTGYY
4331







DHUNIV_857
LTGYYN
4332







DHUNIV_858
YYDIL
4333







DHUNIV_859
YDILT
4334







DHUNIV_860
DILTG
4335







DHUNIV_861
ILTGY
4336







DHUNIV_862
LTGYY
4337







DHUNIV_863
TGYYN
4338







DHUNIV_864
YYDI
4339







DHUNIV_865
YDIL
4340







DHUNIV_866
DILT
4341







DHUNIV_867
ILTG
4342







DHUNIV_868
LTGY
4343







DHUNIV_869
TGYY
4344







DHUNIV_870
GYYN
4345







DHUNIV_871
YDI
n/a







DHUNIV_872
DIL
n/a







DHUNIV_873
ILT
n/a







DHUNIV_874
LTG
n/a







DHUNIV_875
TGY
n/a







DHUNIV_876
LT
n/a







DHUNIV_877
LVIIT
4346







DHUNIV_878
LVII
4347







DHUNIV_879
LVI
n/a







DHUNIV_880
LV
n/a







DHUNIV_881
DYGDY
4348







DHUNIV_882
DYGD
4349







DHUNIV_883
YGDY
4350







DHUNIV_884
DYG
n/a







DHUNIV_885
YGD
n/a







DHUNIV_886
GDY
n/a







DHUNIV_887
TTVTT
4351







DHUNIV_888
TTVT
4352







DHUNIV_889
TVTT
4353







DHUNIV_890
TTV
n/a







DHUNIV_891
TVT
n/a







DHUNIV_892
VTT
n/a







DHUNIV_893
TV
n/a







DHUNIV_894
LRW
n/a







DHUNIV_895
RW
n/a







DHUNIV_896
DYGGNS
4354







DHUNIV_897
DYGGN
4355







DHUNIV_898
YGGNS
4356







DHUNIV_899
DYGG
4357







DHUNIV_900
YGGN
4358







DHUNIV_901
GGNS
4359







DHUNIV_902
YGG
n/a







DHUNIV_903
GGN
n/a







DHUNIV_904
GNS
n/a







DHUNIV_905
GN
n/a







DHUNIV_906
NS
n/a







DHUNIV_907
TTVVTP
4360







DHUNIV_908
TTVVT
4361







DHUNIV_909
TVVTP
4362







DHUNIV_910
TTVV
4363







DHUNIV_911
TVVT
4364







DHUNIV_912
VVTP
4365







DHUNIV_913
TVV
n/a







DHUNIV_914
VTP
n/a







DHUNIV_915
LQ
n/a







DHUNIV_916
DYSNY
4366







DHUNIV_917
DYSN
4367







DHUNIV_918
YSNY
4368







DHUNIV_919
DYS
n/a







DHUNIV_920
YSN
n/a







DHUNIV_921
SNY
n/a







DHUNIV_922
SN
n/a







DHUNIV_923
VDIVATIT
4369







DHUNIV_924
VDIVATI
4370







DHUNIV_925
DIVATIT
4371







DHUNIV_926
VDIVAT
4372







DHUNIV_927
DIVATI
4373







DHUNIV_928
IVATIT
4374







DHUNIV_929
VDIVA
4375







DHUNIV_930
DIVAT
4376







DHUNIV_931
IVATI
4377







DHUNIV_932
VATIT
4378







DHUNIV_933
VDIV
4379







DHUNIV_934
DIVA
4380







DHUNIV_935
IVAT
4381







DHUNIV_936
VATI
4382







DHUNIV_937
ATIT
4383







DHUNIV_938
VDI
n/a







DHUNIV_939
IVA
n/a







DHUNIV_940
VAT
n/a







DHUNIV_941
ATI
n/a







DHUNIV_942
TIT
n/a







DHUNIV_943
VD
n/a







DHUNIV_944
WLRL
4384







DHUNIV_945
WLR
n/a







DHUNIV_946
GYSGYDY
4385







DHUNIV_947
GYSGYD
4386







DHUNIV_948
YSGYDY
4387







DHUNIV_949
GYSGY
4388







DHUNIV_950
YSGYD
4389







DHUNIV_951
SGYDY
4390







DHUNIV_952
GYSG
4391







DHUNIV_953
YSGY
4392







DHUNIV_954
SGYD
4393







DHUNIV_955
GYDY
4394







DHUNIV_956
GYS
n/a







DHUNIV_957
GYD
n/a







DHUNIV_958
VEMATIT
4395







DHUNIV_959
VEMATI
4396







DHUNIV_960
EMATIT
4397







DHUNIV_961
VEMAT
4398







DHUNIV_962
EMATI
4399







DHUNIV_963
MATIT
4400







DHUNIV_964
VEMA
4401







DHUNIV_965
EMAT
4402







DHUNIV_966
MATI
4403







DHUNIV_967
VEM
n/a







DHUNIV_968
EMA
n/a







DHUNIV_969
MAT
n/a







DHUNIV_970
VE
n/a







DHUNIV_971
EM
n/a







DHUNIV_972
MA
n/a







DHUNIV_973
RWLQL
4404







DHUNIV_974
RWLQ
4405







DHUNIV_975
WLQL
4406







DHUNIV_976
RWL
n/a







DHUNIV_977
WLQ
n/a







DHUNIV_978
LQL
n/a







DHUNIV_979
RDGYNY
4407







DHUNIV_980
RDGYN
4408







DHUNIV_981
DGYNY
4409







DHUNIV_982
RDGY
4410







DHUNIV_983
DGYN
4411







DHUNIV_984
GYNY
4412







DHUNIV_985
RDG
n/a







DHUNIV_986
DGY
n/a







DHUNIV_987
GYN
n/a







DHUNIV_988
YNY
n/a







DHUNIV_989
RD
n/a







DHUNIV_990
DG
n/a







DHUNIV_991
VDTAMVT
4413







DHUNIV_992
VDTAMV
4414







DHUNIV_993
DTAMVT
4415







DHUNIV_994
VDTAM
4416







DHUNIV_995
DTAMV
4417







DHUNIV_996
TAMVT
4418







DHUNIV_997
VDTA
4419







DHUNIV_998
DTAM
4420







DHUNIV_999
TAMV
4421







DHUNIV_1000
AMVT
4422







DHUNIV_1001
VDT
n/a







DHUNIV_1002
DTA
n/a







DHUNIV_1003
TAM
n/a







DHUNIV_1004
AMV
n/a







DHUNIV_1005
MVT
n/a







DHUNIV_1006
DT
n/a







DHUNIV_1007
WIQLWL
4423







DHUNIV_1008
WIQLW
4424







DHUNIV_1009
IQLWL
4425







DHUNIV_1010
WIQL
4426







DHUNIV_1011
IQLW
4427







DHUNIV_1012
QLWL
4428







DHUNIV_1013
WIQ
n/a







DHUNIV_1014
IQL
n/a







DHUNIV_1015
QLW
n/a







DHUNIV_1016
LWL
n/a







DHUNIV_1017
IQ
n/a







DHUNIV_1018
GYSYGY
4429







DHUNIV_1019
GYSYG
4430







DHUNIV_1020
YSYGY
4431







DHUNIV_1021
GYSY
4432







DHUNIV_1022
YSYG
4433







DHUNIV_1023
SYGY
4434







DHUNIV_1024
YSY
n/a







DHUNIV_1025
SYG
n/a







DHUNIV_1026
YGY
n/a







DHUNIV_1027
GYSSSWY
4435







DHUNIV_1028
GYSSSW
4436







DHUNIV_1029
YSSSWY
4437







DHUNIV_1030
GYSSS
4438







DHUNIV_1031
YSSSW
4439







DHUNIV_1032
SSSWY
4440







DHUNIV_1033
GYSS
4441







DHUNIV_1034
YSSS
4442







DHUNIV_1035
SSSW
4443







DHUNIV_1036
SSWY
4444







DHUNIV_1037
YSS
n/a







DHUNIV_1038
SSS
n/a







DHUNIV_1039
SSW
n/a







DHUNIV_1040
SWY
n/a







DHUNIV_1041
SW
n/a







DHUNIV_1042
WY
n/a







DHUNIV_1043
GIAAAGT
4445







DHUNIV_1044
GIAAAG
4446







DHUNIV_1045
IAAAGT
4447







DHUNIV_1046
GIAAA
4448







DHUNIV_1047
IAAAG
4449







DHUNIV_1048
AAAGT
4450







DHUNIV_1049
GIAA
4451







DHUNIV_1050
IAAA
4452







DHUNIV_1051
AAAG
4453







DHUNIV_1052
AAGT
4454







DHUNIV_1053
GIA
n/a







DHUNIV_1054
IAA
n/a







DHUNIV_1055
AAA
n/a







DHUNIV_1056
AAG
n/a







DHUNIV_1057
AGT
n/a







DHUNIV_1058
AG
n/a







DHUNIV_1059
QQLV
4455







DHUNIV_1060
QQL
n/a







DHUNIV_1061
QLV
n/a







DHUNIV_1062
QQ
n/a







DHUNIV_1063
GYSSGWY
4456







DHUNIV_1064
GYSSGW
4457







DHUNIV_1065
YSSGWY
4458







DHUNIV_1066
GYSSG
4459







DHUNIV_1067
YSSGW
4460







DHUNIV_1068
SSGWY
4461







DHUNIV_1069
YSSG
4462







DHUNIV_1070
SSGW
4463







DHUNIV_1071
SGWY
4464







DHUNIV_1072
SGW
n/a







DHUNIV_1073
GWY
n/a







DHUNIV_1074
GW
n/a







DHUNIV_1075
GIAVAGT
4465







DHUNIV_1076
GIAVAG
4466







DHUNIV_1077
IAVAGT
4467







DHUNIV_1078
GIAVA
4468







DHUNIV_1079
IAVAG
4469







DHUNIV_1080
AVAGT
4470







DHUNIV_1081
GIAV
4471







DHUNIV_1082
IAVA
4472







DHUNIV_1083
AVAG
4473







DHUNIV_1084
VAGT
4474







DHUNIV_1085
IAV
n/a







DHUNIV_1086
AVA
n/a







DHUNIV_1087
VAG
n/a







DHUNIV_1088
AV
n/a







DHUNIV_1089
QWLV
4475







DHUNIV_1090
QWL
n/a







DHUNIV_1091
WLV
n/a







DHUNIV_1092
QW
n/a







DHUNIV_1093
EYSSSS
4476







DHUNIV_1094
EYSSS
4477







DHUNIV_1095
YSSSS
4478







DHUNIV_1096
EYSS
4479







DHUNIV_1097
SSSS
4480







DHUNIV_1098
EYS
n/a







DHUNIV_1099
EY
n/a







DHUNIV_1100
SIAARP
4481







DHUNIV_1101
SIAAR
4482







DHUNIV_1102
IAARP
4483







DHUNIV_1103
SIAA
4484







DHUNIV_1104
IAAR
4485







DHUNIV_1105
AARP
4486







DHUNIV_1106
SIA
n/a







DHUNIV_1107
AAR
n/a







DHUNIV_1108
ARP
n/a







DHUNIV_1109
AR
n/a







DHUNIV_1110
RP
n/a







DHUNIV_1111
NWG
n/a

















TABLE 12







Theoretical segment pool of 141 N2 segments in


Theoretical Segment Pool 1 (TSP1).









Segment Type
Sequences
Number












“Zero”
(no addition) V segment joins
1



directly to D segment






Monomers
G, P, R, A, S, L, T, V, D, E,
18



F, H, I, K, M, Q, W, Y






Dimers
GG, GP, GR, GA, GS, GL, GT,
82



GV, PG, RG, AG, SG, LG, TG,




VG, PP, PR, PA, PS, PL, PT,




PV, RP, AP, SP, LP, TP, VP,




AR, AS, AT, AY, DL, DT, EA,




EK, FH, FS, HL, HW, IS, KV,




LD, LE, LR, LS, LT, NR, NT,




QE, QL, QT, RA, RD, RE, RF,




RH, RL, RR, RS, RV, SA, SD,




SE, SF, SI, SK, SL, SQ, SR,




SS, ST, SV, TA, TR, TS, TT,




TW, VD, VS, WS, YS






Trimers
GGG, GPG, GRG, GAG, GSG, GLG,
40



GTG, GVG, PGG, RGG, AGG, SGG,




LGG, TGG, VGG, GGP, GGR, GGA,




GGS, GGL, GGT, GGV , AAE, AYH,




DTL, EKR, ISR, NTP, PKS, PRP,




PTA, PTQ, REL, RPL, SAA, SAL,




SGL, SSE, TGL, WGT
















TABLE 13







Theoretical segment pool of 285 H3-JH segments.











H3-JH





Segment
Amino Acid




Name
Sequence
SEQ ID NO






JHUNIV_001
TEYFQH
4487






JHUNIV_002
EYFQH
4488






JHUNIV_003
YFQH
4489






JHUNIV_004
FQH
n/a






JHUNIV_005
QH
n/a






JHUNIV_006
H
n/a






JHUNIV_007

n/a






JHUNIV_008
SEYFQH
4490






JHUNIV_009
PEYFQH
4491






JHUNIV_010
FEYFQH
4492






JHUNIV_011
HEYFQH
4493






JHUNIV_012
REYFQH
4494






JHUNIV_013
LEYFQH
4495






JHUNIV_014
NEYFQH
4496






JHUNIV_015
IEYFQH
4497






JHUNIV_016
DEYFQH
4498






JHUNIV_017
GEYFQH
4499






JHUNIV_018
VEYFQH
4500






JHUNIV_019
YEYFQH
4501






JHUNIV_020
KYFQH
4502






JHUNIV_021
QYFQH
4503






JHUNIV_022
LYFQH
4504






JHUNIV_023
SYFQH
4505






JHUNIV_024
RYFQH
4506






JHUNIV_025
PYFQH
4507






JHUNIV_026
IYFQH
4508






JHUNIV_027
TYFQH
4509






JHUNIV_028
GYFQH
4510






JHUNIV_029
VYFQH
4511






JHUNIV_030
AYFQH
4512






JHUNIV_031
NFQH
4513






JHUNIV_032
DFQH
4514






JHUNIV_033
HFQH
4515






JHUNIV_034
FFQH
4516






JHUNIV_035
SFQH
4517






JHUNIV_036
RFQH
4518






JHUNIV_037
LFQH
4519






JHUNIV_038
PFQH
4520






JHUNIV_039
IFQH
4521






JHUNIV_040
TFQH
4522






JHUNIV_041
GFQH
4523






JHUNIV_042
VFQH
4524






JHUNIV_043
AFQH
4525






JHUNIV_044
AEYFQH
4526






JHUNIV_045
YWYFDL
4527






JHUNIV_046
WYFDL
4528






JHUNIV_047
YFDL
4529






JHUNIV_048
FDL
n/a






JHUNIV_049
DL
n/a






JHUNIV_050
L
n/a






JHUNIV_051
DWYFDL
4530






JHUNIV_052
HWYFDL
4531






JHUNIV_053
NWYFDL
4532






JHUNIV_054
GYFDL
4533






JHUNIV_055
RYFDL
4534






JHUNIV_056
HFDL
4535






JHUNIV_057
NFDL
4536






JHUNIV_058
DFDL
4537






JHUNIV_059
DAFDI
4538






JHUNIV_060
AFDI
4539






JHUNIV_061
FDI
n/a






JHUNIV_062
DI
n/a






JHUNIV_063
I
n/a






JHUNIV_064
YAFDI
4540






JHUNIV_065
HAFDI
4541






JHUNIV_066
FAFDI
4542






JHUNIV_067
SAFDI
4543






JHUNIV_068
RAFDI
4544






JHUNIV_069
LAFDI
4545






JHUNIV_070
PAFDI
4546






JHUNIV_071
IAFDI
4547






JHUNIV_072
TAFDI
4548






JHUNIV_073
GAFDI
4549






JHUNIV_074
VAFDI
4550






JHUNIV_075
AAFDI
4551






JHUNIV_076
TFDI
4552






JHUNIV_077
SFDI
4553






JHUNIV_078
PFDI
4554






JHUNIV_079
FFDI
4555






JHUNIV_080
HFDI
4556






JHUNIV_081
RFDI
4557






JHUNIV_082
LFDI
4558






JHUNIV_083
NFDI
4559






JHUNIV_084
IFDI
4560






JHUNIV_085
DFDI
4561






JHUNIV_086
GFDI
4562






JHUNIV_087
VFDI
4563






JHUNIV_088
YFDI
4564






JHUNIV_089
IDI
n/a






JHUNIV_090
VDI
n/a






JHUNIV_091
LDI
n/a






JHUNIV_092
SDI
n/a






JHUNIV_093
HDI
n/a






JHUNIV_094
RDI
n/a






JHUNIV_095
PDI
n/a






JHUNIV_096
NDI
n/a






JHUNIV_097
TDI
n/a






JHUNIV_098
DDI
n/a






JHUNIV_099
GDI
n/a






JHUNIV_100
ADI
n/a






JHUNIV_101
YDI
n/a






JHUNIV_102
NAFDI
4565






JHUNIV_103
DYFDY
4566






JHUNIV_104
YFDY
4567






JHUNIV_105
FDY
n/a






JHUNIV_106
DY
n/a






JHUNIV_107
Y
n/a






JHUNIV_108
YYFDY
4568






JHUNIV_109
HYFDY
4569






JHUNIV_110
FYFDY
4570






JHUNIV_111
SYFDY
4571






JHUNIV_112
RYFDY
4572






JHUNIV_113
LYFDY
4573






JHUNIV_114
PYFDY
4574






JHUNIV_115
IYFDY
4575






JHUNIV_116
TYFDY
4576






JHUNIV_117
GYFDY
4577






JHUNIV_118
VYFDY
4578






JHUNIV_119
AYFDY
4579






JHUNIV_120
NFDY
4580






JHUNIV_121
DFDY
4581






JHUNIV_122
HFDY
4582






JHUNIV_123
FFDY
4583






JHUNIV_124
SFDY
4584






JHUNIV_125
RFDY
4585






JHUNIV_126
LFDY
4586






JHUNIV_127
PFDY
4587






JHUNIV_128
IFDY
4588






JHUNIV_129
TFDY
4589






JHUNIV_130
GFDY
4590






JHUNIV_131
VFDY
4591






JHUNIV_132
AFDY
4592






JHUNIV_133
IDY
n/a






JHUNIV_134
VDY
n/a






JHUNIV_135
LDY
n/a






JHUNIV_136
SDY
n/a






JHUNIV_137
HDY
n/a






JHUNIV_138
RDY
n/a






JHUNIV_139
PDY
n/a






JHUNIV_140
NDY
n/a






JHUNIV_141
TDY
n/a






JHUNIV_142
DDY
n/a






JHUNIV_143
GDY
n/a






JHUNIV_144
ADY
n/a






JHUNIV_145
YDY
n/a






JHUNIV_146
NYFDY
4593






JHUNIV_147
DNWFDP
4594






JHUNIV_148
NWFDP
4595






JHUNIV_149
WFDP
4596






JHUNIV_150
FDP
n/a






JHUNIV_151
DP
n/a






JHUNIV_152
P
n/a






JHUNIV_153
YNWFDP
4597






JHUNIV_154
HNWFDP
4598






JHUNIV_155
FNWFDP
4599






JHUNIV_156
SNWFDP
4600






JHUNIV_157
RNWFDP
4601






JHUNIV_158
LNWFDP
4602






JHUNIV_159
PNWFDP
4603






JHUNIV_160
INWFDP
4604






JHUNIV_161
TNWFDP
4605






JHUNIV_162
GNWFDP
4606






JHUNIV_163
VNWFDP
4607






JHUNIV_164
ANWFDP
4608






JHUNIV_165
DWFDP
4609






JHUNIV_166
YWFDP
4610






JHUNIV_167
HWFDP
4611






JHUNIV_168
FWFDP
4612






JHUNIV_169
SWFDP
4613






JHUNIV_170
RWFDP
4614






JHUNIV_171
LWFDP
4615






JHUNIV_172
PWFDP
4616






JHUNIV_173
IWFDP
4617






JHUNIV_174
TWFDP
4618






JHUNIV_175
GWFDP
4619






JHUNIV_176
VWFDP
4620






JHUNIV_177
AWFDP
4621






JHUNIV_178
RFDP
4622






JHUNIV_179
GFDP
4623






JHUNIV_180
LFDP
4624






JHUNIV_181
SFDP
4625






JHUNIV_182
QFDP
4626






JHUNIV_183
PFDP
4627






JHUNIV_184
KFDP
4628






JHUNIV_185
MFDP
4629






JHUNIV_186
TFDP
4630






JHUNIV_187
EFDP
4631






JHUNIV_188
VFDP
4632






JHUNIV_189
AFDP
4633






JHUNIV_190
NNWFDP
4634






JHUNIV_191
DYYYYYGMDV
4635






JHUNIV_192
YYYYYGMDV
4636






JHUNIV_193
YYYYGMDV
4637






JHUNIV_194
YYYGMDV
4638






JHUNIV_195
YYGMDV
4639






JHUNIV_196
YGMDV
4640






JHUNIV_197
GMDV
4641






JHUNIV_198
MDV
n/a






JHUNIV_199
DV
n/a






JHUNIV_200
V
n/a






JHUNIV_201
YYYYYYGMDV
4642






JHUNIV_202
HYYYYYGMDV
4643






JHUNIV_203
FYYYYYGMDV
4644






JHUNIV_204
SYYYYYGMDV
4645






JHUNIV_205
RYYYYYGMDV
4646






JHUNIV_206
LYYYYYGMDV
4647






JHUNIV_207
PYYYYYGMDV
4648






JHUNIV_208
IYYYYYGMDV
4649






JHUNIV_209
TYYYYYGMDV
4650






JHUNIV_210
GYYYYYGMDV
4651






JHUNIV_211
VYYYYYGMDV
4652






JHUNIV_212
AYYYYYGMDV
4653






JHUNIV_213
NYYYYGMDV
4654






JHUNIV_214
DYYYYGMDV
4655






JHUNIV_215
HYYYYGMDV
4656






JHUNIV_216
FYYYYGMDV
4657






JHUNIV_217
SYYYYGMDV
4658






JHUNIV_218
RYYYYGMDV
4659






JHUNIV_219
LYYYYGMDV
4660






JHUNIV_220
PYYYYGMDV
4661






JHUNIV_221
IYYYYGMDV
4662






JHUNIV_222
TYYYYGMDV
4663






JHUNIV_223
GYYYYGMDV
4664






JHUNIV_224
VYYYYGMDV
4665






JHUNIV_225
AYYYYGMDV
4666






JHUNIV_226
NYYYGMDV
4667






JHUNIV_227
DYYYGMDV
4668






JHUNIV_228
HYYYGMDV
4669






JHUNIV_229
FYYYGMDV
4670






JHUNIV_230
SYYYGMDV
4671






JHUNIV_231
RYYYGMDV
4672






JHUNIV_232
LYYYGMDV
4673






JHUNIV_233
PYYYGMDV
4674






JHUNIV_234
IYYYGMDV
4675






JHUNIV_235
TYYYGMDV
4676






JHUNIV_236
GYYYGMDV
4677






JHUNIV_237
VYYYGMDV
4678






JHUNIV_238
AYYYGMDV
4679






JHUNIV_239
NYYYYYGMDV
4680






JHUNIV_240
DYYYYYYMDV
4681






JHUNIV_241
YYYYYYMDV
4682






JHUNIV_242
YYYYYMDV
4683






JHUNIV_243
YYYYMDV
4684






JHUNIV_244
YYYMDV
4685






JHUNIV_245
YYMDV
4686






JHUNIV_246
YMDV
4687






JHUNIV_247
YYYYYYYMDV
4688






JHUNIV_248
HYYYYYYMDV
4689






JHUNIV_249
FYYYYYYMDV
4690






JHUNIV_250
SYYYYYYMDV
4691






JHUNIV_251
RYYYYYYMDV
4692






JHUNIV_252
LYYYYYYMDV
4693






JHUNIV_253
PYYYYYYMDV
4694






JHUNIV_254
IYYYYYYMDV
4695






JHUNIV_255
TYYYYYYMDV
4696






JHUNIV_256
GYYYYYYMDV
4697






JHUNIV_257
VYYYYYYMDV
4698






JHUNIV_258
AYYYYYYMDV
4699






JHUNIV_259
NYYYYYMDV
4700






JHUNIV_260
DYYYYYMDV
4701






JHUNIV_261
HYYYYYMDV
4702






JHUNIV_262
FYYYYYMDV
4703






JHUNIV_263
SYYYYYMDV
4704






JHUNIV_264
RYYYYYMDV
4705






JHUNIV_265
LYYYYYMDV
4706






JHUNIV_266
PYYYYYMDV
4707






JHUNIV_267
IYYYYYMDV
4708






JHUNIV_268
TYYYYYMDV
4709






JHUNIV_269
GYYYYYMDV
4710






JHUNIV_270
VYYYYYMDV
4711






JHUNIV_271
AYYYYYMDV
4712






JHUNIV_272
NYYYYMDV
4713






JHUNIV_273
DYYYYMDV
4714






JHUNIV_274
HYYYYMDV
4715






JHUNIV_275
FYYYYMDV
4716






JHUNIV_276
SYYYYMDV
4717






JHUNIV_277
RYYYYMDV
4718






JHUNIV_278
LYYYYMDV
4719






JHUNIV_279
PYYYYMDV
4720






JHUNIV_280
IYYYYMDV
4721






JHUNIV_281
TYYYYMDV
4722






JHUNIV_282
GYYYYMDV
4723






JHUNIV_283
VYYYYMDV
4724






JHUNIV_284
AYYYYMDV
4725






JHUNIV_285
NYYYYYYMDV
4726
















TABLE 14







Twelve germline IGHJ genes and alleles.









IGHJ Gene
DNA Sequence
SEQ ID NO





IGHJ1-01
GCTGAATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCAG
4727





IGHJ2-01
CTACTGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTCTCCTCAG
4728





IGHJ3-01
ATGCTTTTGATGTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAG
4729





IGHJ3-02
ATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAG
4730





IGHJ4-01
ACTACTTTGACTACTGGGGCCAAGGAACCCTGGTCACCGTCTCCTCAG
4731





IGHJ4-02
ACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG
4732





IGHJ4-03
GCTACTTTGACTACTGGGGCCAAGGGACCCTGGTCACCGTCTCCTCAG
4733





IGHJ5-01
ACAACTGGTTCGACTCCTGGGGCCAAGGAACCCTGGTCACCGTCTCCTCAG
4734





IGHJ5-02
ACAACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG
4735





IGHJ6-01
ATTACTACTACTACTACGGTATGGACGTCTGGGGGCAAGGGACCACGGTCACCGTCT
4736



CCTCAG






IGHJ6-02
ATTACTACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCT
4737



CCTCAG






IGHJ6-03
ATTACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACGGTCACCGTCT
4738



CCTCAG
















TABLE 15







Theoretical segment pool of 248 parent


H3-JH segments.











H3-JH





Parent





Segment
Amino Acid




Name
Sequence
SEQ ID NO






JHparent001
ADI
n/a






JHparent002
ADY
n/a






JHparent003
DDI
n/a






JHparent004
DDY
n/a






JHparent005
GDI
n/a






JHparent006
GDY
n/a






JHparent007
HDI
n/a






JHparent008
HDY
n/a






JHparent009
IDI
n/a






JHparent010
IDY
n/a






JHparent011
LDI
n/a






JHparent012
LDY
n/a






JHparent013
NDI
n/a






JHparent014
NDY
n/a






JHparent015
PDI
n/a






JHparent016
PDY
n/a






JHparent017
RDI
n/a






JHparent018
RDY
n/a






JHparent019
SDI
n/a






JHparent020
SDY
n/a






JHparent021
TDI
n/a






JHparent022
TDY
n/a






JHparent023
VDI
n/a






JHparent024
VDY
n/a






JHparent025
YDI
n/a






JHparent026
YDY
n/a






JHparent027
AFDP
4633






JHparent028
AFDY
4592






JHparent029
AFQH
4525






JHparent030
DFDI
4561






JHparent031
DFDL
4537






JHparent032
DFDY
4581






JHparent033
DFQH
4514






JHparent034
EFDP
4631






JHparent035
FFDI
4555






JHparent036
FFDY
4583






JHparent037
FFQH
4516






JHparent038
GFDI
4562






JHparent039
GFDP
4623






JHparent040
GFDY
4590






JHparent041
GFQH
4523






JHparent042
HFDI
4556






JHparent043
HFDL
4535






JHparent044
HFDY
4582






JHparent045
HFQH
4515






JHparent046
IFDI
4560






JHparent047
IFDY
4588






JHparent048
IFQH
4521






JHparent049
KFDP
4628






JHparent050
LFDI
4558






JHparent051
LFDP
4624






JHparent052
LFDY
4586






JHparent053
LFQH
4519






JHparent054
MFDP
4629






JHparent055
NFDI
4559






JHparent056
NFDL
4536






JHparent057
NFDY
4580






JHparent058
NFQH
4513






JHparent059
PFDI
4554






JHparent060
PFDP
4627






JHparent061
PFDY
4587






JHparent062
PFQH
4520






JHparent063
QFDP
4626






JHparent064
RFDI
4557






JHparent065
RFDP
4622






JHparent066
RFDY
4585






JHparent067
RFQH
4518






JHparent068
SFDI
4553






JHparent069
SFDP
4625






JHparent070
SFDY
4584






JHparent071
SFQH
4517






JHparent072
TFDI
4552






JHparent073
TFDP
4630






JHparent074
TFDY
4589






JHparent075
TFQH
4522






JHparent076
VFDI
4563






JHparent077
VFDP
4632






JHparent078
VFDY
4591






JHparent079
VFQH
4524






JHparent080
YFDI
4564






JHparent081
YFDL
4529






JHparent082
AAFDI
4551






JHparent083
AWFDP
4621






JHparent084
AYFDY
4579






JHparent085
AYFQH
4512






JHparent086
DAFDI
4538






JHparent087
DWFDP
4609






JHparent088
DYFDY
4566






JHparent089
FAFDI
4542






JHparent090
FWFDP
4612






JHparent091
FYFDY
4570






JHparent092
GAFDI
4549






JHparent093
GWFDP
4619






JHparent094
GYFDL
4533






JHparent095
GYFDY
4577






JHparent096
GYFQH
4510






JHparent097
HAFDI
4541






JHparent098
HWFDP
4611






JHparent099
HYFDY
4569






JHparent100
IAFDI
4547






JHparent101
IWFDP
4617






JHparent102
IYFDY
4575






JHparent103
IYFQH
4508






JHparent104
KYFQH
4502






JHparent105
LAFDI
4545






JHparent106
LWFDP
4615






JHparent107
LYFDY
4573






JHparent108
LYFQH
4504






JHparent109
NAFDI
4565






JHparent110
NYFDY
4593






JHparent111
PAFDI
4546






JHparent112
PWFDP
4616






JHparent113
PYFDY
4574






JHparent114
PYFQH
4507






JHparent115
QYFQH
4503






JHparent116
RAFDI
4544






JHparent117
RWFDP
4614






JHparent118
RYFDL
4534






JHparent119
RYFDY
4572






JHparent120
RYFQH
4506






JHparent121
SAFDI
4543






JHparent122
SWFDP
4613






JHparent123
SYFDY
4571






JHparent124
SYFQH
4505






JHparent125
TAFDI
4548






JHparent126
TWFDP
4618






JHparent127
TYFDY
4576






JHparent128
TYFQH
4509






JHparent129
VAFDI
4550






JHparent130
VWFDP
4620






JHparent131
VYFDY
4578






JHparent132
VYFQH
4511






JHparent133
WYFDL
4528






JHparent134
YAFDI
4540






JHparent135
YWFDP
4610






JHparent136
YYFDY
4568






JHparent137
AEYFQH
4526






JHparent138
ANWFDP
4608






JHparent139
DEYFQH
4498






JHparent140
DNWFDP
4594






JHparent141
DWYFDL
4530






JHparent142
FEYFQH
4492






JHparent143
FNWFDP
4599






JHparent144
GEYFQH
4499






JHparent145
GNWFDP
4606






JHparent146
HEYFQH
4493






JHparent147
HNWFDP
4598






JHparent148
HWYFDL
4531






JHparent149
IEYFQH
4497






JHparent150
INWFDP
4604






JHparent151
LEYFQH
4495






JHparent152
LNWFDP
4602






JHparent153
NEYFQH
4496






JHparent154
NNWFDP
4634






JHparent155
NWYFDL
4532






JHparent156
PEYFQH
4491






JHparent157
PNWFDP
4603






JHparent158
REYFQH
4494






JHparent159
RNWFDP
4601






JHparent160
SEYFQH
4490






JHparent161
SNWFDP
4600






JHparent162
TEYFQH
4487






JHparent163
TNWFDP
4605






JHparent164
VEYFQH
4500






JHparent165
VNWFDP
4607






JHparent166
YEYFQH
4501






JHparent167
YNWFDP
4597






JHparent168
YWYFDL
4527






JHparent169
AYYYGMDV
4679






JHparent170
AYYYYMDV
4725






JHparent171
DYYYGMDV
4668






JHparent172
DYYYYMDV
4714






JHparent173
FYYYGMDV
4670






JHparent174
FYYYYMDV
4716






JHparent175
GYYYGMDV
4677






JHparent176
GYYYYMDV
4723






JHparent177
HYYYGMDV
4669






JHparent178
HYYYYMDV
4715






JHparent179
IYYYGMDV
4675






JHparent180
IYYYYMDV
4721






JHparent181
LYYYGMDV
4673






JHparent182
LYYYYMDV
4719






JHparent183
NYYYGMDV
4667






JHparent184
NYYYYMDV
4713






JHparent185
PYYYGMDV
4674






JHparent186
PYYYYMDV
4720






JHparent187
RYYYGMDV
4672






JHparent188
RYYYYMDV
4718






JHparent189
SYYYGMDV
4671






JHparent190
SYYYYMDV
4717






JHparent191
TYYYGMDV
4676






JHparent192
TYYYYMDV
4722






JHparent193
VYYYGMDV
4678






JHparent194
VYYYYMDV
4724






JHparent195
AYYYYGMDV
4666






JHparent196
AYYYYYMDV
4712






JHparent197
DYYYYGMDV
4655






JHparent198
DYYYYYMDV
4701






JHparent199
FYYYYGMDV
4657






JHparent200
FYYYYYMDV
4703






JHparent201
GYYYYGMDV
4664






JHparent202
GYYYYYMDV
4710






JHparent203
HYYYYGMDV
4656






JHparent204
HYYYYYMDV
4702






JHparent205
IYYYYGMDV
4662






JHparent206
IYYYYYMDV
4708






JHparent207
LYYYYGMDV
4660






JHparent208
LYYYYYMDV
4706






JHparent209
NYYYYGMDV
4654






JHparent210
NYYYYYMDV
4700






JHparent211
PYYYYGMDV
4661






JHparent212
PYYYYYMDV
4707






JHparent213
RYYYYGMDV
4659






JHparent214
RYYYYYMDV
4705






JHparent215
SYYYYGMDV
4658






JHparent216
SYYYYYMDV
4704






JHparent217
TYYYYGMDV
4663






JHparent218
TYYYYYMDV
4709






JHparent219
VYYYYGMDV
4665






JHparent220
VYYYYYMDV
4711






JHparent221
AYYYYYGMDV
4653






JHparent222
AYYYYYYMDV
4699






JHparent223
DYYYYYGMDV
4635






JHparent224
DYYYYYYMDV
4681






JHparent225
FYYYYYGMDV
4644






JHparent226
FYYYYYYMDV
4690






JHparent227
GYYYYYGMDV
4651






JHparent228
GYYYYYYMDV
4697






JHparent229
HYYYYYGMDV
4643






JHparent230
HYYYYYYMDV
4689






JHparent231
IYYYYYGMDV
4649






JHparent232
IYYYYYYMDV
4695






JHparent233
LYYYYYGMDV
4647






JHparent234
LYYYYYYMDV
4693






JHparent235
NYYYYYGMDV
4680






JHparent236
NYYYYYYMDV
4726






JHparent237
PYYYYYGMDV
4648






JHparent238
PYYYYYYMDV
4694






JHparent239
RYYYYYGMDV
4646






JHparent240
RYYYYYYMDV
4692






JHparent241
SYYYYYGMDV
4645






JHparent242
SYYYYYYMDV
4691






JHparent243
TYYYYYGMDV
4650






JHparent244
TYYYYYYMDV
4696






JHparent245
VYYYYYGMDV
4652






JHparent246
VYYYYYYMDV
4698






JHparent247
YYYYYYGMDV
4642






JHparent248
YYYYYYYMDV
4688
















TABLE 16







Polynucleotide sequences of 27 human IGHD


genes and alleles.









IGHD Gene
Polynucleotide Sequence
SEQ ID NO





IGHD1-(1)-01
GGTACAACTGGAACGAC
4739





IGHD1-20
GGTATAACTGGAACGAC
4740





IGHD1-26
GGTATAGTGGGAGCTACTAC
4741





IGHD1-7
GGTATAACTGGAACTAC
4742





IGHD2-15-01
AGGATATTGTAGTGGTGGTAGCTGCTACTCC
4743





IGHD2-2-x
AGGATATTGTAGTAGTACCAGCTGCTATGCC
4744





IGHD2-2-y
AGGATATTGTAGTAGTACCAGCTGCTATACC
4745





IGHD2-2-z
TGGATATTGTAGTAGTACCAGCTGCTATGCC
4746





IGHD2-21-01
AGCATATTGTGGTGGTGATTGCTATTCC
4747





IGHD2-21-02
AGCATATTGTGGTGGTGACTGCTATTCC
4748





IGHD2-8-01
AGGATATTGTACTAATGGTGTATGCTATACC
4749





IGHD3-10-01
GTATTACTATGGTTCGGGGAGTTATTATAAC
4750





IGHD3-10-03
GTATTACTATGGTTCAGGGAGTTATTATAAC
4751





IGHD3-16-02
GTATTATGATTACGTTTGGGGGAGTTATGCTTATACC
4752





IGHD3-22-01
GTATTACTATGATAGTAGTGGTTATTACTAC
4753





IGHD3-3-01
GTATTACGATTTTTGGAGTGGTTATTATACC
4754





IGHD3-9-01
GTATTACGATATTTTGACTGGTTATTATAAC
4755





IGHD4-17
TGACTACGGTGACTAC
4756





IGHD4-23-01
TGACTACGGTGGTAACTCC
4757





IGHD4-4/11-
TGACTACAGTAACTAC
4758


01







IGHD5-12-01
GTGGATATAGTGGCTACGATTAC
4759





IGHD5-24-01
GTAGAGATGGCTACAATTAC
4760





IGHD5-5/18-
GTGGATACAGCTATGGTTAC
4761


01







IGHD6-13-01
GGGTATAGCAGCAGCTGGTAC
4762





IGHD6-19-01
GGGTATAGCAGTGGCTGGTAC
4763





IGHD6-6-01
GAGTATAGCAGCTCGTCC
4764





IGHD7-27-01
CTAACTGGGGA
4765
















TABLE 17







Theoretical segment pool of 73 DH parent


Segments. “Z” represents a stop codon.


DH Parent











Segment
Amino Acid




Name
Sequence
SEQ ID NO






DHparent001
LTG
n/a






DHparent002
NWG
n/a






DHparent003
ZLG
n/a






DHparent004
DYGDY
4348






DHparent005
DYSNY
4366






DHparent006
TTVTT
4351






DHparent007
VQLER
3737






DHparent008
VZLEL
4766






DHparent009
VZLER
4767






DHparent010
VZQLV
4768






DHparent011
YNWND
3740






DHparent012
YNWNY
3765






DHparent013
ZLQZL
4769






DHparent014
ZLRZL
4770






DHparent015
DYGGNS
4354






DHparent016
EYSSSS
4476






DHparent017
GITGTT
3743






DHparent018
GTTGTT
3731






DHparent019
GYSYGY
4429






DHparent020
RDGYNY
4407






DHparent021
SIAARP
4481






DHparent022
TTVVTP
4360






DHparent023
VZQQLV
4771






DHparent024
VZQWLV
4772






DHparent025
VZWELL
4773






DHparent026
WIQLWL
4423






DHparent027
YSGSYY
3759






DHparent028
ZLRWZL
4774






DHparent029
ZRWLQL
4775






DHparent030
GIAAAGT
4445






DHparent031
GIAVAGT
4465






DHparent032
GIVGATT
3748






DHparent033
GYSGYDY
4385






DHparent034
GYSSGWY
4456






DHparent035
GYSSSWY
4435






DHparent036
VDTAMVT
4413






DHparent037
VEMATIT
4395






DHparent038
WIZWLRL
4776






DHparent039
VDIVATIT
4369






DHparent040
AYCGGDCYS
3862






DHparent041
HIVVVIAIP
3871






DHparent042
HIVVVTAIP
3891






DHparent043
SILWWZLLF
4777






DHparent044
DIVLMVYAIP
3920






DHparent045
DIVVVPAAIP
3846






DHparent046
DIVVVPAAMP
3816






DHparent047
DIVVVVAATP
3777






DHparent048
GYCSGGSCYS
3767






DHparent049
GYCSSTSCYA
3806






DHparent050
GYCSSTSCYT
3843






DHparent051
GYCTNGVCYT
3910






DHparent052
ITIFGVVIIP
4269






DHparent053
ITIFZLVIIT
4778 & 8746






DHparent054
ITMIVVVITT
4189






DHparent055
ITMVQGVIIT
4040






DHparent056
ITMVRGVIIT
3994






DHparent057
RILYZWCMLY
4779 & 8747






DHparent058
RILZWWZLLL
4780






DHparent059
RILZZYQLLC
4781






DHparent060
RILZZYQLLY
4782






DHparent061
VLLWFGELLZ
4783






DHparent062
VLLWFRELLZ
4784






DHparent063
VLLZZZWLLL
4785






DHparent064
VLRFLEWLLY
4214






DHparent065
VLRYFDWLLZ
4786






DHparent066
WILZZYQLLC
4787






DHparent067
YYDFWSGYYT
4242






DHparent068
YYDILTGYYN
4318






DHparent069
YYYDSSGYYY
4161






DHparent070
YYYGSGSYYN
3969






DHparent071
IMITFGGVMLIP
4115






DHparent072
VLZLRLGELCLY
4788






DHparent073
YYDYVWGSYAYT
4070
















TABLE 18







Application of Equation 1 to Test Case 1.









Type
Segment
Weight





TN1
R
1.0


DH
TA
1.0


N2
H
1.0


H3-JH
HFDY (SEQ ID NO: 4582)
1.0
















TABLE 19







Application of Equation 1 to Test Cases 2.1 and 2.1.









Type
Segment
Weight





TN1
V and VG
0.5 each


DH
GIVGA (SEQ ID NO: 3751) and
0.5 each



IVGA (SEQ ID NO: 3755)



N2
AS
1.0


H3-JH
Y
1.0
















TABLE 20







Application of Equation 1 to Test Case 3.1.









Type
Segment
Weight





TN1
DR
1.0


DH
YSGYD (SEQ ID NO: 4389)
0.8


N2
LG
1.0


H3-JH
Y
1.0
















TABLE 21







Application of Equation 1 to Test Cases 4.1 and 4.2.









Type
Segment
Weight












TN1
“—” and G
0.5 each


DH
GIAAA (SEQ ID NO: 4448) and
0.5 each



IAAA (SEQ ID NO: 4452)



N2
D
1.0


H3-JH
SNWFDP (SEQ ID NO: 4600)
0.83
















TABLE 22







Application of Equation 1 to all Test Cases.









Type
Segments
Weight





TN1
DR, R, VG, V, G and “—”
0.25, 0.25, 0.125,




0.125, 0.125 and 0.125




respectively


DH
TA, YSGYD (SEQ ID NO: 4389),
0.25, 0.20, 0.125,



IAAA (SEQ ID NO: 4452),




GIAAA (SEQ ID NO: 4448),
0.125, 0.125 and 0.125



IVGA (SEQ ID NO: 3755) and




GIVGA (SEQ ID NO: 3751)
respectively


N2
AS, H, D and LG
0.25 each


H3-JH
Y, HFDY and SNWFDP
0.50, 0.25 and 0.209
















TABLE 23







Segments used in Exemplary Library Design 1 (ELD-1).


The sequences collectively form a theoretical segment


pool that comprises individual theoretical segment


pools of TN1, DH, N2, and H3-JH segments.














Segment

SEQ

SEQ


SEQ


No.
TN1
ID NO
DH
ID NO
N2
H3-JH
ID NO

















1

n/a
YYYDSSGYY
4162

DAFDI
4538





2
G
n/a
YGDY
4350
Y
YYFDY
4568





3
D
n/a
DYGDY
4348
G
Y
n/a





4
A
n/a
YYYDSSGY
4164
D
FDY
n/a





5
V
n/a
YCSSTSCY
3810
S
DY
n/a





6
DR
n/a
YYDSSGY
4168
P
YGMDV
4640





7
S
n/a
YCSGGSCY
3771
F

n/a





8
L
n/a
YCSSTSC
3812
L
LDY
n/a





9
DL
n/a
GG
n/a
A
GAFDI
4549





10
R
n/a
RG
n/a
E
YFDY
4567





11
GR
n/a
SGSY
3763
V
YYGMDV
4639





12
T
n/a
YYDSSGYY
4165
H
AFDI
4539





13
GG
n/a
SS
n/a
T
PFDY
4587





14
E
n/a
YDFWSGY
4249
R
GMDV
4641





15
DS
n/a
GYCSSTSC
3809
W
GWFDP
4619





16
VG
n/a
DY
n/a
SG
YYYYGMDV
4637





17
DG
n/a
YYYDSSG
4167
I
IDY
n/a





18
AP
n/a
CSSTSCY
3813
RG
GYFDY
4577





19
GL
n/a
YYDFWSGY
4245
K
GFDY
4590





20
GS
n/a
SSGWY
4461
LG
MDV
n/a





21
DRG
n/a
AG
n/a
Q
VDY
n/a





22
DLG
n/a
DSSGY
4179
GP
YYYGMDV
4638





23
VP
n/a
SSSW
4443
PG
NWFDP
4595





24
DP
n/a
VGAT
3756
LP
PDY
n/a





25
P
n/a
SY
n/a
AG
WFDP
4596





26
EG
n/a
DTAM
4420
GS
NFDY
4580





27
GA
n/a
IAAAG
4449
TS
YWYFDL
4527





28
AG
n/a
YSSSW
4439
SS
NAFDI
4565





29
GV
n/a
GS
n/a
GG
HFDY
4582





30
GP
n/a
YYDSSG
4172
YS
SFDY
4584





31
ER
n/a
VG
n/a
M
YYYYYGMDV
4636





32
DV
n/a
YSSSWY
4437
SL
DYYYGMDV
4668





33
VGG
n/a
YCSGGSC
3773
SP
DFDY
4581





34
SG
n/a
YDSSGYY
4169
SD
YNWFDP
4597





35
GRG
n/a
GI
n/a
AP
DYYYYGMDV
4655





36
DA
n/a
GYCSGGSCY
3768
GR
YYYMDV
4685





37
DRP
n/a
YSSS
4442
TG
LFDY
4586





38
DSG
n/a
SSGW
4463
SR
DYFDY
4566





39
GPR
n/a
TA
n/a
LD
NYYYYGMDV
4654





40
DT
n/a
DSSGYY
4174
LS
GDY
n/a





41
GGG
n/a
GYCSSTSCY
3807
GA
YDY
n/a





42
DRGG
3720
TTVT
4352
VG
SYFDY
4571





43
PL
n/a
YSSGWY
4458
PP
YYMDV
4686





44
DPS
n/a
GW
n/a
RR
TFDY
4589





45
LP
n/a
LG
n/a
GSG
YYYYYYGMDV
4642





46
RG
n/a
DYGD
4349
GT
FFDY
4583





47
GT
n/a
TVTT
4353
TP
SYYYYGMDV
4658





48
LG
n/a
AAA
n/a
RP
VFDY
4591





49
DLP
n/a
YSSGW
4460
RD
YAFDI
4540





50
DGR
n/a
LV
n/a
QL
SDY
n/a





51
ERG
n/a
YYDFWSGYY
4243
TT
WYFDL
4528





52
DGS
n/a
YYDSSGYYY
4163
PL
DWFDP
4609





53
ES
n/a
YYDFWSG
4248
RS
AFDY
4592





54
PS
n/a
YGD
n/a
WS
PYYYYGMDV
4661





55
GGS
n/a
YG
n/a
RV
HYFDY
4569





56
DPR
n/a
GT
n/a
RF
DV
n/a





57
EA
n/a
YSGSY
3760
SF
RFDY
4585





58
GGR
n/a
YYYGSGSY
3972
PT
NYFDY
4593





59
DGG
n/a
LR
n/a
PS
IFDY
4588





60
SP
n/a
SSS
n/a
AT
ADY
n/a





61
DPG
n/a
GD
n/a
RL
HYYYGMDV
4669





62
DSGG
3723
CSGGSCY
3774
SV
GYYYYYGMDV
4651





63
DPL
n/a
GY
n/a
RA
DWYFDL
4530





64
TP
n/a
YCGGDCY
3866
GRG
GYYYGMDV
4677





65
AGG
n/a
QWLV
4475
VP
YYYYMDV
4684





66
PR
n/a
IAAA
4452
SQ
V
n/a





67
DGT
n/a
QG
n/a
AS
FDP
n/a





68
GLG
n/a
YCSSTSCYT
3844
PR
DDY
n/a





69
DSP
n/a
SG
n/a
VD
GYYYYGMDV
4664





70
GGV
n/a
TTVTT
4351
GV
YMDV
4687





71
GPS
n/a
QQL
n/a
LT
NWYFDL
4532





72
GVG
n/a
IAVA
4472
TR
PYFDY
4574





73
GGA
n/a
GDY
n/a
VS
FDI
n/a





74
RP
n/a
YYYDSSGYYY
4161
SGL
NDY
n/a





75
DPP
n/a
DGYN
4411
RGG
HYYYYYGMDV
4643





76
DPT
n/a
CSSTSC
3814
LR
VYYYGMDV
4678





77
EV
n/a
IVVVPAAI
3849
SGG
VYFDY
4578





78
GAP
n/a
AVAG
4473
SA
SNWFDP
4600





79
DGRG
3702
AA
n/a
AY
NYYYGMDV
4667





80
GPP
n/a
DSSG
4185
LE
LYYYYGMDV
4660





81
DLGG
3714
VR
n/a
TGG
DYYYYYGMDV
4635





82
ET
n/a
YDFWSG
4253
GL
AAFDI
4551





83
DGGP
3681
GYSSSWY
4435
GAG
SWFDP
4613





84
DGGR
3684
SGW
n/a
TA
SYYYYYGMDV
4645





85
DGSG
3705
WG
n/a
IS
SYYYGMDV
4671





86
GTG
n/a
SGSYY
3761
ST
P
n/a





87
DPGG
3717
RY
n/a
SSE
YYYYYMDV
4683





88
DGGS
3687
DS
n/a
GLG
RAFDI
4544





89
GGT
n/a
TT
n/a
PRP
RYFDY
4572





90
GGRG
3703
YCSGGSCYS
3769
RPL
FYYYYGMDV
4657





91
EGR
n/a
PA
n/a
EA
GNWFDP
4606





92
DGA
n/a
IVVVPAA
3823
LGG
RWFDP
4614





93
DGL
n/a
IAAAGT
4447
FS
GFDP
4623





94
EL
n/a
AAAG
4453
DL
DYYYYMDV
4714





95
EGG
n/a
GYCSGGSC
3770
GGG
PYYYGMDV
4674





96
LGG
n/a
SGWY
4464
AR
DP
n/a





97
DPA
n/a
DYGGN
4355
RE
HAFDI
4541





98
EGV
n/a
YYYDS
4176
PA
DNWFDP
4594





99
GSG
n/a
YSSG
4462
PTQ
LNWFDP
4602





100
GGP
n/a
YDSSGY
4173
AGG
AYYYYGMDV
4666





101


VAG
n/a
GGV







102


SSW
n/a
SI







103


GSGSY
3987
SAA







104


SSSS
4480
GGS







105


NW
n/a
GGA







106


DFWSGY
4254
GPG







107


QQLV
4455
PGG







108


YGGN
4358
AAE







109


YDSSG
4178
GGR







110


GYSYG
4430
TW







111


TV
n/a
GGP







112


NG
n/a
GGL







113


IVGAT
3752
VGG







114


IVGA
3755
GTG







115


YGSGSY
3981
NR







116


SSWY
4444
NTP







117


ST
n/a
PV







118


DFWSGYY
4250
EK







119


GSY
n/a
GVG







120


YYDSS
4177
KV







121


VGA
n/a
EKR







122


AT
n/a
QT







123


RP
n/a
SE







124


YYYGSGS
3975
SAL







125


GIAAAG
4446
FH







126


SGY
n/a
RH







127


TG
n/a
PTA







128


LT
n/a
HL







129


RD
n/a
WGT







130


WEL
n/a
REL







131


YSYG
4433
NT







132


TVT
n/a
HW







133


GYCSGGSCYS
3767
PKS







134


AR
n/a
DT







135


YYGSGSY
3976
DTL







136


RW
n/a
SK







137


DIVVVPA
3822
TGL







138


YSGS
3762
AYH







139


GYSSSW
4436
ISR







140


YSSSS
4478
GGT







141


YYYDSS
4171
QE







142


QL
n/a








143


GYSGYD
4386








144


GE
n/a








145


MA
n/a








146


DSS
n/a








147


RF
n/a








148


DTAMV
4417








149


YYGSGSYY
3973








150


VDTAMV
4414








151


FGVV
4293








152


EYSSS
4477








153


TTV
n/a








154


SWY
n/a








155


IAARP
4483








156


VE
n/a








157


SIAA
4484








158


YSGYD
4389








159


DIVVVPAA
3819








160


CSGGSC
3775








161


DW
n/a








162


TS
n/a








163


RL
n/a








164


YSS
n/a








165


GN
n/a








166


SN
n/a








167


GYSY
4432








168


YYDS
4183








169


VDTAM
4416








170


LE
n/a








171


AVAGT
4470








172


YSY
n/a








173


SW
n/a








174


SSG
n/a








175


FGV
n/a








176


VP
n/a








177


VA
n/a








178


SYY
n/a








179


QWL
n/a








180


GSG
n/a








181


TIFGVV
4280








182


AVA
n/a








183


FWSGY
4260








184


YSGSYY
3759








185


IAVAG
4469








186


YS
n/a








187


YQL
n/a








188


SIAAR
4482








189


YCGGDC
3868








190


NWNY
3766








191


SSSWY
4440








192


GIAVA
4468








193


YSYGY
4431








194


GIAAA
4448








195


YYG
n/a








196


AAG
n/a








197


AV
n/a








198


AYCGGDCY
3863








199


YYGSGS
3980








200


EY
n/a



















TABLE 24







Segments used in Exemplary Library Design 2 (ELD-2).


The sequences collectively form a theoretical segment


pool that comprises individual theoretical segment pools


of TN1, DH, N2, and H3-JH segments.















