Antibody libraries

Information

  • Patent Grant
  • 10889811
  • Patent Number
    10,889,811
  • Date Filed
    Monday, September 10, 2018
    6 years ago
  • Date Issued
    Tuesday, January 12, 2021
    3 years ago
Abstract
The present invention overcomes the inadequacies inherent in the known methods for generating libraries of antibody-encoding polynucleotides by specifically designing the libraries with directed sequence and length diversity.
Description
SEQUENCE LISTING

In accordance with 37 CFR 1.52(e)(5), a Sequence Listing in the form of a text file (entitled “2009186_0225_Sequence_Listing.txt” created on Sep. 7, 2018 May 10, 2016 and 2,508,889 bytes in size) is incorporated by reference in its entirety.


BACKGROUND

Antibodies have profound relevance as research tools and in diagnostic and therapeutic applications. However, the identification of useful antibodies is difficult and once identified, antibodies often require considerable redesign or “humanization” before they are suitable for therapeutic applications in humans.


Many methods for identifying antibodies involve display of libraries of antibodies derived by amplification of nucleic acids from B cells or tissues. Some of these methods have utilized synthetic libraries. However, many of these approaches have limitations. For example, most human antibody libraries known in the art contain only the antibody sequence diversity that can be experimentally captured or cloned from a biological source (e.g., B cells). Accordingly, such libraries may over-represent some sequences, while completely lacking or under-representing other sequences, particularly those binding human antigens. Most synthetic libraries known in the art have other limitations, such as the occurrence of unnatural (i.e., non-human) amino acid sequence motifs that have the potential to be immunogenic.


Accordingly, a need exists for diverse antibody libraries that contain candidate antibodies that are non-immunogenic (i.e., are human) and have desired properties (e.g., the ability to recognize a broad variety of antigens). However, obtaining such libraries requires balancing the competing objectives of generating diverse libraries while still maintaining the human character of the sequences within the library. The current invention provides antibody libraries that have these and other desirable features, and methods of making and using such libraries.


SUMMARY

The invention provides, among other things, improvements in the design and production of synthetic libraries that mimic the diversity of the natural human repertoire of CDRH3, CDRL3, heavy chain, light chain, and/or full-length (intact) antibody sequences. In some embodiments the invention defines and provides methods of generating theoretical segment pools of TN1, DH, N2, and H3-JH segments to consider for inclusion in a physical manifestation of a library (e.g., polynucleotide or polypeptide) comprising or encoding CDRH3 sequences (e.g., an antibody library). In certain embodiments the invention defines and provides methods of matching the individual members of these theoretical segment pools to a reference set of CDRH3 sequences, to determine the frequency of occurrence (or segment usage weight) of each of the segments in the theoretical segment pool in the reference set. While any set of CDRH3 sequences may be used as a reference set, the invention also defines and provides methods of generating particular reference sets or subsets of interest. For example, among other things, the present invention provides methods for filtering an original reference set to obtain a provided reference set with a preimmune character. Also provided are methods to define and/or identify segments that occur within the CDRH3 sequences in the reference set but not in the theoretical segment pool. Such segments can be added to a theoretical segment pool, for example in order to be considered for inclusion in a physical library. Although the frequency of occurrence of a particular segment in a reference set is useful to select segments for inclusion in a physical library, the invention also provides a number of physicochemical and biological properties that can be used (alone or together with any other criterion or criteria) to select segments for inclusion in a physical library.


In some embodiments the invention provides libraries that differ from certain other libraries known in the art in that they are not sitewise-stochastic in composition or sequence, and are therefore intrinsically less random than these certain other libraries of the art (see e.g., Example 14 of US Pub. No. 2009/0181855, incorporated by reference in its entirety, for a discussion of information content and randomness). In some embodiments, degenerate oligonucleotides may be used to further increase the diversity of the members of a library while further improving matching with a reference set of sequences (e.g., CDRH3, CDRL3, heavy chain, light chain, and/or full-length (intact) antibody sequences).


The invention also provides libraries whose members have sequences that are related to one another in that they would be selected for inclusion in a physical library by performing the analyses described herein, for example by generating a CDRH3 reference set as in Example 3; generating theoretical segment pools as in Examples 5-7; matching the members of a theoretical segment pool to the reference set as in Examples 4 and 8; and selecting members of the theoretical segment pool for inclusion in a physical library as in Examples 8-9. Also provided are methods of further increasing diversity in certain sequences by utilizing degenerate oligonucleotides as in Examples 12-16.


In some embodiments, the present invention provides polynucleotide and polypeptide libraries comprising CDRH3, CDRL3, heavy chain, light chain, and/or full-length (intact) antibody sequences, and methods of making and using such libraries.


In some embodiments, the invention provides libraries comprising, consisting essentially of, or consisting of any of the libraries or theoretical segment pools described herein.


In some embodiments, the present invention recognizes that by mimicking the in vivo activity of the enzyme TdT computationally, theoretical segment pools can be generated and subsequently matched to large reference datasets of CDR sequences to choose, for inclusion in a library, those theoretical segments that best recapitulate the CDR sequences in the reference data sets.


In certain embodiments, the invention provides libraries of polynucleotides comprising at least about 104 polynucleotides encoding CDRH3 polypeptides with the structure: [TN1]-[DH]-[N2]-[H3-JH], wherein: TN1 is a polypeptide corresponding to any of the TN1 polypeptides of Tables 9-10 and 18-26, or a polypeptide produced by translation of any of the TN1 polynucleotides of Tables 25-26; DH is a polypeptide corresponding to any of the DH polypeptides of Tables 9, 11, 17-25 and 28, or a polypeptide produced by translation of any of the DH-encoding polynucleotides of Tables 16, 25 and 27; N2 is a polypeptide corresponding to any of the N2 polypeptides of Tables 9, 12, 18-25 and 30, or a polypeptide produced by translation of any of the N2-encoding polynucleotides of Tables 25 and 29; and H3-JH is a polypeptide corresponding to any of the H3-JH polypeptides of Tables 9, 13, 15, 18-25 and 32, or a polypeptide produced by translation of any of the H3-JH-encoding polynucleotides of Tables 14, 25 and 31.


In some embodiments, the invention provides libraries wherein at least about 1%, 5%, or 10% of the sequences in the library have the structure provided above, or that of any of the libraries provided herein.


In certain embodiments, the invention provides libraries comprising polynucleotides encoding CDRH3 polypeptides produced by the sets of TN1, DH, N2, and H3-JH polypeptides provided in any one of Tables 23-25.


In some embodiments, the invention provides libraries comprising polynucleotides encoding CDRH3 polypeptides produced by the set of TN1 polypeptides provided in Table 26, the set of DH polypeptides provided in Table 28, the set of N2 polypeptides provided in Table 30 and the set of H3-JH polypeptides provided in Table 32.


In certain embodiments, the invention provides libraries whose members show (or encode polypeptides that show) at least a certain percent identity with the polypeptides described above, for example, a library comprising at least about 104 polynucleotides encoding CDRH3 polypeptides with the structure: [TN1]-[DH]-[N2]-[H3-JH], wherein: TN1 is a polypeptide at least about 80%, 90%, or 95% identical to any of the TN1 polypeptides of Tables 9-10 and 18-26, or a polypeptide at least about 80%, 90%, or 95% identical to a polypeptide produced by translation of any of the TN1 polynucleotides of Tables 25-26; DH is a polypeptide at least about 80%, 90%, or 95% identical to any of the DH polypeptides of Tables 9, 11, 17-25 and 28, or a polypeptide at least about 80%, 90%, or 95% identical to a polypeptide produced by translation of any of the DH-encoding polynucleotides of Tables 16, 25 and 27; N2 is a polypeptide at least about 80%, 90%, or 95% identical to any of the N2 polypeptides of Tables 9, 12, 18-25 and 30, or a polypeptide at least about 80%, 90%, or 95% identical to a polypeptide produced by translation of any of the N2-encoding polynucleotides of Tables 25 and 29; and H3-JH is a polypeptide at least about 80%, 90%, or 95% identical to any of the H3-JH polypeptides of Tables 9, 13, 15, 18-25 and 32, or a polypeptide at least about 80%, 90%, or 95% identical to a polypeptide produced by translation of any of the H3-JH-encoding polynucleotides of Tables 14, 25 and 31.


In some embodiments, the invention provides libraries comprising polynucleotides encoding light chain variable regions, wherein the light chain variable regions are selected from the group consisting of: (a) a VK1-05 sequence varied at one or more of positions 4, 49, and 46; (b) a VK1-12 sequence varied at one or more of positions 4, 49, 46, and 66; (c) a VK1-33 sequence varied at one or more of positions 4, 49, and 66; (d) a VK1-39 sequence varied at one or more of positions 4, 49, and 46; (e) a VK2-28 sequence varied at one or more of positions 2, 4, 46, and 49; (f) a VK3-11 sequence varied at one or more of positions 2, 4, 36, and 49; (g) a VK3-15 sequence varied at one or more of positions 2, 4, 48, and 49; (h) a VK3-20 sequence varied at one or more of positions 2, 4, 48, and 49; and/or (i) a VK4-1 sequence varied at one or more of positions 4, 46, 49, and 66.


In certain embodiments, the invention provides libraries comprising polynucleotides encoding light chain variable regions that comprise polypeptide sequences at least about 80%, 90%, or 95% identical to two or more of the light chain polypeptide sequences provided in Table 3.


In some embodiments, the invention provides libraries wherein the light chain variable regions comprise the polypeptide sequences provided in Table 3.


In certain embodiments, the invention provides libraries comprising polynucleotides encoding light chain variable regions, wherein the L3-VL polypeptide sequences of the light chain variable regions are varied at two or three residues between positions 89 to 94, inclusive, in comparison to an L3-VL germline sequence. In some embodiments, libraries containing a single light chain germline sequence and its variants are provided. In certain embodiments, variants produced from different light chain germline sequences can be combined to produce libraries encoding multiple light chain germline sequences and their variants. Any of the light chain L3-VL germline sequences provided herein may be varied at two or three residues between positions 89 to 94, inclusive, and one of ordinary skill in the art will recognize that any other L3-VL sequence can also be varied according to the principles described herein to produce libraries provided by the invention. In some embodiments, the present invention comprises libraries containing polynucleotides that encode antibody light chain variable regions, wherein the antibody light chain variable regions comprise one or more of the following L3-VL sequences: (i) an amino acid sequence that is identical to an L3-VL germline sequence (e.g., see Table 1); (ii) an amino acid sequence that contains two substitutions between residues 89-94, inclusive, in comparison to an L3-VL germline sequence; and (iii) an amino acid sequence that contains three substitutions between residues 89-94, inclusive, in comparison to an L3-VL germline sequence. In some embodiments, each antibody light chain variable region on a library includes one or more of the above L3-VL sequences. In some embodiments, such a library is combined with one or more sets of other nucleic acids that may or may not encode antibody light chain variable regions, and may or may not contain such L3-VL sequences. In some embodiments, the present invention comprises libraries containing polynucleotides that encode an antibody light chain variable region having an amino acid sequence as set forth in Table 4, or a polynucleotide sequence as set forth in one or more of Tables 5-7, wherein two or three residues at positions 89-94, inclusive, are varied.


In some embodiments, the present invention comprises libraries containing polynucleotides that encode an antibody light chain variable region, wherein, across the library, all encoded antibody light chain variable regions are identical to one another except for substitutions of residues at positions between residue 89 and residue 94, inclusive and further wherein, across the library, sequences of any two encoded antibody light chain variable regions differ from one another at not more than 3 positions.


In some embodiments, the invention provides libraries comprising polynucleotides encoding light chain variable regions comprising polypeptide sequences at least about 80%, 90%, or 95% identical to polypeptides produced by translation of two or more of the polynucleotide sequences provided in Tables 5-7. In certain embodiments all members of the library are at least about 80%, 90%, or 95% identical to polypeptides produced by translation of two or more of the polynucleotide sequences provided in Tables 5-7.


In certain embodiments, the invention provides a library comprising light chain variable regions that comprise the polypeptides produced by translation of the polynucleotide sequences provided in Tables 5-7. In certain embodiments, all members of the library comprise the polypeptides produced by translation of the polynucleotide sequences provided in Tables 5-7.


In some embodiments, any of the libraries described herein as containing or encoding CDRL3 and/or light chain variable regions, contains or encodes such CDRL3 and/or light chain variable regions in the context of complete light chains. Furthermore, in some embodiments, such libraries (and/or complete light chain libraries) further contain or encode one or more heavy chain CDRH3, variable domains, or intact heavy chains. In some embodiments, provided libraries include or encode intact antibodies such as, for example, intact intact IgGs.


In some embodiments, provided libraries include or encode human antibodies or antibody fragments; in some such embodiments, provided libraries include or encode intact human antibodies.


In certain embodiments, the invention provides libraries that comprise nucleic acid vectors containing library nucleic acids described herein. In many embodiments, each such library member comprises the same vector.


In some embodiments, the invention provides host cells containing one or more provided libraries, for example including a vector. In some embodiments the host cell is a yeast, and in certain embodiments the yeast is Saccharomyces cerevisiae.


In some embodiments, the invention provides antibodies isolated from the libraries described herein.


In certain embodiments, the invention provides kits containing any of the libraries described herein.


In some embodiments, the invention provides representations of libraries and/or theoretical segment pools in a computer readable format, for example, the TN1 polypeptides of Tables 10, 23-25 and 26; the DH polypeptides of Tables 11, 23-25 and 28; the N2 polypeptides of Tables 12, 23-25 and 30; the H3-JH polypeptides of Tables 13, 15, 17, 23-25 and 32; the TN1 polynucleotides of Tables 25-26; the DH polynucleotides of Tables 25 and 27; the N2 polynucleotides of Tables 25 and 29; and/or the H3-JH polynucleotides of Tables 25 and 31.


In certain embodiments, the invention provides a representation of the polynucleotide sequences of the Human Preimmune Set (Appendix A), or the polypeptide expression products thereof, in a computer readable format.


In some embodiments, the invention provides a method of making synthetic polynucleotides encoding a CDRH3 library, comprising: (a) providing a theoretical segment pool containing TN1, DH, N2, and H3JH segments; (b) providing a reference set of CDRH3 sequences; (c) utilizing the theoretical segment pool of (a) to identify the closest match(es) to each CDRH3 sequence in the reference set of (b); (d) selecting segments from the theoretical segment pool for inclusion in a synthetic library; and (e) synthesizing the synthetic CDRH3 library. In certain embodiments, the invention provides libraries made by this method. In some embodiments, the segments selected for inclusion in the synthetic library are selected according to their segment usage weight in the reference set of CDRH3 sequences.


In certain embodiments, the invention provides a method of making synthetic polynucleotides encoding a CDRL3 library, comprising: (i) obtaining a reference set of light chain sequences, wherein the reference set contains light chain sequences with VL segments originating from the same IGVL germline gene and/or its allelic variants; (ii) determining which amino acids occur at each of the CDRL3 positions in the reference set that are encoded by the IGVL gene; (iii) synthesizing light chain variable domain encoding sequences wherein two positions between positions 89 and 94, inclusive, contain degenerate codons encoding two or more of the five most frequently occurring amino acid residues at the corresponding positions in the reference set; and (iv) synthesizing the polynucleotides encoding the CDRL3 library. In certain embodiments, the invention provides libraries made by this method.


In some embodiments, the invention provides a method of using any of the libraries of the invention to isolate an antibody binding an antigen, comprising contacting the polypeptide expression products of said libraries with an antigen and isolating polypeptide expression products that bind to the antigen.


In certain embodiments, the number of N-linked glycosylation sites, deamidation motifs, and/or Cys residues in the libraries of the invention are reduced or eliminated in comparison to libraries produced by amplification of a repertoire from a biological source.


The invention provides a number of polynucleotide and polypeptide sequences and segments that can be used to build larger polynucleotide and polypeptide sequences (e.g., TN1, DH, N2, and H3-JH segments that can be used to build CDRH3). One of ordinary skill in the art will readily recognize that in some instances these sequences can be more succinctly represented by providing consensus sequences after alignment of the sequences provided by the invention, and that these consensus sequences fall within the scope of the invention and may be used to more succinctly represent any of the sequences provided herein.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 shows that Vernier residues 4 and 49 (starred) in VK1-39 have a diversity index comparable to or greater than the diversity indices of the CDR positions (i.e., at or above 0.07, in this example).



FIG. 2 shows that clinically validated CDRL3 sequences deviate little from germline-like sequences (n=35).



FIG. 3 shows the percent of sequences in the jumping dimer CDRL3 libraries of the invention and a previous CDRL3 library, VK-v1.0, with X or fewer mutations from germline. Here, FX is the percentage of sequences in a library with X or fewer mutations from germline.



FIG. 4 shows the application of a provided method used to generate nucleotide sequences (SEQ ID NOS 8748-8759, respectively, in order of appearance) encoding the parent H3-JH segments.



FIG. 5 shows the general schematic of an approach used to select segments from a theoretical segment pool for inclusion in a theoretical and/or synthetic library.



FIG. 6 shows the frequency of “Good” and “Poor” expressing CDRH3 sequences isolated from yeast-based libraries described in US 2009/0181855, and their comparison to the sequences contained in the library design described therein (“Design”), as a function of the DH segment hydrophobicity (increasing to the right).



FIG. 7 shows the percentage of CDRH3 sequences in the LUA-141 library and Exemplary Library Design 3 (ELD-3) that match CDRH3 sequences from Lee-666 and Boyd-3000 with zero, one, two, three, or more than three amino acid mismatches.



FIG. 8 shows that Exemplary Library Design 3 (ELD-3) and the Extended Diversity Library Design both return better matches to clinically relevant CDRH3 sequences than the LUA-141 library.



FIG. 9 shows that the combinatorial efficiency of Exemplary Library Design 3 (ELD-3) is greater than that of the LUA-141 library. Specifically, the ELD-3 segments are more likely to yield a unique CDRH3 than the LUA-141 library segments.



FIG. 10 shows the amino acid compositions of the Kabat-CDRH3s of LUA-141, Exemplary Library Design 3 (ELD-3), and Human CDRH3 sequences from the HPS (Human H3).



FIG. 11 shows the Kabat-CDRH3 length distribution of LUA-141, Exemplary Library Design 3 (ELD-3), and Human CDRH3 sequences from the HPS (Human H3).



FIG. 12 shows the percentage of CDRH3 sequences in the Extended Diversity library that match CDRH3 sequences from Boyd et al. with zero to thirty-two amino acid mismatches



FIG. 13 shows the Kabat-CDRH3 length distribution of Exemplary Library Design 3 (“ELD-3”), the Extended Diversity Library Design (“Extended Diversity”) and human CDRH3 sequences from the Boyd et al. data set (“Boyd 2009”).



FIG. 14 shows the amino acid compositions of the Kabat-CDRH3s of the Extended Diversity Library Design (“Extended Diversity”) and human CDRH3 sequences from the Boyd et al. dataset (“Boyd 2009”).



FIG. 15 shows the combinatorial efficiency of the Extended Diversity Library Design by matching 20,000 randomly selected sequences from the (same) design. About 65% of the sequences appear only once in the design and about 17% appear twice.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS OF THE INVENTION

The present invention provides, among other things, polynucleotide and polypeptide libraries, methods of producing and using the libraries, kits containing the libraries, and computer readable forms of representations of libraries and/or theoretical segment pools disclosed herein. Libraries taught in this application can be described, at least in part, in terms of components (e.g., polynucleotide or polypeptide “segments”) from which they are assembled. Among other things, the present invention specifically provides and contemplates these polynucleotide or polypeptide segments, methods of producing and using such segments, and kits and computer readable forms of representations that include such library segments.


In certain embodiments, the invention provides antibody libraries specifically designed based on sequences and CDR length distribution in a naturally occurring human antibody repertoire. It is estimated that, even in the absence of antigenic stimulation, an individual human makes at least about 107 different antibody molecules (Boyd et al., Science Translational Medicine, 2009, 1: 1). The antigen-binding sites of many antibodies can cross-react with a variety of related but different epitopes. In addition, the human antibody repertoire is large enough to ensure that there is an antigen-binding site to fit almost any potential epitope, albeit potentially with low affinity.


The mammalian immune system has evolved unique genetic mechanisms that enable it to generate an almost unlimited number of different light and heavy chains in a remarkably economical way, by combinatorially joining chromosomally separated gene segments prior to transcription. Each type of immunoglobulin (Ig) chain (i.e., kappa light, lambda light, and heavy) is synthesized by combinatorial assembly of DNA sequences, selected from two or more families of gene segments, to produce a single polypeptide chain. Specifically, the heavy chains and light chains each consist of a variable region and a constant (C) region. The variable regions of the heavy chains are encoded by DNA sequences assembled from three families of gene sequences: variable (IGHV), diversity (IGHD), and joining (IGHJ). The variable regions of light chains are encoded by DNA sequences assembled from two families of gene sequences for each of the kappa and lambda light chains: variable (IGLV) and joining (IGLJ). Each variable region (heavy and light) is also recombined with a constant region, to produce a full-length immunoglobulin chain.


While combinatorial assembly of the V, D and J gene segments make a substantial contribution to antibody variable region diversity, further diversity is introduced in vivo, at the pre-B cell stage, via imprecise joining of these gene segments and the introduction of non-templated nucleotides at the junctions between the gene segments (see e.g., U.S. Pub. No. 2009/0181855, which is incorporated by reference in its entirety, for more information).


After a B cell recognizes an antigen, it is induced to proliferate. During proliferation, the B cell receptor locus undergoes an extremely high rate of somatic mutation that is far greater than the normal rate of genomic mutation. The mutations that occur are primarily localized to the Ig variable regions and comprise substitutions, insertions and deletions. This somatic hypermutation enables the production of B cells that express antibodies possessing enhanced affinity toward an antigen. Such antigen-driven somatic hypermutation fine-tunes antibody responses to a given antigen.


Synthetic antibody libraries of the instant invention have the potential to recognize any antigen, including antigens of human origin. The ability to recognize antigens of human origin may not be present in other antibody libraries, such as antibody libraries prepared from human biological sources (e.g., from human cDNA), because self-reactive antibodies are removed by the donor's immune system via negative selection.


Still further, the present invention provides strategies that streamline and/or simplify certain aspects of library development and/or screening. For example, in some embodiments, the present invention permits use of cell sorting technologies (e.g., fluorescence activated cell sorting, FACS) to identify positive clones, and therefore bypasses or obviates the need for the standard and tedious methodology of generating a hybridoma library and supernatant screening.


Yet further, in some embodiments, the present invention provides libraries and/or sublibraries that accommodate multiple screening passes. For example, in some embodiments, provided libraries and/or sublibraries can be screened multiple times. In some such embodiments, individual provided libraries and/or sublibraries can be used to discover additional antibodies against many targets.


Before further description of the invention, certain terms are defined.


DEFINITIONS

Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by one of ordinary skill in the art relevant to the invention. Unless otherwise specified, the Kabat numbering system is used throughout the application. The definitions below supplement those in the art and are directed to the embodiments described in the current application.


The term “amino acid” or “amino acid residue,” as would be understood by one of ordinary skill in the art, typically refers to an amino acid having its art recognized definition such as an amino acid selected from the group consisting of: alanine (Ala or A); arginine (Arg or R); asparagine (Asn or N); aspartic acid (Asp or D); cysteine (Cys or C); glutamine (Gln or Q); glutamic acid (Glu or E); glycine (Gly or G); histidine (His or H); isoleucine (Ile or I): leucine (Leu or L); lysine (Lys or K); methionine (Met or M); phenylalanine (Phe or F); proline (Pro or P); serine (Ser or S); threonine (Thr or T); tryptophan (Trp or W); tyrosine (Tyr or Y); and valine (Val or V), although modified, synthetic, or rare amino acids may be used as desired. Generally, amino acids can be grouped as having a non-polar side chain (e.g., Ala, Cys, Ile, Leu, Met, Phe, Pro, Val); a negatively charged side chain (e.g., Asp, Glu); a positively charged side chain (e.g., Arg, His, Lys); or an uncharged polar side chain (e.g., Asn, Cys, Gln, Gly, His, Met, Phe, Ser, Thr, Trp, and Tyr).


As would be understood by those of ordinary skill in the art, the term “antibody” is used herein in the broadest sense and specifically encompasses at least monoclonal antibodies, polyclonal antibodies, multi-specific antibodies (e.g., bispecific antibodies), chimeric antibodies, humanized antibodies, human antibodies, and antibody fragments. An antibody is a protein comprising one or more polypeptides substantially or partially encoded by immunoglobulin genes or fragments of immunoglobulin genes. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as myriad immunoglobulin variable region genes.


The term “antibody binding region” refers to one or more portions of an immunoglobulin or antibody variable region capable of binding an antigen(s). Typically, the antibody binding region is, for example, an antibody light chain (or variable region or one or more CDRs thereof), an antibody heavy chain (or variable region or one or more CDRs thereof), a heavy chain Fd region, a combined antibody light and heavy chain (or variable regions thereof) such as a Fab, F(ab)2, single domain, or single chain antibodies (scFv), or any region of a full length antibody that recognizes an antigen, for example, an IgG (e.g., an IgG1, IgG2, IgG3, or IgG4 subtype), IgA1, IgA2, IgD, IgE, or IgM antibody.


“Antibody fragments” comprise a portion of an intact antibody, for example, one or more portions of the antigen-binding region thereof. Examples of antibody fragments include Fab, Fab′, F(ab′)2, and Fv fragments, diabodies, linear antibodies, single-chain antibodies, and multi-specific antibodies formed from intact antibodies and antibody fragments.


The term “antibody of interest” refers to an antibody that has a property of interest that is identified and/or isolated from a library of the invention. Exemplary properties of interest include, for example, but are not limited to, binding to a particular antigen or epitope, binding with a certain affinity, cross-reactivity, blocking a binding interaction between two molecules, and/or eliciting a certain biological effect.


The term “canonical structure,” as understood by those of ordinary skill in the art, refers to the main chain conformation that is adopted by the antigen binding (CDR) loops. From comparative structural studies, it has been found that five of the six antigen binding loops have only a limited repertoire of available conformations. Each canonical structure can be characterized by the torsion angles of the polypeptide backbone. Correspondent loops between antibodies may, therefore, have very similar three dimensional structures, despite high amino acid sequence variability in most parts of the loops (Chothia and Lesk, J. Mol. Biol., 1987, 196: 901; Chothia et al., Nature, 1989, 342: 877; Martin and Thornton, J. Mol. Biol., 1996, 263: 800, each of which is incorporated by reference in its entirety). Furthermore, there is a relationship between the adopted loop structure and the amino acid sequences surrounding it. As is known in the art, the conformation of a particular canonical class is determined by the length of the loop and the amino acid residues residing at key positions within the loop, as well as within the conserved framework (i.e., outside of the loop). Assignment to a particular canonical class can therefore be made based on the presence of these key amino acid residues. The term “canonical structure” may also include considerations as to the linear sequence of the antibody, for example, as catalogued by Kabat (Kabat et al., in “Sequences of Proteins of Immunological Interest,” 5th Edition, U.S. Department of Heath and Human Services, 1992). The Kabat numbering scheme is a widely adopted standard for numbering the amino acid residues of an antibody variable domain in a consistent manner, and is used herein unless indicated otherwise. Additional structural considerations can also be used to determine the canonical structure of an antibody. For example, those differences not fully reflected by Kabat numbering can be described by the numbering system of Chothia et al. and/or revealed by other techniques, for example, crystallography and two or three-dimensional computational modeling. Accordingly, a given antibody sequence may be placed into a canonical class which allows for, among other things, identifying appropriate chassis sequences (e.g., based on a desire to include a variety of canonical structures in a library). Kabat numbering of antibody amino acid sequences and structural considerations as described by Chothia et al., and their implications for construing canonical aspects of antibody structure, are described in the literature.


The terms “CDR”, and its plural “CDRs”, refer to a complementarity determining region (CDR) of which three make up the binding character of a light chain variable region (CDRL1, CDRL2 and CDRL3) and three make up the binding character of a heavy chain variable region (CDRH1, CDRH2 and CDRH3). CDRs contribute to the functional activity of an antibody molecule and are separated by amino acid sequences that comprise framework regions. The exact definitional CDR boundaries and lengths are subject to different classification and numbering systems. CDRs may therefore be referred to by Kabat, Chothia, contact or other boundary definitions, including for example the CDRH3 numbering system described below. Despite differing boundaries, each of these systems has some degree of overlap in what constitutes the so called “hypervariable regions” within the variable region. CDR definitions according to these systems may therefore differ in length and boundary areas with respect to the adjacent framework region. See, for example Kabat et al., in “Sequences of Proteins of Immunological Interest,” 5th Edition, U.S. Department of Health and Human Services, 1992; Chothia et al., J. Mol. Biol., 1987, 196: 901; and MacCallum et al., J. Mol. Biol., 1996, 262: 732, each of which is incorporated by reference in its entirety.


The “CDRH3 numbering system” used herein defines the first amino acid of CDRH3 as being at position 95 and the last amino acid of CDRH3 as position 102. Note that this is a custom numbering system that is not according to Kabat. The amino acid segment, beginning at position 95 is called “TN1” and, when present, is assigned numbers 95, 96, 96A, 96B, etc. Note that the nomenclature used in the current application is slightly different from that used in U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379. In those applications, position 95 was designated a “Tail” residue, while here, the Tail (T) has been combined with the N1 segment, to produce one segment, designated “TN1.” The TN1 segment is followed by the “DH” segment, which is assigned numbers 97, 97A, 97B, 97C, etc. The DH segment is followed by the “N2” segment, which, when present, is numbered 98, 98A, 98B, etc. Finally, the most C-terminal amino acid residue of the “H3-JH” segment is designated as number 102. The residue directly before (N-terminal) it, when present, is 101, and the one before (if present) is 100. The rest of the H3-JH amino acids are numbered in reverse order, beginning with 99 for the amino acid just N-terminal to 100, 99A for the residue N-terminal to 99, and so forth for 99B, 99C, etc. Examples of CDRH3 sequence residue numbers may therefore include the following:




embedded image


“Chassis” of the invention are portions of the antibody heavy chain variable (IGHV) or light chain variable (IGLV) domains that are not part of CDRH3 or CDRL3, respectively. A chassis of the invention is defined as the portion of the variable region of an antibody beginning with the first amino acid of FRM1 and ending with the last amino acid of FRM3. In the case of the heavy chain, the chassis includes the amino acids including from position 1 to position 94. In the case of the light chains (kappa and lambda), the chassis are defined as including from position 1 to position 88. The chassis of the invention may contain certain modifications relative to the corresponding germline variable domain sequences. These modifications may be engineered (e.g., to remove N-linked glycosylation sites) or naturally occurring (e.g., to account for naturally occurring allelic variation). For example, it is known in the art that the immunoglobulin gene repertoire is polymorphic (Wang et al., Immunol. Cell. Biol., 2008, 86: 111; Collins et al., Immunogenetics, 2008, 60: 669, each incorporated by reference in its entirety); chassis, CDRs and constant regions representative of these allelic variants are also encompassed by the invention. In some embodiments, the allelic variant(s) used in a particular embodiment of the invention may be selected based on the allelic variation present in different patient populations, for example, to identify antibodies that are non-immunogenic in these patient populations. In certain embodiments, the immunogenicity of an antibody of the invention may depend on allelic variation in the major histocompatibility complex (MHC) genes of a patient population. Such allelic variation may also be considered in the design of libraries of the invention. In certain embodiments of the invention, the chassis and constant regions are contained in a vector, and a CDR3 region is introduced between them via homologous recombination.