Segment

SEQ

SEQ

SEQ

SEQ


No.
TN1
ID NO
DH
ID NO
N2
ID NO
H3-JH
ID NO


















1

n/a
YYYDSSGYY
4162

n/a
DAFDI
4538





2
G
n/a
YGDY
4350
G
n/a
YYFDY
4568





3
D
n/a
DYGDY
4348
D
n/a
Y
n/a





4
A
n/a
YYYDSSGY
4164
A
n/a
FDY
n/a





5
V
n/a
YCSSTSCY
3810
V
n/a
DY
n/a





6
S
n/a
YYDSSGY
4168
S
n/a
YGMDV
4640





7
DR
n/a
YCSGGSCY
3771
DR
n/a

n/a





8
L
n/a
YCSSTSC
3812
L
n/a
LDY
n/a





9
R
n/a
GG
n/a
R
n/a
GAFDI
4549





10
DL
n/a
RG
n/a
DL
n/a
YFDY
4567





11
T
n/a
SGSY
3763
T
n/a
YYGMDV
4639





12
E
n/a
YYDSSGYY
4165
E
n/a
AFDI
4539





13
GR
n/a
SS
n/a
GR
n/a
PFDY
4587





14
GG
n/a
YDFWSGY
4249
GG
n/a
GMDV
4641





15
DG
n/a
GYCSSTSC
3809
DG
n/a
GWFDP
4619





16
DS
n/a
DY
n/a
DS
n/a
YYYYGMDV
4637





17
VG
n/a
YYYDSSG
4167
VG
n/a
IDY
n/a





18
EG
n/a
CSSTSCY
3813
EG
n/a
GYFDY
4577





19
P
n/a
YYDFWSGY
4245
P
n/a
GFDY
4590





20
GL
n/a
SSGWY
4461
GL
n/a
MDV
n/a





21
GS
n/a
AG
n/a
GS
n/a
VDY
n/a





22
DP
n/a
DSSGY
4179
DP
n/a
YYYGMDV
4638





23
GP
n/a
SSSW
4443
GP
n/a
NWFDP
4595





24
GA
n/a
VGAT
3756
GA
n/a
PDY
n/a





25
GV
n/a
SY
n/a
GV
n/a
WFDP
4596





26
H
n/a
DTAM
4420
H
n/a
NFDY
4580





27
DRG
n/a
IAAAG
4449
DRG
n/a
YWYFDL
4527





28
DQ
n/a
YSSSW
4439
DQ
n/a
NAFDI
4565





29
AG
n/a
GS
n/a
AG
n/a
HFDY
4582





30
DLG
n/a
YYDSSG
4172
DLG
n/a
SFDY
4584





31
DV
n/a
VG
n/a
DV
n/a
YYYYYGMDV
4636





32
Q
n/a
YSSSWY
4437
Q
n/a
DYYYGMDV
4668





33
N
n/a
YCSGGSC
3773
N
n/a
DFDY
4581





34
AP
n/a
YDSSGYY
4169
AP
n/a
YNWFDP
4597





35
GGG
n/a
GI
n/a
GGG
n/a
DYYYYGMDV
4655





36
DH
n/a
GYCSGGSCY
3768
DH
n/a
YYYMDV
4685





37
VP
n/a
YSSS
4442
VP
n/a
LFDY
4586





38
SG
n/a
SSGW
4463
SG
n/a
DYFDY
4566





39
GRG
n/a
TA
n/a
GRG
n/a
NYYYYGMDV
4654





40
AR
n/a
DSSGYY
4174
AR
n/a
GDY
n/a





41
RG
n/a
GYCSSTSCY
3807
RG
n/a
YDY
n/a





42
ER
n/a
TTVT
4352
ER
n/a
SYFDY
4571





43
DA
n/a
YSSGWY
4458
DA
n/a
YYMDV
4686





44
AS
n/a
GW
n/a
AS
n/a
TFDY
4589





45
PL
n/a
LG
n/a
PL
n/a
YYYYYYGMDV
4642





46
DQG
n/a
DYGD
4349
DQG
n/a
FFDY
4583





47
VL
n/a
TVTT
4353
VL
n/a
SYYYYGMDV
4658





48
GT
n/a
AAA
n/a
GT
n/a
VFDY
4591





49
DGG
n/a
YSSGW
4460
DGG
n/a
YAFDI
4540





50
DSG
n/a
LV
n/a
DSG
n/a
SDY
n/a





51
VGG
n/a
YYDFWSGYY
4243
VGG
n/a
WYFDL
4528





52
F
n/a
YYDSSGYYY
4163
F
n/a
DWFDP
4609





53
AL
n/a
YYDFWSG
4248
AL
n/a
AFDY
4592





54
PS
n/a
YGD
n/a
PS
n/a
PYYYYGMDV
4661





55
ES
n/a
YG
n/a
ES
n/a
HYFDY
4569





56
ERG
n/a
GT
n/a
ERG
n/a
DV
n/a





57
GGV
n/a
YSGSY
3760
GGV
n/a
RFDY
4585





58
DRP
n/a
YYYGSGSY
3972
DRP
n/a
NYFDY
4593





59
EA
n/a
LR
n/a
EA
n/a
IFDY
4588





60
TP
n/a
SSS
n/a
TP
n/a
ADY
n/a





61
GPR
n/a
GD
n/a
GPR
n/a
HYYYGMDV
4669





62
LH
n/a
CSGGSCY
3774
LH
n/a
GYYYYYGMDV
4651





63
SR
n/a
GY
n/a
SR
n/a
DWYFDL
4530





64
LP
n/a
YCGGDCY
3866
LP
n/a
GYYYGMDV
4677





65
LG
n/a
QWLV
4475
LG
n/a
YYYYMDV
4684





66
DT
n/a
IAAA
4452
DT
n/a
V
n/a





67
VA
n/a
QG
n/a
VA
n/a
FDP
n/a





68
SL
n/a
YCSSTSCYT
3844
SL
n/a
DDY
n/a





69
EGG
n/a
SG
n/a
EGG
n/a
GYYYYGMDV
4664





70
DRS
n/a
TTVTT
4351
DRS
n/a
YMDV
4687





71
K
n/a
QQL
n/a
K
n/a
NWYFDL
4532





72
DPG
n/a
IAVA
4472
DPG
n/a
PYFDY
4574





73
I
n/a
GDY
n/a
I
n/a
FDI
n/a





74
GD
n/a
YYYDSSGYYY
4161
GD
n/a
NDY
n/a





75
DGT
n/a
DGYN
4411
DGT
n/a
HYYYYYGMDV
4643





76
GPP
n/a
CSSTSC
3814
GPP
n/a
VYYYGMDV
4678





77
DPP
n/a
IVVVPAAI
3849
DPP
n/a
VYFDY
4578





78
RR
n/a
AVAG
4473
RR
n/a
SNWFDP
4600





79
EGV
n/a
AA
n/a
EGV
n/a
NYYYGMDV
4667





80
GF
n/a
DSSG
4185
GF
n/a
LYYYYGMDV
4660





81
GVG
n/a
VR
n/a
GVG
n/a
DYYYYYGMDV
4635





82
DPS
n/a
YDFWSG
4253
DPS
n/a
AAFDI
4551





83
VD
n/a
GYSSSWY
4435
VD
n/a
SWFDP
4613





84
GGT
n/a
SGW
n/a
GGT
n/a
SYYYYYGMDV
4645





85
DK
n/a
WG
n/a
DK
n/a
SYYYGMDV
4671





86
GTG
n/a
SGSYY
3761
GTG
n/a
P
n/a





87
DF
n/a
RY
n/a
DF
n/a
YYYYYMDV
4683





88
GQ
n/a
DS
n/a
GQ
n/a
RAFDI
4544





89
SP
n/a
TT
n/a
SP
n/a
RYFDY
4572





90
QG
n/a
YCSGGSCYS
3769
QG
n/a
FYYYYGMDV
4657





91
DLT
n/a
PA
n/a
DLT
n/a
GNWFDP
4606





92
AK
n/a
IVVVPAA
3823
AK
n/a
RWFDP
4614





93
GPS
n/a
IAAAGT
4447
GPS
n/a
GFDP
4623





94
QR
n/a
AAAG
4453
QR
n/a
DYYYYMDV
4714





95
VR
n/a
GYCSGGSC
3770
VR
n/a
PYYYGMDV
4674





96
DSP
n/a
SGWY
4464
DSP
n/a
DP
n/a





97
DPL
n/a
DYGGN
4355
DPL
n/a
HAFDI
4541





98
EGR
n/a
YYYDS
4176
EGR
n/a
DNWFDP
4594





99
GRRG
4789
YSSG
4462
GRRG
4789
LNWFDP
4602





100
EV
n/a
YDSSGY
4173
EV
n/a
AYYYYGMDV
4666





101


VAG
n/a
RP
n/a







102


SSW
n/a
GH
n/a







103


GSGSY
3987
DGR
n/a







104


SSSS
4480
AA
n/a







105


NW
n/a
DD
n/a







106


DFWSGY
4254
W
n/a







107


QQLV
4455
GGS
n/a







108


YGGN
4358
DIS
n/a







109


YDSSG
4178
GGA
n/a







110


GYSYG
4430
GK
n/a







111


TV
n/a
DGP
n/a







112


NG
n/a
DLK
n/a







113


IVGAT
3752
ET
n/a







114


IVGA
3755
TT
n/a







115


YGSGSY
3981
VH
n/a







116


SSWY
4444
AE
n/a







117


ST
n/a
VS
n/a







118


DFWSGYY
4250
LGG
n/a







119


GSY
n/a
C
n/a







120


YYDSS
4177
DKG
n/a







121


VGA
n/a
HA
n/a







122


AT
n/a
VI
n/a







123


RP
n/a
HP
n/a







124


YYYGSGS
3975
GGE
n/a







125


GIAAAG
4446
EP
n/a







126


SGY
n/a
EF
n/a







127


TG
n/a
DRN
n/a







128


LT
n/a
DWG
n/a







129


RD
n/a
GE
n/a







130


WEL
n/a
DRA
n/a







131


YSYG
4433
VN
n/a







132


TVT
n/a
DRE
n/a







133


GYCSGGSCYS
3767
DLA
n/a







134


AR
n/a
EN
n/a







135


YYGSGSY
3976
VT
n/a







136


RW
n/a
HG
n/a







137


DIVVVPA
3822
RA
n/a







138


YSGS
3762
M
n/a







139


GYSSSW
4436
DVP
n/a







140


YSSSS
4478
GAP
n/a







141


YYYDSS
4171
GLG
n/a







142


QL
n/a
GPG
n/a







143


GYSGYD
4386
PG
n/a







144


GE
n/a
DSS
n/a







145


MA
n/a
SS
n/a







146


DSS
n/a
AGG
n/a







147


RF
n/a
GGR
n/a







148


DTAMV
4417
GPN
n/a







149


YYGSGSYY
3973
DRL
n/a







150


VDTAMV
4414
GRR
n/a







151


FGVV
4293
DSGG
3723







152


EYSSS
4477
TR
n/a







153


TTV
n/a
DLS
n/a







154


SWY
n/a
RGG
n/a







155


IAARP
4483
Y
n/a







156


VE
n/a
EVR
n/a







157


SIAA
4484
LI
n/a







158


YSGYD
4389
TF
n/a







159


DIVVVPAA
3819
LK
n/a







160


CSGGSC
3775
DLE
n/a







161


DW
n/a
GY
n/a







162


TS
n/a
DGS
n/a







163


RL
n/a
GVR
n/a







164


YSS
n/a
GQR
n/a







165


GN
n/a
EGL
n/a







166


SN
n/a
VLG
n/a







167


GYSY
4432
QP
n/a







168


YYDS
4183
VM
n/a







169


VDTAM
4416
VE
n/a







170


LE
n/a
DQGG
4790







171


AVAGT
4470
PN
n/a







172


YSY
n/a
DGL
n/a







173


SW
n/a
PV
n/a







174


SSG
n/a
HR
n/a







175


FGV
n/a
AD
n/a







176


VP
n/a
DLF
n/a







177


VA
n/a
LD
n/a







178


SYY
n/a
GGD
n/a







179


QWL
n/a
DRR
n/a







180


GSG
n/a
DHH
n/a







181


TIFGVV
4280
DW
n/a







182


AVA
n/a
DAS
n/a







183


FWSGY
4260
GW
n/a







184


YSGSYY
3759
SV
n/a







185


IAVAG
4469
GLR
n/a







186


YS
n/a
DGA
n/a







187


YQL
n/a
LA
n/a







188


SIAAR
4482
EEG
n/a







189


YCGGDC
3868
AV
n/a







190


NWNY
3766
VQ
n/a







191


SSSWY
4440
AH
n/a







192


GIAVA
4468
RS
n/a







193


YSYGY
4431
WA
n/a







194


GIAAA
4448
LR
n/a







195


YYG
n/a
GSG
n/a







196


AAG
n/a
GGSG
3706







197


AV
n/a
DLR
n/a







198


AYCGGDCY
3863
VWG
n/a







199


YYGSGS
3980
HL
n/a







200


EY
n/a
EH
n/a


















TABLE 25







Segments used in Exemplary Library Design 3 (ELD-3). The sequences collectively form a


theoretical segment pool that comprises individual theoretical segment pools of TN1, DH, N2, and H3-JH segments.






















TN1















Seg-
(plus
SEQ
TN1 Nucleotides
SEQ

SEQ

SEQ



SEQ

SEQ


ment
AR or
ID
(plus AR or
ID

ID

ID

N2

ID

ID


No.
AK)1
NO
AK)1
NO
DH
NO
DH Nucleotides
NO
N2
Nucleotides
H3-JH
NO
H3-JH Nucleotides
NO
























1
AR
n/a
GCCAGA
n/a
GT
n/a
GGTACT
n/a



n/a

n/a





2
ARE
n/a
GCCAGAGAG
n/a
TT
n/a
ACTACT
n/a
A
GCT
Y
n/a
TAT
n/a





3
ARD
n/a
GCCAGAGAC
n/a
TG
n/a
ACAGGC
n/a
D
GAT
DI
n/a
GATATT
n/a





4
ARG
n/a
GCCAGAGGA
n/a
ER
n/a
GAGCGT
n/a
E
GAG
DL
n/a
GACTTG
n/a





5
AREG
4791
GCCAGAGAGGGA
4963
QLE
n/a
CAATTAGAG
n/a
F
TTC
DP
n/a
GATCCT
n/a





6
ARDG
4792
GCCAGAGACGGA
4964
LER
n/a
TTAGAGCGT
n/a
G
GGC
DV
n/a
GATGTA
n/a





7
ARGG
4793
GCCAGAGGTGGA
4965
VGAT
3756
GTTGGCGCAACT
5135
H
CAT
DY
n/a
GACTAT
n/a





8
ARR
n/a
GCCAGGAGA
n/a
YSG
n/a
TATAGTGGT
n/a
I
ATC
QH
n/a
CAGCAC
n/a





9
ARER
4794
GCCAGAGAGAGA
4966
YSGSY
3760
TACTCTGGCTCTTAT
5136
K
AAA
ADY
n/a
GCTGATTAT
n/a





10
ARDR
4795
GCCAGAGACAGA
4967
VG
n/a
GTAGGC
n/a
L
CTG
DDY
n/a
GATGACTAT
n/a





11
ARGR
4796
GCCAGAGGCAGA
4968
AT
n/a
GCCACT
n/a
M
ATG
FDI
n/a
TTTGACATT
n/a





12
ARS
n/a
GCCAGATCT
n/a
WEL
n/a
TGGGAGCTT
n/a
P
CCT
FDL
n/a
TTCGACTTA
n/a





13
ARES
4797
GCCAGAGAATCT
4969
YS
n/a
TACAGC
n/a
Q
CAG
FDP
n/a
TTTGACCCT
n/a





14
ARDS
4798
GCCAGAGACTCT
4970
SG
n/a
AGTGGT
n/a
R
AGG
FDY
n/a
TTCGACTAT
n/a





15
ARGS
4799
GCCAGAGGTTCT
4971
GS
n/a
GGTTCT
n/a
S
TCA
FQH
n/a
TTCCAGCAC
n/a





16
ARP
n/a
GCCAGACCT
n/a
SY
n/a
AGCTAC
n/a
T
ACC
GDY
n/a
GGTGACTAC
n/a





17
ARDP
4800
GCCAGAGACCCT
4972
CSSTSC
3814
TGTAGTAGTACAAGTTGC
5137
V
GTT
IDY
n/a
ATCGACTAT
n/a





18
ARGP
4801
GCCAGAGGGCCT
4973
CSSTSCY
3813
TGCTCATCTACATCATGCTAT
5138
W
TGG
LDY
n/a
TTGGACTAT
n/a





19
ARL
n/a
GCCAGATTG
n/a
YCSSTSC
3812
TATTGTTCAAGTACATCTTGT
5139
Y
TAC
MDV
n/a
ATGGATGTG
n/a





20
ARDL
4802
GCCAGAGACTTG
4974
GYCSSTSC
3809
GGGTATTGCTCCAGTACCTCATGT
5140
AD
GCTGAT
PDY
n/a
CCAGATTAT
n/a





21
ARGL
4803
GCCAGAGGGTTG
4975
YCSSTSCY
3810
TACTGCAGCAGCACAAGTTGTTAC
5141
AG
GCAGGC
SDY
n/a
TCTGATTAC
n/a





22
ARA
n/a
GCCAGAGCT
n/a
GYCSSTSCY
3807
GGGTATTGCAGTTCAACTAGTTGTTAT
5142
AP
GCCCCA
VDY
n/a
GTTGACTAC
n/a





23
AREA
4804
GCCAGAGAGGCT
4976
YCSSTSCYT
3844
TACTGTTCATCAACCTCCTGTTATACT
5143
AQ
GCTCAG
YDY
n/a
TATGATTAC
n/a





24
ARDA
4805
GCCAGAGATGCT
4977
PAA
n/a
CCTGCCGCT
n/a
AR
GCTAGG
AFDI
4539
GCCTTCGATATC
5251





25
ARGA
4806
GCCAGAGGTGCT
4978
CSGGSCY
3774
TGCTCTGGGGGTAGCTGCTAT
5144
AS
GCTAGT
AFDY
4592
GCCTTCGATTAC
5252





26
ART
n/a
GCCAGAACT
n/a
YCSGGSC
3773
TACTGTAGCGGTGGTAGTTGC
5145
AT
GCTACC
DFDY
4581
GATTTCGACTAT
5253





27
ARET
4807
GCCAGAGAGACT
4979
GYCSGGSC
3770
GGATACTGTAGTGGCGGATCCTGC
5146
AY
GCCTAC
FFDY
4583
TTCTTCGATTAC
5254





28
ARDT
4808
GCCAGAGATACT
4980
YCSGGSCY
3771
TACTGCTCCGGAGGAAGTTGTTAT
5147
DA
GACGCC
GFDP
4623
GGGTTTGACCCA
5255





29
ARGT
4809
GCCAGAGGCACT
4981
GYCSGGSCY
3768
GGTTATTGCAGTGGGGGTTCATGTTAC
5148
DD
GACGAT
GFDY
4590
GGGTTCGACTAC
5256





30
ARV
n/a
GCCAGAGTG
n/a
YCSGGSCYS
3769
TACTGTTCCGGAGGTAGCTGTTACTCT
5149
DE
GACGAG
GMDV
4641
GGCATGGATGTA
5257





31
AREV
4810
GCCAGAGAGGTG
4982
RI
n/a
AGAATC
n/a
DG
GATGGT
HFDY
4582
CACTTTGACTAT
5258





32
ARDV
4811
GCCAGAGATGTG
4983
GY
n/a
GGATAT
n/a
DL
GACTTG
IFDY
4588
ATATTCGATTAC
5259





33
ARGV
4812
GCCAGAGGGGTG
4984
GG
n/a
GGCGGT
n/a
DP
GACCCT
LFDY
4586
TTATTTGATTAT
5260





34
AREGG
4813
GCCAGAGAGGGAGGA
4985
ATP
n/a
GCTACCCCT
n/a
DS
GACTCC
NFDY
4580
AACTTTGATTAC
5261





35
ARDGG
4814
GCCAGAGATGGTGGA
4986
DI
n/a
GACATC
n/a
DY
GATTAT
PFDY
4587
CCCTTCGACTAT
5262





36
ARGGG
4815
GCCAGAGGTGGAGGA
4987
TP
n/a
ACTCCT
n/a
EA
GAGGCC
RFDY
4585
AGGTTTGACTAT
5263





37
ARDGR
4816
GCCAGAGACGGCAGA
4988
GD
n/a
GGAGAT
n/a
ED
GAGGAC
SFDY
4584
AGTTTCGATTAC
5264





38
ARGGS
4817
GCCAGAGGCGGTTCT
4989
AYCGGDCY
3863
GCCTATTGCGGTGGTGACTGCTAT
5150
EG
GAAGGA
TFDY
4589
ACATTTGACTAC
5265





39
ARGGP
4818
GCCAGAGGTGGGCCT
4990
AYCGGDC
3865
GCATATTGCGGAGGGGATTGC
5151
EK
GAGAAA
VFDY
4591
GTTTTCGATTAT
5266





40
ARGGA
4819
GCCAGAGGAGGTGCT
4991
YCGGDCY
3866
TATTGTGGTGGGGACTGCTAT
5152
ER
GAAAGA
WFDP
4596
TGGTTCGATCCA
5267





41
ARDGT
4820
GCCAGAGACGGTACT
4992
YCGGDC
3868
TACTGCGGAGGCGATTGC
5153
ES
GAATCT
YFDL
4529
TATTTCGACTTA
5268





42
ARGGT
4821
GCCAGAGGTGGAACT
4993
HI
n/a
CACATC
n/a
ET
GAAACA
YFDY
4567
TACTTCGATTAC
5269





43
AREGV
4822
GCCAGAGAGGGAGTG
4994
TA
n/a
ACAGCT
n/a
FA
TTCGCT
YFQH
4489
TATTTCCAGCAC
5270





44
ARGGV
4823
GCCAGAGGTGGCGTG
4995
GYCSSTSCYA
3806
GGGTACTGCTCTAGCACTTCATGCTAC
5154
FH
TTCCAT
YMDV
4687
TATATGGATGTC
5271









GCC





45
ARRG
4824
GCCAGAAGAGGA
4996
SS
n/a
AGTTCT
n/a
FL
TTCTTG
DAFDI
4538
GATGCCTTCGACATA
5272





46
ARERG
4825
GCCAGAGAGCGTGGA
4997
ST
n/a
AGTACT
n/a
FR
TTTAGG
DWFDP
4609
GACTGGTTTGACCCC
5273





47
ARDRG
4826
GCCAGAGATCGTGGA
4998
TS
n/a
ACCAGC
n/a
FS
TTTAGT
DYFDY
4566
GACTACTTTGATTAC
5274





48
ARGRG
4827
GCCAGAGGCAGGGGA
4999
PAAMP
3835
CCAGCAGCTATGCCT
5155
GA
GGAGCC
EYFQH
4488
GAATACTTCCAACAC
5275





49
ARSG
4828
GCCAGATCAGGA
5000
PA
n/a
CCCGCC
n/a
GD
GGTGAT
GAFDI
4549
GGCGCATTCGATATT
5276





50
ARDSG
4829
GCCAGAGACTCAGGA
5001
MP
n/a
ATGCCT
n/a
GE
GGTGAG
GWFDP
4619
GGGTGGTTTGATCCA
5277





51
ARDPG
4830
GCCAGAGATCCAGGA
5002
VYAIP
3940
GTCTATGCAATTCCT
5156
GG
GGAGGC
GYFDY
4577
GGCTATTTTGACTAC
5278





52
ARLG
4831
GCCAGATTGGGA
5003
WFGE
3966
TGGTTTGGGGAG
5157
GL
GGATTG
HAFDI
4541
CATGCTTTTGATATA
5279





53
ARDLG
4832
GCCAGAGACTTGGGA
5004
FGE
n/a
TTTGGAGAG
n/a
GP
GGACCA
HYFDY
4569
CATTACTTCGATTAC
5280





54
ARAG
4833
GCCAGAGCTGGA
5005
GEL
n/a
GGCGAGCTT
n/a
GR
GGTAGG
NAFDI
4565
AACGCATTCGATATT
5281





55
ARVG
4834
GCCAGAGTGGGA
5006
WFG
n/a
TGGTTCGGT
n/a
GS
GGCAGT
NWFDP
4595
AACTGGTTCGATCCA
5282





56
ARGVG
4835
GCCAGAGGCGTAGGA
5007
GSG
n/a
GGTTCAGGC
n/a
GT
GGAACA
NYFDY
4593
AATTATTTCGACTAT
5283





57
ARPR
4836
GCCAGACCCAGA
5008
SGSY
3763
AGTGGATCTTAT
5158
GV
GGAGTT
PYFDY
4574
CCCTACTTTGACTAT
5284





58
ARGPR
4837
GCCAGAGGACCAAGA
5009
YYGS
3990
TATTATGGCAGT
5159
GW
GGATGG
RAFDI
4544
AGAGCCTTTGATATC
5285





59
ARPS
4838
GCCAGACCATCT
5010
YYYG
3989
TACTACTATGGC
5160
GY
GGATAT
RYFDY
4572
AGGTACTTCGATTAC
5286





60
ARDPS
4839
GCCAGAGATCCCTCT
5011
GSGSY
3987
GGCAGCGGTTCCTAC
5161
HE
CATGAG
SWFDP
4613
TCATGGTTCGACCCC
5287





61
ARGPS
4840
GCAAGAGGACCTTCT
5012
SGSYY
3761
AGTGGATCCTATTAC
5162
HL
CATTTG
SYFDY
4571
AGTTACTTTGACTAT
5288





62
ARDPP
4841
GCCAGAGACCCACCT
5013
YYYGSG
3979
TATTACTACGGGTCTGGC
5163
HP
CATCCT
TYFDY
4576
ACTTATTTCGACTAC
5289





63
ARGPP
4842
GCCAGAGGACCGCCT
5014
SGS
n/a
AGCGGCAGT
n/a
HS
CACTCC
VAFDI
4550
GTGGCCTTCGACATT
5290





64
ARPL
4843
GCCAGACCGTTG
5015
YYYGSGS
3975
TATTACTACGGATCTGGCTCT
5164
IF
ATCTTC
VYFDY
4578
GTCTATTTTGATTAT
5291





65
ARDPL
4844
GCCAGAGATCCTTTG
5016
YYYGSGSY
3972
TATTACTATGGCTCTGGTAGCTAC
5165
IG
ATCGGC
WYFDL
4528
TGGTATTTCGATTTG
5292





66
ARRP
4845
GCCAGAAGGCCT
5017
YGS
n/a
TATGGCTCC
n/a
IR
ATAAGG
YAFDI
4540
TACGCATTTGACATC
5293





67
ARDRP
4846
GCCAGAGACCGTCCT
5018
YYG
n/a
TACTATGGT
n/a
IS
ATCAGT
YGMDV
4640
TACGGCATGGACGTG
5294





68
ARSP
4847
GCCAGATCACCT
5019
YYY
n/a
TATTATTAT
n/a
KG
AAAGGA
YYFDY
4568
TATTATTTTGATTAC
5295





69
ARLP
4848
GCCAGACTTCCT
5020
MVRG
4017
ATGGTAAGAGGT
5166
KR
AAGAGA
YYMDV
4686
TATTATATGGACGTC
5296





70
ARAP
4849
GCCAGAGCCCCT
5021
TMVRG
4010
ACCATGGTGAGGGGT
5167
KV
AAAGTG
AEYFQH
4526
GCAGAGTACTTCCAGCAC
5297





71
ARTP
4850
GCCAGAACTCCT
5022
RGV
n/a
AGAGGAGTT
n/a
LD
TTGGAT
DNWFDP
4594
GACAATTGGTTTGATCCC
5298





72
ARVP
4851
GCCAGAGTCCCT
5023
VRG
n/a
GTCAGAGGC
n/a
LE
TTAGAG
DWYFDL
4530
GATTGGTACTTCGACTTG
5299





73
ARVGG
4852
GCCAGAGTTGGAGGA
5024
FG
n/a
TTCGGC
n/a
LG
TTAGGT
GNWFDP
4606
GGGAATTGGTTTGATCCT
5300





74
ARQ
n/a
GCAAGACAG
n/a
GE
n/a
GGCGAG
n/a
LH
TTACAT
NWYFDL
4532
AACTGGTATTTCGACTTA
5301





75
ARH
n/a
GCCAGACAC
n/a
YG
n/a
TACGGC
n/a
LL
TTATTG
PNWFDP
4603
CCCAATTGGTTTGATCCA
5302





76
ARDQ
4853
GCCAGGGACCAG
5025
VR
n/a
GTGCGT
n/a
LP
TTACCA
SNWFDP
4600
AGTAATTGGTTTGACCCC
5303





77
ARDH
4854
GCAAGAGACCAC
5026
RG
n/a
AGAGGT
n/a
LR
TTGAGG
YNWFDP
4597
TATAATTGGTTTGATCCT
5304





78
ARAR
4855
GCAAGGGCTAGA
5027
FRE
n/a
TTCAGGGAG
n/a
LS
TTAAGC
YWYFDL
4527
TATTGGTATTTTGATTTG
5305





79
ARAS
4856
GCTAGGGCATCT
5028
RE
n/a
AGAGAG
n/a
LT
TTGACA
YYGMDV
4639
TACTATGGGATGGACGTG
5306





80
ARDQG
4857
GCTAGGGATCAGGGA
5029
QG
n/a
CAAGGT
n/a
LV
TTGGTA
YYYMDV
4685
TACTATTACATGGACGTT
5307





81
ARSR
4858
GCTAGATCAAGA
5030
LR
n/a
TTACGT
n/a
LW
TTGTGG
YYYGMDV
4638
TATTATTACGGTATGGACGTC
5308





82
ARDRS
4859
GCCAGGGACAGGTCT
5031
YYDYVWGSYAYT
4070
TACTATGATTACGTCTGGGGGTCTTA
5168
LY
TTGTAC
YYYYMDV
4684
TACTATTATTACATGGATGTC
5309









TGCTTACACT





83
ARSL
4860
GCTAGATCTTTG
5032
YYDYVWGSYAY
4071
TACTACGACTATGTATGGGGCTCA
5169
MG
ATGGGC
DYYYGMDV
4668
GACTATTATTACGGTATGGATGTT
5310









TATGCTTAC





84
ARLH
4861
GCTAGGTTGCAC
5033
YYDYVWGSYA
4073
TACTACGATTACGTATGGGGAAGCTA
5170
MT
ATGACC
GYYYGMDV
4677
GGCTACTATTATGGTATGGACGTC
5311









CGCT





85
ARDLT
4862
GCCAGGGATTTGACT
5034
YDYVWGSYAY
4074
TATGATTATGTGTGGGGGTCATACGC
5171
PA
CCTGCT
HYYYGMDV
4669
CATTACTACTATGGGATGGATGTA
5312









ATAC





86
ARK
n/a
GCCAGAAAG
n/a
DY
n/a
GATTAC
n/a
PD
CCTGAT
NYYYYMDV
4713
AACTATTATTATTATATGGATGTC
5313





87
ARAE
4863
GCAAGAGCCGAG
5035
WG
n/a
TGGGGC
n/a
PE
CCTGAG
PYYYYMDV
4720
CCCTACTACTACTATATGGATGTG
5314





88
ARDLS
4864
GCAAGGGATTTGTCT
5036
DYVWGSYAYT
4075
GATTATGTGTGGGGGTCTTACGCCTA
5172
PF
CCTTTC
RYYYYMDV
4718
AGGTATTACTACTACATGGACGTC
5315









CACC





89
ARGD
4865
GCTAGAGGGGAC
5037
YDYVWGSYA
4077
TACGACTATGTGTGGGGTTCCTATGCT
5173
PG
CCTGGT
YYYYGMDV
4637
TACTATTATTATGGGATGGATGTA
5316





90
ARRR
4866
GCTAGGAGGAGA
5038
YYDS
4183
TACTACGATTCC
5174
PH
CCACAT
DYYYYGMDV
4655
GATTACTATTATTACGGAATGGAT
5317















GTT





91
ARDK
4867
GCTAGAGATAAG
5039
YYYD
4182
TATTATTATGAC
5175
PL
CCATTA
GYYYYGMDV
4664
GGGTATTACTACTACGGCATGGAC
5318















GTA





92
ARVS
4868
GCTAGAGTATCT
5040
DSSGY
4179
GACAGTTCCGGGTAC
5176
PP
CCTCCA
NYYYYGMDV
4654
AATTACTATTACTATGGCATGGAT
5319















GTG





93
ARDRL
4869
GCCAGAGACAGGTTG
5041
YDSSG
4178
TATGATAGCTCAGGT
5177
PQ
CCTCAG
PYYYYGMDV
4661
CCATATTACTATTACGGCATGGAT
5320















GTC





94
ARGQ
4870
GCTAGGGGCCAG
5042
YYDSS
4177
TACTATGACTCATCC
5178
PR
CCAAGG
SYYYYGMDV
4658
AGCTACTACTACTACGGAATGGAC
5321















GTC





95
ARVR
4871
GCCAGGGTCAGA
5043
YYYDS
4176
TATTATTACGATAGT
5179
PS
CCTTCT
YYYYYGMDV
4636
TACTACTACTATTACGGTATGGAC
5322















GTA





96
ARAK
4872
GCTAGGGCTAAG
5044
GYY
n/a
GGATATTAC
n/a
PT
CCTACA
DYYYYYYMDV
4681
GATTATTATTACTACTACTACATG
5323















GATGTA





97
ARGK
4873
GCCAGGGGTAAG
5045
DSSGYY
4174
GATTCTTCCGGGTACTAC
5180
PV
CCTGTT
GYYYYYGMDV
4651
GGTTATTATTACTACTATGGGATG
5324















GATGTA





98
ARDIS
4874
GCAAGGGATATTTCT
5046
YDSSGY
4173
TATGATTCCAGCGGATAC
5181
QG
CAGGGC
HYYYYYGMDV
4643
CACTACTATTATTATTACGGGAT
5325















GGATGTA





99
ARDFT
4875
GCTAGGGATTTCACT
5047
YYDSSG
4172
TACTACGATAGCTCCGGT
5182
QL
CAATTA
RYYYYYYMDV
4692
AGATACTACTACTATTATTACAT
5326















GGATGTA





100
ARQG
4876
GCCAGGCAGGGA
5048
YYYDSS
4171
TATTATTACGACTCTTCC
5183
QP
CAGCCA
YYYYYYGMDV
4642
TATTACTACTATTACTATGGTAT
5327















GGACGTT





101
AK
n/a
GCCAAG
n/a
YDSSGYY
4169
TACGACTCTTCTGGTTATTAC
5184
QS
CAGTCA





102
AKE
n/a
GCCAAGGAG
n/a
YYDSSGY
4168
TATTATGACAGCAGCGGGTAT
5185
QT
CAGACT





103
AKD
n/a
GCCAAGGAC
n/a
YYYDSSG
4167
TACTACTACGATTCCAGCGGT
5186
RA
AGGGCT





104
AKG
n/a
GCCAAGGGA
n/a
YDSSGYYY
4166
TACGACAGTTCCGGATATTATTAC
5187
RD
AGGGAC





105
AKEG
4877
GCCAAGGAAGGA
5049
SGY
n/a
AGCGGATAT
n/a
RE
AGGGAG





106
AKDG
4878
GCCAAGGACGGA
5050
YYDSSGYY
4165
TACTATGATAGTAGTGGGTACTAT
5188
RF
AGATTC





107
AKGG
4879
GCCAAGGGCGGA
5051
YYYDSSGY
4164
TACTACTATGACAGCTCAGGGTAT
5189
RG
AGGGGA





108
AKR
n/a
GCCAAGAGA
n/a
YYDSSGYYY
4163
TATTACGACAGCAGTGGCTACTACTAT
5190
RH
AGGCAT





109
AKER
4880
GCCAAGGAAAGA
5052
YYYDSSGYY
4162
TACTACTACGATAGCTCTGGATACTAT
5191
RL
AGATTA





110
AKDR
4881
GCCAAGGACAGA
5053
YYYDSSGYYY
4161
TATTATTACGATTCCAGTGGTTATTA
5192
RM
AGGATG









TTAT





111
AKGR
4882
GCCAAGGGCAGA
5054
YDS
n/a
TACGACTCC
n/a
RP
AGGCCA





112
AKS
n/a
GCCAAGTCT
n/a
YYD
n/a
TACTATGAC
n/a
RR
CGTAGA





113
AKES
4883
GCCAAGGAATCT
5055
DSSG
4185
GACTCATCCGGT
5193
RS
AGAAGT





114
AKDS
4884
GCCAAGGATTCT
5056
GYYY
4188
GGTTACTATTAC
5194
RV
AGAGTG





115
AKGS
4885
GCCAAGGGATCT
5057
SGYY
4187
AGCGGCTACTAT
5195
RY
AGATAT





116
AKP
n/a
GCCAAGCCT
n/a
DS
n/a
GACTCT
n/a
SA
TCAGCC





117
AKDP
4886
GCCAAGGATCCT
5058
RFLEW
4231
AGATTTTTGGAGTGG
5196
SD
TCAGAC





118
AKGP
4887
GCCAAGGGTCCT
5059
EWL
n/a
GAATGGCTT
n/a
SE
TCCGAG





119
AKL
n/a
GCCAAGTTG
n/a
RF
n/a
AGATTC
n/a
SF
TCATTC





120
AKDL
4888
GCCAAGGACTTG
5060
YYDFWSGYYT
4242
TACTATGATTTTTGGAGTGGATATTA
5197
SG
AGCGGA









TACC





121
AKGL
4889
GCCAAGGGGTTG
5061
YDFWSG
4253
TATGATTTTTGGTCTGGT
5198
SH
AGTCAC





122
AKA
n/a
GCCAAGGCT
n/a
DFWSGY
4254
GATTTTTGGAGCGGCTAT
5199
SI
TCTATC





123
AKEA
4890
GCCAAGGAAGCT
5062
FWSGY
4260
TTTTGGAGCGGGTAT
5200
SK
AGTAAA





124
AKDA
4891
GCCAAGGACGCT
5063
YYDFWSGYY
4243
TACTACGACTTCTGGAGCGGGTATTAC
5201
SL
TCCTTG





125
AKGA
4892
GCCAAGGGCGCT
5064
YYDFWSGY
4245
TACTACGATTTTTGGTCTGGATAT
5202
SP
AGCCCA





126
AKT
n/a
GCCAAGACT
n/a
YDFWSGYY
4246
TATGACTTTTGGAGTGGTTACTAC
5203
SQ
AGCCAA





127
AKET
4893
GCCAAGGAAACT
5065
YYDFWSG
4248
TACTACGATTTCTGGTCAGGC
5204
SR
TCAAGA





128
AKDT
4894
GCCAAGGATACT
5066
YDFWSGY
4249
TATGACTTCTGGAGTGGTTAC
5205
SS
TCCTCA





129
AKGT
4895
GCCAAGGGAACT
5067
DFWSGYY
4250
GACTTCTGGTCAGGATACTAC
5206
ST
AGTACA





130
AKV
n/a
GCCAAGGTG
n/a
VLRYF
4307
GTGTTGAGGTACTTC
5207
SV
TCAGTA





131
AKEV
4896
GCCAAGGAAGTG
5068
LRYFD
4308
TTAAGATACTTTGAT
5208
SW
TCATGG





132
AKDV
4897
GCCAAGGACGTG
5069
RYFDW
4309
AGATACTTTGATTGG
5209
SY
TCTTAC





133
AKGV
4898
GCCAAGGGCGTG
5070
VLRY
4312
GTGTTGAGGTAT
5210
TA
ACCGCC





134
AKEGG
4899
GCCAAGGAGGGAGGA
5071
LRYF
4313
TTGAGATATTTC
5211
TG
ACTGGC





135
AKDGG
4900
GCCAAGGACGGTGGA
5072
RYFD
4314
AGATACTTTGAT
5212
TP
ACACCA





136
AKGGG
4901
GCCAAGGGAGGAGGA
5073
VLRYFDWL
4298
GTCTTAAGGTACTTCGATTGGCTT
5213
TR
ACAAGA





137
AKDGR
4902
GCCAAGGACGGTAGA
5074
LRY
n/a
TTAAGATAC
n/a
TS
ACATCT





138
AKGGS
4903
GCCAAGGGAGGTTCT
5075
RYF
n/a
AGATACTTC
n/a
TT
ACTACT





139
AKGGP
4904
GCCAAGGGAGGTCCT
5076
RY
n/a
AGATAT
n/a
TV
ACAGTT





140
AKGGA
4905
GCCAAGGGAGGCGCT
5077
FD
n/a
TTCGAT
n/a
TW
ACTTGG





141
AKDGT
4906
GCCAAGGATGGCACT
5078
DW
n/a
GATTGG
n/a
TY
ACTTAT





142
AKGGT
4907
GCCAAGGGAGGCACT
5079
VLRYFDW
4300
GTCTTAAGATACTTTGATTGG
5214
VA
GTAGCC





143
AKEGV
4908
GCCAAGGAAGGAGTG
5080
VLRYFD
4303
GTGTTGAGGTACTTTGAC
5215
VD
GTCGAC





144
AKGGV
4909
GCCAAGGGCGGTGTG
5081
LRYFDW
4304
TTAAGATACTTCGATTGG
5216
VG
GTTGGA





145
AKRG
4910
GCCAAGAGAGGA
5082
RYFDWL
4305
AGATATTTCGACTGGCTT
5217
VL
GTCTTG





146
AKERG
4911
GCCAAGGAGAGAGGA
5083
YDILTGYY
4322
TATGACATATTGACTGGCTACTAC
5218
VP
GTTCCT





147
AKDRG
4912
GCCAAGGATAGGGGA
5084
YDILTGY
4325
TATGATATATTAACTGGGTAC
5219
VR
GTGAGA





148
AKGRG
4913
GCCAAGGGTAGGGGA
5085
DILTGYY
4326
GATATCTTAACCGGGTATTAT
5220
VS
GTTTCA





149
AKSG
4914
GCCAAGTCTGGA
5086
DYG
n/a
GATTATGGT
n/a
VT
GTTACC





150
AKDSG
4915
GCCAAGGATAGTGGA
5087
GDY
n/a
GGGGACTAC
n/a
VV
GTAGTA





151
AKDPG
4916
GCCAAGGACCCCGGA
5088
YGD
n/a
TACGGTGAC
n/a
WG
TGGGGT





152
AKLG
4917
GCCAAGTTAGGA
5089
DYGD
4349
GATTACGGCGAT
5221
WS
TGGTCA





153
AKDLG
4918
GCCAAGGATCTTGGA
5090
YGDY
4350
TACGGCGATTAT
5222
YA
TACGCT





154
AKAG
4919
GCCAAGGCTGGA
5091
DYGDY
4348
GACTACGGAGATTAT
5223
YD
TATGAC





155
AKVG
4920
GCCAAGGTAGGA
5092
TTVTT
4351
ACCACAGTAACCACC
5224
YE
TATGAG





156
AKGVG
4921
GCCAAGGGTGTCGGA
5093
TTVT
4352
ACAACTGTGACT
5225
YS
TATTCT





157
AKPR
4922
GCCAAGCCTAGA
5094
TVTT
4353
ACAGTAACTACT
5226
AAA
GCTGCCGCT





158
AKGPR
4923
GCCAAGGGCCCCAGA
5095
RW
n/a
AGATGG
n/a
AGM
GCAGGCATG





159
AKPS
4924
GCCAAGCCTTCT
5096
VTP
n/a
GTAACTCCT
n/a
DGG
GATGGGGGT





160
AKDPS
4925
GCCAAGGATCCCTCT
5097
VD
n/a
GTTGAC
n/a
DGV
GATGGTGTA





161
AKGPS
4926
GCCAAAGGGCCATCT
5098
GYSGYD
4386
GGCTACTCAGGATACGAC
5227
FGG
TTCGGGGGC





162
AKDPP
4927
GCCAAGGATCCACCT
5099
YSGYD
4389
TATAGCGGATATGAC
5228
GAG
GGAGCTGGA





163
AKGPP
4928
GCCAAGGGCCCTCCT
5100
RD
n/a
AGAGAT
n/a
GGA
GGAGGGGCC





164
AKPL
4929
GCCAAGCCGTTG
5101
RDGY
4410
AGAGATGGTTAC
5229
GGG
GGAGGCGGT





165
AKDPL
4930
GCCAAGGACCCTTTG
5102
RDG
n/a
AGAGATGGT
n/a
GGL
GGAGGCTTA





166
AKRP
4931
GCCAAGAGGCCT
5103
DTAM
4420
GATACTGCTATG
5230
GGR
GGTGGTAGA





167
AKDRP
4932
GCCAAGGACCGTCCT
5104
YGY
n/a
TACGGCTAC
n/a
GGS
GGCGGGAGC





168
AKSP
4933
GCCAAGAGTCCT
5105
YSY
n/a
TATTCTTAC
n/a
GGV
GGTGGGGTA





169
AKLP
4934
GCCAAGCTACCT
5106
YSYG
4433
TATTCATATGGT
5231
GLG
GGATTAGGC





170
AKAP
4935
GCCAAGGCTCCT
5107
GYSYG
4430
GGATATAGTTATGGC
5232
GPG
GGCCCCGGC





171
AKTP
4936
GCCAAGACGCCT
5108
SSS
n/a
AGTTCAAGC
n/a
GPP
GGACCACCT





172
AKVP
4937
GCCAAGGTACCT
5109
YSSSWY
4437
TACAGTAGCTCTTGGTAC
5233
GRG
GGAAGGGGC





173
AKVGG
4938
GCCAAGGTGGGTGGA
5110
GYSSSWY
4435
GGCTACAGTTCAAGCTGGTAT
5234
GSG
GGATCTGGC





174
AKQ
n/a
GCAAAACAG
n/a
SSW
n/a
AGTTCCTGG
n/a
GTG
GGAACTGGC





175
AKH
n/a
GCCAAACAC
n/a
SWY
n/a
AGCTGGTAC
n/a
GVG
GGAGTAGGT





176
AKDQ
4939
GCCAAGGATCAG
5111
SSSW
4443
AGTAGCTCTTGG
5235
LGG
TTGGGAGGC





177
AKDH
4940
GCTAAAGACCAC
5112
YSSS
4442
TACAGCAGCTCC
5236
LGH
TTGGGCCAC





178
AKAR
4941
GCCAAGGCAAGA
5113
YSSSW
4439
TACTCTTCCTCATGG
5237
PGG
CCTGGCGGC





179
AKAS
4942
GCCAAGGCATCT
5114
SW
n/a
AGCTGG
n/a
PKQ
CCAAAGCAG





180
AKDQG
4943
GCAAAGGATCAGGGA
5115
AG
n/a
GCTGGT
n/a
PKR
CCTAAAAGG





181
AKSR
4944
GCCAAGAGTAGA
5116
QQLV
4455
CAGCAATTGGTT
5238
PTQ
CCAACTCAG





182
AKDRS
4945
GCAAAAGACAGGTCT
5117
QQL
n/a
CAGCAACTT
n/a
RFE
AGGTTTGAG





183
AKSL
4946
GCAAAGAGCTTG
5118
GWY
n/a
GGTTGGTAC
n/a
RGG
AGGGGAGGT





184
AKLH
4947
GCTAAATTGCAC
5119
SSGWY
4461
AGCTCTGGATGGTAC
5239
RGL
AGGGGATTG





185
AKDLT
4948
GCCAAGGACTTGACT
5120
YSSGW
4460
TATAGTAGCGGATGG
5240
RGS
AGGGGTAGT





186
AKK
n/a
GCTAAAAAG
n/a
YSSGWY
4458
TATAGCAGCGGTTGGTAC
5241
RPL
AGGCCATTA





187
AKAE
4949
GCTAAAGCAGAG
5121
GYSSGWY
4456
GGTTATTCATCAGGTTGGTAT
5242
RPY
AGGCCATAT





188
AKDLS
4950
GCAAAAGACTTGTCT
5122
SGW
n/a
AGTGGTTGG
n/a
SAA
TCTGCCGCC





189
AKGD
4951
GCAAAAGGGGAC
5123
YSS
n/a
TACAGTTCC
n/a
SGE
AGCGGGGAG





190
AKRR
4952
GCAAAAAGGAGA
5124
SGWY
4464
AGTGGTTGGTAT
5243
SGG
TCTGGCGGC





191
AKDK
4953
GCAAAAGACAAG
5125
SSGW
4463
AGTTCCGGTTGG
5244
SGL
TCAGGGTTA





192
AKVS
4954
GCCAAAGTATCT
5126
YSSG
4462
TACTCAAGTGGT
5245
SGW
AGCGGTTGG





193
AKDRL
4955
GCAAAAGACAGGTTG
5127
GW
n/a
GGTTGG
n/a
SGY
AGCGGCTAC





194
AKGQ
4956
GCCAAAGGACAG
5128
QWLV
4475
CAGTGGTTAGTT
5246
SRG
TCAAGAGGT





195
AKVR
4957
GCAAAAGTCAGA
5129
EYSS
4479
GAGTACTCATCC
5247
SSE
TCATCAGAG





196
AKAK
4958
GCAAAGGCAAAG
5130
SIAARP
4481
AGCATAGCAGCAAGGCCT
5248
SSW
AGCTCATGG





197
AKGK
4959
GCAAAGGGCAAG
5131
RP
n/a
CGTCCT
n/a
TGG
ACCGGTGGC





198
AKDIS
4960
GCAAAGGACATTTCT
5132
IAARP
4483
ATAGCAGCAAGGCCT
5249
VGR
GTTGGCAGA





199
AKDFT
4961
GCTAAAGATTTCACT
5133
AARP
4486
GCCGCAAGACCT
5250
VQG
GTGCAAGGA





200
AKQG
4962
GCCAAGCAAGGA
5134
ARP
n/a
GCTAGACCT
n/a
VTA
GTCACAGCT






1“AR” and “AK” refer to the last two C-terminal amino acids of the heavy chain chassis used in the current example. They are not part of the TN1 segment.














TABLE 26







Theoretical segment pool of 300 TN1 segments


(plus AR/AK; which is not part of TN1)


used in the library of Example 12.











Peptide
SEQ

SEQ



(plus AR
ID
Nucleotide
ID



or AK)1
NO
(plus AR or AK)1
NO
In ELD-3?





AR
n/a
GCCAGA
n/a
YES





AK
n/a
GCCAAG
n/a
YES





ARE
n/a
GCCAGAGAG
n/a
YES





AKE
n/a
GCCAAGGAG
n/a
YES





ARD
n/a
GCCAGAGAC
n/a
YES





AKD
n/a
GCCAAGGAC
n/a
YES





ARG
n/a
GCCAGAGGA
n/a
YES





AKG
n/a
GCCAAGGGA
n/a
YES





AREG
4791
GCCAGAGAGGGA
4963
YES





AKEG
4877
GCCAAGGAAGGA
5049
YES





ARDG
4792
GCCAGAGACGGA
4964
YES





AKDG
4878
GCCAAGGACGGA
5050
YES





ARGG
4793
GCCAGAGGTGGA
4965
YES





AKGG
4879
GCCAAGGGCGGA
5051
YES





ARR
n/a
GCCAGGAGA
n/a
YES





AKR
n/a
GCCAAGAGA
n/a
YES





ARER
4794
GCCAGAGAGAGA
4966
YES





AKER
4880
GCCAAGGAAAGA
5052
YES





ARDR
4795
GCCAGAGACAGA
4967
YES





AKDR
4881
GCCAAGGACAGA
5053
YES





ARGR
4796
GCCAGAGGCAGA
4968
YES





AKGR
4882
GCCAAGGGCAGA
5054
YES





ARS
n/a
GCCAGATCT
n/a
YES





AKS
n/a
GCCAAGTCT
n/a
YES





ARES
4797
GCCAGAGAATCT
4969
YES





AKES
4883
GCCAAGGAATCT
5055
YES





ARDS
4798
GCCAGAGACTCT
4970
YES





AKDS
4884
GCCAAGGATTCT
5056
YES





ARGS
4799
GCCAGAGGTTCT
4971
YES





AKGS
4885
GCCAAGGGATCT
5057
YES





ARP
n/a
GCCAGACCT
n/a
YES





AKP
n/a
GCCAAGCCT
n/a
YES





AREP
5328
GCCAGAGAGCCT
5428
NO





AKEP
5329
GCCAAGGAGCCT
5429
NO





ARDP
4800
GCCAGAGACCCT
4972
YES





AKDP
4886
GCCAAGGATCCT
5058
YES





ARGP
4801
GCCAGAGGGCCT
4973
YES





AKGP
4887
GCCAAGGGTCCT
5059
YES





ARL
n/a
GCCAGATTG
n/a
YES





AKL
n/a
GCCAAGTTG
n/a
YES





AREL
5330
GCCAGAGAGTTG
5430
NO





AKEL
5331
GCCAAGGAATTG
5431
NO





ARDL
4802
GCCAGAGACTTG
4974
YES





AKDL
4888
GCCAAGGACTTG
5060
YES





ARGL
4803
GCCAGAGGGTTG
4975
YES





AKGL
4889
GCCAAGGGGTTG
5061
YES





ARA
n/a
GCCAGAGCT
n/a
YES





AKA
n/a
GCCAAGGCT
n/a
YES





AREA
4804
GCCAGAGAGGCT
4976
YES





AKEA
4890
GCCAAGGAAGCT
5062
YES





ARDA
4805
GCCAGAGATGCT
4977
YES





AKDA
4891
GCCAAGGACGCT
5063
YES





ARGA
4806
GCCAGAGGTGCT
4978
YES





AKGA
4892
GCCAAGGGCGCT
5064
YES





ART
n/a
GCCAGAACT
n/a
YES





AKT
n/a
GCCAAGACT
n/a
YES





ARET
4807
GCCAGAGAGACT
4979
YES





AKET
4893
GCCAAGGAAACT
5065
YES





ARDT
4808
GCCAGAGATACT
4980
YES





AKDT
4894
GCCAAGGATACT
5066
YES





ARGT
4809
GCCAGAGGCACT
4981
YES





AKGT
4895
GCCAAGGGAACT
5067
YES





ARV
n/a
GCCAGAGTG
n/a
YES





AKV
n/a
GCCAAGGTG
n/a
YES





AREV
4810
GCCAGAGAGGTG
4982
YES





AKEV
4896
GCCAAGGAAGTG
5068
YES





ARDV
4811
GCCAGAGATGTG
4983
YES





AKDV
4897
GCCAAGGACGTG
5069
YES





ARGV
4812
GCCAGAGGGGTG
4984
YES





AKGV
4898
GCCAAGGGCGTG
5070
YES





AREGG
4813
GCCAGAGAGGGAGGA
4985
YES





AKEGG
4899
GCCAAGGAGGGAGGA
5071
YES





ARDGG
4814
GCCAGAGATGGTGGA
4986
YES





AKDGG
4900
GCCAAGGACGGTGGA
5072
YES





ARGGG
4815
GCCAGAGGTGGAGGA
4987
YES





AKGGG
4901
GCCAAGGGAGGAGGA
5073
YES





AREGR
5332
GCCAGAGAAGGGAGA
5432
NO





AKEGR
5333
GCCAAGGAAGGCAGA
5433
NO





ARDGR
4816
GCCAGAGACGGCAGA
4988
YES





AKDGR
4902
GCCAAGGACGGTAGA
5074
YES





ARGGR
5334
GCCAGAGGAGGTAGA
5434
NO





AKGGR
5335
GCCAAGGGAGGTAGA
5435
NO





AREGS
5336
GCCAGAGAAGGATCT
5436
NO





AKEGS
5337
GCCAAGGAAGGATCT
5437
NO





ARDGS
5338
GCCAGAGACGGATCT
5438
NO





AKDGS
5339
GCCAAGGATGGTTCT
5439
NO





ARGGS
4817
GCCAGAGGCGGTTCT
4989
YES





AKGGS
4903
GCCAAGGGAGGTTCT
5075
YES





AREGP
5340
GCCAGAGAAGGTCCT
5440
NO





AKEGP
5341
GCCAAGGAGGGGCCT
5441
NO





ARDGP
5342
GCCAGAGACGGTCCT
5442
NO





AKDGP
5343
GCCAAGGACGGTCCT
5443
NO





ARGGP
4818
GCCAGAGGTGGGCCT
4990
YES





AKGGP
4904
GCCAAGGGAGGTCCT
5076
YES





AREGL
5344
GCCAGAGAGGGCTTG
5444
NO





AKEGL
5345
GCCAAGGAAGGGTTG
5445
NO





ARDGL
5346
GCCAGAGATGGGTTG
5446
NO





AKDGL
5347
GCCAAGGACGGTTTG
5447
NO





ARGGL
5348
GCCAGAGGTGGATTG
5448
NO





AKGGL
5349
GCCAAGGGAGGGTTG
5449
NO





AREGA
5350
GCCAGAGAAGGAGCT
5450
NO





AKEGA
5351
GCCAAGGAGGGAGCT
5451
NO





ARDGA
5352
GCCAGAGATGGCGCT
5452
NO





AKDGA
5353
GCCAAGGATGGAGCT
5453
NO





ARGGA
4819
GCCAGAGGAGGTGCT
4991
YES





AKGGA
4905
GCCAAGGGAGGCGCT
5077
YES





ARDGT
4820
GCCAGAGACGGTACT
4992
YES





AKDGT
4906
GCCAAGGATGGCACT
5078
YES





ARGGT
4821
GCCAGAGGTGGAACT
4993
YES





AKGGT
4907
GCCAAGGGAGGCACT
5079
YES





AREGV
4822
GCCAGAGAGGGAGTG
4994
YES





AKEGV
4908
GCCAAGGAAGGAGTG
5080
YES





ARDGV
5354
GCCAGAGATGGTGTG
5454
NO





AKDGV
5355
GCCAAGGATGGTGTG
5455
NO





ARGGV
4823
GCCAGAGGTGGCGTG
4995
YES





AKGGV
4909
GCCAAGGGCGGTGTG
5081
YES





ARRG
4824
GCCAGAAGAGGA
4996
YES





AKRG
4910
GCCAAGAGAGGA
5082
YES





ARERG
4825
GCCAGAGAGCGTGGA
4997
YES





AKERG
4911
GCCAAGGAGAGAGGA
5083
YES





ARDRG
4826
GCCAGAGATCGTGGA
4998
YES





AKDRG
4912
GCCAAGGATAGGGGA
5084
YES





ARGRG
4827
GCCAGAGGCAGGGGA
4999
YES





AKGRG
4913
GCCAAGGGTAGGGGA
5085
YES





ARSG
4828
GCCAGATCAGGA
5000
YES





AKSG
4914
GCCAAGTCTGGA
5086
YES





ARESG
5356
GCCAGAGAGTCTGGA
5456
NO





AKESG
5357
GCCAAGGAAAGTGGA
5457
NO





ARDSG
4829
GCCAGAGACTCAGGA
5001
YES





AKDSG
4915
GCCAAGGATAGTGGA
5087
YES





ARGSG
5358
GCCAGAGGCTCTGGA
5458
NO





AKGSG
5359
GCCAAGGGGTCTGGA
5459
NO





ARPG
5360
GCCAGACCAGGA
5460
NO





AKPG
5361
GCCAAGCCCGGA
5461
NO





ARDPG
4830
GCCAGAGATCCAGGA
5002
YES





AKDPG
4916
GCCAAGGACCCCGGA
5088
YES





ARGPG
5362
GCCAGAGGACCTGGA
5462
NO





AKGPG
5363
GCCAAGGGGCCTGGA
5463
NO





ARLG
4831
GCCAGATTGGGA
5003
YES





AKLG
4917
GCCAAGTTAGGA
5089
YES





ARDLG
4832
GCCAGAGACTTGGGA
5004
YES





AKDLG
4918
GCCAAGGATCTTGGA
5090
YES





ARGLG
5364
GCCAGAGGACTAGGA
5464
NO





AKGLG
5365
GCCAAGGGTTTGGGA
5465
NO





ARAG
4833
GCCAGAGCTGGA
5005
YES





AKAG
4919
GCCAAGGCTGGA
5091
YES





AREAG
5366
GCCAGAGAAGCCGGA
5466
NO





AKEAG
5367
GCCAAGGAGGCTGGA
5467
NO





ARDAG
5368
GCCAGAGACGCAGGA
5468
NO





AKDAG
5369
GCCAAGGATGCCGGA
5469
NO





ARGAG
5370
GCCAGAGGTGCCGGA
5470
NO





AKGAG
5371
GCCAAGGGAGCAGGA
5471
NO





ARTG
5372
GCCAGAACTGGA
5472
NO





AKTG
5373
GCCAAGACCGGA
5473
NO





ARDTG
5374
GCCAGAGACACGGGA
5474
NO





AKDTG
5375
GCCAAGGATACGGGA
5475
NO





ARVG
4834
GCCAGAGTGGGA
5006
YES





AKVG
4920
GCCAAGGTAGGA
5092
YES





AREVG
5376
GCCAGAGAAGTCGGA
5476
NO





AKEVG
5377
GCCAAGGAGGTAGGA
5477
NO





ARDVG
5378
GCCAGAGATGTAGGA
5478
NO





AKDVG
5379
GCCAAGGACGTAGGA
5479
NO





ARGVG
4835
GCCAGAGGCGTAGGA
5007
YES





AKGVG
4921
GCCAAGGGTGTCGGA
5093
YES





ARPR
4836
GCCAGACCCAGA
5008
YES





AKPR
4922
GCCAAGCCTAGA
5094
YES





ARDPR
5380
GCCAGAGATCCAAGA
5480
NO





AKDPR
5381
GCCAAGGATCCTAGA
5481
NO





ARGPR
4837
GCCAGAGGACCAAGA
5009
YES





AKGPR
4923
GCCAAGGGCCCCAGA
5095
YES





ARPS
4838
GCCAGACCATCT
5010
YES





AKPS
4924
GCCAAGCCTTCT
5096
YES





ARDPS
4839
GCCAGAGATCCCTCT
5011
YES





AKDPS
4925
GCCAAGGATCCCTCT
5097
YES





ARGPS
4840
GCAAGAGGACCTTCT
5012
YES





AKGPS
4926
GCCAAAGGGCCATCT
5098
YES





ARPP
5382
GCCAGACCACCT
5482
NO





AKPP
5383
GCCAAGCCACCT
5483
NO





ARDPP
4841
GCCAGAGACCCACCT
5013
YES





AKDPP
4927
GCCAAGGATCCACCT
5099
YES





ARGPP
4842
GCCAGAGGACCGCCT
5014
YES





AKGPP
4928
GCCAAGGGCCCTCCT
5100
YES





ARPL
4843
GCCAGACCGTTG
5015
YES





AKPL
4929
GCCAAGCCGTTG
5101
YES





ARDPL
4844
GCCAGAGATCCTTTG
5016
YES





AKDPL
4930
GCCAAGGACCCTTTG
5102
YES





ARGPL
5384
GCCAGAGGTCCCTTG
5484
NO





AKGPL
5385
GCCAAGGGGCCGTTG
5485
NO





ARPA
5386
GCCAGACCAGCT
5486
NO





AKPA
5387
GCCAAGCCGGCT
5487
NO





ARDPA
5388
GCCAGAGATCCCGCT
5488
NO





AKDPA
5389
GCCAAGGACCCCGCT
5489
NO





ARPT
5390
GCCAGACCTACT
5490
NO





AKPT
5391
GCCAAGCCTACT
5491
NO





ARDPT
5392
GCCAGAGATCCGACT
5492
NO





AKDPT
5393
GCCAAGGACCCTACT
5493
NO





ARGPT
5394
GCCAGAGGACCCACT
5494
NO





AKGPT
5395
GCCAAGGGGCCCACT
5495
NO





ARPV
5396
GCCAGACCGGTG
5496
NO





AKPV
5397
GCCAAGCCAGTG
5497
NO





ARDPV
5398
GCCAGAGATCCGGTG
5498
NO





AKDPV
5399
GCCAAGGACCCTGTG
5499
NO





ARRP
4845
GCCAGAAGGCCT
5017
YES





AKRP
4931
GCCAAGAGGCCT
5103
YES





ARDRP
4846
GCCAGAGACCGTCCT
5018
YES





AKDRP
4932
GCCAAGGACCGTCCT
5104
YES





ARGRP
5400
GCCAGAGGAAGGCCT
5500
NO





AKGRP
5401
GCCAAGGGCCGTCCT
5501
NO





ARSP
4847
GCCAGATCACCT
5019
YES





AKSP
4933
GCCAAGAGTCCT
5105
YES





ARDSP
5402
GCCAGAGACTCTCCT
5502
NO





AKDSP
5403
GCCAAGGACTCCCCT
5503
NO





ARGSP
5404
GCCAGAGGTTCCCCT
5504
NO





AKGSP
5405
GCCAAGGGTTCACCT
5505
NO





ARLP
4848
GCCAGACTTCCT
5020
YES





AKLP
4934
GCCAAGCTACCT
5106
YES





ARDLP
5406
GCCAGAGATCTTCCT
5506
NO





AKDLP
5407
GCCAAGGATCTACCT
5507
NO





ARAP
4849
GCCAGAGCCCCT
5021
YES





AKAP
4935
GCCAAGGCTCCT
5107
YES





ARDAP
5408
GCCAGAGATGCTCCT
5508
NO





AKDAP
5409
GCCAAGGATGCTCCT
5509
NO





ARGAP
5410
GCCAGAGGGGCCCCT
5510
NO





AKGAP
5411
GCCAAGGGTGCCCCT
5511
NO





ARTP
4850
GCCAGAACTCCT
5022
YES





AKTP
4936
GCCAAGACGCCT
5108
YES





ARDTP
5412
GCCAGAGATACCCCT
5512
NO





AKDTP
5413
GCCAAGGACACGCCT
5513
NO





ARVP
4851
GCCAGAGTCCCT
5023
YES





AKVP
4937
GCCAAGGTACCT
5109
YES





ARAGG
5414
GCCAGAGCTGGCGGA
5514
NO





AKAGG
5415
GCCAAGGCCGGTGGA
5515
NO





ARDGGG
5416
GCCAGAGATGGTGGCGGA
5516
NO





AKDGGG
5417
GCCAAGGACGGCGGTGGA
5517
NO





ARLGG
5418
GCCAGATTGGGCGGA
5518
NO





AKLGG
5419
GCCAAGCTAGGCGGA
5519
NO





ARDLGG
5420
GCCAGAGATTTGGGTGGA
5520
NO





AKDLGG
5421
GCCAAGGATTTGGGTGGA
5521
NO





ARRGG
5422
GCCAGAAGAGGTGGA
5522
NO





AKRGG
5423
GCCAAGAGAGGAGGA
5523
NO





ARDRGG
5424
GCCAGAGACCGTGGCGGA
5524
NO





AKDRGG
5425
GCCAAGGACAGAGGTGGA
5525
NO





ARSGG
5426
GCCAGATCAGGCGGA
5526
NO





AKSGG
5427
GCCAAGTCCGGTGGA
5527
NO





ARVGG
4852
GCCAGAGTTGGAGGA
5024
YES





AKVGG
4938
GCCAAGGTGGGTGGA
5110
YES





ARQ
n/a
GCAAGACAG
n/a
YES





AKQ
n/a
GCAAAACAG
n/a
YES





ARH
n/a
GCCAGACAC
n/a
YES





AKH
n/a
GCCAAACAC
n/a
YES





ARDQ
4853
GCCAGGGACCAG
5025
YES





AKDQ
4939
GCCAAGGATCAG
5111
YES





ARDH
4854
GCAAGAGACCAC
5026
YES





AKDH
4940
GCTAAAGACCAC
5112
YES





ARAR
4855
GCAAGGGCTAGA
5027
YES





AKAR
4941
GCCAAGGCAAGA
5113
YES





ARAS
4856
GCTAGGGCATCT
5028
YES





AKAS
4942
GCCAAGGCATCT
5114
YES





ARDQG
4857
GCTAGGGATCAGGGA
5029
YES





AKDQG
4943
GCAAAGGATCAGGGA
5115
YES





ARSR
4858
GCTAGATCAAGA
5030
YES





AKSR
4944
GCCAAGAGTAGA
5116
YES





ARDRS
4859
GCCAGGGACAGGTCT
5031
YES





AKDRS
4945
GCAAAAGACAGGTCT
5117
YES





ARSL
4860
GCTAGATCTTTG
5032
YES





AKSL
4946
GCAAAGAGCTTG
5118
YES





ARLH
4861
GCTAGGTTGCAC
5033
YES





AKLH
4947
GCTAAATTGCAC
5119
YES





ARDLT
4862
GCCAGGGATTTGACT
5034
YES





AKDLT
4948
GCCAAGGACTTGACT
5120
YES





ARK
n/a
GCCAGAAAG
n/a
YES





AKK
n/a
GCTAAAAAG
n/a
YES





ARAE
4863
GCAAGAGCCGAG
5035
YES





AKAE
4949
GCTAAAGCAGAG
5121
YES





ARDLS
4864
GCAAGGGATTTGTCT
5036
YES





AKDLS
4950
GCAAAAGACTTGTCT
5122
YES





ARGD
4865
GCTAGAGGGGAC
5037
YES





AKGD
4951
GCAAAAGGGGAC
5123
YES





ARRR
4866
GCTAGGAGGAGA
5038
YES





AKRR
4952
GCAAAAAGGAGA
5124
YES





ARDK
4867
GCTAGAGATAAG
5039
YES





AKDK
4953
GCAAAAGACAAG
5125
YES





ARVS
4868
GCTAGAGTATCT
5040
YES





AKVS
4954
GCCAAAGTATCT
5126
YES





ARDRL
4869
GCCAGAGACAGGTTG
5041
YES





AKDRL
4955
GCAAAAGACAGGTTG
5127
YES





ARGQ
4870
GCTAGGGGCCAG
5042
YES





AKGQ
4956
GCCAAAGGACAG
5128
YES





ARVR
4871
GCCAGGGTCAGA
5043
YES





AKVR
4957
GCAAAAGTCAGA
5129
YES





ARAK
4872
GCTAGGGCTAAG
5044
YES





AKAK
4958
GCAAAGGCAAAG
5130
YES





ARGK
4873
GCCAGGGGTAAG
5045
YES





AKGK
4959
GCAAAGGGCAAG
5131
YES





ARDIS
4874
GCAAGGGATATTTCT
5046
YES





AKDIS
4960
GCAAAGGACATTTCT
5132
YES





ARDFT
4875
GCTAGGGATTTCACT
5047
YES





AKDFT
4961
GCTAAAGATTTCACT
5133
YES





ARQG
4876
GCCAGGCAGGGA
5048
YES





AKQG
4962
GCCAAGCAAGGA
5134
YES






1“AR” and “AK” refer to the last two C-terminal amino acids of the heavy chain chassis used in the current example. They are not part of the TN1 segment.














TABLE 27







Theoretical segment pool of degenerate


oligonucleotide sequences encoding DH


segments of Example 13.











Degenerate
Peptide
SEQ ID


Name
Oligo
Length
NO













DH_001
KHTGAK
2
n/a





DH_002
KHTKGG
2
n/a





DH_003
KHTCMT
2
n/a





DH_004
KHTMCT
2
n/a





DH_005
GVCWSG
2
n/a





DH_006
SVCYAT
2
n/a





DH_007
BYCSAG
2
n/a





DH_008
SBAMAG
2
n/a





DH_009
VSCMAA
2
n/a





DH_010
GRABYT
2
n/a





DH_011
GRAKBG
2
n/a





DH_012
RDAGAK
2
n/a





DH_013
RDAGRT
2
n/a





DH_014
YHTSAC
2
n/a





DH_015
YHTKAC
2
n/a





DH_016
YHTMCG
2
n/a





DH_017
MHAGAW
2
n/a





DH_018
MHAGRT
2
n/a





DH_019
MHAMCT
2
n/a





DH_020
MBCYAT
2
n/a





DH_021
CVACNG
2
n/a





DH_022
MSCAHG
2
n/a





DH_023
CRGKBG
2
n/a





DH_024
WSGHCT
2
n/a





DH_025
WGGKHT
2
n/a





DH_026
BGGSAK
2
n/a





DH_027
BWCAMA
2
n/a





DH_028
BHCTGG
2
n/a





DH_029
TGGVBT
2
n/a





DH_030
BHCAGT
2
n/a





DH_031
SRTATT
2
n/a





DH_032
ACABHT
2
n/a





DH_033
SVCGCT
2
n/a





DH_034
ATGSVT
2
n/a





DH_035
SWGAGG
2
n/a





DH_036
GTAGCAVBT
3
n/a





DH_037
DBGSWACTT
3
n/a





DH_038
VNCBCAGGT
3
n/a





DH_039
VNCDCATAT
3
n/a





DH_040
VHAKKGTTG
3
n/a





DH_041
CCAGCABHT
3
n/a





DH_042
VHASRACTT
3
n/a





DH_043
BHCAGCRST
3
n/a





DH_044
BHCGGAKMT
3
n/a





DH_045
BHCGGAGDT
3
n/a





DH_046
BHCAGCKMT
3
n/a





DH_047
NHCCRACTT
3
n/a





DH_048
NHCAGCKGG
3
n/a





DH_049
BHCGGAKSG
3
n/a





DH_050
VBCGGAGNT
3
n/a





DH_051
NHCAGCGVT
3
n/a





DH_052
NHCTACGVT
3
n/a





DH_053
NHCAGCGVG
3
n/a





DH_054
VHATGGSYG
3
n/a





DH_055
VNCGHCTAT
3
n/a





DH_056
GGTRNACTT
3
n/a





DH_057
NHCABAGGT
3
n/a





DH_058
VHAGCAGNT
3
n/a





DH_059
DBGKYCGGT
3
n/a





DH_060
BHCGGARKT
3
n/a





DH_061
NHCGTAGVT
3
n/a





DH_062
VNTTHCTAT
3
n/a





DH_063
GTAGTABHT
3
n/a





DH_064
VBCGNCCTT
3
n/a





DH_065
BHCGGAGNG
3
n/a





DH_066
VNCGHCGGT
3
n/a





DH_067
AGGBHCGGT
3
n/a





DH_068
VNCTBGTAT
3
n/a





DH_069
VNCTBGCTT
3
n/a





DH_070
NHCKACTAT
3
n/a





DH_071
CTARNACTT
3
n/a





DH_072
NHCBCAGGT
3
n/a





DH_073
NHCTACBAT
3
n/a





DH_074
BHCACAGCCAKS
4
5528





DH_075
VHGGBAGCAACT
4
5529





DH_076
DBGTTCGGAGNG
4
5530





DH_077
BHCGGAKMCTAT
4
5531





DH_078
TACAGCAGCVBT
4
5532





DH_079
VHGGTARSAGGT
4
5533





DH_080
VBCGACGGATHT
4
5534





DH_081
NHCTACGGAGVT
4
5535





DH_082
VHGRYGGCAACT
4
5536





DH_083
VHATACAGCRST
4
5537





DH_084
CAGTGGCTABHT
4
5538





DH_085
VHAGTAGCAGNT
4
5539





DH_086
VBCACAGTARMG
4
5540





DH_087
AGCAGCAGCDBG
4
5541





DH_088
NHCTMCTACGGT
4
5542





DH_089
BHCAGCTGGTHT
4
5543





DH_090
VHACAACTAGNT
4
5544





DH_091
BHCGGAAGCKMT
4
5545





DH_092
BHCGGATSGTAT
4
5546





DH_093
NHCAGCGGABGG
4
5547





DH_094
BHCGGATACKMT
4
5548





DH_095
VHAGTAACARMG
4
5549





DH_096
GCAGCAGCAVBT
4
5550





DH_097
VBCAYATTCGGT
4
5551





DH_098
GTAGCAGCAVHA
4
5552





DH_099
NHCTACTACGVT
4
5553





DH_100
VBCKMCGGATAT
4
5554





DH_101
VHACAACTAKKG
4
5555





DH_102
VHGGGARKCGCT
4
5556





DH_103
VBTBTCGGAGAG
4
5557





DH_104
BHCTACAGCKMT
4
5558





DH_105
VHAGTASSAGCT
4
5559





DH_106
VBTCDAGGAGTT
4
5560





DH_107
GACAGCAGCDBG
4
5561





DH_108
VBCGVCTACAGT
4
5562





DH_109
NHCTACGGAKCT
4
5563





DH_110
NHCTACTACTHT
4
5564





DH_111
BHCVGCTACAGT
4
5565





DH_112
VBCTGGTTCGGT
4
5566





DH_113
VNCTACTACTHT
4
5567





DH_114
VHABTCGGAGGT
4
5568





DH_115
NHCATGGTAAGAGVT
5
5569





DH_116
NHCTACGGAGACTHT
5
5570





DH_117
VBCTACAGCTACGNT
5
5571





DH_118
VNCAGCGGAAGCTHT
5
5572





DH_119
VBCTTTCTAGAATBG
5
5573





DH_120
BHCGGAAGCTACKMT
5
5574





DH_121
NHCAGCGGAAGCTHT
5
5575





DH_122
BHCAGCAGCAGCTBG
5
5576





DH_123
BHCAGCAGCGGATBG
5
5577





DH_124
VBCACAGTAACAANA
5
5578





DH_125
BHCAGCAGCAGCTHT
5
5579





DH_126
NHCAGCGGATGGTHT
5
5580





DH_127
NHCAGCGGATACGVT
5
5581





DH_128
NHCTACTACGACABT
5
5582





DH_129
BHCAGCAGCGGATHT
5
5583





DH_130
VHAGCAGCAAGACNT
5
5584





DH_131
VHGTACTACTACGVT
5
5585





DH_132
VBCACAATGGTACRG
5
5586





DH_133
NHCATGGTACRAGGT
5
5587





DH_134
NHCTSGGGAAGCTAT
5
5588





DH_135
BHCAGCAGCAGCTGGTHT
6
5589





DH_136
NHCTACTACGACAGCABT
6
5590





DH_137
VBCTACAGCGGATACGNT
6
5591





DH_138
BHCAGCAGCGGATGGTHT
6
5592





DH_139
NHCTACTACGGAAGCGVT
6
5593





DH_140
BHCAGCAGCGGATACTHT
6
5594





DH_141
NHCTACGACAGCAGCGVT
6
5595





DH_142
NHCGACTTCTGGAGCGVT
6
5596





DH_143
BHCGACAGCAGCGGATHT
6
5597





DH_144
SNATACTTCGACTGGYYT
6
5598





DH_145
TGTRGCRGCACAAGCTGT
6
5599





DH_146
NHCTACTACGGAAGCGVG
6
5600





DH_147
TGTRGCRGCGGAAGCTGT
6
5601





DH_148
NHCTTTTGGAGCGGATHT
6
5602





DH_149
NHCTACTACGACAGCAGCGVT
7
5603





DH_150
NHCGACATACTAACAGGATHT
7
5604





DH_151
NHCTACGACTTCTGGAGCGVT
7
5605





DH_152
BHCTGTAGCAGCACAAGCTGT
7
5606





DH_153
DBGTACAGCAGCAGCTGGTHT
7
5607





DH_154
NHCTACGACAGCAGCGGATHT
7
5608





DH_155
NHCTACTACGGAAGCGGAABT
7
5609





DH_156
DBGTACAGCAGCGGATGGTHT
7
5610





DH_157
BHCTGTAGCGGAGGAAGCTGT
7
5611





DH_158
TGTAGCGGAGGAAGCTGTYHT
7
5612





DH_159
TGTAGCAGCACAAGCTGTYHT
7
5613





DH_160
NHCTGTGGAGGAGACTGTTHT
7
5614





DH_161
NHCGACTTCTGGAGCGGATHT
7
5615





DH_162
BHCGACAGCAGCGGATACTHT
7
5616





DH_163
VHATACTGTGGAGGAGACTGT
7
5617





DH_164
NHCTACTACGACAGCAGCGGATHT
8
5618





DH_165
NHCTACTACGGAAGCGGAAGCTHT
8
5619





DH_166
VBCTACTGTAGCAGCACAAGCTGT
8
5620





DH_167
VBCTACTGTAGCGGAGGAAGCTGT
8
5621





DH_168
NHCTACGACTTCTGGAGCGGATHT
8
5622





DH_169
NHCGACATACTAACAGGATACTHT
8
5623





DH_170
BHCTGTAGCGGAGGAAGCTGTTHT
8
5624





DH_171
BHCTGTAGCAGCACAAGCTGTTHT
8
5625





DH_172
VHATACTGTGGAGGAGACTGTTHT
8
5626





DH_173
NHCTACGACAGCAGCGGATACTHT
8
5627





DH_174
VNCTACTACGGAAGCGGAAGCTMT
8
5628





DH_175
NHCGACTTCTGGAGCGGATACTHT
8
5629





DH_176
VHACTAAGATACTTCGACTGGYWT
8
5630





DH_177
NHCTACTACGACAGCAGCGGATACTHT
9
5631





DH_178
VBCTACTGTAGCGGAGGAAGCTGTTHT
9
5632





DH_179
VBCTACTGTAGCAGCACAAGCTGTTHT
9
5633





DH_180
NHCTACGACTTCTGGAGCGGATACTHT
9
5634





DH_181
BHCTGTAGCGGAGGAAGCTGTTACTHT
9
5635





DH_182
NHCTACTACGACAGCAGCGGATACT
10
5636



ACTHT





DH_183
NHCTACGACTACGTATGGGGAAGCTAC
11
5637



GCATHT





DH_184
NHCTACGACTACGTATGGGGAAGCTACGC
12
5638



ATACAHA
















TABLE 28







Theoretical segment pool of unique DH polypeptide


segments encoded by the degenerate


oligonucleotides of Table 27.