As used herein, a sequence designed with “directed diversity” has been specifically designed to contain both sequence diversity and length diversity. Directed diversity is not stochastic.


As used herein, the term “diversity” refers to a variety or a noticeable heterogeneity. The term “sequence diversity” refers to a variety of sequences which are collectively representative of several possibilities of sequences, for example, those found in natural human antibodies. For example, CDRH3 sequence diversity may refer to a variety of possibilities of combining the known human TN1, DH, N2, and H3-JH segments to form CDRH3 sequences. The CDRL3 sequence diversity (kappa or lambda) may refer to a variety of possibilities of combining the naturally occurring light chain variable region contributing to CDRL3 (i.e., “L3-VL”) and joining (i.e., “L3-JL”) segments, to form CDRL3 sequences. As used herein, “H3-JH” refers to the portion of the IGHJ gene contributing to CDRH3. As used herein, “L3-VL” and “L3-JL” refer to the portions of the IGLV and IGLJ genes (kappa or lambda) contributing to CDRL3, respectively.


As used herein, the term “expression” refers to steps involved in the production of a polypeptide including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.


The term “framework region” refers to the art-recognized portions of an antibody variable region that exist between the more divergent (i.e., hypervariable) CDRs. Such framework regions are typically referred to as frameworks 1 through 4 (FRM1, FRM2, FRM3, and FRM4) and provide a scaffold for the presentation of the six CDRs (three from the heavy chain and three from the light chain) in three dimensional space, to form an antigen-binding surface.


The term “full-length heavy chain” refers to an immunoglobulin heavy chain that contains each of the canonical structural domains of an immunoglobulin heavy chain, including the four framework regions, the three CDRs, and the constant region.


The term “full-length light chain” refers to an immunoglobulin light chain that contains each of the canonical structural domains of an immunoglobulin light chain, including the four framework regions, the three CDRs, and the constant region.


The term “germline-like,” when used with respect to the CDRL3 sequences of the light chains of the invention, means those sequences consisting of combinations of: (i) the first six wild-type residues contributed to CDRL3 by the IGVL germline gene (i.e., positions 89 to 94 in the Kabat numbering system; “L” is kappa or lambda); and (ii) one of several amino acid sequences, two one to four amino acids in length, largely, but not exclusively, derived from the JL segment (“L,” again is kappa or lambda). For kappa CDRL3 sequences of the most common lengths (i.e., 8, 9, and 10 residues), the sequences of (ii) number twenty and are: FT, LT, IT, RT, WT, YT, [X]T, [X]PT, [X]FT, [X]LT, [X]IT, [X]RT, [X]WT, [X]YT, [X]PFT, [X]PLT, [X]PIT, [X]PRT, [X]PWT and [X]PYT, where [X] corresponds to the amino acid residue found at position 95 (Kabat) in the respective VK germline sequence. X is most commonly P, but may also be S or any other amino acid residue found at position 95 of a VK germline sequence. For eight exemplified VK chassis exemplified herein, the corresponding 160 germline-like sequences, (i.e., 20 sequences of two to four amino acids in length combined with positions 89 to 94 of each of eight VK germline sequences) are provided in Table 1. A similar approach is applied to define germline-like CDRL3 sequences for lambda light chains. As for the kappa sequences described above, the intact, un-mutated portions of CDRL3 encoded by the IGVL genes (in this case, IGVλ) would be combined with the sequences largely, but not exclusively, derived from the Jλ segment. Here, the latter sequences (corresponding to (ii), above), number five and are: YV, VV, WV, AV or V. In addition, and as described in Example 7 of US 2009/0818155, one could further allow for variation at the last position of the Vλ-gene-encoded portion of CDRL3 by considering partial codons, while still considering the resulting sequences “germline-like.” More specifically, the entire “minimalist library” of Example 7 in US 2009/0818155 would be defined as “germline-like.” One of ordinary skill in the art will readily recognize that these methods can be extended to other VK and Vλ sequences.


The term “genotype-phenotype linkage,” as understood by those of ordinary skill in the art, refers to the fact that the nucleic acid (genotype) encoding a protein with a particular phenotype (e.g., binding an antigen) can be isolated from a library. For the purposes of illustration, an antibody fragment expressed on the surface of a phage can be isolated based on its binding to an antigen (e.g., U.S. Pat. No. 5,837,500). The binding of the antibody to the antigen simultaneously enables the isolation of the phage containing the nucleic acid encoding the antibody fragment. Thus, the phenotype (antigen-binding characteristics of the antibody fragment) has been “linked” to the genotype (nucleic acid encoding the antibody fragment). Other methods of maintaining a genotype-phenotype linkage include those of Wittrup et al. (U.S. Pat. Nos. 6,300,065, 6,331,391, 6,423,538, 6,696,251, 6,699,658, and U.S. Pub. No. 20040146976, each of which is incorporated by reference in its entirety), Miltenyi (U.S. Pat. No. 7,166,423, incorporated by reference in its entirety), Fandl (U.S. Pat. No. 6,919,183, US Pub No. 20060234311, each incorporated by reference in its entirety), Clausell-Tormos et al. (Chem. Biol., 2008, 15: 427, incorporated by reference in its entirety), Love et al. (Nat. Biotechnol., 2006, 24: 703, incorporated by reference in its entirety), and Kelly et al. (Chem. Commun., 2007, 14: 1773, incorporated by reference in its entirety). The term can be used to refer to any method which localizes an antibody protein together with the gene encoding the antibody protein, in a way in which they can both be recovered while the linkage between them is maintained.


The term “heterologous moiety” is used herein to indicate the addition of a moiety to an antibody wherein the moiety is not part of a naturally-occurring antibody. Exemplary heterologous moieties include drugs, toxins, imaging agents, and any other compositions which might provide an activity that is not inherent in the antibody itself.


As used herein, the term “host cell” is intended to refer to a cell comprising a polynucleotide of the invention. It should be understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


As used herein, the term “human antibody CDR library” includes at least a polynucleotide or polypeptide library which has been designed to represent the sequence diversity and length diversity of naturally occurring CDRs in human antibodies (e.g., the term “CDR” in “human antibody CDR library” may be substituted with “CDRL1,” “CDRL2,” “CDRL3,” “CDRH1,” “CDRH2,” and/or “CDRH3”). Known human CDR sequences are represented in various data sets, including Jackson et al., J. Immunol Methods, 2007, 324: 26; Martin, Proteins, 1996, 25: 130; Lee et al., Immunogenetics, 2006, 57: 917, Boyd et al., Science Translational Medicine, 2009, 1: 1, and WO/2009/036379, each of which is incorporated by reference in its entirety, and the HPS, which is provided in Appendix A.


The term “Human Preimmune Set,” or “HPS,” refers to a reference set of 3,571 curated human preimmune heavy chain sequences corresponding to the GI Nos. provided in Appendix A.


An “intact antibody” is one comprising full-length heavy- and light-chains (i.e., four frameworks, three CDRs, and a constant region for each of the heavy and light chains). An intact antibody is also referred to as a “full-length” antibody.


The term “length diversity” refers to a variety in the length of a family of nucleotide or amino acid sequence. For example, in naturally occurring human antibodies, the heavy chain CDR3 sequence varies in length, for example, from about 2 amino acids to over about 35 amino acids, and the light chain CDR3 sequence varies in length, for example, from about 5 to about 16 amino acids.


The term “library” refers to a set of entities comprising two or more entities having diversity as described herein, and/or designed according to the methods of the invention. For example, a “library of polynucleotides” refers to a set of polynucleotides comprising two or more polynucleotides having diversity as described herein, and/or designed according to the methods of the invention. A “library of polypeptides” refers to a set of polypeptides comprising two or more polypeptides having diversity as described herein, and/or designed according to the methods of the invention. A “library of synthetic polynucleotides” refers to a set of polynucleotides comprising two or more synthetic polynucleotides having diversity as described herein, and/or designed according to the methods of the invention. Libraries where all members are synthetic are also encompassed by the invention. A “human antibody library” refers to a set of polypeptides comprising two or more polypeptides having diversity as described herein, and/or designed according to the methods of the invention, for example a library designed to represent the sequence diversity and length diversity of naturally occurring human antibodies. In some embodiments, the term “library” may refer to a set of entities sharing similar structural or sequence characteristics, for example, a “heavy chain library,” “light chain library,” “antibody library,” and/or “CDRH3 library.”


The term “physical realization” refers to a portion of a theoretical (e.g., computer-based) or synthetic (e.g., oligonucleotide-based) diversity that can actually be physically sampled, for example, by any display methodology. Exemplary display methodology include: phage display, ribosomal display, and yeast display. For synthetic sequences, the size of the physical realization of a library depends on (1) the fraction of the theoretical diversity that can actually be synthesized, and (2) the limitations of the particular screening method. Exemplary limitations of screening methods include the number of variants that can be screened in a particular assay (e.g., ribosome display, phage display, yeast display) and the transformation efficiency of the host cells (e.g., yeast, mammalian cells, bacteria) which are used in a screening assay. For the purposes of illustration, given a library with a theoretical diversity of 1012 members, an exemplary physical realization of the library (e.g., in yeast, bacterial cells, or ribosome display) that can maximally include 1011 members will, therefore, sample about 10% of the theoretical diversity of the library. However, if fewer than 1011 members of the library with a theoretical diversity of 1012 are synthesized, and the physical realization of the library can maximally include 1011 members, less than 10% of the theoretical diversity of the library is sampled in the physical realization of the library. Similarly, a physical realization of the library that can maximally include more than 1012 members would “oversample” the theoretical diversity, meaning that each member may be present more than once (assuming that the entire 1012 theoretical diversity is synthesized).


The term “polynucleotide(s)” refers to nucleic acids such as DNA molecules and RNA molecules and analogs thereof (e.g., DNA or RNA generated using nucleotide analogs or using nucleic acid chemistry). As desired, the polynucleotides may be made synthetically, e.g., using art-recognized nucleic acid chemistry or enzymatically using, e.g., a polymerase, and, if desired, be modified. Typical modifications include methylation, biotinylation, and other art-known modifications. In addition, the nucleic acid molecule can be single-stranded or double-stranded and, where desired, linked to a detectable moiety. The representation of nucleotide bases herein follows International Union of Pure and Applied Chemistry (IUPAC) nomenclature (see U.S. Pub. No. 2009/0181855, incorporated by reference in its entirety).


“Preimmune” antibody libraries have sequence diversities and length diversities similar to naturally occurring human antibody sequences before these sequences have undergone negative selection and/or somatic hypermutation. For example, the set of sequences described in Lee et al. (Immunogenetics, 2006, 57: 917, incorporated by reference in its entirety) and the Human Preimmune Set (HPS) described herein (see Appendix A) are believed to represent sequences from the preimmune repertoire. In certain embodiments of the invention, the sequences of the invention will be similar to these sequences (e.g., in terms of composition and length).


As used herein, the term “sitewise stochastic” describes a process of generating a sequence of amino acids, where only the amino acid occurrences at the individual positions are considered, and higher order motifs (e.g., pair-wise correlations) are not accounted for (e.g., see Knappik, et al., J Mol Biol, 2000, 296: 57, and analysis provided in U.S. Publication No. 2009/0181855, each incorporated by reference in its entirety).


The term “split-pool synthesis” refers to a procedure in which the products of a plurality of individual first reactions are combined (pooled) and then separated (split) before participating in a plurality of second reactions. For example, U.S. Publication No. 2009/0181855 (incorporated by reference in its entirety) describes the synthesis of 278 DH segments (products), each in a separate reaction. After synthesis, these 278 segments are combined (pooled) and then distributed (split) amongst 141 columns for the synthesis of the N2 segments. This enables the pairing of each of the 278 DH segments with each of 141 N2 segments.


As used herein, “stochastic” describes a process of generating a random sequence of nucleotides or amino acids, which is considered as a sample of one element from a probability distribution (e.g., see U.S. Pat. No. 5,723,323).


As used herein, the term “synthetic polynucleotide” refers to a molecule formed through a chemical process, as opposed to molecules of natural origin, or molecules derived via template-based amplification of molecules of natural origin (e.g., immunoglobulin chains cloned from populations of B cells via PCR amplification are not “synthetic” as used herein). In some instances, for example, when referring to libraries of the invention that comprise multiple segments (e.g., TN1, DH, N2, and/or H3-JH), the invention encompasses libraries in which at least one, two, three, or four of the aforementioned components is synthetic. By way of illustration, a library in which certain components are synthetic, while other components are of natural origin or derived via template-based amplification of molecules of natural origin, would be encompassed by the invention. Libraries that are fully synthetic would, of course, also be encompassed by the invention.


The term “theoretical diversity” refers to the maximum number of variants in a library design. For example, given an amino acid sequence of three residues, where residues one and three may each be any one of five amino acid types and residue two may be any one of 20 amino acid types, the theoretical diversity is 5×20×5=500 possible sequences. Similarly if sequence X is constructed by combination of 4 amino acid segments, where segment 1 has 100 possible sequences, segment 2 has 75 possible sequences, segment 3 has 250 possible sequences, and segment 4 has 30 possible sequences, the theoretical diversity of fragment X would be 100×75×200×30, or 5.6×105 possible sequences.


The term “theoretical segment pool” refers to a set of polynucleotide or polypeptide segments that can be used as building blocks to assemble a larger polynucleotide or polypeptide. For example, a theoretical segment pool containing TN1, DH, N2, and H3-JH segments can be used to assemble a library of CDRH3 sequences by concatenating them combinatorially to form a sequence represented by [TN1]-[DH]-[N2]-[H3-JH], and synthesizing the corresponding oligonucleotide(s). The term “theoretical segment pool” can apply to any set of polynucleotide or polypeptide segments. Thus, while a set of TN1, DH, N2, and H3-JH segments are collectively considered a theoretical segment pool, each of the individual sets of segments also comprise a theoretical segment pool, specifically a TN1 theoretical segment pool, a DH theoretical segment pool, an N2 theoretical segment pool, and an H3-JH theoretical segment pool. Any subsets of these theoretical segment pools containing two or more sequences can also be considered theoretical segment pools.


The term “unique,” as used herein, refers to a sequence that is different (e.g., has a different chemical structure) from every other sequence within the designed set (e.g., the theoretical diversity). It should be understood that there are likely to be more than one copy of many unique sequences from the theoretical diversity in a particular physical realization. For example, a library comprising three unique sequences at the theoretical level may comprise nine total members if each sequence occurs three times in the physical realization of the library. However, in certain embodiments, each unique sequence may occur only once, less than once, or more than once.


The term “variable” refers to the portions of the immunoglobulin domains that exhibit variability in their sequence and that are involved in determining the specificity and binding affinity of a particular antibody (i.e., the “variable domain(s)”). Variability is not evenly distributed throughout the variable domains of antibodies; it is concentrated in sub-domains of each of the heavy and light chain variable regions. These sub-domains are called “hypervariable” regions or “complementarity determining regions” (CDRs). The more conserved (i.e., non-hypervariable) portions of the variable domains are called the “framework” regions (FRM). The variable domains of naturally occurring heavy and light chains each comprise four FRM regions, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRM and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site (see Kabat et al. Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md., 1991, incorporated by reference in its entirety). The constant domains are not directly involved in antigen binding, but exhibit various effector functions, such as, for example, antibody-dependent, cell-mediated cytotoxicity and complement activation.


Libraries of the invention containing “VKCDR3” sequences and “VλCDR3” sequences refer to the kappa and lambda sub-sets of the light chain CDR3 (CDRL3) sequences, respectively. Such libraries may be designed with directed diversity, to collectively represent the length and sequence diversity of the human antibody CDRL3 repertoire. “Preimmune” versions of these libraries have similar sequence diversities and length diversities as naturally occurring human antibody CDRL3 sequences before these sequences undergo negative selection and/or somatic hypermutation. Known human CDRL3 sequences are represented in various data sets, including the NCBI database, WO/2009/036379, and Martin, Proteins, 1996, 25: 130 each incorporated by reference in its entirety.


General Design of Libraries


Antibody libraries provided by the present invention may be designed to reflect certain aspects of the preimmune repertoire as created by the human immune system. Certain libraries of the invention are based on rational design informed by collections of human V, D, and J genes, and large databases of human heavy and light chain sequences (e.g., publicly known germline sequences and sequences from Jackson et al., J. Immunol Methods, 2007, 324: 26; Lee et al., Immunogenetics, 2006, 57: 917; Boyd et al., Science Translational Medicine, 2009, 1: 1-8, each incorporated by reference in its entirety; and sequences compiled from rearranged VK and Vλ sequences (see WO/2009/036379, also incorporated by reference in its entirety). Additional information may be found, for example, in Scaviner et al., Exp. Clin. Immunogenet., 1999, 16: 234; Tomlinson et al., J. Mol. Biol., 1992, 227: 799; and Matsuda et al., J. Exp. Med., 1998, 188: 2151, each incorporated by reference in its entirety.


In certain embodiments of the invention, segments representing the possible V, D, and J diversity found in the human repertoire, as well as junctional diversity (i.e., TN1 and N2), are synthesized de novo as single or double-stranded DNA oligonucleotides. In certain embodiments of the invention, oligonucleotides encoding CDR sequences are introduced into yeast along with one or more acceptor vectors containing heavy or light chain chassis sequences and constant domains. No primer-based PCR amplification or template-directed cloning steps from mammalian cDNA or mRNA are employed. Through standard homologous recombination, the recipient yeast recombines the CDR segments with the acceptor vectors containing the chassis sequences and constant regions, to create a properly ordered synthetic, full-length human heavy chain and/or light chain immunoglobulin library that can be genetically propagated, expressed, presented, and screened. One of ordinary skill in the art will readily recognize that the acceptor vector can be designed so as to produce constructs other than full-length human heavy chains and/or light chains. For example, in certain embodiments of the invention, the chassis may be designed to encode portions of a polypeptide encoding an antibody fragment or subunit of an antibody fragment, so that a sequence encoding an antibody fragment, or subunit thereof, is produced when the oligonucleotide cassette containing the CDR is recombined with the acceptor vector.


Thus, in certain embodiments, the invention provides a synthetic, preimmune human antibody repertoire the repertoire comprising:


(a) one or more selected human antibody heavy chain chassis (i.e., amino acids 1 to 94 of the heavy chain variable region, using Kabat's definition);


(b) a CDRH3 repertoire (described more fully below), designed based on the human IGHD and IGHJ germline sequences, and the extraction of TN1 and N2 sequences from reference sets of human CDRH3 sequences, the CDRH3 repertoire comprising (i) a TN1 segment; (ii) a DH segment; (iii) an N2 segment; (iv) an H3-JH segment.


(c) one or more selected human antibody kappa and/or lambda light chain chassis; and


(d) a CDRL3 repertoire designed based on the human IGLV and IGLJ germline sequences, wherein “L” may be a kappa or lambda light chain.


The instant invention also provides methods for producing and using such libraries, as well as libraries comprising one or more immunoglobulin domains or antibody fragments. Design and synthesis of each component of the antibody libraries of the invention is provided in more detail below.


Design of Antibody Library Chassis Sequences


In certain embodiments, provided libraries are constructed from selected chassis sequences that are based on naturally occurring variable domain sequences (e.g., IGHV and IGLV genes). The selection of such chassis sequences can be done arbitrarily, or through the definition of certain pre-determined criteria. For example, the Kabat database, an electronic database containing non-redundant rearranged antibody sequences, can be queried for those heavy and light chain germline sequences that are most frequently represented. An algorithm such as BLAST, or a more specialized tool such as SoDA (Volpe et al., Bioinformatics, 2006, 22: 438-44, incorporated by reference in its entirety), can be used to compare rearranged antibody sequences with germline sequences (e.g., using the V BASE2 database; see, for example, Retter et al., Nucleic Acids Res., 2005, 33: D671-D674, incorporated by reference in its entirety), or similar collections of human V, D, and J genes, to identify germline families that are most frequently used to generate functional antibodies.


Several criteria can be utilized for the selection of chassis for inclusion in the libraries of the invention. For example, sequences that are known (or have been determined) to express poorly in yeast, or other organisms used in the invention (e.g., bacteria, mammalian cells, fungi, or plants) can be excluded from the libraries. Chassis may also be chosen based on the representation of their corresponding germline genes in the peripheral blood of humans. In certain embodiments of the invention, it may be desirable to select chassis that correspond to germline sequences that are highly represented in the peripheral blood of humans. In some embodiments, it may be desirable to select chassis that correspond to germline sequences that are less frequently represented, for example, to increase the canonical diversity of the library. Therefore, chassis may be selected to produce libraries that represent the largest and most structurally diverse group of functional human antibodies.


In certain embodiments of the invention, less diverse chassis may be utilized, for example, if it is desirable to produce a smaller, more focused library with less chassis variability and greater CDR variability. In some embodiments of the invention, chassis may be selected based on both their expression in a cell of the invention (e.g., a yeast cell) and the diversity of canonical structures represented by the selected sequences. One may therefore produce a library with a diversity of canonical structures that express well in a cell of the invention.


Design of Heavy Chain Chassis Sequences


The design and selection of heavy chain chassis sequences that can be used in the current invention is described in detail in U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379, each of which is incorporated by reference in its entirety, and is therefore described only briefly here.


In general, VH domains of the library comprise three components: (1) a VH “chassis,” which includes amino acids 1 to 94 (using Kabat numbering), (2) the CDRH3, which is defined herein to include the Kabat CDRH3 proper (positions 95-102), and (3) the FRM4 region, including amino acids 103 to 113 (Kabat numbering). The overall VH domain structure may therefore be depicted schematically (not to scale) as:




embedded image


In certain embodiments of the invention, the VH chassis of the libraries may comprise from about Kabat residue 1 to about Kabat residue 94 of one or more of the following IGHV germline sequences: IGHV1-2, IGHV1-3, IGHV1-8, IGHV1-18, IGHV1-24, IGHV1-45, IGHV1-46, IGHV1-58, IGHV1-69, IGH8, IGH56, IGH100, IGHV3-7, IGHV3-9, IGHV3-11, IGHV3-13, IGHV3-15, IGHV3-20, IGHV3-21, IGHV3-23, IGHV3-30, IGHV3-33, IGHV3-43, IGHV3-48, IGHV3-49, IGHV3-53, IGHV3-64, IGHV3-66, IGHV3-72, IGHV3-73, IGHV3-74, IGHV4-4, IGHV4-28, IGHV4-31, IGHV4-34, IGHV4-39, IGHV4-59, IGHV4-61, IGHV4-B, IGHV5-51, IGHV6-1, and/or IGHV7-4-1. In some embodiments of the invention, a library may contain one or more of these sequences, one or more allelic variants of these sequences, or encode an amino acid sequence at least about 99.9%, 99.5%, 99%, 98.5%, 98%, 97.5%, 97%, 96.5%, 96%, 95.5%, 95%, 94.5%, 94%, 93.5%, 93%, 92.5%, 92%, 91.5%, 91%, 90.5%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 77.5%, 75%, 73.5%, 70%, 65%, 60%, 55%, or 50% identical to one or more of these sequences. One of ordinary skill in the art will recognize that given the chassis definition provided above, any IGHV-encoding sequence can be adapted for use as a chassis of the invention. As exemplified in U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379 (each incorporated by reference in its entirety), these chassis can also be varied, particularly by altering the amino acid residues in the CDRH1 and CDRH2 regions, further increasing the diversity of the library.


Design of Light Chain Chassis Sequences


The design and selection of light chain chassis sequences that can be used in the current invention is described in detail in U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379, each of which is incorporated by reference in its entirety, and is therefore described only briefly here. The light chain chassis of the invention may be based on kappa and/or lambda light chain sequences.


The VL domains of the library comprise three primary components: (1) a VL “chassis”, which includes amino acids 1 to 88 (using Kabat numbering), (2) the CDRL3, which is defined herein to include the Kabat CDRL3 proper (positions 89-97), and (3) the FRM4 region, including amino acids 98 to 107 (Kabat numbering). The overall VL domain structure may therefore be depicted schematically (not to scale) as:




embedded image


In certain embodiments of the invention, the VL chassis of the libraries include one or more chassis based on IGKV germline sequences. In certain embodiments of the invention, the VL chassis of the libraries may comprise from about Kabat residue 1 to about Kabat residue 88 of one or more of the following IGKV germline sequences: IGKV1-05, IGKV1-06, IGKV1-08, IGKV1-09, IGKV1-12, IGKV1-13, IGKV1-16, IGKV1-17, IGKV1-27, IGKV1-33, IGKV1-37, IGKV1-39, IGKV1D-16, IGKV1D-17, IGKV1D-43, IGKV1D-8, IGK54, IGK58, IGK59, IGK60, IGK70, IGKV2D-26, IGKV2D-29, IGKV2D-30, IGKV3-11, IGKV3-15, IGKV3-20, IGKV3D-07, IGKV3D-11, IGKV3D-20, IGKV4-1, IGKV5-2, IGKV6-21, and/or IGKV6D-41. In some embodiments of the invention, a library may contain one or more of these sequences, one or more allelic variants of these sequences, or encode an amino acid sequence at least about 99.9%, 99.5%, 99%, 98.5%, 98%, 97.5%, 97%, 96.5%, 96%, 95.5%, 95%, 94.5%, 94%, 93.5%, 93%, 92.5%, 92%, 91.5%, 91%, 90.5%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 77.5%, 75%, 73.5%, 70%, 65%, 60%, 55%, or 50% identical to one or more of these sequences.


In certain embodiments of the invention, the VL chassis of the libraries include one or more chassis based on IGλV germline sequences. In certain embodiments of the invention, the VL chassis of the libraries may comprise from about Kabat residue 1 to about Kabat residue 88 of one or more of the following IGλV germline sequences: IGλV3-1, IGλV3-21, IGλ44, IGλV1-40, IGλV3-19, IGλV1-51, IGλV1-44, IGλV6-57, IGλ11, IGλV3-25, IGλ53, IGλV3-10, IGλV4-69, IGλV1-47, IGλ41, IGλV7-43, IGλV7-46, IGλV5-45, IGλV4-60, IGλV10-54, IGλV8-61, IGλV3-9, IGλV1-36, IGλ48, IGλV3-16, IGλV3-27, IGλV4-3, IGλV5-39, IGλV9-49, and/or IGλV3-12. In some embodiments of the invention, a library may contain one or more of these sequences, one or more allelic variants of these sequences, or encode an amino acid sequence at least about 99.9%, 99.5%, 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, or 50% identical to one or more of these sequences.


One of ordinary skill in the art will recognize that given the chassis definition provided above, any IGKV- or IGλV-encoding sequence can be adapted for use as a chassis of the invention.


Design and Selection of TN1, DH, N2, and H3-JH Segments


The human germline repertoire contains at least six IGHJ genes (IGHJ1, IGHJ2, IGHJ3, IGHJ4, IGHJ5, and IGHJ6; included in Table 14, where the primary allele is designated “01,” and selected allelic variants are designated “02” or “03”), and at least 27 IGHD genes (Table 16, including allelic variants). In some embodiments, the invention comprises a library of CDRH3 polypeptide sequences, or polynucleotide sequences encoding CDRH3 sequences, the library comprising members of any of the theoretical segment pools disclosed herein.


A person of ordinary skill in the art will recognize that not every segment in a theoretical segment pool provided herein is necessary to produce a functional CDRH3 library of the invention. Therefore, in certain embodiments, a CDRH3 library of the invention will contain a subset of the segments of any of the theoretical segment pools described herein. For example, in certain embodiments of the invention, at least about 15, 30, 45, 60, 75, 90, 100, 105, 120, 135, 150, 165, 180, 195, 200, 210, 225, 240, 255, 270, 285, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 500, 520, 540, 560, 580, 600, 620, 640, or 643 of the H3-JH segments of any of the theoretical segment pools provided herein, or generated by the methods described herein, are included in a library. In some embodiments of the invention, at least about 15, 30, 45, 60, 75, 90, 100, 105, 120, 135, 150, 165, 180, 195, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1111, 2000, 3000, 4000, 5000, 6000, 7000, 14000, 21000, 28000, 35000, 42000, 49000, 56000, 63000, or 68374 of the DH segments of any of the theoretical segment pools provided herein, or generated by the methods described herein, are included in a library. In some embodiments of the invention, at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 141, 150, 160, 170, 180, 190, or 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 420, 424, 440, 460, 480, 500, 550, 600, 650, 700, 727, 750, 800, 850, 900, 950, or 1000 of the TN1 and/or N2 segments of any of the theoretical segment pools provided herein, or generated by the methods described herein, are included in a library. In certain embodiments, a library of the invention may contain less than a particular number of polynucleotide or polypeptide segments, where the number of segments is defined using any one of the integers provided above for the respective segment. In some embodiments of the invention, a particular numerical range is defined, using any two of the integers provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the integers provided, which define an upper and lower boundary, are contemplated.


In certain embodiments, the invention provides CDRH3 libraries comprising at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the segments from any of the theoretical segment pools provided herein. For example, the invention provides libraries comprising at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the TN1, DH, N2, and/or H3-JH segments from any of the theoretical segment pools provided herein. In some embodiments of the invention, a particular percentage range is defined, using any two of the percentages provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the percentages provided, which define an upper and lower boundary, are contemplated.


In some embodiments of the invention, at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the H3-JH, DH, TN1, and/or N2 segments in a CDRH3 library are H3-JH, DH, TN1, and/or N2 segments of any of the theoretical segment pools provided herein, or generated by the methods described herein. In some embodiments of the invention, at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the H3-JH, DH, TN1, and/or N2 segments of antibodies isolated from a CDRH3 library (e.g., by binding to a particular antigen and/or generic ligand through one or more rounds of selection) are H3-JH, DH, TN1, and/or N2 segments of any of the theoretical segment pools provided herein, or generated by methods described herein. In certain embodiments, a CDRH3 library of the invention may contain less than a particular percentage of H3-JH, DH, TN1, and/or N2 segments of any of the theoretical segment pools provided herein, or generated by the methods described herein, where the number of segments is defined using any one of the percentages provided above for the respective segment. In some embodiments of the invention, a particular percentage range is defined, using any two of the percentages provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the percentages provided, which define an upper and lower boundary, are contemplated.


One of ordinary skill in the art will appreciate, upon reading the disclosure herein. that given the TN1, DH, N2, and/or H3-JH segments of any of the theoretical segment pools provided herein, or generated by the methods described herein, similar TN1, DH, N2, and/or H3-JH segments, and corresponding CDRH3 libraries, could be produced which, while not 100% identical to those provided in terms of their sequences, may be functionally very similar. Such theoretical segment pools and CDRH3 libraries also fall within the scope of the invention. A variety of techniques well-known in the art could be used to obtain these additional sequences, including the mutagenesis techniques provided herein. Therefore, each of the explicitly enumerated embodiments of the invention can also be practiced using segments that share a particular percent identity to any of the segments of any of the theoretical segment pools provided herein, or generated by the methods described herein. For example, each of the previously described embodiments of the invention can be practiced using TN1, DH, N2, and/or H3-JH segments that are at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 99.9% identical to the TN1, DH, N2, and/or H3-JH segments of any of the theoretical segment pools provided herein, or generated by the methods described herein.