Name
Sequence
Length
SEQ ID NO
















PDH_0001
YE
2
n/a







PDH_0002
DD
2
n/a







PDH_0003
VD
2
n/a







PDH_0004
FD
2
n/a







PDH_0005
AE
2
n/a







PDH_0006
SD
2
n/a







PDH_0007
YD
2
n/a







PDH_0008
VE
2
n/a







PDH_0009
DE
2
n/a







PDH_0010
AD
2
n/a







PDH_0011
FE
2
n/a







PDH_0012
SE
2
n/a







PDH_0013
VG
2
n/a







PDH_0014
FW
2
n/a







PDH_0015
YG
2
n/a







PDH_0016
DW
2
n/a







PDH_0017
FG
2
n/a







PDH_0018
AW
2
n/a







PDH_0019
DG
2
n/a







PDH_0020
YW
2
n/a







PDH_0021
SG
2
n/a







PDH_0022
AG
2
n/a







PDH_0023
VW
2
n/a







PDH_0024
SW
2
n/a







PDH_0025
VP
2
n/a







PDH_0026
DH
2
n/a







PDH_0027
DP
2
n/a







PDH_0028
YP
2
n/a







PDH_0029
SH
2
n/a







PDH_0030
VH
2
n/a







PDH_0031
FH
2
n/a







PDH_0032
YH
2
n/a







PDH_0033
FP
2
n/a







PDH_0034
AP
2
n/a







PDH_0035
SP
2
n/a







PDH_0036
AH
2
n/a







PDH_0037
YT
2
n/a







PDH_0038
DT
2
n/a







PDH_0039
AT
2
n/a







PDH_0040
ST
2
n/a







PDH_0041
FT
2
n/a







PDH_0042
VT
2
n/a







PDH_0043
AS
2
n/a







PDH_0044
AR
2
n/a







PDH_0045
DS
2
n/a







PDH_0046
GT
2
n/a







PDH_0047
GS
2
n/a







PDH_0048
GW
2
n/a







PDH_0049
GR
2
n/a







PDH_0050
DR
2
n/a







PDH_0051
PH
2
n/a







PDH_0052
RH
2
n/a







PDH_0053
PY
2
n/a







PDH_0054
GH
2
n/a







PDH_0055
GY
2
n/a







PDH_0056
RY
2
n/a







PDH_0057
HH
2
n/a







PDH_0058
HY
2
n/a







PDH_0059
DY
2
n/a







PDH_0060
AY
2
n/a







PDH_0061
AQ
2
n/a







PDH_0062
FQ
2
n/a







PDH_0063
LE
2
n/a







PDH_0064
PE
2
n/a







PDH_0065
LQ
2
n/a







PDH_0066
PQ
2
n/a







PDH_0067
VQ
2
n/a







PDH_0068
SQ
2
n/a







PDH_0069
RK
2
n/a







PDH_0070
GK
2
n/a







PDH_0071
AK
2
n/a







PDH_0072
RQ
2
n/a







PDH_0073
GQ
2
n/a







PDH_0074
LK
2
n/a







PDH_0075
VK
2
n/a







PDH_0076
PK
2
n/a







PDH_0077
SK
2
n/a







PDH_0078
TK
2
n/a







PDH_0079
TQ
2
n/a







PDH_0080
GL
2
n/a







PDH_0081
GP
2
n/a







PDH_0082
GV
2
n/a







PDH_0083
EF
2
n/a







PDH_0084
GF
2
n/a







PDH_0085
EL
2
n/a







PDH_0086
EA
2
n/a







PDH_0087
ES
2
n/a







PDH_0088
EP
2
n/a







PDH_0089
GA
2
n/a







PDH_0090
EV
2
n/a







PDH_0091
GG
2
n/a







PDH_0092
EG
2
n/a







PDH_0093
EW
2
n/a







PDH_0094
IE
2
n/a







PDH_0095
RE
2
n/a







PDH_0096
KE
2
n/a







PDH_0097
GD
2
n/a







PDH_0098
ID
2
n/a







PDH_0099
RD
2
n/a







PDH_0100
EE
2
n/a







PDH_0101
GE
2
n/a







PDH_0102
KD
2
n/a







PDH_0103
ED
2
n/a







PDH_0104
IG
2
n/a







PDH_0105
RG
2
n/a







PDH_0106
KG
2
n/a







PDH_0107
LD
2
n/a







PDH_0108
LH
2
n/a







PDH_0109
PD
2
n/a







PDH_0110
HD
2
n/a







PDH_0111
SY
2
n/a







PDH_0112
FY
2
n/a







PDH_0113
YY
2
n/a







PDH_0114
LY
2
n/a







PDH_0115
LT
2
n/a







PDH_0116
HP
2
n/a







PDH_0117
HT
2
n/a







PDH_0118
LP
2
n/a







PDH_0119
PT
2
n/a







PDH_0120
PP
2
n/a







PDH_0121
TE
2
n/a







PDH_0122
QE
2
n/a







PDH_0123
TD
2
n/a







PDH_0124
QD
2
n/a







PDH_0125
PG
2
n/a







PDH_0126
LG
2
n/a







PDH_0127
TG
2
n/a







PDH_0128
QG
2
n/a







PDH_0129
QP
2
n/a







PDH_0130
QT
2
n/a







PDH_0131
KT
2
n/a







PDH_0132
KP
2
n/a







PDH_0133
IP
2
n/a







PDH_0134
TP
2
n/a







PDH_0135
TT
2
n/a







PDH_0136
IT
2
n/a







PDH_0137
IH
2
n/a







PDH_0138
IY
2
n/a







PDH_0139
TH
2
n/a







PDH_0140
TY
2
n/a







PDH_0141
RR
2
n/a







PDH_0142
QL
2
n/a







PDH_0143
QQ
2
n/a







PDH_0144
PL
2
n/a







PDH_0145
RP
2
n/a







PDH_0146
PR
2
n/a







PDH_0147
RL
2
n/a







PDH_0148
QR
2
n/a







PDH_0149
PM
2
n/a







PDH_0150
TM
2
n/a







PDH_0151
RT
2
n/a







PDH_0152
RM
2
n/a







PDH_0153
SM
2
n/a







PDH_0154
QA
2
n/a







PDH_0155
RA
2
n/a







PDH_0156
QS
2
n/a







PDH_0157
QV
2
n/a







PDH_0158
RS
2
n/a







PDH_0159
QW
2
n/a







PDH_0160
RW
2
n/a







PDH_0161
RV
2
n/a







PDH_0162
WS
2
n/a







PDH_0163
WT
2
n/a







PDH_0164
TS
2
n/a







PDH_0165
WP
2
n/a







PDH_0166
SS
2
n/a







PDH_0167
WV
2
n/a







PDH_0168
WF
2
n/a







PDH_0169
RF
2
n/a







PDH_0170
WA
2
n/a







PDH_0171
WD
2
n/a







PDH_0172
WY
2
n/a







PDH_0173
WQ
2
n/a







PDH_0174
WE
2
n/a







PDH_0175
WH
2
n/a







PDH_0176
YK
2
n/a







PDH_0177
FK
2
n/a







PDH_0178
DK
2
n/a







PDH_0179
HK
2
n/a







PDH_0180
LW
2
n/a







PDH_0181
PW
2
n/a







PDH_0182
HW
2
n/a







PDH_0183
WI
2
n/a







PDH_0184
WG
2
n/a







PDH_0185
WL
2
n/a







PDH_0186
WR
2
n/a







PDH_0187
YS
2
n/a







PDH_0188
LS
2
n/a







PDH_0189
HS
2
n/a







PDH_0190
FS
2
n/a







PDH_0191
PS
2
n/a







PDH_0192
VS
2
n/a







PDH_0193
GI
2
n/a







PDH_0194
HI
2
n/a







PDH_0195
RI
2
n/a







PDH_0196
DI
2
n/a







PDH_0197
TF
2
n/a







PDH_0198
TL
2
n/a







PDH_0199
TV
2
n/a







PDH_0200
TA
2
n/a







PDH_0201
PA
2
n/a







PDH_0202
HA
2
n/a







PDH_0203
DA
2
n/a







PDH_0204
AA
2
n/a







PDH_0205
MR
2
n/a







PDH_0206
MA
2
n/a







PDH_0207
MD
2
n/a







PDH_0208
MP
2
n/a







PDH_0209
MH
2
n/a







PDH_0210
MG
2
n/a







PDH_0211
VR
2
n/a







PDH_0212
ER
2
n/a







PDH_0213
LR
2
n/a







PDH_0214
VAL
3
n/a







PDH_0215
VAR
3
n/a







PDH_0216
VAI
3
n/a







PDH_0217
VAA
3
n/a







PDH_0218
VAT
3
n/a







PDH_0219
VAP
3
n/a







PDH_0220
VAV
3
n/a







PDH_0221
VAG
3
n/a







PDH_0222
VAS
3
n/a







PDH_0223
VVL
3
n/a







PDH_0224
VEL
3
n/a







PDH_0225
REL
3
n/a







PDH_0226
TLL
3
n/a







PDH_0227
WEL
3
n/a







PDH_0228
RLL
3
n/a







PDH_0229
TQL
3
n/a







PDH_0230
RVL
3
n/a







PDH_0231
GLL
3
n/a







PDH_0232
TEL
3
n/a







PDH_0233
GVL
3
n/a







PDH_0234
LQL
3
n/a







PDH_0235
MEL
3
n/a







PDH_0236
SLL
3
n/a







PDH_0237
LVL
3
n/a







PDH_0238
MQL
3
n/a







PDH_0239
AVL
3
n/a







PDH_0240
AQL
3
n/a







PDH_0241
SQL
3
n/a







PDH_0242
GQL
3
n/a







PDH_0243
LEL
3
n/a







PDH_0244
TVL
3
n/a







PDH_0245
RQL
3
n/a







PDH_0246
LLL
3
n/a







PDH_0247
VQL
3
n/a







PDH_0248
ALL
3
n/a







PDH_0249
AEL
3
n/a







PDH_0250
WLL
3
n/a







PDH_0251
WVL
3
n/a







PDH_0252
SEL
3
n/a







PDH_0253
VLL
3
n/a







PDH_0254
MVL
3
n/a







PDH_0255
GEL
3
n/a







PDH_0256
MLL
3
n/a







PDH_0257
SVL
3
n/a







PDH_0258
WQL
3
n/a







PDH_0259
ISG
3
n/a







PDH_0260
DSG
3
n/a







PDH_0261
VPG
3
n/a







PDH_0262
VSG
3
n/a







PDH_0263
GAG
3
n/a







PDH_0264
IPG
3
n/a







PDH_0265
APG
3
n/a







PDH_0266
TSG
3
n/a







PDH_0267
DPG
3
n/a







PDH_0268
LSG
3
n/a







PDH_0269
LAG
3
n/a







PDH_0270
NPG
3
n/a







PDH_0271
PAG
3
n/a







PDH_0272
SAG
3
n/a







PDH_0273
ASG
3
n/a







PDH_0274
RPG
3
n/a







PDH_0275
HPG
3
n/a







PDH_0276
GSG
3
n/a







PDH_0277
GPG
3
n/a







PDH_0278
IAG
3
n/a







PDH_0279
LPG
3
n/a







PDH_0280
AAG
3
n/a







PDH_0281
TPG
3
n/a







PDH_0282
PSG
3
n/a







PDH_0283
PPG
3
n/a







PDH_0284
SPG
3
n/a







PDH_0285
RAG
3
n/a







PDH_0286
HAG
3
n/a







PDH_0287
SSG
3
n/a







PDH_0288
HSG
3
n/a







PDH_0289
RSG
3
n/a







PDH_0290
TAG
3
n/a







PDH_0291
DAG
3
n/a







PDH_0292
NAG
3
n/a







PDH_0293
NSG
3
n/a







PDH_0294
GTY
3
n/a







PDH_0295
ITY
3
n/a







PDH_0296
LTY
3
n/a







PDH_0297
ISY
3
n/a







PDH_0298
GAY
3
n/a







PDH_0299
LAY
3
n/a







PDH_0300
HSY
3
n/a







PDH_0301
AAY
3
n/a







PDH_0302
ASY
3
n/a







PDH_0303
TAY
3
n/a







PDH_0304
NAY
3
n/a







PDH_0305
HTY
3
n/a







PDH_0306
RTY
3
n/a







PDH_0307
PTY
3
n/a







PDH_0308
RAY
3
n/a







PDH_0309
ATY
3
n/a







PDH_0310
STY
3
n/a







PDH_0311
DSY
3
n/a







PDH_0312
GSY
3
n/a







PDH_0313
IAY
3
n/a







PDH_0314
PAY
3
n/a







PDH_0315
VTY
3
n/a







PDH_0316
PSY
3
n/a







PDH_0317
TTY
3
n/a







PDH_0318
VAY
3
n/a







PDH_0319
NTY
3
n/a







PDH_0320
DAY
3
n/a







PDH_0321
TSY
3
n/a







PDH_0322
DTY
3
n/a







PDH_0323
RSY
3
n/a







PDH_0324
SSY
3
n/a







PDH_0325
NSY
3
n/a







PDH_0326
SAY
3
n/a







PDH_0327
HAY
3
n/a







PDH_0328
LSY
3
n/a







PDH_0329
VSY
3
n/a







PDH_0330
IVL
3
n/a







PDH_0331
KWL
3
n/a







PDH_0332
KVL
3
n/a







PDH_0333
PLL
3
n/a







PDH_0334
LGL
3
n/a







PDH_0335
QWL
3
n/a







PDH_0336
EGL
3
n/a







PDH_0337
EWL
3
n/a







PDH_0338
EVL
3
n/a







PDH_0339
QLL
3
n/a







PDH_0340
AGL
3
n/a







PDH_0341
VWL
3
n/a







PDH_0342
ELL
3
n/a







PDH_0343
KGL
3
n/a







PDH_0344
ILL
3
n/a







PDH_0345
IGL
3
n/a







PDH_0346
AWL
3
n/a







PDH_0347
LWL
3
n/a







PDH_0348
QGL
3
n/a







PDH_0349
PVL
3
n/a







PDH_0350
VGL
3
n/a







PDH_0351
IWL
3
n/a







PDH_0352
KLL
3
n/a







PDH_0353
PGL
3
n/a







PDH_0354
PWL
3
n/a







PDH_0355
QVL
3
n/a







PDH_0356
TGL
3
n/a







PDH_0357
TWL
3
n/a







PDH_0358
PAD
3
n/a







PDH_0359
PAL
3
n/a







PDH_0360
PAA
3
n/a







PDH_0361
PAH
3
n/a







PDH_0362
PAP
3
n/a







PDH_0363
PAS
3
n/a







PDH_0364
PAF
3
n/a







PDH_0365
PAV
3
n/a







PDH_0366
IQL
3
n/a







PDH_0367
KRL
3
n/a







PDH_0368
PRL
3
n/a







PDH_0369
KQL
3
n/a







PDH_0370
QRL
3
n/a







PDH_0371
KEL
3
n/a







PDH_0372
EEL
3
n/a







PDH_0373
PEL
3
n/a







PDH_0374
VRL
3
n/a







PDH_0375
QEL
3
n/a







PDH_0376
LRL
3
n/a







PDH_0377
IEL
3
n/a







PDH_0378
QQL
3
n/a







PDH_0379
IRL
3
n/a







PDH_0380
EQL
3
n/a







PDH_0381
ERL
3
n/a







PDH_0382
TRL
3
n/a







PDH_0383
ARL
3
n/a







PDH_0384
PQL
3
n/a







PDH_0385
HSS
3
n/a







PDH_0386
VST
3
n/a







PDH_0387
HSA
3
n/a







PDH_0388
YSG
3
n/a







PDH_0389
ASS
3
n/a







PDH_0390
HST
3
n/a







PDH_0391
VSS
3
n/a







PDH_0392
YSA
3
n/a







PDH_0393
DST
3
n/a







PDH_0394
PST
3
n/a







PDH_0395
AST
3
n/a







PDH_0396
FSS
3
n/a







PDH_0397
LST
3
n/a







PDH_0398
SST
3
n/a







PDH_0399
FST
3
n/a







PDH_0400
FSG
3
n/a







PDH_0401
SSS
3
n/a







PDH_0402
LSA
3
n/a







PDH_0403
LSS
3
n/a







PDH_0404
PSA
3
n/a







PDH_0405
DSA
3
n/a







PDH_0406
ASA
3
n/a







PDH_0407
SSA
3
n/a







PDH_0408
DSS
3
n/a







PDH_0409
PSS
3
n/a







PDH_0410
YSS
3
n/a







PDH_0411
FSA
3
n/a







PDH_0412
YST
3
n/a







PDH_0413
VSA
3
n/a







PDH_0414
SGA
3
n/a







PDH_0415
AGD
3
n/a







PDH_0416
LGA
3
n/a







PDH_0417
SGY
3
n/a







PDH_0418
SGD
3
n/a







PDH_0419
FGY
3
n/a







PDH_0420
DGY
3
n/a







PDH_0421
LGS
3
n/a







PDH_0422
FGS
3
n/a







PDH_0423
DGS
3
n/a







PDH_0424
YGS
3
n/a







PDH_0425
YGA
3
n/a







PDH_0426
VGD
3
n/a







PDH_0427
PGS
3
n/a







PDH_0428
VGY
3
n/a







PDH_0429
VGS
3
n/a







PDH_0430
VGA
3
n/a







PDH_0431
LGD
3
n/a







PDH_0432
AGY
3
n/a







PDH_0433
LGY
3
n/a







PDH_0434
HGD
3
n/a







PDH_0435
HGA
3
n/a







PDH_0436
PGA
3
n/a







PDH_0437
YGD
3
n/a







PDH_0438
PGD
3
n/a







PDH_0439
YGY
3
n/a







PDH_0440
PGY
3
n/a







PDH_0441
SGS
3
n/a







PDH_0442
HGY
3
n/a







PDH_0443
FGD
3
n/a







PDH_0444
FGA
3
n/a







PDH_0445
AGS
3
n/a







PDH_0446
DGD
3
n/a







PDH_0447
DGA
3
n/a







PDH_0448
HGS
3
n/a







PDH_0449
AGA
3
n/a







PDH_0450
SGV
3
n/a







PDH_0451
LGV
3
n/a







PDH_0452
AGG
3
n/a







PDH_0453
SGG
3
n/a







PDH_0454
DGV
3
n/a







PDH_0455
PGV
3
n/a







PDH_0456
HGV
3
n/a







PDH_0457
YGV
3
n/a







PDH_0458
LGG
3
n/a







PDH_0459
VGG
3
n/a







PDH_0460
VGV
3
n/a







PDH_0461
FGV
3
n/a







PDH_0462
PGG
3
n/a







PDH_0463
YGG
3
n/a







PDH_0464
HGG
3
n/a







PDH_0465
DGG
3
n/a







PDH_0466
AGV
3
n/a







PDH_0467
FGG
3
n/a







PDH_0468
HSD
3
n/a







PDH_0469
YSD
3
n/a







PDH_0470
ASD
3
n/a







PDH_0471
FSY
3
n/a







PDH_0472
FSD
3
n/a







PDH_0473
SSD
3
n/a







PDH_0474
VSD
3
n/a







PDH_0475
PSD
3
n/a







PDH_0476
LSD
3
n/a







PDH_0477
YSY
3
n/a







PDH_0478
DSD
3
n/a







PDH_0479
SRL
3
n/a







PDH_0480
DQL
3
n/a







PDH_0481
FRL
3
n/a







PDH_0482
YRL
3
n/a







PDH_0483
HQL
3
n/a







PDH_0484
NQL
3
n/a







PDH_0485
NRL
3
n/a







PDH_0486
FQL
3
n/a







PDH_0487
DRL
3
n/a







PDH_0488
HRL
3
n/a







PDH_0489
YQL
3
n/a







PDH_0490
VSW
3
n/a







PDH_0491
PSW
3
n/a







PDH_0492
HSW
3
n/a







PDH_0493
NSW
3
n/a







PDH_0494
FSW
3
n/a







PDH_0495
ASW
3
n/a







PDH_0496
TSW
3
n/a







PDH_0497
LSW
3
n/a







PDH_0498
DSW
3
n/a







PDH_0499
ISW
3
n/a







PDH_0500
SSW
3
n/a







PDH_0501
YSW
3
n/a







PDH_0502
SGW
3
n/a







PDH_0503
FGW
3
n/a







PDH_0504
LGW
3
n/a







PDH_0505
AGW
3
n/a







PDH_0506
VGW
3
n/a







PDH_0507
YGW
3
n/a







PDH_0508
PGW
3
n/a







PDH_0509
DGW
3
n/a







PDH_0510
HGW
3
n/a







PDH_0511
IGD
3
n/a







PDH_0512
GGA
3
n/a







PDH_0513
IGG
3
n/a







PDH_0514
GGD
3
n/a







PDH_0515
GGV
3
n/a







PDH_0516
RGD
3
n/a







PDH_0517
TGV
3
n/a







PDH_0518
RGV
3
n/a







PDH_0519
GGG
3
n/a







PDH_0520
IGA
3
n/a







PDH_0521
IGV
3
n/a







PDH_0522
RGG
3
n/a







PDH_0523
RGA
3
n/a







PDH_0524
TGD
3
n/a







PDH_0525
TGA
3
n/a







PDH_0526
TGG
3
n/a







PDH_0527
NSA
3
n/a







PDH_0528
NSD
3
n/a







PDH_0529
TSD
3
n/a







PDH_0530
TSA
3
n/a







PDH_0531
ISA
3
n/a







PDH_0532
ISD
3
n/a







PDH_0533
HYD
3
n/a







PDH_0534
HYG
3
n/a







PDH_0535
FYD
3
n/a







PDH_0536
FYG
3
n/a







PDH_0537
LYA
3
n/a







PDH_0538
LYD
3
n/a







PDH_0539
VYA
3
n/a







PDH_0540
VYD
3
n/a







PDH_0541
TYA
3
n/a







PDH_0542
LYG
3
n/a







PDH_0543
DYD
3
n/a







PDH_0544
HYA
3
n/a







PDH_0545
TYD
3
n/a







PDH_0546
TYG
3
n/a







PDH_0547
YYA
3
n/a







PDH_0548
DYG
3
n/a







PDH_0549
YYD
3
n/a







PDH_0550
NYG
3
n/a







PDH_0551
NYD
3
n/a







PDH_0552
PYG
3
n/a







PDH_0553
YYG
3
n/a







PDH_0554
PYD
3
n/a







PDH_0555
NYA
3
n/a







PDH_0556
FYA
3
n/a







PDH_0557
PYA
3
n/a







PDH_0558
VYG
3
n/a







PDH_0559
AYD
3
n/a







PDH_0560
IYG
3
n/a







PDH_0561
AYA
3
n/a







PDH_0562
SYG
3
n/a







PDH_0563
IYD
3
n/a







PDH_0564
IYA
3
n/a







PDH_0565
AYG
3
n/a







PDH_0566
DYA
3
n/a







PDH_0567
SYD
3
n/a







PDH_0568
SYA
3
n/a







PDH_0569
TSE
3
n/a







PDH_0570
HSE
3
n/a







PDH_0571
YSE
3
n/a







PDH_0572
ASE
3
n/a







PDH_0573
NSE
3
n/a







PDH_0574
FSE
3
n/a







PDH_0575
DSE
3
n/a







PDH_0576
ISE
3
n/a







PDH_0577
SSE
3
n/a







PDH_0578
VSE
3
n/a







PDH_0579
PSE
3
n/a







PDH_0580
LSE
3
n/a







PDH_0581
EWP
3
n/a







PDH_0582
PWP
3
n/a







PDH_0583
KWA
3
n/a







PDH_0584
IWP
3
n/a







PDH_0585
LWA
3
n/a







PDH_0586
LWV
3
n/a







PDH_0587
AWV
3
n/a







PDH_0588
AWA
3
n/a







PDH_0589
PWA
3
n/a







PDH_0590
QWP
3
n/a







PDH_0591
PWV
3
n/a







PDH_0592
TWV
3
n/a







PDH_0593
TWP
3
n/a







PDH_0594
QWA
3
n/a







PDH_0595
KWP
3
n/a







PDH_0596
QWV
3
n/a







PDH_0597
EWV
3
n/a







PDH_0598
VWA
3
n/a







PDH_0599
AWP
3
n/a







PDH_0600
VWV
3
n/a







PDH_0601
TWA
3
n/a







PDH_0602
EWA
3
n/a







PDH_0603
IWV
3
n/a







PDH_0604
VWP
3
n/a







PDH_0605
IWA
3
n/a







PDH_0606
LWP
3
n/a







PDH_0607
KWV
3
n/a







PDH_0608
HDY
3
n/a







PDH_0609
IVY
3
n/a







PDH_0610
PVY
3
n/a







PDH_0611
AVY
3
n/a







PDH_0612
GVY
3
n/a







PDH_0613
LVY
3
n/a







PDH_0614
GDY
3
n/a







PDH_0615
ADY
3
n/a







PDH_0616
VVY
3
n/a







PDH_0617
NVY
3
n/a







PDH_0618
SDY
3
n/a







PDH_0619
RVY
3
n/a







PDH_0620
LDY
3
n/a







PDH_0621
HVY
3
n/a







PDH_0622
PDY
3
n/a







PDH_0623
RDY
3
n/a







PDH_0624
SVY
3
n/a







PDH_0625
IDY
3
n/a







PDH_0626
DDY
3
n/a







PDH_0627
NDY
3
n/a







PDH_0628
VDY
3
n/a







PDH_0629
DVY
3
n/a







PDH_0630
TVY
3
n/a







PDH_0631
TDY
3
n/a







PDH_0632
GKL
3
n/a







PDH_0633
GIL
3
n/a







PDH_0634
GRL
3
n/a







PDH_0635
GGL
3
n/a







PDH_0636
GAL
3
n/a







PDH_0637
GTL
3
n/a







PDH_0638
LRG
3
n/a







PDH_0639
DTG
3
n/a







PDH_0640
ARG
3
n/a







PDH_0641
YIG
3
n/a







PDH_0642
ITG
3
n/a







PDH_0643
PIG
3
n/a







PDH_0644
DIG
3
n/a







PDH_0645
ATG
3
n/a







PDH_0646
STG
3
n/a







PDH_0647
HTG
3
n/a







PDH_0648
VRG
3
n/a







PDH_0649
YRG
3
n/a







PDH_0650
NIG
3
n/a







PDH_0651
VIG
3
n/a







PDH_0652
IRG
3
n/a







PDH_0653
LTG
3
n/a







PDH_0654
SRG
3
n/a







PDH_0655
VTG
3
n/a







PDH_0656
AIG
3
n/a







PDH_0657
IIG
3
n/a







PDH_0658
FTG
3
n/a







PDH_0659
HIG
3
n/a







PDH_0660
HRG
3
n/a







PDH_0661
PTG
3
n/a







PDH_0662
YTG
3
n/a







PDH_0663
PRG
3
n/a







PDH_0664
TIG
3
n/a







PDH_0665
DRG
3
n/a







PDH_0666
TRG
3
n/a







PDH_0667
FIG
3
n/a







PDH_0668
NTG
3
n/a







PDH_0669
FRG
3
n/a







PDH_0670
LIG
3
n/a







PDH_0671
NRG
3
n/a







PDH_0672
TTG
3
n/a







PDH_0673
SIG
3
n/a







PDH_0674
EAG
3
n/a







PDH_0675
KAV
3
n/a







PDH_0676
IAD
3
n/a







PDH_0677
IAV
3
n/a







PDH_0678
KAD
3
n/a







PDH_0679
QAA
3
n/a







PDH_0680
LAA
3
n/a







PDH_0681
QAD
3
n/a







PDH_0682
AAD
3
n/a







PDH_0683
AAA
3
n/a







PDH_0684
LAD
3
n/a







PDH_0685
VAD
3
n/a







PDH_0686
TAA
3
n/a







PDH_0687
TAD
3
n/a







PDH_0688
TAV
3
n/a







PDH_0689
EAA
3
n/a







PDH_0690
AAV
3
n/a







PDH_0691
QAV
3
n/a







PDH_0692
EAV
3
n/a







PDH_0693
LAV
3
n/a







PDH_0694
QAG
3
n/a







PDH_0695
KAA
3
n/a







PDH_0696
IAA
3
n/a







PDH_0697
KAG
3
n/a







PDH_0698
EAD
3
n/a







PDH_0699
WVG
3
n/a







PDH_0700
VFG
3
n/a







PDH_0701
SFG
3
n/a







PDH_0702
RFG
3
n/a







PDH_0703
WAG
3
n/a







PDH_0704
WFG
3
n/a







PDH_0705
SVG
3
n/a







PDH_0706
TVG
3
n/a







PDH_0707
GFG
3
n/a







PDH_0708
MVG
3
n/a







PDH_0709
MFG
3
n/a







PDH_0710
LVG
3
n/a







PDH_0711
WSG
3
n/a







PDH_0712
AFG
3
n/a







PDH_0713
MAG
3
n/a







PDH_0714
LFG
3
n/a







PDH_0715
MSG
3
n/a







PDH_0716
VVG
3
n/a







PDH_0717
RVG
3
n/a







PDH_0718
AVG
3
n/a







PDH_0719
GVG
3
n/a







PDH_0720
TFG
3
n/a







PDH_0721
DGI
3
n/a







PDH_0722
LGI
3
n/a







PDH_0723
SGI
3
n/a







PDH_0724
HGI
3
n/a







PDH_0725
PGI
3
n/a







PDH_0726
VGI
3
n/a







PDH_0727
YGI
3
n/a







PDH_0728
FGI
3
n/a







PDH_0729
AGI
3
n/a







PDH_0730
DVD
3
n/a







PDH_0731
FVA
3
n/a







PDH_0732
DVA
3
n/a







PDH_0733
YVD
3
n/a







PDH_0734
YVA
3
n/a







PDH_0735
DVG
3
n/a







PDH_0736
HVG
3
n/a







PDH_0737
VVD
3
n/a







PDH_0738
HVD
3
n/a







PDH_0739
VVA
3
n/a







PDH_0740
IVA
3
n/a







PDH_0741
AVD
3
n/a







PDH_0742
YVG
3
n/a







PDH_0743
TVD
3
n/a







PDH_0744
FVG
3
n/a







PDH_0745
FVD
3
n/a







PDH_0746
TVA
3
n/a







PDH_0747
PVG
3
n/a







PDH_0748
PVA
3
n/a







PDH_0749
AVA
3
n/a







PDH_0750
PVD
3
n/a







PDH_0751
NVG
3
n/a







PDH_0752
IVD
3
n/a







PDH_0753
HVA
3
n/a







PDH_0754
SVA
3
n/a







PDH_0755
SVD
3
n/a







PDH_0756
IVG
3
n/a







PDH_0757
NVA
3
n/a







PDH_0758
LVD
3
n/a







PDH_0759
LVA
3
n/a







PDH_0760
NVD
3
n/a







PDH_0761
AYY
3
n/a







PDH_0762
LFY
3
n/a







PDH_0763
RFY
3
n/a







PDH_0764
IFY
3
n/a







PDH_0765
TYY
3
n/a







PDH_0766
RYY
3
n/a







PDH_0767
PYY
3
n/a







PDH_0768
VYY
3
n/a







PDH_0769
SFY
3
n/a







PDH_0770
GYY
3
n/a







PDH_0771
GFY
3
n/a







PDH_0772
DFY
3
n/a







PDH_0773
VFY
3
n/a







PDH_0774
HYY
3
n/a







PDH_0775
SYY
3
n/a







PDH_0776
PFY
3
n/a







PDH_0777
LYY
3
n/a







PDH_0778
IYY
3
n/a







PDH_0779
TFY
3
n/a







PDH_0780
NFY
3
n/a







PDH_0781
HFY
3
n/a







PDH_0782
AFY
3
n/a







PDH_0783
DYY
3
n/a







PDH_0784
NYY
3
n/a







PDH_0785
VVV
3
n/a







PDH_0786
VVF
3
n/a







PDH_0787
VVP
3
n/a







PDH_0788
VVH
3
n/a







PDH_0789
VVS
3
n/a







PDH_0790
GDL
3
n/a







PDH_0791
SAL
3
n/a







PDH_0792
RAL
3
n/a







PDH_0793
RGL
3
n/a







PDH_0794
IAL
3
n/a







PDH_0795
LDL
3
n/a







PDH_0796
TDL
3
n/a







PDH_0797
ADL
3
n/a







PDH_0798
VDL
3
n/a







PDH_0799
IDL
3
n/a







PDH_0800
SDL
3
n/a







PDH_0801
TAL
3
n/a







PDH_0802
RDL
3
n/a







PDH_0803
AAL
3
n/a







PDH_0804
SGL
3
n/a







PDH_0805
PDL
3
n/a







PDH_0806
LAL
3
n/a







PDH_0807
AGE
3
n/a







PDH_0808
SGE
3
n/a







PDH_0809
HGE
3
n/a







PDH_0810
LGE
3
n/a







PDH_0811
VGE
3
n/a







PDH_0812
PGE
3
n/a







PDH_0813
YGE
3
n/a







PDH_0814
DGE
3
n/a







PDH_0815
FGE
3
n/a







PDH_0816
SDG
3
n/a







PDH_0817
NDG
3
n/a







PDH_0818
GDG
3
n/a







PDH_0819
HDG
3
n/a







PDH_0820
ADG
3
n/a







PDH_0821
TDG
3
n/a







PDH_0822
IDG
3
n/a







PDH_0823
DDG
3
n/a







PDH_0824
VDG
3
n/a







PDH_0825
RDG
3
n/a







PDH_0826
LDG
3
n/a







PDH_0827
PDG
3
n/a







PDH_0828
RHG
3
n/a







PDH_0829
RLG
3
n/a







PDH_0830
RYG
3
n/a







PDH_0831
DLY
3
n/a







PDH_0832
IWY
3
n/a







PDH_0833
LWY
3
n/a







PDH_0834
ALY
3
n/a







PDH_0835
RWY
3
n/a







PDH_0836
SLY
3
n/a







PDH_0837
HLY
3
n/a







PDH_0838
ILY
3
n/a







PDH_0839
SWY
3
n/a







PDH_0840
GLY
3
n/a







PDH_0841
RLY
3
n/a







PDH_0842
DWY
3
n/a







PDH_0843
NLY
3
n/a







PDH_0844
VWY
3
n/a







PDH_0845
GWY
3
n/a







PDH_0846
AWY
3
n/a







PDH_0847
HWY
3
n/a







PDH_0848
PLY
3
n/a







PDH_0849
LLY
3
n/a







PDH_0850
TWY
3
n/a







PDH_0851
TLY
3
n/a







PDH_0852
NWY
3
n/a







PDH_0853
VLY
3
n/a







PDH_0854
PWY
3
n/a







PDH_0855
GSL
3
n/a







PDH_0856
ISL
3
n/a







PDH_0857
DWL
3
n/a







PDH_0858
SSL
3
n/a







PDH_0859
TSL
3
n/a







PDH_0860
VSL
3
n/a







PDH_0861
DSL
3
n/a







PDH_0862
HWL
3
n/a







PDH_0863
ASL
3
n/a







PDH_0864
SWL
3
n/a







PDH_0865
NWL
3
n/a







PDH_0866
NLL
3
n/a







PDH_0867
DLL
3
n/a







PDH_0868
RSL
3
n/a







PDH_0869
PSL
3
n/a







PDH_0870
HLL
3
n/a







PDH_0871
GWL
3
n/a







PDH_0872
HSL
3
n/a







PDH_0873
NSL
3
n/a







PDH_0874
LSL
3
n/a







PDH_0875
RWL
3
n/a







PDH_0876
FDY
3
n/a







PDH_0877
YYY
3
n/a







PDH_0878
FYY
3
n/a







PDH_0879
YDY
3
n/a







PDH_0880
LIL
3
n/a







PDH_0881
LKL
3
n/a







PDH_0882
LTL
3
n/a







PDH_0883
YAG
3
n/a







PDH_0884
FPG
3
n/a







PDH_0885
YPG
3
n/a







PDH_0886
FAG
3
n/a







PDH_0887
FYH
3
n/a







PDH_0888
LYH
3
n/a







PDH_0889
IYH
3
n/a







PDH_0890
SYH
3
n/a







PDH_0891
TYH
3
n/a







PDH_0892
YYH
3
n/a







PDH_0893
NYH
3
n/a







PDH_0894
PYH
3
n/a







PDH_0895
AYH
3
n/a







PDH_0896
VYH
3
n/a







PDH_0897
HYH
3
n/a







PDH_0898
DYH
3
n/a







PDH_0899
YTAM
4
5639







PDH_0900
HTAI
4
5640







PDH_0901
YTAS
4
5641







PDH_0902
YTAI
4
5642







PDH_0903
YTAR
4
5643







PDH_0904
PTAS
4
5644







PDH_0905
LTAM
4
5645







PDH_0906
DTAI
4
5646







PDH_0907
FTAS
4
5647







PDH_0908
FTAM
4
5648







PDH_0909
LTAS
4
5649







PDH_0910
ATAI
4
5650







PDH_0911
STAI
4
5651







PDH_0912
FTAR
4
5652







PDH_0913
DTAM
4
4420







PDH_0914
STAR
4
5653







PDH_0915
LTAR
4
5654







PDH_0916
FTAI
4
5655







PDH_0917
LTAI
4
5656







PDH_0918
STAM
4
5657







PDH_0919
ATAM
4
5658







PDH_0920
STAS
4
5659







PDH_0921
ATAR
4
5660







PDH_0922
HTAS
4
5661







PDH_0923
HTAM
4
5662







PDH_0924
VTAI
4
3907







PDH_0925
DTAR
4
5663







PDH_0926
HTAR
4
5664







PDH_0927
ATAS
4
5665







PDH_0928
VTAM
4
5666







PDH_0929
PTAR
4
5667







PDH_0930
DTAS
4
5668







PDH_0931
VTAS
4
5669







PDH_0932
PTAM
4
5670







PDH_0933
VTAR
4
5671







PDH_0934
PTAI
4
5672







PDH_0935
LVAT
4
5673







PDH_0936
LAAT
4
5674







PDH_0937
MVAT
4
5675







PDH_0938
TGAT
4
5676







PDH_0939
AVAT
4
5677







PDH_0940
VAAT
4
3803







PDH_0941
PAAT
4
5678







PDH_0942
KGAT
4
5679







PDH_0943
EGAT
4
5680







PDH_0944
PVAT
4
5681







PDH_0945
AGAT
4
5682







PDH_0946
QAAT
4
5683







PDH_0947
AAAT
4
5684







PDH_0948
VVAT
4
5685







PDH_0949
VGAT
4
3756







PDH_0950
TVAT
4
5686







PDH_0951
EVAT
4
5687







PDH_0952
LGAT
4
5688







PDH_0953
KAAT
4
5689







PDH_0954
MGAT
4
5690







PDH_0955
PGAT
4
5691







PDH_0956
QVAT
4
5692







PDH_0957
KVAT
4
5693







PDH_0958
EAAT
4
5694







PDH_0959
TAAT
4
5695







PDH_0960
MAAT
4
5696







PDH_0961
QGAT
4
5697







PDH_0962
RFGA
4
5698







PDH_0963
MFGE
4
5699







PDH_0964
MFGA
4
5700







PDH_0965
VFGG
4
5701







PDH_0966
RFGE
4
5702







PDH_0967
MFGV
4
5703







PDH_0968
VFGA
4
5704







PDH_0969
VFGE
4
5705







PDH_0970
VFGV
4
5706







PDH_0971
MFGG
4
5707







PDH_0972
LFGV
4
5708







PDH_0973
SFGE
4
5709







PDH_0974
SFGA
4
5710







PDH_0975
RFGG
4
5711







PDH_0976
SFGV
4
5712







PDH_0977
LFGA
4
5713







PDH_0978
SFGG
4
5714







PDH_0979
LFGG
4
5715







PDH_0980
LFGE
4
5716







PDH_0981
WFGE
4
3966







PDH_0982
WFGG
4
5717







PDH_0983
WFGV
4
5718







PDH_0984
WFGA
4
5719







PDH_0985
TFGG
4
4154







PDH_0986
TFGE
4
5720







PDH_0987
AFGV
4
5721







PDH_0988
AFGA
4
5722







PDH_0989
GFGV
4
5723







PDH_0990
GFGA
4
5724







PDH_0991
GFGG
4
5725







PDH_0992
TFGV
4
5726







PDH_0993
AFGE
4
5727







PDH_0994
TFGA
4
5728







PDH_0995
RFGV
4
5729







PDH_0996
AFGG
4
5730







PDH_0997
GFGE
4
5731







PDH_0998
AGDY
4
5732







PDH_0999
PGYY
4
5733







PDH_1000
VGAY
4
5734







PDH_1001
HGSY
4
5735







PDH_1002
SGSY
4
3763







PDH_1003
PGDY
4
5736







PDH_1004
LGDY
4
5737







PDH_1005
DGAY
4
5738







PDH_1006
FGDY
4
5739







PDH_1007
LGAY
4
5740







PDH_1008
DGYY
4
5741







PDH_1009
VGSY
4
5742







PDH_1010
YGAY
4
5743







PDH_1011
FGYY
4
5744







PDH_1012
DGDY
4
5745







PDH_1013
AGYY
4
5746







PDH_1014
YGSY
4
5747







PDH_1015
VGYY
4
5748







PDH_1016
AGAY
4
5749







PDH_1017
DGSY
4
5750







PDH_1018
HGDY
4
5751







PDH_1019
FGAY
4
5752







PDH_1020
HGYY
4
5753







PDH_1021
YGYY
4
5754







PDH_1022
SGYY
4
4187







PDH_1023
SGAY
4
5755







PDH_1024
AGSY
4
5756







PDH_1025
HGAY
4
5757







PDH_1026
PGAY
4
5758







PDH_1027
PGSY
4
5759







PDH_1028
LGSY
4
5760







PDH_1029
VGDY
4
5761







PDH_1030
SGDY
4
5762







PDH_1031
LGYY
4
5763







PDH_1032
FGSY
4
5764







PDH_1033
YGDY
4
4350







PDH_1034
YSSV
4
5765







PDH_1035
YSSI
4
5766







PDH_1036
YSSS
4
4442







PDH_1037
YSSR
4
5767







PDH_1038
YSSP
4
5768







PDH_1039
YSSA
4
5769







PDH_1040
YSSL
4
5770







PDH_1041
YSSG
4
4462







PDH_1042
YSST
4
5771







PDH_1043
EVRG
4
5772







PDH_1044
PVRG
4
5773







PDH_1045
PVTG
4
5774







PDH_1046
EVAG
4
5775







PDH_1047
MVTG
4
5776







PDH_1048
MVGG
4
5777







PDH_1049
EVGG
4
3728







PDH_1050
QVRG
4
5778







PDH_1051
MVRG
4
4017







PDH_1052
QVGG
4
5779







PDH_1053
VVAG
4
5780







PDH_1054
EVTG
4
5781







PDH_1055
VVRG
4
5782







PDH_1056
PVAG
4
5783







PDH_1057
LVAG
4
5784







PDH_1058
LVRG
4
5785







PDH_1059
QVTG
4
5786







PDH_1060
PVGG
4
5787







PDH_1061
AVGG
4
5788







PDH_1062
TVGG
4
5789







PDH_1063
KVGG
4
5790







PDH_1064
TVAG
4
5791







PDH_1065
AVTG
4
5792







PDH_1066
KVRG
4
5793







PDH_1067
LVTG
4
5794







PDH_1068
AVRG
4
5795







PDH_1069
LVGG
4
5796







PDH_1070
AVAG
4
4473







PDH_1071
QVAG
4
5797







PDH_1072
KVTG
4
5798







PDH_1073
TVTG
4
5799







PDH_1074
VVGG
4
5800







PDH_1075
KVAG
4
5801







PDH_1076
MVAG
4
5802







PDH_1077
VVTG
4
5803







PDH_1078
TVRG
4
5804







PDH_1079
SDGY
4
5805







PDH_1080
IDGF
4
5806







PDH_1081
ADGY
4
5807







PDH_1082
ADGS
4
5808







PDH_1083
RDGF
4
5809







PDH_1084
IDGS
4
5810







PDH_1085
GDGS
4
5811







PDH_1086
LDGY
4
5812







PDH_1087
GDGY
4
5813







PDH_1088
IDGY
4
5814







PDH_1089
SDGS
4
5815







PDH_1090
SDGF
4
5816







PDH_1091
VDGF
4
5817







PDH_1092
GDGF
4
5818







PDH_1093
TDGY
4
5819







PDH_1094
RDGY
4
4410







PDH_1095
VDGY
4
5820







PDH_1096
TDGS
4
5821







PDH_1097
RDGS
4
5822







PDH_1098
LDGF
4
5823







PDH_1099
VDGS
4
5824







PDH_1100
ADGF
4
5825







PDH_1101
LDGS
4
5826







PDH_1102
PDGS
4
5827







PDH_1103
PDGF
4
5828







PDH_1104
PDGY
4
5829







PDH_1105
TDGF
4
5830







PDH_1106
NYGG
4
5831







PDH_1107
TYGD
4
5832







PDH_1108
LYGD
4
5833







PDH_1109
FYGG
4
5834







PDH_1110
SYGG
4
5835







PDH_1111
TYGG
4
5836







PDH_1112
LYGA
4
5837







PDH_1113
SYGA
4
5838







PDH_1114
LYGG
4
5839







PDH_1115
VYGD
4
5840







PDH_1116
SYGD
4
5841







PDH_1117
AYGG
4
5842







PDH_1118
VYGG
4
5843







PDH_1119
HYGG
4
5844







PDH_1120
FYGA
4
5845







PDH_1121
NYGD
4
5846







PDH_1122
TYGA
4
5847







PDH_1123
FYGD
4
5848







PDH_1124
IYGD
4
5849







PDH_1125
DYGD
4
4349







PDH_1126
PYGD
4
5850







PDH_1127
DYGA
4
5851







PDH_1128
HYGA
4
5852







PDH_1129
PYGA
4
5853







PDH_1130
PYGG
4
5854







PDH_1131
HYGD
4
5855







PDH_1132
AYGA
4
5856







PDH_1133
VYGA
4
5857







PDH_1134
YYGD
4
5858







PDH_1135
AYGD
4
5859







PDH_1136
NYGA
4
5860







PDH_1137
YYGA
4
5861







PDH_1138
YYGG
4
5862







PDH_1139
IYGG
4
5863







PDH_1140
IYGA
4
5864







PDH_1141
DYGG
4
4357







PDH_1142
LMAT
4
5865







PDH_1143
VTAT
4
5866







PDH_1144
KMAT
4
5867







PDH_1145
QMAT
4
5868







PDH_1146
ETAT
4
5869







PDH_1147
TTAT
4
5870







PDH_1148
TMAT
4
5871







PDH_1149
PTAT
4
5872







PDH_1150
VMAT
4
5873







PDH_1151
LTAT
4
5874







PDH_1152
KTAT
4
5875







PDH_1153
MMAT
4
5876







PDH_1154
ATAT
4
5877







PDH_1155
QTAT
4
5878







PDH_1156
PMAT
4
5879







PDH_1157
MTAT
4
5880







PDH_1158
EMAT
4
4402







PDH_1159
AMAT
4
5881







PDH_1160
TYSA
4
5882







PDH_1161
LYSS
4
5883







PDH_1162
LYST
4
5884







PDH_1163
QYSS
4
5885







PDH_1164
VYST
4
5886







PDH_1165
VYSS
4
5887







PDH_1166
AYSA
4
5888







PDH_1167
PYSG
4
5889







PDH_1168
PYST
4
5890







PDH_1169
VYSA
4
5891







PDH_1170
PYSS
4
5892







PDH_1171
VYSG
4
5893







PDH_1172
PYSA
4
5894







PDH_1173
KYST
4
5895







PDH_1174
QYST
4
5896







PDH_1175
TYSG
4
5897







PDH_1176
TYST
4
5898







PDH_1177
QYSA
4
5899







PDH_1178
AYSS
4
5900







PDH_1179
TYSS
4
5901







PDH_1180
IYSA
4
5902







PDH_1181
AYST
4
5903







PDH_1182
IYSG
4
5904







PDH_1183
EYSS
4
4479







PDH_1184
KYSG
4
5905







PDH_1185
EYSA
4
5906







PDH_1186
LYSG
4
5907







PDH_1187
AYSG
4
5908







PDH_1188
EYSG
4
5909







PDH_1189
LYSA
4
5910







PDH_1190
QYSG
4
5911







PDH_1191
IYST
4
5912







PDH_1192
EYST
4
5913







PDH_1193
KYSS
4
5914







PDH_1194
IYSS
4
5915







PDH_1195
KYSA
4
5916







PDH_1196
QWLS
4
5917







PDH_1197
QWLL
4
5918







PDH_1198
QWLP
4
5919







PDH_1199
QWLD
4
5920







PDH_1200
QWLY
4
5921







PDH_1201
QWLA
4
5922







PDH_1202
QWLV
4
4475







PDH_1203
QWLH
4
5923







PDH_1204
QWLF
4
5924







PDH_1205
PVAD
4
5925







PDH_1206
PVAA
4
5926







PDH_1207
IVAA
4
5927







PDH_1208
EVAA
4
5928







PDH_1209
EVAV
4
5929







PDH_1210
VVAA
4
3802







PDH_1211
IVAD
4
5930







PDH_1212
EVAD
4
5931







PDH_1213
IVAG
4
5932







PDH_1214
QVAD
4
5933







PDH_1215
AVAA
4
5934







PDH_1216
AVAV
4
5935







PDH_1217
AVAD
4
5936







PDH_1218
KVAA
4
5937







PDH_1219
QVAA
4
5938







PDH_1220
TVAV
4
5939







PDH_1221
LVAD
4
5940







PDH_1222
LVAA
4
5941







PDH_1223
IVAV
4
5942







PDH_1224
VVAD
4
5943







PDH_1225
VVAV
4
5944







PDH_1226
QVAV
4
5945







PDH_1227
PVAV
4
5946







PDH_1228
KVAV
4
5947







PDH_1229
LVAV
4
5948







PDH_1230
TVAD
4
5949







PDH_1231
KVAD
4
5950







PDH_1232
TVAA
4
5951







PDH_1233
STVA
4
5952







PDH_1234
STVK
4
5953







PDH_1235
RTVA
4
5954







PDH_1236
ITVT
4
5955







PDH_1237
PTVA
4
5956







PDH_1238
ATVT
4
5957







PDH_1239
ATVK
4
5958







PDH_1240
VTVK
4
5959







PDH_1241
TTVK
4
5960







PDH_1242
PTVE
4
5961







PDH_1243
VTVT
4
5962







PDH_1244
STVT
4
5963







PDH_1245
VTVE
4
5964







PDH_1246
TTVT
4
4352







PDH_1247
LTVA
4
5965







PDH_1248
RTVT
4
5966







PDH_1249
LTVE
4
5967







PDH_1250
TTVE
4
5968







PDH_1251
RTVK
4
5969







PDH_1252
VTVA
4
5970







PDH_1253
STVE
4
5971







PDH_1254
ATVA
4
5972







PDH_1255
GTVE
4
5973







PDH_1256
GTVA
4
5974







PDH_1257
ITVE
4
5975







PDH_1258
PTVT
4
5976







PDH_1259
ITVA
4
5977







PDH_1260
ATVE
4
5978







PDH_1261
GTVK
4
5979







PDH_1262
LTVK
4
5980







PDH_1263
ITVK
4
5981







PDH_1264
RTVE
4
5982







PDH_1265
LTVT
4
5983







PDH_1266
TTVA
4
5984







PDH_1267
PTVK
4
5985







PDH_1268
GTVT
4
5986







PDH_1269
SSSA
4
5987







PDH_1270
SSSS
4
4480







PDH_1271
SSSL
4
5988







PDH_1272
SSSW
4
4443







PDH_1273
SSSR
4
5989







PDH_1274
SSSV
4
5990







PDH_1275
SSST
4
5991







PDH_1276
SSSM
4
5992







PDH_1277
SSSG
4
5993







PDH_1278
LSYG
4
5994







PDH_1279
PYYG
4
5995







PDH_1280
ASYG
4
5996







PDH_1281
FYYG
4
5997







PDH_1282
DSYG
4
5998







PDH_1283
VYYG
4
5999







PDH_1284
IYYG
4
6000







PDH_1285
DYYG
4
6001







PDH_1286
HYYG
4
6002







PDH_1287
SYYG
4
6003







PDH_1288
YYYG
4
3989







PDH_1289
VSYG
4
6004







PDH_1290
NSYG
4
6005







PDH_1291
SSYG
4
6006







PDH_1292
FSYG
4
6007







PDH_1293
ISYG
4
6008







PDH_1294
TSYG
4
6009







PDH_1295
LYYG
4
6010







PDH_1296
PSYG
4
6011







PDH_1297
AYYG
4
6012







PDH_1298
YSYG
4
4433







PDH_1299
HSYG
4
6013







PDH_1300
NYYG
4
6014







PDH_1301
TYYG
4
6015







PDH_1302
FSWY
4
6016







PDH_1303
SSWF
4
6017







PDH_1304
DSWS
4
6018







PDH_1305
LSWS
4
6019







PDH_1306
DSWY
4
6020







PDH_1307
LSWF
4
6021







PDH_1308
LSWY
4
6022







PDH_1309
VSWS
4
6023







PDH_1310
HSWY
4
6024







PDH_1311
SSWS
4
6025







PDH_1312
PSWS
4
6026







PDH_1313
SSWY
4
4444







PDH_1314
FSWF
4
6027







PDH_1315
FSWS
4
6028







PDH_1316
PSWF
4
6029







PDH_1317
VSWF
4
6030







PDH_1318
HSWF
4
6031







PDH_1319
VSWY
4
6032







PDH_1320
HSWS
4
6033







PDH_1321
DSWF
4
6034







PDH_1322
PSWY
4
6035







PDH_1323
ASWY
4
6036







PDH_1324
YSWS
4
6037







PDH_1325
ASWF
4
6038







PDH_1326
ASWS
4
6039







PDH_1327
YSWF
4
6040







PDH_1328
YSWY
4
6041







PDH_1329
IQLV
4
6042







PDH_1330
AQLG
4
6043







PDH_1331
IQLA
4
6044







PDH_1332
EQLV
4
6045







PDH_1333
AQLA
4
6046







PDH_1334
IQLG
4
6047







PDH_1335
KQLD
4
6048







PDH_1336
TQLV
4
6049







PDH_1337
QQLA
4
6050







PDH_1338
AQLD
4
6051







PDH_1339
IQLD
4
6052







PDH_1340
AQLV
4
6053







PDH_1341
KQLA
4
6054







PDH_1342
KQLG
4
6055







PDH_1343
LQLD
4
6056







PDH_1344
LQLG
4
6057







PDH_1345
TQLA
4
6058







PDH_1346
VQLD
4
6059







PDH_1347
TQLD
4
6060







PDH_1348
VQLA
4
6061







PDH_1349
EQLD
4
6062







PDH_1350
VQLG
4
6063







PDH_1351
TQLG
4
6064







PDH_1352
PQLD
4
6065







PDH_1353
QQLV
4
4455







PDH_1354
QQLD
4
6066







PDH_1355
PQLA
4
6067







PDH_1356
PQLG
4
6068







PDH_1357
VQLV
4
6069







PDH_1358
QQLG
4
6070







PDH_1359
KQLV
4
6071







PDH_1360
LQLV
4
6072







PDH_1361
LQLA
4
6073







PDH_1362
EQLA
4
6074







PDH_1363
PQLV
4
6075







PDH_1364
EQLG
4
6076







PDH_1365
DGSA
4
6077







PDH_1366
DGSS
4
6078







PDH_1367
SGSA
4
6079







PDH_1368
DGSD
4
6080







PDH_1369
SGSD
4
6081







PDH_1370
PGSD
4
6082







PDH_1371
FGSS
4
6083







PDH_1372
HGSA
4
6084







PDH_1373
YGSS
4
6085







PDH_1374
FGSA
4
6086







PDH_1375
FGSD
4
6087







PDH_1376
LGSA
4
6088







PDH_1377
LGSS
4
6089







PDH_1378
AGSD
4
6090







PDH_1379
VGSS
4
6091







PDH_1380
AGSS
4
6092







PDH_1381
HGSD
4
6093







PDH_1382
VGSA
4
6094







PDH_1383
YGSA
4
6095







PDH_1384
YGSD
4
6096







PDH_1385
AGSA
4
6097







PDH_1386
HGSS
4
6098







PDH_1387
VGSD
4
6099







PDH_1388
PGSA
4
6100







PDH_1389
PGSS
4
6101







PDH_1390
SGSS
4
6102







PDH_1391
LGSD
4
6103







PDH_1392
SGWY
4
4464







PDH_1393
PGWY
4
6104







PDH_1394
FGWY
4
6105







PDH_1395
YGWY
4
6106







PDH_1396
AGWY
4
6107







PDH_1397
VGWY
4
6108







PDH_1398
LGWY
4
6109







PDH_1399
DGWY
4
6110







PDH_1400
HGWY
4
6111







PDH_1401
PSGW
4
6112







PDH_1402
YSGW
4
6113







PDH_1403
FSGR
4
6114







PDH_1404
VSGG
4
6115







PDH_1405
NSGR
4
6116







PDH_1406
DSGR
4
6117







PDH_1407
ASGR
4
6118







PDH_1408
FSGW
4
6119







PDH_1409
DSGW
4
6120







PDH_1410
VSGR
4
6121







PDH_1411
ISGW
4
6122







PDH_1412
LSGW
4
6123







PDH_1413
DSGG
4
3723







PDH_1414
HSGR
4
6124







PDH_1415
NSGW
4
6125







PDH_1416
HSGG
4
6126







PDH_1417
HSGW
4
6127







PDH_1418
ISGG
4
6128







PDH_1419
YSGR
4
6129







PDH_1420
ISGR
4
6130







PDH_1421
YSGG
4
6131







PDH_1422
NSGG
4
6132







PDH_1423
SSGW
4
4463







PDH_1424
VSGW
4
6133







PDH_1425
SSGR
4
6134







PDH_1426
LSGR
4
6135







PDH_1427
PSGR
4
6136







PDH_1428
FSGG
4
6137







PDH_1429
TSGR
4
6138







PDH_1430
TSGW
4
6139







PDH_1431
ASGG
4
6140







PDH_1432
LSGG
4
6141







PDH_1433
ASGW
4
6142







PDH_1434
PSGG
4
6143







PDH_1435
TSGG
4
6144







PDH_1436
SSGG
4
6145







PDH_1437
VGYD
4
6146







PDH_1438
AGYD
4
6147







PDH_1439
DGYD
4
6148







PDH_1440
AGYA
4
6149







PDH_1441
DGYA
4
6150







PDH_1442
FGYA
4
6151







PDH_1443
FGYD
4
6152







PDH_1444
PGYA
4
6153







PDH_1445
DGYS
4
6154







PDH_1446
YGYA
4
6155







PDH_1447
FGYS
4
6156







PDH_1448
VGYA
4
6157







PDH_1449
PGYD
4
6158







PDH_1450
PGYS
4
6159







PDH_1451
VGYS
4
6160







PDH_1452
YGYD
4
6161







PDH_1453
HGYA
4
6162







PDH_1454
YGYS
4
6163







PDH_1455
HGYD
4
6164







PDH_1456
SGYS
4
6165







PDH_1457
LGYA
4
6166







PDH_1458
HGYS
4
6167







PDH_1459
LGYD
4
6168







PDH_1460
AGYS
4
6169







PDH_1461
LGYS
4
6170







PDH_1462
SGYD
4
4393







PDH_1463
SGYA
4
6171







PDH_1464
QVTA
4
6172







PDH_1465
PVTA
4
6173







PDH_1466
LVTT
4
6174







PDH_1467
PVTT
4
6175







PDH_1468
PVTE
4
6176







PDH_1469
QVTT
4
6177







PDH_1470
AVTA
4
6178







PDH_1471
QVTK
4
6179







PDH_1472
IVTA
4
6180







PDH_1473
PVTK
4
6181







PDH_1474
LVTK
4
6182







PDH_1475
AVTE
4
6183







PDH_1476
LVTA
4
6184







PDH_1477
EVTA
4
6185







PDH_1478
LVTE
4
6186







PDH_1479
EVTE
4
6187







PDH_1480
IVTE
4
6188







PDH_1481
VVTA
4
3906







PDH_1482
TVTK
4
6189







PDH_1483
TVTT
4
4353







PDH_1484
IVTT
4
6190







PDH_1485
VVTE
4
6191







PDH_1486
IVTK
4
6192







PDH_1487
TVTE
4
6193







PDH_1488
AVTT
4
6194







PDH_1489
KVTA
4
6195







PDH_1490
KVTE
4
6196







PDH_1491
AVTK
4
6197







PDH_1492
EVTK
4
6198







PDH_1493
KVTK
4
6199







PDH_1494
VVTK
4
6200







PDH_1495
TVTA
4
6201







PDH_1496
QVTE
4
6202







PDH_1497
VVTT
4
6203







PDH_1498
EVTT
4
6204







PDH_1499
KVTT
4
6205







PDH_1500
AAAG
4
4453







PDH_1501
AAAS
4
6206







PDH_1502
AAAL
4
6207







PDH_1503
AAAR
4
6208







PDH_1504
AAAI
4
6209







PDH_1505
AAAV
4
6210







PDH_1506
AAAP
4
6211







PDH_1507
AAAA
4
6212







PDH_1508
AIFG
4
6213







PDH_1509
ATFG
4
6214







PDH_1510
PTFG
4
6215







PDH_1511
TTFG
4
6216







PDH_1512
ITFG
4
4153







PDH_1513
RTFG
4
6217







PDH_1514
STFG
4
6218







PDH_1515
SIFG
4
6219







PDH_1516
LIFG
4
6220







PDH_1517
RIFG
4
6221







PDH_1518
TIFG
4
4291







PDH_1519
GIFG
4
6222







PDH_1520
IIFG
4
6223







PDH_1521
LTFG
4
6224







PDH_1522
VIFG
4
6225







PDH_1523
PIFG
4
6226







PDH_1524
GTFG
4
6227







PDH_1525
VTFG
4
6228







PDH_1526
VAAK
4
6229







PDH_1527
VAAL
4
6230







PDH_1528
VAAP
4
6231







PDH_1529
VAAQ
4
6232







PDH_1530
VAAA
4
6233







PDH_1531
VAAE
4
6234







PDH_1532
VAAV
4
6235







PDH_1533
VAAI
4
6236







PDH_1534
YYYD
4
4182







PDH_1535
VYYA
4
6237







PDH_1536
AYYD
4
6238







PDH_1537
YYYA
4
6239







PDH_1538
PYYD
4
6240







PDH_1539
IYYD
4
6241







PDH_1540
VYYD
4
6242







PDH_1541
IYYA
4
6243







PDH_1542
TYYA
4
6244







PDH_1543
LYYD
4
6245







PDH_1544
DYYD
4
6246







PDH_1545
SYYD
4
6247







PDH_1546
LYYA
4
6248







PDH_1547
HYYA
4
6249







PDH_1548
DYYA
4
6250







PDH_1549
SYYA
4
6251







PDH_1550
FYYD
4
6252







PDH_1551
FYYA
4
6253







PDH_1552
PYYA
4
6254







PDH_1553
AYYA
4
6255







PDH_1554
HYYD
4
6256







PDH_1555
NYYA
4
6257







PDH_1556
TYYD
4
6258







PDH_1557
NYYD
4
6259







PDH_1558
GYGY
4
6260







PDH_1559
LYGY
4
6261







PDH_1560
SSGY
4
4186







PDH_1561
RYGY
4
6262







PDH_1562
TYGY
4
6263







PDH_1563
TSGY
4
6264







PDH_1564
VYGY
4
6265







PDH_1565
ISGY
4
6266







PDH_1566
ASGY
4
6267







PDH_1567
PSGY
4
6268







PDH_1568
RSGY
4
6269







PDH_1569
GAGY
4
6270







PDH_1570
AAGY
4
6271







PDH_1571
LSGY
4
6272







PDH_1572
SYGY
4
4434







PDH_1573
VSGY
4
6273







PDH_1574
VAGY
4
6274







PDH_1575
TAGY
4
6275







PDH_1576
PAGY
4
6276







PDH_1577
SAGY
4
6277







PDH_1578
RAGY
4
6278







PDH_1579
IAGY
4
6279







PDH_1580
AYGY
4
6280







PDH_1581
PYGY
4
6281







PDH_1582
LAGY
4
6282







PDH_1583
IYGY
4
6283







PDH_1584
GSGY
4
6284







PDH_1585
LQLL
4
6285







PDH_1586
AQLW
4
6286







PDH_1587
TQLW
4
6287







PDH_1588
QQLL
4
6288







PDH_1589
IQLW
4
4427







PDH_1590
EQLL
4
6289







PDH_1591
QQLW
4
6290







PDH_1592
IQLL
4
6291







PDH_1593
EQLW
4
6292







PDH_1594
VQLW
4
6293







PDH_1595
KQLW
4
6294







PDH_1596
KQLL
4
6295







PDH_1597
PQLW
4
6296







PDH_1598
VQLL
4
6297







PDH_1599
TQLL
4
6298







PDH_1600
PQLL
4
6299







PDH_1601
LQLW
4
6300







PDH_1602
AQLL
4
6301







PDH_1603
LGVA
4
6302







PDH_1604
LGGA
4
6303







PDH_1605
KGIA
4
6304







PDH_1606
KGSA
4
6305







PDH_1607
VGIA
4
6306







PDH_1608
KGGA
4
6307







PDH_1609
MGGA
4
6308







PDH_1610
TGGA
4
6309







PDH_1611
QGSA
4
6310







PDH_1612
QGIA
4
6311







PDH_1613
EGSA
4
6312







PDH_1614
PGVA
4
6313







PDH_1615
QGVA
4
6314







PDH_1616
EGIA
4
6315







PDH_1617
AGVA
4
6316







PDH_1618
MGVA
4
6317







PDH_1619
EGGA
4
3671







PDH_1620
PGIA
4
6318







PDH_1621
AGGA
4
6319







PDH_1622
VGGA
4
6320







PDH_1623
EGVA
4
6321







PDH_1624
PGGA
4
6322







PDH_1625
QGGA
4
6323







PDH_1626
AGIA
4
6324







PDH_1627
LGIA
4
6325







PDH_1628
MGIA
4
6326







PDH_1629
TGSA
4
6327







PDH_1630
TGIA
4
6328







PDH_1631
MGSA
4
6329







PDH_1632
KGVA
4
6330







PDH_1633
TGVA
4
6331







PDH_1634
VGVA
4
6332







PDH_1635
PFGE
4
6333







PDH_1636
VVGE
4
6334







PDH_1637
ALGE
4
6335







PDH_1638
IFGE
4
6336







PDH_1639
PLGE
4
6337







PDH_1640
ILGE
4
6338







PDH_1641
PVGE
4
6339







PDH_1642
RVGE
4
6340







PDH_1643
LLGE
4
6341







PDH_1644
SVGE
4
6342







PDH_1645
GLGE
4
6343







PDH_1646
IVGE
4
6344







PDH_1647
RLGE
4
4068







PDH_1648
LVGE
4
6345







PDH_1649
SLGE
4
6346







PDH_1650