In some embodiments, the invention provides libraries produced from one or more VH chassis sequences combined with one or more TN1 segments, one or more DH segments, one or more N2 segments, and one or more H3-JH segments. In certain embodiments at least 1, 2, 5, 10, 20, 50, 75, or 100, of each chassis, TN1, DH, N2, or H3-JH segments are included in a library of the invention.


In some embodiments, the invention provides a method of selecting TN1, DH, N2, and H3-JH segments from a theoretical segment pool for inclusion in a synthetic CDRH3 library, comprising:

    • (i) providing a theoretical segment pool containing one or more of TN1, DH, N2, and H3-JH segments;
    • (ii) providing a reference set of CDRH3 sequences;
    • (iii) utilizing the theoretical segment pool of (i) to identify the closest match(es) to each CDRH3 sequence in the reference set of (ii); and
    • (iv) selecting segments from the theoretical segment pool for inclusion in a synthetic library.


In some embodiments, the selection process of (iv) can optionally involve any number of additional criteria, including the frequency of occurrence of the segments of (i) in the reference set of (ii); the corresponding segmental usage weights; and any physicochemical properties (see all numerical indices on the world wide web at genome.jp/aaindex/) of the segments (e.g., hydrophobicity, alpha-helical propensity, and/or isoelectric point). Optionally, TN1 and/or N2 segments that do not occur in the theoretical segment pool of (i) but that are found in the reference set of (ii) may be identified and added to prospective theoretical segment pools to produce theoretical segment pools with increased TN1 and/or N2 diversity in the prospective theoretical segment pools and/or synthetic libraries of the invention.


Any characteristic or set of characteristics of the segments can be used to choose them for inclusion in the library, including for example one or more biological properties (e.g., immunogenicity, stability, half-life) and/or one or more physicochemical properties such as the numerical indices provided above. In some embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more such properties is used to select segments for inclusion in a library of the invention. Physiochemical properties included in the index provided above can include, for example, ANDN920101 alpha-CH chemical shifts (Andersen et al., 1992); ARGP820101 Hydrophobicity index (Argos et al., 1982); ARGP820102 Signal sequence helical potential (Argos et al., 1982); ARGP820103 Membrane-buried preference parameters (Argos et al., 1982); BEGF750101 Conformational parameter of inner helix (Beghin-Dirkx, 1975); BEGF750102 Conformational parameter of beta-structure (Beghin-Dirkx, 1975); BEGF750103 Conformational parameter of beta-turn (Beghin-Dirkx, 1975); BHAR880101 Average flexibility indices (Bhaskaran-Ponnuswamy, 1988); BIGC670101 Residue volume (Bigelow, 1967); BIOV880101 Information value for accessibility; average fraction 35% (Biou et al., 1988); BIOV880102 Information value for accessibility; average fraction 23% (Biou et al., 1988); BROC820101 Retention coefficient in TFA (Browne et al., 1982); BROC820102 Retention coefficient in HFBA (Browne et al., 1982); BULH740101 Transfer free energy to surface (Bull-Breese, 1974); BULH740102 Apparent partial specific volume (Bull-Breese, 1974); BUNA790101 alpha-NH chemical shifts (Bundi-Wuthrich, 1979); BUNA790102 alpha-CH chemical shifts (Bundi-Wuthrich, 1979); BUNA790103 Spin-spin coupling constants 3JHalpha-NH (Bundi-Wuthrich, 1979); BURA740101 Normalized frequency of alpha-helix (Burgess et al., 1974); BURA740102 Normalized frequency of extended structure (Burgess et al., 1974); CHAM810101 Steric parameter (Charton, 1981); CHAM820101 Polarizability parameter (Charton-Charton, 1982); CHAM820102 Free energy of solution in water, kcal/mole (Charton-Charton, 1982); CHAM830101 The Chou-Fasman parameter of the coil conformation (Charton-Charton, 1983); CHAM830102 A parameter defined from the residuals obtained from the best correlation of the Chou-Fasman parameter of beta-sheet (Charton-Charton, 1983); CHAM830103 The number of atoms in the side chain labelled 1+1 (Charton-Charton, 1983); CHAM830104 The number of atoms in the side chain labelled 2+1 (Charton-Charton, 1983); CHAM830105 The number of atoms in the side chain labelled 3+1 (Charton-Charton, 1983); CHAM830106 The number of bonds in the longest chain (Charton-Charton, 1983); CHAM830107 A parameter of charge transfer capability (Charton-Charton, 1983); CHAM830108 A parameter of charge transfer donor capability (Charton-Charton, 1983); CHOC750101 Average volume of buried residue (Chothia, 1975); CHOC760101 Residue accessible surface area in tripeptide (Chothia, 1976); CHOC760102 Residue accessible surface area in folded protein (Chothia, 1976); CHOC760103 Proportion of residues 95% buried (Chothia, 1976); CHOC760104 Proportion of residues 100% buried (Chothia, 1976); CHOP780101 Normalized frequency of beta-turn (Chou-Fasman, 1978a); CHOP780201 Normalized frequency of alpha-helix (Chou-Fasman, 1978b); CHOP780202 Normalized frequency of beta-sheet (Chou-Fasman, 1978b); CHOP780203 Normalized frequency of beta-turn (Chou-Fasman, 1978b); CHOP780204 Normalized frequency of N-terminal helix (Chou-Fasman, 1978b); CHOP780205 Normalized frequency of C-terminal helix (Chou-Fasman, 1978b); CHOP780206 Normalized frequency of N-terminal non helical region (Chou-Fasman, 1978b); CHOP780207 Normalized frequency of C-terminal non helical region (Chou-Fasman, 1978b); CHOP780208 Normalized frequency of N-terminal beta-sheet (Chou-Fasman, 1978b); CHOP780209 Normalized frequency of C-terminal beta-sheet (Chou-Fasman, 1978b); CHOP780210 Normalized frequency of N-terminal non beta region (Chou-Fasman, 1978b); CHOP780211 Normalized frequency of C-terminal non beta region (Chou-Fasman, 1978b); CHOP780212 Frequency of the 1st residue in turn (Chou-Fasman, 1978b); CHOP780213 Frequency of the 2nd residue in turn (Chou-Fasman, 1978b); CHOP780214 Frequency of the 3rd residue in turn (Chou-Fasman, 1978b); CHOP780215 Frequency of the 4th residue in turn (Chou-Fasman, 1978b); CHOP780216 Normalized frequency of the 2nd and 3rd residues in turn (Chou-Fasman, 1978b); CIDH920101 Normalized hydrophobicity scales for alpha-proteins (Cid et al., 1992); CIDH920102 Normalized hydrophobicity scales for beta-proteins (Cid et al., 1992); CIDH920103 Normalized hydrophobicity scales for alpha+beta-proteins (Cid et al., 1992); CIDH920104 Normalized hydrophobicity scales for alpha/beta-proteins (Cid et al., 1992); CIDH920105 Normalized average hydrophobicity scales (Cid et al., 1992); COHE430101 Partial specific volume (Cohn-Edsall, 1943); CRAJ730101 Normalized frequency of middle helix (Crawford et al., 1973); CRAJ730102 Normalized frequency of beta-sheet (Crawford et al., 1973); CRAJ730103 Normalized frequency of turn (Crawford et al., 1973); DAWD720101 Size (Dawson, 1972); DAYM780101 Amino acid composition (Dayhoff et al., 1978a); DAYM780201 Relative mutability (Dayhoff et al., 1978b); DESM900101 Membrane preference for cytochrome b: MPH89 (Degli Esposti et al., 1990); DESM900102 Average membrane preference: AMP07 (Degli Esposti et al., 1990); EISD840101 Consensus normalized hydrophobicity scale (Eisenberg, 1984); EISD860101 Solvation free energy (Eisenberg-McLachlan, 1986); EISD860102 Atom-based hydrophobic moment (Eisenberg-McLachlan, 1986); EISD860103 Direction of hydrophobic moment (Eisenberg-McLachlan, 1986); FASG760101 Molecular weight (Fasman, 1976); FASG760102 Melting point (Fasman, 1976); FASG760103 Optical rotation (Fasman, 1976); FASG760104 pK-N (Fasman, 1976); FASG760105 pK-C (Fasman, 1976); FAUJ830101 Hydrophobic parameter pi (Fauchere-Pliska, 1983); FAUJ880101 Graph shape index (Fauchere et al., 1988); FAUJ880102 Smoothed upsilon steric parameter (Fauchere et al., 1988); FAUJ880103 Normalized van der Waals volume (Fauchere et al., 1988); FAUJ880104 STERIMOL length of the side chain (Fauchere et al., 1988); FAUJ880105 STERIMOL minimum width of the side chain (Fauchere et al., 1988); FAUJ880106 STERIMOL maximum width of the side chain (Fauchere et al., 1988); FAUJ880107 N.m.r. chemical shift of alpha-carbon (Fauchere et al., 1988); FAUJ880108 Localized electrical effect (Fauchere et al., 1988); FAUJ880109 Number of hydrogen bond donors (Fauchere et al., 1988); FAUJ880110 Number of full nonbonding orbitals (Fauchere et al., 1988); FAUJ880111 Positive charge (Fauchere et al., 1988); FAUJ880112 Negative charge (Fauchere et al., 1988); FAUJ880113 pK-a (RCOOH) (Fauchere et al., 1988); FINA770101 Helix-coil equilibrium constant (Finkelstein-Ptitsyn, 1977); FINA910101 Helix initiation parameter at posision i−1 (Finkelstein et al., 1991); FINA910102 Helix initiation parameter at posision i, i+1, i+2 (Finkelstein et al., 1991); FINA910103 Helix termination parameter at posision j−2,j−1,j (Finkelstein et al., 1991); FINA910104 Helix termination parameter at posision j+1 (Finkelstein et al., 1991); GARJ730101 Partition coefficient (Garel et al., 1973); GEIM800101 Alpha-helix indices (Geisow-Roberts, 1980); GEIM800102 Alpha-helix indices for alpha-proteins (Geisow-Roberts, 1980); GEIM800103 Alpha-helix indices for beta-proteins (Geisow-Roberts, 1980); GEIM800104 Alpha-helix indices for alpha/beta-proteins (Geisow-Roberts, 1980); GEIM800105 Beta-strand indices (Geisow-Roberts, 1980); GEIM800106 Beta-strand indices for beta-proteins (Geisow-Roberts, 1980); GEIM800107 Beta-strand indices for alpha/beta-proteins (Geisow-Roberts, 1980)


GEIM800108 Aperiodic indices (Geisow-Roberts, 1980); GEI M800109 Aperiodic indices for alpha-proteins (Geisow-Roberts, 1980); GEIM800110 Aperiodic indices for beta-proteins (Geisow-Roberts, 1980); GEIM800111 Aperiodic indices for alpha/beta-proteins (Geisow-Roberts, 1980); GOLD730101 Hydrophobicity factor (Goldsack-Chalifoux, 1973); GOLD730102 Residue volume (Goldsack-Chalifoux, 1973); GRAR740101 Composition (Grantham, 1974); GRAR740102 Polarity (Grantham, 1974)


GRAR740103 Volume (Grantham, 1974); GUYH850101 Partition energy (Guy, 1985); HOPA770101 Hydration number (Hopfinger, 1971), Cited by Charton-Charton (1982)


HOPT810101 Hydrophilicity value (Hopp-Woods, 1981); HUTJ700101 Heat capacity (Hutchens, 1970); HUTJ700102 Absolute entropy (Hutchens, 1970); HUTJ700103 Entropy of formation (Hutchens, 1970); ISOY800101 Normalized relative frequency of alpha-helix (Isogai et al., 1980); ISOY800102 Normalized relative frequency of extended structure (Isogai et al., 1980); ISOY800103 Normalized relative frequency of bend (Isogai et al., 1980); ISOY800104 Normalized relative frequency of bend R (Isogai et al., 1980); ISOY800105 Normalized relative frequency of bend S (Isogai et al., 1980); ISOY800106 Normalized relative frequency of helix end (Isogai et al., 1980); ISOY800107 Normalized relative frequency of double bend (Isogai et al., 1980); ISOY800108 Normalized relative frequency of coil (Isogai et al., 1980); JANJ780101 Average accessible surface area (Janin et al., 1978); JANJ780102 Percentage of buried residues (Janin et al., 1978); JANJ780103 Percentage of exposed residues (Janin et al., 1978); JANJ790101 Ratio of buried and accessible molar fractions (Janin, 1979); JANJ790102 Transfer free energy (Janin, 1979); JOND750101 Hydrophobicity (Jones, 1975); JOND750102 pK (—COOH) (Jones, 1975); JOND920101 Relative frequency of occurrence (Jones et al., 1992); JOND920102 Relative mutability (Jones et al., 1992)


JUKT750101 Amino acid distribution (Jukes et al., 1975); JUNJ780101 Sequence frequency (Jungck, 1978); KANM800101 Average relative probability of helix (Kanehisa-Tsong, 1980); KANM800102 Average relative probability of beta-sheet (Kanehisa-Tsong, 1980); KANM800103 Average relative probability of inner helix (Kanehisa-Tsong, 1980); KANM800104 Average relative probability of inner beta-sheet (Kanehisa-Tsong, 1980); KARP850101 Flexibility parameter for no rigid neighbors (Karplus-Schulz, 1985); KARP850102 Flexibility parameter for one rigid neighbor (Karplus-Schulz, 1985); KARP850103 Flexibility parameter for two rigid neighbors (Karplus-Schulz, 1985); KHAG800101 The Kerr-constant increments (Khanarian-Moore, 1980); KLEP840101 Net charge (Klein et al., 1984); KRIW710101 Side chain interaction parameter (Krigbaum-Rubin, 1971); KRIW790101 Side chain interaction parameter (Krigbaum-Komoriya, 1979); KRIW790102 Fraction of site occupied by water (Krigbaum-Komoriya, 1979); KRIW790103 Side chain volume (Krigbaum-Komoriya, 1979); KYTJ820101 Hydropathy index (Kyte-Doolittle, 1982); LAWE840101 Transfer free energy, CHP/water (Lawson et al., 1984); LEVM760101 Hydrophobic parameter (Levitt, 1976); LEVM760102 Distance between C-alpha and centroid of side chain (Levitt, 1976); LEVM760103 Side chain angle theta(AAR) (Levitt, 1976); LEVM760104 Side chain torsion angle phi(AAAR) (Levitt, 1976); LEVM760105 Radius of gyration of side chain (Levitt, 1976); LEVM760106 van der Waals parameter RO (Levitt, 1976)


LEVM760107 van der Waals parameter epsilon (Levitt, 1976); LEVM780101 Normalized frequency of alpha-helix, with weights (Levitt, 1978); LEVM780102 Normalized frequency of beta-sheet, with weights (Levitt, 1978); LEVM780103 Normalized frequency of reverse turn, with weights (Levitt, 1978); LEVM780104 Normalized frequency of alpha-helix, unweighted (Levitt, 1978); LEVM780105 Normalized frequency of beta-sheet, unweighted (Levitt, 1978); LEVM780106 Normalized frequency of reverse turn, unweighted (Levitt, 1978); LEWP710101 Frequency of occurrence in beta-bends (Lewis et al., 1971); LIFS790101 Conformational preference for all beta-strands (Lifson-Sander, 1979); LIFS790102 Conformational preference for parallel beta-strands (Lifson-Sander, 1979); LIFS790103 Conformational preference for antiparallel beta-strands (Lifson-Sander, 1979); MANP780101 Average surrounding hydrophobicity (Manavalan-Ponnuswamy, 1978); MAXF760101 Normalized frequency of alpha-helix (Maxfield-Scheraga, 1976); MAXF760102 Normalized frequency of extended structure (Maxfield-Scheraga, 1976); MAXF760103 Normalized frequency of zeta R (Maxfield-Scheraga, 1976); MAXF760104 Normalized frequency of left-handed alpha-helix (Maxfield-Scheraga, 1976); MAXF760105 Normalized frequency of zeta L (Maxfield-Scheraga, 1976); MAXF760106 Normalized frequency of alpha region (Maxfield-Scheraga, 1976); MCMT640101 Refractivity (McMeekin et al., 1964), Cited by Jones (1975); MEEJ800101 Retention coefficient in HPLC, pH7.4 (Meek, 1980); MEEJ800102 Retention coefficient in HPLC, pH2.1 (Meek, 1980); MEEJ810101 Retention coefficient in NaClO4 (Meek-Rossetti, 1981); MEEJ810102 Retention coefficient in NaH2PO4 (Meek-Rossetti, 1981); MEIH800101 Average reduced distance for C-alpha (Meirovitch et al., 1980); MEIH800102 Average reduced distance for side chain (Meirovitch et al., 1980); MEIH800103 Average side chain orientation angle (Meirovitch et al., 1980); MIYS850101 Effective partition energy (Miyazawa-Jernigan, 1985); NAGK730101 Normalized frequency of alpha-helix (Nagano, 1973); NAGK730102 Normalized frequency of bata-structure (Nagano, 1973)


NAGK730103 Normalized frequency of coil (Nagano, 1973); NAKH900101 AA composition of total proteins (Nakashima et al., 1990); NAKH900102 SD of AA composition of total proteins (Nakashima et al., 1990); NAKH900103 AA composition of mt-proteins (Nakashima et al., 1990); NAKH900104 Normalized composition of mt-proteins (Nakashima et al., 1990); NAKH900105 AA composition of mt-proteins from animal (Nakashima et al., 1990); NAKH900106 Normalized composition from animal (Nakashima et al., 1990); NAKH900107 AA composition of mt-proteins from fungi and plant (Nakashima et al., 1990); NAKH900108 Normalized composition from fungi and plant (Nakashima et al., 1990); NAKH900109 AA composition of membrane proteins (Nakashima et al., 1990); NAKH900110 Normalized composition of membrane proteins (Nakashima et al., 1990); NAKH900111 Transmembrane regions of non-mt-proteins (Nakashima et al., 1990); NAKH900112 Transmembrane regions of mt-proteins (Nakashima et al., 1990); NAKH900113 Ratio of average and computed composition (Nakashima et al., 1990); NAKH920101 AA composition of CYT of single-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920102 AA composition of CYT2 of single-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920103 AA composition of EXT of single-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920104 AA composition of EXT2 of single-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920105 AA composition of MEM of single-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920106 AA composition of CYT of multi-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920107 AA composition of EXT of multi-spanning proteins (Nakashima-Nishikawa, 1992); NAKH920108 AA composition of MEM of multi-spanning proteins (Nakashima-Nishikawa, 1992); NISK800101 8 A contact number (Nishikawa-Ooi, 1980); NISK860101 14 A contact number (Nishikawa-Ooi, 1986); NOZY710101 Transfer energy, organic solvent/water (Nozaki-Tanford, 1971); OOBM770101 Average non-bonded energy per atom (Oobatake-Ooi, 1977); OOBM770102 Short and medium range non-bonded energy per atom (Oobatake-Ooi, 1977); OOBM770103 Long range non-bonded energy per atom (Oobatake-Ooi, 1977)


OOBM770104 Average non-bonded energy per residue (Oobatake-Ooi, 1977); OOBM770105 Short and medium range non-bonded energy per residue (Oobatake-Ooi, 1977); OOBM850101 Optimized beta-structure-coil equilibrium constant (Oobatake et al., 1985); OOBM850102 Optimized propensity to form reverse turn (Oobatake et al., 1985); OOBM850103 Optimized transfer energy parameter (Oobatake et al., 1985); OOBM850104 Optimized average non-bonded energy per atom (Oobatake et al., 1985); OOBM850105 Optimized side chain interaction parameter (Oobatake et al., 1985); PALJ810101 Normalized frequency of alpha-helix from LG (Palau et al., 1981); PALJ810102 Normalized frequency of alpha-helix from CF (Palau et al., 1981); PALJ810103 Normalized frequency of beta-sheet from LG (Palau et al., 1981); PALJ810104 Normalized frequency of beta-sheet from CF (Palau et al., 1981); PALJ810105 Normalized frequency of turn from LG (Palau et al., 1981); PALJ810106 Normalized frequency of turn from CF (Palau et al., 1981); PALJ810107 Normalized frequency of alpha-helix in all-alpha class (Palau et al., 1981); PALJ810108 Normalized frequency of alpha-helix in alpha+beta class (Palau et al., 1981); PALJ810109 Normalized frequency of alpha-helix in alpha/beta class (Palau et al., 1981); PALJ810110 Normalized frequency of beta-sheet in all-beta class (Palau et al., 1981); PALJ810111 Normalized frequency of beta-sheet in alpha+beta class (Palau et al., 1981); PALJ810112 Normalized frequency of beta-sheet in alpha/beta class (Palau et al., 1981); PALJ810113 Normalized frequency of turn in all-alpha class (Palau et al., 1981); PALJ810114 Normalized frequency of turn in all-beta class (Palau et al., 1981); PALJ810115 Normalized frequency of turn in alpha+beta class (Palau et al., 1981); PALJ810116 Normalized frequency of turn in alpha/beta class (Palau et al., 1981); PARJ860101 HPLC parameter (Parker et al., 1986); PLIV810101 Partition coefficient (Pliska et al., 1981); PONP800101 Surrounding hydrophobicity in folded form (Ponnuswamy et al., 1980); PONP800102 Average gain in surrounding hydrophobicity (Ponnuswamy et al., 1980); PONP800103 Average gain ratio in surrounding hydrophobicity (Ponnuswamy et al., 1980); PONP800104 Surrounding hydrophobicity in alpha-helix (Ponnuswamy et al., 1980); PONP800105 Surrounding hydrophobicity in beta-sheet (Ponnuswamy et al., 1980); PONP800106 Surrounding hydrophobicity in turn (Ponnuswamy et al., 1980); PONP800107 Accessibility reduction ratio (Ponnuswamy et al., 1980); PONP800108 Average number of surrounding residues (Ponnuswamy et al., 1980); PRAM820101 Intercept in regression analysis (Prabhakaran-Ponnuswamy, 1982); PRAM820102 Slope in regression analysis×1.0E1 (Prabhakaran-Ponnuswamy, 1982); PRAM820103 Correlation coefficient in regression analysis (Prabhakaran-Ponnuswamy, 1982); PRAM900101 Hydrophobicity (Prabhakaran, 1990); PRAM900102 Relative frequency in alpha-helix (Prabhakaran, 1990); PRAM900103 Relative frequency in beta-sheet (Prabhakaran, 1990); PRAM900104 Relative frequency in reverse-turn (Prabhakaran, 1990); PTIO830101 Helix-coil equilibrium constant (Ptitsyn-Finkelstein, 1983); PTIO830102 Beta-coil equilibrium constant (Ptitsyn-Finkelstein, 1983); QIAN880101 Weights for alpha-helix at the window position of −6 (Qian-Sejnowski, 1988); QIAN880102 Weights for alpha-helix at the window position of −5 (Qian-Sejnowski, 1988); QIAN880103 Weights for alpha-helix at the window position of −4 (Qian-Sejnowski, 1988); QIAN880104 Weights for alpha-helix at the window position of −3 (Qian-Sejnowski, 1988); QIAN880105 Weights for alpha-helix at the window position of −2 (Qian-Sejnowski, 1988); QIAN880106 Weights for alpha-helix at the window position of −1 (Qian-Sejnowski, 1988); QIAN880107 Weights for alpha-helix at the window position of 0 (Qian-Sejnowski, 1988); QIAN880108 Weights for alpha-helix at the window position of 1 (Qian-Sejnowski, 1988); QIAN880109 Weights for alpha-helix at the window position of 2 (Qian-Sejnowski, 1988); QIAN880110 Weights for alpha-helix at the window position of 3 (Qian-Sejnowski, 1988); QIAN880111 Weights for alpha-helix at the window position of 4 (Qian-Sejnowski, 1988); QIAN880112 Weights for alpha-helix at the window position of 5 (Qian-Sejnowski, 1988); QIAN880113 Weights for alpha-helix at the window position of 6 (Qian-Sejnowski, 1988); QIAN880114 Weights for beta-sheet at the window position of −6 (Qian-Sejnowski, 1988); QIAN880115 Weights for beta-sheet at the window position of −5 (Qian-Sejnowski, 1988); QIAN880116 Weights for beta-sheet at the window position of −4 (Qian-Sejnowski, 1988); QIAN880117 Weights for beta-sheet at the window position of −3 (Qian-Sejnowski, 1988); QIAN880118 Weights for beta-sheet at the window position of −2 (Qian-Sejnowski, 1988); QIAN880119 Weights for beta-sheet at the window position of −1 (Qian-Sejnowski, 1988); QIAN880120 Weights for beta-sheet at the window position of 0 (Qian-Sejnowski, 1988); QIAN880121 Weights for beta-sheet at the window position of 1 (Qian-Sejnowski, 1988); QIAN880122 Weights for beta-sheet at the window position of 2 (Qian-Sejnowski, 1988); QIAN880123 Weights for beta-sheet at the window position of 3 (Qian-Sejnowski, 1988); QIAN880124 Weights for beta-sheet at the window position of 4 (Qian-Sejnowski, 1988); QIAN880125 Weights for beta-sheet at the window position of 5 (Qian-Sejnowski, 1988); QIAN880126 Weights for beta-sheet at the window position of 6 (Qian-Sejnowski, 1988); QIAN880127 Weights for coil at the window position of −6 (Qian-Sejnowski, 1988); QIAN880128 Weights for coil at the window position of −5 (Qian-Sejnowski, 1988); QIAN880129 Weights for coil at the window position of −4 (Qian-Sejnowski, 1988); QIAN880130 Weights for coil at the window position of −3 (Qian-Sejnowski, 1988); QIAN880131 Weights for coil at the window position of −2 (Qian-Sejnowski, 1988); QIAN880132 Weights for coil at the window position of −1 (Qian-Sejnowski, 1988); QIAN880133 Weights for coil at the window position of 0 (Qian-Sejnowski, 1988); QIAN880134 Weights for coil at the window position of 1 (Qian-Sejnowski, 1988); QIAN880135 Weights for coil at the window position of 2 (Qian-Sejnowski, 1988); QIAN880136 Weights for coil at the window position of 3 (Qian-Sejnowski, 1988); QIAN880137 Weights for coil at the window position of 4 (Qian-Sejnowski, 1988); QIAN880138 Weights for coil at the window position of 5 (Qian-Sejnowski, 1988); QIAN880139 Weights for coil at the window position of 6 (Qian-Sejnowski, 1988); RACS770101 Average reduced distance for C-alpha (Rackovsky-Scheraga, 1977); RACS770102 Average reduced distance for side chain (Rackovsky-Scheraga, 1977); RACS770103 Side chain orientational preference (Rackovsky-Scheraga, 1977); RACS820101 Average relative fractional occurrence in A0(i) (Rackovsky-Scheraga, 1982); RACS820102 Average relative fractional occurrence in AR(i) (Rackovsky-Scheraga, 1982); RACS820103 Average relative fractional occurrence in AL(i) (Rackovsky-Scheraga, 1982); RACS820104 Average relative fractional occurrence in EL(i) (Rackovsky-Scheraga, 1982); RACS820105 Average relative fractional occurrence in E0(i) (Rackovsky-Scheraga, 1982); RACS820106 Average relative fractional occurrence in ER(i) (Rackovsky-Scheraga, 1982); RACS820107 Average relative fractional occurrence in A0(i−1) (Rackovsky-Scheraga, 1982); RACS820108 Average relative fractional occurrence in AR(i−1) (Rackovsky-Scheraga, 1982); RACS820109 Average relative fractional occurrence in AL(i−1) (Rackovsky-Scheraga, 1982); RACS820110 Average relative fractional occurrence in EL(i−1) (Rackovsky-Scheraga, 1982); RACS820111 Average relative fractional occurrence in E0(i−1) (Rackovsky-Scheraga, 1982); RACS820112 Average relative fractional occurrence in ER(i−1) (Rackovsky-Scheraga, 1982); RACS820113 Value of theta(i) (Rackovsky-Scheraga, 1982); RACS820114 Value of theta(i−1) (Rackovsky-Scheraga, 1982); RADA880101 Transfer free energy from chx to wat (Radzicka-Wolfenden, 1988); RADA880102 Transfer free energy from oct to wat (Radzicka-Wolfenden, 1988); RADA880103 Transfer free energy from yap to chx (Radzicka-Wolfenden, 1988); RADA880104 Transfer free energy from chx to oct (Radzicka-Wolfenden, 1988); RADA880105 Transfer free energy from yap to oct (Radzicka-Wolfenden, 1988); RADA880106 Accessible surface area (Radzicka-Wolfenden, 1988); RADA880107 Energy transfer from out to in (95% buried) (Radzicka-Wolfenden, 1988); RADA880108 Mean polarity (Radzicka-Wolfenden, 1988); RICJ880101 Relative preference value at N″ (Richardson-Richardson, 1988); RICJ880102 Relative preference value at N′ (Richardson-Richardson, 1988); RICJ880103 Relative preference value at N-cap (Richardson-Richardson, 1988); RICJ880104 Relative preference value at N1 (Richardson-Richardson, 1988); RICJ880105 Relative preference value at N2 (Richardson-Richardson, 1988); RICJ880106 Relative preference value at N3 (Richardson-Richardson, 1988); RICJ880107 Relative preference value at N4 (Richardson-Richardson, 1988); RICJ880108 Relative preference value at N5 (Richardson-Richardson, 1988); RICJ880109 Relative preference value at Mid (Richardson-Richardson, 1988); RICJ880110 Relative preference value at C5 (Richardson-Richardson, 1988); RICJ880111 Relative preference value at C4 (Richardson-Richardson, 1988); RICJ880112 Relative preference value at C3 (Richardson-Richardson, 1988); RICJ880113 Relative preference value at C2 (Richardson-Richardson, 1988); RICJ880114 Relative preference value at C1 (Richardson-Richardson, 1988); RICJ880115 Relative preference value at C-cap (Richardson-Richardson, 1988); RICJ880116 Relative preference value at C′ (Richardson-Richardson, 1988); RICJ880117 Relative preference value at C″ (Richardson-Richardson, 1988); ROBB760101 Information measure for alpha-helix (Robson-Suzuki, 1976); ROBB760102 Information measure for N-terminal helix (Robson-Suzuki, 1976); ROBB760103 Information measure for middle helix (Robson-Suzuki, 1976); ROBB760104 Information measure for C-terminal helix (Robson-Suzuki, 1976); ROBB760105 Information measure for extended (Robson-Suzuki, 1976); ROBB760106 Information measure for pleated-sheet (Robson-Suzuki, 1976); ROBB760107 Information measure for extended without H-bond (Robson-Suzuki, 1976); ROBB760108 Information measure for turn (Robson-Suzuki, 1976); ROBB760109 Information measure for N-terminal turn (Robson-Suzuki, 1976); ROBB760110 Information measure for middle turn (Robson-Suzuki, 1976); ROBB760111 Information measure for C-terminal turn (Robson-Suzuki, 1976); ROBB760112 Information measure for coil (Robson-Suzuki, 1976); ROBB760113 Information measure for loop (Robson-Suzuki, 1976); ROBB790101 Hydration free energy (Robson-Osguthorpe, 1979); ROSG850101 Mean area buried on transfer (Rose et al., 1985); ROSG850102 Mean fractional area loss (Rose et al., 1985); ROSM880101 Side chain hydropathy, uncorrected for solvation (Roseman, 1988); ROSM880102 Side chain hydropathy, corrected for solvation (Roseman, 1988); ROSM880103 Loss of Side chain hydropathy by helix formation (Roseman, 1988); SIMZ760101 Transfer free energy (Simon, 1976), Cited by Charton-Charton (1982); SNEP660101 Principal component I (Sneath, 1966); SNEP660102 Principal component II (Sneath, 1966); SNEP660103 Principal component III (Sneath, 1966); SNEP660104 Principal component IV (Sneath, 1966); SUEM840101 Zimm-Bragg parameter s at 20 C (Sueki et al., 1984); SUEM840102 Zimm-Bragg parameter sigma×1.0E4 (Sueki et al., 1984); SWER830101 Optimal matching hydrophobicity (Sweet-Eisenberg, 1983); TANS770101 Normalized frequency of alpha-helix (Tanaka-Scheraga, 1977); TANS770102 Normalized frequency of isolated helix (Tanaka-Scheraga, 1977); TANS770103 Normalized frequency of extended structure (Tanaka-Scheraga, 1977); TANS770104 Normalized frequency of chain reversal R (Tanaka-Scheraga, 1977); TANS770105 Normalized frequency of chain reversal S (Tanaka-Scheraga, 1977); TANS770106 Normalized frequency of chain reversal D (Tanaka-Scheraga, 1977); TANS770107 Normalized frequency of left-handed helix (Tanaka-Scheraga, 1977); TANS770108 Normalized frequency of zeta R (Tanaka-Scheraga, 1977); TANS770109 Normalized frequency of coil (Tanaka-Scheraga, 1977) TANS770110 Normalized frequency of chain reversal (Tanaka-Scheraga, 1977); VASM830101 Relative population of conformational state A (Vasquez et al., 1983); VASM830102 Relative population of conformational state C (Vasquez et al., 1983); VASM830103 Relative population of conformational state E (Vasquez et al., 1983); VELV850101 Electron-ion interaction potential (Veljkovic et al., 1985); VENT840101 Bitterness (Venanzi, 1984); VHEG790101 Transfer free energy to lipophilic phase (von Heijne-Blomberg, 1979); WARP780101 Average interactions per side chain atom (Warme-Morgan, 1978); WEBA780101 RF value in high salt chromatography (Weber-Lacey, 1978); WERD780101 Propensity to be buried inside (Wertz-Scheraga, 1978); WERD780102 Free energy change of epsilon(i) to epsilon(ex) (Wertz-Scheraga, 1978); WERD780103 Free energy change of alpha(Ri) to alpha(Rh) (Wertz-Scheraga, 1978); WERD780104 Free energy change of epsilon(i) to alpha(Rh) (Wertz-Scheraga, 1978); WOEC730101 Polar requirement (Woese, 1973); WOLR810101 Hydration potential (Wolfenden et al., 1981); WOLS870101 Principal property value z1 (Wold et al., 1987); WOLS870102 Principal property value z2 (Wold et al., 1987); WOLS870103 Principal property value z3 (Wold et al., 1987); YUTK870101 Unfolding Gibbs energy in water, pH7.0 (Yutani et al., 1987); YUTK870102 Unfolding Gibbs energy in water, pH9.0 (Yutani et al., 1987); YUTK870103 Activation Gibbs energy of unfolding, pH7.0 (Yutani et al., 1987); YUTK870104 Activation Gibbs energy of unfolding, pH9.0 (Yutani et al., 1987); ZASB820101 Dependence of partition coefficient on ionic strength (Zaslaysky et al., 1982); ZIMJ680101 Hydrophobicity (Zimmerman et al., 1968); ZIMJ680102 Bulkiness (Zimmerman et al., 1968); ZIMJ680103 Polarity (Zimmerman et al., 1968); ZIMJ680104 Isoelectric point (Zimmerman et al., 1968); ZIMJ680105 RF rank (Zimmerman et al., 1968); AURR980101 Normalized positional residue frequency at helix termini N4′(Aurora-Rose, 1998); AURR980102 Normalized positional residue frequency at helix termini N′″ (Aurora-Rose, 1998); AURR980103 Normalized positional residue frequency at helix termini N″ (Aurora-Rose, 1998); AURR980104 Normalized positional residue frequency at helix termini N′(Aurora-Rose, 1998); AURR980105 Normalized positional residue frequency at helix termini Nc (Aurora-Rose, 1998); AURR980106 Normalized positional residue frequency at helix termini N1 (Aurora-Rose, 1998); AURR980107 Normalized positional residue frequency at helix termini N2 (Aurora-Rose, 1998); AURR980108 Normalized positional residue frequency at helix termini N3 (Aurora-Rose, 1998); AURR980109 Normalized positional residue frequency at helix termini N4 (Aurora-Rose, 1998); AURR980110 Normalized positional residue frequency at helix termini N5 (Aurora-Rose, 1998); AURR980111 Normalized positional residue frequency at helix termini C5 (Aurora-Rose, 1998); AURR980112 Normalized positional residue frequency at helix termini C4 (Aurora-Rose, 1998); AURR980113 Normalized positional residue frequency at helix termini C3 (Aurora-Rose, 1998); AURR980114 Normalized positional residue frequency at helix termini C2 (Aurora-Rose, 1998); AURR980115 Normalized positional residue frequency at helix termini C1 (Aurora-Rose, 1998); AURR980116 Normalized positional residue frequency at helix termini Cc (Aurora-Rose, 1998); AURR980117 Normalized positional residue frequency at helix termini C′ (Aurora-Rose, 1998); AURR980118 Normalized positional residue frequency at helix termini C″ (Aurora-Rose, 1998); AURR980119 Normalized positional residue frequency at helix termini C′″ (Aurora-Rose, 1998); AURR980120 Normalized positional residue frequency at helix termini C4′ (Aurora-Rose, 1998); ONEK900101 Delta G values for the peptides extrapolated to 0 M urea (O'Neil-DeGrado, 1990); ONEK900102 Helix formation parameters (delta delta G) (O'Neil-DeGrado, 1990); VINM940101 Normalized flexibility parameters (B-values), average (Vihinen et al., 1994); VINM940102 Normalized flexibility parameters (B-values) for each residue surrounded by none rigid neighbours (Vihinen et al., 1994); VINM940103 Normalized flexibility parameters (B-values) for each residue surrounded by one rigid neighbours (Vihinen et al., 1994); VINM940104 Normalized flexibility parameters (B-values) for each residue surrounded by two rigid neighbours (Vihinen et al., 1994); MUNV940101 Free energy in alpha-helical conformation (Munoz-Serrano, 1994); MUNV940102 Free energy in alpha-helical region (Munoz-Serrano, 1994); MUNV940103 Free energy in beta-strand conformation (Munoz-Serrano, 1994); MUNV940104 Free energy in beta-strand region (Munoz-Serrano, 1994); MUNV940105 Free energy in beta-strand region (Munoz-Serrano, 1994) WIMW960101 Free energies of transfer of AcWl-X-LL peptides from bilayer interface to water (Wimley-White, 1996); KIMC930101 Thermodynamic beta sheet propensity (Kim-Berg, 1993); MONM990101 Turn propensity scale for transmembrane helices (Monne et al., 1999); BLAM930101 Alpha helix propensity of position 44 in T4 lysozyme (Blaber et al., 1993); PARS000101 p-Values of mesophilic proteins based on the distributions of B values (Parthasarathy-Murthy, 2000); PARS000102 p-Values of thermophilic proteins based on the distributions of B values (Parthasarathy-Murthy, 2000); KUMS000101 Distribution of amino acid residues in the 18 non-redundant families of thermophilic proteins (Kumar et al., 2000); KUMS000102 Distribution of amino acid residues in the 18 non-redundant families of mesophilic proteins (Kumar et al., 2000); KUMS000103 Distribution of amino acid residues in the alpha-helices in thermophilic proteins (Kumar et al., 2000); KUMS000104 Distribution of amino acid residues in the alpha-helices in mesophilic proteins (Kumar et al., 2000); TAKK010101 Side-chain contribution to protein stability (kJ/mol) (Takano-Yutani, 2001); FODM020101 Propensity of amino acids within pi-helices (Fodje-Al-Karadaghi, 2002); NADH010101 Hydropathy scale based on self-information values in the two-state model (5% accessibility) (Naderi-Manesh et al., 2001); NADH010102 Hydropathy scale based on self-information values in the two-state model (9% accessibility) (Naderi-Manesh et al., 2001); NADH010103 Hydropathy scale based on self-information values in the two-state model (16% accessibility) (Naderi-Manesh et al., 2001); NADH010104 Hydropathy scale based on self-information values in the two-state model (20% accessibility) (Naderi-Manesh et al., 2001); NADH010105 Hydropathy scale based on self-information values in the two-state model (25% accessibility) (Naderi-Manesh et al., 2001); NADH010106 Hydropathy scale based on self-information values in the two-state model (36% accessibility) (Naderi-Manesh et al., 2001); NADH010107 Hydropathy scale based on self-information values in the two-state model (50% accessibility) (Naderi-Manesh et al., 2001); MONM990201 Averaged turn propensities in a transmembrane helix (Monne et al., 1999); KOEP990101 Alpha-helix propensity derived from designed sequences (Koehl-Levitt, 1999); KOEP990102 Beta-sheet propensity derived from designed sequences (Koehl-Levitt, 1999); CEDJ970101 Composition of amino acids in extracellular proteins (percent) (Cedano et al., 1997); CEDJ970102 Composition of amino acids in anchored proteins (percent) (Cedano et al., 1997); CEDJ970103 Composition of amino acids in membrane proteins (percent) (Cedano et al., 1997); CEDJ970104 Composition of amino acids in intracellular proteins (percent) (Cedano et al., 1997); CEDJ970105 Composition of amino acids in nuclear proteins (percent) (Cedano et al., 1997); FUKS010101 Surface composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010102 Surface composition of amino acids in intracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010103 Surface composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010104 Surface composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001); FUKS010105 Interior composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010106 Interior composition of amino acids in intracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010107 Interior composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010108 Interior composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001); FUKS010109 Entire chain composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010110 Entire chain composition of amino acids in intracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010111 Entire chain composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001); FUKS010112 Entire chain composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001); AVBF000101 Screening coefficients gamma, local (Avbelj, 2000); AVBF000102 Screening coefficients gamma, non-local (Avbelj, 2000); AVBF000103 Slopes tripeptide, FDPB VFF neutral (Avbelj, 2000); AVBF000104 Slopes tripeptides, LD VFF neutral (Avbelj, 2000); AVBF000105 Slopes tripeptide, FDPB VFF noside (Avbelj, 2000); AVBF000106 Slopes tripeptide FDPB VFF all (Avbelj, 2000); AVBF000107 Slopes tripeptide FDPB PARSE neutral (Avbelj, 2000); AVBF000108 Slopes dekapeptide, FDPB VFF neutral (Avbelj, 2000); AVBF000109 Slopes proteins, FDPB VFF neutral (Avbelj, 2000); YANJ020101 Side-chain conformation by gaussian evolutionary method (Yang et al., 2002); MITS020101 Amphiphilicity index (Mitaku et al., 2002); TSAJ990101 Volumes including the crystallographic waters using the ProtOr (Tsai et al., 1999); TSAJ990102 Volumes not including the crystallographic waters using the ProtOr (Tsai et al., 1999); C051940101 Electron-ion interaction potential values (Cosic, 1994); PONP930101 Hydrophobicity scales (Ponnuswamy, 1993); WILM950101 Hydrophobicity coefficient in RP-HPLC, C18 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995); WILM950102 Hydrophobicity coefficient in RP-HPLC, C8 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995); WILM950103 Hydrophobicity coefficient in RP-HPLC, C4 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995); WILM950104 Hydrophobicity coefficient in RP-HPLC, C18 with 0.1% TFA/2-PrOH/MeCN/H2O (Wilce et al. 1995); KUHL950101 Hydrophilicity scale (Kuhn et al., 1995); GUOD860101 Retention coefficient at pH 2 (Guo et al., 1986); JURD980101 Modified Kyte-Doolittle hydrophobicity scale (Juretic et al., 1998); BASU050101 Interactivity scale obtained from the contact matrix (Bastolla et al., 2005); BASU050102 Interactivity scale obtained by maximizing the mean of correlation coefficient over single-domain globular proteins (Bastolla et al., 2005); BASU050103 Interactivity scale obtained by maximizing the mean of correlation coefficient over pairs of sequences sharing the TIM barrel fold (Bastolla et al., 2005); SUYM030101 Linker propensity index (Suyama-Ohara, 2003); PUNT030101 Knowledge-based membrane-propensity scale from 1D Helix in MPtopo databases (Punta-Maritan, 2003); PUNT030102 Knowledge-based membrane-propensity scale from 3D_Helix in MPtopo databases (Punta-Maritan, 2003); GEOR030101 Linker propensity from all dataset (George-Heringa, 2003); GEOR030102 Linker propensity from 1-linker dataset (George-Heringa, 2003); GEOR030103 Linker propensity from 2-linker dataset (George-Heringa, 2003); GEOR030104 Linker propensity from 3-linker dataset (George-Heringa, 2003); GEOR030105 Linker propensity from small dataset (linker length is less than six residues) (George-Heringa, 2003); GEOR030106 Linker propensity from medium dataset (linker length is between six and 14 residues) (George-Heringa, 2003); GEOR030107 Linker propensity from long dataset (linker length is greater than 14 residues) (George-Heringa, 2003); GEOR030108 Linker propensity from helical (annotated by DSSP) dataset (George-Heringa, 2003); GEOR030109 Linker propensity from non-helical (annotated by DSSP) dataset (George-Heringa, 2003); ZHOH040101 The stability scale from the knowledge-based atom-atom potential (Zhou-Zhou, 2004); ZHOH040102 The relative stability scale extracted from mutation experiments (Zhou-Zhou, 2004); ZHOH040103 Buriability (Zhou-Zhou, 2004); BAEK050101 Linker index (Bae et al., 2005); HARY940101 Mean volumes of residues buried in protein interiors (Harpaz et al., 1994); PONJ960101 Average volumes of residues (Pontius et al., 1996); DIGM050101 Hydrostatic pressure asymmetry index, PAI (Di Giulio, 2005); WOLR790101 Hydrophobicity index (Wolfenden et al., 1979); OLSK800101 Average internal preferences (Olsen, 1980); KIDA850101 Hydrophobicity-related index (Kidera et al., 1985); GUYH850102 Apparent partition energies calculated from Wertz-Scheraga index (Guy, 1985); GUYH850103 Apparent partition energies calculated from Robson-Osguthorpe index (Guy, 1985); GUYH850104 Apparent partition energies calculated from Janin index (Guy, 1985); GUYH850105 Apparent partition energies calculated from Chothia index (Guy, 1985); ROSM880104 Hydropathies of amino acid side chains, neutral form (Roseman, 1988); ROSM880105 Hydropathies of amino acid side chains, pi-values in pH 7.0 (Roseman, 1988); JACR890101 Weights from the IFH scale (Jacobs-White, 1989); COWR900101 Hydrophobicity index, 3.0 pH (Cowan-Whittaker, 1990) BLAS910101 Scaled side chain hydrophobicity values (Black-Mould, 1991); CASG920101 Hydrophobicity scale from native protein structures (Casari-Sippl, 1992); CORJ870101 NNEIG index (Cornette et al., 1987); CORJ870102 SWEIG index (Cornette et al., 1987); CORJ870103 PRIFT index (Cornette et al., 1987); CORJ870104 PRILS index (Cornette et al., 1987); CORJ870105 ALTFT index (Cornette et al., 1987)


CORJ870106 ALTLS index (Cornette et al., 1987); CORJ870107 TOTFT index (Cornette et al., 1987); CORJ870108 TOTLS index (Cornette et al., 1987); MIYS990101 Relative partition energies derived by the Bethe approximation (Miyazawa-Jernigan, 1999); MIYS990102 Optimized relative partition energies—method A (Miyazawa-Jernigan, 1999); MIYS990103 Optimized relative partition energies—method B (Miyazawa-Jernigan, 1999); MIYS990104 Optimized relative partition energies—method C (Miyazawa-Jernigan, 1999); MIYS990105 Optimized relative partition energies—method D (Miyazawa-Jernigan, 1999); ENGD860101 Hydrophobicity index (Engelman et al., 1986); and FASG890101 Hydrophobicity index (Fasman, 1989)


In some embodiments of the invention, degenerate oligonucleotides are used to synthesize one or more of the TN1, DH, N2, and/or H3-JH segments of the invention. In certain embodiments of the invention, the codon at or near the 5′ end of the oligonucleotide encoding the H3-JH segment is a degenerate codon. Such degenerate codons may be the first codon from the 5′ end, the second codon from the 5′ end, the third codon from the 5′ end, the fourth codon from the 5′ end, the fifth codon from the 5′ end, and/or any combination of the above. In some embodiments of the invention, one or more of the codons at or near the 5′ and/or 3′ ends of the DH segment are degenerate. Such degenerate codons may be the first codon from the 5′ and/or 3′ end(s), the second codon from the 5′ and/or 3′ end(s), the third codons from the 5′ and/or 3′ end(s), the fourth codon from the 5′ and/or 3′ end(s), the fifth codon from the 5′ and/or 3′ end(s), and/or any combination of the above. Degenerate codons used in each of the oligonucleotides encoding the segments may be selected for their ability to optimally recapitulate sequences in a theoretical segment pool and/or CDRH3 reference set.


In some embodiments, the invention provides methods of producing a theoretical segment pool of H3-JH segments, as described in the Examples. Theoretical segment pools generated utilizing NNN triplets, instead of or in addition to the NN doublets described in Example 5 also fall within the scope of the invention, as do synthetic libraries incorporating segments from these theoretical segment pools.


In some embodiments, the invention provides methods of producing a theoretical segment pool of DH segments, as described in the Examples. In particular, for example, the invention provides methods of producing a theoretical segment pool of DH segments described by the PYTHON program of Example 6. Example 6 describes the application of this program to produce the 68K theoretical segment pool (minimum length of DNA sequences after progressive deletions=4 bases; and minimum length of peptide sequences for inclusion in the theoretical segment pool=2). An alternative example is provided wherein the minimum length of the DNA sequences after progressive deletions was one base and the minimum length of the peptide sequence is one amino acid. It is also contemplated that other values could be used for these parameters. For example, the minimum length of the DNA sequences after progressive deletions could be set as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15, and the minimum length of the peptide sequences in the theoretical segment pool could be set as 1, 2, 3, 4, or 5.


Design of CDRH3 Libraries Using the TN1, DH, N2, and H3-JH Segments


The CDRH3 libraries of the invention comprise TN1, DH, N2, and H3-JH segments. Thus, in certain embodiments of the invention, the overall design of the CDRH3 libraries can be represented by the following formula:

[TN1]-[DH]-[N2]-[H3-JH].


In certain embodiments of the invention, a synthetic CDRH3 repertoire is combined with selected VH chassis sequences and heavy chain constant regions, via homologous recombination. Therefore, in certain embodiments of the invention, it may be desirable to include DNA sequences flanking the 5′ and 3′ ends of the synthetic CDRH3 libraries, to facilitate homologous recombination between the synthetic CDRH3 libraries and vectors containing the selected chassis and constant regions. In certain embodiments, the vectors also contain a sequence encoding at least a portion of the non-truncated region of the IGHJ gene (i.e., FRM4-JH). Thus, a polynucleotide encoding an N-terminal sequence (e.g., CA(K/R/T)) may be added to the synthetic CDRH3 sequences, wherein the N-terminal polynucleotide is homologous with FRM3 of the chassis, while a polynucleotide encoding a C-terminal sequence (e.g., WG(Q/R/K)G) may be added to the synthetic CDRH3, wherein the C-terminal polynucleotide is homologous with FRM4-JH. Although the sequence WG(Q/R)G is presented in this exemplary embodiment, additional amino acids, C-terminal to this sequence in FRM4-JH may also be included in the polynucleotide encoding the C-terminal sequence. The purpose of the polynucleotides encoding the N-terminal and C-terminal sequences, in this case, is to facilitate homologous recombination, and one of ordinary skill in the art would recognize that these sequences may be longer or shorter than depicted below. Accordingly, in certain embodiments of the invention, the overall design of the CDRH3 repertoire, including the sequences required to facilitate homologous recombination with the selected chassis, can be represented by the following formula (regions homologous with vector underlined):









(SEQ ID NO. 8762, SEQ ID NO. 8763, and


SEQ ID NO. 8764, respectively)



CA[R/K/T]-[TN1]-[DH]-[N2]-[H3-JH]-[WG(Q/R/K)G].







In some embodiments of the invention, the CDRH3 repertoire can be represented by the following formula, which excludes the T residue presented in the schematic above:











(SEQ ID NO. 8762, SEQ ID NO. 8763, and



SEQ ID NO. 8764, respectively)




CA[R/K]-[TN1]-[DH]-[N2]-[H3-JH]-[WG(Q/R/K)G].







References describing collections of V, D, and J genes include Scaviner et al., Exp. Clin, Immunogenet., 1999, 16: 243 and Ruiz et al., Exp. Clin. Immunogenet, 1999, 16: 173, each incorporated by reference in its entirety.


Although homologous recombination is one method of producing the libraries of the invention, a person of ordinary skill in the art will readily recognize that other methods of DNA assembly, such as ligation or site-specific recombination, and/or DNA synthesis, can also be used to produce the libraries of the invention.


CDRH3 Lengths


The lengths of the segments may also be varied, for example, to produce libraries with a particular distribution of CDRH3 lengths. In one embodiment of the invention, the H3-JH segments are about 0 to about 10 amino acids in length, the DH segments are about 0 to about 12 amino acids in length, the TN1 segments are about 0 to about 4 amino acids in length, and the N2 segments are about 0 to about 4 amino acids in length. In certain embodiments, the H3-JH segments are at least about 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and/or 10 amino acids in length. In some embodiments, the DH segments are at least about 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and/or 12 amino acids in length. In certain embodiments, the TN1 segments are at least about 0, 1, 2, 3, or 4 amino acids in length. In some embodiments, the N2 amino acids are at least about 0, 1, 2, 3, or 4 amino acids in length. In certain embodiments of the invention, the CDRH3 is about 2 to about 35, about 2 to about 28, or about 5 to about 26 amino acids in length. In some embodiments, the CDRH3 is at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, and/or 35 amino acids in length. In some embodiments, the length of any of the segments or CDRH3s of the invention may be less than a particular number of amino acids, where the number of amino acids is defined using any one of the integers provided above for the respective segment or CDRH3. In certain embodiments of the invention, a particular numerical range is defined, using any two of the integers provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the integers provided, which define an upper and lower boundary, are contemplated.


Design of CDRL3 Libraries


The design of CDRL3 libraries, and light chain sequences, is described in detail in U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379, each of which is incorporated by reference in its entirety, and is therefore only described briefly herein. Libraries described herein are designed according to similar principles, with three important differences, namely that the libraries of the current invention contain (1) variability in CDRL1 and CDRL2; (2) variability in the framework regions; and/or (3) variability in CDRL3 that is designed to produce light chain libraries with CDRL3s that closely resemble human germline-like CDRL3 sequences, as defined above (Table 1).


A CDRL3 library of the invention may be a VKCDR3 library and/or a VλCDR3 library. In certain embodiments of the invention, patterns of occurrence of particular amino acids at defined positions within VL sequences are determined by analyzing data available in public or other databases, for example, the NCBI database (see, for example, WO/2009/036379). In certain embodiments of the invention, these sequences are compared on the basis of identity and assigned to families on the basis of the germline genes from which they are derived. The amino acid composition at each position of the sequence, in each germline family, may then be determined. This process is illustrated in the Examples provided herein.


Light Chains with Framework Variability


In some embodiments, the invention provides a library of light chain variable domains wherein the light chain variable domains are varied at one or more of framework positions 2, 4, 36, 46, 48, 49, and 66. In some embodiments, the invention provides a library of light chain variable domains comprising at least a plurality of light chain variable domains whose amino acid sequences are identical to one another except for substitutions at one or more of positions 2, 4, 36, 46, 48, 49, and 66. In certain embodiments, the invention provides a library of light chain variable domains comprising at least a plurality of light chain variable domains whose amino acid sequences are at least about 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, and/or 99.5% to any of the light chain variable domain sequences disclosed herein, and further have substitutions at one or more of positions 2, 4, 36, 46, 48, 49, and 66. In some embodiments, the amino acids selected for inclusion in these positions are selected from amongst about the most 2, 3, 4, 5, 6, 7, 8, 9, and/or 10 most frequently occurring amino acids at the corresponding position in a reference set of light chain variable domains.


In some embodiments, the invention provides systems and methods of selecting framework positions to be varied in a light chain variable domain, comprising:

    • (i) obtaining a reference set of light chain sequences, wherein the reference set contains light chain sequences with VL segments selected from the group consisting of sequences found in, or encoded by, a single IGVL germline gene and/or sequences found in, or encoded by, allelic variants of the single IGVL germline gene;
    • (ii) determining which framework positions within the reference set have a degree of variability that is similar to the degree of variability occurring in one more CDR positions of the sequences in the reference set (e.g., the variability in a framework position is at least about 70%, 80%, 90%, or 95%, 100%, or more of the variability found in a CDR position of the sequences in the reference set);
    • (iii) determining the frequency of occurrence of amino acid residues for each of the framework positions identified in (ii);
    • (iv) synthesizing light chain variable domain encoding sequences wherein the framework positions identified in (ii) are varied to include the 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 most frequently occurring amino acid residues (identified in (iii)) at the corresponding position.


One of ordinary skill in the art, reading the present disclosure will appreciate that the present invention provides analogous methods for developing framework variants of heavy chain sequences.


Light Chains with CDR1 and/or CDR2 Variability


In some embodiments, the invention provides a library of light chain variable domains wherein the light chain variable domains are varied at one or more of CDRL1 positions 28, 29, 30, 30A, 30B, 30E, 31, and 32 (Chothia-Lesk numbering scheme; Chothia and Lesk, J. Mol. Biol., 1987, 196: 901). In some embodiments, the invention provides a library of light chain variable domains wherein the light chain variable domains are varied at one or more of CDRL2 positions 50, 51, 53, and 55. In some embodiments, the amino acids selected for inclusion in these CDRL1 and/or CDRL2 positions are selected from amongst about the most 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and/or 20 most frequently occurring amino acids at the corresponding position in a reference set of light chain variable domains.


In some embodiments, the invention provides systems and methods for selecting CDRL1 and/or CDRL2 positions to be varied in a light chain variable domain, comprising:

    • (i) obtaining a reference set of light chain sequences, wherein the reference set contains light chain sequences with VL segments selected from the group consisting of sequences found in, or encoded by, a single IGVL germline gene and sequences found in, or encoded by, allelic variants of the single IGVL germline gene;
    • (ii) determining which CDRL1 and/or CDRL2 positions are variable within the reference set;
    • (iii) synthesizing light chain variable domain encoding sequences wherein the CDRL1 and/or CDRL2 positions identified in (ii) are varied to include the 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 most frequently occurring amino acid residues at the corresponding position.


One of ordinary skill in the art, reading the present disclosure will appreciate that the present invention provides analogous methods for developing CDRH2 and/or CDRH2 variants of heavy chain sequences.


Light Chain Sequences


In some embodiments, the invention provides a light chain library comprising one or more of any of the light chain sequences provided herein, for example, the polypeptide sequences of Table 3 and/or Table 4 and/or the polynucleotide sequences of Table 5, Table 6, and/or Table 7. A person of ordinary skill in the art will recognize that not every light chain sequence provided herein is necessary to produce a functional light chain library of the invention. Therefore, in certain embodiments, a light chain library of the invention will contain a subset of the sequences described above. For example, in certain embodiments of the invention, at least about 10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 103, 104, and/or 105 of the light chain polynucleotide and/or polypeptide sequences provided herein are included in a library. In some embodiments, a library of the invention may contain less than a particular number of polynucleotide or polypeptide segments, where the number of segments is defined using any one of the integers provided above for the respective segment. In certain embodiments of the invention, a particular numerical range is defined, using any two of the integers provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the integers provided, which define an upper and lower boundary, are contemplated.


In certain embodiments, the invention provides light chain libraries comprising at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the sequences from any of the sets of light chain sequences provided herein. For example, the invention provides libraries comprising at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the light chain sequences provided in Table 3, Table 4, Table 5, Table 6, and/or Table 7. In some embodiments of the invention, a particular percentage range is defined, using any two of the percentages provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the percentages provided, which define an upper and lower boundary, are contemplated.


In some embodiments of the invention, at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the light chain sequences in a library are light chain sequences provided herein. In certain embodiments of the invention, at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the light chain sequences isolated from a light chain library (e.g., by binding to a particular antigen and/or generic ligand) are light chain sequences provided herein. In some embodiments, a light chain library of the invention may contain less than a particular percentage of light chain sequences provided herein, where the percentage of light chain sequences is defined using any one of the percentages provided above. In certain embodiments of the invention, a particular percentage range is defined, using any two of the percentages provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the percentages provided, which define an upper and lower boundary, are contemplated.


One of ordinary skill in the art will further recognize that given the light chain sequences provided herein, similar light chain sequences could be produced which share a designated level of overall sequence identity and/or one or more characteristic sequence elements described herein, which overall degree of sequence identity and/or characteristic sequence elements may confer common functional attributes. Those of ordinary skill in the art will be well familiar with a variety of techniques for preparing such related sequences, including the mutagenesis techniques provided herein. Therefore, each of the explicitly enumerated embodiments of the invention can also be practiced using light chain sequences that share a particular percent identity to any of the light chain sequences provided herein. For example, each of the previously described embodiments of the invention can be practiced using light chain sequences that are at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 99.9% identical to the light chain sequences provided herein. For example, in some embodiments, light chain libraries provided by the invention comprise light chain variable domains at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 99.9% identical to the light chain sequences provided herein, with substitutions in one or more of framework positions 2, 4, 36, 46, 48, 49, and 66, CDRL1 positions 28, 29, 30, 30A, 30B, 30E, 31, and 32 (Chothia-Lesk numbering scheme), and/or CDRL2 positions 50, 51, 53, and 55.


In some embodiments, the invention provides systems and methods for varying positions within the portion of CDRL3s encoded by a particular IGVL germline gene, comprising:

    • (i) obtaining a reference set of light chain sequences, wherein the reference set contains light chain sequences with VL segments originating from the same IGVL germline gene and/or its allelic variants;
    • (ii) determining which amino acids occur at each of the CDRL3 positions in the reference set that are encoded by the IGVL gene (i.e., positions 89-94, inclusive);
    • (iii) synthesizing light chain variable domain encoding sequences wherein two positions in each light chain variable domain encoding sequence contain degenerate codons encoding the 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 most frequently occurring amino acid residues at the corresponding positions in the reference set.


As described in the examples, the degenerate codons of (iii) can be chosen to best reproduce the amino acid diversity contained in the reference set for each of the two positions varied in each light chain. Finally, while the methods and systems described above are described with respect to CDRL3, one of ordinary skill in the art will readily recognize that the same principles can be applied to CDRH1 and/or CDRH2 of the heavy chain, which are encoded entirely by the IGHV gene.