TLGE
4
6347







PDH_1651
VLGE
4
6348







PDH_1652
TVGE
4
6349







PDH_1653
GVGE
4
6350







PDH_1654
AVGE
4
6351







PDH_1655
PYSY
4
6352







PDH_1656
PYSD
4
6353







PDH_1657
DYSD
4
6354







PDH_1658
DYSA
4
6355







PDH_1659
SYSD
4
6356







PDH_1660
FYSY
4
6357







PDH_1661
VYSY
4
6358







PDH_1662
FYSS
4
6359







PDH_1663
SYSS
4
6360







PDH_1664
YYSS
4
6361







PDH_1665
YYSY
4
6362







PDH_1666
AYSY
4
6363







PDH_1667
AYSD
4
6364







PDH_1668
HYSY
4
6365







PDH_1669
VYSD
4
6366







PDH_1670
FYSA
4
6367







PDH_1671
SYSY
4
6368







PDH_1672
SYSA
4
6369







PDH_1673
FYSD
4
6370







PDH_1674
YYSD
4
6371







PDH_1675
LYSY
4
6372







PDH_1676
YYSA
4
6373







PDH_1677
HYSS
4
6374







PDH_1678
DYSS
4
6375







PDH_1679
HYSA
4
6376







PDH_1680
DYSY
4
6377







PDH_1681
HYSD
4
6378







PDH_1682
LYSD
4
6379







PDH_1683
AVPA
4
6380







PDH_1684
AVRA
4
6381







PDH_1685
PVRA
4
6382







PDH_1686
PVPA
4
6383







PDH_1687
IVGA
4
3755







PDH_1688
EVPA
4
6384







PDH_1689
LVGA
4
6385







PDH_1690
IVRA
4
6386







PDH_1691
QVGA
4
6387







PDH_1692
IVPA
4
6388







PDH_1693
EVGA
4
6389







PDH_1694
LVPA
4
6390







PDH_1695
QVPA
4
6391







PDH_1696
AVGA
4
6392







PDH_1697
QVRA
4
6393







PDH_1698
TVRA
4
6394







PDH_1699
KVGA
4
6395







PDH_1700
VVPA
4
3837







PDH_1701
VVGA
4
6396







PDH_1702
EVRA
4
6397







PDH_1703
LVRA
4
6398







PDH_1704
VVRA
4
6399







PDH_1705
PVGA
4
6400







PDH_1706
TVGA
4
6401







PDH_1707
KVRA
4
6402







PDH_1708
KVPA
4
6403







PDH_1709
TVPA
4
6404







PDH_1710
GRGV
4
6405







PDH_1711
SRGV
4
6406







PDH_1712
ILGV
4
6407







PDH_1713
AQGV
4
6408







PDH_1714
TQGV
4
6409







PDH_1715
VQGV
4
4062







PDH_1716
PQGV
4
6410







PDH_1717
SQGV
4
6411







PDH_1718
RRGV
4
6412







PDH_1719
PLGV
4
6413







PDH_1720
PRGV
4
6414







PDH_1721
IRGV
4
6415







PDH_1722
ALGV
4
6416







PDH_1723
VRGV
4
4018







PDH_1724
TRGV
4
6417







PDH_1725
TLGV
4
6418







PDH_1726
GQGV
4
6419







PDH_1727
RQGV
4
6420







PDH_1728
ARGV
4
4812







PDH_1729
RLGV
4
6421







PDH_1730
LRGV
4
6422







PDH_1731
SLGV
4
6423







PDH_1732
VLGV
4
6424







PDH_1733
IQGV
4
6425







PDH_1734
LLGV
4
6426







PDH_1735
LQGV
4
6427







PDH_1736
GLGV
4
6428







PDH_1737
DSSW
4
6429







PDH_1738
DSSR
4
6430







PDH_1739
DSSV
4
6431







PDH_1740
DSST
4
6432







PDH_1741
DSSM
4
6433







PDH_1742
DSSG
4
4185







PDH_1743
DSSA
4
6434







PDH_1744
DSSS
4
6435







PDH_1745
DSSL
4
6436







PDH_1746
TGYS
4
6437







PDH_1747
SDYS
4
6438







PDH_1748
LAYS
4
6439







PDH_1749
VDYS
4
6440







PDH_1750
LDYS
4
6441







PDH_1751
PDYS
4
6442







PDH_1752
SAYS
4
6443







PDH_1753
TDYS
4
6444







PDH_1754
LAYS
4
6445







PDH_1755
GAYS
4
6446







PDH_1756
GDYS
4
6447







PDH_1757
VAYS
4
6448







PDH_1758
RDYS
4
6449







PDH_1759
IDYS
4
6450







PDH_1760
RAYS
4
6451







PDH_1761
PAYS
4
6452







PDH_1762
ADYS
4
6453







PDH_1763
TAYS
4
6454







PDH_1764
IGYS
4
6455







PDH_1765
GGYS
4
6456







PDH_1766
RGYS
4
6457







PDH_1767
AAYS
4
6458







PDH_1768
LYGS
4
6459







PDH_1769
TYGS
4
6460







PDH_1770
DYGS
4
6461







PDH_1771
SYGS
4
6462







PDH_1772
FYGS
4
6463







PDH_1773
YYGS
4
3990







PDH_1774
NYGS
4
6464







PDH_1775
HYGS
4
6465







PDH_1776
VYGS
4
6466







PDH_1777
AYGS
4
6467







PDH_1778
PYGS
4
6468







PDH_1779
IYGS
4
6469







PDH_1780
YYYS
4
6470







PDH_1781
SYYS
4
6471







PDH_1782
YYYY
4
6472







PDH_1783
PYYF
4
6473







PDH_1784
FYYS
4
6474







PDH_1785
NYYS
4
6475







PDH_1786
NYYF
4
6476







PDH_1787
FYYF
4
6477







PDH_1788
FYYY
4
6478







PDH_1789
AYYY
4
6479







PDH_1790
SYYY
4
6480







PDH_1791
DYYY
4
6481







PDH_1792
AYYS
4
6482







PDH_1793
IYYY
4
6483







PDH_1794
LYYY
4
6484







PDH_1795
DYYS
4
6485







PDH_1796
AYYF
4
6486







PDH_1797
PYYS
4
6487







PDH_1798
IYYS
4
6488







PDH_1799
YYYF
4
6489







PDH_1800
HYYS
4
6490







PDH_1801
PYYY
4
6491







PDH_1802
HYYF
4
6492







PDH_1803
HYYY
4
6493







PDH_1804
LYYS
4
6494







PDH_1805
VYYF
4
6495







PDH_1806
SYYF
4
6496







PDH_1807
IYYF
4
6497







PDH_1808
LYYF
4
6498







PDH_1809
DYYF
4
6499







PDH_1810
TYYS
4
6500







PDH_1811
NYYY
4
6501







PDH_1812
TYYF
4
6502







PDH_1813
TYYY
4
6503







PDH_1814
VYYS
4
6504







PDH_1815
VYYY
4
6505







PDH_1816
FSYS
4
6506







PDH_1817
VRYS
4
6507







PDH_1818
YSYS
4
6508







PDH_1819
LRYS
4
6509







PDH_1820
ARYS
4
6510







PDH_1821
FRYS
4
6511







PDH_1822
SRYS
4
6512







PDH_1823
DSYS
4
6513







PDH_1824
LSYS
4
6514







PDH_1825
HRYS
4
6515







PDH_1826
PSYS
4
6516







PDH_1827
HSYS
4
6517







PDH_1828
ASYS
4
6518







PDH_1829
YRYS
4
6519







PDH_1830
SSYS
4
6520







PDH_1831
PRYS
4
6521







PDH_1832
VSYS
4
6522







PDH_1833
DRYS
4
6523







PDH_1834
TWFG
4
6524







PDH_1835
GWFG
4
6525







PDH_1836
RWFG
4
6526







PDH_1837
PWFG
4
6527







PDH_1838
LWFG
4
3965







PDH_1839
VWFG
4
6528







PDH_1840
SWFG
4
6529







PDH_1841
AWFG
4
6530







PDH_1842
IWFG
4
6531







PDH_1843
RYYY
4
6532







PDH_1844
RYYS
4
6533







PDH_1845
RYYF
4
6534







PDH_1846
GYYF
4
6535







PDH_1847
GYYS
4
6536







PDH_1848
GYYY
4
4188







PDH_1849
KFGG
4
6537







PDH_1850
ALGG
4
6538







PDH_1851
ILGG
4
6539







PDH_1852
EFGG
4
6540







PDH_1853
QFGG
4
6541







PDH_1854
PLGG
4
6542







PDH_1855
VLGG
4
6543







PDH_1856
IVGG
4
6544







PDH_1857
LLGG
4
6545







PDH_1858
QLGG
4
6546







PDH_1859
KLGG
4
6547







PDH_1860
IFGG
4
6548







PDH_1861
ELGG
4
3713







PDH_1862
PFGG
4
6549







PDH_1863
TLGG
4
6550







PDH_1864
YMVRD
5
6551







PDH_1865
SMVRG
5
6552







PDH_1866
FMVRD
5
6553







PDH_1867
FMVRA
5
6554







PDH_1868
DMVRA
5
6555







PDH_1869
HMVRG
5
6556







PDH_1870
LMVRG
5
6557







PDH_1871
DMVRD
5
6558







PDH_1872
LMVRA
5
6559







PDH_1873
DMVRG
5
6560







PDH_1874
AMVRA
5
6561







PDH_1875
AMVRD
5
6562







PDH_1876
NMVRA
5
6563







PDH_1877
NMVRG
5
6564







PDH_1878
FMVRG
5
6565







PDH_1879
SMVRD
5
6566







PDH_1880
YMVRA
5
6567







PDH_1881
SMVRA
5
6568







PDH_1882
PMVRD
5
6569







PDH_1883
YMVRG
5
6570







PDH_1884
TMVRG
5
4010







PDH_1885
PMVRA
5
6571







PDH_1886
PMVRG
5
6572







PDH_1887
VMVRA
5
6573







PDH_1888
NMVRD
5
6574







PDH_1889
VMVRG
5
6575







PDH_1890
TMVRD
5
6576







PDH_1891
VMVRD
5
6577







PDH_1892
TMVRA
5
6578







PDH_1893
AMVRG
5
6579







PDH_1894
LMVRD
5
6580







PDH_1895
HMVRD
5
6581







PDH_1896
HMVRA
5
6582







PDH_1897
IMVRD
5
6583







PDH_1898
IMVRA
5
6584







PDH_1899
IMVRG
5
6585







PDH_1900
AYGDF
5
6586







PDH_1901
VYGDS
5
6587







PDH_1902
DYGDY
5
4348







PDH_1903
NYGDF
5
6588







PDH_1904
DYGDS
5
6589







PDH_1905
HYGDS
5
6590







PDH_1906
HYGDY
5
6591







PDH_1907
IYGDS
5
6592







PDH_1908
LYGDS
5
6593







PDH_1909
LYGDF
5
6594







PDH_1910
AYGDY
5
6595







PDH_1911
AYGDS
5
6596







PDH_1912
SYGDS
5
6597







PDH_1913
SYGDY
5
6598







PDH_1914
NYGDS
5
6599







PDH_1915
HYGDF
5
6600







PDH_1916
FYGDS
5
6601







PDH_1917
IYGDF
5
6602







PDH_1918
FYGDY
5
6603







PDH_1919
VYGDY
5
6604







PDH_1920
NYGDY
5
6605







PDH_1921
YYGDS
5
6606







PDH_1922
YYGDF
5
6607







PDH_1923
PYGDY
5
6608







PDH_1924
SYGDF
5
6609







PDH_1925
TYGDS
5
6610







PDH_1926
TYGDY
5
6611







PDH_1927
LYGDY
5
6612







PDH_1928
DYGDF
5
6613







PDH_1929
IYGDY
5
6614







PDH_1930
VYGDF
5
6615







PDH_1931
FYGDF
5
6616







PDH_1932
TYGDF
5
6617







PDH_1933
PYGDF
5
6618







PDH_1934
PYGDS
5
6619







PDH_1935
YYGDY
5
6620







PDH_1936
TYSYD
5
6621







PDH_1937
PYSYG
5
6622







PDH_1938
RYSYD
5
6623







PDH_1939
AYSYV
5
6624







PDH_1940
PYSYA
5
6625







PDH_1941
TYSYV
5
6626







PDH_1942
PYSYD
5
6627







PDH_1943
TYSYG
5
6628







PDH_1944
AYSYD
5
6629







PDH_1945
RYSYA
5
6630







PDH_1946
PYSYV
5
6631







PDH_1947
GYSYG
5
4430







PDH_1948
GYSYA
5
6632







PDH_1949
GYSYD
5
6633







PDH_1950
GYSYV
5
6634







PDH_1951
LYSYG
5
6635







PDH_1952
SYSYV
5
6636







PDH_1953
LYSYA
5
6637







PDH_1954
LYSYD
5
6638







PDH_1955
RYSYV
5
6639







PDH_1956
IYSYD
5
6640







PDH_1957
VYSYV
5
6641







PDH_1958
IYSYG
5
6642







PDH_1959
IYSYA
5
6643







PDH_1960
IYSYV
5
6644







PDH_1961
RYSYG
5
6645







PDH_1962
VYSYA
5
6646







PDH_1963
AYSYA
5
6647







PDH_1964
SYSYA
5
6648







PDH_1965
VYSYG
5
6649







PDH_1966
AYSYG
5
6650







PDH_1967
VYSYD
5
6651







PDH_1968
TYSYA
5
6652







PDH_1969
SYSYD
5
6653







PDH_1970
SYSYG
5
6654







PDH_1971
LYSYV
5
6655







PDH_1972
GSGSS
5
6656







PDH_1973
GSGSF
5
6657







PDH_1974
ASGSS
5
6658







PDH_1975
RSGSY
5
6659







PDH_1976
NSGSY
5
6660







PDH_1977
NSGSS
5
6661







PDH_1978
TSGSS
5
6662







PDH_1979
RSGSS
5
6663







PDH_1980
SSGSY
5
6664







PDH_1981
VSGSF
5
6665







PDH_1982
HSGSY
5
6666







PDH_1983
TSGSY
5
6667







PDH_1984
SSGSF
5
6668







PDH_1985
LSGSF
5
6669







PDH_1986
NSGSF
5
6670







PDH_1987
PSGSY
5
6671







PDH_1988
TSGSF
5
6672







PDH_1989
PSGSS
5
6673







PDH_1990
PSGSF
5
6674







PDH_1991
GSGSY
5
3987







PDH_1992
ISGSS
5
6675







PDH_1993
ISGSY
5
6676







PDH_1994
ASGSY
5
6677







PDH_1995
RSGSF
5
6678







PDH_1996
DSGSS
5
6679







PDH_1997
DSGSY
5
6680







PDH_1998
LSGSS
5
6681







PDH_1999
SSGSS
5
6682







PDH_2000
HSGSF
5
6683







PDH_2001
HSGSS
5
6684







PDH_2002
LSGSY
5
6685







PDH_2003
ASGSF
5
6686







PDH_2004
VSGSY
5
6687







PDH_2005
ISGSF
5
6688







PDH_2006
VSGSS
5
6689







PDH_2007
DSGSF
5
6690







PDH_2008
IFLES
5
6691







PDH_2009
IFLEL
5
6692







PDH_2010
RFLES
5
6693







PDH_2011
LFLEL
5
6694







PDH_2012
TFLES
5
6695







PDH_2013
GFLEW
5
6696







PDH_2014
GFLES
5
6697







PDH_2015
TFLEW
5
6698







PDH_2016
TFLEL
5
6699







PDH_2017
VFLEW
5
6700







PDH_2018
SFLEL
5
6701







PDH_2019
VFLES
5
6702







PDH_2020
GFLEL
5
6703







PDH_2021
VFLEL
5
6704







PDH_2022
AFLEL
5
6705







PDH_2023
PFLES
5
6706







PDH_2024
SFLEW
5
6707







PDH_2025
AFLES
5
6708







PDH_2026
AFLEW
5
6709







PDH_2027
LFLEW
5
6710







PDH_2028
PFLEL
5
6711







PDH_2029
RFLEW
5
4231







PDH_2030
RFLEL
5
6712







PDH_2031
LFLES
5
6713







PDH_2032
PFLEW
5
6714







PDH_2033
SFLES
5
6715







PDH_2034
IFLEW
5
6716







PDH_2035
PGSYS
5
6717







PDH_2036
AGSYA
5
6718







PDH_2037
HGSYS
5
6719







PDH_2038
HGSYY
5
6720







PDH_2039
PGSYY
5
6721







PDH_2040
SGSYS
5
6722







PDH_2041
SGSYD
5
6723







PDH_2042
SGSYA
5
6724







PDH_2043
LGSYS
5
6725







PDH_2044
VGSYS
5
6726







PDH_2045
DGSYY
5
6727







PDH_2046
FGSYS
5
6728







PDH_2047
FGSYY
5
6729







PDH_2048
HGSYD
5
6730







PDH_2049
LGSYA
5
6731







PDH_2050
HGSYA
5
6732







PDH_2051
LGSYD
5
6733







PDH_2052
DGSYS
5
6734







PDH_2053
VGSYD
5
6735







PDH_2054
VGSYY
5
6736







PDH_2055
AGSYY
5
6737







PDH_2056
YGSYS
5
6738







PDH_2057
AGSYS
5
6739







PDH_2058
AGSYD
5
6740







PDH_2059
VGSYA
5
6741







PDH_2060
DGSYD
5
6742







PDH_2061
FGSYD
5
6743







PDH_2062
DGSYA
5
6744







PDH_2063
YGSYA
5
6745







PDH_2064
FGSYA
5
6746







PDH_2065
YGSYD
5
6747







PDH_2066
LGSYY
5
6748







PDH_2067
SGSYY
5
3761







PDH_2068
PGSYA
5
6749







PDH_2069
PGSYD
5
6750







PDH_2070
YGSYY
5
6751







PDH_2071
FSGSF
5
6752







PDH_2072
FSGSY
5
6753







PDH_2073
YSGSF
5
6754







PDH_2074
YSGSS
5
6755







PDH_2075
FSGSS
5
6756







PDH_2076
YSGSY
5
3760







PDH_2077
ASSSW
5
6757







PDH_2078
VSSSS
5
6758







PDH_2079
YSSSS
5
4478







PDH_2080
YSSSL
5
6759







PDH_2081
VSSSW
5
6760







PDH_2082
ASSSL
5
6761







PDH_2083
HSSSL
5
6762







PDH_2084
PSSSL
5
6763







PDH_2085
ASSSS
5
6764







PDH_2086
HSSSW
5
6765







PDH_2087
VSSSL
5
6766







PDH_2088
FSSSL
5
6767







PDH_2089
HSSSS
5
6768







PDH_2090
FSSSW
5
6769







PDH_2091
SSSSS
5
6770







PDH_2092
DSSSS
5
6771







PDH_2093
SSSSL
5
6772







PDH_2094
FSSSS
5
6773







PDH_2095
LSSSW
5
6774







PDH_2096
DSSSL
5
6775







PDH_2097
LSSSS
5
6776







PDH_2098
LSSSL
5
6777







PDH_2099
SSSSW
5
6778







PDH_2100
DSSSW
5
6779







PDH_2101
PSSSW
5
6780







PDH_2102
PSSSS
5
6781







PDH_2103
YSSSW
5
4439







PDH_2104
HSSGW
5
6782







PDH_2105
FSSGL
5
6783







PDH_2106
SSSGW
5
6784







PDH_2107
SSSGS
5
6785







PDH_2108
DSSGL
5
6786







PDH_2109
HSSGS
5
6787







PDH_2110
FSSGW
5
6788







PDH_2111
ASSGW
5
6789







PDH_2112
DSSGW
5
6790







PDH_2113
DSSGS
5
6791







PDH_2114
ASSGL
5
6792







PDH_2115
LSSGL
5
6793







PDH_2116
FSSGS
5
6794







PDH_2117
ASSGS
5
6795







PDH_2118
PSSGS
5
6796







PDH_2119
LSSGW
5
6797







PDH_2120
LSSGS
5
6798







PDH_2121
YSSGL
5
6799







PDH_2122
VSSGS
5
6800







PDH_2123
PSSGW
5
6801







PDH_2124
PSSGL
5
6802







PDH_2125
VSSGL
5
6803







PDH_2126
VSSGW
5
6804







PDH_2127
YSSGW
5
4460







PDH_2128
SSSGL
5
6805







PDH_2129
HSSGL
5
6806







PDH_2130
YSSGS
5
6807







PDH_2131
VTVTT
5
6808







PDH_2132
RTVTT
5
6809







PDH_2133
LTVTK
5
6810







PDH_2134
ATVTK
5
6811







PDH_2135
GTVTT
5
6812







PDH_2136
VTVTK
5
6813







PDH_2137
LTVTR
5
6814







PDH_2138
ATVTT
5
6815







PDH_2139
RTVTR
5
6816







PDH_2140
VTVTR
5
6817







PDH_2141
TTVTK
5
6818







PDH_2142
GTVTR
5
6819







PDH_2143
TTVTI
5
6820







PDH_2144
RTVTK
5
6821







PDH_2145
LTVTT
5
6822







PDH_2146
VTVTI
5
6823







PDH_2147
GTVTK
5
6824







PDH_2148
TTVTR
5
6825







PDH_2149
GTVTI
5
6826







PDH_2150
PTVTI
5
6827







PDH_2151
TTVTT
5
4351







PDH_2152
STVTT
5
6828







PDH_2153
STVTI
5
6829







PDH_2154
ITVTI
5
6830







PDH_2155
STVTK
5
6831







PDH_2156
STVTR
5
6832







PDH_2157
ATVTI
5
6833







PDH_2158
ITVTT
5
6834







PDH_2159
ITVTR
5
6835







PDH_2160
LTVTI
5
6836







PDH_2161
PTVTR
5
6837







PDH_2162
ATVTR
5
6838







PDH_2163
PTVTK
5
6839







PDH_2164
RTVTI
5
6840







PDH_2165
ITVTK
5
6841







PDH_2166
PTVTT
5
6842







PDH_2167
ASSSF
5
6843







PDH_2168
ASSSY
5
6844







PDH_2169
PSSSF
5
6845







PDH_2170
HSSSF
5
6846







PDH_2171
VSSSY
5
6847







PDH_2172
YSSSF
5
6848







PDH_2173
FSSSF
5
6849







PDH_2174
HSSSY
5
6850







PDH_2175
VSSSF
5
6851







PDH_2176
SSSSY
5
6852







PDH_2177
SSSSF
5
6853







PDH_2178
LSSSY
5
6854







PDH_2179
DSSSY
5
6855







PDH_2180
FSSSY
5
6856







PDH_2181
PSSSY
5
6857







PDH_2182
YSSSY
5
6858







PDH_2183
DSSSF
5
6859







PDH_2184
LSSSF
5
6860







PDH_2185
FSGWF
5
6861







PDH_2186
FSGWS
5
6862







PDH_2187
ISGWY
5
6863







PDH_2188
FSGWY
5
6864







PDH_2189
ISGWS
5
6865







PDH_2190
PSGWS
5
6866







PDH_2191
DSGWF
5
6867







PDH_2192
PSGWY
5
6868







PDH_2193
PSGWF
5
6869







PDH_2194
TSGWY
5
6870







PDH_2195
ASGWF
5
6871







PDH_2196
LSGWF
5
6872







PDH_2197
ISGWF
5
6873







PDH_2198
SSGWY
5
4461







PDH_2199
SSGWS
5
6874







PDH_2200
SSGWF
5
6875







PDH_2201
NSGWS
5
6876







PDH_2202
NSGWY
5
6877







PDH_2203
NSGWF
5
6878







PDH_2204
VSGWS
5
6879







PDH_2205
VSGWY
5
6880







PDH_2206
YSGWF
5
6881







PDH_2207
LSGWS
5
6882







PDH_2208
ASGWY
5
6883







PDH_2209
LSGWY
5
6884







PDH_2210
TSGWF
5
6885







PDH_2211
TSGWS
5
6886







PDH_2212
DSGWY
5
6887







PDH_2213
DSGWS
5
6888







PDH_2214
ASGWS
5
6889







PDH_2215
HSGWF
5
6890







PDH_2216
HSGWS
5
6891







PDH_2217
YSGWS
5
6892







PDH_2218
HSGWY
5
6893







PDH_2219
YSGWY
5
6894







PDH_2220
VSGWF
5
6895







PDH_2221
ISGYD
5
6896







PDH_2222
HSGYA
5
6897







PDH_2223
ISGYA
5
6898







PDH_2224
HSGYG
5
6899







PDH_2225
TSGYD
5
6900







PDH_2226
TSGYA
5
6901







PDH_2227
DSGYA
5
6902







PDH_2228
LSGYA
5
6903







PDH_2229
FSGYA
5
6904







PDH_2230
LSGYD
5
6905







PDH_2231
FSGYG
5
6906







PDH_2232
SSGYD
5
6907







PDH_2233
SSGYA
5
6908







PDH_2234
ISGYG
5
6909







PDH_2235
HSGYD
5
6910







PDH_2236
ASGYD
5
6911







PDH_2237
YSGYA
5
6912







PDH_2238
YSGYD
5
4389







PDH_2239
VSGYA
5
6913







PDH_2240
VSGYG
5
6914







PDH_2241
SSGYG
5
6915







PDH_2242
DSGYD
5
6916







PDH_2243
DSGYG
5
6917







PDH_2244
FSGYD
5
6918







PDH_2245
LSGYG
5
6919







PDH_2246
TSGYG
5
6920







PDH_2247
NSGYA
5
6921







PDH_2248
NSGYG
5
6922







PDH_2249
NSGYD
5
6923







PDH_2250
PSGYA
5
6924







PDH_2251
PSGYG
5
6925







PDH_2252
PSGYD
5
6926







PDH_2253
ASGYG
5
6927







PDH_2254
VSGYD
5
6928







PDH_2255
ASGYA
5
6929







PDH_2256
YSGYG
5
6930







PDH_2257
FYYDS
5
6931







PDH_2258
YYYDT
5
6932







PDH_2259
DYYDS
5
6933







PDH_2260
AYYDS
5
6934







PDH_2261
AYYDT
5
6935







PDH_2262
DYYDI
5
6936







PDH_2263
VYYDI
5
6937







PDH_2264
FYYDT
5
6938







PDH_2265
LYYDI
5
6939







PDH_2266
PYYDI
5
6940







PDH_2267
HYYDI
5
6941







PDH_2268
IYYDI
5
6942







PDH_2269
LYYDS
5
6943







PDH_2270
SYYDI
5
6944







PDH_2271
NYYDT
5
6945







PDH_2272
NYYDS
5
6946







PDH_2273
SYYDT
5
6947







PDH_2274
AYYDI
5
6948







PDH_2275
SYYDS
5
6949







PDH_2276
DYYDT
5
6950







PDH_2277
VYYDT
5
6951







PDH_2278
YYYDI
5
6952







PDH_2279
VYYDS
5
6953







PDH_2280
FYYDI
5
6954







PDH_2281
YYYDS
5
4176







PDH_2282
TYYDT
5
6955







PDH_2283
NYYDI
5
6956







PDH_2284
HYYDS
5
6957







PDH_2285
LYYDT
5
6958







PDH_2286
IYYDT
5
6959







PDH_2287
IYYDS
5
6960







PDH_2288
PYYDT
5
6961







PDH_2289
PYYDS
5
6962







PDH_2290
TYYDI
5
6963







PDH_2291
HYYDT
5
6964







PDH_2292
TYYDS
5
6965







PDH_2293
DSSGY
5
4179







PDH_2294
SSSGY
5
6966







PDH_2295
DSSGF
5
6967







PDH_2296
HSSGY
5
6968







PDH_2297
SSSGF
5
6969







PDH_2298
ASSGF
5
6970







PDH_2299
ASSGY
5
6971







PDH_2300
LSSGF
5
6972







PDH_2301
FSSGY
5
6973







PDH_2302
FSSGF
5
6974







PDH_2303
YSSGF
5
6975







PDH_2304
PSSGY
5
6976







PDH_2305
VSSGY
5
6977







PDH_2306
LSSGY
5
6978







PDH_2307
HSSGF
5
6979







PDH_2308
PSSGF
5
6980







PDH_2309
VSSGF
5
6981







PDH_2310
YSSGY
5
6982







PDH_2311
QAARH
5
6983







PDH_2312
QAARP
5
6984







PDH_2313
TAARR
5
6985







PDH_2314
QAARL
5
6986







PDH_2315
KAARR
5
6987







PDH_2316
KAARP
5
6988







PDH_2317
KAARH
5
6989







PDH_2318
TAARH
5
6990







PDH_2319
TAARP
5
6991







PDH_2320
EAARL
5
6992







PDH_2321
EAARP
5
6993







PDH_2322
AAARL
5
6994







PDH_2323
LAARL
5
6995







PDH_2324
IAARL
5
6996







PDH_2325
IAARH
5
6997







PDH_2326
LAARR
5
6998







PDH_2327
LAARH
5
6999







PDH_2328
EAARH
5
7000







PDH_2329
IAARR
5
7001







PDH_2330
QAARR
5
7002







PDH_2331
IAARP
5
4483







PDH_2332
EAARR
5
7003







PDH_2333
KAARL
5
7004







PDH_2334
PAARR
5
7005







PDH_2335
PAARP
5
7006







PDH_2336
PAARH
5
7007







PDH_2337
PAARL
5
7008







PDH_2338
VAARR
5
7009







PDH_2339
AAARH
5
7010







PDH_2340
VAARP
5
7011







PDH_2341
VAARH
5
7012







PDH_2342
AAARP
5
7013







PDH_2343
AAARR
5
7014







PDH_2344
TAARL
5
7015







PDH_2345
LAARP
5
7016







PDH_2346
VAARL
5
7017







PDH_2347
EYYYG
5
7018







PDH_2348
VYYYD
5
7019







PDH_2349
EYYYA
5
7020







PDH_2350
VYYYG
5
7021







PDH_2351
EYYYD
5
7022







PDH_2352
PYYYD
5
7023







PDH_2353
PYYYG
5
7024







PDH_2354
AYYYG
5
7025







PDH_2355
TYYYA
5
7026







PDH_2356
TYYYG
5
7027







PDH_2357
TYYYD
5
7028







PDH_2358
QYYYA
5
7029







PDH_2359
QYYYG
5
7030







PDH_2360
QYYYD
5
7031







PDH_2361
VYYYA
5
7032







PDH_2362
LYYYG
5
7033







PDH_2363
LYYYD
5
7034







PDH_2364
LYYYA
5
7035







PDH_2365
AYYYD
5
7036







PDH_2366
AYYYA
5
7037







PDH_2367
PYYYA
5
7038







PDH_2368
MYYYD
5
7039







PDH_2369
KYYYD
5
7040







PDH_2370
KYYYG
5
7041







PDH_2371
MYYYA
5
7042







PDH_2372
KYYYA
5
7043







PDH_2373
MYYYG
5
7044







PDH_2374
LTMVR
5
7045







PDH_2375
RTMVQ
5
7046







PDH_2376
VTMVQ
5
7047







PDH_2377
TTMVR
5
7048







PDH_2378
LTMVQ
5
7049







PDH_2379
STMVQ
5
7050







PDH_2380
ATMVQ
5
7051







PDH_2381
PTMVR
5
7052







PDH_2382
RTMVR
5
7053







PDH_2383
ITMVQ
5
4055







PDH_2384
GTMVR
5
7054







PDH_2385
VTMVR
5
7055







PDH_2386
PTMVQ
5
7056







PDH_2387
ITMVR
5
4009







PDH_2388
ATMVR
5
7057







PDH_2389
STMVR
5
7058







PDH_2390
TTMVQ
5
7059







PDH_2391
GTMVQ
5
7060







PDH_2392
HMVQG
5
7061







PDH_2393
DMVQG
5
7062







PDH_2394
LMVQG
5
7063







PDH_2395
SMVQG
5
7064







PDH_2396
FMVQG
5
7065







PDH_2397
NMVQG
5
7066







PDH_2398
VMVQG
5
7067







PDH_2399
TMVQG
5
4056







PDH_2400
PMVQG
5
7068







PDH_2401
YMVQG
5
7069







PDH_2402
AMVQG
5
7070







PDH_2403
IMVQG
5
7071







PDH_2404
PWGSY
5
7072







PDH_2405
TWGSY
5
7073







PDH_2406
SWGSY
5
7074







PDH_2407
HWGSY
5
7075







PDH_2408
LWGSY
5
7076







PDH_2409
DWGSY
5
7077







PDH_2410
FWGSY
5
7078







PDH_2411
AWGSY
5
7079







PDH_2412
YWGSY
5
7080







PDH_2413
IWGSY
5
7081







PDH_2414
NWGSY
5
7082







PDH_2415
VWGSY
5
4102







PDH_2416
FSSSWF
6
7083







PDH_2417
HSSSWS
6
7084







PDH_2418
VSSSWF
6
7085







PDH_2419
HSSSWY
6
7086







PDH_2420
VSSSWS
6
7087







PDH_2421
LSSSWY
6
7088







PDH_2422
VSSSWY
6
7089







PDH_2423
HSSSWF
6
7090







PDH_2424
ASSSWY
6
7091







PDH_2425
DSSSWS
6
7092







PDH_2426
PSSSWY
6
7093







PDH_2427
ASSSWS
6
7094







PDH_2428
DSSSWF
6
7095







PDH_2429
DSSSWY
6
7096







PDH_2430
YSSSWS
6
7097







PDH_2431
YSSSWF
6
7098







PDH_2432
ASSSWF
6
7099







PDH_2433
LSSSWS
6
7100







PDH_2434
SSSSWS
6
7101







PDH_2435
YSSSWY
6
4437







PDH_2436
PSSSWS
6
7102







PDH_2437
SSSSWY
6
7103







PDH_2438
LSSSWF
6
7104







PDH_2439
PSSSWF
6
7105







PDH_2440
FSSSWS
6
7106







PDH_2441
SSSSWF
6
7107







PDH_2442
FSSSWY
6
7108







PDH_2443
AYYDST
6
7109







PDH_2444
AYYDSI
6
7110







PDH_2445
YYYDST
6
7111







PDH_2446
PYYDST
6
7112







PDH_2447
VYYDSS
6
7113







PDH_2448
NYYDSI
6
7114







PDH_2449
PYYDSS
6
7115







PDH_2450
YYYDSS
6
4171







PDH_2451
YYYDSI
6
7116







PDH_2452
VYYDST
6
7117







PDH_2453
VYYDSI
6
7118







PDH_2454
NYYDST
6
7119







PDH_2455
LYYDST
6
7120







PDH_2456
NYYDSS
6
7121







PDH_2457
SYYDSI
6
7122







PDH_2458
LYYDSS
6
7123







PDH_2459
SYYDST
6
7124







PDH_2460
LYYDSI
6
7125







PDH_2461
SYYDSS
6
7126







PDH_2462
DYYDSI
6
7127







PDH_2463
DYYDST
6
7128







PDH_2464
DYYDSS
6
7129







PDH_2465
FYYDSS
6
7130







PDH_2466
TYYDSI
6
7131







PDH_2467
FYYDST
6
7132







PDH_2468
IYYDST
6
7133







PDH_2469
FYYDSI
6
7134







PDH_2470
IYYDSS
6
7135







PDH_2471
TYYDSS
6
7136







PDH_2472
TYYDST
6
7137







PDH_2473
HYYDSS
6
7138







PDH_2474
HYYDST
6
7139







PDH_2475
IYYDSI
6
7140







PDH_2476
HYYDSI
6
7141







PDH_2477
PYYDSI
6
7142







PDH_2478
AYYDSS
6
7143







PDH_2479
LYSGYA
6
7144







PDH_2480
GYSGYV
6
7145







PDH_2481
SYSGYD
6
7146







PDH_2482
LYSGYD
6
7147







PDH_2483
IYSGYV
6
7148







PDH_2484
SYSGYG
6
7149







PDH_2485
IYSGYG
6
7150







PDH_2486
SYSGYA
6
7151







PDH_2487
PYSGYG
6
7152







PDH_2488
VYSGYD
6
7153







PDH_2489
PYSGYA
6
7154







PDH_2490
VYSGYV
6
7155







PDH_2491
GYSGYG
6
7156







PDH_2492
VYSGYA
6
7157







PDH_2493
PYSGYV
6
7158







PDH_2494
GYSGYA
6
7159







PDH_2495
IYSGYD
6
7160







PDH_2496
PYSGYD
6
7161







PDH_2497
RYSGYV
6
7162







PDH_2498
RYSGYA
6
7163







PDH_2499
RYSGYG
6
7164







PDH_2500
GYSGYD
6
4386







PDH_2501
IYSGYA
6
7165







PDH_2502
AYSGYA
6
7166







PDH_2503
RYSGYD
6
7167







PDH_2504
AYSGYG
6
7168







PDH_2505
AYSGYD
6
7169







PDH_2506
AYSGYV
6
7170







PDH_2507
VYSGYG
6
7171







PDH_2508
TYSGYV
6
7172







PDH_2509
TYSGYD
6
7173







PDH_2510
TYSGYA
6
7174







PDH_2511
TYSGYG
6
7175







PDH_2512
SYSGYV
6
7176







PDH_2513
LYSGYV
6
7177







PDH_2514
LYSGYG
6
7178







PDH_2515
SSSGWF
6
7179







PDH_2516
PSSGWY
6
7180







PDH_2517
FSSGWF
6
7181







PDH_2518
PSSGWS
6
7182







PDH_2519
FSSGWS
6
7183







PDH_2520
ASSGWY
6
7184







PDH_2521
FSSGWY
6
7185







PDH_2522
ASSGWS
6
7186







PDH_2523
SSSGWS
6
7187







PDH_2524
YSSGWY
6
4458







PDH_2525
SSSGWY
6
7188







PDH_2526
HSSGWS
6
7189







PDH_2527
DSSGWS
6
7190







PDH_2528
YSSGWS
6
7191







PDH_2529
LSSGWF
6
7192







PDH_2530
HSSGWY
6
7193







PDH_2531
DSSGWF
6
7194







PDH_2532
DSSGWY
6
7195







PDH_2533
LSSGWY
6
7196







PDH_2534
HSSGWF
6
7197







PDH_2535
VSSGWS
6
7198







PDH_2536
LSSGWS
6
7199







PDH_2537
VSSGWY
6
7200







PDH_2538
VSSGWF
6
7201







PDH_2539
PSSGWF
6
7202







PDH_2540
ASSGWF
6
7203







PDH_2541
YSSGWF
6
7204







PDH_2542
IYYGSA
6
7205







PDH_2543
PYYGSG
6
7206







PDH_2544
PYYGSA
6
7207







PDH_2545
PYYGSD
6
7208







PDH_2546
VYYGSD
6
7209







PDH_2547
AYYGSA
6
7210







PDH_2548
VYYGSA
6
7211







PDH_2549
NYYGSA
6
7212







PDH_2550
YYYGSA
6
7213







PDH_2551
AYYGSD
6
7214







PDH_2552
NYYGSD
6
7215







PDH_2553
YYYGSD
6
7216







PDH_2554
FYYGSD
6
7217







PDH_2555
NYYGSG
6
7218







PDH_2556
YYYGSG
6
3979







PDH_2557
FYYGSA
6
7219







PDH_2558
FYYGSG
6
7220







PDH_2559
AYYGSG
6
7221







PDH_2560
LYYGSG
6
7222







PDH_2561
DYYGSD
6
7223







PDH_2562
LYYGSA
6
7224







PDH_2563
TYYGSD
6
7225







PDH_2564
DYYGSG
6
7226







PDH_2565
DYYGSA
6
7227







PDH_2566
LYYGSD
6
7228







PDH_2567
HYYGSD
6
7229







PDH_2568
TYYGSA
6
7230







PDH_2569
TYYGSG
6
7231







PDH_2570
HYYGSA
6
7232







PDH_2571
SYYGSG
6
7233







PDH_2572
HYYGSG
6
7234







PDH_2573
SYYGSD
6
7235







PDH_2574
VYYGSG
6
7236







PDH_2575
SYYGSA
6
7237







PDH_2576
IYYGSG
6
7238







PDH_2577
IYYGSD
6
7239







PDH_2578
VSSGYS
6
7240







PDH_2579
VSSGYY
6
7241







PDH_2580
FSSGYY
6
7242







PDH_2581
ASSGYF
6
7243







PDH_2582
ASSGYS
6
7244







PDH_2583
FSSGYS
6
7245







PDH_2584
SSSGYY
6
7246







PDH_2585
ASSGYY
6
7247







PDH_2586
FSSGYF
6
7248







PDH_2587
HSSGYY
6
7249







PDH_2588
DSSGYY
6
4174







PDH_2589
HSSGYS
6
7250







PDH_2590
SSSGYS
6
7251







PDH_2591
DSSGYS
6
7252







PDH_2592
DSSGYF
6
7253







PDH_2593
HSSGYF
6
7254







PDH_2594
PSSGYF
6
7255







PDH_2595
SSSGYF
6
7256







PDH_2596
YSSGYY
6
7257







PDH_2597
YSSGYF
6
7258







PDH_2598
YSSGYS
6
7259







PDH_2599
PSSGYS
6
7260







PDH_2600
PSSGYY
6
7261







PDH_2601
LSSGYY
6
7262







PDH_2602
LSSGYF
6
7263







PDH_2603
LSSGYS
6
7264







PDH_2604
VSSGYF
6
7265







PDH_2605
TYDSSD
6
7266







PDH_2606
YYDSSA
6
7267







PDH_2607
YYDSSG
6
4172







PDH_2608
LYDSSD
6
7268







PDH_2609
LYDSSA
6
7269







PDH_2610
PYDSSA
6
7270







PDH_2611
LYDSSG
6
7271







PDH_2612
PYDSSD
6
7272







PDH_2613
VYDSSD
6
7273







PDH_2614
HYDSSG
6
7274







PDH_2615
VYDSSG
6
7275







PDH_2616
VYDSSA
6
7276







PDH_2617
PYDSSG
6
7277







PDH_2618
SYDSSA
6
7278







PDH_2619
FYDSSG
6
7279







PDH_2620
NYDSSA
6
7280







PDH_2621
SYDSSG
6
7281







PDH_2622
FYDSSA
6
7282







PDH_2623
NYDSSD
6
7283







PDH_2624
SYDSSD
6
7284







PDH_2625
FYDSSD
6
7285







PDH_2626
DYDSSG
6
7286







PDH_2627
AYDSSG
6
7287







PDH_2628
NYDSSG
6
7288







PDH_2629
IYDSSA
6
7289







PDH_2630
DYDSSD
6
7290







PDH_2631
IYDSSG
6
7291







PDH_2632
AYDSSD
6
7292







PDH_2633
DYDSSA
6
7293







PDH_2634
IYDSSD
6
7294







PDH_2635
HYDSSA
6
7295







PDH_2636
AYDSSA
6
7296







PDH_2637
HYDSSD
6
7297







PDH_2638
TYDSSG
6
7298







PDH_2639
TYDSSA
6
7299







PDH_2640
YYDSSD
6
7300







PDH_2641
TDFWSA
6
7301







PDH_2642
ADFWSG
6
7302







PDH_2643
PDFWSG
6
7303







PDH_2644
VDFWSD
6
7304







PDH_2645
TDFWSD
6
7305







PDH_2646
HDFWSA
6
7306







PDH_2647
HDFWSD
6
7307







PDH_2648
TDFWSG
6
7308







PDH_2649
LDFWSA
6
7309







PDH_2650
LDFWSG
6
7310







PDH_2651
HDFWSG
6
7311







PDH_2652
LDFWSD
6
7312







PDH_2653
FDFWSG
6
7313







PDH_2654
DDFWSD
6
7314







PDH_2655
VDFWSA
6
7315







PDH_2656
SDFWSD
6
7316







PDH_2657
SDFWSG
6
7317







PDH_2658
NDFWSD
6
7318







PDH_2659
SDFWSA
6
7319







PDH_2660
NDFWSA
6
7320







PDH_2661
NDFWSG
6
7321







PDH_2662
VDFWSG
6
7322







PDH_2663
IDFWSD
6
7323







PDH_2664
IDFWSG
6
7324







PDH_2665
FDFWSA
6
7325







PDH_2666
ADFWSD
6
7326







PDH_2667
IDFWSA
6
7327







PDH_2668
FDFWSD
6
7328







PDH_2669
DDFWSG
6
7329







PDH_2670
ADFWSA
6
7330







PDH_2671
YDFWSA
6
7331







PDH_2672
PDFWSD
6
7332







PDH_2673
YDFWSG
6
4253







PDH_2674
DDFWSA
6
7333







PDH_2675
PDFWSA
6
7334







PDH_2676
YDFWSD
6
7335







PDH_2677
DDSSGY
6
7336







PDH_2678
LDSSGY
6
7337







PDH_2679
HDSSGS
6
7338







PDH_2680
DDSSGF
6
7339







PDH_2681
DDSSGS
6
7340







PDH_2682
LDSSGS
6
7341







PDH_2683
HDSSGY
6
7342







PDH_2684
SDSSGS
6
7343







PDH_2685
SDSSGF
6
7344







PDH_2686
PDSSGS
6
7345







PDH_2687
SDSSGY
6
7346







PDH_2688
PDSSGY
6
7347







PDH_2689
ADSSGY
6
7348







PDH_2690
ADSSGS
6
7349







PDH_2691
ADSSGF
6
7350







PDH_2692
YDSSGF
6
7351







PDH_2693
VDSSGF
6
7352







PDH_2694
FDSSGF
6
7353







PDH_2695
VDSSGY
6
7354







PDH_2696
YDSSGY
6
4173







PDH_2697
FDSSGS
6
7355







PDH_2698
VDSSGS
6
7356







PDH_2699
YDSSGS
6
7357







PDH_2700
FDSSGY
6
7358







PDH_2701
LDSSGF
6
7359







PDH_2702
HDSSGF
6
7360







PDH_2703
PDSSGF
6
7361







PDH_2704
EYFDWS
6
7362







PDH_2705
QYFDWL
6
7363







PDH_2706
RYFDWF
6
7364







PDH_2707
AYFDWF
6
7365







PDH_2708
PYFDWF
6
7366







PDH_2709
PYFDWP
6
7367







PDH_2710
LYFDWP
6
7368







PDH_2711
EYFDWP
6
7369







PDH_2712
EYFDWL
6
7370







PDH_2713
RYFDWL
6
4305







PDH_2714
LYFDWL
6
7371







PDH_2715
PYFDWL
6
7372







PDH_2716
LYFDWS
6
7373







PDH_2717
QYFDWS
6
7374







PDH_2718
QYFDWF
6
7375







PDH_2719
VYFDWF
6
7376







PDH_2720
RYFDWP
6
7377







PDH_2721
AYFDWP
6
7378







PDH_2722
LYFDWF
6
7379







PDH_2723
AYFDWL
6
7380







PDH_2724
GYFDWF
6
7381







PDH_2725
GYFDWS
6
7382







PDH_2726
VYFDWL
6
7383







PDH_2727
VYFDWS
6
7384







PDH_2728
VYFDWP
6
7385







PDH_2729
RYFDWS
6
7386







PDH_2730
PYFDWS
6
7387







PDH_2731
QYFDWP
6
7388







PDH_2732
EYFDWF
6
7389







PDH_2733
AYFDWS
6
7390







PDH_2734
GYFDWL
6
7391







PDH_2735
GYFDWP
6
7392







PDH_2736
CGSTSC
6
7393







PDH_2737
CSGTSC
6
7394







PDH_2738
CSSTSC
6
3814







PDH_2739
CGGTSC
6
7395







PDH_2740
PYYGSE
6
7396







PDH_2741
VYYGSE
6
7397







PDH_2742
AYYGSE
6
7398







PDH_2743
NYYGSE
6
7399







PDH_2744
FYYGSE
6
7400







PDH_2745
YYYGSE
6
7401







PDH_2746
DYYGSE
6
7402







PDH_2747
TYYGSE
6
7403







PDH_2748
HYYGSE
6
7404







PDH_2749
LYYGSE
6
7405







PDH_2750
IYYGSE
6
7406







PDH_2751
SYYGSE
6
7407







PDH_2752
CSSGSC
6
7408







PDH_2753
CGGGSC
6
7409







PDH_2754
CGSGSC
6
7410







PDH_2755
CSGGSC
6
3775







PDH_2756
PFWSGS
6
7411







PDH_2757
DFWSGF
6
7412







PDH_2758
PFWSGY
6
7413







PDH_2759
AFWSGY
6
7414







PDH_2760
AFWSGS
6
7415







PDH_2761
AFWSGF
6
7416







PDH_2762
PFWSGF
6
7417







PDH_2763
VFWSGY
6
7418







PDH_2764
YFWSGF
6
7419







PDH_2765
IFWSGS
6
7420







PDH_2766
VFWSGF
6
7421







PDH_2767
VFWSGS
6
7422







PDH_2768
IFWSGF
6
7423







PDH_2769
IFWSGY
6
7424







PDH_2770
SFWSGF
6
7425







PDH_2771
YFWSGY
6
7426







PDH_2772
FFWSGS
6
7427







PDH_2773
YFWSGS
6
7428







PDH_2774
FFWSGY
6
7429







PDH_2775
LFWSGF
6
7430







PDH_2776
TFWSGF
6
7431







PDH_2777
NFWSGF
6
7432







PDH_2778
HFWSGF
6
7433







PDH_2779
NFWSGS
6
7434







PDH_2780
SFWSGS
6
7435







PDH_2781
TFWSGS
6
7436







PDH_2782
NFWSGY
6
7437







PDH_2783
DFWSGY
6
4254







PDH_2784
LFWSGY
6
7438







PDH_2785
HFWSGS
6
7439







PDH_2786
SFWSGY
6
7440







PDH_2787
TFWSGY
6
7441







PDH_2788
DFWSGS
6
7442







PDH_2789
LFWSGS
6
7443







PDH_2790
HFWSGY
6
7444







PDH_2791
FFWSGF
6
7445







PDH_2792
DYYDSSG
7
7446







PDH_2793
SYYDSSG
7
7447







PDH_2794
IYYDSSG
7
7448







PDH_2795
HYYDSSG
7
7449







PDH_2796
SYYDSSA
7
7450







PDH_2797
SYYDSSD
7
7451







PDH_2798
IYYDSSA
7
7452







PDH_2799
AYYDSSA
7
7453







PDH_2800
IYYDSSD
7
7454







PDH_2801
AYYDSSD
7
7455







PDH_2802
HYYDSSD
7
7456







PDH_2803
VYYDSSD
7
7457







PDH_2804
HYYDSSA
7
7458







PDH_2805
AYYDSSG
7
7459







PDH_2806
VYYDSSA
7
7460







PDH_2807
LYYDSSG
7
7461







PDH_2808
VYYDSSG
7
7462







PDH_2809
LYYDSSD
7
7463







PDH_2810
FYYDSSG
7
7464







PDH_2811
LYYDSSA
7
7465







PDH_2812
FYYDSSD
7
7466







PDH_2813
TYYDSSG
7
7467







PDH_2814
PYYDSSG
7
7468







PDH_2815
FYYDSSA
7
7469







PDH_2816
TYYDSSD
7
7470







PDH_2817
NYYDSSG
7
7471







PDH_2818
TYYDSSA
7
7472







PDH_2819
PYYDSSA
7
7473







PDH_2820
YYYDSSG
7
4167







PDH_2821
PYYDSSD
7
7474







PDH_2822
NYYDSSA
7
7475







PDH_2823
YYYDSSD
7
7476







PDH_2824
NYYDSSD
7
7477







PDH_2825
YYYDSSA
7
7478







PDH_2826
DYYDSSD
7
7479







PDH_2827
DYYDSSA
7
7480







PDH_2828
FDILTGF
7
7481







PDH_2829
FDILTGS
7
7482







PDH_2830
LDILTGY
7
7483







PDH_2831
YDILTGF
7
7484







PDH_2832
LDILTGS
7
7485







PDH_2833
SDILTGF
7
7486







PDH_2834
IDILTGS
7
7487







PDH_2835
PDILTGS
7
7488







PDH_2836
PDILTGF
7
7489







PDH_2837
IDILTGF
7
7490







PDH_2838
IDILTGY
7
7491







PDH_2839
PDILTGY
7
7492







PDH_2840
YDILTGY
7
4325







PDH_2841
DDILTGF
7
7493







PDH_2842
YDILTGS
7
7494







PDH_2843
HDILTGY
7
7495







PDH_2844
TDILTGF
7
7496







PDH_2845
VDILTGY
7
7497







PDH_2846
LDILTGF
7
7498







PDH_2847
VDILTGS
7
7499







PDH_2848
HDILTGS
7
7500







PDH_2849
ADILTGS
7
7501







PDH_2850
HDILTGF
7
7502







PDH_2851
NDILTGS
7
7503







PDH_2852
NDILTGF
7
7504







PDH_2853
ADILTGY
7
7505







PDH_2854
VDILTGF
7
7506







PDH_2855
TDILTGY
7
7507







PDH_2856
ADILTGF
7
7508







PDH_2857
NDILTGY
7
7509







PDH_2858
TDILTGS
7
7510







PDH_2859
SDILTGS
7
7511







PDH_2860
DDILTGY
7
7512







PDH_2861
SDILTGY
7
7513







PDH_2862
DDILTGS
7
7514







PDH_2863
FDILTGY
7
7515







PDH_2864
SYDFWSA
7
7516







PDH_2865
FYDFWSG
7
7517







PDH_2866
IYDFWSD
7
7518







PDH_2867
LYDFWSD
7
7519







PDH_2868
AYDFWSD
7
7520







PDH_2869
IYDFWSA
7
7521







PDH_2870
PYDFWSD
7
7522







PDH_2871
AYDFWSA
7
7523







PDH_2872
SYDFWSG
7
7524







PDH_2873
FYDFWSA
7
7525







PDH_2874
PYDFWSA
7
7526







PDH_2875
YYDFWSG
7
4248







PDH_2876
FYDFWSD
7
7527







PDH_2877
IYDFWSG
7
7528







PDH_2878
PYDFWSG
7
7529







PDH_2879
YYDFWSA
7
7530







PDH_2880
YYDFWSD
7
7531







PDH_2881
NYDFWSD
7
7532







PDH_2882
VYDFWSA
7
7533







PDH_2883
NYDFWSA
7
7534







PDH_2884
VYDFWSD
7
7535







PDH_2885
VYDFWSG
7
7536







PDH_2886
NYDFWSG
7
7537







PDH_2887
DYDFWSA
7
7538







PDH_2888
DYDFWSD
7
7539







PDH_2889
DYDFWSG
7
7540







PDH_2890
HYDFWSG
7
7541







PDH_2891
TYDFWSG
7
7542







PDH_2892
HYDFWSA
7
7543







PDH_2893
LYDFWSG
7
7544







PDH_2894
HYDFWSD
7
7545







PDH_2895
TYDFWSA
7
7546







PDH_2896
SYDFWSD
7
7547







PDH_2897
TYDFWSD
7
7548







PDH_2898
LYDFWSA
7
7549







PDH_2899
AYDFWSG
7
7550







PDH_2900
SCSSTSC
7
7551







PDH_2901
HCSSTSC
7
7552







PDH_2902
PCSSTSC
7
7553







PDH_2903
ACSSTSC
7
7554







PDH_2904
VCSSTSC
7
7555







PDH_2905
LCSSTSC
7
7556







PDH_2906
YCSSTSC
7
3812







PDH_2907
FCSSTSC
7
7557







PDH_2908
DCSSTSC
7
7558







PDH_2909
RYSSSWS
7
7559







PDH_2910
VYSSSWY
7
7560







PDH_2911
GYSSSWY
7
4435







PDH_2912
VYSSSWS
7
7561







PDH_2913
TYSSSWY
7
7562







PDH_2914
TYSSSWF
7
7563







PDH_2915
TYSSSWS
7
7564







PDH_2916
GYSSSWF
7
7565







PDH_2917
LYSSSWF
7
7566







PDH_2918
AYSSSWS
7
7567







PDH_2919
SYSSSWF
7
7568







PDH_2920
WYSSSWS
7
7569







PDH_2921
WYSSSWF
7
7570







PDH_2922
MYSSSWS
7
7571







PDH_2923
SYSSSWS
7
7572







PDH_2924
LYSSSWY
7
7573







PDH_2925
AYSSSWY
7
7574







PDH_2926
AYSSSWF
7
7575







PDH_2927
LYSSSWS
7
7576







PDH_2928
WYSSSWY
7
7577







PDH_2929
VYSSSWF
7
7578







PDH_2930
SYSSSWY
7
7579







PDH_2931
RYSSSWF
7
7580







PDH_2932
MYSSSWF
7
7581







PDH_2933
RYSSSWY
7
7582







PDH_2934
MYSSSWY
7
7583







PDH_2935
GYSSSWS
7
7584







PDH_2936
IYDSSGY
7
7585







PDH_2937
PYDSSGS
7
7586







PDH_2938
VYDSSGF
7
7587







PDH_2939
PYDSSGY
7
7588







PDH_2940
NYDSSGS
7
7589







PDH_2941
LYDSSGY
7
7590







PDH_2942
NYDSSGY
7
7591







PDH_2943
LYDSSGS
7
7592







PDH_2944
VYDSSGY
7
7593







PDH_2945
VYDSSGS
7
7594







PDH_2946
LYDSSGF
7
7595







PDH_2947
NYDSSGF
7
7596







PDH_2948
YYDSSGY
7
4168







PDH_2949
YYDSSGS
7
7597







PDH_2950
DYDSSGS
7
7598







PDH_2951
TYDSSGY
7
7599







PDH_2952
TYDSSGF
7
7600







PDH_2953
TYDSSGS
7
7601







PDH_2954
YYDSSGF
7
7602







PDH_2955
AYDSSGS
7
7603







PDH_2956
HYDSSGY
7
7604







PDH_2957
AYDSSGY
7
7605







PDH_2958
HYDSSGF
7
7606







PDH_2959
HYDSSGS
7
7607







PDH_2960
FYDSSGF
7
7608







PDH_2961
IYDSSGF
7
7609







PDH_2962
DYDSSGY
7
7610







PDH_2963
DYDSSGF
7
7611







PDH_2964
PYDSSGF
7
7612







PDH_2965
SYDSSGS
7
7613







PDH_2966
SYDSSGF
7
7614







PDH_2967
AYDSSGF
7
7615







PDH_2968
FYDSSGY
7
7616







PDH_2969
SYDSSGY
7
7617







PDH_2970
IYDSSGS
7
7618







PDH_2971
FYDSSGS
7
7619







PDH_2972
HYYGSGI
7
7620







PDH_2973
SYYGSGI
7
7621







PDH_2974
AYYGSGT
7
7622







PDH_2975
DYYGSGI
7
7623







PDH_2976
VYYGSGT
7
7624







PDH_2977
AYYGSGS
7
7625







PDH_2978
VYYGSGI
7
7626







PDH_2979
VYYGSGS
7
7627







PDH_2980
HYYGSGS
7
7628







PDH_2981
LYYGSGS
7
7629







PDH_2982
HYYGSGT
7
7630







PDH_2983
LYYGSGT
7
7631







PDH_2984
PYYGSGS
7
7632







PDH_2985
SYYGSGS
7
7633







PDH_2986
NYYGSGS
7
7634







PDH_2987
IYYGSGS
7
7635







PDH_2988
DYYGSGT
7
7636







PDH_2989
PYYGSGI
7
7637







PDH_2990
PYYGSGT
7
7638







PDH_2991
SYYGSGT
7
7639







PDH_2992
FYYGSGS
7
7640







PDH_2993
YYYGSGS
7
3975







PDH_2994
NYYGSGT
7
7641







PDH_2995
IYYGSGT
7
7642







PDH_2996
DYYGSGS
7
7643







PDH_2997
TYYGSGS
7
7644







PDH_2998
FYYGSGT
7
7645







PDH_2999
YYYGSGT
7
7646







PDH_3000
TYYGSGT
7
7647







PDH_3001
YYYGSGI
7
7648







PDH_3002
FYYGSGI
7
7649







PDH_3003
AYYGSGI
7
7650







PDH_3004
TYYGSGI
7
7651







PDH_3005
IYYGSGI
7
7652







PDH_3006
LYYGSGI
7
7653







PDH_3007
NYYGSGI
7
7654







PDH_3008
TYSSGWF
7
7655







PDH_3009
TYSSGWS
7
7656







PDH_3010
VYSSGWF
7
7657







PDH_3011
GYSSGWF
7
7658







PDH_3012
MYSSGWS
7
7659







PDH_3013
SYSSGWF
7
7660







PDH_3014
MYSSGWY
7
7661







PDH_3015
LYSSGWY
7
7662







PDH_3016
MYSSGWF
7
7663







PDH_3017
WYSSGWS
7
7664







PDH_3018
WYSSGWY
7
7665







PDH_3019
AYSSGWS
7
7666







PDH_3020
RYSSGWF
7
7667







PDH_3021
LYSSGWF
7
7668







PDH_3022
AYSSGWY
7
7669







PDH_3023
RYSSGWY
7
7670







PDH_3024
SYSSGWY
7
7671







PDH_3025
RYSSGWS
7
7672







PDH_3026
GYSSGWY
7
4456







PDH_3027
WYSSGWF
7
7673







PDH_3028
AYSSGWF
7
7674







PDH_3029
GYSSGWS
7
7675







PDH_3030
VYSSGWY
7
7676







PDH_3031
VYSSGWS
7
7677







PDH_3032
LYSSGWS
7
7678







PDH_3033
TYSSGWY
7
7679







PDH_3034
SYSSGWS
7
7680







PDH_3035
FCSGGSC
7
7681







PDH_3036
LCSGGSC
7
7682







PDH_3037
SCSGGSC
7
7683







PDH_3038
YCSGGSC
7
3773







PDH_3039
DCSGGSC
7
7684







PDH_3040
HCSGGSC
7
7685







PDH_3041
PCSGGSC
7
7686







PDH_3042
ACSGGSC
7
7687







PDH_3043
VCSGGSC
7
7688







PDH_3044
CSGGSCH
7
7689







PDH_3045
CSGGSCL
7
7690







PDH_3046
CSGGSCS
7
7691







PDH_3047
CSGGSCY
7
3774







PDH_3048
CSGGSCP
7
7692







PDH_3049
CSGGSCF
7
7693







PDH_3050
CSSTSCY
7
3813







PDH_3051
CSSTSCL
7
7694







PDH_3052
CSSTSCF
7
7695







PDH_3053
CSSTSCH
7
7696







PDH_3054
CSSTSCS
7
7697







PDH_3055
CSSTSCP
7
7698







PDH_3056
ICGGDCF
7
7699







PDH_3057
VCGGDCS
7
7700







PDH_3058
DCGGDCF
7
7701







PDH_3059
SCGGDCF
7
7702







PDH_3060
NCGGDCY
7
7703







PDH_3061
VCGGDCY
7
7704







PDH_3062
SCGGDCS
7
7705







PDH_3063
NCGGDCS
7
7706







PDH_3064
HCGGDCF
7
7707







PDH_3065
LCGGDCS
7
7708







PDH_3066
LCGGDCY
7
7709







PDH_3067
ICGGDCY
7
7710







PDH_3068
LCGGDCF
7
7711







PDH_3069
ICGGDCS
7
7712







PDH_3070
VCGGDCF
7
7713







PDH_3071
HCGGDCS
7
7714







PDH_3072
YCGGDCF
7
7715







PDH_3073
HCGGDCY
7
7716







PDH_3074
FCGGDCF
7
7717







PDH_3075
YCGGDCS
7
7718







PDH_3076
DCGGDCS
7
7719







PDH_3077
YCGGDCY
7
3866







PDH_3078
DCGGDCY
7
7720







PDH_3079
PCGGDCF
7
7721







PDH_3080
FCGGDCS
7
7722







PDH_3081
FCGGDCY
7
7723







PDH_3082
ACGGDCF
7
7724







PDH_3083
ACGGDCY
7
7725







PDH_3084
ACGGDCS
7
7726







PDH_3085
PCGGDCY
7
7727







PDH_3086
PCGGDCS
7
7728







PDH_3087
SCGGDCY
7
7729







PDH_3088
NCGGDCF
7
7730







PDH_3089
TCGGDCS
7
7731







PDH_3090
TCGGDCY
7
7732







PDH_3091
TCGGDCF
7
7733







PDH_3092
NDFWSGF
7
7734







PDH_3093
HDFWSGF
7
7735







PDH_3094
SDFWSGF
7
7736







PDH_3095
NDFWSGY
7
7737







PDH_3096
HDFWSGS
7
7738







PDH_3097
DDFWSGF
7
7739







PDH_3098
HDFWSGY
7
7740







PDH_3099
SDFWSGY
7
7741







PDH_3100
FDFWSGF
7
7742







PDH_3101
PDFWSGY
7
7743







PDH_3102
IDFWSGF
7
7744







PDH_3103
SDFWSGS
7
7745







PDH_3104
PDFWSGS
7
7746







PDH_3105
TDFWSGF
7
7747







PDH_3106
LDFWSGS
7
7748







PDH_3107
DDFWSGY
7
7749







PDH_3108
LDFWSGY
7
7750







PDH_3109
FDFWSGS
7
7751







PDH_3110
ADFWSGF
7
7752







PDH_3111
FDFWSGY
7
7753







PDH_3112
TDFWSGS
7
7754







PDH_3113
PDFWSGF
7
7755







PDH_3114
VDFWSGF
7
7756







PDH_3115
TDFWSGY
7
7757







PDH_3116
IDFWSGY
7
7758







PDH_3117
DDFWSGS
7
7759







PDH_3118
YDFWSGS
7
7760







PDH_3119
YDFWSGF
7
7761







PDH_3120
IDFWSGS
7
7762







PDH_3121
NDFWSGS
7
7763







PDH_3122
YDFWSGY
7
4249







PDH_3123
LDFWSGF
7
7764







PDH_3124
ADFWSGY
7
7765







PDH_3125
VDFWSGS
7
7766







PDH_3126
ADFWSGS
7
7767







PDH_3127
VDFWSGY
7
7768







PDH_3128
YDSSGYS
7
7769







PDH_3129
VDSSGYF
7
7770







PDH_3130
VDSSGYS
7
7771







PDH_3131
ADSSGYS
7
7772







PDH_3132
HDSSGYF
7
7773







PDH_3133
ADSSGYY
7
7774







PDH_3134
DDSSGYY
7
7775







PDH_3135
DDSSGYS
7
7776







PDH_3136
SDSSGYS
7
7777







PDH_3137
SDSSGYF
7
7778







PDH_3138
PDSSGYS
7
7779







PDH_3139
SDSSGYY
7
7780







PDH_3140
PDSSGYY
7
7781







PDH_3141
HDSSGYY
7
7782







PDH_3142
PDSSGYF
7
7783







PDH_3143
FDSSGYF
7
7784







PDH_3144
HDSSGYS
7
7785







PDH_3145