CDRL3 Lengths


In some embodiments, as an alternative or in addition to other features described herein, the present invention provides libraries in which lengths of CDRL3s may be varied. The present invention therefore provides, among other things, libraries with a particular distribution of CDRL3 lengths. Although CDRL3 libraries of lengths 8, 9, and 10 are exemplified, one of ordinary skill in the art will readily recognize that the methods described herein can be applied to produce light chains with CDRL3s of different lengths (e.g., about 5, 6, 7, 11, 12, 13, 14, 15, and/or 16) that also fall within the scope of the invention. In some embodiments, the length of any of the CDRL3s of the invention may be less than a particular number of amino acids, where the number of amino acids is defined using any one of the integers provided above. In some embodiments of the invention, a particular numerical range is defined, using any two of the integers provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the integers provided, which define an upper and lower boundary, are contemplated.


Synthetic Antibody Libraries


In some embodiments of the invention, provided libraries include one or more synthetic polynucleotides. In some embodiments, provided libraries may comprise synthetic polynucleotides selected from (a) heavy chain chassis polynucleotides; (b) light chain chassis polynucleotides; (c) CDR3 polynucleotides; (d) constant domain polynucleotides; and (e) combinations thereof. Those of ordinary skill in the art will appreciate that such synthetic polynucleotides may be linked to other synthetic or non-synthetic polynucleotides in provided libraries.


Synthetic polynucleotides provided herein may be prepared by any available method. For example, in some embodiments, synthetic polynucleotides can be synthesized by split pool DNA synthesis as described in Feldhaus et al., Nucleic Acids Research, 2000, 28: 534; Omstein et al., Biopolymers, 1978, 17: 2341; Brenner and Lerner, PNAS, 1992, 87: 6378, U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379 (each incorporated by reference in its entirety).


In some embodiments of the invention, segments representing the possible TN1, DH, N2, and JH diversity found in the human repertoire are synthesized de novo either as double-stranded DNA oligonucleotides, single-stranded DNA oligonucleotides representative of the coding strand, or single-stranded DNA oligonucleotides representative of the non-coding strand. Such sequences can then be introduced into a host cell along with an acceptor vector containing a chassis sequence and, in some cases a portion of FRM4 and a constant region. No primer-based PCR amplification from mammalian cDNA or mRNA or template-directed cloning steps from mammalian cDNA or mRNA need be employed.


Construction of Libraries by Yeast Homologous Recombination


In certain embodiments, the invention exploits the inherent ability of yeast cells to facilitate homologous recombination at high efficiency. The mechanism of homologous recombination in yeast and its applications are briefly described below (also see e.g., U.S. Pat. Nos. 6,406,863; 6,410,246; 6,410,271; 6,610,472; and 7,700,302, each of which is incorporated by reference in its entirety).


As an illustrative embodiment, homologous recombination can be carried out in, for example, Saccharomyces cerevisiae, which has genetic machinery designed to carry out homologous recombination with high efficiency. Exemplary S. cerevisiae strains include EM93, CEN.PK2, RM11-1a, YJM789, and BJ5465. This mechanism is believed to have evolved for the purpose of chromosomal repair, and is also called “gap repair” or “gap filling”. By exploiting this mechanism, mutations can be introduced into specific loci of the yeast genome. For example, a vector carrying a mutant gene can contain two sequence segments that are homologous to the 5′ and 3′ open reading frame (ORF) sequences of a gene that is intended to be interrupted or mutated. The vector may also encode a positive selection marker, such as a nutritional enzyme allele (e.g., URA3) and/or an antibiotic resistant marker (e.g., Geneticin/G418), flanked by the two homologous DNA segments. Other selection markers and antibiotic resistance markers are known to one of ordinary skill in the art.


In some embodiments of the invention, this vector (e.g., a plasmid) is linearized and transformed into the yeast cells. Through homologous recombination between the plasmid and the yeast genome, at the two homologous recombination sites, a reciprocal exchange of the DNA content occurs between the wild type gene in the yeast genome and the mutant gene (including the selection marker gene(s)) that is flanked by the two homologous sequence segments. By selecting for the one or more selection markers, the surviving yeast cells will be those cells in which the wild-type gene has been replaced by the mutant gene (Pearson et al., Yeast, 1998, 14: 391, incorporated by reference in its entirety). This mechanism has been used to make systematic mutations in all 6,000 yeast genes, or open reading frames (ORFs), for functional genomics studies. Because the exchange is reciprocal, a similar approach has also been used successfully to clone yeast genomic DNA fragments into a plasmid vector (Iwasaki et al., Gene, 1991, 109: 81, incorporated by reference in its entirety).


By utilizing the endogenous homologous recombination machinery present in yeast, gene fragments or synthetic oligonucleotides can also be cloned into a plasmid vector without a ligation step. In this application of homologous recombination, a target gene fragment (i.e., the fragment to be inserted into a plasmid vector, e.g., a CDR3) is obtained (e.g., by oligonucleotides synthesis, PCR amplification, restriction digestion out of another vector, etc.). DNA sequences that are homologous to selected regions of the plasmid vector are added to the 5′ and 3′ ends of the target gene fragment. These homologous regions may be fully synthetic, or added via PCR amplification of a target gene fragment with primers that incorporate the homologous sequences. The plasmid vector may include a positive selection marker, such as a nutritional enzyme allele (e.g., URA3), or an antibiotic resistance marker (e.g., Geneticin/G418). The plasmid vector is then linearized by a unique restriction cut located in-between the regions of sequence homology shared with the target gene fragment, thereby creating an artificial gap at the cleavage site. The linearized plasmid vector and the target gene fragment flanked by sequences homologous to the plasmid vector are co-transformed into a yeast host strain. The yeast is then able to recognize the two stretches of sequence homology between the vector and target gene fragment and facilitate a reciprocal exchange of DNA content through homologous recombination at the gap. As a consequence, the target gene fragment is inserted into the vector without ligation.


The method described above has also been demonstrated to work when the target gene fragments are in the form of single stranded DNA, for example, as a circular M13 phage derived form, or as single stranded oligonucleotides (Simon and Moore, Mol. Cell Biol., 1987, 7: 2329; Ivanov et al., Genetics, 1996, 142: 693; and DeMarini et al., 2001, 30: 520, each incorporated by reference in its entirety). Thus, the form of the target that can be recombined into the gapped vector can be double stranded or single stranded, and derived from chemical synthesis, PCR, restriction digestion, or other methods.


Several factors may influence the efficiency of homologous recombination in yeast. For example, the efficiency of the gap repair is correlated with the length of the homologous sequences flanking both the linearized vector and the target gene. In certain embodiments, about 20 or more base pairs may be used for the length of the homologous sequence, and about 80 base pairs may give a near-optimized result (Hua et al., Plasmid, 1997, 38: 91; Raymond et al., Genome Res., 2002, 12: 190, each incorporated by reference in its entirety). In certain embodiments of the invention, at least about 5, 10, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 187, 190, or 200 homologous base pairs may be used to facilitate recombination. In certain embodiments, between about 20 and about 40 base pairs are utilized. In addition, the reciprocal exchange between the vector and gene fragment is strictly sequence-dependent, i.e. it does not cause a frame shift. Therefore, gap-repair cloning assures the insertion of gene fragments with both high efficiency and precision. The high efficiency makes it possible to clone two, three, or more targeted gene fragments simultaneously into the same vector in one transformation attempt (Raymond et al., Biotechniques, 1999, 26: 134, incorporated by reference in its entirety). Moreover, the nature of precision sequence conservation through homologous recombination makes it possible to clone selected genes or gene fragments into expression or fusion vectors for direct functional examination (El-Deiry et al., Nature Genetics, 1992, 1: 4549; Ishioka et al., PNAS, 1997, 94: 2449, each incorporated by reference in its entirety).


Libraries of gene fragments have also been constructed in yeast using homologous recombination. For example, a human brain cDNA library was constructed as a two-hybrid fusion library in vector pJG4-5 (Guidotti and Zervos, Yeast, 1999, 15: 715, incorporated by reference in its entirety). It has also been reported that a total of 6,000 pairs of PCR primers were used for amplification of 6,000 known yeast ORFs for a study of yeast genomic protein interactions (Hudson et al., Genome Res., 1997, 7: 1169, incorporated by reference in its entirety). In 2000, Uetz et al. conducted a comprehensive analysis-of protein-protein interactions in Saccharomyces cerevisiae (Uetz et al., Nature, 2000, 403: 623, incorporated by reference in its entirety). The protein-protein interaction map of the budding yeast was studied by using a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins (Ito et al., PNAS, 2000, 97: 1143, incorporated by reference in its entirety), and the genomic protein linkage map of Vaccinia virus was studied using this system (McCraith et al., PNAS, 2000, 97: 4879, incorporated by reference in its entirety).


In certain embodiments of the invention, a synthetic CDR3 (heavy or light chain) may be joined by homologous recombination with a vector encoding a heavy or light chain chassis, a portion of FRM4, and a constant region, to form a full-length heavy or light chain. In certain embodiments of the invention, the homologous recombination is performed directly in yeast cells. In some embodiments, such a method comprises:

    • (a) transforming into yeast cells:
      • (i) a linearized vector encoding a heavy or light chain chassis, a portion of FRM4, and a constant region, wherein the site of linearization is between the end of FRM3 of the chassis and the beginning of the constant region; and
      • (ii) a library of CDR3 insert nucleotide sequences that are linear and double stranded, wherein each of the CDR3 insert sequences comprises a nucleotide sequence encoding CDR3 and 5′- and 3′-flanking sequences that are sufficiently homologous to the termini of the vector of (i) at the site of linearization to enable homologous recombination to occur between the vector and the library of CDR3 insert sequences; and
    • (b) allowing homologous recombination to occur between the vector and the CDR3 insert sequences in the transformed yeast cells, such that the CDR3 insert sequences are incorporated into the vector, to produce a vector encoding full-length heavy chain or light chain.


As specified above, CDR3 inserts may have a 5′ flanking sequence and a 3′ flanking sequence that are homologous to the termini of the linearized vector. When the CDR3 inserts and the linearized vectors are introduced into a host cell, for example, a yeast cell, the “gap” (the linearization site) created by linearization of the vector is filled by the CDR3 fragment insert through recombination of the homologous sequences at the 5′ and 3′ termini of these two linear double-stranded DNAs (i.e., the vector and the insert). Through this event of homologous recombination, libraries of circular vectors encoding full-length heavy or light chains comprising variable CDR3 inserts is generated. Particular instances of these methods are presented in the Examples.


Subsequent analysis may be carried out to determine, for example, the efficiency of homologous recombination that results in correct insertion of the CDR3 sequences into the vectors. For example, PCR amplification of the CDR3 inserts directly from selected yeast clones may reveal how many clones are recombinant. In certain embodiments, libraries with minimum of about 90% recombinant clones are utilized. In certain embodiments libraries with a minimum of about 1%, 5% 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% recombinant clones are utilized. The same PCR amplification of selected clones may also reveal the insert size.


To verify the sequence diversity of the inserts in the selected clones, a PCR amplification product with the correct size of insert may be “fingerprinted” with restriction enzymes known to cut or not cut within the amplified region. From a gel electrophoresis pattern, it may be determined whether the clones analyzed are of the same identity or of the distinct or diversified identity. The PCR products may also be sequenced directly to reveal the identity of inserts and the fidelity of the cloning procedure, and to prove the independence and diversity of the clones.


Expression and Screening Systems


Libraries of polynucleotides generated by any of the techniques described herein, or other suitable techniques, can be expressed and screened to identify antibodies having desired structure and/or activity. Expression of the antibodies can be carried out, for example, using cell-free extracts (and e.g., ribosome display), phage display, prokaryotic cells (e.g., bacterial display), or eukaryotic cells (e.g., yeast display). In certain embodiments of the invention, the antibody libraries are expressed in yeast.


In some embodiments, polynucleotides are engineered to serve as templates that can be expressed in a cell-free extract. Vectors and extracts as described, for example in U.S. Pat. Nos. 5,324,637; 5,492,817; 5,665,563, (each incorporated by reference in its entirety) can be used and many are commercially available. Ribosome display and other cell-free techniques for linking a polynucleotide (i.e., a genotype) to a polypeptide (i.e., a phenotype) can be used, e.g., Profusion™ (see, e.g., U.S. Pat. Nos. 6,348,315; 6,261,804; 6,258,558; and 6,214,553, each incorporated by reference in its entirety).


Alternatively or additionally, polynucleotides of the invention can be expressed in an E. coli expression system, such as that described by Pluckthun and Skerra. (Meth. Enzymol., 1989, 178: 476; Biotechnology, 1991, 9: 273, each incorporated by reference in its entirety). Mutant proteins can be expressed for secretion in the medium and/or in the cytoplasm of the bacteria, as described by Better and Horwitz, Meth. Enzymol., 1989, 178: 476, incorporated by reference in its entirety. In some embodiments, the single domains encoding VH and VL are each attached to the 3′ end of a sequence encoding a signal sequence, such as the ompA, phoA or pelB signal sequence (Lei et al., J. Bacteriol., 1987, 169: 4379, incorporated by reference in its entirety). These gene fusions are assembled in a dicistronic construct, so that they can be expressed from a single vector, and secreted into the periplasmic space of E. coli where they will refold and can be recovered in active form. (Skerra et al., Biotechnology, 1991, 9: 273, incorporated by reference in its entirety). For example, antibody heavy chain genes can be concurrently expressed with antibody light chain genes to produce antibodies or antibody fragments.


In some embodiments of the invention, antibody sequences are expressed on the membrane surface of a prokaryote, e.g., E. coli, using a secretion signal and lipidation moiety as described, e.g., in US2004/0072740; US2003/0100023; and US2003/0036092 (each incorporated by reference in its entirety).


Higher eukaryotic cells, such as mammalian cells, for example myeloma cells (e.g., NS/0 cells), hybridoma cells, Chinese hamster ovary (CHO), and human embryonic kidney (HEK) cells, can also be used for expression of the antibodies of the invention. Typically, antibodies expressed in mammalian cells are designed to be secreted into the culture medium, or expressed on the surface of the cell. Antibody or antibody fragments can be produced, for example, as intact antibody molecules or as individual VH and VL fragments, Fab fragments, single domains, or as single chains (scFv) (Huston et al., PNAS, 1988, 85: 5879, incorporated by reference in its entirety).


Alternatively or additionally, antibodies can be expressed and screened by anchored periplasmic expression (APEx 2-hybrid surface display), as described, for example, in Jeong et al., PNAS, 2007, 104: 8247 (incorporated by reference in its entirety) or by other anchoring methods as described, for example, in Mazor et al., Nature Biotechnology, 2007, 25: 563 (incorporated by reference in its entirety).


In some embodiments of the invention, antibodies can be selected using mammalian cell display (Ho et al., PNAS, 2006, 103: 9637, incorporated by reference in its entirety).


Screening of the antibodies derived from the libraries of the invention can be carried out by any appropriate means. For example, binding activity can be evaluated by standard immunoassay and/or affinity chromatography. Screening of antibodies of the invention for catalytic function, e.g., proteolytic function can be accomplished using a standard assays, e.g., the hemoglobin plaque assay as described in U.S. Pat. No. 5,798,208 (incorporated by reference in its entirety). Determining the ability of candidate antibodies to bind therapeutic targets can be assayed in vitro using, e.g., a BIACORE instrument, which measures binding rates of an antibody to a given target or antigen based on surface plasmon resonance. In vivo assays can be conducted using any of a number of animal models and then subsequently tested, as appropriate, in humans. Cell-based biological assays are also contemplated.


One feature of the instant invention is the speed at which the antibodies of the library can be expressed and screened. In certain embodiments of the invention, the antibody library can be expressed in yeast, which have a doubling time of less than about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 hours. In some embodiments, the doubling times are about 1 to about 3 hours, about 2 to about 4, about 3 to about 8 hours, about 3 to about 24, about 5 to about 24, about 4 to about 6 about 5 to about 22, about 6 to about 8, about 7 to about 22, about 8 to about 10 hours, about 7 to about 20, about 9 to about 20, about 9 to about 18, about 11 to about 18, about 11 to about 16, about 13 to about 16, about 16 to about 20, or about 20 to about 30 hours. In certain embodiments of the invention, an antibody library is expressed in yeast with a doubling time of about 16 to about 20 hours, about 8 to about 16 hours, or about 4 to about 8 hours. Thus, an antibody library of the instant invention can be expressed and screened in a matter of hours, as compared to previously known techniques which take several days to express and screen antibody libraries. A limiting step in the throughput of such screening processes in mammalian cells is typically the time required to iteratively regrow populations of isolated cells, which, in some cases, have doubling times greater than the doubling times of the yeast used in the current invention.


In certain embodiments of the invention, the composition of a library may be defined after one or more enrichment steps (for example by screening for antigen binding, binding to a generic ligand, or other properties). For example, a library with a composition comprising about x % sequences or libraries of the invention may be enriched to contain about 2x %, 3x %, 4x %, 5x %, 6x %, 7x %, 8x %, 9x %, 10x %, 20x %, 25x %, 40x %, 50x %, 60x % 75x %, 80x %, 90x %, 95x %,or 99x % sequences or libraries of the invention, after one or more screening steps. In some embodiments of the invention, the sequences or libraries of the invention may be enriched about 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 100-fold, 1,000-fold, or more, relative to their occurrence prior to the one or more enrichment steps. In certain embodiments of the invention, a library may contain at least a certain number of a particular type of sequence(s), such as CDRH3s, CDRL3s, heavy chains, light chains, or whole antibodies (e.g., at least about 103, 104, 105, 106, 107, 108, 109, 1010 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, or 1020). In certain embodiments, these sequences may be enriched during one or more enrichment steps, to provide libraries comprising at least about 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, or 1019 of the respective sequence(s).


Mutagenesis Approaches for Affinity Maturation


As described above, antibody leads can be identified through a selection process that involves screening the antibodies of a library of the invention for binding to one or more antigens, or for a biological activity. Coding sequences of these antibody leads may be further mutagenized in vitro or in vivo to generate secondary libraries with diversity introduced in the context of the initial antibody leads. Such mutagenized antibody leads can then be further screened for binding to target antigens or biological activity, in vitro or in vivo, following procedures similar to those used for the selection of the initial antibody lead from the primary library. Such mutagenesis and selection of primary antibody leads effectively mimics the affinity maturation process naturally occurring in a mammal that produces antibodies with progressive increases in the affinity to an antigen.


In some embodiments of the invention, only the CDRH3 region is mutagenized. In some embodiments of the invention, the whole variable region is mutagenized. In some embodiments of the invention one or more of CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and/CDRL3 may be mutagenized. In some embodiments of the invention, “light chain shuffling” may be used as part of the affinity maturation protocol. In certain embodiments, this may involve pairing one or more heavy chains with a number of light chains, to select light chains that enhance the affinity and/or biological activity of an antibody. In certain embodiments of the invention, the number of light chains to which the one or more heavy chains can be paired is at least about 2, 5, 10, 100, 103, 104, 105, 106, 107, 108, 109, or 1010. In certain embodiments of the invention, these light chains are encoded by plasmids. In some embodiments of the invention, the light chains may be integrated into the genome of the host cell.


Coding sequences of antibody leads may be mutagenized using any of wide variety of methods. Examples of methods of mutagenesis include, but are not limited to site-directed mutagenesis, error-prone PCR mutagenesis, cassette mutagenesis, and random PCR mutagenesis. Alternatively or additionally, oligonucleotides encoding regions with the desired mutations can be synthesized and introduced into the sequence to be mutagenized, for example, via recombination or ligation.


Site-directed mutagenesis or point mutagenesis may be used to gradually change the CDR sequences in specific regions. For example, this may be accomplished by using oligonucleotide-directed mutagenesis or PCR. For example, a short sequence of an antibody lead may be replaced with a synthetically mutagenized oligonucleotide in either the heavy chain or light chain region, or both. Such a method may not be efficient for mutagenizing large numbers of CDR sequences, but may be used for fine tuning of a particular lead to achieve higher affinity toward a specific target protein.


Cassette mutagenesis may alternatively or additionally be used to mutagenize the CDR sequences in specific regions. In a typical cassette mutagenesis, a sequence block, or a region, of a single template is replaced by a completely or partially randomized sequence. However, the maximum information content that can be obtained may be statistically limited by the number of random sequences of the oligonucleotides. Similar to point mutagenesis, this method may also be used for fine tuning of a particular lead to achieve higher affinity towards a specific target protein.


Error-prone PCR, or “poison” PCR, may be used to mutagenize the CDR sequences, for example, by following protocols described in U.S. Pat. No. 6,153,745; Caldwell and Joyce, PCR Methods and Applications, 1992, 2: 28; Leung et al., Technique, 1989, 1: 11; Shafikhani et al., Biotechniques, 1997, 23: 304; and Stemmer et al., PNAS, 1994, 91: 10747 (each of which is incorporated by reference in its entirety).


Conditions for error prone PCR may include, for example, (a) high concentrations of Mn2+ (e.g., about 0.4 to about 0.6 mM) that efficiently induces malfunction of Taq DNA polymerase; and/or (b) a disproportionally high concentration of one nucleotide substrate (e.g., dGTP) in the PCR reaction that causes incorrect incorporation of this high concentration substrate into the template and produces mutations. Alternatively or additionally, other factors such as, the number of PCR cycles, the species of DNA polymerase used, and the length of the template, may affect the rate of misincorporation of “wrong” nucleotides into the PCR product. Commercially available kits may be utilized for the mutagenesis of the selected antibody library, such as the “Diversity PCR random mutagenesis kit” (CLONTECH™).


Primer pairs used in PCR-based mutagenesis may, in certain embodiments, include regions matched with the homologous recombination sites in the expression vectors. Such a design allows facile re-introduction of the PCR products back into the heavy or light chain chassis vectors, after mutagenesis, via homologous recombination.


Other PCR-based mutagenesis methods can also be used, alone or in conjunction with the error prone PCR described above. For example, the PCR amplified CDR segments may be digested with DNase to create nicks in the double stranded DNA. These nicks can be expanded into gaps by other exonucleases such as Bal 31. Gaps may then be filled by random sequences by using DNA Klenow polymerase at a low concentration of regular substrates dGTP, dATP, dTTP, and dCTP with one substrate (e.g., dGTP) at a disproportionately high concentration. This fill-in reaction should produce high frequency mutations in the filled gap regions. Such methods of DNase digestion may be used in conjunction with error prone PCR to create a high frequency of mutations in the desired CDR segments.


CDR or antibody segments amplified from the primary antibody leads may also be mutagenized in vivo by exploiting the inherent ability of mutation in pre-B cells. The Ig genes in pre-B cells are specifically susceptible to a high-rate of mutation. The Ig promoter and enhancer facilitate such high rate mutations in a pre-B cell environment while the pre-B cells proliferate. Accordingly, CDR gene segments may be cloned into a mammalian expression vector that contains a human Ig enhancer and promoter. Such a construct may be introduced into a pre-B cell line, such as 38B9, which allows the mutation of the VH and VL gene segments naturally in the pre-B cells (Liu and Van Ness, Mol. Immunol., 1999, 36: 461, incorporated by reference in its entirety). The mutagenized CDR segments can be amplified from the cultured pre-B cell line and re-introduced back into the chassis-containing vector(s) via, for example, homologous recombination.


In some embodiments, a CDR “hit” isolated from screening the library can be re-synthesized, for example using degenerate codons or trinucleotides, and re-cloned into the heavy or light chain vector using gap repair.


Other Variants of Polynucleotide Sequences of the Invention


In certain embodiments, the invention provides a polynucleotide that hybridizes with a polynucleotide taught herein, or that hybridizes with the complement of a polynucleotide taught herein. For example, an isolated polynucleotide that remains hybridized after hybridization and washing under low, medium, or high stringency conditions to a polynucleotide taught herein or the complement of a polynucleotide taught herein is encompassed by the present invention.


Exemplary low stringency conditions include hybridization with a buffer solution of about 30% to about 35% formamide, about 1 M NaCl, about 1% SDS (sodium dodecyl sulphate) at about 37° C., and a wash in about 1× to about 2×SSC (20×SSC=3.0 M NaCl/0.3 M trisodium citrate) at about 50° C. to about 55° C.


Exemplary moderate stringency conditions include hybridization in about 40% to about 45% formamide, about 1 M NaCl, about 1% SDS at about 37° C., and a wash in about 0.5× to about 1×SSC at abut 55° C. to about 60° C.


Exemplary high stringency conditions include hybridization in about 50% formamide, about 1 M NaCl, about 1% SDS at about 37° C., and a wash in about 0.1×SSC at about 60° C. to about 65° C.


Optionally, wash buffers may comprise about 0.1% to about 1% SDS.


The duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours.


Sublibraries and Larger Libraries Comprising Libraries or Sub-Libraries of the Invention


Libraries comprising combinations of the libraries described herein (e.g., CDRH3 and CDRL3 libraries) are encompassed by the invention. Sublibraries comprising portions of the libraries described herein are also encompassed by the invention (e.g., a CDRH3 library in a particular heavy chain chassis or a sub-set of the CDRH3 libraries, for example based on length).


Moreover, libraries containing one of the libraries or sublibraries of the invention also fall within the scope of the invention. For example, in certain embodiments of the invention, one or more libraries or sublibraries of the invention may be contained within a larger library (theoretical or physical), which may include sequences derived by other means, for example, non-human or human sequence derived by stochastic or sitewise-stochastic synthesis. In certain embodiments of the invention, at least about 1% of the sequences in a polynucleotide library may be those of the invention (e.g., CDRH3 sequences, CDRL3 sequences, VH sequences, VL sequences), regardless of the composition of the other 99% of sequences. For the purposes of illustration only, one of ordinary skill in the art would readily recognize that a library containing 109 total members, where 107 members are members of the libraries of the invention (i.e., 1%) would have utility, and that members of the libraries of the invention could be isolated from such a library. In some embodiments of the invention, at least about 0.001%, 0.01%, 0.1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91,%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% of the sequences in any polynucleotide library may be those of the invention, regardless of the composition of the other sequences. In some embodiments, the sequences of the invention may comprise about 0.001% to about 1%, about 1% to about 2%, about 2% to about 5%, about 5% to about 10%, about 10% to about 15%, about 15% to about 20%, about 20% to about 25%, about 25% to about 30%, about 30% to about 35%, about 35% to about 40%, about 40% to about 45%, about 45% to about 50%, about 50% to about 55%, about 55% to about 60%, about 60% to about 65%, about 65% to about 70%, about 70% to about 75%, about 75% to about 80%, about 80% to about 85%, about 85% to about 90%, about 90% to about 95%, or about 95% to about 99% of the sequences in any polynucleotide library, regardless of the composition of the other sequences. Thus, libraries more diverse than one or more libraries or sublibraries of the invention, but yet still comprising one or more libraries or sublibraries of the invention, in an amount in which the one or more libraries or sublibraries of the invention can be effectively screened and from which sequences encoded by the one or more libraries or sublibraries of the invention can be isolated, also fall within the scope of the invention.


Alternative Scaffolds


As would be evident to one of ordinary skill in the art, the CDRH3 and/or CDRL3 polypeptides provided by the invention may also be displayed on alternative scaffolds. Several such scaffolds have been shown to yield molecules with specificities and affinities that rival those of antibodies. Exemplary alternative scaffolds include those derived from fibronectin (e.g., AdNectin), the β-sandwich (e.g., iMab), lipocalin (e.g., Anticalin), EETI-II/AGRP, BPTI/LACI-D1/ITI-D2 (e.g., Kunitz domain), thioredoxin (e.g., peptide aptamer), protein A (e.g., Affibody), ankyrin repeats (e.g., DARPin), yB-crystallin/ubiquitin (e.g., Affilin), CTLD3 (e.g., Tetranectin), and (LDLR-A module)3 (e.g., Avimers). Additional information on alternative scaffolds is provided, for example, in Binz et al., Nat. Biotechnol., 2005 23: 1257 and Skerra, Current Opin. in Biotech., 2007 18: 295-304, each of which is incorporated by reference in its entirety.


Additional Embodiments of the Invention

Library Sizes


In some embodiments of the invention, a library comprises about 101 to about 1020 different polynucleotide or polypeptide sequences (encoding or comprising e.g., antibodies, heavy chains, CDRH3s, light chains, and/or CDRL3s). In some embodiments, the libraries of the invention are designed to include at least about 101, 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, or 1020, or more different antibody, heavy chain, CDRH3, light chain, and/or CDRL3 polynucleotide or polypeptide sequences. In some embodiments, a library of the invention may contain less than a particular number of polynucleotide or polypeptide sequences, where the number of sequences is defined using any one of the integers provided above. In certain embodiments of the invention, a particular numerical range is defined, using any two of the integers provided above as lower and upper boundaries of the range, inclusive or exclusive. All combinations of the integers provided, which define an upper and lower boundary, are contemplated.


In some embodiments, the invention provides libraries wherein a fraction of the members of the library are members produced according to the methods, systems, and compositions provided herein. One important property of the libraries of the invention is that they favorably mimic certain aspects of the human preimmune repertoire, including length diversity and sequence diversity. One or ordinary skill in the art will readily recognize that libraries provided by the invention include libraries where a subset of the members of the library are members produced according to the methods, systems, and compositions provided herein. For example, a library containing 108 members wherein 106 members are produced according to the methods, systems, and compositions provided herein, would contain 1% sequences produced according to the methods, systems, and compositions provided herein. One of ordinary skill in the art would recognize that one or more of the 106 members could readily be isolated using screening techniques known in the art. Therefore, said libraries fall within the scope of the invention. More specifically, libraries comprising at least about 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% CDRH3, CDRL3, light chain, or heavy chain, and/or full-length antibody sequences provided herein fall within the scope of the invention. Libraries comprising at least about 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015 CDRH3, CDRL3, light chain, heavy chain, and/or full-length antibody sequences provided herein also fall within the scope of the invention.


Human Preimmune Set


In some embodiments, the invention comprises the set of 3,571 curated human preimmune antibody sequences contained within the HPS, their corresponding CDRH3 sequences (Appendix A), and/or a representation of these CDRH3 sequences (and/or TN1, DH, N2, and/or H3-JH segments thereof) in a computer readable format. In certain embodiments, the invention comprises a method of producing a CDRH3 library, the method comprising matching candidate segments (i.e., TN1, DH, N2, and H3-JH) from a theoretical segment pool with CDRH3 sequences in the HPS and/or any other repertoire of CDRH3 sequences. In some embodiments, the invention comprises the candidate segments from the theoretical segment pools disclosed herein and/or the segments selected for inclusion in a physical library.


Embodiments

While the methods described herein demonstrate the production of theoretical segment pools of H3-JH and DH segments using a limited number of allelic variants, one of ordinary skill in the art will recognize that methods taught herein may be applied to any IGHJ and IGHD genes, including any other allelic variants and all non-human IGHJ and IGHD genes. Alternatively or additionally, methods described herein may be applied to any reference set of CDRH3 sequences, for example to extract additional TN1 and/or N2 segments. Alternatively or additionally, one of ordinary skill in the art will recognize that each of the described embodiments of the invention may be in polynucleotide or polypeptide form, within a vector, virus, or microorganism (e.g., a yeast or bacteria). Furthermore, since the invention involves synthetic libraries that are fully enumerated, certain embodiments of the invention relate to any of the embodiments described above in a computer readable format, and uses thereof.


Non-human antibody libraries also fall within the scope of the invention.


The present disclosure describes the removal of sequences containing Cys residues, N-linked glycosylation motifs, deamidation motifs, and highly hydrophobic sequences from the libraries of the invention. One of ordinary skill in the art will recognize that one or more of these criteria (i.e., not necessarily all) can be applied to remove undesirable sequences from any library of the invention. However, libraries containing one or more of these types of sequences also fall within the scope of the invention. Other criteria can also be used; those described herein are not limiting.