ADSSGYF
7
7786







PDH_3146
DDSSGYF
7
7787







PDH_3147
LDSSGYF
7
7788







PDH_3148
LDSSGYY
7
7789







PDH_3149
LDSSGYS
7
7790







PDH_3150
FDSSGYY
7
7791







PDH_3151
FDSSGYS
7
7792







PDH_3152
YDSSGYF
7
7793







PDH_3153
YDSSGYY
7
4169







PDH_3154
VDSSGYY
7
7794







PDH_3155
EYCGGDC
7
7795







PDH_3156
QYCGGDC
7
7796







PDH_3157
AYCGGDC
7
3865







PDH_3158
IYCGGDC
7
7797







PDH_3159
TYCGGDC
7
7798







PDH_3160
PYCGGDC
7
7799







PDH_3161
LYCGGDC
7
7800







PDH_3162
VYCGGDC
7
7801







PDH_3163
KYCGGDC
7
7802







PDH_3164
VYYDSSGF
8
7803







PDH_3165
IYYDSSGF
8
7804







PDH_3166
YYYDSSGY
8
4164







PDH_3167
PYYDSSGF
8
7805







PDH_3168
HYYDSSGF
8
7806







PDH_3169
HYYDSSGY
8
7807







PDH_3170
AYYDSSGF
8
7808







PDH_3171
HYYDSSGS
8
7809







PDH_3172
DYYDSSGY
8
7810







PDH_3173
DYYDSSGS
8
7811







PDH_3174
YYYDSSGS
8
7812







PDH_3175
SYYDSSGF
8
7813







PDH_3176
LYYDSSGF
8
7814







PDH_3177
NYYDSSGF
8
7815







PDH_3178
NYYDSSGY
8
7816







PDH_3179
IYYDSSGY
8
7817







PDH_3180
SYYDSSGS
8
7818







PDH_3181
AYYDSSGS
8
7819







PDH_3182
IYYDSSGS
8
7820







PDH_3183
AYYDSSGY
8
7821







PDH_3184
DYYDSSGF
8
7822







PDH_3185
SYYDSSGY
8
7823







PDH_3186
NYYDSSGS
8
7824







PDH_3187
LYYDSSGY
8
7825







PDH_3188
PYYDSSGS
8
7826







PDH_3189
LYYDSSGS
8
7827







PDH_3190
PYYDSSGY
8
7828







PDH_3191
TYYDSSGY
8
7829







PDH_3192
TYYDSSGS
8
7830







PDH_3193
FYYDSSGF
8
7831







PDH_3194
FYYDSSGY
8
7832







PDH_3195
FYYDSSGS
8
7833







PDH_3196
VYYDSSGS
8
7834







PDH_3197
TYYDSSGF
8
7835







PDH_3198
YYYDSSGF
8
7836







PDH_3199
VYYDSSGY
8
7837







PDH_3200
TYYGSGSS
8
7838







PDH_3201
SYYGSGSY
8
7839







PDH_3202
SYYGSGSS
8
7840







PDH_3203
HYYGSGSF
8
7841







PDH_3204
PYYGSGSF
8
7842







PDH_3205
AYYGSGSS
8
7843







PDH_3206
AYYGSGSF
8
7844







PDH_3207
AYYGSGSY
8
7845







PDH_3208
YYYGSGSF
8
7846







PDH_3209
TYYGSGSY
8
7847







PDH_3210
YYYGSGSY
8
3972







PDH_3211
PYYGSGSS
8
7848







PDH_3212
PYYGSGSY
8
7849







PDH_3213
DYYGSGSY
8
7850







PDH_3214
VYYGSGSY
8
7851







PDH_3215
VYYGSGSF
8
7852







PDH_3216
YYYGSGSS
8
7853







PDH_3217
LYYGSGSF
8
7854







PDH_3218
LYYGSGSY
8
7855







PDH_3219
DYYGSGSS
8
7856







PDH_3220
VYYGSGSS
8
7857







PDH_3221
IYYGSGSS
8
7858







PDH_3222
FYYGSGSY
8
7859







PDH_3223
FYYGSGSS
8
7860







PDH_3224
LYYGSGSS
8
7861







PDH_3225
SYYGSGSF
8
7862







PDH_3226
IYYGSGSY
8
7863







PDH_3227
IYYGSGSF
8
7864







PDH_3228
FYYGSGSF
8
7865







PDH_3229
DYYGSGSF
8
7866







PDH_3230
NYYGSGSS
8
7867







PDH_3231
NYYGSGSY
8
7868







PDH_3232
TYYGSGSF
8
7869







PDH_3233
HYYGSGSY
8
7870







PDH_3234
HYYGSGSS
8
7871







PDH_3235
NYYGSGSF
8
7872







PDH_3236
AYCSSTSC
8
7873







PDH_3237
PYCSSTSC
8
7874







PDH_3238
RYCSSTSC
8
7875







PDH_3239
IYCSSTSC
8
7876







PDH_3240
LYCSSTSC
8
7877







PDH_3241
VYCSSTSC
8
7878







PDH_3242
TYCSSTSC
8
7879







PDH_3243
SYCSSTSC
8
7880







PDH_3244
GYCSSTSC
8
3809







PDH_3245
IYCSGGSC
8
7881







PDH_3246
VYCSGGSC
8
7882







PDH_3247
LYCSGGSC
8
7883







PDH_3248
AYCSGGSC
8
7884







PDH_3249
TYCSGGSC
8
7885







PDH_3250
GYCSGGSC
8
3770







PDH_3251
RYCSGGSC
8
7886







PDH_3252
PYCSGGSC
8
7887







PDH_3253
SYCSGGSC
8
7888







PDH_3254
FYDFWSGY
8
7889







PDH_3255
AYDFWSGF
8
7890







PDH_3256
NYDFWSGF
8
7891







PDH_3257
IYDFWSGF
8
7892







PDH_3258
DYDFWSGS
8
7893







PDH_3259
DYDFWSGY
8
7894







PDH_3260
NYDFWSGY
8
7895







PDH_3261
VYDFWSGF
8
7896







PDH_3262
VYDFWSGS
8
7897







PDH_3263
YYDFWSGF
8
7898







PDH_3264
PYDFWSGF
8
7899







PDH_3265
FYDFWSGS
8
7900







PDH_3266
HYDFWSGF
8
7901







PDH_3267
HYDFWSGY
8
7902







PDH_3268
YYDFWSGS
8
7903







PDH_3269
PYDFWSGY
8
7904







PDH_3270
PYDFWSGS
8
7905







PDH_3271
VYDFWSGY
8
7906







PDH_3272
SYDFWSGS
8
7907







PDH_3273
YYDFWSGY
8
4245







PDH_3274
LYDFWSGF
8
7908







PDH_3275
HYDFWSGS
8
7909







PDH_3276
SYDFWSGY
8
7910







PDH_3277
SYDFWSGF
8
7911







PDH_3278
LYDFWSGS
8
7912







PDH_3279
TYDFWSGF
8
7913







PDH_3280
LYDFWSGY
8
7914







PDH_3281
AYDFWSGY
8
7915







PDH_3282
AYDFWSGS
8
7916







PDH_3283
TYDFWSGS
8
7917







PDH_3284
IYDFWSGY
8
7918







PDH_3285
TYDFWSGY
8
7919







PDH_3286
NYDFWSGS
8
7920







PDH_3287
DYDFWSGF
8
7921







PDH_3288
IYDFWSGS
8
7922







PDH_3289
FYDFWSGF
8
7923







PDH_3290
HDILTGYS
8
7924







PDH_3291
PDILTGYY
8
7925







PDH_3292
PDILTGYF
8
7926







PDH_3293
TDILTGYS
8
7927







PDH_3294
HDILTGYY
8
7928







PDH_3295
YDILTGYF
8
7929







PDH_3296
IDILTGYS
8
7930







PDH_3297
IDILTGYY
8
7931







PDH_3298
IDILTGYF
8
7932







PDH_3299
LDILTGYF
8
7933







PDH_3300
LDILTGYY
8
7934







PDH_3301
LDILTGYS
8
7935







PDH_3302
DDILTGYF
8
7936







PDH_3303
FDILTGYF
8
7937







PDH_3304
SDILTGYF
8
7938







PDH_3305
ADILTGYY
8
7939







PDH_3306
VDILTGYY
8
7940







PDH_3307
VDILTGYS
8
7941







PDH_3308
ADILTGYS
8
7942







PDH_3309
DDILTGYS
8
7943







PDH_3310
FDILTGYS
8
7944







PDH_3311
SDILTGYS
8
7945







PDH_3312
DDILTGYY
8
7946







PDH_3313
SDILTGYY
8
7947







PDH_3314
YDILTGYY
8
4322







PDH_3315
FDILTGYY
8
7948







PDH_3316
HDILTGYF
8
7949







PDH_3317
NDILTGYY
8
7950







PDH_3318
NDILTGYF
8
7951







PDH_3319
PDILTGYS
8
7952







PDH_3320
VDILTGYF
8
7953







PDH_3321
TDILTGYY
8
7954







PDH_3322
TDILTGYF
8
7955







PDH_3323
YDILTGYS
8
7956







PDH_3324
NDILTGYS
8
7957







PDH_3325
ADILTGYF
8
7958







PDH_3326
SCSGGSCS
8
7959







PDH_3327
HCSGGSCF
8
7960







PDH_3328
DCSGGSCS
8
7961







PDH_3329
PCSGGSCF
8
7962







PDH_3330
PCSGGSCY
8
7963







PDH_3331
SCSGGSCY
8
7964







PDH_3332
PCSGGSCS
8
7965







PDH_3333
LCSGGSCY
8
7966







PDH_3334
ACSGGSCY
8
7967







PDH_3335
ACSGGSCS
8
7968







PDH_3336
ACSGGSCF
8
7969







PDH_3337
VCSGGSCY
8
7970







PDH_3338
VCSGGSCF
8
7971







PDH_3339
VCSGGSCS
8
7972







PDH_3340
YCSGGSCS
8
7973







PDH_3341
YCSGGSCF
8
7974







PDH_3342
DCSGGSCF
8
7975







PDH_3343
DCSGGSCY
8
7976







PDH_3344
FCSGGSCS
8
7977







PDH_3345
FCSGGSCY
8
7978







PDH_3346
FCSGGSCF
8
7979







PDH_3347
SCSGGSCF
8
7980







PDH_3348
YCSGGSCY
8
3771







PDH_3349
LCSGGSCF
8
7981







PDH_3350
LCSGGSCS
8
7982







PDH_3351
HCSGGSCS
8
7983







PDH_3352
HCSGGSCY
8
7984







PDH_3353
ACSSTSCY
8
7985







PDH_3354
YCSSTSCF
8
7986







PDH_3355
FCSSTSCY
8
7987







PDH_3356
PCSSTSCF
8
7988







PDH_3357
FCSSTSCS
8
7989







PDH_3358
DCSSTSCF
8
7990







PDH_3359
VCSSTSCS
8
7991







PDH_3360
VCSSTSCF
8
7992







PDH_3361
LCSSTSCS
8
7993







PDH_3362
VCSSTSCY
8
7994







PDH_3363
ACSSTSCS
8
7995







PDH_3364
LCSSTSCY
8
7996







PDH_3365
LCSSTSCF
8
7997







PDH_3366
FCSSTSCF
8
7998







PDH_3367
HCSSTSCY
8
7999







PDH_3368
HCSSTSCS
8
8000







PDH_3369
HCSSTSCF
8
8001







PDH_3370
SCSSTSCF
8
8002







PDH_3371
SCSSTSCS
8
8003







PDH_3372
YCSSTSCS
8
8004







PDH_3373
DCSSTSCY
8
8005







PDH_3374
DCSSTSCS
8
8006







PDH_3375
SCSSTSCY
8
8007







PDH_3376
PCSSTSCS
8
8008







PDH_3377
ACSSTSCF
8
8009







PDH_3378
PCSSTSCY
8
8010







PDH_3379
YCSSTSCY
8
3810







PDH_3380
LYCGGDCS
8
8011







PDH_3381
EYCGGDCS
8
8012







PDH_3382
LYCGGDCY
8
8013







PDH_3383
VYCGGDCS
8
8014







PDH_3384
VYCGGDCY
8
8015







PDH_3385
AYCGGDCY
8
3863







PDH_3386
AYCGGDCF
8
8016







PDH_3387
EYCGGDCY
8
8017







PDH_3388
TYCGGDCF
8
8018







PDH_3389
LYCGGDCF
8
8019







PDH_3390
AYCGGDCS
8
8020







PDH_3391
QYCGGDCF
8
8021







PDH_3392
QYCGGDCS
8
8022







PDH_3393
KYCGGDCF
8
8023







PDH_3394
KYCGGDCY
8
8024







PDH_3395
QYCGGDCY
8
8025







PDH_3396
KYCGGDCS
8
8026







PDH_3397
VYCGGDCF
8
8027







PDH_3398
IYCGGDCF
8
8028







PDH_3399
IYCGGDCY
8
8029







PDH_3400
IYCGGDCS
8
8030







PDH_3401
PYCGGDCS
8
8031







PDH_3402
PYCGGDCF
8
8032







PDH_3403
TYCGGDCY
8
8033







PDH_3404
EYCGGDCF
8
8034







PDH_3405
PYCGGDCY
8
8035







PDH_3406
TYCGGDCS
8
8036







PDH_3407
DYDSSGYS
8
8037







PDH_3408
YYDSSGYF
8
8038







PDH_3409
LYDSSGYS
8
8039







PDH_3410
AYDSSGYS
8
8040







PDH_3411
AYDSSGYY
8
8041







PDH_3412
NYDSSGYY
8
8042







PDH_3413
IYDSSGYS
8
8043







PDH_3414
FYDSSGYF
8
8044







PDH_3415
DYDSSGYY
8
8045







PDH_3416
YYDSSGYS
8
8046







PDH_3417
TYDSSGYY
8
8047







PDH_3418
TYDSSGYS
8
8048







PDH_3419
PYDSSGYF
8
8049







PDH_3420
IYDSSGYY
8
8050







PDH_3421
IYDSSGYF
8
8051







PDH_3422
YYDSSGYY
8
4165







PDH_3423
NYDSSGYS
8
8052







PDH_3424
NYDSSGYF
8
8053







PDH_3425
VYDSSGYY
8
8054







PDH_3426
VYDSSGYF
8
8055







PDH_3427
FYDSSGYY
8
8056







PDH_3428
FYDSSGYS
8
8057







PDH_3429
SYDSSGYY
8
8058







PDH_3430
SYDSSGYS
8
8059







PDH_3431
PYDSSGYS
8
8060







PDH_3432
PYDSSGYY
8
8061







PDH_3433
LYDSSGYY
8
8062







PDH_3434
VYDSSGYS
8
8063







PDH_3435
SYDSSGYF
8
8064







PDH_3436
LYDSSGYF
8
8065







PDH_3437
HYDSSGYY
8
8066







PDH_3438
HYDSSGYS
8
8067







PDH_3439
TYDSSGYF
8
8068







PDH_3440
AYDSSGYF
8
8069







PDH_3441
DYDSSGYF
8
8070







PDH_3442
HYDSSGYF
8
8071







PDH_3443
RYYGSGSY
8
8072







PDH_3444
RYYGSGSS
8
8073







PDH_3445
GYYGSGSS
8
8074







PDH_3446
GYYGSGSY
8
8075







PDH_3447
FDFWSGYS
8
8076







PDH_3448
HDFWSGYF
8
8077







PDH_3449
FDFWSGYY
8
8078







PDH_3450
SDFWSGYS
8
8079







PDH_3451
SDFWSGYY
8
8080







PDH_3452
PDFWSGYS
8
8081







PDH_3453
HDFWSGYS
8
8082







PDH_3454
IDFWSGYY
8
8083







PDH_3455
HDFWSGYY
8
8084







PDH_3456
NDFWSGYF
8
8085







PDH_3457
YDFWSGYS
8
8086







PDH_3458
IDFWSGYS
8
8087







PDH_3459
PDFWSGYY
8
8088







PDH_3460
SDFWSGYF
8
8089







PDH_3461
VDFWSGYS
8
8090







PDH_3462
IDFWSGYF
8
8091







PDH_3463
YDFWSGYY
8
4246







PDH_3464
YDFWSGYF
8
8092







PDH_3465
TDFWSGYY
8
8093







PDH_3466
DDFWSGYS
8
8094







PDH_3467
LDFWSGYS
8
8095







PDH_3468
DDFWSGYY
8
8096







PDH_3469
DDFWSGYF
8
8097







PDH_3470
VDFWSGYY
8
8098







PDH_3471
VDFWSGYF
8
8099







PDH_3472
NDFWSGYY
8
8100







PDH_3473
FDFWSGYF
8
8101







PDH_3474
NDFWSGYS
8
8102







PDH_3475
LDFWSGYY
8
8103







PDH_3476
ADFWSGYY
8
8104







PDH_3477
ADFWSGYS
8
8105







PDH_3478
TDFWSGYS
8
8106







PDH_3479
TDFWSGYF
8
8107







PDH_3480
ADFWSGYF
8
8108







PDH_3481
LDFWSGYF
8
8109







PDH_3482
PDFWSGYF
8
8110







PDH_3483
LLRYFDWY
8
8111







PDH_3484
QLRYFDWY
8
8112







PDH_3485
PLRYFDWL
8
8113







PDH_3486
ILRYFDWF
8
8114







PDH_3487
ILRYFDWY
8
8115







PDH_3488
ALRYFDWL
8
8116







PDH_3489
QLRYFDWF
8
8117







PDH_3490
KLRYFDWL
8
8118







PDH_3491
TLRYFDWL
8
8119







PDH_3492
TLRYFDWH
8
8120







PDH_3493
ELRYFDWL
8
8121







PDH_3494
ELRYFDWH
8
8122







PDH_3495
PLRYFDWH
8
8123







PDH_3496
ELRYFDWY
8
8124







PDH_3497
ELRYFDWF
8
8125







PDH_3498
LLRYFDWL
8
8126







PDH_3499
VLRYFDWF
8
8127







PDH_3500
TLRYFDWF
8
8128







PDH_3501
ALRYFDWF
8
8129







PDH_3502
ILRYFDWH
8
8130







PDH_3503
QLRYFDWL
8
8131







PDH_3504
QLRYFDWH
8
8132







PDH_3505
VLRYFDWY
8
8133







PDH_3506
TLRYFDWY
8
8134







PDH_3507
ILRYFDWL
8
8135







PDH_3508
LLRYFDWH
8
8136







PDH_3509
VLRYFDWH
8
8137







PDH_3510
KLRYFDWY
8
8138







PDH_3511
KLRYFDWF
8
8139







PDH_3512
ALRYFDWH
8
8140







PDH_3513
ALRYFDWY
8
8141







PDH_3514
VLRYFDWL
8
4298







PDH_3515
KLRYFDWH
8
8142







PDH_3516
PLRYFDWY
8
8143







PDH_3517
PLRYFDWF
8
8144







PDH_3518
LLRYFDWF
8
8145







PDH_3519
IYYDSSGYS
9
8146







PDH_3520
TYYDSSGYS
9
8147







PDH_3521
HYYDSSGYY
9
8148







PDH_3522
TYYDSSGYY
9
8149







PDH_3523
HYYDSSGYS
9
8150







PDH_3524
NYYDSSGYF
9
8151







PDH_3525
AYYDSSGYS
9
8152







PDH_3526
DYYDSSGYF
9
8153







PDH_3527
DYYDSSGYS
9
8154







PDH_3528
LYYDSSGYS
9
8155







PDH_3529
NYYDSSGYS
9
8156







PDH_3530
HYYDSSGYF
9
8157







PDH_3531
DYYDSSGYY
9
8158







PDH_3532
LYYDSSGYY
9
8159







PDH_3533
IYYDSSGYY
9
8160







PDH_3534
LYYDSSGYF
9
8161







PDH_3535
IYYDSSGYF
9
8162







PDH_3536
AYYDSSGYF
9
8163







PDH_3537
AYYDSSGYY
9
8164







PDH_3538
FYYDSSGYS
9
8165







PDH_3539
YYYDSSGYS
9
8166







PDH_3540
FYYDSSGYY
9
8167







PDH_3541
FYYDSSGYF
9
8168







PDH_3542
YYYDSSGYY
9
4162







PDH_3543
YYYDSSGYF
9
8169







PDH_3544
VYYDSSGYF
9
8170







PDH_3545
PYYDSSGYY
9
8171







PDH_3546
PYYDSSGYS
9
8172







PDH_3547
VYYDSSGYS
9
8173







PDH_3548
SYYDSSGYY
9
8174







PDH_3549
NYYDSSGYY
9
8175







PDH_3550
VYYDSSGYY
9
8176







PDH_3551
SYYDSSGYS
9
8177







PDH_3552
SYYDSSGYF
9
8178







PDH_3553
TYYDSSGYF
9
8179







PDH_3554
PYYDSSGYF
9
8180







PDH_3555
PYCSGGSCF
9
8181







PDH_3556
TYCSGGSCF
9
8182







PDH_3557
IYCSGGSCF
9
8183







PDH_3558
VYCSGGSCS
9
8184







PDH_3559
TYCSGGSCY
9
8185







PDH_3560
VYCSGGSCF
9
8186







PDH_3561
TYCSGGSCS
9
8187







PDH_3562
GYCSGGSCS
9
8188







PDH_3563
IYCSGGSCS
9
8189







PDH_3564
GYCSGGSCY
9
3768







PDH_3565
IYCSGGSCY
9
8190







PDH_3566
VYCSGGSCY
9
8191







PDH_3567
AYCSGGSCF
9
8192







PDH_3568
GYCSGGSCF
9
8193







PDH_3569
LYCSGGSCF
9
8194







PDH_3570
RYCSGGSCF
9
8195







PDH_3571
LYCSGGSCS
9
8196







PDH_3572
RYCSGGSCY
9
8197







PDH_3573
AYCSGGSCS
9
8198







PDH_3574
SYCSGGSCY
9
8199







PDH_3575
SYCSGGSCF
9
8200







PDH_3576
AYCSGGSCY
9
8201







PDH_3577
SYCSGGSCS
9
8202







PDH_3578
PYCSGGSCS
9
8203







PDH_3579
LYCSGGSCY
9
8204







PDH_3580
RYCSGGSCS
9
8205







PDH_3581
PYCSGGSCY
9
8206







PDH_3582
TYCSSTSCY
9
8207







PDH_3583
AYCSSTSCY
9
8208







PDH_3584
AYCSSTSCS
9
8209







PDH_3585
RYCSSTSCS
9
8210







PDH_3586
TYCSSTSCS
9
8211







PDH_3587
PYCSSTSCY
9
8212







PDH_3588
PYCSSTSCS
9
8213







PDH_3589
RYCSSTSCY
9
8214







PDH_3590
VYCSSTSCS
9
8215







PDH_3591
VYCSSTSCY
9
8216







PDH_3592
LYCSSTSCF
9
8217







PDH_3593
LYCSSTSCY
9
8218







PDH_3594
PYCSSTSCF
9
8219







PDH_3595
VYCSSTSCF
9
8220







PDH_3596
IYCSSTSCY
9
8221







PDH_3597
IYCSSTSCS
9
8222







PDH_3598
IYCSSTSCF
9
8223







PDH_3599
SYCSSTSCS
9
8224







PDH_3600
LYCSSTSCS
9
8225







PDH_3601
SYCSSTSCY
9
8226







PDH_3602
SYCSSTSCF
9
8227







PDH_3603
GYCSSTSCY
9
3807







PDH_3604
GYCSSTSCF
9
8228







PDH_3605
GYCSSTSCS
9
8229







PDH_3606
RYCSSTSCF
9
8230







PDH_3607
TYCSSTSCF
9
8231







PDH_3608
AYCSSTSCF
9
8232







PDH_3609
IYDFWSGYY
9
8233







PDH_3610
NYDFWSGYY
9
8234







PDH_3611
PYDFWSGYF
9
8235







PDH_3612
SYDFWSGYF
9
8236







PDH_3613
VYDFWSGYF
9
8237







PDH_3614
VYDFWSGYY
9
8238







PDH_3615
HYDFWSGYY
9
8239







PDH_3616
HYDFWSGYF
9
8240







PDH_3617
HYDFWSGYS
9
8241







PDH_3618
IYDFWSGYS
9
8242







PDH_3619
NYDFWSGYS
9
8243







PDH_3620
AYDFWSGYS
9
8244







PDH_3621
SYDFWSGYS
9
8245







PDH_3622
PYDFWSGYS
9
8246







PDH_3623
AYDFWSGYY
9
8247







PDH_3624
SYDFWSGYY
9
8248







PDH_3625
PYDFWSGYY
9
8249







PDH_3626
FYDFWSGYY
9
8250







PDH_3627
FYDFWSGYF
9
8251







PDH_3628
DYDFWSGYS
9
8252







PDH_3629
FYDFWSGYS
9
8253







PDH_3630
DYDFWSGYF
9
8254







PDH_3631
LYDFWSGYY
9
8255







PDH_3632
AYDFWSGYF
9
8256







PDH_3633
LYDFWSGYS
9
8257







PDH_3634
DYDFWSGYY
9
8258







PDH_3635
LYDFWSGYF
9
8259







PDH_3636
YYDFWSGYY
9
4243







PDH_3637
TYDFWSGYY
9
8260







PDH_3638
TYDFWSGYF
9
8261







PDH_3639
YYDFWSGYS
9
8262







PDH_3640
YYDFWSGYF
9
8263







PDH_3641
TYDFWSGYS
9
8264







PDH_3642
VYDFWSGYS
9
8265







PDH_3643
NYDFWSGYF
9
8266







PDH_3644
IYDFWSGYF
9
8267







PDH_3645
FCSGGSCYS
9
8268







PDH_3646
LCSGGSCYS
9
8269







PDH_3647
VCSGGSCYS
9
8270







PDH_3648
ACSGGSCYS
9
8271







PDH_3649
ACSGGSCYY
9
8272







PDH_3650
FCSGGSCYY
9
8273







PDH_3651
LCSGGSCYF
9
8274







PDH_3652
LCSGGSCYY
9
8275







PDH_3653
VCSGGSCYY
9
8276







PDH_3654
YCSGGSCYS
9
3769







PDH_3655
PCSGGSCYS
9
8277







PDH_3656
PCSGGSCYY
9
8278







PDH_3657
PCSGGSCYF
9
8279







PDH_3658
YCSGGSCYF
9
8280







PDH_3659
YCSGGSCYY
9
8281







PDH_3660
SCSGGSCYY
9
8282







PDH_3661
HCSGGSCYF
9
8283







PDH_3662
DCSGGSCYY
9
8284







PDH_3663
SCSGGSCYF
9
8285







PDH_3664
DCSGGSCYS
9
8286







PDH_3665
HCSGGSCYS
9
8287







PDH_3666
SCSGGSCYS
9
8288







PDH_3667
FCSGGSCYF
9
8289







PDH_3668
ACSGGSCYF
9
8290







PDH_3669
DCSGGSCYF
9
8291







PDH_3670
HCSGGSCYY
9
8292







PDH_3671
VCSGGSCYF
9
8293







PDH_3672
FYYDSSGYYY
10
8294







PDH_3673
YYYDSSGYYF
10
8295







PDH_3674
PYYDSSGYYY
10
8296







PDH_3675
VYYDSSGYYS
10
8297







PDH_3676
PYYDSSGYYS
10
8298







PDH_3677
FYYDSSGYYS
10
8299







PDH_3678
NYYDSSGYYY
10
8300







PDH_3679
NYYDSSGYYS
10
8301







PDH_3680
DYYDSSGYYS
10
8302







PDH_3681
HYYDSSGYYF
10
8303







PDH_3682
DYYDSSGYYY
10
8304







PDH_3683
NYYDSSGYYF
10
8305







PDH_3684
HYYDSSGYYY
10
8306







PDH_3685
LYYDSSGYYF
10
8307







PDH_3686
IYYDSSGYYS
10
8308







PDH_3687
YYYDSSGYYS
10
8309







PDH_3688
IYYDSSGYYF
10
8310







PDH_3689
YYYDSSGYYY
10
4161







PDH_3690
HYYDSSGYYS
10
8311







PDH_3691
TYYDSSGYYS
10
8312







PDH_3692
IYYDSSGYYY
10
8313







PDH_3693
TYYDSSGYYF
10
8314







PDH_3694
LYYDSSGYYS
10
8315







PDH_3695
TYYDSSGYYY
10
8316







PDH_3696
LYYDSSGYYY
10
8317







PDH_3697
AYYDSSGYYF
10
8318







PDH_3698
FYYDSSGYYF
10
8319







PDH_3699
AYYDSSGYYY
10
8320







PDH_3700
VYYDSSGYYY
10
8321







PDH_3701
SYYDSSGYYF
10
8322







PDH_3702
PYYDSSGYYF
10
8323







PDH_3703
SYYDSSGYYY
10
8324







PDH_3704
AYYDSSGYYS
10
8325







PDH_3705
DYYDSSGYYF
10
8326







PDH_3706
SYYDSSGYYS
10
8327







PDH_3707
VYYDSSGYYF
10
8328







PDH_3708
IYDYVWGSYAS
11
8329







PDH_3709
AYDYVWGSYAS
11
8330







PDH_3710
IYDYVWGSYAY
11
8331







PDH_3711
NYDYVWGSYAY
11
8332







PDH_3712
NYDYVWGSYAS
11
8333







PDH_3713
YYDYVWGSYAF
11
8334







PDH_3714
DYDYVWGSYAF
11
8335







PDH_3715
SYDYVWGSYAY
11
8336







PDH_3716
DYDYVWGSYAS
11
8337







PDH_3717
DYDYVWGSYAY
11
8338







PDH_3718
FYDYVWGSYAS
11
8339







PDH_3719
NYDYVWGSYAF
11
8340







PDH_3720
YYDYVWGSYAS
11
8341







PDH_3721
FYDYVWGSYAY
11
8342







PDH_3722
SYDYVWGSYAS
11
8343







PDH_3723
PYDYVWGSYAF
11
8344







PDH_3724
TYDYVWGSYAY
11
8345







PDH_3725
VYDYVWGSYAY
11
8346







PDH_3726
SYDYVWGSYAF
11
8347







PDH_3727
FYDYVWGSYAF
11
8348







PDH_3728
HYDYVWGSYAS
11
8349







PDH_3729
VYDYVWGSYAS
11
8350







PDH_3730
VYDYVWGSYAF
11
8351







PDH_3731
YYDYVWGSYAY
11
4071







PDH_3732
AYDYVWGSYAY
11
8352







PDH_3733
LYDYVWGSYAS
11
8353







PDH_3734
TYDYVWGSYAF
11
8354







PDH_3735
AYDYVWGSYAF
11
8355







PDH_3736
HYDYVWGSYAY
11
8356







PDH_3737
TYDYVWGSYAS
11
8357







PDH_3738
LYDYVWGSYAF
11
8358







PDH_3739
PYDYVWGSYAY
11
8359







PDH_3740
PYDYVWGSYAS
11
8360







PDH_3741
HYDYVWGSYAF
11
8361







PDH_3742
LYDYVWGSYAY
11
8362







PDH_3743
IYDYVWGSYAF
11
8363







PDH_3744
NYDYVWGSYAYT
12
8364







PDH_3745
NYDYVWGSYAYI
12
8365







PDH_3746
IYDYVWGSYAYI
12
8366







PDH_3747
YYDYVWGSYAYK
12
8367







PDH_3748
NYDYVWGSYAYK
12
8368







PDH_3749
YYDYVWGSYAYT
12
4070







PDH_3750
PYDYVWGSYAYT
12
8369







PDH_3751
DYDYVWGSYAYI
12
8370







PDH_3752
PYDYVWGSYAYK
12
8371







PDH_3753
FYDYVWGSYAYI
12
8372







PDH_3754
VYDYVWGSYAYT
12
8373







PDH_3755
DYDYVWGSYAYK
12
8374







PDH_3756
IYDYVWGSYAYT
12
8375







PDH_3757
IYDYVWGSYAYK
12
8376







PDH_3758
LYDYVWGSYAYI
12
8377







PDH_3759
HYDYVWGSYAYK
12
8378







PDH_3760
TYDYVWGSYAYI
12
8379







PDH_3761
HYDYVWGSYAYT
12
8380







PDH_3762
AYDYVWGSYAYT
12
8381







PDH_3763
AYDYVWGSYAYK
12
8382







PDH_3764
AYDYVWGSYAYI
12
8383







PDH_3765
TYDYVWGSYAYK
12
8384







PDH_3766
DYDYVWGSYAYT
12
8385







PDH_3767
VYDYVWGSYAYK
12
8386







PDH_3768
TYDYVWGSYAYT
12
8387







PDH_3769
FYDYVWGSYAYK
12
8388







PDH_3770
LYDYVWGSYAYK
12
8389







PDH_3771
VYDYVWGSYAYI
12
8390







PDH_3772
LYDYVWGSYAYT
12
8391







PDH_3773
PYDYVWGSYAYI
12
8392







PDH_3774
FYDYVWGSYAYT
12
8393







PDH_3775
YYDYVWGSYAYI
12
8394







PDH_3776
SYDYVWGSYAYI
12
8395







PDH_3777
HYDYVWGSYAYI
12
8396







PDH_3778
SYDYVWGSYAYT
12
8397







PDH_3779
SYDYVWGSYAYK
12
8398

















TABLE 29







Theoretical segment pool of oligonucleotide


sequences encoding N2 segments of Example 14.












Degenerate
Peptide

SEQ ID


Name
Oligo
Length

NO





N2_000

0
Not degenerate
n/a





N2_001
GCT
1
Not degenerate
n/a





N2_002
GAT
1
Not degenerate
n/a





N2_003
GAG
1
Not degenerate
n/a





N2_004
TTT
1
Not degenerate
n/a





N2_005
GGC
1
Not degenerate
n/a





N2_006
CAT
1
Not degenerate
n/a





N2_007
ATC
1
Not degenerate
n/a





N2_008
AAA
1
Not degenerate
n/a





N2_009
TTG
1
Not degenerate
n/a





N2_010
ATG
1
Not degenerate
n/a





N2_011
CCT
1
Not degenerate
n/a





N2_012
CAA
1
Not degenerate
n/a





N2_013
AGG
1
Not degenerate
n/a





N2_014
TCA
1
Not degenerate
n/a





N2_015
ACC
1
Not degenerate
n/a





N2_016
GTT
1
Not degenerate
n/a





N2_017
TGG
1
Not degenerate
n/a





N2_018
TAC
1
Not degenerate
n/a





N2_019
GMCKHT
2

n/a





N2_020
GMCSVT
2

n/a





N2_021
GMCSHT
2

n/a





N2_022
GMCSVG
2

n/a





N2_023
GMTDYT
2

n/a





N2_024
KHCGAS
2

n/a





N2_025
KHCGRC
2

n/a





N2_026
KHCGWG
2

n/a





N2_027
KHTTTM
2

n/a





N2_028
KHTTYC
2

n/a





N2_029
KHTTWC
2

n/a





N2_030
KHCRGA
2

n/a





N2_031
KHCKGG
2

n/a





N2_032
KHCCWC
2

n/a





N2_033
KHCCMT
2

n/a





N2_034
KHCMCA
2

n/a





N2_035
GVCSWG
2

n/a





N2_036
GVCMKC
2

n/a





N2_037
GVCWSG
2

n/a





N2_038
SVCYAC
2

n/a





N2_039
GNAAHA
2

n/a





N2_040
BYCSAG
2

n/a





N2_041
RBAAWA
2

n/a





N2_042
RBAAYA
2

n/a





N2_043
SBAMAA
2

n/a





N2_044
VSCMAA
2

n/a





N2_045
GRARVG
2

n/a





N2_046
GRADYT
2

n/a





N2_047
GRABYT
2

n/a





N2_048
GRAKBG
2

n/a





N2_049
RDAGMT
2

n/a





N2_050
RDAGAK
2

n/a





N2_051
RDAGRT
2

n/a





N2_052
RDAGWG
2

n/a





N2_053
RDARGG
2

n/a





N2_054
RDACYA
2

n/a





N2_055
SDACSA
2

n/a





N2_056
VWACYA
2

n/a





N2_057
VWATYA
2

n/a





N2_058
VWAASA
2

n/a





N2_059
YHCGMC
2

n/a





N2_060
YHCGMG
2

n/a





N2_061
YHCGST
2

n/a





N2_062
YHCSCG
2

n/a





N2_063
YHCKCG
2

n/a





N2_064
YHCSAC
2

n/a





N2_065
YHCKAC
2

n/a





N2_066
YHCRGA
2

n/a





N2_067
YHCCWC
2

n/a





N2_068
YHCMCA
2

n/a





N2_069
WTCYHT
2

n/a





N2_070
HYCGWG
2

n/a





N2_071
HYCTTM
2

n/a





N2_072
HYCAGM
2

n/a





N2_073
HYCTMC
2

n/a





N2_074
VKCTWT
2

n/a





N2_075
CNCVGC
2

n/a





N2_076
MHAGAK
2

n/a





N2_077
MHAGRC
2

n/a





N2_078
MHAGWG
2

n/a





N2_079
MHAMCA
2

n/a





N2_080
ANAGBT
2

n/a





N2_081
MBCYAC
2

n/a





N2_082
MBCAWA
2

n/a





N2_083
MHGGKA
2

n/a





N2_084
CNABTT
2

n/a





N2_085
CVACNA
2

n/a





N2_086
CVAYSG
2

n/a





N2_087
MSCAHG
2

n/a





N2_088
CRAKBG
2

n/a





N2_089
WSGHCA
2

n/a





N2_090
WGGKHC
2

n/a





N2_091
MBCATR
2

n/a





N2_092
AYABSG
2

n/a





N2_093
VYCAWG
2

n/a





N2_094
BGGSAK
2

n/a





N2_095
AHGRYT
2

n/a





N2_096
BWCAMA
2

n/a





N2_097
BHCTGG
2

n/a





N2_098
TGGBHC
2

n/a





N2_099
TGGVBT
2

n/a





N2_100
NHCGCAGCC
3

n/a





N2_101
BHCGGAATG
3

n/a





N2_102
BHCGGAGGA
3

n/a





N2_103
BHCGGAGTA
3

n/a





N2_104
VNCGCAGGA
3

n/a





N2_105
VBCGGAGCC
3

n/a





N2_106
VBCGGAGGA
3

n/a





N2_107
VBCGGACTA
3

n/a





N2_108
VBCGGAAGG
3

n/a





N2_109
VBCGGAAGC
3

n/a





N2_110
VBCGGAGTA
3

n/a





N2_111
VNCCTTGGA
3

n/a





N2_112
VNCCCAGGA
3

n/a





N2_113
VNCCCACCA
3

n/a





N2_114
VNCAGAGGA
3

n/a





N2_115
VNCAGCGGA
3

n/a





N2_116
VBCACAGGA
3

n/a





N2_117
VNCGTAGGA
3

n/a





N2_118
BHCGGACAC
3

n/a





N2_119
NHCAAACAA
3

n/a





N2_120
NHCAAAAGA
3

n/a





N2_121
BHCACACAA
3

n/a





N2_122
VNCTTTGAG
3

n/a





N2_123
VNCCCACTA
3

n/a





N2_124
VNCCCATAC
3

n/a





N2_125
BHCGGAGAG
3

n/a





N2_126
BHCGGACTA
3

n/a





N2_127
BHCGGATGG
3

n/a





N2_128
BHCGGATAC
3

n/a





N2_129
NHCAGAGGA
3

n/a





N2_130
NHCAGCGAG
3

n/a





N2_131
NHCAGCTGG
3

n/a





N2_132
VHAGGAGGA
3

n/a





N2_133
BHCGGAAGG
3

n/a





N2_134
NHCCAAGGA
3

n/a





N2_135
BHCACAGCT
3

n/a





N2_136
GGABHCGGATAC
4

8399





N2_137
AGABHCGGATAC
4

8400





N2_138
AGCBHCGGATAC
4

8401





N2_139
CCABHCGGATAC
4

8402





N2_140
GGTAGAVHGTAC
4

8403





N2_141
AGGAGAVHGTAC
4

8404





N2_142
GGABHCGGATGG
4

8405





N2_143
GGABHCGGACTA
4

8406





N2_144
GGABHCACAGCT
4

8407





N2_145
GGABHCACACAA
4

8408
















TABLE 30







Theoretical segment pool of unique N2 polypeptide


segments encoded by the oligonucleotides of


Table 29.












Name
Sequence
Length
SEQ ID NO







PN2_000

0
#N/A







PN2_001
A
1
#N/A







PN2_002
D
1
#N/A







PN2_003
E
1
#N/A







PN2_004
F
1
#N/A







PN2_005
G
1
#N/A







PN2_006
H
1
#N/A







PN2_007
I
1
#N/A







PN2_008
K
1
#N/A







PN2_009
L
1
#N/A







PN2_010
M
1
#N/A







PN2_011
P
1
#N/A







PN2_012
Q
1
#N/A







PN2_013
R
1
#N/A







PN2_014
S
1
#N/A







PN2_015
T
1
#N/A







PN2_016
V
1
#N/A







PN2_017
W
1
#N/A







PN2_018
Y
1
#N/A







PN2_019
GW
2
#N/A







PN2_020
GV
2
#N/A







PN2_021
GT
2
#N/A







PN2_022
GS
2
#N/A







PN2_023
GR
2
#N/A







PN2_024
GQ
2
#N/A







PN2_025
GP
2
#N/A







PN2_026
GY
2
#N/A







PN2_027
GG
2
#N/A







PN2_028
GF
2
#N/A







PN2_029
GE
2
#N/A







PN2_030
GD
2
#N/A







PN2_031
GA
2
#N/A







PN2_032
GL
2
#N/A







PN2_033
GK
2
#N/A







PN2_034
GI
2
#N/A







PN2_035
GH
2
#N/A







PN2_036
MG
2
#N/A







PN2_037
MA
2
#N/A







PN2_038
MI
2
#N/A







PN2_039
MT
2
#N/A







PN2_040
MV
2
#N/A







PN2_041
FP
2
#N/A







PN2_042
FQ
2
#N/A







PN2_043
FR
2
#N/A







PN2_044
FS
2
#N/A







PN2_045
FT
2
#N/A







PN2_046
FV
2
#N/A







PN2_047
FW
2
#N/A







PN2_048
FY
2
#N/A







PN2_049
FA
2
#N/A







PN2_050
FD
2
#N/A







PN2_051
FE
2
#N/A







PN2_052
FF
2
#N/A







PN2_053
FG
2
#N/A







PN2_054
FH
2
#N/A







PN2_055
FK
2
#N/A







PN2_056
FL
2
#N/A







PN2_057
SY
2
#N/A







PN2_058
SS
2
#N/A







PN2_059
SR
2
#N/A







PN2_060
SQ
2
#N/A







PN2_061
SP
2
#N/A







PN2_062
SW
2
#N/A







PN2_063
SV
2
#N/A







PN2_064
ST
2
#N/A







PN2_065
SK
2
#N/A







PN2_066
SI
2
#N/A







PN2_067
SH
2
#N/A







PN2_068
SM
2
#N/A







PN2_069
SL
2
#N/A







PN2_070
SA
2
#N/A







PN2_071
SG
2
#N/A







PN2_072
SF
2
#N/A







PN2_073
SE
2
#N/A







PN2_074
SD
2
#N/A







PN2_075
YH
2
#N/A







PN2_076
YK
2
#N/A







PN2_077
YL
2
#N/A







PN2_078
YA
2
#N/A







PN2_079
YE
2
#N/A







PN2_080
YD
2
#N/A







PN2_081
YG
2
#N/A







PN2_082
YF
2
#N/A







PN2_083
YY
2
#N/A







PN2_084
YP
2
#N/A







PN2_085
YS
2
#N/A







PN2_086
YR
2
#N/A







PN2_087
YT
2
#N/A







PN2_088
YW
2
#N/A







PN2_089
YV
2
#N/A







PN2_090
LF
2
#N/A







PN2_091
LD
2
#N/A







PN2_092
LE
2
#N/A







PN2_093
LL
2
#N/A







PN2_094
LM
2
#N/A







PN2_095
LK
2
#N/A







PN2_096
LH
2
#N/A







PN2_097
LI
2
#N/A







PN2_098
LW
2
#N/A







PN2_099
LT
2
#N/A







PN2_100
LR
2
#N/A







PN2_101
LS
2
#N/A







PN2_102
LP
2
#N/A







PN2_103
LQ
2
#N/A







PN2_104
LY
2
#N/A







PN2_105
LG
2
#N/A







PN2_106
LA
2
#N/A







PN2_107
RT
2
#N/A







PN2_108
RV
2
#N/A







PN2_109
RW
2
#N/A







PN2_110
RP
2
#N/A







PN2_111
RQ
2
#N/A







PN2_112
RR
2
#N/A







PN2_113
RS
2
#N/A







PN2_114
RY
2
#N/A







PN2_115
RD
2
#N/A







PN2_116
RE
2
#N/A







PN2_117
RF
2
#N/A







PN2_118
RG
2
#N/A







PN2_119
RA
2
#N/A







PN2_120
RL
2
#N/A







PN2_121
RM
2
#N/A







PN2_122
RH
2
#N/A







PN2_123
RI
2
#N/A







PN2_124
RK
2
#N/A







PN2_125
LV
2
#N/A







PN2_126
IP
2
#N/A







PN2_127
EL
2
#N/A







PN2_128
VK
2
#N/A







PN2_129
EI
2
#N/A







PN2_130
EK
2
#N/A







PN2_131
EE
2
#N/A







PN2_132
ED
2
#N/A







PN2_133
EG
2
#N/A







PN2_134
EF
2
#N/A







PN2_135
EA
2
#N/A







PN2_136
IT
2
#N/A







PN2_137
ET
2
#N/A







PN2_138
EW
2
#N/A







PN2_139
EV
2
#N/A







PN2_140
EP
2
#N/A







PN2_141
ES
2
#N/A







PN2_142
ER
2
#N/A







PN2_143
II
2
#N/A







PN2_144
IH
2
#N/A







PN2_145
VR
2
#N/A







PN2_146
VT
2
#N/A







PN2_147
KA
2
#N/A







PN2_148
KG
2
#N/A







PN2_149
KE
2
#N/A







PN2_150
KD
2
#N/A







PN2_151
KI
2
#N/A







PN2_152
KL
2
#N/A







PN2_153
KS
2
#N/A







PN2_154
KR
2
#N/A







PN2_155
KP
2
#N/A







PN2_156
KV
2
#N/A







PN2_157
KT
2
#N/A







PN2_158
DK
2
#N/A







PN2_159
DH
2
#N/A







PN2_160
DI
2
#N/A







PN2_161
DF
2
#N/A







PN2_162
DG
2
#N/A







PN2_163
DD
2
#N/A







PN2_164
DE
2
#N/A







PN2_165
DA
2
#N/A







PN2_166
DY
2
#N/A







PN2_167
DV
2
#N/A







PN2_168
DW
2
#N/A







PN2_169
DT
2
#N/A







PN2_170
DR
2
#N/A







PN2_171
DS
2
#N/A







PN2_172
DP
2
#N/A







PN2_173
DQ
2
#N/A







PN2_174
QQ
2
#N/A







PN2_175
QP
2
#N/A







PN2_176
QS
2
#N/A







PN2_177
QR
2
#N/A







PN2_178
QT
2
#N/A







PN2_179
QW
2
#N/A







PN2_180
QA
2
#N/A







PN2_181
QE
2
#N/A







PN2_182
QD
2
#N/A







PN2_183
QG
2
#N/A







PN2_184
QF
2
#N/A







PN2_185
QL
2
#N/A







PN2_186
WG
2
#N/A







PN2_187
WF
2
#N/A







PN2_188
WE
2
#N/A







PN2_189
WD
2
#N/A







PN2_190
WA
2
#N/A







PN2_191
WL
2
#N/A







PN2_192
WI
2
#N/A







PN2_193
WH
2
#N/A







PN2_194
WV
2
#N/A







PN2_195
WT
2
#N/A







PN2_196
WS
2
#N/A







PN2_197
WR
2
#N/A







PN2_198
WQ
2
#N/A







PN2_199
WP
2
#N/A







PN2_200
WY
2
#N/A







PN2_201
PR
2
#N/A







PN2_202
PS
2
#N/A







PN2_203
PP
2
#N/A







PN2_204
PQ
2
#N/A







PN2_205
PV
2
#N/A







PN2_206
PW
2
#N/A







PN2_207
PT
2
#N/A







PN2_208
PY
2
#N/A







PN2_209
PA
2
#N/A







PN2_210
PF
2
#N/A







PN2_211
PG
2
#N/A







PN2_212
PD
2
#N/A







PN2_213
PE
2
#N/A







PN2_214
PK
2
#N/A







PN2_215
PH
2
#N/A







PN2_216
PI
2
#N/A







PN2_217
PL
2
#N/A







PN2_218
PM
2
#N/A







PN2_219
DL
2
#N/A







PN2_220
IY
2
#N/A







PN2_221
VA
2
#N/A







PN2_222
VD
2
#N/A







PN2_223
VE
2
#N/A







PN2_224
VF
2
#N/A







PN2_225
VG
2
#N/A







PN2_226
VH
2
#N/A







PN2_227
VI
2
#N/A







PN2_228
IS
2
#N/A







PN2_229
IR
2
#N/A







PN2_230
VL
2
#N/A







PN2_231
VM
2
#N/A







PN2_232
IW
2
#N/A







PN2_233
IV
2
#N/A







PN2_234
VP
2
#N/A







PN2_235
VQ
2
#N/A







PN2_236
IK
2
#N/A







PN2_237
VS
2
#N/A







PN2_238
IM
2
#N/A







PN2_239
IL
2
#N/A







PN2_240
VV
2
#N/A







PN2_241
VW
2
#N/A







PN2_242
IA
2
#N/A







PN2_243
VY
2
#N/A







PN2_244
IE
2
#N/A







PN2_245
ID
2
#N/A







PN2_246
IG
2
#N/A







PN2_247
IF
2
#N/A







PN2_248
TQ
2
#N/A







PN2_249
TF
2
#N/A







PN2_250
HY
2
#N/A







PN2_251
HR
2
#N/A







PN2_252
HS
2
#N/A







PN2_253
HP
2
#N/A







PN2_254
HW
2
#N/A







PN2_255
HT
2
#N/A







PN2_256
HK
2
#N/A







PN2_257
HH
2
#N/A







PN2_258
HL
2
#N/A







PN2_259
HA
2
#N/A







PN2_260
HG
2
#N/A







PN2_261
HD
2
#N/A







PN2_262
HE
2
#N/A







PN2_263
QV
2
#N/A







PN2_264
TY
2
#N/A







PN2_265
TV
2
#N/A







PN2_266
TW
2
#N/A







PN2_267
TT
2
#N/A







PN2_268
TR
2
#N/A







PN2_269
TS
2
#N/A







PN2_270
TP
2
#N/A







PN2_271
TL
2
#N/A







PN2_272
TM
2
#N/A







PN2_273
TK
2
#N/A







PN2_274
TH
2
#N/A







PN2_275
TI
2
#N/A







PN2_276
TG
2
#N/A







PN2_277
TD
2
#N/A







PN2_278
TE
2
#N/A







PN2_279
TA
2
#N/A







PN2_280
AA
2
#N/A







PN2_281
AE
2
#N/A







PN2_282
AD
2
#N/A







PN2_283
AG
2
#N/A







PN2_284
AF
2
#N/A







PN2_285
AI
2
#N/A







PN2_286
AH
2
#N/A







PN2_287
AK
2
#N/A







PN2_288
AM
2
#N/A







PN2_289
AL
2
#N/A







PN2_290
AQ
2
#N/A







PN2_291
AP
2
#N/A







PN2_292
AS
2
#N/A







PN2_293
AR
2
#N/A







PN2_294
AT
2
#N/A







PN2_295
AW
2
#N/A







PN2_296
AV
2
#N/A







PN2_297
AY
2
#N/A







PN2_298
AGM
3
#N/A







PN2_299
AGL
3
#N/A







PN2_300
AGH
3
#N/A







PN2_301
AGG
3
#N/A







PN2_302
AGE
3
#N/A







PN2_303
AGA
3
#N/A







PN2_304
TQG
3
#N/A







PN2_305
AGY
3
#N/A







PN2_306
AGW
3
#N/A







PN2_307
AGV
3
#N/A







PN2_308
AGS
3
#N/A







PN2_309
AGR
3
#N/A







PN2_310
SPY
3
#N/A







PN2_311
SPP
3
#N/A







PN2_312
TAG
3
#N/A







PN2_313
SPL
3
#N/A







PN2_314
TAA
3
#N/A







PN2_315
SPG
3
#N/A







PN2_316
VAA
3
#N/A







PN2_317
VAG
3
#N/A







PN2_318
NPL
3
#N/A







PN2_319
PAA
3
#N/A







PN2_320
NPG
3
#N/A







PN2_321
LAG
3
#N/A







PN2_322
LAA
3
#N/A







PN2_323
NPY
3
#N/A







PN2_324
ALG
3
#N/A







PN2_325
RLG
3
#N/A







PN2_326
TSG
3
#N/A







PN2_327
DTA
3
#N/A







PN2_328
PAG
3
#N/A







PN2_329
QGG
3
#N/A







PN2_330
DLG
3
#N/A







PN2_331
DTQ
3
#N/A







PN2_332
LSG
3
#N/A







PN2_333
LSE
3
#N/A







PN2_334
PGR
3
#N/A







PN2_335
VLG
3
#N/A







PN2_336
LSW
3
#N/A







PN2_337
AFE
3
#N/A







PN2_338
TTG
3
#N/A







PN2_339
FTQ
3
#N/A







PN2_340
IGV
3
#N/A







PN2_341
NFE
3
#N/A







PN2_342
IGS
3
#N/A







PN2_343
IGR
3
#N/A







PN2_344
PGS
3
#N/A







PN2_345
IGG
3
#N/A







PN2_346
GRG
3
#N/A







PN2_347
IGA
3
#N/A







PN2_348
DSG
3
#N/A







PN2_349
IGL
3
#N/A







PN2_350
HLG
3
#N/A







PN2_351
HPP
3
#N/A







PN2_352
AKQ
3
#N/A







PN2_353
GLG
3
#N/A







PN2_354
LFE
3
#N/A







PN2_355
GGV
3
#N/A







PN2_356
GGS
3
#N/A







PN2_357
GGR
3
#N/A







PN2_358
GGG
3
#N/A







PN2_359
GGA
3
#N/A







PN2_360
GGL
3
#N/A







PN2_361
YTA
3
#N/A







PN2_362
LTQ
3
#N/A







PN2_363
FQG
3
#N/A







PN2_364
LVG
3
#N/A







PN2_365
LTA
3
#N/A







PN2_366
LTG
3
#N/A







PN2_367
DPY
3
#N/A







PN2_368
DFE
3
#N/A







PN2_369
DPG
3
#N/A







PN2_370
HTA
3
#N/A







PN2_371
DPP
3
#N/A







PN2_372
PGG
3
#N/A







PN2_373
VPP
3
#N/A







PN2_374
PGA
3
#N/A







PN2_375
VPY
3
#N/A







PN2_376
PGV
3
#N/A







PN2_377
VPL
3
#N/A







PN2_378
STG
3
#N/A







PN2_379
STA
3
#N/A







PN2_380
HGV
3
#N/A







PN2_381
HGW
3
#N/A







PN2_382
HGR
3
#N/A







PN2_383
HGL
3
#N/A







PN2_384
HGM
3
#N/A







PN2_385
STQ
3
#N/A







PN2_386
HGH
3
#N/A







PN2_387
HGG
3
#N/A







PN2_388
DSW
3
#N/A







PN2_389
HGE
3
#N/A







PN2_390
TFE
3
#N/A







PN2_391
PGY
3
#N/A







PN2_392
PGL
3
#N/A







PN2_393
PGM
3
#N/A







PN2_394
DKR
3
#N/A







PN2_395
DKQ
3
#N/A







PN2_396
VFE
3
#N/A







PN2_397
PRG
3
#N/A







PN2_398
PGH
3
#N/A







PN2_399
PPL
3
#N/A







PN2_400
EGG
3
#N/A







PN2_401
RAG
3
#N/A







PN2_402
SAA
3
#N/A







PN2_403
FGW
3
#N/A







PN2_404
SAG
3
#N/A







PN2_405
FGR
3
#N/A







PN2_406
FGH
3
#N/A







PN2_407
FGG
3
#N/A







PN2_408
TPG
3
#N/A







PN2_409
LPY
3
#N/A







PN2_410
TPL
3
#N/A







PN2_411
LPP
3
#N/A







PN2_412
LPL
3
#N/A







PN2_413
TPP
3
#N/A







PN2_414
LPG
3
#N/A







PN2_415
HRG
3
#N/A







PN2_416
TPY
3
#N/A







PN2_417
APY
3
#N/A







PN2_418
IPG
3
#N/A







PN2_419
APP
3
#N/A







PN2_420
PQG
3
#N/A







PN2_421
IPL
3
#N/A







PN2_422
IPP
3
#N/A







PN2_423
APL
3
#N/A







PN2_424
SFE
3
#N/A







PN2_425
APG
3
#N/A







PN2_426
YSE
3
#N/A







PN2_427
IFE
3
#N/A







PN2_428
YSW
3
#N/A







PN2_429
PKR
3
#N/A







PN2_430
RTG
3
#N/A







PN2_431
PKQ
3
#N/A







PN2_432
HGY
3
#N/A







PN2_433
TKR
3
#N/A







PN2_434
NLG
3
#N/A







PN2_435
VKR
3
#N/A







PN2_436
RFE
3
#N/A







PN2_437
SSW
3
#N/A







PN2_438
NPP
3
#N/A







PN2_439
SSE
3
#N/A







PN2_440
SSG
3
#N/A







PN2_441
YGR
3
#N/A







PN2_442
ATG
3
#N/A







PN2_443
ATA
3
#N/A







PN2_444
HPL
3
#N/A







PN2_445
ISW
3
#N/A







PN2_446
ATQ
3
#N/A







PN2_447
ISG
3
#N/A







PN2_448
ISE
3
#N/A







PN2_449
DGR
3
#N/A







PN2_450
ASW
3
#N/A







PN2_451
DGG
3
#N/A







PN2_452
DGE
3
#N/A







PN2_453
HPG
3
#N/A







PN2_454
DGH
3
#N/A







PN2_455
DGL
3
#N/A







PN2_456
DGM
3
#N/A







PN2_457
LKQ
3
#N/A







PN2_458
DGV
3
#N/A







PN2_459
DGW
3
#N/A







PN2_460
PVG
3
#N/A







PN2_461
ASG
3
#N/A







PN2_462
IRG
3
#N/A







PN2_463
VTA
3
#N/A







PN2_464
TSE
3
#N/A







PN2_465
FRG
3
#N/A







PN2_466
ASE
3
#N/A







PN2_467
VTG
3
#N/A







PN2_468
GTG
3
#N/A







PN2_469
LGW
3
#N/A







PN2_470
VTQ
3
#N/A







PN2_471
TLG
3
#N/A







PN2_472
YAA
3
#N/A







PN2_473
DGY
3
#N/A







PN2_474
ITG
3
#N/A







PN2_475
HVG
3
#N/A







PN2_476
RPP
3
#N/A







PN2_477
AAG
3
#N/A







PN2_478
RSG
3
#N/A







PN2_479
AAA
3
#N/A







PN2_480
TGR
3
#N/A







PN2_481
TGS
3
#N/A







PN2_482
TGV
3
#N/A







PN2_483
RPY
3
#N/A







PN2_484
TGA
3
#N/A







PN2_485
TGG
3
#N/A







PN2_486
RPG
3
#N/A







PN2_487
RPL
3
#N/A







PN2_488
TGL
3
#N/A







PN2_489
FKQ
3
#N/A







PN2_490
FKR
3
#N/A







PN2_491
SLG
3
#N/A







PN2_492
LGM
3
#N/A







PN2_493
LGA
3
#N/A







PN2_494
NRG
3
#N/A







PN2_495
LGG
3
#N/A







PN2_496
LGE
3
#N/A







PN2_497
LGY
3
#N/A







PN2_498
LGR
3
#N/A







PN2_499
LGS
3
#N/A







PN2_500
LGV
3
#N/A







PN2_501
GFE
3
#N/A







PN2_502
LQG
3
#N/A







PN2_503
HSG
3
#N/A







PN2_504
HSE
3
#N/A







PN2_505
HSW
3
#N/A







PN2_506
DPL
3
#N/A







PN2_507
GPL
3
#N/A







PN2_508
HAA
3
#N/A







PN2_509
IAG
3
#N/A







PN2_510
GPG
3
#N/A







PN2_511
IAA
3
#N/A







PN2_512
HAG
3
#N/A







PN2_513
DQG
3
#N/A







PN2_514
GPY
3
#N/A







PN2_515
GPP
3
#N/A







PN2_516
VQG
3
#N/A







PN2_517
RGR
3
#N/A







PN2_518
RGS
3
#N/A







PN2_519
SKQ
3
#N/A







PN2_520
RGV
3
#N/A







PN2_521
SKR
3
#N/A







PN2_522
RGA
3
#N/A







PN2_523
RGG
3
#N/A







PN2_524
RGL
3
#N/A







PN2_525
VGL
3
#N/A







PN2_526
VGM
3
#N/A







PN2_527
VGH
3
#N/A







PN2_528
FGY
3
#N/A







PN2_529
VGE
3
#N/A







PN2_530
VGG
3
#N/A







PN2_531
VGA
3
#N/A







PN2_532
YKR
3
#N/A







PN2_533
YKQ
3
#N/A







PN2_534
VGY
3
#N/A







PN2_535
VGV
3
#N/A







PN2_536
VGW
3
#N/A







PN2_537
VGR
3
#N/A







PN2_538
VGS
3
#N/A







PN2_539
FTA
3
#N/A







PN2_540
PSG
3
#N/A







PN2_541
PSE
3
#N/A







PN2_542
NVG
3
#N/A







PN2_543
FGV
3
#N/A







PN2_544
FGL
3
#N/A







PN2_545
ILG
3
#N/A







PN2_546
PGW
3
#N/A







PN2_547
FSE
3
#N/A







PN2_548
DVG
3
#N/A







PN2_549
FSW
3
#N/A







PN2_550
IKR
3
#N/A







PN2_551
IKQ
3
#N/A







PN2_552
DSE
3
#N/A







PN2_553
FGM
3
#N/A







PN2_554
VRG
3
#N/A







PN2_555
NKQ
3
#N/A







PN2_556
TVG
3
#N/A







PN2_557
NQG
3
#N/A







PN2_558
SRG
3
#N/A







PN2_559
YRG
3
#N/A







PN2_560
FGE
3
#N/A







PN2_561
PLG
3
#N/A







PN2_562
PPG
3
#N/A







PN2_563
NSE
3
#N/A







PN2_564
NSG
3
#N/A







PN2_565
PPP
3
#N/A







PN2_566
GAG
3
#N/A







PN2_567
PPY
3
#N/A







PN2_568
FAA
3
#N/A







PN2_569
NSW
3
#N/A







PN2_570
HPY
3
#N/A







PN2_571
PSW
3
#N/A







PN2_572
ARG
3
#N/A







PN2_573
SGS
3
#N/A







PN2_574
NAA
3
#N/A







PN2_575
NAG
3
#N/A







PN2_576
SGW
3
#N/A







PN2_577
GSG
3
#N/A







PN2_578
DRG
3
#N/A







PN2_579
RVG
3
#N/A







PN2_580
HKR
3
#N/A







PN2_581
HKQ
3
#N/A







PN2_582
AQG
3
#N/A







PN2_583
VPG
3
#N/A







PN2_584
AKR
3
#N/A







PN2_585
VVG
3
#N/A







PN2_586
SGL
3
#N/A







PN2_587
VKQ
3
#N/A







PN2_588
SVG
3
#N/A







PN2_589
SQG
3
#N/A







PN2_590
LKR
3
#N/A







PN2_591
PTG
3
#N/A







PN2_592
PGE
3
#N/A







PN2_593
PTA
3
#N/A







PN2_594
LLG
3
#N/A







PN2_595
PTQ
3
#N/A







PN2_596
TRG
3
#N/A







PN2_597
GVG
3
#N/A







PN2_598
IVG
3
#N/A







PN2_599
LRG
3
#N/A







PN2_600
HTQ
3
#N/A







PN2_601
AVG
3
#N/A







PN2_602
IPY
3
#N/A







PN2_603
YQG
3
#N/A







PN2_604
HFE
3
#N/A







PN2_605
RRG
3
#N/A







PN2_606
LGH
3
#N/A







PN2_607
LGL
3
#N/A







PN2_608
TSW
3
#N/A







PN2_609
TKQ
3
#N/A







PN2_610
IQG
3
#N/A







PN2_611
HQG
3
#N/A







PN2_612
SGY
3
#N/A







PN2_613
DAG
3
#N/A







PN2_614
DAA
3
#N/A







PN2_615
SGR
3
#N/A







PN2_616
SGV
3
#N/A







PN2_617
SGH
3
#N/A







PN2_618
SGM
3
#N/A







PN2_619
SGA
3
#N/A







PN2_620
SGE
3
#N/A







PN2_621
SGG
3
#N/A







PN2_622
YTQ
3
#N/A







PN2_623
YGG
3
#N/A







PN2_624
YGE
3
#N/A







PN2_625
PFE
3
#N/A







PN2_626
VSW
3
#N/A







PN2_627
YGM
3
#N/A







PN2_628
YGL
3
#N/A







PN2_629
YGH
3
#N/A







PN2_630
YGW
3
#N/A







PN2_631
YGV
3
#N/A







PN2_632
NKR
3
#N/A







PN2_633
VSE
3
#N/A







PN2_634
KGG
3
#N/A







PN2_635
VSG
3
#N/A







PN2_636
YGY
3
#N/A







PN2_637
RPGY
4
8409







PN2_638
SAGY
4
6277







PN2_639
PSGY
4
6268







PN2_640
RFGY
4
8410







PN2_641
RLGY
4
8411







PN2_642
PYGY
4
6281







PN2_643
GREY
4
8412







PN2_644
GRKY
4
8413







PN2_645
GHGW
4
8414







PN2_646
RVGY
4
8415







PN2_647
GLGL
4
8416







PN2_648
GHGY
4
8417







PN2_649
RDGY
4
4410







PN2_650
RRVY
4
8418







PN2_651
GLGW
4
8419







PN2_652
GHGL
4
8420







PN2_653
GLGY
4
8421







PN2_654
PVGY
4
8422







PN2_655
GPGY
4
8423







PN2_656
GPGW
4
8424







PN2_657
PDGY
4
5829







PN2_658
GPGL
4
8425







PN2_659
GVTA
4
8426







PN2_660
GRLY
4
8427







PN2_661
RRAY
4
8428







PN2_662
GHTQ
4
8429







PN2_663
GVGL
4
8430







PN2_664
SYGY
4
4434







PN2_665
RRQY
4
8431







PN2_666
GATQ
4
8432







PN2_667
PFGY
4
8433







PN2_668
GVGY
4
8434







PN2_669
GVGW
4
8435







PN2_670
RAGY
4
6278







PN2_671
GATA
4
8436







PN2_672
RYGY
4
6262







PN2_673
GRAY
4
8437







PN2_674
GRMY
4
8438







PN2_675
GRTY
4
8439







PN2_676
PPGY
4
8440







PN2_677
RRPY
4
8441







PN2_678
RHGY
4
8442







PN2_679
GDGY
4
5813







PN2_680
SVGY
4
8443







PN2_681
GVTQ
4
8444







PN2_682
GDGW
4
8445







PN2_683
GRQY
4
8446







PN2_684
GDGL
4
8447







PN2_685
SHGY
4
8448







PN2_686
GSGY
4
6284







PN2_687
GFGY
4
8449







PN2_688
GFGW
4
8450







PN2_689
GSGW
4
8451







PN2_690
GFGL
4
8452







PN2_691
GSGL
4
8453







PN2_692
RRLY
4
8454







PN2_693
GFTA
4
8455







PN2_694
PLGY
4
8456







PN2_695
GYTQ
4
8457







PN2_696
GLTQ
4
8458







PN2_697
GHTA
4
8459







PN2_698
PHGY
4
8460







PN2_699
GFTQ
4
8461







PN2_700
GRVY
4
8462







PN2_701
GYTA
4
8463







PN2_702
GLTA
4
8464







PN2_703
PAGY
4
6276







PN2_704
RRKY
4
8465







PN2_705
SSGY
4
4186







PN2_706
GPTQ
4
8466







PN2_707
SDGY
4
5805







PN2_708
GPTA
4
8467







PN2_709
GDTQ
4
8468







PN2_710
GAGW
4
8469







PN2_711
GAGY
4
6270







PN2_712
GDTA
4
8470







PN2_713
SFGY
4
8471







PN2_714
GAGL
4
8472







PN2_715
GSTQ
4
8473







PN2_716
GRPY
4
8474







PN2_717
SLGY
4
8475







PN2_718
GSTA
4
8476







PN2_719
GYGL
4
8477







PN2_720
RSGY
4
6269







PN2_721
RREY
4
8478







PN2_722
SPGY
4
8479







PN2_723
GYGY
4
6260







PN2_724
RRTY
4
8480







PN2_725
GYGW
4
8481







PN2_726
RRMY
4
8482

















TABLE 31







Theoretical segment pool of oligonucleotides encoding JH segments of Example 15.