In certain embodiments, the invention provides libraries in which the number of times a particular sequence is repeated within the library (either theoretical, synthetic, or physical realization) is limited. For example, in some embodiments, the invention provides libraries wherein the frequency of occurrence of any of the sequences in the library (e.g., CDRH3, CDRL3, heavy chain, light chain, full-length antibody) is less than about 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000. In some embodiments, the frequency of occurrence of any of the sequences in the library is less than a multiple of the frequency of occurrence of any other sequence in the library, for examples less than about 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 times the frequency of occurrence of any other sequence in the library.


In some embodiments, libraries are defined by the combinatorial diversity of the segments used to produce CDRH3 sequences, in particular the number of non-degenerate segment combinations that can be used to produce a particular CDRH3 sequence. In some embodiments, this metric may be calculated using, for example, a sample of about 2000, 5000, 10000, 20000, 50000, 100000, or more sequences from the CDRH3 library and “self-matching” using the segments used to generate the CDRH3 sequences of that library. In certain embodiments, the invention provides libraries wherein at least about 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% of the CDRH3 sequences in the library may be formed by a single combination of segments.


In certain embodiments of the invention, a statistical bootstrap analysis was used to generate CDRH3 reference sets. While it may be advantageous to use this method, it is not required for every embodiment of the invention.


In some embodiments, the invention provides methods and systems of selecting polynucleotides to encode polypeptides of the invention, comprising selecting polynucleotide segments lacking (or containing) certain restriction sites individually and/or after combinatorial concatenation with other segments (e.g., see Example 9.3.7).


The exemplary libraries provided herein are not limiting and provided for exemplification only.


EXAMPLES

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application are hereby incorporated by reference.


In general, the practice of the present invention employs, unless otherwise indicated, conventional techniques of chemistry, molecular biology, recombinant DNA technology, PCR technology, immunology (especially, e.g., antibody technology), expression systems (e.g., yeast expression, cell-free expression, phage display, ribosome display, and PROFUSION™), and any necessary cell culture that are within the skill of the art and are explained in the literature. See, e.g., Sambrook, Fritsch and Maniatis, Molecular Cloning: Cold Spring Harbor Laboratory Press (1989); DNA Cloning, Vols. 1 and 2, (D.N. Glover, Ed. 1985); Oligonucleotide Synthesis (M. J. Gait, Ed. 1984); PCR Handbook Current Protocols in Nucleic Acid Chemistry, Beaucage, Ed. John Wiley & Sons (1999) (Editor); Oxford Handbook of Nucleic Acid Structure, Neidle, Ed., Oxford Univ Press (1999); PCR Protocols: A Guide to Methods and Applications, Innis et al., Academic Press (1990); PCR Essential Techniques: Essential Techniques, Burke, Ed., John Wiley & Son Ltd (1996); The PCR Technique: RT-PCR, Siebert, Ed., Eaton Pub. Co. (1998); Antibody Engineering Protocols (Methods in Molecular Biology), 510, Paul, S., Humana Pr (1996); Antibody Engineering: A Practical Approach (Practical Approach Series, 169), McCafferty, Ed., Irl Pr (1996); Antibodies: A Laboratory Manual, Harlow et al., C.S.H.L. Press, Pub. (1999); Current Protocols in Molecular Biology, eds. Ausubel et al., John Wiley & Sons (1992); Large-Scale Mammalian Cell Culture Technology, Lubiniecki, A., Ed., Marcel Dekker, Pub., (1990); Phage Display: A Laboratory Manual, C. Barbas (Ed.), CSHL Press, (2001); Antibody Phage Display, P O'Brien (Ed.), Humana Press (2001); Border et al., Nature Biotechnology, 1997, 15: 553; Border et al., Methods Enzymol., 2000, 328: 430; ribosome display as described by Pluckthun et al. in U.S. Pat. No. 6,348,315, and Profusion™ as described by Szostak et al. in U.S. Pat. Nos. 6,258,558; 6,261,804; and 6,214,553; and bacterial periplasmic expression as described in US20040058403A1. Each of the references cited in this paragraph is incorporated by reference in its entirety.


Further details regarding antibody sequence analysis using Kabat conventions and programs to analyze aligned nucleotide and amino acid sequences may be found, e.g., in Johnson et al., Methods Mol. Biol., 2004, 248: 11; Johnson et al., Int. Immunol., 1998, 10: 1801; Johnson et al., Methods Mol. Biol., 1995, 51: 1; Wu et al., Proteins, 1993, 16: 1; and Martin, Proteins, 1996, 25: 130. Each of the references cited in this paragraph is incorporated by reference in its entirety.


Further details regarding antibody sequence analysis using Chothia conventions may be found, e.g., in Chothia et al., J. Mol. Biol., 1998, 278: 457; Morea et al., Biophys. Chem., 1997, 68: 9; Morea et al., J. Mol. Biol., 1998, 275: 269; Al-Lazikani et al., J. Mol. Biol., 1997, 273: 927. Bane et al., Nat. Struct. Biol., 1994, 1: 915; Chothia et al., J. Mol. Biol., 1992, 227: 799; Chothia et al., Nature, 1989, 342: 877; and Chothia et al., J. Mol. Biol., 1987, 196: 901. Further analysis of CDRH3 conformation may be found in Shirai et al., FEBS Lett., 1999, 455: 188 and Shirai et al., FEBS Lett., 1996, 399: 1. Further details regarding Chothia analysis are described, for example, in Chothia et al., Cold Spring Harb. Symp. Quant Biol., 1987, 52: 399. Each of the references cited in this paragraph is incorporated by reference in its entirety.


Further details regarding CDR contact considerations are described, for example, in MacCallum et al., J. Mol. Biol., 1996, 262: 732, incorporated by reference in its entirety.


Further details regarding the antibody sequences and databases referred to herein are found, e.g., in Tomlinson et al., J. Mol. Biol., 1992, 227: 776, VBASE2 (Retter et al., Nucleic Acids Res., 2005, 33: D671); BLAST (world wide web at ncbi.nlm.nih.gov/BLAST/); CDHIT (bioinformatics.ljcrf.edu/cd-hi/); EMBOSS (world wide web at hgmp.mrc.ac.uk/Software/EMBOSS/); PHYLIP (evolution.genetics.washington.edu/phylip.html); and FASTA (fasta.bioch.virginia.edu). Each of the references cited in this paragraph is incorporated by reference in its entirety.


Light Chain Libraries


Example 1. Light Chain Libraries with Framework and/or CDRL1 and/or CDRL2 Variability

Although the diversity in antibody sequences is concentrated in the CDRs, certain residues in the framework regions can also influence antigen recognition and/or modulate affinity (Queen et al., Proc. Natl. Acad. Sci. USA, 1989, 86: 10029; Carter et al., Proc. Natl. Acad. Sci. USA, 1992, 89: 4285, each incorporated by reference in its entirety). These residues have been cataloged and used to make framework substitutions that improve antibody affinity, for example, during the process of antibody humanization (e.g., see the “Vernier” residues in Foote and Winter, J. Mol. Biol., 1992, 224: 487, incorporated by reference in its entirety). In the heavy chain, the Vernier residues include Kabat-numbered residues 2, 27-30, 47-49, 67, 69, 71, 73, 78, 93-94, and 103. In the light chain, the Vernier residues include Kabat residues 2, 4, 35-36, 46-49, 64, 66, 68-69, 71, and 98. The Vernier residue numbers are the same for kappa and lambda light chain sequences (see Table 4 in Chothia et al., J. Mol. Biol., 1985, 186: 651, which is incorporated by reference in its entirety). Additionally, framework positions at the VL-VH interface may also influence affinity. In the heavy chain, the interface residues include Kabat residues 35, 37, 39, 45, 47, 91, 93, 95, 100, and 103 (Chothia et al., J. Mol. Biol., 1985, 186: 651, incorporated by reference in its entirety). In the light chain, the interface residues include Kabat residues 34, 36, 38 44, 46, 87, 89, 91, 96, and 98.


The following procedure was used to select the framework residues to be varied and the amino acids to which they should be varied:

    • a. A collection of human VK light chain DNA sequences was obtained from NCBI (see Appendix A of WO/2009/036379 for GI Nos.). These sequences were classified according to the germline origin of their VK germline segment.
    • b. Patterns of variation at each of the Vernier and interface positions were examined as follows:
      • i. Equation 1 (from Makowski & Soares, Bioinformatics, 2003, 19: 483, incorporated by reference in its entirety) was used to calculate a diversity index for the Vernier positions, interface positions, CDRL1, and CDRL2.









d
=

1

N





Σ






p
i
2







Equation





1













        • Here, d is the diversity index, N is 20, the total number of amino acid types, and pi is the fraction of amino acid of type “i” at the position of interest. The sum is carried out over the 20 amino acid types. The parameter d will attain its minimum value of 0.05 or 1/20, when a single amino acid type is observed at a given position: pi is 1 for one type and zero for all the rest. Conversely, when all the amino acid types are equally probable (e.g., pi is 0.05 for all i), d will attain its maximum value of 1.0.



      • ii. The diversity index for each of the Vernier and interface positions were compared to the diversity index for the positions in CDRL1 and CDRL2.

      • iii. The interface positions were found to be relatively invariant, with d values very close to the minimum of 0.05, and were thus not altered. The Vernier residues with a diversity index comparable to or larger than that of the CDR positions (i.e., at or above 0.07 for the particular example provided in FIG. 1) were selected as candidates for variance (see FIG. 1). The amino acid residues included in these positions were selected from amongst the two to three amino acids most frequently occurring in that position in the sequences in the collection of human VK light chains, for each particular VK germline.

      • iv. Table 2 shows the positions selected for variance in each of nine exemplified light chain germlines. The alternative framework positions represent positions with a diversity index less than the primary framework positions, but where variability may still be incorporated to influence antigen binding.

      • v. The amino acid residues in the framework positions selected for variance were varied as follows (Table 3 provides the polypeptide sequences of these variants):
        • 1. Position 2: Germline I was optionally changed to V.
        • 2. Position 4: Germline M or L was optionally changed to L or M. In some embodiments, changes from M to L, but not the reverse, may be preferred, because M may undergo oxidation during production, processing, or storage, potentially altering the properties of the antibody.
        • 3. Position 36: Germline Y was optionally changed to F and H.
        • 4. Position 46: Germline L was optionally changed to V.
        • 5. Position 48: Germline I was optionally changed to L.
        • 6. Position 49: Germline Y was optionally changed to S, F, and H.
        • 7. Position 66: Germline G was optionally changed to R and E.







One of ordinary skill in the art would readily recognize that the procedure outlined above could also be used to select positions to vary in Vλ germline sequences, and that libraries containing Vλ chains also fall within the scope of the invention.


In addition to the framework mutations, variability was also introduced into CDRL1 and CDRL2. This was performed by determining which residues in CDRL1 and CDRL2 were variable, within a particular germline, in the VK dataset used above and incorporating the most frequently occurring 2 to 4 variants into CDRL1 and CDRL2 in the synthetic libraries of the invention. With the exception of position 50 of CDRL2 of the VK1-5 germline, these alternatives did not arise from allelic variation. Table 3 shows the polypeptide sequences of nine light chain chassis and their framework and CDR L1/L2 variants for the currently exemplified embodiment of the invention. The amino acid residues in the CDRL1/L2 positions selected for variance were varied as follows (using the Chothia-Lesk numbering system; Chothia and Lesk, J. Mol. Biol., 1987, 196: 901):

    • 1. Position 28: Germline S or G were optionally changed to G, A, or D.
    • 2. Position 29: Germline V was optionally changed to I.
    • 3. Position 30: Germline S was optionally changed to N, D, G, T, A, or R.
    • 4. Position 30A: Germline H was optionally changed to Y
    • 5. Position 30B: Germline S was optionally changed to R or T.
    • 6. Position 30E: Germline Y was optionally changed to N.
    • 7. Position 31: Germline S was optionally changed to D, R, I, N, or T.
    • 8. Position 32: Germline Y or N were optionally changed to F, S, or D.
    • 9. Position 50: Germline A, D, or G were optionally changed to G, S, E, K, or D.
    • 10. Position 51: Germline G or A were optionally changed to A, S, or T.
    • 11. Position 53: Germline S or N were optionally changed to N, H, S, K, or R.
    • 12. Position 55: Germline E was optionally changed to A or Q.


Example 2. Light Chain Libraries with Enhanced Diversity in CDRL3

A variety of methods of producing light chain libraries are known in the art (e.g., see U.S. Publication Nos. 2009/0181855, 2010/0056386, and WO/2009/036379). An analysis of clinically validated antibody sequences indicated that these sequences have very little deviation from germline-like VL-JL (where “L” can be a kappa or lambda germline sequence) rearrangements prior to somatic mutation (FIG. 2). Here, a germline-like rearrangement is one where neither the V nor J portion differ from the respective germline genes and, for the purposes of this particular example, where the length of CDRL3 is restricted to 8, 9 or 10 amino acids (see U.S. Publication Nos. 2009/0181855, 2010/0056386, and WO/2009/036379). For the IGHJK1 gene, however, both WT (Trp-Thr) and RT (Arg-Thr) sequences (the first two N-terminal residues) are considered “germline-like” and so are full L3 rearrangements containing such sequences. Therefore, new light chain libraries were designed and constructed with the objectives of simultaneously (1) minimizing deviation from germline-like sequences, as defined above; and (2) generating maximal diversity. In particular, the overarching goal was to maximize the type of diversity that is indicated to be most favorable by clinically validated antibody sequences. In particular, the designed library sought to maximize the diversity of CDRL3 sequences that differ from length-matched germline sequences by two amino acids or fewer.


This was accomplished by utilizing a “jumping dimer” or “jumping trimer” approach to light chain oligonucleotide design. The jumping dimer approach involves the incorporation of degenerate codons at each of the six positions of CDRL3 encoded by the VL segment (L3-VL). At most two positions vary from germline in each individual L3-VL sequence, but the two positions do not have to be adjacent to one another. Thus, the total number of designed degenerate oligonucleotides synthesized per VL chassis is 6!/(4!2!), or fifteen (accounting for six of the most commonly occurring amino acids at the junction (position 96) between VL and JL for each kappa germline chassis (namely F, L, I, R, W, Y, and P; see U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379, each of which is incorporated by reference in its entirety, for more details on the junctional amino acids at position 96). The jumping trimer approach is analogous to the jumping dimer approach, but with three positions varying from germline in each individual L3-VL sequence, instead of two as in the jumping dimer. The degenerate codons selected for each position in the jumping dimer and trimer approaches were chosen to (1) to reproduce the diversity contained in the known repertoire of publicly available human VK sequences (see Appendix A of WO/2009/036379); and (2) to minimize or eliminate undesirable sequences within the CDRL3s of the resulting synthetic light chains, such as N-linked glycosylation motifs (NXS/NXT), Cys residues, stop codons, and deamidation-prone NG motifs. Table 4 shows the fifteen degenerate oligonucleotides encoding the VK1-39 CDRL3 sequences with a length of nine amino acids and F or Y as the junctional amino acid, and the corresponding degenerate polypeptide sequences. Table 5, Table 6, and Table 7 provide the oligonucleotide sequences for each of the VK sequences of the exemplary jumping dimer and trimer libraries, for CDRL3 lengths of 8, 9, and 10, respectively, and the sequences for the corresponding CDRL3s.


The number of unique CDRL3 sequences within each germline library was then enumerated and compared to the number of unique CDRL3 sequences in a different light chain library, designated “VK-v1.0” (see Example 6.2 in US Publication No. 2009/0181855), for each of the three lengths. Table 8 provides the number of unique CDRL3 sequences in each of the respective germline libraries.



FIG. 3 provides the percentage of sequences in the jumping dimer and VK-v1.0 libraries with CDRL3 length of nine amino acids that contain no mutations from germline-like sequences (Table 1) or 1, 2, 3, or 4 or fewer mutations from germline-like sequences. Naturally-occurring VK1-05 sequences are almost as likely to have Ser (germline amino acid type) as Pro at Kabat position 95, thus both residues (S and P) were incorporated in the synthetic libraries representing VK1-05 repertoires. However, as indicated in Table 1, only Ser was considered to be a germline-like residue at position 95 for the purposes of this analysis when the VK gene is VK1-05. The plot for VK3-20 is representative of the remaining chassis in the library for a length nine. All of the sequences in the VK1-05 library were within three amino acids of human germline sequences, and approximately 63% of the sequences were within two amino acids of human germline-like sequences. For the rest of the libraries, and as designed, 100% of the sequences were within two amino acids of human germline-like sequences; thus, over 95% of the sequences of length 9 in the jumping dimer library considered as a whole were within 2 amino acids of germline-like sequences. By comparison, only 16% of the members of the VK-v1.0 libraries of length nine amino acids are within two amino acids of the corresponding human germline-like sequences. For length 8, about 98% of the sequences in the jumping dimer libraries were within two amino acids of germline-like, versus about 19% for VK-v1.0. For length 10, more than 95% of the sequences of the jumping dimer library were within two amino acids of germline-like, versus about 8% for VK-v1.0.


In some embodiments, to concentrate the diversity in positions most likely to be solvent-exposed in the folded antibody, positions 89 and 90 (Kabat numbering) are not modified from germline—these are most often QQ, but the sequence is MQ for the VK2-28 chassis. Other VK germline genes have different sequences at positions 88-89, and the use of these genes as chassis also falls within the scope of the invention. For example, VK1-27 has QK, VK1-17 and VK1-6 both have LQ, and so on. The sequences in these positions are known in the art and can be obtained, for example, from Scaviner et al., Exp. Clin. Immunogenet., 1999, 16: 234 (see FIG. 2), which is incorporated by reference in its entirety.


CDRH3 Libraries


The following examples describe methods and compositions useful for the design and synthesis of antibody libraries with improved CDRH3 sequences in comparison to libraries known in the art. The CDRH3 sequences of the invention have enhanced diversity in comparison to libraries known in the art, while retaining the character of human sequences, improving combinatorial efficiency of the synthetic CDRH3 segments, and/or improving the matching between synthetic CDRH3 sequences and human CDRH3 sequences in one or more reference sets.


Example 3. Generating a Curated Reference Set of Human Preimmune CDRH3 Sequences

A file containing approximately 84,000 human and mouse heavy chain DNA sequences was downloaded from the BLAST public resource (ftp.ncbi.nih.gov/blast/db/FASTA/; filename: igSeqNt.gz; download date: Aug. 29, 2008). Of these approximately 84,000 sequences, approximately 34,000 sequences were identified as human heavy chain sequences based on analysis of the sequence header annotation. These sequences were then filtered as follows: First, all sequences were classified, via their VH-region, according to their corresponding (closest matched) VH germline. Sequences that were of an incorrect or insufficient length, or that could not be matched due to extensive mutation, were discarded. Second, any sequences containing more than five mutations, at the DNA level, when compared to their corresponding germline VH sequence were also discarded. It was assumed, consistent with Rada and Milstein, EMBO J., 2001, 20: 4570, that mutations (or lack thereof) in the N-terminal portion of the variable region may be used as conservative surrogates for mutations (or lack thereof) in the C-terminal portion of the variable region, in particular in CDRH3. Therefore, selecting only sequences with five or fewer nucleotide mutations in VH, which is N-terminal to CDRH3 is highly likely to also select for CDRH3 sequences that are either lightly mutated or not mutated at all (i.e., having preimmune character).


After translating the remaining DNA sequences into their amino acid counterparts, the appropriate reading frame containing the heavy chain germline amino acid sequence was identified and used to identify the sequences of the CDRs, including that of the CDRH3. The list of CDRH3 sequences obtained at this point was further filtered to eliminate members that did not differ from any other sequence in the set by at least three amino acids (after matching for length). This process yielded 11,411 CDRH3 sequences, with 3,571 sequences annotated as originating from healthy adults (“Healthy Preimmune Set” or “HPS”; see Appendix A for GI Nos.) and the other 7,840 sequences annotated as originating from individuals suffering from disease, of fetal origin, or of antigen-specific origin. The methods described below were then used to deconvolute each of the sequences in the HPS into the four segments that constitute the CDRH3: (1) TN1, (2) DH, (3) N2, and (4) H3-JH.


Example 4. Method to Match Segments from a Theoretical Segment Pool to CDRH3s in a Reference Set

This example describes the method used to identify the TN1, DH, N2, and H3-JH segments of the CDRH3s in the HPS. The currently exemplified approach to the design and synthesis of human CDRH3 sequences mimics the segmental V-D-J gene recombination processes by which the human immune system generates the preimmune CDRH3 repertoire. The matching method described here determines which TN1, DH, N2 and H3-JH segments have been used to produce a particular CDRH3 across a reference set of CDRH3s (e.g., the HPS). This information is then used, optionally in conjunction with other information described below (e.g., physicochemical properties), to determine which TN1, DH, N2, and H3-JH segments from a theoretical segment pool (or segments extracted from the CDRH3 sequences in the reference set, in the case of the TN1 and N2) should be included in a synthetic CDRH3 library.


The inputs to the matching method are: (1) a reference set of CDRH3 sequences (e.g., the human CDRH3 sequences in the HPS), and (2) a theoretical segment pool, containing a plurality of TN1, DH, N2 and/or H3-JH segments. Methods by which the members of the theoretical segment pool are generated are more fully described below. For each CDRH3 in the reference set, the matching method generates two outputs: (i) a list of the closest matched CDRH3 sequences that can be generated using the segments of the theoretical segment pool, and (ii) the one or more segment combinations from the theoretical segment pool that can be used to create these closest matched CDRH3 sequences.


The matching method was performed as follows: Each TN1 segment in the theoretical segment pool was aligned at its first amino acid with the first amino acid (position 95) of the CDRH3 sequence from the reference set. For each segment length, all (i.e., one or more) of the segments returning the best matches are retained, and the remaining segments are discarded. The retained TN1 segments are then concatenated with all DH segments from the theoretical segment pool, to create [TN1]-[DH] segments. These segments are then aligned as above, and all the best matches for each of the [TN1]-[DH] segments are retained. The procedure is repeated with [TN1]-[DH]-[N2] and [TN1]-[DH]-[N2]-[H3-JH] segments until the length of the CDRH3 sequence from the reference set is identically recapitulated by the segment combinations from the theoretical segment pool. All segment combinations returning the best match to the CDRH3s in the reference set are retained as the output of the matching method.


Table 9 provides an example of the output of the matching method, specifically the output for four individual sequences from the HPS, using a theoretical segment pool designated “Theoretical Segment Pool 1,” or “TSP1”. TSP1 contains several theoretical segment pools, namely: 212 TN1 segments (Table 10), 1,111 DH segments (Table 11), 141 N2 segments (Table 12), and 285 H3-JH segments (Table 13). The CDRH3 sequence in Test Case 1 contains an identical match in TSP1 that is reached via a unique combination of the four segments. Test Cases 2.1 and 2.2 each return an identical match, but via two distinct combinations that differ in the TN1 and DH segments. In Test Cases 3.1, 4.1, and 4.2, the closest matches are all a single amino acid away from the reference CDRH3, and can be reached via one (3.1) or two (4.1 and 4.2) combinations of segments from TSP1. This approach can be generalized to find all of the closest matches to any reference CDRH3 sequence within any theoretical segment pool and all combinations of the segments within the theoretical segment pool that can produce the reference CDRH3 sequence exactly and/or its closest matches.


Example 5. Deriving Theoretical Segment Pools of H3-JH Segments

In order to produce theoretical segment pools of H3-JH segments for consideration for inclusion in a synthetic CDRH3 library, the following method was applied to generate mutants of seven (IGHJ1-01, IGHJ2-01, IGHJ3-02, IGHJ4-02, IGHJ5-02, IGHJ6-02 and IGHJ6-03) of the twelve germline IGHJ sequences of Table 14. These seven alleles were chosen because they were among the most commonly occurring alleles in human sequences. Libraries where all sequences of Table 14 (some differing only in FRM4) are used to generate H3-JH and/or JH (i.e., H3-JH and FRM4) also fall within the scope of the invention. The method is intended to simulate the creation of junctional diversity during the V-D-J recombination process in vivo, which occurs via enzyme-mediated addition and deletion of nucleotides to the germline gene segments. The method proceeds as follows, and results in a fully enumerated theoretical segment pool of H3-JH segments:

    • 1. A pre-treatment was applied to the IGHJ genes that contain a partial codon consisting of two nucleotide bases at their 5′ terminus (IGHJ3-02, IGHJ4-02, IGHJ5-02, IGHJ6-02 and IGHJ6-03), prior to the first nucleotide encoding the translation of the JH segment that produces the well-known JH framework regions. For example, the IGHJ3-02 gene contains an AT dinucleotide sequence prior to the first nucleotide encoding the translation of the JH segment that produces the JH framework region (FIG. 4, top). All partial codons consisting of two nucleotide bases were completed, using all possible nucleotide doublets (i.e., NN) at their two most 5′ positions (FIG. 4, top, second row for IGHJ3-02). More specifically, the most 5′ nucleotide in the germline sequence was mutated to N and an additional N was added 5′ to that nucleotide.
    • 2. IGHJ genes IGHJ1-01 (FIG. 4, center) and IGHJ2-01 (FIG. 4, bottom) contain zero and one nucleotide base(s) at their 5′ termini, prior to the first nucleotide encoding the translation of the JH segment that produces the JH framework region. For these genes, the pre-treatment described in step 1 was not performed. Instead, the 5′ doublets were mutated to NN (FIG. 4, middle and bottom, second row of each). Therefore, after performing this step, each of the seven IGHJ genes enumerated above was converted to a variant with an NN doublet as its first two 5′ positions.
    • 3. The 5′ codons of the sequences produced via steps 1 and 2 were then deleted, and the first two bases of the resulting DNA sequence were subsequently mutated to an NN doublet (FIG. 4, rows 3-4 for all).
    • 4. The 5′ codons of the sequences produced in step 3 were then deleted, and the first two bases of the resulting DNA sequence were subsequently mutated to an NN doublet (FIG. 4, rows 5-6 for all).
    • 5. Each of the polynucleotide sequences generated by steps (1)-(4) were then translated, to obtain a theoretical segment pool consisting of 248 parent H3-JH polypeptide segments (Table 15) from the reading frame for each sequence that produced the JH framework region.
    • 6. The parent H3-JH polypeptide segments were truncated at their N-termini, by removing one amino acid at a time until only the portion of the JH segment comprising FW4 remains (i.e., an H3-JH segment with a length of zero amino acids).


The methods described above resulted in the production of a theoretical segment pool of 285 H3-JH segments (Table 13).


Example 6. Deriving Theoretical Segment Pools of DH Segments

Two theoretical pools of DH segments were generated, using one or more of two translation methods, designated “Translation Method 0” (TM0), or “Translation Method 1” (“TM1”), each performed in the three forward reading frames of 27 human germline IGHD DNA sequences or segments derived therefrom (Table 16).


The 1K DH Theoretical Segment Pool (1K DH)


TM1 was used to generate the “1K DH Theoretical Segment Pool” (“1K DH”; see the 1,111 DH segments of Table 11). In TM1, IGHD sequences that had a partial codon containing two untranslated bases after translation in any of the three forward reading frames were completed to produce a full codon only if the two bases could encode only a single amino acid upon completion. For example, a DNA sequence such as TTA-GCT-CG has two full codons that would be translated to LA, and a remaining partial codon (CG) that can only encode R, as any of CGA, CGC, CGG, or CGT will encode R. Thus, applying TM1 to this sequence will yield LAR. For sequences with partial codons that could encode more than one amino acid (e.g., GA or AG), the partial codons were ignored. Applying TM1 to the 27 IGHD sequences of Table 16 generated a theoretical segment pool containing the 73 DH parent segments of Table 17 (some containing stop codons (“Z”) and unpaired Cys residues). These sequences were then progressively deleted at the amino acid level, at their N- and C-termini, until only two amino acids remained. Truncated segments were discarded if they contained a stop codon, unpaired Cys residues, N-linked glycosylation motifs, or deamidation motifs. This process yielded the 1,111 DH segments of Table 11.


The 68K DH Theoretical Segment Pool (68K DH)


The 27 IGHD genes and alleles of Table 16 were progressively deleted on either or both of their 5′ and 3′ ends until four bases remained, yielding 5,076 unique polynucleotide sequences of four or more nucleotides. These 5,076 sequences were subjected to systematic addition of 0, 1 and/or 2 N nucleotides their 5′ and/or 3′ ends. The resulting sequences were translated using TM0. In TM0, only full codons are translated; partial codons (i.e., 1 or 2 bases) are ignored. This method yielded 68,374 unique DH polypeptide segments after elimination of segments with stop codons, unpaired Cys residues, Asn in the last or next to last position that can lead to N-linked glycosylation motifs, and deamidation motifs (the “68K DH Theoretical Segment Pool”). Using the IGHD genes of Table 16 as an input for the PYTHON computer code provided below will reproduce the exact theoretical segment pool of 68,374 DH segments. There are two free parameters in this program: (1) the minimum length of the DNA sequences remaining after progressive deletions (4 bases in this example), and (2) the minimum length of the peptide sequences (2 amino acids in this example) acceptable for inclusion in the theoretical segment pool. These parameters can be changed to alter the output of the program. For example, changing the first parameter to one base and the second parameter to one amino acid would lead to a larger theoretical segment pool with 68,396 unique sequences, including 18 single-amino acid segments. DH segments progressively truncated to different lengths also fall within the scope of the invention; for example those truncated to 1, 2, 3, or 4 or more amino acids, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more nucleotides prior to translation.












PYTHON Computer Program to Generate 68,374 DH Segments

















import math, sys, string



class genes:



   name = ‘x’



   seq = ‘x’



   progdel = set( )



class table:



  name = ‘x’



  dna = ‘x’



  dna_n = 20 * [‘x’]



  prot = 60 * [‘x’]



  uprot = set( )



pepcod = { ‘A’:0, ‘C’:1, ‘D’:2, ‘E’: 3, ‘F’: 4, ‘G’: 5, ‘H’: 6,



‘I’:7, ‘K’:8, ‘L’: 9, ‘M’: 10,



‘N’:11, ‘P’:12, ‘Q’:13, ‘R’: 14, ‘S’: 15, ‘T’: 16, ‘V’:17,



‘W’:18, ‘Y’: 19, ‘Z’: 20}



codpep = 21 * [‘’]



codpep[0] = ‘A’



codpep[1] = ‘C’



codpep[2] = ‘D’



codpep[3] = ‘E’



codpep[4] = ‘F’



codpep[5] = ‘G’



codpep[6] = ‘H’



codpep[7] = ‘I’



codpep[8] = ‘K’



codpep[9] = ‘L’



codpep[10] = ‘M’



codpep[11] = ‘N’



codpep[12] = ‘P’



codpep[13] = ‘Q’



codpep[14] = ‘R’



codpep[15] = ‘S’



codpep[16] = ‘T’



codpep[17] = ‘V’



codpep[18] = ‘W’



codpep[19] = ‘Y’



# Z represents a stop codon



codpep[20] = ‘Z’



bases = ‘ACGT’



def translate_dna(sequence):



# Translation of input DNA sequence using standard genetic code



# Only full codons are considered with any remaining 1 or 2 bp



being ignored



# Z represents a stop codon



    code = {



    ‘ATA’:‘I’, ‘ATC’:‘I’, ‘ATT’:‘I’, ‘ATG ’:‘M’,



    ‘ACA’:‘T’, ‘ACC’:‘T’, ‘ACG’:‘T’, ‘ACT’:‘T’,



    ‘AAC’:‘N’, ‘AAT’:‘N’, ‘AAA’:‘K’, ‘AAG’:‘K’,



    ‘AGC’:‘S’, ‘AGT’:‘S’, ‘AGA’:‘R’, ‘AGG’:‘R’,



    ‘CTA’:‘L’, ‘CTC’:‘L’, ‘CTG’:‘L’, ‘CTT’:‘L’,



    ‘CCA’:‘P’, ‘CCC’:‘P’, ‘CCG’:‘P’, ‘CCT’:‘P’,



    ‘CAC’:‘H’, ‘CAT’:‘H’, ‘CAA’:‘Q’, ‘CAG’:‘Q’,



    ‘CGA’:‘R’, ‘CGC’:‘R’, ‘CGG’:‘R’, ‘CGT’:‘R’,



    ‘GTA’:‘V’, ‘GTC’:‘V’, ‘GTG’:‘V’, ‘GTT’:‘V’,



    ‘GCA’:‘A’, ‘GCC’:‘A’, ‘GCG’:‘A’, ‘GCT’:‘A’,



    ‘GAC’:‘D’, ‘GAT’:‘D’, ‘GAA’:‘E’, ‘GAG’:‘E’,



    ‘GGA’:‘G’, ‘GGC’:‘G’, ‘GGG’:‘G’, ‘GGT’:‘G’,



    ‘TCA’:‘S’, ‘TCC’:‘S’, ‘TCG’:‘S’, ‘TCT’:‘S’,



    ‘TTC’:‘F’, ‘TTT’:‘F’, ‘TTA’:‘L’, ‘TTG’:‘L’,



    ‘TAC’:‘Y’, ‘TAT’:‘Y’, ‘TAA’:‘Z’, ‘TAG’:‘Z’,



    ‘TGC’:‘C’, ‘TGT’:‘C’, ‘TGA’:‘Z’, ‘TGG’:‘W’,



    )



    proteinseq = ‘’



    for n in range(0,1en(sequence),3):



     if code.has_key(sequence[n:n+3]} == True:



      proteinseq += code[sequence[n:n+3]]



    return proteinseq



# main body starts here



# open input and output files



in1 = open(sys.argv[1], ‘r’)



ou1 = open(sys.argv[2], ‘w’)



# read DNA sequences for input DH segments



data = in1.readlines( )



nseg = len(data)



seqs = [ genes( ) for i in range(nseg) ]



for i in range(nseg):



 line = data[i]



 words = string.split(line)



 seqs[i].name = words [0]



 seqs[i].seq = words [1]



 seqs[i].progdel = set( )



# Define here minimum length for DNA (4) and for protein (2)



minlen = 4



minp = 2



# Implement progressive base by base deletion from 5′ or 3′ or



both ends



alln = 0



for i in range(nseg):



   seq = seqs[i].seq



   lseq = len(seq)



   nt = ct = lseq



   for n in range(nt):



     for c in range(ct):



       nseq = seq[n:lseq-c]



       if (len(nseq) >= minlen):



        seqs[i].progdel.add(nseq)



   alln += len(seqs[i].progdel)



# Collect unique DNA sequences across all DH genes of origin



and ignore redundant ones



progdel = [table( ) for i in range(alln) ]



n = 0



for i in range(nseg):



   for kk in seqs[i].progdel:



     unix = 1



     for j in range(n):



      if (kk == progdel[j].dna):



       unix = 0



       break



     if (unix == 1):



      progdel[n].name = seqs[i].name



      progdel[n].dna = kk



      n +=1



# Add none, 1 or 2 bp on one or both ends



# extras 20 + 20 * (21) = 20 + 420 = 440



# allocate memory for all variants



for i in range (n)



   progdel[i].dna_n = 440 * [‘x’]



   progdel[i].prot = 441 *3 * [‘x’]



   progdel[i].uprot = set( )



# add 1 or 2 bases at each end of input segment



tot = 0



for i in range (n)



# Step over each unique DNA sequence



 k = 0



# One base on 5′ end combined with 1 or 2 bases added to 3′ end



 for 15 in range (4)



  progdel[i].dna_n[k] = bases[15] + progdel[i].dna



  k +=1



  for 13 in range(4):



   progdel[i].dna_n[k] = bases[15] + progdel[i].dna +



bases [13]



   k +=1



  for 13 in range(4):



   for m3 in range (4):



    progdel[i].dna_n[k] = bases[15] + progdel[i].dna +



bases[13] + bases [m3]



    k +=1



# One or two bases added to 3′ only in this part



 for 13 in range (4)



  progdel[i].dna_n[k] = progdel[i].dna + bases [13]



  k +=1



 for 13 in range (4)



  for m3 in range(4):



   progdel[i].dna_n[k] = progdel[i].dna + bases[13] +



bases [m3]



   k +=1



# Two bases on 5′ end combined with 1 or 2 bp on 3′ end



 for 15 in range (4)



  for m5 in range(4):



   progdel[i].dna_n[k] = bases[15] + bases[m5] +



progdel[i].dna



   k +=1



   for 13 in range (4):



    progdel[i].dna_n[k] = bases[15] + bases[m5] +



progdel[i].dna + bases [13]



    k +=1



   for 13 in range (4):



    for m3 in range (4)



     progdel[i].dna_n[k] = bases[15] + bases[m5] +



progdel[i].dna + bases[13] + bases[m3]



     k +=1



# Now translate in all 3 forwared reading frames



# Save unique peptide sequences



 for fr in range(3):



  piece = progdel[i].dna



  piece = piece[fr:]



  tpiece = translate_dna(piece)



  progdel[i].prot[fr] = tpiece



  progdel[i].uprot.add(tpiece)



  for k in range (440):



   piece = progdel[i].dna_n[k]



   piece = piece[fr:]



   tpiece = translate_dna(piece)



   progdel[i].uprot.add(tpiece)



   progdel[i].prot[3+440*fr +k] = tpiece



 tot += len(progdel[i].uprot)



# Collect unique sequences with no ASN at last or next to last



position, no unpaired or consecutive CYS, no stops



unset = set( )



segm = [ genes( ) for i in range(tot) ]



lux = 0



nn = 0



for i in range (n)



   k = 0



   for kk in progdel[i].uprot:



# Filter out sequences with undesired features, including



length being too short (under “minp” defined above)



      if (len(kk) < minp): continue



      if (kk[len(kk)-1] == “N” or kk[len(kk)-2] ==



“N”): continue



      if (kk.count(“Z”) > 0 or kk.count(“CC”) >0 or



kk.count(“C”) % 2 >0): continue



      unset.add(kk)



      lux1 = len(unset)



      if (lux1 > lux):



       segm[nn].name = progdel[i].name + “_” +



str(nn)



       segm[nn].seq = kk



       nn += 1



      lux = lux1



      k += 1



# Print out unique peptide sequences that pass all the filters



for i in range (nn):



   ou1.write(“%s\t%s\n” % (segm[i].name, segm[i].seq))









Example 7. Deriving Theoretical Segment Pools of TN1 and N2 Segments

The libraries of this example are designed to, in some instances, have a greater diversity in their TN1 and N2 segments in comparison to other libraries known in the art. The diversity of the TN1 and N2 segments was increased by using the matching method described in Example 4 to deconvolute the CDRH3 sequences in the HPS into their constituent segments (i.e., TN1, DH, N2, and H3-JH), followed by extraction of “novel” TN1 and N2 segments in the manner described below. For the purposes of the invention, “novel” TN1 and N2 segments are TN1 and N2 segments that do not appear in a theoretical segment pool that is matched to a reference set of CDRH3 sequences. Following is an example of the method used to extract novel TN1 and N2 segments from the HPS. This method can be generalized to extract novel TN1 and N2 segments from any reference set of CDRH3 sequences, using any theoretical segment pool containing TN1, DH, N2, and/or H3-JH segments.


Table 9 provides the matching results for the reference CDRH3 sequence ERTINWGWGVYAFDI (SEQ ID NO: 8760) (Test Cases 5.1-5.4) from the HPS, using Theoretical Segment Pool 1 (“TSP1”). The best matches to the reference CDRH3 are four CDRH3 sequences, each within three amino acids of the reference CDRH3 sequence. In each of these matches, the TN1, DH, N2 and H3-JH segments are of length 4, 3, 3 and 5 amino acids, respectively. Thus the reference CDRH3 can be deconvoluted into the following segments: ERTI-NWG-WGW-YAFDI (SEQ ID NO: 8761) (i.e. [TN1]-[DH]-[N2]-[H3-JH], respectively). The DH and H3-JH segments from the reference CDRH3, NWG and YAFDI (SEQ ID NO: 4540) respectively, are identically present in TSP1. However, the TN1 (ERTI) (SEQ ID NO: 8718) and N2 (WGW) segments from the reference CDRH3 are absent in TSP1 and match TSP1 segments with one or more amino acid mismatches. These “novel” TN1 and N2 segments are extracted from the reference CDRH3 and considered for inclusion prospective theoretical segment pools and/or synthetic libraries. Additional novel TN1 and N2 segments were accumulated by applying this analysis to all members of the HPS. In order to robustly identify TN1 and N2 sequences, the extraction was performed only for those CDRH3 sequences in which the DH and H3-JH segments in the reference CDRH3 and TSP1 cumulatively return no more than 3 amino acid mismatches, implying that the DH and H3-JH segments of the reference CDRH3 had been reliably assigned.


Example 8. Calculation of Segment Usage Weights

Segment usage weights were calculated for their utility in determining which segments from the theoretical segment pools (e.g., TSP1 and TSP1 plus novel TN1 and N2 segments identified as described in Example 7) should be included in a synthetic library. Segment usage weights were obtained by utilization of the matching method described above and Equation 2:










w


(
i
)


=


1

S
m







j
=
1


S
m





1

g


(
j
)








k
=
1


g


(
j
)






f
i



(
k
)










Equation





2








where,

    • w(i): Weight for segment i. 0≤w(i)≤1.
    • Sm: Number of sequences (out of total S in the reference CDRH3 set) which contain one or more best matches with no more than m amino acid mismatches in the specified region of the reference CDRH3 sequence. Here, the mismatches are computed over the Kabat-CDRH3 region, but other fragments of the CDRH3 sequences may also be considered. A constant value of m=3 was used here, but other values may be used, or the value may depend on the length of the reference CDRH3 sequence.
    • g(j): Total number of degenerate segment combinations producing the best match to the reference CDRH3 sequence j.
    • fi(k): Fractional amino acid identity of TN1, DH, N2 or H3-JH segment in degenerate match k, relative to the corresponding sequence fragment in the reference CDRH3 sequence j. The fractional amino acid identity equals zero if the segment does not appear in match k. Other definitions off such as amino acid similarity (e.g., based on physicochemical properties of the amino acids such as hydrophobicity), instead of identity, may be also used.


The procedure for calculating segment usage weights will be further exemplified below. In each of these examples, the best match combinations from TSP1 are provided for a single CDRH3 sequence (Sm=1) and the degeneracy (k) and fractional mismatch (f) dependent weight calculations are explained.


Example 8.1. Segment Usage Weights for Test Case 1 in Table 9

Refer to Test Case 1 in Table 9. The CDRH3 sequence RTAHHFDY (SEQ ID NO: 3660) is identically located in TSP1 (f=1, subscripts dropped for simplicity) via a unique segment combination (g=1). Table 18 provides the usage weights for the segments corresponding to the best match from TSP1 for the CDRH3 of Test Case 1.


Example 8.2. Segment Usage Weights for Test Cases 2.1 and 2.2 in Table 9

Refer to Test Cases 2.1 and 2.2 in Table 9. The CDRH3 sequence VGIVGAASY (SEQ ID NO: 3661) may be identically located in TSP1 (f=1) via two distinct segment combinations (g=2). Table 19 provides the usage weights for the segments corresponding to the best match from TSP1 for the CDRH3 of Test Cases 2.1 and 2.2.


Example 8.3. Segment Usage Weights for Test Case 3.1 in Table 9

Refer to Test Case 3.1 in Table 9. The CDRH3 sequence DRYSGHDLGY (SEQ ID NO: 3662) may be identically located in TSP1 via a unique segment combination (g=1) with a single amino acid difference. As provided below, the TN1, N2 and H3-JH segments match the corresponding reference sequence fragments identically, while four of the five DH amino acids match identically.











Sequence from the HPS:










DR-YSGHD-LG-Y
(SEQ ID NO: 3662)













Nearest Neighbor in TSP1:










DR-YSGYD-LG-Y
(SEQ ID NO: 8719)







Thus, here










f
=



4


/


5





for





the





DH





segment


;
and







=



1





for





the





TN





1


,

N





2

,

and





H





3


-


JH





segments







(

Table





20

)

.









Example 8.4. Matching of Test Cases 4.1 and 4.2 in Table 9

Refer to test cases 4.1 and 4.2 in Table 9. The CDRH3 sequence GIAAADSNWLDP (SEQ ID NO: 3663) may be located in TSP1 via two distinct segment combinations (g=2), each with a single amino acid difference. As provided below, the TN1, DH and N2 segments match the corresponding reference sequence fragments identically, while five of the six H3-JH amino acids match identically.











Sequence from HPS:










(−)-GIAAA-D-SNWLDP
(SEQ ID NO: 3663)













Nearest Neighbor in TSP1:










(−)-GIAAA-D-SNWFDP
(SEQ ID NO: 8720)













Sequence from HPS:










G-IAAA-D-SNWLDP
(SEQ ID NO: 3663)













Nearest Neighbor in TSP1:










G-IAAA-D-SNWFDP
(SEQ ID NO: 8720)









Here, (−) represents the “empty” TN1 segment.







Applying Equation 2 results in the segment usage weights provided in Table 21.


Example 8.5. Calculating the Segment Usage Weights for Test Cases 1 to 4.2 of Table 9

Extending the individual calculations described above to simultaneously include all of Test Cases 1 to 4.2 of Table 9 results in the segment usage weights of Table 22.


Example 8.6. Calculating the Segment Usage Weights for Test Cases 5.1 to 5.4 of Table 9

Refer to the CDRH3 sequence ERTINWGWGVYAFDI (SEQ ID NO: 8760) and the novel TN1 and N2 segments extracted from the CDRH3 sequence, in Example 7. In this case, the novel TN1 and N2 segments (ERTI (SEQ ID NO: 8718) and WGV respectively), and the DH and H3-JH segments from TSP1 (NWG and YAFDI (SEQ ID NO: 4540) respectively) are each assigned usage weights of unity.


Example 9. Selection of TN1, DH, N2 and JH Segments for Inclusion in Synthetic Libraries


FIG. 5 provides the general method used for the design of synthetic CDRH3 libraries. The method uses as input: (1) a theoretical segment pool containing TN1, DH, N2, and H3-JH segments (e.g., TSP plus novel TN1 and N2 segments); and (2) a collection of reference CDRH3 sequences (e.g., the HPS). From these inputs, a particular subset of segments from the theoretical segment pool is selected for inclusion in a physical CDRH3 library.


First, the best matches to the CDRH3s of the HPS were obtained, from within the TSP1 set, with or without the novel TN1 and N2 segments, using the matching method described above. This data was then used to compute the segment usage weights via Equation 2. Segments were prioritized for inclusion in the physical library based on their relative frequency of occurrence in the CDRH3 sequences of the HPS (as indicated by the segment usage weights), as well as other factors (more fully described below), such as hydrophobicity, alpha-helical propensity, and expressibility in yeast.


Example 9.1. Exemplary Library Design (ELD-1)

ELD-1 uses the HPS and the segments from TSP1 1 (9.5×109 members) as inputs and produces an output of 100 TN1, 200 DH, 141 N2 and 100 H3JH segments, each from TSP1, ranked in order by their usage weights in the HPS, to produce a library with theoretical complexity of 2.82×108. The segments corresponding to ELD-1 are provided in Table 23. Note that here the combination of all of the segments (i.e., TN1, DH, N2, and H3-JH), and the individual sets of segments (i.e., TN1 only, DH only, N2 only, and H3JH only) each constitute theoretical segment pools.


Example 9.2. Exemplary Library Design 2 (ELD-2)

The inputs for this design are the HPS and the segments from TSP1 plus the novel TN1 and N2 segments extracted from the HPS (Example 7). The outputs are (1) 200 DH and 100 H3JH segments, each from TSP1; and (2) 100 TN1 and 200 N2 segments including TN1 and N2 segments originally in TSP1 and those extracted from the sequences in the HPS. Applying the method described in Example 7 to extract novel TN1 and N2 segments (i.e., those not included in TSP1) resulted in the identification of 1,710 novel TN1 segments and 1,024 novel N2 segments. The segments corresponding to ELD-2 are provided in Table 24. Note that here the combination of all of the segments (i.e., TN1, DH, N2, and H3-JH), and the individual sets of segments (i.e., TN1 only, DH only, N2 only, and H3JH only) each constitute theoretical segment pools. As in ELD-1, all segments in ELD-2 were selected for inclusion based solely on their usage weights in the HPS.


Example 9.3. Exemplary Library Design 3 (ELD-3)

The inputs for this design are identical to those for ELD-2. As in ELD-2, the outputs are (1) a set of 200 DH and 100 H3-JH segments, each from TSP1; and (2) a set of 100 TN1 and 200 N2 segments, including TN1 and N2 segments originally in TSP1 and those extracted from the sequences in the HPS (Example 7). However, the approach used for the selection of the segments for ELD-3 differs in two respects. First, selected physicochemical properties of the segments (hydrophobicity, isoelectric point, and alpha-helix propensity) were used, in addition to the segment usage weights, to prioritize segments for inclusion in the physical library. Hydrophobicity was used to de-prioritize hydrophobic DH segments that are empirically over-represented in poorly expressed antibodies isolated from yeast-based libraries. Isoelectric point and propensity for alpha-helix formation were utilized to identify segments located in regions of physicochemical property space that were relatively unexplored in CDRH3 libraries known in the art (e.g., U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379). Second, the segment usage weights were calculated via a bootstrap analysis of the HPS dataset. These methods are more fully described below. The segments corresponding to ELD-3 are provided in Table 25. Note that here the combination of all of the segments (i.e., TN1, DH, N2, and H3-JH), and the individual sets of segments (i.e., TN1 only, DH only, N2 only, and H3-JH only) each constitute theoretical segment pools.


Example 9.3.1. Generation of Segment Usage Weights Via Bootstrap Analysis

Bootstrap analysis (Efron & Tibshirani, An Introduction to the Bootstrap, 1994 Chapman Hill, N.Y.) is a widely used statistical procedure for estimating the variability of a statistic of a given sample. This estimate is based on the value of the statistic calculated for several sub-samples, equal in size to the original sample and derived from it via sampling with replacement. Members of the original sample are chosen at random to form the sub-samples, and are typically included multiple times in each sub-sample (hence, “sampling with replacement”).


Here, the original sample is the HPS dataset with n=3,571 members and the statistic is the segment usage weight. One-thousand sub-samples, each with 3,571 members, were generated by randomly choosing sequences from the HPS dataset (no more than 10 repeats of a given sequence were allowed in each sub-sample). The matching method described above was then applied to each sub-sample, and the final segment usage weights were calculated as the average of the values obtained for the individual sub-samples. Average values derived via this bootstrap procedure are more robust than values calculated from the parent HPS dataset alone. Unless indicated otherwise, these average values of the 1,000 sub-samples were used in the selection of segments for ELD-3.


Example 9.3.2. Amino Acid Property Indices

The AAindex database, available online at world wide web at genome.jp/aaindex/, provides more than 500 numerical indices representing various physicochemical and biochemical properties of amino acids and pairs of amino acids. These properties include hydrophobicity, electrostatic behavior, secondary structure propensities and other characteristics, with several indices often available for a given property. The following three indices were chosen by starting with the well-understood Kyte-Doolittle hydropathy index (KYJT820101) and adding the indices most numerically de-correlated from it and each other. They thus potentially describe non-overlapping regions of amino acid property space and were used for analysis and selection of the DH and H3-JH segments for ELD-3:

    • 1. KYTJ820101 (hydropathy index)
    • 2. LEVM780101 (normalized frequency of alpha helix)
    • 3. ZIMJ680104 (isoelectric point)


Example 9.3.3. Hydrophobic DH Segments are Over-Represented in Poorly Expressed Antibodies Isolated from Yeast-Based Libraries

Based on protein expression levels from approximately 1200 antibodies expressed in S. cerevisiae, antibodies were classified as either “Good” or “Poor” expressors. The CDRH3 sequence of each antibody in each category was examined to identify sequence features that correlated with the expression level. One such sequence feature is the hydrophobicity of the DH segments calculated using the KYTJ820101 index. FIG. 6 provides the frequency of “Good” and “Poor” expressors as a function of the DH segment hydrophobicity (increasing to the right). The distribution expected from the synthetic library used to isolate these antibodies is also provided as a reference (“Design”). DH segments with the highest hydrophobicity values (far right of the plot) are over-represented (relative to the expectation based on the design) among “Poor” expressors and under-represented among “Good” expressors. Similarly, hydrophilic DH segments (far left) are over-represented among “Good” expressors and under-represented among “Poor” expressors. From this data, it was inferred that the overall expressibility of the antibodies of the library may be improved by synthesizing CDRH3 sequences with fewer hydrophobic DH segments.


Example 9.3.4. Selection of the 200 DH Segments for Inclusion in ELD-3

A set of 71 DH segments from TSP1 were designated as “core” DH segments for automatic inclusion in ELD-3. These segments had the following desirable properties:

    • 1. Fifty-three of seventy-one were present within the top 7% of DH segments rank-ordered by segment usage weights from the bootstrap analysis.
    • 2. Eighteen of seventy-one were present within the top 7% of DH segments rank-ordered by usage weights derived from antibodies isolated from libraries expressed in S. cerevisiae.


The remaining 1,040 segments were designated as “non-core.” To complete the set of 200 segments in ELD-3, 129 segments were chosen from the “non-core” pool of segments in the following manner:

    • 1. Sixty-five segments were eliminated because they contain either (a) an Asn residue at the last or next-to-last position with the potential to form N-linked glycosylation motifs via combination with N2 amino acids or (b) the amino acid sequence NG, implicated in de-amidation.
    • 2. Segments with higher than median values for the KYTJ820101 hydropathy index (median=2.9 for 1K DH) were eliminated from further consideration. In view of the known importance of Tyr for antigen recognition (Fellouse et al., PNAS, 2004, 101: 12467; and Hofstadter et al., J. Mol. Biol., 1999, 285: 805, each incorporated by reference in its entirety), segments containing at least one Tyr residue were retained unless located in the highest hydrophobicity quartile (KYTJ820101 value higher than 9.4). This eliminated 443 segments.
    • 3. The final set of 129 segments was obtained by using an objective function that aimed to maximize the Euclidean distance, between the “core” and the remaining 443 “non-core” segments, in a multi-dimensional space defined by the following variables: (1) amino acid mismatches to nearest neighbor; and (2) values of the three physicochemical property indices.


Example 9.3.5. Selection of the 100 H3-JH Segments for Inclusion in ELD-3

One-hundred H3-JH segments were chosen for inclusion in ELD-3 in the following manner.

    • 1. Twenty-eight H3-JH segments were selected after being experimentally validated in other libraries containing only these H3-JH segments (see U.S. Publication Nos. 2009/0181855 and 2010/0056386, and WO/2009/036379).
    • 2. Fifty-seven segments were selected based on their presence within the top 25% of H3-JH segments rank-ordered by usage weights from the bootstrap analysis described above. These 57 H3-JH segments, plus the 28 H3-JH segments of (1) (i.e., 85 segments total) were designated as the “core” H3-JH segments, which, like the core DH segments, were automatically included in ELD-3.
    • 4. Fifteen additional segments were chosen by using an objective function that aimed to maximize the Euclidian distance, between the “core” and the remaining 200 “non-core” segments, in a multi-dimensional space defined by the following variables: (1) amino acid mismatches to nearest neighbor; and (2) values of the three physicochemical property indices.


Example 9.3.6. Selection of 100 TN1 and 200 N2 Segments for Inclusion in ELD-3

TN1 and N2 segments were extracted from the sequences in each sub-sample of the bootstrap procedure, and the 100 TN1 and 200 N2 segments with the highest average segment usage weights were chosen for inclusion into the library, after elimination of sequences with undesirable motifs, namely Cys and Asn residues.


Example 9.3.7. Selection of Nucleotide Sequences to Encode the Segments Chosen for Inclusion in ELD-3

Each of the polypeptide segments chosen for inclusion in the library must be back translated (polypeptide to DNA) into a corresponding oligonucleotide sequence. While a large number of oligonucleotides could possibly encode each polypeptide segment, due to the degeneracy of the genetic code, certain constraints were imposed to select oligonucleotides that were more desirable. First, since ELD-3 was expressed in yeast (S. cerevisiae), codons that are rarely used in yeast were avoided. For example, of the six possible codons for Arg, three: CGA, CGC and CGG are used to encode yeast proteins at rates of under 10% (see, for example, Nakamura et al., Nucleic Acids Res., 2000, 28:292), and therefore those three codons were avoided to the extent possible. Second, since many antibodies are produced in Chinese Hamster Ovary (CHO) cells (after discovery e.g., in yeast), the CCG codon (encoding Pro) was also avoided, since it is rarely used by hamsters (Nakamura et al.)


A number of restriction enzymes are employed during the actual construction of the CDRH3 oligonucleotide library (see Example 10 of U.S. Pub. No. 2009/0181855). It is thus desirable to avoid the occurrence of recognition motifs for these restriction enzymes within the CDRH3 polynucleotide sequences. Codons are selected at the individual segment level to avoid introducing recognition motifs for restriction enzymes that may be used downstream. Since such motifs may also be generated by combinatorial assembly of the segments, the segment combinations are also checked and, whenever possible, codons are changed to eliminate the occurrence of such motifs. Specifically, three restriction enzymes were used during the construction of the currently exemplified CDRH3 library: BsrDI, BbsI, and AvrII. The first two are type II enzymes with non-palindromic recognition sites. The reverse strand of the oligonucleotides encoding the segments was checked explicitly for recognition sites for these two enzymes. In particular, the reverse strands were checked for the motifs GCAATG and CATTGC (for BsrDI) and GAAGAC and GTCTTC (for BbsI). The recognition motif for AvrII is palindromic so the oligonucleotides were only checked for the sequence CCTAGG. However, AvrII is used only to treat TN1 segments, and thus it is not necessary to evaluate its presence in the other segments or their combinations.


An additional constraint that was imposed to improve engineering of the polypeptide to polynucleotide conversion was avoidance of consecutive runs of 6 or more of the same type of base, as this is believed to increase errors during solid phase oligonucleotide synthesis. Therefore, DNA sequences for the segments of ELD-3 were chosen to avoid such motifs. The DNA sequences for the ELD-3 segments are included, with the respective polypeptide sequences, in Table 25. One of ordinary skill in the art will readily recognize that these methods can also be applied to any other library, any restriction sites, any number of nucleotide repeats, and/or to avoid the occurrence of any codons considered undesirable in any organism.


Example 10. Matching of ELD-3 to Human CDRH3 Datasets and Clinically Relevant Antibodies

Among the objectives of the invention is to mimic the V-D-J recombination processes underlying the creation of the human CDRH3 repertoire in vivo, thereby increasing the diversity of the CDRH3 library in comparison to other libraries known in the art, while maintaining the human character of CDRH3. One measure of success is the extent to which collections of human reference CDRH3 sequences are represented identically, or via close matches (e.g., less than about 5, 4, 3, or 2 amino acid differences) in any library of the invention. We evaluated this metric using two human CDRH3 sequence reference datasets, both non-overlapping with each other and the HPS: (1) a collection of 666 human CDRH3 sequences (Lee et al., Immunogenetics, 2006, 57: 917; “Lee-666”); and (2) a collection of 3,000 human CDRH3 sequences randomly chosen from the over 200,000 sequences disclosed in Boyd et al., Science Translational Medicine, 2009, 1: 1-8 (“Boyd-3000”). The results of the random sample of the 3,000 human CDRH3 sequences from Boyd et al. was representative of the results of the same analysis as applied to all members of the Boyd et al. set (>200,000 CDRH3 sequences).



FIG. 7 provides the percentage of CDRH3 sequences in two synthetic libraries, “LUA-141” and ELD-3, that match a sequence from the Lee-666 or Boyd-3000 sets with zero, one, two, three, or more than three amino acid mismatches. Here, “LUA-141” represents a library containing 212 TN1, 278 DH, 141 N2, and 28 H3JH (see U.S. Publication No. 2009/0181855 for details). In particular, it is notable that ELD-3 exhibits a higher percentage of sequences (12.9% and 12.1% for the Lee-666 and Boyd-3000 sets, respectively) that identically match a reference CDRH3 sequence than LUA-141 (8.4% and 6.3% for the Lee-666 and Boyd-3000 sets, respectively). It is also notable that ELD-3 exhibits a higher cumulative percentage of human CDRH3 sequences found with no more than two amino acid mismatches (54.1% and 52.5% for the Lee-666 and Boyd-3000 sets, respectively) relative to LUA-141 (41.2% and 43.7% for the Lee-666 and Boyd-3000 sets, respectively).


Another metric by which antibody libraries can be evaluated is their ability to match “clinically relevant” reference CDRH3 sequences. FIG. 8 demonstrates that ELD-3 returns better matches to clinically relevant CDRH3 sequences than the LUA-141 library. Specifically, ELD-3 matches 34 of 55 (62%) clinically validated antibodies within one amino acid, while the LUA-141 library only matches 20 of 55 (37%).


Example 11. Comparison of ELD-3 to LUA-141

ELD-3 has 73 TN1, 92 DH, 119 N2, and 28 H3-JH in common with LUA-141. Thus, 94.5% of the sequences in ELD-3 (4.0×108 members) are different from the LUA-141 library (2.3×108 members). FIG. 9 demonstrates that the combinatorial efficiency of the segments in ELD-3 is greater than that of the segments in LUA-141. Specifically, the ELD-3 segments are more likely to yield a unique CDRH3 than the LUA-141 library segments. This is advantageous, because it allows one to synthesize libraries with increased CDRH3 diversity using fewer segments.



FIG. 10 provides the amino acid compositions of the Kabat-CDRH3s of LUA-141, ELD-3, and Human CDRH3 sequences from the HPS.



FIG. 11 provides the Kabat-CDRH3 length distribution of LUA-141, ELD-3, and Human CDRH3 sequences from the HPS.


CDRH3 Libraries Synthesized with Degenerate Oligonucleotides


Example 12. Further Increasing CDRH3 Diversity by Utilizing Degenerate Oligonucleotides

The methods described in this example extend the methods taught above, to produce CDRH3 libraries with more members than those of the libraries described above. In particular, one or two degenerate codons were introduced into the DH and or N2 polynucleotide segments, and (generally) no degenerate codon or one degenerate codon were introduced into the H3-JH segments. Segments with different numbers of degenerate codons are also contemplated; for example DH segments with 0, 1, 2, 3, 4, 5, 6, 7, 8, or more degenerate codons, and H3-JH segments with 0, 1, 2, 3, 4, 5, or more degenerate codons. This results in CDRH3 libraries containing greater than about 1011 (about 2×1011) distinct CDRH3 amino acid sequences that closely reflect properties, such as length and composition among others, of a reference set of human CDRH3 sequences. As described below, the degenerate positions in the DH segments are usually, but not always, the very N- and/or C-terminal positions, or 5′ and 3′ end codons (i.e., not necessarily only the first or last base), respectively, when considering the corresponding oligonucleotide sequences. Degenerate codons were similarly used to synthesize N2 segments. Two hundred of the TN1 segments were as described in ELD-3, although libraries with degenerate TN1 segments, or with alternative choices of TN1 segment sequences, fall within the scope of the invention. An additional one hundred TN1 segments complete the set of 300 TN1 segments for this library. The amino acid and nucleotide sequences are listed in Table 26. It is also possible to use mixtures of trinucleotides instead of, or in addition to, degenerate oligonucleotides in order to allow amino acid type variation at one or more selected positions within “base” or “seed” segment sequences (defined below).