Peptide
Degen-
SEQ ID


Name
Degenerate Oligo
Length
erate
NO














JH4_001
TGGGGACAGGGTACATTGGTCACCGTCTCCTCA
0

8483





JH1_002
CATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8484





JH1_003
ATTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8485





JH1_004
TACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8486





JH1_005
CCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8487





JH1_006
GTCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8488





JH1_007
GATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8489





JH1_008
TTCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8490





JH1_009
AATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8491





JH1_010
AGTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8492





JH1_011
ACTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8493





JH1_200
GCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8494





JH4_013
GATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8495





JH4_016
GCTTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8496





JH4_017
TTCTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8497





JH4_018
GGCTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8498





JH4_019
CATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8499





JH4_023
AGTTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8500





JH4_024
GTTTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8501





JH4_025
TACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8502





JH4_022
CSATACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2
YES
8503





JH3_012
RACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
2
YES
8504





JH5_014
RACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2
YES
8505





JH3_015
RACGTATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
2
YES
8506





JH4_021
AMCTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2
YES
8507





JH4_020
MTATACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2
YES
8508





JH4_029
TTCGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8509





JH4_030
ATTGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8510





JH4_031
GTGGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8511





JH4_032
TTAGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8512





JH4_033
TCCGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8513





JH4_034
CACGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8514





JH4_035
AGAGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8515





JH4_036
CCAGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8516





JH4_037
AACGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8517





JH4_038
ACTGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8518





JH4_039
GATGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8519





JH4_040
GGTGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8520





JH4_041
GCAGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8521





JH4_042
TACGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8522





JH5_043
TTCGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8523





JH6_044
ATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
3

8524





JH1_026
TTMCAACACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3
YES
8525





JH3_046
STAGACGTATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
3
YES
8526





JH3_028
TTMGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
3
YES
8527





JH2_027
TTMGACCTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
3
YES
8528





JH5_045
TYAGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3
YES
8529





JH3_049
GCCTTTGATATTTGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
4

8530





JH4_051
TACTTTGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8531





JH4_052
AATTTCGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8532





JH4_053
GACTTCGACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8533





JH4_054
CATTTCGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8534





JH4_055
TTCTTTGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8535





JH4_056
TCTTTTGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8536





JH4_057
AGATTCGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8537





JH4_058
TTGTTCGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8538





JH4_059
CCCTTCGACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8539





JH4_060
ATTTTCGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8540





JH4_061
ACCTTTGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8541





JH4_062
GGATTCGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8542





JH4_063
GTTTTCGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8543





JH4_064
GCTTTTGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8544





JH5_065
TGGTTTGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8545





JH6_068
GGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
4

8546





JH6_070
YCAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
4
YES
8547





JH6_069
KACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
4
YES
8548





JH3_198
STATTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
4
YES
8549





JH2_048
KACTTCGACCTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
4
YES
8550





JH1_047
KACTTCCAACACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4
YES
8551





JH5_067
GSATTCGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4
YES
8552





JH3_050
YCATTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
4
YES
8553





JH5_066
AGMTTCGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4
YES
8554





JH2_072
TGGTACTTCGACTTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
5

8555





JH3_075
GACGCATTTGATATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8556





JH3_076
TACGCATTTGATATTTGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8557





JH3_077
CACGCATTCGACATCTGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8558





JH3_078
TTCGCATTCGATATCTGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8559





JH3_079
TCAGCTTTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8560





JH3_080
AGAGCCTTCGATATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8561





JH3_081
TTAGCCTTCGATATCTGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8562





JH3_082
GGAGCCTTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8563





JH4_086
GACTATTTTGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8564





JH4_087
TATTACTTTGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8565





JH4_088
CACTATTTCGACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8566





JH4_089
TTCTATTTTGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8567





JH4_090
AGTTATTTTGACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8568





JH4_091
AGATACTTTGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8569





JH4_092
TTATATTTCGACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8570





JH4_093
CCCTACTTTGACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8571





JH4_095
GGATATTTCGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8572





JH4_096
GTTTACTTTGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8573





JH4_097
GCTTACTTTGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8574





JH4_098
AACTACTTCGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8575





JH5_099
AATTGGTTCGATCCTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8576





JH5_100
GATTGGTTTGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8577





JH5_101
TATTGGTTTGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8578





JH5_102
CACTGGTTCGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8579





JH5_103
TTCTGGTTTGACCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8580





JH5_104
TCTTGGTTTGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8581





JH5_105
AGATGGTTTGATCCTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8582





JH5_107
GGTTGGTTCGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8583





JH5_109
GCTTGGTTTGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8584





JH6_110
TACGGTATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
5

8585





JH6_112
GATGGGATGGATGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
5

8586





JH3_084
SCAGCATTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5
YES
8587





JH5_106
MCATGGTTCGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5
YES
8588





JH2_073
RGCTACTTCGACCTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
5
YES
8589





JH4_094
AYATACTTCGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5
YES
8590





JH5_108
RTATGGTTCGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5
YES
8591





JH6_113
CWCGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
5
YES
8592





JH6_114
KCAGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
5
YES
8593





JH3_083
RTAGCATTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5
YES
8594





JH1_071
RAGTACTTCCAACACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5
YES
8595





JH3_085
AMCGCATTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5
YES
8596





JH2_074
CKATACTTCGACCTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
5
YES
8597





JH6_111
KACTACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
5
YES
8598





JH2_116
TACTGGTACTTCGATTTGTGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
6

8599





JH2_117
GATTGGTACTTCGATTTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
6

8600





JH5_120
GATAATTGGTTCGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8601





JH5_121
TATAACTGGTTCGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8602





JH5_122
CACAATTGGTTCGACCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8603





JH5_123
TTCAATTGGTTTGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8604





JH5_124
AGCAACTGGTTCGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8605





JH5_125
AGAAACTGGTTTGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8606





JH5_126
TTAAATTGGTTCGACCCTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8607





JH5_127
CCCAATTGGTTTGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8608





JH5_128
ATAAATTGGTTCGACCCTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8609





JH5_129
ACTAACTGGTTTGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8610





JH5_130
GGTAACTGGTTTGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8611





JH5_131
GTGAACTGGTTTGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8612





JH5_132
GCCAACTGGTTCGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8613





JH5_133
AACAATTGGTTCGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8614





JH6_134
TACTACGGCATGGATGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6

8615





JH6_136
GATTATGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6

8616





JH6_137
TTCTACGGTATGGATGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6

8617





JH6_138
CATTACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6

8618





JH6_139
TTGTACGGAATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6

8619





JH6_140
AACTATGGCATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6

8620





JH2_118
CWCTGGTACTTCGACCTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
6
YES
8621





JH6_141
SCATACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6
YES
8622





JH1_115
SCAGAATACTTCCAACACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6
YES
8623





JH6_135
KACTACTACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
6
YES
8624





JH6_199
GKATACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6
YES
8625





JH6_142
AKCTACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6
YES
8626





JH2_119
ARCTGGTACTTCGACCTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
6
YES
8627





JH6_143
ASATACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6
YES
8628





JH6_144
TATTACTATGGTATGGATGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
7

8629





JH6_145
TATTACTATTATATGGATGTTTGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
7

8630





JH6_146
GATTACTACGGCATGGATGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
7

8631





JH6_148
AACTACTACGGCATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
7

8632





JH6_147
CWCTACTACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
7
YES
8633





JH6_150
RACTACTACTACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
7
YES
8634





JH6_149
YCATACTACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
7
YES
8635





JH6_151
TATTACTACTACGGAATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8636





JH6_152
AATTATTATTACGGCATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8637





JH6_153
GATTACTATTACGGTATGGATGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8638





JH6_154
CACTATTACTACGGCATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8639





JH6_155
TTCTATTATTATGGTATGGATGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8640





JH6_156
TCTTACTACTATGGGATGGACGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8641





JH6_157
AGATATTACTACGGCATGGATGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8642





JH6_158
TTATACTACTATGGGATGGATGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8643





JH6_159
CCTTACTACTATGGCATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8644





JH6_160
ACCTATTACTATGGTATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8645





JH6_161
GGATACTACTATGGGATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8646





JH6_163
GCCTACTATTATGGCATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8647





JH6_164
TACTACTATTATTATATGGACGTTTGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
8

8648





JH6_165
AACTACTACTACTATATGGATGTTTGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
8

8649





JH6_166
GATTATTATTACTATATGGACGTCTGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
8

8650





JH6_162
RTATACTACTACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8
YES
8651





JH6_168
RGCTACTACTACTACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
8
YES
8652





JH6_167
CMCTACTACTACTACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
8
YES
8653





JH6_169
TATTACTATTATTACGGGATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8654





JH6_170
AATTATTATTATTATGGGATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8655





JH6_171
GACTATTACTATTATGGAATGGATGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8656





JH6_172
CATTATTATTATTACGGAATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8657





JH6_173
TTCTATTACTATTATGGCATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8658





JH6_174
AGCTACTACTATTATGGTATGGACGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8659





JH6_175
AGATATTACTACTATGGCATGGATGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8660





JH6_176
TTATACTACTATTACGGCATGGATGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8661





JH6_177
CCCTATTATTACTACGGAATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8662





JH6_178
ATCTATTACTATTATGGCATGGATGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8663





JH6_179
ACCTATTACTACTATGGCATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8664





JH6_180
GGCTACTATTACTATGGGATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8665





JH6_181
GTCTACTATTATTATGGCATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8666





JH6_182
GCTTACTATTACTACGGCATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8667





JH6_183
GATTATTATTATTACTATGGTATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8668





JH6_184
TACTATTACTACTATTATGGCATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8669





JH6_185
CACTACTACTATTATTATGGGATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8670





JH6_186
TTCTATTATTATTATTACGGAATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8671





JH6_187
AGCTACTATTACTACTATGGGATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8672





JH6_188
AGATATTACTATTACTATGGTATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8673





JH6_189
TTGTACTATTACTATTATGGAATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8674





JH6_190
CCTTACTATTATTATTATGGGATGGATGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8675





JH6_191
ATATATTACTATTACTACGGGATGGATGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8676





JH6_192
ACCTACTATTATTATTACGGGATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8677





JH6_193
GGTTACTATTATTACTACGGGATGGACGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8678





JH6_194
GTGTATTACTATTACTACGGGATGGACGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8679





JH6_195
GCCTATTACTACTACTATGGGATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8680





JH6_196
AATTATTATTACTATTACGGTATGGACGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8681





JH6_197
KACTACTACTACTACTACTACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
10
YES
8682
















TABLE 32







Theoretical segment pool of unique H3-JH


polypeptide segments encoded by the


oligonucleotides of Table 31.












Name
Sequence
Length
SEQ ID NO
















PJH4_001

0
n/a







PJH1_002
H
1
n/a







PJH1_003
I
1
n/a







PJH1_004
Y
1
n/a







PJH1_005
P
1
n/a







PJH1_006
V
1
n/a







PJH1_007
D
1
n/a







PJH1_008
F
1
n/a







PJH1_009
N
1
n/a







PJH1_010
S
1
n/a







PJH1_011
T
1
n/a







PJH1_200
A
1
n/a







PJH4_013
DY
2
n/a







PJH4_016
AY
2
n/a







PJH4_017
FY
2
n/a







PJH4_018
GY
2
n/a







PJH4_019
HY
2
n/a







PJH4_023
SY
2
n/a







PJH4_024
VY
2
n/a







PJH4_025
YY
2
n/a







PJH3_012A
NI
2
n/a







PJH3_012B
DI
2
n/a







PJH3_015A
NV
2
n/a







PJH3_015B
DV
2
n/a







PJH4_020A
LY
2
n/a







PJH4_020B
IY
2
n/a







PJH4_021A
NY
2
n/a







PJH4_021B
TY
2
n/a







PJH4_022A
PY
2
n/a







PJH4_022B
RY
2
n/a







PJH5_014A
NP
2
n/a







PJH5_014B
DP
2
n/a







PJH4_029
FDY
3
n/a







PJH4_030
IDY
3
n/a







PJH4_031
VDY
3
n/a







PJH4_032
LDY
3
n/a







PJH4_033
SDY
3
n/a







PJH4_034
HDY
3
n/a







PJH4_035
RDY
3
n/a







PJH4_036
PDY
3
n/a







PJH4_037
NDY
3
n/a







PJH4_038
TDY
3
n/a







PJH4_039
DDY
3
n/a







PJH4_040
GDY
3
n/a







PJH4_041
ADY
3
n/a







PJH4_042
YDY
3
n/a







PJH5_043
FDP
3
n/a







PJH6_044
MDV
3
n/a







PJH1_026A
LQH
3
n/a







PJH1_026B
FQH
3
n/a







PJH2_027A
FDL
3
n/a







PJH2_027B
LDL
3
n/a







PJH3_028A
FDI
3
n/a







PJH3_028B
LDI
3
n/a







PJH3_046A
VDV
3
n/a







PJH3_046B
LDV
3
n/a







PJH5_045A
LDP
3
n/a







PJH5_045B
SDP
3
n/a







PJH3_049
AFDI
4
4539







PJH4_051
YFDY
4
4567







PJH4_052
NFDY
4
4580







PJH4_053
DFDY
4
4581







PJH4_054
HFDY
4
4582







PJH4_055
FFDY
4
4583







PJH4_056
SFDY
4
4584







PJH4_057
RFDY
4
4585







PJH4_058
LFDY
4
4586







PJH4_059
PFDY
4
4587







PJH4_060
IFDY
4
4588







PJH4_061
TFDY
4
4589







PJH4_062
GFDY
4
4590







PJH4_063
VFDY
4
4591







PJH4_064
AFDY
4
4592







PJH5_065
WFDP
4
4596







PJH6_068
GMDV
4
4641







PJH1_047A
YFQH
4
4489







PJH1_047B
DFQH
4
4514







PJH2_048A
DFDL
4
4537







PJH2_048B
YFDL
4
4529







PJH3_050A
PFDI
4
4554







PJH3_050B
SFDI
4
4553







PJH3_198A
VFDI
4
4563







PJH3_198B
LFDI
4
4558







PJH5_066A
RFDP
4
4622







PJH5_066B
SFDP
4
4625







PJH5_067A
GFDP
4
4623







PJH5_067B
AFDP
4
4633







PJH6_069A
YMDV
4
4687







PJH6_069B
DMDV
4
8683







PJH6_070A
PMDV
4
8684







PJH6_070B
SMDV
4
8685







PJH2_072
WYFDL
5
4528







PJH3_075
DAFDI
5
4538







PJH3_076
YAFDI
5
4540







PJH3_077
HAFDI
5
4541







PJH3_078
FAFDI
5
4542







PJH3_079
SAFDI
5
4543







PJH3_080
RAFDI
5
4544







PJH3_081
LAFDI
5
4545







PJH3_082
GAFDI
5
4549







PJH4_086
DYFDY
5
4566







PJH4_087
YYFDY
5
4568







PJH4_088
HYFDY
5
4569







PJH4_089
FYFDY
5
4570







PJH4_090
SYFDY
5
4571







PJH4_091
RYFDY
5
4572







PJH4_092
LYFDY
5
4573







PJH4_093
PYFDY
5
4574







PJH4_095
GYFDY
5
4577







PJH4_096
VYFDY
5
4578







PJH4_097
AYFDY
5
4579







PJH4_098
NYFDY
5
4593







PJH5_099
NWFDP
5
4595







PJH5_100
DWFDP
5
4609







PJH5_101
YWFDP
5
4610







PJH5_102
HWFDP
5
4611







PJH5_103
FWFDP
5
4612







PJH5_104
SWFDP
5
4613







PJH5_105
RWFDP
5
4614







PJH5_107
GWFDP
5
4619







PJH5_109
AWFDP
5
4621







PJH6_110
YGMDV
5
4640







PJH6_112
DGMDV
5
8686







PJH1_071A
EYFQH
5
4488







PJH1_071B
KYFQH
5
4502







PJH2_073A
SYFDL
5
8687







PJH2_073B
GYFDL
5
4533







PJH2_074A
RYFDL
5
4534







PJH2_074B
LYFDL
5
8688







PJH3_083A
IAFDI
5
4547







PJH3_083B
VAFDI
5
4550







PJH3_084A
PAFDI
5
4546







PJH3_084B
AAFDI
5
4551







PJH3_085A
NAFDI
5
4565







PJH3_085B
TAFDI
5
4548







PJH4_094A
IYFDY
5
4575







PJH4_094B
TYFDY
5
4576







PJH5_106A
PWFDP
5
4616







PJH5_106B
TWFDP
5
4618







PJH5_108A
IWFDP
5
4617







PJH5_108B
VWFDP
5
4620







PJH6_111A
YYMDV
5
4686







PJH6_111B
DYMDV
5
8689







PJH6_113A
HGMDV
5
8690







PJH6_113B
LGMDV
5
8691







PJH6_114A
SGMDV
5
8692







PJH6_114B
AGMDV
5
8693







PJH2_116
YWYFDL
6
4527







PJH2_117
DWYFDL
6
4530







PJH5_120
DNWFDP
6
4594







PJH5_121
YNWFDP
6
4597







PJH5_122
HNWFDP
6
4598







PJH5_123
FNWFDP
6
4599







PJH5_124
SNWFDP
6
4600







PJH5_125
RNWFDP
6
4601







PJH5_126
LNWFDP
6
4602







PJH5_127
PNWFDP
6
4603







PJH5_128
INWFDP
6
4604







PJH5_129
TNWFDP
6
4605







PJH5_130
GNWFDP
6
4606







PJH5_131
VNWFDP
6
4607







PJH5_132
ANWFDP
6
4608







PJH5_133
NNWFDP
6
4634







PJH6_134
YYGMDV
6
4639







PJH6_136
DYGMDV
6
8694







PJH6_137
FYGMDV
6
8695







PJH6_138
HYGMDV
6
8696







PJH6_139
LYGMDV
6
8697







PJH6_140
NYGMDV
6
8698







PJH1_115A
AEYFQH
6
4526







PJH1_115B
PEYFQH
6
4491







PJH2_118A
LWYFDL
6
8699







PJH2_118B
HWYFDL
6
4531







PJH2_119A
NWYFDL
6
4532







PJH2_119B
SWYFDL
6
8700







PJH6_135A
DYYMDV
6
8701







PJH6_135B
YYYMDV
6
4685







PJH6_141A
AYGMDV
6
8702







PJH6_141B
PYGMDV
6
8703







PJH6_142A
SYGMDV
6
8704







PJH6_142B
IYGMDV
6
8705







PJH6_143A
TYGMDV
6
8706







PJH6_143B
RYGMDV
6
8707







PJH6_199A
GYGMDV
6
8708







PJH6_199B
VYGMDV
6
8709







PJH6_144
YYYGMDV
7
4638







PJH6_145
YYYYMDV
7
4684







PJH6_146
DYYGMDV
7
8710







PJH6_148
NYYGMDV
7
8711







PJH6_147A
LYYGMDV
7
8712







PJH6_147B
HYYGMDV
7
8713







PJH6_149A
SYYGMDV
7
8714







PJH6_149B
PYYGMDV
7
8715







PJH6_150A
NYYYMDV
7
8716







PJH6_150B
DYYYMDV
7
8717







PJH6_151
YYYYGMDV
8
4637







PJH6_152
NYYYGMDV
8
4667







PJH6_153
DYYYGMDV
8
4668







PJH6_154
HYYYGMDV
8
4669







PJH6_155
FYYYGMDV
8
4670







PJH6_156
SYYYGMDV
8
4671







PJH6_157
RYYYGMDV
8
4672







PJH6_158
LYYYGMDV
8
4673







PJH6_159
PYYYGMDV
8
4674







PJH6_160
TYYYGMDV
8
4676







PJH6_161
GYYYGMDV
8
4677







PJH6_163
AYYYGMDV
8
4679







PJH6_164
YYYYYMDV
8
4683







PJH6_165
NYYYYMDV
8
4713







PJH6_166
DYYYYMDV
8
4714







PJH6_162A
VYYYGMDV
8
4678







PJH6_162B
IYYYGMDV
8
4675







PJH6_167A
HYYYYMDV
8
4715







PJH6_167B
PYYYYMDV
8
4720







PJH6_168A
SYYYYMDV
8
4717







PJH6_168B
GYYYYMDV
8
4723







PJH6_169
YYYYYGMDV
9
4636







PJH6_170
NYYYYGMDV
9
4654







PJH6_171
DYYYYGMDV
9
4655







PJH6_172
HYYYYGMDV
9
4656







PJH6_173
FYYYYGMDV
9
4657







PJH6_174
SYYYYGMDV
9
4658







PJH6_175
RYYYYGMDV
9
4659







PJH6_176
LYYYYGMDV
9
4660







PJH6_177
PYYYYGMDV
9
4661







PJH6_178
IYYYYGMDV
9
4662







PJH6_179
TYYYYGMDV
9
4663







PJH6_180
GYYYYGMDV
9
4664







PJH6_181
VYYYYGMDV
9
4665







PJH6_182
AYYYYGMDV
9
4666







PJH6_183
DYYYYYGMDV
10
4635







PJH6_184
YYYYYYGMDV
10
4642







PJH6_185
HYYYYYGMDV
10
4643







PJH6_186
FYYYYYGMDV
10
4644







PJH6_187
SYYYYYGMDV
10
4645







PJH6_188
RYYYYYGMDV
10
4646







PJH6_189
LYYYYYGMDV
10
4647







PJH6_190
PYYYYYGMDV
10
4648







PJH6_191
IYYYYYGMDV
10
4649







PJH6_192
TYYYYYGMDV
10
4650







PJH6_193
GYYYYYGMDV
10
4651







PJH6_194
VYYYYYGMDV
10
4652







PJH6_195
AYYYYYGMDV
10
4653







PJH6_196
NYYYYYGMDV
10
4680







PJH6_197A
DYYYYYYMDV
10
4681







PJH6_197B
YYYYYYYMDV
10
4688










EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments and methods described herein. Such equivalents are intended to be encompassed by the scope of the following claims.









APPENDIX A





GI NUMBERS OF 3,571 SEQUENCES IN THE


HEALTHY PREIMMUNE SET (HPS)




















33628
1052674
1685242
1770847



37745
1052676
1685246
1770848



37747
1052683
1685248
1770851



37749
1052685
1685250
1770852



37751
1052691
1685252
1770853



37753
1052692
1685254
1770854



37755
1052693
1685256
1770855



37757
1052695
1685258
1770860



37759
1154682
1685260
1770861



37761
1154691
1685264
1770865



37763
1154698
1685266
1770866



37765
1154699
1685268
1770867



37767
1154706
1770744
1770869



37769
1154710
1770746
1770870



37773
1154713
1770747
1770872



37777
1154715
1770751
1770874



38383
1154724
1770755
1770875



38391
1154754
1770756
1770876



38393
1154769
1770758
1770877



38397
1154770
1770759
1770878



38401
1154805
1770761
1770879



185292
1154807
1770763
1770880



264183
1154808
1770765
1770881



297147
1154809
1770766
1770882



306949
1154810
1770770
1770883



306951
1154811
1770771
1770884



306953
1154813
1770772
1770885



483332
1154818
1770775
1770887



483333
1154820
1770776
1770888



483335
1154822
1770777
1770891



483336
1154824
1770779
1770892



483338
1154825
1770780
1770893



483339
1154834
1770783
1770894



483348
1154837
1770784
1770895



483350
1154838
1770785
1770896



510999
1154839
1770789
1770898



547164
1154840
1770791
1770902



587252
1154841
1770792
1770904



587254
1154843
1770793
1770905



587266
1154844
1770794
1770906



587276
1154845
1770795
1770908



587278
1154847
1770796
1770909



587280
1154848
1770797
1770910



587286
1197299
1770799
1770911



587288
1197300
1770800
1770912



587291
1197304
1770801
1770913



587293
1197307
1770805
1770914



587295
1197308
1770806
1770915



587299
1197309
1770807
1770916



587301
1197312
1770808
1770918



587304
1197313
1770809
1770922



587306
1197314
1770810
1770932



587308
1197315
1770811
1770936



587311
1197316
1770812
1770937



587313
1197318
1770813
1770950



587315
1197319
1770814
1770952



587317
1197321
1770815
1770954



1052611
1197322
1770816
1770958



1052620
1197323
1770817
1770961



1052622
1197324
1770818
1770962



1052626
1197325
1770820
1770963



1052627
1197326
1770822
1770964



1052634
1197327
1770824
1770967



1052637
1197328
1770826
1770969



1052639
1495508
1770829
1770971



1052640
1495511
1770830
1770972



1052642
1495512
1770831
1770974



1052644
1495516
1770833
1770976



1052655
1495518
1770835
1770979



1052656
1592729
1770836
1770981



1052657
1685210
1770837
1770982



1052658
1685220
1770839
1770983



1052659
1685222
1770840
1770989



1052662
1685228
1770843
1770992



1052668
1685234
1770844
1770994



1052669
1685238
1770845
1770995



1052671
1685240
1770846
1770997



1770998
1791142
3170752
3170974



1771002
1791144
3170754
3170978



1771004
1791152
3170756
3170980



1771008
1791154
3170758
3170984



1771010
1791160
3170760
3170986



1771014
1791164
3170762
3170988



1771016
1791176
3170764
3170990



1771017
1791182
3170766
3170992



1771018
1791184
3170768
3171006



1771022
1791186
3170772
3171008



1771026
1791190
3170774
3171010



1771027
1791194
3170778
3171016



1771029
1791196
3170782
3171018



1771033
1791200
3170784
3171020



1771034
1791204
3170786
3171022



1771035
1791206
3170788
3171024



1771036
1869905
3170794
3171026



1771038
1869907
3170796
3171028



1771039
1869912
3170802
3171030



1771042
1869913
3170808
3171038



1771044
1869915
3170810
3171040



1771045
1869918
3170812
3171042



1771055
1869919
3170816
3171044



1771057
1934921
3170820
3171242



1771058
2367538
3170822
3608440



1771059
2388836
3170824
3608462



1771060
2388837
3170826
3954953



1771061
2388839
3170830
3954955



1771063
2388840
3170832
4530538



1791008
2388841
3170834
4530544



1791010
2388842
3170836
4753741



1791012
2388843
3170840
4959477



1791018
2388846
3170842
4995315



1791020
2388847
3170844
4995317



1791026
2388848
3170846
4995319



1791028
2388851
3170848
4995321



1791030
2388852
3170852
4995323



1791032
2388853
3170854
4995325



1791034
2388856
3170856
4995327



1791036
2388859
3170858
4995329



1791040
2388861
3170862
4995331



1791042
2388862
3170864
4995333



1791046
2388863
3170866
4995335



1791050
2388864
3170868
4995337



1791052
2388865
3170870
4995339



1791054
2388868
3170872
4995341



1791058
2388871
3170874
4995343



1791060
2388873
3170876
4995345



1791062
2388875
3170878
4995347



1791064
2388876
3170880
4995349



1791072
2388878
3170882
4995351



1791074
2773082
3170884
4995353



1791076
3170658
3170890
4995355



1791078
3170662
3170894
4995357



1791080
3170664
3170898
4995359



1791082
3170668
3170902
4995361



1791084
3170670
3170908
4995365



1791086
3170686
3170910
4995367



1791088
3170688
3170916
4995375



1791090
3170692
3170918
4995383



1791096
3170694
3170922
4995385



1791098
3170696
3170924
4995389



1791100
3170702
3170926
4995391



1791104
3170704
3170930
4995393



1791106
3170712
3170932
4995397



1791108
3170714
3170934
4995399



1791110
3170716
3170936
4995400



1791112
3170720
3170938
4995404



1791114
3170722
3170944
4995406



1791116
3170726
3170946
4995408



1791118
3170728
3170954
4995410



1791122
3170730
3170958
4995418



1791124
3170734
3170960
4995422



1791130
3170736
3170964
4995426



1791132
3170738
3170966
4995428



1791134
3170740
3170968
4995430



1791136
3170748
3170970
4995432



4995434
5834089
6531600
8489286



4995436
5834091
6723523
8489289



4995438
5834093
6723525
8489291



4995440
5834095
6723527
11137164



4995442
5834097
6723531
11137170



4995446
5834099
6723535
11137172



4995456
5834101
6723537
11137174



4995462
5834103
6723543
11137178



4995466
5834105
6723545
11137183



4995470
5834107
6723549
11137186



4995474
5834109
6723551
11137188



4995476
5834113
6723558
11137196



4995478
5834115
6723565
11137200



4995480
5834119
6723581
11137205



4995482
5834121
6723583
11137215



4995484
5834123
6723595
11137219



4995486
5834125
6723597
11137229



4995488
5834127
6723599
11137231



4995490
5834129
7161042
11137242



4995492
5834131
7161061
11137251



4995494
5834133
7161129
11137253



4995496
5834135
7161136
11137261



4995498
5834137
7161164
11137262



4995500
5834139
8249510
11137274



4995502
5834141
8249514
11137276



4995504
5834143
8249518
11137279



4995506
5834145
8249524
11137281



4995508
5834147
8249528
11137283



4995510
5834149
8249538
11137285



4995512
5834151
8249546
11137289



4995514
5834153
8249552
11137290



4995516
5834155
8249554
11137293



4995520
5834159
8249558
11137295



4995524
5834161
8249560
11137298



4995530
5834163
8249562
11137301



4995535
5834165
8249566
11137303



4995537
5834169
8249568
11137305



4995539
5834175
8249608
11137307



4995549
5834177
8249622
11137309



4995555
5834179
8249632
11137313



4995557
5834183
8249650
11137315



4995563
5834185
8249652
11137317



4995569
5834187
8249654
11137319



4995575
5834191
8249656
11137322



4995581
5834193
8249662
11137326



4995589
5834195
8249674
11137329



4995591
5834197
8249682
11137333



5833973
5834199
8249698
11137335



5833980
5834201
8249712
11137339



5833984
5834203
8249716
11137343



5833986
5834205
8249718
11137348



5834003
5834207
8249730
11137350



5834011
5834209
8249738
11137352



5834015
5834213
8249740
11137354



5834019
5834215
8249744
11137359



5834031
6013039
8249754
11137361



5834035
6013043
8249756
11137363



5834037
6013045
8249760
11137365



5834039
6531445
8249772
11137367



5834041
6531457
8249778
11137369



5834043
6531461
8249784
11137371



5834047
6531465
8249786
11137373



5834049
6531481
8249788
11137375



5834051
6531489
8249790
11137377



5834053
6531493
8249812
11137379



5834055
6531495
8249816
11137382



5834057
6531507
8249826
11137386



5834059
6531509
8249828
11137388



5834065
6531511
8249838
11137392



5834069
6531513
8250248
11137399



5834071
6531517
8250255
11137403



5834073
6531521
8489274
11137407



5834075
6531525
8489276
11137411



5834077
6531533
8489278
11137413



5834079
6531537
8489280
11137415



5834081
6531539
8489282
11137418



5834083
6531554
8489284
11137420



11137422
13172069
21702275
47846518



11137426
13172073
21702277
47846520



11137428
13172083
21702281
47846524



11137430
13172091
21702282
47846526



11137432
13172093
21702287
47846528



11137439
13172099
21702289
47846530



11137441
13172117
21702291
47846532



11137445
13172125
21702293
47846534



11137448
13172129
21702295
47846538



11137450
13172133
21702297
47846540



11137452
13172135
21702299
47846542



11137454
13172137
21702301
47846544



11137460
13172141
21702303
47846546



11137462
13172143
21702305
47846548



11137467
13172147
21702307
47846550



11137470
13172149
21702309
47846558



11137474
13172151
21702311
47846562



11137476
13172155
21702313
47846564



11137480
13172157
21702314
47846566



11137482
13172159
21702315
47846570



11137487
13172163
23337033
47846572



11137494
13172169
27370812
47846574



11137500
13172177
31076438
47846578



11137502
13623574
33873883
47846580



11137507
14289029
33989177
47846582



11137509
14289035
37987904
47846586



13171905
14289037
37987932
47846588



13171909
14289049
37987938
47846590



13171911
14289057
37987960
47846594



13171913
14289061
37987970
47846596



13171915
14289065
39644659
47846598



13171917
14289067
39645530
47846600



13171921
14289071
47846366
47846602



13171923
14289073
47846370
47846604



13171925
14289079
47846372
47846606



13171927
14289097
47846376
47846612



13171929
14289099
47846378
47846614



13171931
14289109
47846380
47846618



13171935
14289111
47846386
47846620



13171937
16075408
47846388
47846626



13171939
16075410
47846394
47846632



13171941
16075412
47846398
47846644



13171945
16075414
47846416
47846646



13171947
16075416
47846418
47846658



13171949
16075418
47846420
47846660



13171951
16075420
47846422
47846664



13171953
16075422
47846426
47846666



13171955
16075424
47846428
47846674



13171957
16075426
47846430
47846678



13171959
16075428
47846432
47846680



13171961
16075430
47846434
47846684



13171965
16075432
47846438
47846690



13171967
16075434
47846442
47846692



13171969
16075436
47846446
47846696



13171971
16075438
47846448
47846698



13171973
16075440
47846450
47846716



13171975
16075442
47846456
47846718



13171977
16075444
47846458
47846724



13171981
16075448
47846466
47846728



13171987
16075450
47846468
47846730



13171999
16075452
47846472
47846734



13172003
16075454
47846476
47846750



13172005
16075456
47846478
47846752



13172007
16075458
47846482
47846756



13172009
16075460
47846484
47846762



13172013
16075464
47846486
47846764



13172019
16075466
47846488
47846768



13172021
16076270
47846490
47846778



13172025
16076286
47846492
47846782



13172027
17511791
47846494
47846784



13172033
18044958
47846498
47846786



13172037
19171939
47846506
49256420



13172043
19550754
47846508
49256426



13172045
19848531
47846510
49258105



13172053
19848533
47846512
49523831



13172061
19848543
47846514
49523833



13172065
19848545
47846516
49523835



49523837
54779258
54780723
145910938



49523841
54779260
54780731
145910942



49523843
54779262
54780733
145910945



49523849
54779264
54780735
145910949



49523851
54779266
54780741
145910952



49523853
54779268
54780745
145910955



49523855
54779270
54780753
145910958



49523861
54779272
54780757
145910966



49523865
54779274
54780759
145910969



49523871
54779276
54780761
145910972



49523873
54779278
54780763
145910975



49523879
54779280
54780765
145910983



49523881
54779282
54780767
145910986



49523887
54779284
54780771
145910989



49523895
54779286
54780775
145910992



49523905
54779288
54780777
145910995



49523919
54779290
54780779
145910998



49523921
54779292
54780781
145911001



49523923
54779296
54780783
145911004



49523927
54779298
54780785
145911013



49523929
54779300
54780787
145911017



49523931
54779302
54780791
145911020



49523946
54779306
54780793
145911023



49523950
54779308
54780795
145911026



54779136
54779310
54780801
145911029



54779140
54779314
54780803
145911032



54779142
54779316
54780805
145911038



54779144
54779318
54780807
145911041



54779146
54779320
54780809
145911044



54779148
54779322
54780815
145911047



54779150
54779324
54780817
145911050



54779152
54779328
54780821
145911053



54779156
54779330
54780825
145911061



54779158
54779332
54780827
145911064



54779160
54779334
54780831
145911072



54779162
54779336
54780833
145911075



54779166
54779338
54780835
145911081



54779168
54779340
54780837
145911086



54779170
54779342
54780839
145911090



54779172
54779344
54780841
145911092



54779174
54779350
54780843
145911096



54779178
54779354
54780845
145911102



54779180
54779356
54780847
145911105



54779182
54779358
54780853
145911108



54779184
54779360
54780857
145911111



54779186
54779362
54780859
145911133



54779188
54779364
54780861
145911150



54779190
54780155
54780863
145911156



54779192
54780163
55228577
145911159



54779194
54780167
55228579
145911162



54779196
54780171
55228584
145911165



54779198
54780177
55228638
145911171



54779200
54780179
55228640
145911174



54779204
54780185
55228646
145911177



54779206
54780187
55228650
145911180



54779208
54780191
55228651
145911183



54779210
54780193
55228652
145911186



54779212
54780209
60688113
145911190



54779214
54780211
74095346
145911193



54779218
54780213
74095348
145911199



54779220
54780227
74095350
145911202



54779222
54780229
74095355
145911205



54779224
54780235
74095358
145911214



54779226
54780237
91979763
145911217



54779228
54780239
91979789
145911220



54779230
54780243
91979839
145911223



54779232
54780247
91979849
145911226



54779234
54780251
111918091
145911235



54779236
54780253
111918116
145911238



54779238
54780259
111918127
145911248



54779240
54780709
111918184
145911257



54779242
54780711
111918251
145911287



54779244
54780713
111918262
145911291



54779248
54780715
111918647
145911294



54779250
54780717
121488404
145911298



54779252
54780719
145910925
145911301



54779256
54780721
145910934
145911305



145911308
145911823
145912707
145913746



145911311
145911832
145912717
145913752



145911314
145911840
145912725
145913757



145911317
145911849
145912735
145913766



145911320
145911857
145912744
145913772



145911323
145911883
145912753
145913777



145911326
145911892
145912760
145913782



145911329
145911914
145912780
145913787



145911332
145911936
145912790
145913792



145911335
145911938
145912799
145913797



145911338
145911940
145912814
145913803



145911341
145911942
145912824
145913808



145911344
145911944
145912844
145913813



145911347
145911946
145912853
145913840



145911350
145911948
145912861
145913852



145911353
145911950
145912868
145913856



145911356
145911953
145912879
145913867



145911359
145911959
145912888
145913875



145911362
145911968
145912898
145913879



145911365
145911983
145912909
145913883



145911368
145911992
145912919
145913888



145911371
145912001
145912930
145913893



145911374
145912009
145912940
145913898



145911377
145912023
145912949
145913902



145911384
145912037
145912958
145913915



145911388
145912044
145912978
145913919



145911391
145912059
145912996
145913921



145911394
145912100
145913026
145913923



145911397
145912107
145913035
145913927



145911400
145912114
145913042
145913929



145911403
145912123
145913066
145913932



145911407
145912132
145913107
145913943



145911410
145912152
145913138
145913955



145911413
145912167
145913155
145913961



145911416
145912176
145913181
145913965



145911421
145912186
145913209
145913969



145911427
145912211
145913219
145913973



145911436
145912220
145913232
145913977



145911442
145912229
145913236
145913980



145911451
145912238
145913241
145913984



145911457
145912249
145913248
145913988



145911466
145912260
145913257
145913991



145911482
145912278
145913268
145913995



145911491
145912308
145913278
145914000



145911498
145912353
145913288
145914004



145911502
145912361
145913297
145914011



145911510
145912371
145913308
145914017



145911517
145912381
145913344
145914020



145911523
145912399
145913354
145914023



145911536
145912409
145913377
145914026



145911544
145912418
145913386
145914038



145911553
145912436
145913394
145914045



145911561
145912446
145913404
145914049



145911568
145912456
145913415
145914056



145911576
145912466
145913425
145914060



145911585
145912470
145913433
145914063



145911597
145912479
145913470
145938277



145911604
145912495
145913480
145938293



145911611
145912504
145913489
145938315



145911618
145912508
145913518
145938332



145911621
145912528
145913528
145938348



145911655
145912547
145913539
145938356



145911663
145912566
145913549
145938362



145911679
145912575
145913569
145938375



145911687
145912587
145913578
145938384



145911695
145912589
145913588
145938391



145911703
145912591
145913596
145938403



145911713
145912595
145913608
145938411



145911722
145912598
145913620
145938421



145911746
145912614
145913640
145938426



145911748
145912624
145913650
145938430



145911750
145912635
145913660
145938438



145911752
145912647
145913670
145938446



145911754
145912674
145913682
145938454



145911768
145912682
145913687
145938462



145911786
145912691
145913722
145938470



145911795
145912700
145913730
145938490



145938504
145939392
145940316
145940902



145938513
145939407
145940325
145940907



145938531
145939416
145940332
145940912



145938537
145939432
145940340
145940917



145938553
145939449
145940354
145940921



145938562
145939459
145940362
145940926



145938570
145939470
145940370
145940940



145938577
145939475
145940379
145941075



145938596
145939484
145940387
145941079



145938621
145939501
145940399
145941083



145938629
145939514
145940404
145941090



145938639
145939566
145940411
145941097



145938647
145939578
145940416
145941111



145938674
145939586
145940428
145941118



145938680
145939593
145940439
145941131



145938689
145939602
145940441
145941134



145938698
145939609
145940445
145941137



145938706
145939634
145940448
145941143



145938713
145939643
145940450
145941151



145938721
145939651
145940452
145941158



145938730
145939657
145940456
145941167



145938737
145939670
145940461
145941176



145938755
145939678
145940468
145941194



145938771
145939686
145940482
145941226



145938808
145939694
145940489
145941231



145938830
145939699
145940494
145941239



145938837
145939704
145940498
145941247



145938865
145939707
145940508
145941255



145938874
145939711
145940510
145941262



145938892
145939718
145940515
145941276



145938899
145939724
145940520
145941296



145938906
145939730
145940530
145941328



145938916
145939738
145940535
145941336



145938926
145939747
145940541
145941349



145938944
145939753
145940547
145941358



145938952
145939760
145940552
145941365



145938969
145939766
145940557
145941373



145938986
145939768
145940567
145941380



145938995
145939770
145940573
145941388



145939005
145939776
145940583
145941393



145939023
145939778
145940593
145941399



145939030
145939782
145940597
145941425



145939044
145939788
145940602
145941459



145939053
145939805
145940613
145941466



145939061
145939817
145940631
145941474



145939069
145939824
145940636
145941483



145939083
145939834
145940645
145941488



145939085
145939844
145940650
145941499



145939087
145939858
145940656
145941505



145939093
145939865
145940662
145941512



145939095
145939872
145940675
145941518



145939097
145939879
145940681
145941539



145939106
145939900
145940700
145941544



145939132
145939910
145940706
145941550



145939147
145939921
145940711
145941558



145939155
145939940
145940727
145941571



145939161
145939949
145940735
145941577



145939169
145939970
145940742
145941588



145939181
145939986
145940748
145941597



145939189
145940002
145940756
145941605



145939197
145940029
145940762
145941634



145939215
145940043
145940783
145941639



145939231
145940052
145940789
145941644



145939237
145940070
145940797
145941650



145939252
145940091
145940804
145941657



145939271
145940115
145940818
145941669



145939285
145940124
145940825
145941674



145939302
145940133
145940832
145941680



145939309
145940152
145940838
145941685



145939317
145940167
145940846
145941698



145939331
145940173
145940853
145941704



145939338
145940190
145940858
145941717



145939346
145940218
145940865
145941724



145939356
145940226
145940877
145941731



145939367
145940239
145940884
145941745



145939384
145940269
145940891
145941752



145941758
159034235
159034347
159034453



145941764
159034236
159034348
159034455



145941791
159034238
159034349
159034460



145941806
159034239
159034350
159034461



145941819
159034240
159034354
159034462



145941822
159034241
159034355
159034463



145941824
159034242
159034356
159034464



145941828
159034243
159034358
159034465



145941837
159034244
159034359
159034466



145941854
159034245
159034362
159034467



145941863
159034249
159034364
159034468



145941877
159034250
159034365
159034471



145941886
159034252
159034366
159034472



145941908
159034253
159034367
159034474



145941915
159034254
159034368
159034476



145941933
159034258
159034369
159034479



145942086
159034259
159034370
159034481



145942146
159034260
159034372
159034482



145942158
159034262
159034373
159034484



145942175
159034266
159034375
159034485



145942206
159034267
159034376
159034486



145942223
159034268
159034378
159034490



145942261
159034273
159034379
159034492



145942265
159034274
159034381
159034493



145942309
159034276
159034383
159034494



145942383
159034277
159034384
159034495



145942405
159034278
159034385
159034497



145942487
159034279
159034386
159034499



145942497
159034280
159034387
159034500



145942506
159034282
159034388
159034501



145942509
159034283
159034389
159034502



145942544
159034284
159034390
159034503



145942565
159034285
159034392
159034504



145942606
159034286
159034393
159034511



148717962
159034287
159034395
159034512



148717964
159034288
159034396
159034515



148717966
159034290
159034397
159034516



148910865
159034291
159034398
159034518



159034187
159034293
159034399
159034521



159034188
159034296
159034400
159034522



159034189
159034297
159034402
159034523



159034190
159034298
159034403
159034524



159034191
159034299
159034404
159034526



159034192
159034300
159034405
159034527



159034193
159034301
159034408
159034529



159034194
159034302
159034410
159034530



159034195
159034303
159034414
159034531



159034196
159034304
159034415
159034532



159034197
159034305
159034417
159034534



159034198
159034306
159034419
159034535



159034200
159034307
159034420
159034536



159034202
159034308
159034421
159034537



159034203
159034309
159034422
159034538



159034204
159034310
159034423
159034539



159034205
159034311
159034424
159034540



159034207
159034313
159034425
159034541



159034208
159034315
159034426
159034542



159034209
159034316
159034429
159034543



159034211
159034318
159034430
159034545



159034212
159034320
159034431
159034546



159034213
159034323
159034433
159034547



159034214
159034324
159034434
159034549



159034215
159034325
159034435
159034550



159034216
159034328
159034436
159034552



159034217
159034329
159034438
159034554



159034218
159034330
159034439
159034556



159034219
159034331
159034440
159034559



159034222
159034335
159034441
159034562



159034223
159034337
159034443
159034563



159034224
159034339
159034444
159034564



159034225
159034340
159034445
159034565



159034226
159034341
159034446
159034566



159034227
159034342
159034447
159034568



159034228
159034343
159034448
159034570



159034230
159034344
159034449
159034571



159034231
159034345
159034450
159034572



159034233
159034346
159034451
159034573



159034575
159034697
159034801
159034904



159034576
159034698
159034802
159034905



159034578
159034699
159034804
159034906



159034580
159034700
159034805
159034907



159034581
159034701
159034809
159034908



159034582
159034704
159034811
159034909



159034584
159034705
159034812
159034910



159034587
159034706
159034813
159034911



159034588
159034708
159034815
159034912



159034589
159034709
159034816
159034913



159034591
159034710
159034817
159034914



159034596
159034711
159034818
159034917



159034599
159034712
159034819
159034918



159034600
159034713
159034820
159034919



159034601
159034714
159034821
159034920



159034602
159034717
159034822
159034923



159034604
159034718
159034823
159034925



159034607
159034720
159034824
159034926



159034609
159034721
159034825
159034928



159034611
159034722
159034827
159034929



159034612
159034725
159034828
159034931



159034613
159034726
159034829
159034934



159034617
159034728
159034831
159034935



159034619
159034729
159034832
159034936



159034620
159034730
159034833
159034937



159034621
159034731
159034834
159034938



159034622
159034732
159034835
159034939



159034625
159034733
159034837
159034940



159034626
159034734
159034838
159034942



159034628
159034736
159034839
159034945



159034629
159034737
159034840
159034946



159034631
159034738
159034842
159034947



159034632
159034741
159034843
159034948



159034634
159034742
159034844
159034950



159034635
159034743
159034845
159034952



159034636
159034744
159034846
159034953



159034637
159034745
159034847
159034954



159034638
159034747
159034848
159034955



159034640
159034748
159034849
159034957



159034641
159034749
159034852
159034959



159034642
159034750
159034853
159034961



159034643
159034751
159034856
159034962



159034647
159034752
159034858
159034963



159034648
159034754
159034859
159034964



159034649
159034756
159034860
159034965



159034650
159034758
159034861
159034967



159034651
159034759
159034862
159034970



159034652
159034760
159034863
159034971



159034653
159034762
159034864
159034973



159034654
159034763
159034866
159034974



159034657
159034764
159034869
159034975



159034658
159034765
159034871
159034976



159034659
159034766
159034872
159034978



159034660
159034767
159034874
159034980



159034661
159034768
159034876
159034981



159034664
159034771
159034877
159034982



159034665
159034773
159034879
159034983



159034668
159034774
159034880
159034984



159034669
159034778
159034882
159034985



159034672
159034779
159034883
159034987



159034673
159034780
159034885
159034988



159034676
159034781
159034886
159034989



159034677
159034782
159034887
159034991



159034678
159034783
159034888
159034992



159034679
159034784
159034889
159034993



159034680
159034786
159034890
159034995



159034681
159034787
159034892
159034996



159034683
159034788
159034893
159034997



159034686
159034789
159034894
159034998



159034687
159034790
159034895
159035002



159034688
159034791
159034897
159035003



159034689
159034793
159034898
159035005



159034690
159034794
159034899
159035007



159034692
159034795
159034900
159035008



159034693
159034796
159034901
159035009



159034695
159034798
159034902
159035010



159034696
159034799
159034903
159035013



159035014
159035117
159035234
159035362



159035015
159035118
159035235
159035363



159035016
159035120
159035238
159035364



159035017
159035122
159035239
159035366



159035018
159035123
159035240
159035368



159035021
159035124
159035241
159035369



159035022
159035125
159035242
159035370



159035023
159035126
159035245
159035372



159035024
159035128
159035247
159035373



159035025
159035129
159035250
159035374



159035026
159035130
159035253
159035378



159035027
159035131
159035256
159035380



159035028
159035133
159035257
159035382



159035031
159035134
159035260
159035384



159035033
159035135
159035261
159035385



159035034
159035136
159035262
159035386



159035035
159035137
159035263
159035390



159035036
159035138
159035264
159035391



159035038
159035139
159035265
159035393



159035039
159035140
159035267
159035394



159035040
159035143
159035268
159035395



159035041
159035145
159035269
159035400



159035042
159035146
159035270
159035401



159035043
159035147
159035272
159035402



159035044
159035149
159035273
159035403



159035045
159035150
159035274
159035404



159035046
159035151
159035275
159035405



159035047
159035152
159035277
159035406



159035049
159035155
159035279
159035407



159035050
159035158
159035280
159035408



159035051
159035159
159035282
159035413



159035052
159035160
159035284
159035418



159035053
159035162
159035285
159035420



159035054
159035163
159035287
159035422



159035055
159035164
159035288
159035423



159035056
159035166
159035289
159035424



159035057
159035170
159035290
159035425



159035058
159035172
159035292
159035426



159035060
159035173
159035293
159035427



159035061
159035174
159035294
159035430



159035063
159035175
159035296
159035432



159035064
159035176
159035299
159035433



159035065
159035177
159035302
159035435



159035066
159035179
159035303
159035436



159035067
159035180
159035305
159035437



159035072
159035181
159035307
159035439



159035073
159035182
159035308
159035441



159035074
159035183
159035309
159035445



159035075
159035185
159035310
159035446



159035076
159035186
159035312
159035447



159035079
159035187
159035313
159035449



159035080
159035188
159035314
159035450



159035081
159035191
159035315
159035451



159035083
159035192
159035316
159035452



159035084
159035193
159035318
159035453



159035085
159035194
159035319
159035454



159035086
159035195
159035320
159035456



159035087
159035199
159035321
159035457



159035089
159035201
159035323
159035458



159035090
159035204
159035327
159035459



159035092
159035205
159035329
159035461



159035097
159035206
159035330
159035463



159035100
159035207
159035331
159035464



159035101
159035208
159035334
159035466



159035102
159035209
159035335
159035468



159035103
159035210
159035338
159035470



159035104
159035211
159035342
159035472



159035106
159035212
159035343
159035473



159035108
159035213
159035344
159035475



159035109
159035215
159035346
159035476



159035110
159035218
159035348
159035477



159035111
159035221
159035349
159035479



159035112
159035224
159035350
159035483



159035113
159035226
159035351
159035484



159035114
159035227
159035353
159035490



159035115
159035230
159035360
159035492



159035116
159035232
159035361
159035493



159035496
159035605
162950148
162950323



159035497
159035609
162950152
162950325



159035498
159035610
162950188
162950326



159035499
159035611
162950189
162950327



159035501
159035612
162950191
162950328



159035502
159035614
162950199
162950329



159035503
159035618
162950202
162950330



159035507
159035619
162950204
162950333



159035508
159035624
162950205
162950334



159035512
159035626
162950210
162950335



159035513
159035627
162950211
162950337



159035514
159035628
162950213
162950338



159035515
159035630
162950227
162950339



159035516
159035631
162950241
162950341



159035519
159035632
162950243
162950342



159035520
159035633
162950244
162950343



159035523
159035634
162950245
162950344



159035524
159035636
162950248
162950345



159035525
159035637
162950249
162950347



159035526
159035638
162950250
162950348



159035527
159035640
162950251
162950350



159035528
159035641
162950252
162950352



159035529
159035642
162950253
162950353



159035531
159035644
162950254
162950355



159035532
159035646
162950255
162950359



159035533
159035649
162950257
162950360



159035535
159035650
162950258
162950361



159035536
159035653
162950260
162950363



159035537
159035655
162950261
162950365



159035538
159035656
162950263
162950367



159035541
159035658
162950265
162950369



159035542
159035659
162950266
162950372



159035546
159035661
162950267
162950373



159035548
159035662
162950269
162950374



159035549
159035663
162950270
162950375



159035550
159035664
162950272
162950377



159035552
162950025
162950273
162950381



159035553
162950028
162950275
162950382



159035554
162950034
162950277
162950384



159035556
162950035
162950278
162950385



159035557
162950039
162950279
162950386



159035559
162950043
162950282
162950387



159035560
162950050
162950284
162950388



159035562
162950051
162950285
162950390



159035563
162950052
162950286
162950391



159035564
162950054
162950287
162950392



159035565
162950055
162950288
162950393



159035566
162950057
162950289
162950394



159035567
162950065
162950290
162950396



159035568
162950067
162950291
162950397



159035569
162950077
162950292
162950398



159035570
162950097
162950293
162950399



159035571
162950098
162950294
162950400



159035573
162950100
162950295
162950401



159035574
162950111
162950296
162950404



159035575
162950114
162950297
162950405



159035576
162950115
162950298
162950406



159035577
162950120
162950299
162950408



159035581
162950121
162950300
162950410



159035582
162950123
162950301
162950411



159035583
162950125
162950302
162950416



159035584
162950126
162950303
162950418



159035585
162950127
162950305
162950419



159035586
162950128
162950306
162950420



159035589
162950129
162950308
162950421



159035590
162950130
162950309
162950423



159035591
162950132
162950310
162950425



159035592
162950133
162950311
162950426



159035593
162950134
162950312
162950428



159035594
162950137
162950313
162950430



159035595
162950138
162950314
162950431



159035596
162950139
162950315
162950432



159035597
162950140
162950316
162950433



159035598
162950141
162950317
162950434



159035602
162950143
162950318
162950435



159035603
162950146
162950319
162950437



159035604
162950147
162950321
162950438



162950439
162950566
162950674




162950440
162950568
162950675




162950441
162950570
162950676




162950442
162950571
162950685




162950444
162950572
162950686




162950445
162950573
162950688




162950446
162950574
162950689




162950447
162950575
162950691




162950449
162950577
162950692




162950450
162950578
162950693




162950451
162950579
162950694




162950453
162950580
162950695




162950454
162950581
162950696




162950456
162950582
162950697




162950461
162950583
162950698




162950463
162950584
162950710




162950464
162950585
162950714




162950465
162950586
162950716




162950466
162950587
162950720




162950467
162950589
162950724




162950469
162950590
162950725




162950470
162950591
162950726




162950471
162950592
162950728




162950474
162950593
162950729




162950476
162950594
194719560




162950481
162950596
194719575




162950483
162950597
218454113




162950484
162950598
218454117




162950485
162950599
219937557




162950487
162950600





162950489
162950602





162950490
162950604





162950491
162950605





162950492
162950606





162950493
162950609





162950494
162950610





162950496
162950611





162950498
162950613





162950500
162950614





162950503
162950615





162950504
162950617





162950514
162950618





162950515
162950619





162950516
162950620





162950517
162950621





162950518
162950622





162950519
162950626





162950520
162950627





162950522
162950628





162950525
162950629





162950526
162950631





162950527
162950632





162950528
162950633





162950529
162950634





162950530
162950635





162950531
162950640





162950532
162950641





162950534
162950642





162950535
162950644





162950536
162950645





162950537
162950646





162950539
162950647





162950540
162950649





162950542
162950650





162950543
162950651





162950546
162950652





162950547
162950654





162950551
162950655





162950552
162950656





162950555
162950659





162950556
162950660





162950557
162950661





162950558
162950662





162950559
162950665





162950562
162950666





162950564
162950671





162950565
162950673









Claims
  • 1. A library comprising synthetic polynucleotides that encode an antibody heavy chain or alternative scaffold containing at least about 104 unique antibody CDRH3 amino acid sequences, wherein each of the polynucleotides encoding the at least about 104 unique antibody CDRH3 amino acid sequences has an antibody CDRH3 amino acid sequence represented by the following formula: [TN1]-[DH]-[N2]- [H3-JH], wherein:TN1 is a polypeptide corresponding to any of the TN1 polypeptides of Tables 10 and 18-26, or a polypeptide produced by translation of any of the TN1 polynucleotides of Tables 25-26;DH is a polypeptide corresponding to any of the DH polypeptides of Tables 11, 17-25 and 28, or a polypeptide produced by translation of any of the DH-encoding polynucleotides of Tables 16, 25 and 27;N2 is a polypeptide corresponding to any of the N2 polypeptides of Tables 12, 18-25 and 30, or a polypeptide produced by translation of any of the N2-encoding polynucleotides of Tables 25 and 29;H3-JH is a polypeptide corresponding to any of the H3-JH polypeptides of Tables 13, 15, 18-25 and 32, or a polypeptide produced by translation of any of the H3-JH-encoding polynucleotides of Tables 14, 25 and 31;wherein the diversity of the polynucleotides encoding the at least about 104 unique antibody CDRH3 amino acid sequences is created by each of the polynucleotides having a CDRH3 sequence that is different from the CDRH3 sequence of every other polynucleotide;wherein the antibody heavy chain is a variable domain with framework (FRM) and complementary determining regions (CDR) comprising FRMH1-CDRH1-FRMH2-CDRH2-FRMH3-CDRH3-FRMH4; andwherein the alternative scaffold is selected from the group consisting of fibronectin, the β-sandwich, lipocalin, EETI-IFAGRP, BPTIFLAC1-D1/IT1-D2, thioredoxin, protein A, ankyrin repeats, γB-crystallin/ubiquitin, CTLD3 and (LDLR-A module)3.
  • 2. The library of claim 1, wherein the polynucleotides encode CDRH3 polypeptides produced by the sets of TN1, DH, N2, and H3-JH polypeptides provided in any one of Tables 23-25.
  • 3. The library of claim 1, wherein the polynucleotides encode CDRI-13 polypeptides produced by the set of TN1 polypeptides provided in Table 26, the set of DH polypeptides provided in Table 28, the set of N2 polypeptides provided in Table 30 and the set of H3-JH polypeptides provided in Table 32.
  • 4. The library of claim 1 wherein number of N-linked glycosylation sites, deamidation motifs, and/or Cys residues are reduced or eliminated in comparison to libraries produced by amplification of a repertoire from a biological source.
  • 5. The library of claim 1, further comprising a polynucleotide encoding one or more light chain variable domain polypeptides.
  • 6. The library of claim 5, wherein the polypeptides are expressed as full-length IgGs.
  • 7. The polypeptide expression products of the library of claim 6.
  • 8. An antibody isolated from the polypeptide expression products of claim 7.
  • 9. A vector containing the library of claim 1.
  • 10. A host cell containing the vector of claim 9.
  • 11. The host cell of claim 10, wherein the host cell is a yeast cell.
  • 12. The yeast cell of claim 11, wherein the yeast is Saccharomyces cerevisiae.
  • 13. A kit containing the library of claim 1.
RELATED APPLICATION

This application is a national phase entry under 35 U.S.C.§371 of International Application No. PCT/US2011/044063, filed Jul. 14, 2011, which claims priority to U.S. provisional application Ser. No. 61/365,194, filed on Jul 16, 2010, incorporated herein in their entirety by this reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2011/044063 7/14/2011 WO 00 4/1/2013
Publishing Document Publishing Date Country Kind
WO2012/009568 1/19/2012 WO A
US Referenced Citations (172)
Number Name Date Kind
4946778 Ladner et al. Aug 1990 A
5118605 Urdea Jun 1992 A
5223409 Ladner et al. Jun 1993 A
5283173 Fields et al. Feb 1994 A
5380833 Urdea Jan 1995 A
5525490 Erickson et al. Jun 1996 A
5530101 Queen et al. Jun 1996 A
5565332 Hoogenboom et al. Oct 1996 A
5571698 Ladner et al. Nov 1996 A
5618920 Robinson et al. Apr 1997 A
5658727 Barbas et al. Aug 1997 A
5688666 Bass et al. Nov 1997 A
5695941 Brent et al. Dec 1997 A
5723323 Kauffman et al. Mar 1998 A
5733743 Johnson et al. Mar 1998 A
5739281 Thogersen et al. Apr 1998 A
5750373 Garrard et al. May 1998 A
5767260 Whitlow et al. Jun 1998 A
5780279 Matthews et al. Jul 1998 A
5798208 Crea Aug 1998 A
5811238 Stemmer et al. Sep 1998 A
5814476 Kauffman et al. Sep 1998 A
5817483 Kauffman et al. Oct 1998 A
5821047 Garrard et al. Oct 1998 A
5824514 Kauffman et al. Oct 1998 A
5830663 Embleton et al. Nov 1998 A
5837242 Holliger et al. Nov 1998 A
5837500 Ladner et al. Nov 1998 A
5840479 Little et al. Nov 1998 A
5846765 Matthews et al. Dec 1998 A
5858657 Winter et al. Jan 1999 A
5858671 Jones Jan 1999 A
5863765 Berry et al. Jan 1999 A
5866344 Georgiou Feb 1999 A
5869250 Cheng et al. Feb 1999 A
5871907 Winter et al. Feb 1999 A
5872215 Osbourne et al. Feb 1999 A
5885793 Griffiths et al. Mar 1999 A
5888773 Jost et al. Mar 1999 A
5917018 Thogersen et al. Jun 1999 A
5922545 Mattheakis et al. Jul 1999 A
5928868 Liu et al. Jul 1999 A
5935831 Quax et al. Aug 1999 A
5948620 Hurd et al. Sep 1999 A
5955275 Kamb Sep 1999 A
5962255 Griffiths et al. Oct 1999 A
5965368 Vidal et al. Oct 1999 A
5969108 McCafferty et al. Oct 1999 A
5976862 Kauffman et al. Nov 1999 A
5994515 Hoxie Nov 1999 A
5994519 Osbourn et al. Nov 1999 A
6010884 Griffiths et al. Jan 2000 A
6017732 Jespers et al. Jan 2000 A
6027910 Klis et al. Feb 2000 A
6040136 Garrard et al. Mar 2000 A
6057098 Buechler et al. May 2000 A
6057101 Nandabalan et al. May 2000 A
6072036 Marasco et al. Jun 2000 A
6083693 Nandabalan et al. Jul 2000 A
6114147 Frenken et al. Sep 2000 A
6132963 Brent et al. Oct 2000 A
6140471 Johnson et al. Oct 2000 A
6159705 Trueheart et al. Dec 2000 A
6171795 Korman et al. Jan 2001 B1
6172197 McCafferty et al. Jan 2001 B1
6180336 Osbourn et al. Jan 2001 B1
6187535 LeGrain et al. Feb 2001 B1
6200759 Dove et al. Mar 2001 B1
6225447 Winter et al. May 2001 B1
6248516 Winter et al. Jun 2001 B1
6291158 Winter et al. Sep 2001 B1
6291159 Winter et al. Sep 2001 B1
6291160 Lerner et al. Sep 2001 B1
6291161 Lerner et al. Sep 2001 B1
6291650 Winter et al. Sep 2001 B1
6300064 Knappik et al. Oct 2001 B1
6300065 Kieke et al. Oct 2001 B1
6319690 Little et al. Nov 2001 B1
6342588 Osbourn et al. Jan 2002 B1
6358733 Motwani et al. Mar 2002 B1
6406863 Zhu et al. Jun 2002 B1
6410246 Zhu et al. Jun 2002 B1
6410271 Zhu et al. Jun 2002 B1
6420113 Buechler et al. Jul 2002 B1
6423538 Wittrup et al. Jul 2002 B1
6489123 Osbourn et al. Dec 2002 B2
6492107 Kauffman et al. Dec 2002 B1
6492123 Holliger et al. Dec 2002 B1
6492160 Griffiths et al. Dec 2002 B1
6521404 Griffiths et al. Feb 2003 B1
6531580 Huse et al. Mar 2003 B1
6544731 Griffiths et al. Apr 2003 B1
6545142 Winter et al. Apr 2003 B1
6555313 Griffiths et al. Apr 2003 B1
6569641 Kauffman et al. May 2003 B1
6582915 Griffiths et al. Jun 2003 B1
6589527 Winter et al. Jul 2003 B1
6589741 Pluckthun et al. Jul 2003 B2
6593081 Griffiths et al. Jul 2003 B1
6610472 Zhu et al. Aug 2003 B1
6653443 Zhang et al. Nov 2003 B2
6664048 Wanker et al. Dec 2003 B1
6680192 Lerner et al. Jan 2004 B1
6696245 Winter et al. Feb 2004 B2
6696248 Knappik et al. Feb 2004 B1
6696251 Wittrup et al. Feb 2004 B1
6699658 Wittrup et al. Mar 2004 B1
6706484 Knappik et al. Mar 2004 B1
6753136 Lohning Jun 2004 B2
6806079 McCafferty et al. Oct 2004 B1
6828422 Achim et al. Dec 2004 B1
6833441 Wang et al. Dec 2004 B2
6846634 Tomlinson et al. Jan 2005 B1
6916605 McCafferty et al. Jul 2005 B1
6919183 Fandl et al. Jul 2005 B2
6969586 Lerner et al. Nov 2005 B1
7005503 Hua et al. Feb 2006 B2
7063943 McCafferty et al. Jun 2006 B1
7083945 Chen et al. Aug 2006 B1
7094571 Harvey et al. Aug 2006 B2
7138496 Hua et al. Nov 2006 B2
7166423 Miltenyi et al. Jan 2007 B1
7189841 Lerner et al. Mar 2007 B2
7208293 Ladner et al. Apr 2007 B2
7435553 Fandl et al. Oct 2008 B2
7465787 Wittrup et al. Dec 2008 B2
7569357 Kranz et al. Aug 2009 B2
20010037016 Ning et al. Nov 2001 A1
20010041333 Short et al. Nov 2001 A1
20020004215 Osbourn et al. Jan 2002 A1
20020026653 Allen et al. Feb 2002 A1
20020037280 Lieber et al. Mar 2002 A1
20020169284 Ashkenazi et al. Nov 2002 A1
20020197691 Sugiyama Dec 2002 A1
20030022240 Luo et al. Jan 2003 A1
20030091995 Buechler et al. May 2003 A1
20030114659 Winter et al. Jun 2003 A1
20030130496 Winter et al. Jul 2003 A1
20030148372 Tomlinson et al. Aug 2003 A1
20030165988 Hua et al. Sep 2003 A1
20030190674 Griffiths et al. Oct 2003 A1
20030228302 Crea Dec 2003 A1
20030232333 Ladner et al. Dec 2003 A1
20030232395 Hufton Dec 2003 A1
20040038921 Kreutzer et al. Feb 2004 A1
20040110941 Winter et al. Jun 2004 A2
20040146976 Wittrup et al. Jul 2004 A1
20040157214 McCafferty et al. Aug 2004 A1
20040157215 McCafferty et al. Aug 2004 A1
20040219611 Racher Nov 2004 A1
20050202512 Tomlinson et al. Sep 2005 A1
20060003334 Achim et al. Jan 2006 A1
20060019260 Lerner et al. Jan 2006 A1
20060166252 Ladner et al. Jul 2006 A1
20060234302 Hoet et al. Oct 2006 A1
20060257937 Ladner Nov 2006 A1
20070031879 Ley et al. Feb 2007 A1
20070099267 Harvey et al. May 2007 A1
20070258954 Iverson et al. Nov 2007 A1
20080108514 Mattheus Hoogenboom May 2008 A1
20080153712 Crea Jun 2008 A1
20080171059 Howland et al. Jul 2008 A1
20090082213 Horowitz et al. Mar 2009 A1
20090181855 Vasquez et al. Jul 2009 A1
20100009866 Prinz et al. Jan 2010 A1
20100056386 Vasquez et al. Mar 2010 A1
20100292103 Ladner Nov 2010 A1
20110009280 Hufton et al. Jan 2011 A1
20110082054 Ladner Apr 2011 A1
20110118147 Ladner May 2011 A1
20110136695 Crea Jun 2011 A1
20110172125 Ladner Jul 2011 A1
Foreign Referenced Citations (35)
Number Date Country
19624562 Jan 1998 DE
1438400 Jul 2004 EP
WO-8801649 Mar 1988 WO
WO-8806630 Sep 1988 WO
WO-9401567 Jan 1994 WO
WO-9407922 Apr 1994 WO
WO-9418330 Aug 1994 WO
WO-9526400 Oct 1995 WO
WO-9708320 Mar 1997 WO
WO-9720923 Jun 1997 WO
WO-9749809 Dec 1997 WO
WO-9849198 Nov 1998 WO
WO-9906834 Feb 1999 WO
WO-9928502 Jun 1999 WO
WO-9936569 Jul 1999 WO
WO-9950461 Oct 1999 WO
WO-9953049 Oct 1999 WO
WO-9955367 Nov 1999 WO
WO-0018905 Apr 2000 WO
WO-0054057 Sep 2000 WO
WO-0179229 Oct 2001 WO
WO-0179481 Oct 2001 WO
WO-02055718 Jul 2002 WO
WO-03029456 Apr 2003 WO
WO-2005007121 Jan 2005 WO
WO-2005023993 Mar 2005 WO
WO-2006138700 Dec 2006 WO
WO-2007056441 May 2007 WO
WO-2008019366 Feb 2008 WO
WO-2008053275 May 2008 WO
WO-2008067547 Jun 2008 WO
WO-2009036379 Mar 2009 WO
WO-2010005863 Jan 2010 WO
WO-2010105256 Sep 2010 WO
WO-2012009568 Jan 2012 WO
Non-Patent Literature Citations (277)
Entry
International Search Report and the Written Opinion of the International Searching Authority for PCT/US2011/044063, mailed Feb. 14, 2012.
International Preliminary Report of Patentability for PCT/US2011/044063, mailed Jan. 31, 2013.
Bahler et al., “Clonal Salivary Gland Infiltrates Assciated with Myoepithelial Sialadenitis (Sjogren's Syndrome) Begin as Nonmalignant Antigen-Selected Expansions”, Blood, 91(6):1864-1872 (1998).
Bakkus et al., “Evidence that Multiple Myeloma Ig Heavy Chain VDJ Genes Contain Somatic Mutations but Show no Intraclonal Variation”, Blood, 80(9):2326-2335 (1992).
Barbas et al., “Molecular Profile of an Antibody Response to HIV-1 as Probed by Combinatorial Libraries”, J. Mol. Bioi., 230:812-823 (1993).
Carroll et al., “Absence of Ig V Region Gene Somatic Hypermutation in Advanced Burkitt's Lymphoma”, J. Immunol.,143(2):692-698 (1989).
Davi et al., “High Frequency of Somatic Mutations in the VH Genes Expressed in Prolymphocytic Leukemia”, Blood, 88 (10):3953-3961 (1996).
DiPietro et al., “Limited number of immunoglobulin VH regions expressed in the mutant rabbit ‘Alicia’”, Eur. J. Immunol., 20:1401-1404 (1990).
Esposito et al., “Phage display of a human antibody against Clostridium tetani toxin”, Gene, 148:167-168 (1994).
Huang et al., “A Majority of Ig H Chain eDNA of Normal Human Adult Blood Lymphocytes Resembles eDNA for Fetal Ig and Natural Autoantibodies”, J. Immunol., 151:5290-5300 (1993).
Ivanovski et al., “Somatic Hypermutation, Clonal Diversity, and Preferential Expression of the VH 51p1/VL kv325 Immunoglobin Gene Combination in Hepatitis C Virus-Associated Immunocytomas”, Blood, 91(7):2433-2442 (1998).
Lieber et al., “Lymphoid V(D)J recombination: Nucleotide insertion at signal joints as well as coding joints”, Proc. Natl. Acad. Sci. USA, 85:8588-8592 (1988).
Lieber, M.R., “Site-specific recombination in the immune system”, FASEB J., 5:2934-2944 (1991).
Liu et al., “Normal Human IgD+IgM- Germinal Center B Cells can Express up to 80 Mutations in the Variable Region of their IgD Transcripts”, Immunity, 4:603-613 (1996).
Matolcsy et al., “Molecular Characterization of IgA- and/or IgG-Switched Chronic Lymphocytic Leukemia B Cells”, Blood, 89(5):1732-1739 (1997).
Mcintosh et al., “Analysis of Immunoglobulin Gk Antithyroid Peroxidase Antibodies from Different Tissues in Hashimoto's Thyroiditis”, J. Clin. Endocrinol. Metab., 82(11):3818-3825 (1997).
Mouquet et al., “Enhanced HIV-1 neutralization by antibody heteroligation”, PNAS, published on line before printing, Jan. 4, 2012, doi:10.1073/pnas.1120059109.
Nissim et al., “Antibody fragments from a ‘single pot’ phage display library as immunochemical reagents”, The EMBO Journal, 13(3):692-698 (1994).
Sahota et al., “Ig VH Gene Mutational Patterns Indicate Different Tumor Cell Status in Human Myeloma and Monoclonal Gammopathy of Undetermined Significance”, Blood, 87(2):746-755 (1996).
Shimoda et al., “Natural polyreactive immunoglobulin A antibodies produced in mouse Peyer's patches”, Immunology, 97:9-17 (1999).
Welschof et al., “Amino acid sequence based PCR primers for amplification of rearranced human heavy and light chain immunoglobulin variable region genes”, J. Immunol. Meth., 179:203-214 (1995).
Wen et al., “T cells recognize the VH complementarity-determining region 3 of the idiotypic protein of B cell non-Hodgkin's lymphoma”, Eur. J. Immunol., 27:1043-1047 (1997).
Winkler et al., “Analysis of immunoglobulin variable region genes from human IgG anti-DNA hybridomas”, Eur. J. Immunol., 22:1719-1728 (1992).
Winter, Greg, “Synthetic human antibodies and a strategy for protein engineering”, FEBS Letters, 430:92-94 (1998).
Zeng et al., “CD146, an epithelial-mesenchymal transition inducer, is associated with triple-negative breast cancer”, published on line before print Dec. 30, 2011, doi:1010.1073/pnas.1111053108.
Abbas et al., “Cellular and Molecular Immunology”, 4th ed., p. 43, Figure 3-1,. W.B. Saunders Co. (2000).
Abbas et al., Cellular and Molecular Immunology, Fourth Edition—Section III Maturation, Activation, and Regulation of Lymphocytes, 125-133 (2000).
Adams, G.P. and Schier, R., “Generating Improved Single-Chain Fv Molecules for Tumor Targeting” Journal of Immunological Methods, 231:249-260 (1999).
Adams, G.P. and Weiner, L. M., “Monoclonal antibody therapy of cancer” Nature Biotechnology, 23(9) 1147-1157 (2005).
Akamatsu, Y. et al., “Construction of a human Ig combinatorial library from genomic V segments and synthetic CDR3 fragments” J. Immunol., 51(9):4651-4659 (1993).
Allen, J.B. et al., “Finding prospective partners in the library: the two-hybrid system and phage display find a match” TIBS, 20:(12):511-516 (1995).
Alt, F.W. and Baltimore, D., “Joining of Immunoglobulin Heavy Chain Gene Segments: Implications from a Chromosome with Evidence of Three D-JH Fusions” PNAS, 79:4118-4122 (1982).
Arden, B., “Conserved motifs in T-cell receptor CDR1 and CDR2: implications for ligand and CDS co-receptor binding” Current Opinion in Immunology, Current Biology Ltd., 10(1):74- 81 (1998).
Aronheim, Ami et al., “Isolation of an AP-1 Repressor by a Novel Method for Detecting Protein-Protein Interactions” Molecular and Cellular Biology, 17(6):3094-3102 (1997).
Aujame, L. et al., “High affinity human antibodies by phage display” Human Antibodies, 8(4):155-168 (1997).
Ayala, M. et al., “Variable region sequence modulates periplasmic export of a single-chain Fv antibody fragment in Escherichia coli” BioTechniques, 18(5):832-838, 840-2 (1995).
Balint, R.F. and Larrick, J.W., “Antibody engineering by parsimonious mutagenesis” Gene, 137:109-118 (1993).
Barbas, C.F. 3rd et al., “Human autoantibody recognition of DNA” Proc. Natl. Acad. Sci., 92:2529-2533 (1995).
Barbas, C.F. 3rd et al., “Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem” Proceedings of the National Academy of Sciences of USA, 89:4457-4461 (1992).
Barbas, C.F. 3rd, et al., “Assembly of combinatorial antibody libraries on phage surfaces: The gene III site” Proc. Natl. Acad. Sci., 88:7978-7982 (1991).
Basu, M. et al., “Synthesis of compositionally unique DNA by terminal deoxynucleotidyl transferase” Biochem. Biophys. Res. Comm., 111(3):1105-1112 (1983).
Bhatia, S.K. et al., “Rolling adhesion kinematics of yeast engineered to express selectins” Biotech. Prog., 19:1033-1037 (2003).
Binz, H.K. et al., “Engineering novel binding proteins from nonimmunoglobulin domains” Nat. Biotechnol., 23(10):1257-1268 (2005).
Bird, R.E. et al., “Single-chain antigen-binding proteins” Science, 242(4877):423-426 (1988).
Boder and Wittrup, “Yeast Surface Display for Directed Evolution of Protein Expression, Affinity, and Stability” Methods in Enzymology 328:430-444 (2000).
Boder and Wittrup, “Yeast surface display system for antibody engineeirng” pp. 283 (1996).
Boder et al., “Yeast Surface Display of a Noncovalent MHC Class II Heterodimer Complexed With Antigenic Peptide” Biotechnology and Bioengineering 92(4):485-491 (2005).
Boder, E.T. and Jiang, W., “Engineering Antibodies for Cancer Therapy” Annu. Rev. Chem. Biomol. Eng. 2:53-75 (2011).
Boder, E.T. and Wittrup, K.D., “Optimal screening of surface-displayed polypeptide libraries” Biotechnol Prog.,14(1):55-62 (1998).
Boder, E.T. and Wittrup, K.D., “Yeast surface display for screening combinatorial polypeptide libraries” Nat Biotechnol.,15(6):553-7 (1997).
Boder, E.T. et al., “Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity” Proc Natl Acad Sci USA, 97(20):10701-5 (2000).
Borth, N. et al., “Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting” Biotechnol. and Bioengin., 71(4):266-273 (2000-2001).
Bradbury, A., “Display Technologies Expand Their Horizons” TIBTECH 17:137-138 (1999).
Bradbury, A., “Molecular Library Technologies at the Millenium”, TIBTECH 18:132-133 (2000).
Bradbury, A., “Recent advances in phage display: the report of the Phage Club first meeting” Immunotechnology, 3(3):227-231 (1997).
Breitling, F. et al., “A surface expression vector for antibody screening” Gene, 104(2):147-153 (1991).
Brezinschek, H.P. et al., “Analysis of the human VH gene repertoire. Differential effects of selection and somatic hypermutation on human peripheral CD5(+)/IgM+ and CD5(-)/IgM+ B cells” The American Society for Clinical Investigation, Inc., 99(10):2488-2501 (1997).
Broder, Y.C. et al., “The ras recruitment system, a novel approach to the study of protein-protein interactions” Current Biology 8(20):1121-1124 (1998).
Brophy et al., “A yeast display system for engineering functional peptide-MHC complexes” Journal of Immunological Methods 272:235-246 (2003).
Burke et al., “Methods in Yeast Genetics”, pp. 40-41 (2000).
Burton, D.R. et al., “A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropostive individuals” Proc. Natl. Acad. Sci., 88(22):10134-10137 (1991).
Canaán-Haden, L., “Purification and application of a single-chain Fv antibody fragment specific to hepatitis B virus surface antigen” BioTechniques, 19(4) 606-608, 610, 612 passim(1995).
Cappellaro et al., “Mating type-specific cell—cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and ?-agglutinin1” The EMBO Journal 13(20)4737-4744 (1994).
Casset, F.et al., “A peptide mimetic of an anti-CD4 monoclonal antibody by rational design” Biochemical and Biophysical Research Communications, 307(1):198-205, (2003).
Castelli, L.A. et al., “High-level secretion of correctily processed beta-lactamase from Saccharomyces ceravisiae using a high-copy-number secretion vector” Biomolecular Research Institute, 142(1):113-117 (1994).
Caton, A.J. and Koprowski, H., “Influenza virus hemagglutinin-specific antibodies isolated from a combinatorial expression library are closely related to the immune response of the donor” Proc. Natl. Acad. Science, USA, 87(16):6450-6454 (1990).
Cattaneo, A. and Biocca, S., “The selection of intracellular antibodies” TIBTECH, 17:115-120 (1999).
Chang, C.N. et al., “Expression of antibody Fab domains on bacteriophage surfaces. Potential use for antibody selection” J. Immunol, 147(10):3610-3614. (1991).
Chang, H.C. et al., “A general method for facilitating heterodimeric pairing between two proteins: Application to expression of alpha and beta T-cell receptor extracellular segments” Proc Natl. Acad. Sci., USA, 91:11408-11412 (1994).
Chaudhary, V.K. et al., “A rapid method of cloning functional variable-region antibody genes in Escherichia coli as single-chain immunotoxins” Proc. Natl. Acad. Sci., 87(3):1066-1070 (1990).
Chen, W. et al., “Characterization of germline antibody libraries from human umbilical cord blood and selection of monoclonal antibodies to viral envelope glycoproteins: Implications for mechanisms of immune evasion and design of vaccine immunogens” Biochem. Biophys. Res. Commun. 1-6 (2012).
Chiswell, David and McCaffery, John, “Phage antibodies: will new ‘coliclonal’ antibodies replace monoclonal antibodies?” TIBTECH, 10(3):80-84 (1992).
Cho et al., “A yeast surface display system for the discovery of ligands that trigger cell activation” journal of Immunological Methods 220:179-188 (1998).
Chothia, C. and Lesk, A.M., “Canonical structures for the hypervariable regions of immunoglobulins” J. Mol. Biol., 196(4):901-917 (1987).
Chothia, C. et al., “Conformations of immunoglobulin hypervariable regions” Nature, 342(6252):877-883 (1989).
Chothia, C. et al., “Structural repertoire of the human VH segments” J. Mol. Biol., 227(3):799-817 (1992).
Cioe, L., Cloning and Nucleotide Sequence of a Mouse Erythrocyte beta-Spectrin cDNA, Blood, 70:915-920 (1987).
Clackson, T. and Wells, J.A., “In vitro selection from protein and peptide libraries” Trends Biotechnol., 12(5):173-184 (1994).
Clackson, T. et al., “Making antibody fragments using phage display librarires” Nature, 352(6336):624-628 (1991).
Co, M.S. and Queen, C., “Humanized antibodies for therapy” Nature, 351(6326):501-502 (1991).
Colby et al., “Development of a Human Light Chain Variable Domain (VL) Intracellular Antibody Specific for the Amino Terminus of Huntingtin via Yeast Surface Display” J. Mol. Biol. 901-912 (2004).
Collins, A.M. et al., “Partitioning of rearranged Ig genes by mutation analysis demonstrates D-D fusion and V gene replacement in the expressed human repertoire” J. Immunol., 172(1):340-348 (2004).
Collins, A.M. et al., “The reported germline repertoire of human immunoglobulin kappa chain genes is relatively complete and accurate” Immunogenetics, 60(11):669-676 (2008).
Corbett, S.J. et al., “Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, nverted D egments, “minor” D segments or D-D recombination” J. Mol. Bioi., 270:587-597 (1997).
Courtney, B.C. et al., “A phage display vector with improved stability, applicability and ease of manipulation”, Gene, 165(1):139-140 (1995).
Couto, J.R. et al., “Designing human consensus antibodies with minimal positional templates”, Cancer Res., (23 Suppl):5973s-5977s (1995).
Crameri, R. and Suter, M. , “Display of biologically active proteins on the surface of filamentous phages: a cDNA cloning system for selection of functional gene products linked to the genetic information responsible for their production” Gene, 137(1):69-75 (1993).
Cwirla, S.E., et al., “Peptides on phage: a vast library of peptides for identifying ligands” Proc. Natl. Acad. Sci. USA, 87(16):6378-6382 (1990).
Davies, J. and Riechmann, L., “Affinity improvement of single antibody VH domains: residues in all three hypervariable regions affect antigen binding” Immunotechnology 2(3):169-179 (1996).
de Haard et al., “A Large Non-immunized Human Fab Fragment Phage Library That Permits Rapid Isolation and Kinetic Analysis of High Affinity Antibodies” Journal of Biological Chemistry, 274(26):18218-18230 (1999).
De Jaeger, G. et al., “Analysis of the interaction between single-chain variable fragments and their antigen in a reducing intracellular environment using the two-hybrid system” FEBS Lett., 467(2-3):316-320 (2000).
de Kruif, J. et al., “Selection and application of human single chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions” J. Mol. Biol. 248(1):97-105 (1995).
Delves, P.J. “Antibody production: essential techniques” John Wiley & Sons, New York, pp. 90-113 (1997).
Dranginis et al., “A Biochemical Guide to Yeast Adhesins: Glycoproteins for Social and Antisocial Occasions” Microbiology and Molecular Biology Reviews 71(2)282-294 (2007).
Fan, Z. et al., “Three-dimensional structure of an Fv from a human IgM immunoglobulin” J. Mol. Biol., 228(1):188-207 (1992).
Fellouse, F.A. et al., “High-throughput Generation of Synthetic Antibodies from Highly Functional Minimalist Phage-displayed Libraries” J. Mol. Biol. 373(4):924-940 (2007).
Fellouse, F.A. et al., “Molecular Recognition by a Binary Code” J. Mol, Biol. 348(5):1153-1162 (2005).
Fellouse, F.A. et al., “Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition” PNAS, 101(34):12467-12472 (2004).
Fields, S. and Sternglanz, R., “The two-hybrid system: an assay for protein-protein interactions” Trends Genet.,10(8):286-292 (1994).
Fields. S. and Song, O., “A novel genetic system to detect protein-protein interactions” Nature, 340(6230):245-246 (1989).
Firth, A.E. and Patrick, W.M., “Glue-It and Pedel-AA: new programmes for analyzing protein diversity in randomized libraries” Nucleic Acids Res., 36:W281-W285 (2008).
Frazer, J. K., and J. D. Capra, “Immunoglobulins: Structure and Function”, in Fundamental Immunology, Fourth Edition, William E. Paul, ed., Lippincot-Raven Publishers, Philadelphia, pp. 41-43 and 51-52 (1999).
Frykman, S. and Srienc, F., “Quantitating secretion rates of individual cells: design of secretion assays” Biotechnol. & Bioeng., 59(2):214-226 (1998).
Fuh, G., “Synthetic antibodies as therapeutics” Expert Opin. Biol. Ther., 7(1):73-87 (2007).
Fusco, et al., In vivo construction of cDNA libraries for use in the yeast two-hybrid system. Yeast, 15(8):715-720 (1999).
Gietz et al., “Improved method for high efficiency transformation of intact yeast cells” Nucleic Acids Res., 20(6):1425 (1992).
Gietz, R.D. and R.H. Schiestl, “Transforming Yeast with DNA” Methods in Molecular and Cellular Biology (Invited Chapter), 5:255-269 (1995).
Gilfillan, S. et al., “Efficient immune responses in mice lacking N-region diversity” Eur. J. Immunol., 25(11):3115-3122 (1995).
Griffin et al., “Blockade of T Cell Activation Using a Surface-Linked Single-Chain Antibody to CTLA-4 (CD152)” J Immunol. 64(9):4433-4442 (2000).
Griffiths, A.D. et al., “Human anti-self antibodies with high specificity from phage display libraries” EMBO J., 12(2):725-734 (1993).
Griffiths, A.D. et al., “Isolation of high affinity human antibodies directly from large synthetic repertoires,” EMBO J., 13(14):3245-3260 (1994).
Hamilton and Gerngross, “Glycosylation engineering in yeast: the advent of fully humanized yeast” Current Opinion in Biotechnology 18:387-392 (2007).
Hanes, J. et al., “Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display” Nat Biotechnol. 18:(12):1287-1292 (2000).
Hasan, N. and Szybalski, W., “Control of cloned gene expression by promoter inversion in vivo: construction of improved vectors with a multiple cloning site and the Ptac promoter” Gene, 56(1):145-151 (1987).
Hawkins, R.E. and Winter, G., “Cell selection strategies for making antibodies from variable gene libraries: trapping the memory pool” Eur. J. Immunol., 22(3):867-870 (1992).
He, M. and Taussig, M.J., “Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites” Nucleic Acids Res., 25(24):5132-5134 (1997).
Hoet, R.M. et al., “Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity” Nat. Biotechnol., 23(3):344-348 (2005).
Hoet, R.M. et al., “The importance of the light chain for the epitope specificity of human anti-U1 small nuclear RNA autoantibodies present in systemic lupus erythematosus patients” Journal of Immunology,163(6):3304-3312 (1999).
Holler et al., “In vitro evolution of a T cell recepto with high affinity for peptide / MHC” Proc. Natl. Acad. Sci. 97(10):5387-5392 (2000).
Holmes, P. and Al-Rubeai, M., “Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors” J. Immunol. Methods, 230(1-2):141-147 (1999).
Hoogenboom and Chames, “Natural and designer binding sites made by phage display technology” Immunology Today 21(8):371-378 (2000).
Hoogenboom, H.R. and Winter, G., “By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro” J. Mol. Biol., 227(2):381-388 (1992).
Hoogenboom, H.R. et al., “Antibody phage display technology and its applications” Immunotechnology, 4(1):1-20 (1998).
Hoogenboom, H.R. et al., “Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains” Nucleic Acids Research, 19(15):4133-4137 (1991).
Hoogenboom, H.R., “Designing and optimizing library selection strategies for generating high-affinity antibodies” Trends Biotechnol. 15(2):62-70 (1997).
Horwitz A.H. et al., “Secretion of functional antibody and Fab fragments from yeast cells” Proc. Natl. Acad. Sci. USA, 85(22):8678-8682 (1988).
Hoshino, Y. et al., “The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo” PNAS 109(1):33-38 (2012).
Hua, S.B. et al., “Construction of a modular yeast two-hybrid cDNA library from human EST clones for the human genome protein linkage map” Gene, 215(1):143-152 (1998).
Hua, S.B. et al., “Minimum length sequence homology required for in vivo cloning by homologous recombination in yeast” Plasmid, 38(2):91-96 (1997).
Huang, D. and Shusta, E.V. et al., “Secretion and surface display of green fluorescent protein using the yeast Saccharomyces cerevisiae” Biotechnol. Prog., 21(2):349-357 (2005).
Hubberstey and Wildeman, “Use of interplasmid recombination to generate stable selectable markers for yeast transformation: application to studies of actin gene control” Genome 33(5):696-706 (1990).
Huse, W.D. et al., “Generation of a large combinatorial library of the immunoglobin repertoire in phage lambda” Science 246(4935):1275-1281 (1989).
Huston, J.S. et al., “Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli” Proc. Natl. Acad. Sci. USA 85(16):5879-5883 (1988).
Imai and Yamamoto, “The fission yeast mating pheromone P-factor: its molecular structure, gene structure, and ability to induce gene expression and G1 arrest in the mating partner” Genes & Development 8:328-338 (1993).
Ivanov, I.I. et al., “Development of the expressed Ig CDR-H3 repertoire is marked by focusing of constraints in length, amino acid use, and charge that are first established in early B cell progenitors,” J. Immunol., 174(12):7773-7780 (2005).
Jackson, K.J., et al., “Identifying highly mutated IGHD genes in the junctions of rearranged human immunoglobulin heavy chain genes,” J. Immunol. Methods, 324(1-2):26-37 (2007).
Jirholt, P. et al., “Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework”, Gene, 215(2):471-476 (1998).
Johns M. et al., “In vivo selection of sFv from phage display libraries” J. Immunol. Methods, 239(1-2):137-151 (2000).
Juul, L. et al., “The normally expressed kappa immunoglobulin light chain gene repertoire and somatic mutations studied by single-sided specific polymerase chain reaction (PCR); frequent occurrence of features often assigned to autoimmunity” Clin. Exp. Immunol., 109(1):194-203 (1997).
Kang, A.S. et al., “Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces” Proc. Natl. Acad. Sci., 88(10):4363-4666 (1991).
Karu et al., “Recombinant Antibody Technology” ILAR Journal 37(3) pp. 1-9 (1995).
Kieke et al., “High Affinity T Cell Receptors from Yeast Display Libraries Block T Cell Activation by Superantigens” J. Mol. Biol. 307:1305-1315 (2001).
Kieke, M.C. et al., “Isolation of anti-T cell receptor scFv mutants by yeast surface display”. Protein Eng. 10(11):1303-1310 (1997).
Kieke, M.C. et al., “Selection of functional T cell receptor mutants from a yeast surface-display library” Proc. Natl. Acad. Sci. USA, 96(10):5651-5656 (1999).
Klein, R. et al., “Expressed human immunoglobulin kappa genes and their hypermutation” Eur. J. Immunol., 23(12):3248-3262 (1993).
Knappik, A. et al., “Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides” J. Mol. Biol., 296(1):57-86 (2000).
Koiwai, O. et al., “Isolation and characterization of bovine and mouse terminal deoxynucleotidyltransferase cDNAs expressible in mammalian cells” Nucleic Acids Res., 14(14):5777-5792 (1986).
Kokubu F. et al., Complete structure and organization of immunoglobulin heavy chain constant region genes in a phylogenetically primitive vertebrate, The EMBO Journal, 7(7):1979-1988 (1988).
Kontermann, R.E. and Müller, R., “Intracellular and cell surface displayed single-chain diabodies”, J. Immunol. Methods, 226(1-2):179-188 (1999).
Kostrub, C.F. et al., “Use of gap repair in fission yeast to obtain novel alleles of specific genes” Nucleic Acids Research, 26(20):4783-4784 (1998).
Kranz and Voss, “Restricted reassociation of heavy and light chains from hapten-specific monoclonal antibodies” Proc. Natl. Acad. Sci. 78(9):5807-5811 (1981).
Kretzschmar, T. and von Rüden, T., “Antibody discovery: phage display” Curr. Opin. Biotechnol., 13(6):598-602 (2002).
Lake, D.F. et al., “Generation of diverse single-chain proteins using a universal (Gly4-Ser)3 encoding oligonucleotide” BioTechniques, 19(5):700-702 (1995).
Lee, C.E., et al., “Reconsidering the human immunoglobulin heavy-chain locus: 1. An evaluation of the expressed human IGHD gene repertoire” Immunogenetics, 57(12):917-925 (2006).
Lee, C.V. et al., “High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold” J. Mol. Biol. 340(5):1073-1093 (2004).
Lee, S.Y. et al., “Microbial cell-surface display” Trends Biotechnol., 21(1):45-52 (2003).
Leonard, B. et al., “Co-expression of antibody fab heavy and light chain genes from separate evolved compatible replicons in E. coli” J. Immunol. Methods, 317(1-2):56-63 (2006).
Lerner, R.A. et al.,“Antibodies without immunization” Science,258(5086):1313-314 (1992).
Lewin, B., “Genes V”, p. 99, Oxford University Press (1994).
Lin et al., “Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface” Appl. Microbiol. Biotechnol. 62:226-232 (2003).
Little, M. et al., “Generation of a large complex antibody library from multiple donors” J. Immunol Methods, 231(1-2):3-9 (1999).
Liu, Q. et al., “Rapid construction of recombinant DNA by the univector plasmid-fusion system” Methods Enzymol. 328:530-49 (2000).
Love J.C. et al., “A microengraving method for rapid selection of single cells producing antigen-specific antibodies” Nature Biotechnol. 24(6):703-707 (2006).
Lowman, H.B. et al., “Selecting high-affinity binding proteins by monovalent phage display” Biochemistry, 30(45):10832-10838 (1991).
Ma et al., “Association of Transport-Defective Light Chains with Immunoglobulin Heavy Chain Binding Protein” Molecular Immunology 27(7):623-630 (1990).
Ma, H. et al., “Plasmid construction by homologous recombination in yeast” Gene, 58(2-3):201-216 (1987).
MacCallum, R.M. et al., “Antibody-antigen interactions: contact analysis and binding site topography” J. Mol. Biol., 262(5):732-745 (1996).
Manivasakam and Schiestl, High efficiency transformation of Saccharomyces cerevisiae by electroporation Nucleic Acids Research 21(18)4414-4415 (1993).
Manz, R. et al., “Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix” Proc. Natl. Acad. Sci. USA, 92(6):1921-1925 (1995).
Marks, J.D. et al., “By-passing Immunization. Human Antibodies from V-gene Libraries Displayed on Phage” J. Mol. Biol., 222(3):581-597 (1991).
Marks, J.D. et al., “By-passing Immunization: building high affinity human antibodies by chain shuffling” Biotechnology (NY), 10(7):779-783 (1992).
Martin, A.C., “Accessing the Kabat antibody sequence database by computer” Proteins, 25(1):130-133 (1996).
Martin, A.C.and Thornton, J.M., “Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies” J. Mol. Biol., 263(5):800-815 (1996).
Matsuda, F. et al., “The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus” J. Exp. Med., 188(11):2151-2162 (1998).
Mattila, P.S. et al., “Extensive allelic sequence variation in the J region of the human immunoglobulin heavy chain gene locus” Eur. J. Immunol., 9(:)2578-2582 (1995).
Mazor Y. et al., “Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli” Nature Biotecnol., 25(5):563-565 (2007).
McCafferty, J. et al., “Phage antibodies: filamentous phage displaying antibody variable domains” Nature, 348(6301):552-554 (1990).
McCormack, W.T., Comparison of latent and nominal rabbit Ig VHa1 allotype cDNA sequences. J. Immunol., 141(6):2063-2071 (1988).
Mimran, A. et al., “GCN4-Based Expression System (pGES): Translationally Regulated Yeast Expression Vectors” BioTechniques, 28(3):552-554, 556, 558-560 (2000).
Mollova, S. et al., “Visualising the immune repertoire” BMC Systems Biology, 1(S1):P30 (2007).
Mullinax, R.L. et al., “Identification of human antibody fragment clones specific for tetanus toxoid in a bacteriophage lambda immunoexpression library” Proc. Natl. Acad. Sci., 87(20):8095-8099 (1990).
Mézard, C. et al., “Recombination between similar but not identical DNA sequences during yeast transformation occurs within short stretches of identity” Cell, 70(4):659-670 (1992).
Nakamura, Y. et al., “Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain” Appl. Microbiol. Biotechnol., 57(4):500-505 (2001).
Oldenburg, K.R et al., “Recombination-mediated PCR-directed plasmid construction in vivo in yeast” Nucleic Acids Res, 25(2):451-452 (1997).
Onda, T. et al., “A phage display system for detection of T cell receptor-antigen interactions” Mol Immunol., 32(17-18):1387-1397 (1995).
Orr et al., “Rapid Method for Measuring ScFv Thermal Stability by Yeast Surface Display” Biotechnol. Prog. 19:631-638 (2003).
Panka, D.J. et al., “Variable region framework differences result in decreased or increased affinity of variant anti-digoxin antibodies” Proc. Natl. Acad. Sci. USA, 85(9):3080-3084 (1988).
Parthasarathy, R. et al., “An immobilized biotin ligase: surface display of Escherichia coli BirA on Saccharomyces cerevisiae” Biotechnol. Prog., 21(6):1627-1631 (2005).
Pasqualini, R. and Ruoslahti, E., “Organ targeting in vivo using phage display peptide libraries” Nature, 380(6572):364-366 (1996).
Patel et al., “Parallel selection of antibody libraries on phage and yeast surfaces via a cross-species display” Protein Engineering, Design & Selection, pp. 1-9 (2011).
Patrick, W.M. et al., “User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries” Protein Engineering, 16(6):451-457 (2003).
Pearson, B.M. et al., “Construction of PCR-ligated long flanking homology cassettes for use in the functional analysis of six unknown open reading frames from the left and right arms of Saccharomyces cerevisiaechromosome XV” Yeast, 14(4):391-399 (1998).
Pepper et al., “A Decade of Yeast Surface Display Technology: Where Are We Now?” Combinatorial Chemistry & High Throughput Screening 11:127-134 (2008).
Persson, M.A. et al., “Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning” Proc. Natl. Acad. Sci. USA, 88(6):2432-2436 (1991).
Philibert, P. et al., “A focused antibody library for selected scFvs expressed at high levels in the cytoplasm” BMC Biotechnol., 7:81 (2007).
Pini, A. et al., “Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel” Journal of Biological Chemistry, 273(34):21769-21776 (1998).
Pluckthun, A., “Antibody engineering: Advances from the use of Escherichia coli expression systems” Biotechnology (NY) 9(6):545-551 (1991).
Pogue and Goodnow, “Gene Dose-dependent Maturation and Receptor Editing of B Cells Expressing Immumoglobulin (Ig)G1 or IgM/IgG1 Tail Antigen Receptors” J. Exp. Med 191(6) 1031-1043 (2000).
Powell, Richard and McLane, Kathryn Evans, “Construction, assembly and selection of combinatorial antibody libraries.” Genetic Engineering with PCR (Horton and Tait, Eds. 1998), vol. 5 of the Current Innovations in Molecular Biol series, Horizon Scientific Press, pp. 155-172.
Prabakaran, P. et al., “Expressed antibody repertoires in human cord blood cells: 454 sequencing and IMGT/High V-QUEST analysis of germline gene usage, junctional diversity, and somatic mutations” Immunogenetics (2011), pp. 1-14.
Prabakaran, P. et al., Supplemental “Expressed antibody repertoires in human cord blood cells: 454 sequencing and IMGT/High V-QUEST analysis of germline gene usage, junctional diversity, and somatic mutations” Immunogenetics (2011), pp. 1-6.
Proba, K. et al., “Antibody scFv fragments without disulfide bonds made by molecular evolution”. J Mol Biol. 275(2):245-253 (1998).
Pörtner-Taliana, A. et al., “In vivo selection of single-chain antibodies using a yeast two-hybrid system”, J. Immunol. Methods, 238(1-2):161-172 (2000).
Rader, C and Barbas, C.F. 3rd, “Phage display of combinatorial antibody libraries” Curr. Opin. Biotechnol., 8(4):503-508 (1997).
Rader, C. et al., “A phage display approach for rapid antibody humanization: designed combinatorial V gene libraries” Proc. Natl. Acad. Sci. USA, 95(15):8910-8915 (1998).
Rajan, S. And Sidhu, S., “Simplified Synthetic Antibody Libraries” Methods in Enzymology 202 3-23 (2012).
Rakestraw, J.A. and Wittrup, K.D., “Dissertation Abstracts International”, 68(1B):43, abstract only (2006).
Rakestraw, J.A. et al., “A Flow Cytometric Assay for Screening Improved Heterologous Protein Secretion in Yeast.” Biotechnol. Prog., 22(4):1200-1208 (2006).
Rauchenberger, R. et al., “Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3” J. Biol. Chem., 278(40):38194-38205 (2003).
Raymond, C.K. et al., “General method for plasmid construction using homologous recombination” BioTechniques, 26(1):134-138, 140-141 (1999).
Retter, I. et al., “VBASE2, an integrative V gene database” Nucleic Acids Res., 33:D671-D674 (2005).
Rhoden, J.J. and Wittrup, K.D., “Dose Dependence of Intratumoral Perivascular Distribution of Monoclonal Antibodies” Journal of Pharmaceutical Sciences 101(2): 860-867 (2012).
Roitt, I. et al., “Immunoglobulins: A Family of Proteins”, in Immunology, Sixth Edition, Mosby, Harcourt Publishers Limited, London, pp. 67-70 and 80 (2001).
Rudikoff, S. et al., “Single amino acid substitution altering antigen-binding specificity” Proc. Natl. Acad. Sci. USA, 79(6):1979-1983 (1982).
Ruiz, M. et al., “The human immunoglobulin heavy diversity (IGHD) and joining (IGHJ) segments.” Exp. Clin. lrnrnunogenet, 16(3):173-184 (1999).
Ryu, D.D. and Nam, D.H., “Recent progress in biomolecular engineering” Biotechnol Prog, 16(1):2-16 (2000).
Saada, R. et al., “Models for antigen receptor gene rearrangement: CDR3 length” Immunol. Cell Biol., 85(4):323-332 (2007).
Sblattero, D. and Bradbury, A., “A definitive set of oligonucleotide primers for amplifying human V regions” Immunotechnology, 3(4):271-278 (1998).
Sblattero, D. and Bradbury, A., “Exploiting recombination in single bacteria to make large phage antibody libraries” Nat. Biotechnol., 18(1):75-80 (2000).
Scaviner, D. et al., “Protein displays of the human immunoglobulin heavy, kappa and lambda variable and joining regions.” Exp. Clin. Immunogenet., 16(4):234-240 (1999).
Schable, K.F. and Zachau, H.G., “The variable genes of the human immunoglobulin kappa locus” Biol. Chem. Hoppe Seyler, 374(11):1001-1022 (1993).
Schoonbroodt, S. et al., “Oligonucleotide-assisted cleavage and ligation: a novel directional DNA cloning technology to capture cDNAs. Application in the construction of a human immune antibody phage-display library” Nucleic Acids Research, 33(9):e81:2-14 (2005).
Schreuder et al., “Immobilizing proteins on the surface of yeast cells” Trends Biotechnol. 14(4)115-120 (1996).
Schreuder et al., “Targeting of a Heterologous Protein to the Cell Wall of Saccharamyces cerevisiae” Yeast 9:399-409 (1993).
Schwager, J. et al., Amino acid sequence of heavy chain from Xenopus levis IgM deduced from cDNA sequence: Implications for evolution of immunoglobulin domains, Proc. Natl. Acad. Sci. USA, 85:2245-2249 (1988).
Seed, B., “Developments in expression cloning.” Current Opinion in Biotechnology, 6(5):567-573 (1995).
Sharifmoghadam, et al., “The fission yeast Map4 protein is a novel adhesin required for mating” FEBS Letters 580:4457-4462 (2006).
Sheets, M.D. et al., “Efficient construction of a large nonimmune phage antibody library: The production of high-affinity human single-chain antibodies to protein antigens.” Proc. Natl. Acad. Sci. USA, 95(11):6157-6162 (1998).
Shen et al., “Delineation of Functional Regions within the Subunits of the Saccharomyces cerevisiae Cell Adhesion Molecule a-Agglutinin” The Journal of Biological Chemistry 276(19):15768-15775 (2001).
Short, M.K. et al., “Contribution of antibody heavy chain CDR1 to digoxin binding analyzed by random mutagenesis of phage-displayed Fab 26-10” J. Biol. Chem., 270(48):28541-28550 (1995).
Shusta, E.V. et al., “Directed evolution of a stable scaffold forT-cell receptor engineering” Nat. Biotechnol.,18(7):754-759 (2000).
Shusta, E.V. et al., “Yeast Polypeptide Fusion Surface Display Levels Predict Thermal Stability and Soluble Secretion Efficiency” J. Mol. Biol. 292 949-956 (1999).
Sidhu, S.S, et al., “Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions” J. Mol. Biol. 338(2):229-310 (2004).
Skerra, A., “Alternative non-antibody scaffolds for molecular recognition” Current Opin. Biotechnol. 18(4):295-304 (2007).
Smith, G., “Homologous Recombination Near and Far from DNA Breaks: Alternative Roles and Contrasting Views” Annu Rev Genet 35:243-274 (2001).
Smith, G.P. and Petrenko, V.A., “Phage Display” Chern. Rev., 97(2):391-410 (1997).
Soderlind, E. et al., “Domain libraries: synthetic diversity for de novo design of antibody V-regions” Gene, 160(2): 269-272 (1995).
Soderlind, E. et al., “The immune diversity in a test tube—non-immunised antibody libraries and functional variability in defined protein scaffolds” Combinatorial Chemistry & High Throughput Screening, 4(5):409-416 (2001).
Souriau and Hudson, “Recombinant antibodies for cancer diagnosis and therapy” Expert Opin. Biol. Ther. 1(5):845-855 (2001).
Souto-Carneiro, M.M. et al., “Characterization of the Hurnan Ig Heavy Chain Antigen Binding Complementarity Determining Region 3 Using a Newly Developed Software Algorithm, JOINSOLVER,” J. Immunol., 172(11):6790-6802 (2004).
Starwalt et al., “Directed evolution of a single-chain class II MHC product by yeast display” Protein Engineering 16(2):147-156 (2003).
Stewart, A.K. et al., “High-frequency representation of a single VH gene in the expressed human B cell repertoire” J. Exp. Med., 177(2):409-418 (1993).
Stohl, W. and Hilbert, D.M., “The discovery and development of belimumab: the anti-BLyS-lupus connection” Nature Biology 30(1):69-77 (2012).
Struhl et al., “High-frequency transformation of yeast: Autonomous replication of hybrid DNA molecules” Proc. Natl. Acad. Sci. 76(3):1035-1039 (1979).
Suzuki, M. et al., “Light chain determines the binding property of human anti-dsDNA IgG autoantibodies” Biochem. Biophys. Res. Commun., 271(1):240-243 (2000).
Swers et al., “Integrated Mimicry of B Cell Antibody Mutagenesis Using Yeast Homologous Recombination” Mol. Biotechnol. 46:57-69 (2011).
Swers, J.S. et al., “Shuffled antibody libraries created by in vivo homologous recombination and yeast surface display” Nuc. Acids. Res. 32(3), e36, 1-8 (2004).
Tavladoraki, P. et al., “Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack” Nature, 366(6454):469-472 (1993).
Terskikh, A.V. et al., “Peptabody”: A new type of high avidity binding protein Proc. Natl. Acad., 94(5):1663-1668 (1997).
Tomlinson, I.M. et al., “The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops” Journal of Molecular Biology, 227(3):776-798 (1992).
Tomlinson, I.M. et al., “The structural repertoire of the human V kappa domain” EMBO J., 14(18):4628-4638 (1995).
Tsurushita, N. et al., “Phage display vectors for in vivo recombination of immunoglobulin heavy and light chain genes to make large combinatorial libraries” Gene, 172(1):59-63 (1996).
Ueda and Tanaka, “Cell Surface Engineering of Yeast: Construction of Arming Yeast with Biocatalyst” Journal of Bioscience and Bioengineering 90(2):125:136 (2000).
Ueda, M. and Tanaka, A., “Genetic immobilization of proteins on the yeast cell surface” Biotechnology Advances, 18(2):121-140 (2000).
van den Beucken et al., “Affnity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries” FEBS Letters 546:288-294 (2003).
VanAntwerp and Wittrup, “Fine Affinity Discrimination by Yeast Surface Display and Flow Cytometry” Biotechnol. Prog. 16:31-37 (2000).
Vander Vaart, J.M. et al., “Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins” Appl. Environ. Microbiol., 63(2):615-620 (1997).
Vaswani, S.K. and Hamilton, R.G., “Humanized antibodies as potential therapeutic drugs” Ann. Allergy Athma Immunol., 81(2):105-115 (1998).
Vendel, M.C. et al., “Secretion from bacterial versus mammalian cells yields a recombinant scFv with variable folding properties” Arch. Biochem. Biophys. 1-6 (2012).
Visintin. M. et al., “Selection of antibodies for intracellular function using a two-hybrid in vivo system.”, Proc. Natl. Acad. Sci. USA 96(21):11723-11728 (1999).
Volpe, J.M. and Kepler, T.B., “Genetic correlates of autoreactivity and autoreactive potential in human Ig heavy chains” Immunome Res., 5:1 (2009).
Volpe, J.M. et al., “SoDA: Implementation of a 3D Alignment Algorithm for Inference of Antigen Receptor Recombinations,” Bioinforrnatics, 22(4):438-444 (2006).
Vugmeyster, Y. et al., “Complex Pharmacokinetics of a Humanized Antibody Against Human Amyloid Beta Peptide, Anti-Abeta Ab2, in Nonclinical Species” Pharm Res, 28:1696-1706 (2011).
Walhout, A.J. et al., “Gateway recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes” Methods in Enzymology, 328:575-92 (2000).
Wang, Y. et al., “Many human immunoglobulin heavy-chain IGHV gene polymorphisms have been reported in error” Immunol. Cell. Biol., 86(2):111-115 (epub 2007-2008).
Weaver-Feldhaus, J.M. et al., “Yeast mating for combinatorial Fab library generation and surface display” FEBS Lett., 564(1-2):24-34 (2004).
Wentz, A.E. and Shusta, E.V., “A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins” Appl. Environ. Microbiol., 73(4):1189-1198 (2007).
Winter G. and Milstein C., “Man-made antibodies” Nature, 349(6307):293-299 (1991).
Wood et al., “The synthesis and in vivo assembly of functional antibodies in yeast” Nature 314:(6010)446-449 (1985).
Woods and Gietz, “High-Efficiency Transformation of Plasmid DNA into Yeast”, Methods in Molecular Biology, 177:85-97 (2001).
Wu, H. et al., “Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues” J. Mol. Biol., 294(1):151-162 (1999).
Wörn, A. and Plückthun, A., “An intrinsically stable antibody scFv fragment can tolerate the loss of both disulfide bonds and fold correctly.” FEBS Lett., 427(3):357-361 (1998).
Xu, J.L. and Davis, M.M., “Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities” Immunity, 13(1):37-45 (2000).
Yang, W.P. et al., “CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range” J. Molecular Biology, 254(3):392-403 (1995).
Yeung and Wittrup, “Quantitative Screening of Yeast Surface-Displayed Polypeptide Libraries by Magnetic Bead Capture” Biotechnol. Prog. 18(2):212-220 (2002).
Zemlin, M. et al., “Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures” J. Mol. Biol. 334(4):733-749 (2003).
Zucconi, A. et al., “Domain repertoires as a tool to derive protein recognition rules” FEBS Letters, 480(1):49-54 (2000).
Related Publications (1)
Number Date Country
20130197201 A1 Aug 2013 US
Provisional Applications (1)
Number Date Country
61365194 Jul 2010 US