Example 13. Selection of DH Segments for Synthesis by Degenerate Oligonucleotides

The segment usage weights were calculated for the 68K DH Theoretical Segment Pool by comparison to the sequences contained in Boyd et al. The DH segments with a length of three or more amino acids were ranked according to their segment usage weights (as described above), and the top 201 were designated as “seed” sequences. These seed sequences were then varied by selecting certain positions to incorporate degenerate codons. The positions selected for variance, the amino acids types to which they were varied, were determined by comparing the seed sequences to a reference set of 9,171 DH segments that were a subset of the 68K DH Theoretical Segment Pool. These 9,171 DH segments were selected because their segment usage weight in Boyd et al. was significant, meaning that the cumulative segment usage weight (Example 8) is at least 1.0.


Each of the 201 seed sequences was compared to each of the sequences in the reference set of 9,171 DH segments, and those of identical length and differing at a single position were further considered to inform possible variants of the seed. In this manner, the most variable position for each seed was identified and a set of candidate amino acid types was also identified for each position. Finally, a set of degenerate codons was considered, to identify the codon that most faithfully represented the set of candidate amino acid types for each particular position. Degenerate codons encoding stop codons, Cys residues, N-linked glycosylation motifs (i.e., NXS or NXT, where X is any amino acid type), or deamidation motifs (NG) were eliminated from consideration. This process generated 149 unique degenerate oligonucleotide sequences, which collectively encode 3,566 unique polypeptide sequences. Alternative designs generated according to the same principles were also considered, and those having a larger diversity (in terms of the number of unique polypeptide sequences) and smaller RMAX values (see below) were given preference for inclusion in the libraries of the invention. However, it is also conceivable that different criteria could be used to select DH segments from the 68K DH Theoretical Segment Pool, and that libraries including DH segments selected by these different criteria would also fall within the scope of the invention.


Because not all degenerate oligonucleotides encode an identical number of polypeptides, the latter do not occur with uniformly identical weights over the entirety of a given theoretical segment pool (i.e., TN1, DH, N2 and H3-JH) contained within a CDRH3 library of the invention. For example, an individual amino acid sequence X encoded by an oligonucleotide of total degeneracy 4 will have a “weight” of ¼, while another individual amino acid sequence, Y, encoded by an oligonucleotide of degeneracy 6 will have a weight of ⅙. Moreover, certain amino acid sequences could be encoded by more than one degenerate oligonucleotide, so their weights will be the sum of the individual contributions by each oligonucleotide. Within a given theoretical segment pool, the ratio of the weight of the most heavily weighted polypeptide to that of the least heavily weighted one, RMAX, is an important design criterion that one would ideally like to minimize. The RMAX value may be defined by length, or overall for all of the segments of any given type (i.e., all the DH segments, or all the H3-JH segments, and so on for the TN1, and/or the N2 segments). Table 27 lists the degenerate oligonucleotide sequences, while Table 28 lists the unique polypeptide sequences resulting from these oligonucleotides. These two tables include the DH dimer segments the design of which is detailed below.


Example 13.1. Selection of DH Dimer Segments

A different method was employed to design a set of degenerate oligonucleotides encoding DH dimer sequences. The method aimed to include all of the 45 dimer sequences in ELD-3 plus as many of the other 400 theoretically possible dimer sequences (i.e., 20 residues possible in each of 2 positions=20*20), minus segments containing Asn (N) residues and excessively hydrophobic dimers (i.e., any dimer combination comprising only F, I, L, M, and/or V residues). This design process ultimately yielded 35 degenerate oligonucleotide sequences encoding 213 unique peptide dimer sequences. As with the selection processes used for all of the other segments of the invention, one or ordinary skill in the art will readily recognize that other criteria could be used to select the DH dimer segments, and that libraries including these segments also fall within the scope of the invention.


Combining the DH dimer segments with the longer DH segments of Example 13, yielded the final set of DH segments of the currently exemplified library, encoded by a total of 184 oligonucleotides (35 encoding dimers and 149 encoding segments having three or more amino acids) versus the 200 oligonucleotides of ELD-3. The 184 oligonucleotides encode a total of 3,779 unique polypeptide sequences: 213 dimers and 3,566 longer segments of three amino acids or greater.


Example 14. Generation of Expanded N2 Diversity

As described above, ELD-3 contains 200 N2 segments. In the currently exemplified library, the empty N2 segment (i.e., no N2, so that the DH segments are joined directly to the H3-JH segments) and monomer N2 segments were the same as in ELD-3. However, degenerate oligonucleotides were used to generate sets of two-, three-, and four-mers that not only recapitulated all of the corresponding sequences in ELD-3 but also resulted in additional diversity. As with the DH segments, these degenerate oligonucleotides were designed to eliminate Asn (in unsuitable positions) and Cys residues, and stop codons. More specifically, Asn residues were allowed at the first position of trimers and at the first or second position of tetramers whenever the subsequent amino acid was not Gly and the next amino acid was not Ser or Thr, thus avoiding deamidation or N-linked glycosylation motifs within the candidate N2 segments. The N2 theoretical segment pool for the currently exemplified library contains one zero-mer (i.e., no N2 segment), 18 monomer, 279 dimer, 339 trimers, and 90 tetramer N2 amino acid sequences, or 727 segments in total. These amino acid sequences are encoded by 1, 18, 81, 36, and 10 oligonucleotides, respectively, for a total of 146 oligonucleotides. All but the first 19 oligonucleotides, those encoding the zero- and one-mers, are degenerate. Table 29 lists the 146 oligonucleotide sequences, while Table 30 lists the resulting 727 unique polypeptide sequences.


Example 15. Generation of Expanded H3-JH Diversity

Application of nucleotide-level progressive deletions on the 5′ end of the human IGHJ polynucleotide segments down to the point where only the DNA sequence corresponding to FRM4 remained (i.e., no H3-JH remained), followed by systematic 1- or 2-bp completions on the same 5′ end, resulted in 643 unique H3-JH peptide segments after translation (“643 H3-JH Set”). As done with the DH segments, it is possible to rank order each of the 643 segments by their usage weights obtained after comparison to the approximately 237,000 human sequences from Boyd et al., and the top 200 individual sequences, from those devoid of the undesired motifs described above, were chosen to provide the set of H3-JH segments for the currently exemplified library.


In an alternatively exemplified embodiment, 46 of the 200 H3-JH segments were designed with a two-fold degenerate codon in the first position (i.e., N-terminal or 5′ end, respectively, at the peptide and oligonucleotide level), so that, overall, 200 oligonucleotides would encode 246 unique peptide sequences.


In yet other alternatively exemplified embodiments, further use of degenerate codons may be conceived to produce libraries encoded by 90, 100, 200 or more oligonucleotides representing up to 500 distinct polypeptide sequences. Preferably, but not necessarily, these up to 500 unique sequences could be a subset of the sequences in the 643 H3-JH reference set described above, or a subset of variants of these sequences. As exemplified above, H3-JH segments containing undesirable polypeptide motifs may be eliminated from the design. The oligonucleotide sequences for the JH segments are listed on Table 31, while the resulting unique polypeptide sequences are provided in Table 32. In Table 31, nucleotide sequences corresponding to the FRM4 region are also provided, but the “peptide length” value refers to the H3-JH portion only. For simplicity, only the H3-JH peptide sequences are included in Table 32.


Example 16. Extended Diversity Library Design (EDLD)

The TN1, DH, H3-JH, and N2 segments selected above, and provided in Tables 26 to 32, were combined to generate an Extended Diversity Library Design (EDLD) with theoretical diversity of about 2×1011 (300 TN1×3,779 DH×727 N2×246 H3-JH). The oligonucleotides encoding the selected segments were chosen according to the principles of Example 9.3.7.



FIGS. 12-15 illustrate certain characteristics of this design indicating, for example, that about 50% of the approximately 237,000 CDRH3 sequences in Boyd et al. may be recapitulated by library sequences with either one or no mismatches (i.e., by summing the “0” and “1” bins of FIG. 12). The theoretical length distributions (FIG. 13) and amino acid compositions (FIG. 14) of these libraries also match closely the respective characteristics observed in the same set of human CDRH3 sequences. FIG. 15 shows the combinatorial efficiency of the Extended Diversity Library Design. Approximately 65% of the sequences appear only once in the design (i.e., are generated via one non-degenerate combination of segments). FIG. 8, previously presented, shows that the Extended Diversity Library Design outperforms both LUA-141 and ELD-3 in terms of matching to clinically relevant human antibody sequences.









TABLE 1







Germline-like sequences for eight of the 


VK chassis provided by the invention.












Germline-Like
SEQ ID


Germline
Junction
CDRL3 Sequence
NO





VK1-05
 1
QQYNSYST
  1





VK1-05
 2
QQYNSYFT
  2





VK1-05
 3
QQYNSYLT
  3





VK1-05
 4
QQYNSYIT
  4





VK1-05
 5
QQYNSYRT
  5





VK1-05
 6
QQYNSYWT
  6





VK1-05
 7
QQYNSYYT
  7





VK1-05
 8
QQYNSYSPT
  8





VK1-05
 9
QQYNSYSFT
  9





VK1-05
10
QQYNSYSLT
 10





VK1-05
11
QQYNSYSIT
 11





VK1-05
12
QQYNSYSRT
 12





VK1-05
13
QQYNSYSWT
 13





VK1-05
14
QQYNSYSYT
 14





VK1-05
15
QQYNSYSPFT
 15





VK1-05
16
QQYNSYSPLT
 16





VK1-05
17
QQYNSYSPIT
 17





VK1-05
18
QQYNSYSPRT
 18





VK1-05
19
QQYNSYSPWT
 19





VK1-05
20
QQYNSYSPYT
 20





VK1-12
 1
QQANSFPT
 21





VK1-12
 2
QQANSFFT
 22





VK1-12
 3
QQANSFLT
 23





VK1-12
 4
QQANSFIT
 24





VK1-12
 5
QQANSFRT
 25





VK1-12
 6
QQANSFWT
 26





VK1-12
 7
QQANSFYT
 27





VK1-12
 8
QQANSFPPT
 28





VK1-12
 9
QQANSFPFT
 29





VK1-12
10
QQANSFPLT
 30





VK1-12
11
QQANSFPIT
 31





VK1-12
12
QQANSFPRT
 32





VK1-12
13
QQANSFPWT
 33





VK1-12
14
QQANSFPYT
 34





VK1-12
15
QQANSFPPFT
 35





VK1-12
16
QQANSFPPLT
 36





VK1-12
17
QQANSFPPIT
 37





VK1-12
18
QQANSFPPRT
 38





VK1-12
19
QQANSFPPWT
 39





VK1-12
20
QQANSFPPYT
 40





VK1-33
 1
QQYDNLPT
 41





VK1-33
 2
QQYDNLFT
 42





VK1-33
 3
QQYDNLLT
 43





VK1-33
 4
QQYDNLIT
 44





VK1-33
 5
QQYDNLRT
 45





VK1-33
 6
QQYDNLWT
 46





VK1-33
 7
QQYDNLYT
 47





VK1-33
 8
QQYDNLPPT
 48





VK1-33
 9
QQYDNLPFT
 49





VK1-33
10
QQYDNLPLT
 50





VK1-33
11
QQYDNLPIT
 51





VK1-33
12
QQYDNLPRT
 52





VK1-33
13
QQYDNLPWT
 53





VK1-33
14
QQYDNLPYT
 54





VK1-33
15
QQYDNLPPFT
 55





VK1-33
16
QQYDNLPPLT
 56





VK1-33
17
QQYDNLPPIT
 57





VK1-33
18
QQYDNLPPRT
 58





VK1-33
19
QQYDNLPPWT
 59





VK1-33
20
QQYDNLPPYT
 60





VK1-39
 1
QQSYSTPT
 61





VK1-39
 2
QQSYSTFT
 62





VK1-39
 3
QQSYSTLT
 63





VK1-39
 4
QQSYSTIT
 64





VK1-39
 5
QQSYSTRT
 65





VK1-39
 6
QQSYSTWT
 66





VK1-39
 7
QQSYSTYT
 67





VK1-39
 8
QQSYSTPPT
 68





VK1-39
 9
QQSYSTPFT
 69





VK1-39
10
QQSYSTPLT
 70





VK1-39
11
QQSYSTPIT
 71





VK1-39
12
QQSYSTPRT
 72





VK1-39
13
QQSYSTPWT
 73





VK1-39
14
QQSYSTPYT
 74





VK1-39
15
QQSYSTPPFT
 75





VK1-39
16
QQSYSTPPLT
 76





VK1-39
17
QQSYSTPPIT
 77





VK1-39
18
QQSYSTPPRT
 78





VK1-39
19
QQSYSTPPWT
 79





VK1-39
20
QQSYSTPPYT
 80





VK4-01
 1
QQYYSTPT
 81





VK4-01
 2
QQYYSTFT
 82





VK4-01
 3
QQYYSTLT
 83





VK4-01
 4
QQYYSTIT
 84





VK4-01
 5
QQYYSTRT
 85





VK4-01
 6
QQYYSTWT
 86





VK4-01
 7
QQYYSTYT
 87





VK4-01
 8
QQYYSTPPT
 88





VK4-01
 9
QQYYSTPFT
 89





VK4-01
10
QQYYSTPLT
 90





VK4-01
11
QQYYSTPIT
 91





VK4-01
12
QQYYSTPRT
 92





VK4-01
13
QQYYSTPWT
 93





VK4-01
14
QQYYSTPYT
 94





VK4-01
15
QQYYSTPPFT
 95





VK4-01
16
QQYYSTPPLT
 96





VK4-01
17
QQYYSTPPIT
 97





VK4-01
18
QQYYSTPPRT
 98





VK4-01
19
QQYYSTPPWT
 99





VK4-01
20
QQYYSTPPYT
100





VK2-28
 1
MQALQTPT
101





VK2-28
 2
MQALQTFT
102





VK2-28
 3
MQALQTLT
103





VK2-28
 4
MQALQTIT
104





VK2-28
 5
MQALQTRT
105





VK2-28
 6
MQALQTWT
106





VK2-28
 7
MQALQTYT
107





VK2-28
 8
MQALQTPPT
108





VK2-28
 9
MQALQTPFT
109





VK2-28
10
MQALQTPLT
110





VK2-28
11
MQALQTPIT
111





VK2-28
12
MQALQTPRT
112





VK2-28
13
MQALQTPWT
113





VK2-28
14
MQALQTPYT
114





VK2-28
15
MQALQTPPFT
115





VK2-28
16
MQALQTPPLT
116





VK2-28
17
MQALQTPPIT
117





VK2-28
18
MQALQTPPRT
118





VK2-28
19
MQALQTPPWT
119





VK2-28
20
MQALQTPPYT
120





VK3-11
 1
QQRSNWPT
121





VK3-11
 2
QQRSNWFT
122





VK3-11
 3
QQRSNWLT
123





VK3-11
 4
QQRSNWIT
124





VK3-11
 5
QQRSNWRT
125





VK3-11
 6
QQRSNWWT
126





VK3-11
 7
QQRSNWYT
127





VK3-11
 8
QQRSNWPPT
128





VK3-11
 9
QQRSNWPFT
129





VK3-11
10
QQRSNWPLT
130





VK3-11
11
QQRSNWPIT
131





VK3-11
12
QQRSNWPRT
132





VK3-11
13
QQRSNWPWT
133





VK3-11
14
QQRSNWPYT
134





VK3-11
15
QQRSNWPPFT
135





VK3-11
16
QQRSNWPPLT
136





VK3-11
17
QQRSNWPPIT
137





VK3-11
18
QQRSNWPPRT
138





VK3-11
19
QQRSNWPPWT
139





VK3-11
20
QQRSNWPPYT
140





VK3-15
 1
QQYNNWPT
141





VK3-15
 2
QQYNNWFT
142





VK3-15
 3
QQYNNWLT
143





VK3-15
 4
QQYNNWIT
144





VK3-15
 5
QQYNNWRT
145





VK3-15
 6
QQYNNWWT
146





VK3-15
 7
QQYNNWYT
147





VK3-15
 8
QQYNNWPPT
148





VK3-15
 9
QQYNNWPFT
149





VK3-15
10
QQYNNWPLT
150





VK3-15
11
QQYNNWPIT
151





VK3-15
12
QQYNNWPRT
152





VK3-15
13
QQYNNWPWT
153





VK3-15
14
QQYNNWPYT
154





VK3-15
15
QQYNNWPPFT 
155





VK3-15
16
QQYNNWPPLT
156





VK3-15
17
QQYNNWPPIT
157





VK3-15
18
QQYNNWPPRT
158





VK3-15
19
QQYNNWPPWT
159





VK3-15
20
QQYNNWPPYT
160





VK3-20
 1
QQYGSSPT
161





VK3-20
 2
QQYGSSFT
162





VK3-20
 3
QQYGSSLT
163





VK3-20
 4
QQYGSSIT
164





VK3-20
 5
QQYGSSRT
165





VK3-20
 6
QQYGSSWT
166





VK3-20
 7
QQYGSSYT
167





VK3-20
 8
QQYGSSPPT
168





VK3-20
 9
QQYGSSPFT
169





VK3-20
10
QQYGSSPLT
170





VK3-20
11
QQYGSSPIT
171





VK3-20
12
QQYGSSPRT
172





VK3-20
13
QQYGSSPWT
173





VK3-20
14
QQYGSSPYT
174





VK3-20
15
QQYGSSPPFT
175





VK3-20
16
QQYGSSPPLT
176





VK3-20
17
QQYGSSPPIT
177





VK3-20
18
QQYGSSPPRT
178





VK3-20
19
QQYGSSPPWT
179





VK3-20
20
QQYGSSPPYT
180
















TABLE 2







Summary of framework variants for exemplified light chain germlines.












Primary
Alternative




Framework
Framework



Number of
Positions
Positions


Light Chain
Sequences
Selected for
Selected for


Germline
Analyzed
Variance
Variance





VK1-5
307
4, 49
46


VK1-12
113
4, 49
46, 66


VK1-33
188
4, 66
49


VK1-39
656
4, 49
46


VK2-28
275
46, 49 
2, 4


VK3-11
375
4, 36
 2, 49


VK3-15
202
4, 49
 2, 48


VK3-20
867
4, 49
 2, 48


VK4-1
368
4, 49
46, 66
















TABLE 3







Polypeptide sequences of exemplified light chain chassis with variability in


CDRL1, CDRL2, and frameworks. The Kabat numbers for segment boundaries are


indicated. Here, L1 and L2 (in the “Category” column) indicate variability


in CDRL1 and CDRL2, respectively, while “F” indicates a framework variant.


Sequences designated with both L1 or L2 and F contain variability in both


a CDR and framework region.























SEQ




Cate-
FRM1:
CDR1:
FRM2:
CDR2:
FRM3:
ID


Name
Chassis
gory
1-23
24-34
35-49
50-56
57-88
NOs:





VK1-
VK1-39
Germ-
DIQMTQSPSSLSAS
RASQSISSYL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
181


39

line
VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
L1
DIQMTQSPSSLSAS
RASQSINSYL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
182


39.1


VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC



VK1-
VK1-39
L1
DIQMTQSPSSLSAS
RASQSIDSYL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
183


39.2


VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
L1
DIQMTQSPSSLSAS
RASQSISRYL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
184


39.3


VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
L2
DIQMTQSPSSLSAS
RASQSISSYL
WYQQKPGKAPK
GASSLQS
GVPSRFSGSGS
185


39.6


VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
L2
DIQMTQSPSSLSAS
RASQSISSYL
WYQQKPGKAPK
SASSLQS
GVPSRFSGSGS
186


39.7


VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
L2
DIQMTQSPSSLSAS
RASQSISSYL
WYQQKPGKAPK
AASNLQS
GVPSRFSGSGS
187


39.8


VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
F
DIQLTQSPSSLSAS
RASQSISSYL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
188


39.10


VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL1
DIQLTQSPSSLSAS
RASQSINSYL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
189


39.11


VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL1
DIQLTQSPSSLSAS
RASQSIDSYL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
190


39.12


VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL1
DIQLTQSPSSLSAS
RASQSISSFL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
191


39.15


VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL2
DIQLTQSPSSLSAS
RASQSISSYL
WYQQKPGKAPK
SASSLQS
GVPSRFSGSGS
192


39.17


VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL2
DIQLTQSPSSLSAS
RASQSISSYL
WYQQKPGKAPK
AASNLQS
GVPSRFSGSGS
193


39.18


VGDRVTITC
N
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
F
DIQMTQSPSSLSAS
RASQSISSYL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
194


39.20


VGDRVTITC
N
LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL1
DIQMTQSPSSLSAS
RASQSISRYL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
195


39.23


VGDRVTITC
N
LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL1
DIQMTQSPSSLSAS
RASQSISIYL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
196


39.24


VGDRVTITC
N
LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-39
FL1
DIQMTQSPSSLSAS
RASQSISSFL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
197


39.25


VGDRVTITC
N
LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-05
Germ-
DIQMTQSPSTLSAS
RASQSISSWL
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
198


05

line
VGDRVTITC
A
LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
L1
DIQMTQSPSTLSAS
RASQGISSWL
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
199


05.1


VGDRVTITC
A
LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
L2
DIQMTQSPSTLSAS
RASQSISSWL
WYQQKPGKAPK
EASSLES
GVPSRFSGSGS
200


05.5


VGDRVTITC
A
LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
L2
DIQMTQSPSTLSAS
RASQSISSWL
WYQQKPGKAPK
KASSLES
GVPSRFSGSGS
201


05.6


VGDRVTITC
A
LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
L12
DIQMTQSPSTLSAS
RASQAISSWL
WYQQKPGKAPK
KASSLES
GVPSRFSGSGS
202


05.7


VGDRVTITC
A
LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
L12
DIQMTQSPSTLSAS
RASQSINSWL
WYQQKPGKAPK
KASSLES
GVPSRFSGSGS
203


05.8


VGDRVTITC
A
LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
L12
DIQMTQSPSTLSAS
RASQSIGSWL
WYQQKPGKAPK
KASSLES
GVPSRFSGSGS
204


05.9


VGDRVTITC
A
LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
F
DIQLTQSPSTLSAS
RASQSISSWL
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
205


05.10


VGDRVTITC
A
LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
FL1
DIQLTQSPSTLSAS
RASQGISSWL
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
206


05.11


VGDRVTITC
A
LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
FL1
DIQLTQSPSTLSAS
RASQAISSWL
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
207


05.12


VGDRVTITC
A
LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
FL1
DIQLTQSPSTLSAS
RASQSIGSWL
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
208


05.14


VGDRVTITC
A
LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
F
DIQMTQSPSTLSAS
RASQSISSWL
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
209


05.20


VGDRVTITC
A
LLIS

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
FL1
DIQMTQSPSTLSAS
RASQSINSWL
WYQQKPGKAPK
DASSLES
GVPSRFSGSGS
210


05.21


VGDRVTITC
A
LLIS

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
FL2
DIQLTQSPSTLSAS
RASQSIGSWL
WYQQKPGKAPK
KASSLES
GVPSRFSGSGS
211


05.25


VGDRVTITC
A
LLIY

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-05
FL2
DIQMTQSPSTLSAS
RASQSISSWL
WYQQKPGKAPK
KASSLES
GVPSRFSGSGS
212


05.26


VGDRVTITC
A
LLIS

GTEFTLTISSL










QPDDFATYYC






VK1-
VK1-12
Germ-
DIQMTQSPSSVSAS
RASQGISSWL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
213


12

line
VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
L1
DIQMTQSPSSVSAS
RASQGIGSWL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
214


12.2


VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
L1
DIQMTQSPSSVSAS
RASQGIDSWL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
215


12.3


VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
L1
DIQMTQSPSSVSAS
RASQGISRWL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
216


12.4


VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
L2
DIQMTQSPSSVSAS
RASQGISSWL
WYQQKPGKAPK
GASSLQS
GVPSRFSGSGS
217


12.5


VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
L2
DIQMTQSPSSVSAS
RASQGISSWL
WYQQKPGKAPK
SASSLQS
GVPSRFSGSGS
218


12.6


VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
L2
DIQMTQSPSSVSAS
RASQGISSWL
WYQQKPGKAPK
AASNLQS
GVPSRFSGSGS
219


12.7


VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
F
DIQLTQSPSSVSAS
RASQGISSWL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
220


12.10


VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL1
DIQLTQSPSSVSAS
RASQDISSWL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
221


12.11


VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL1
DIQLTQSPSSVSAS
RASQGISRWL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
222


12.14


VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL2
DIQLTQSPSSVSAS
RASQGISSWL
WYQQKPGKAPK
GASSLQS
GVPSRFSGSGS
223


12.15


VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL2
DIQLTQSPSSVSAS
RASQGISSWL
WYQQKPGKAPK
SASSLQS
GVPSRFSGSGS
224


12.16


VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL2
DIQLTQSPSSVSAS
RASQGISSWL
WYQQKPGKAPK
AASNLQS
GVPSRFSGSGS
225


12.17


VGDRVTITC
A
LLIY

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
F
DIQMTQSPSSVSAS
RASQGISSWL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
226


12.20


VGDRVTITC
A
LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL1
DIQMTQSPSSVSAS
RASQDISSWL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
227


12.21


VGDRVTITC
A
LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL1
DIQMTQSPSSVSAS
RASQGIDSWL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
228


12.23


VGDRVTITC
A
LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-12
FL1
DIQMTQSPSSVSAS
RASQGISRWL
WYQQKPGKAPK
AASSLQS
GVPSRFSGSGS
229


12.24


VGDRVTITC
A
LLIS

GTDFTLTISSL










QPEDFATYYC






VK1-
VK1-33
Germ-
DIQMTQSPSSLSAS
QASQDISNYL
WYQQKPGKAPK
DASNLET
GVPSRFSGSGS
230


33

line
VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
L1
DIQMTQSPSSLSAS
QASQDITNYL
WYQQKPGKAPK
DASNLET
GVPSRFSGSGS
231


33.1


VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
L1
DIQMTQSPSSLSAS
QASQDIANYL
WYQQKPGKAPK
DASNLET
GVPSRFSGSGS
232


33.2


VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
L2
DIQMTQSPSSLSAS
QASQDISNYL
WYQQKPGKAPK
DASNLAT
GVPSRFSGSGS
233


33.8


VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
F
DIQLTQSPSSLSAS
QASQDISNYL
WYQQKPGKAPK
DASNLET
GVPSRFSGSGS
234


33.10


VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL1
DIQLTQSPSSLSAS
QASQDISNSL
WYQQKPGKAPK
DASNLET
GVPSRFSGSGS
235


33.13


VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL1
DIQLTQSPSSLSAS
QASQDISNFL
WYQQKPGKAPK
DASNLET
GVPSRFSGSGS
236


33.14


VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL2
DIQLTQSPSSLSAS
QASQDISNYL
WYQQKPGKAPK
DASNLQT
GVPSRFSGSGS
237


33.17


VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
F
DIQMTQSPSSLSAS
QASQDISNYL
WYQQKPGKAPK
DASNLET
GVPSRFSGSRS
238


33.20


VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL1
DIQMTQSPSSLSAS
QASQDITNYL
WYQQKPGKAPK
DASNLET
GVPSRFSGSRS
239


33.21


VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL1
DIQMTQSPSSLSAS
QASQDIANYL
WYQQKPGKAPK
DASNLET
GVPSRFSGSRS
240


33.22


VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL1
DIQMTQSPSSLSAS
QASQDISNSL
WYQQKPGKAPK
DASNLET
GVPSRFSGSRS
241


33.23


VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK1-
VK1-33
FL1
DIQMTQSPSSLSAS
QASQDISNFL
WYQQKPGKAPK
DASNLET
GVPSRFSGSRS
242


33.24


VGDRVTITC
N
LLIY

GTDFTFTISSL










QPEDIATYYC






VK2-
VK2-28
Germ-
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
243


28

line
PGEPASISC
GYNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L1
DIVMTQSPLSLPVT
RSSQSLLYSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
244


28.1


PGEPASISC
GYNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L1
DIVMTQSPLSLPVT
RSSQSLLHRN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
245


28.2


PGEPASISC
GYNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L1
DIVMTQSPLSLPVT
RSSQSLLHTN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
246


28.3


PGEPASISC
GYNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L1
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
247


28.4


PGEPASISC
GNNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L2
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LASNRAS
GVPDRFSGSGS
248


28.5


PGEPASISC
GYNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L2
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSHRAS
GVPDRFSGSGS
249


28.6


PGEPASISC
GYNYLD
LLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
F
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
250


28.10


PGEPASISC
GYNYLD
VLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
L1
DIVMTQSPLSLPVT
RSSQSLLYSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
251


28.11


PGEPASISC
GYNYLD
VLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
FL2
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LASNRAS
GVPDRFSGSGS
252


28.15


PGEPASISC
GYNYLD
VLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
FL2
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSSRAS
GVPDRFSGSGS
253


28.17


PGEPASISC
GYNYLD
VLIY

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
F
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
254


28.20


PGEPASISC
GYNYLD
LLIF

GTDFTLKISRV










EAEDVGVYYC






VK2-
VK2-28
FL1
DIVMTQSPLSLPVT
RSSQSLLHSN
WYLQKPGQSPQ
LGSNRAS
GVPDRFSGSGS
255


28.24


PGEPASISC
GNNYLD
LLIF

GTDFTLKISRV










EAEDVGVYYC






VK3-
VK3-11
Germ-
EIVLTQSPATLSLS
RASQSVSSYL
WYQQKPGQAPR
DASNRAT
GIPARFSGSGS
256


11

line
PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
L1
EIVLTQSPATLSLS
RASQSVSRYL
WYQQKPGQAPR
DASNRAT
GIPARFSGSGS
257


11.2


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
L1
EIVLTQSPATLSLS
RASQSVSNYL
WYQQKPGQAPR
DASNRAT
GIPARFSGSGS
258


11.3


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
L2
EIVLTQSPATLSLS
RASQSVSSYL
WYQQKPGQAPR
DSSNRAT
GIPARFSGSGS
259


11.4


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
L2
EIVLTQSPATLSLS
RASQSVSSYL
WYQQKPGQAPR
DTSNRAT
GIPARFSGSGS
260


11.5


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
L2
EIVLTQSPATLSLS
RASQSVSSYL
WYQQKPGQAPR
DASKRAT
GIPARFSGSGS
261


11.6


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
F
EIVMTQSPATLSLS
RASQSVSSYL
WYQQKPGQAPR
DASNRAT
GIPARFSGSGS
262


11.10


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL1
EIVMTQSPATLSLS
RASQSVSNYL
WYQQKPGQAPR
DASNRAT
GIPARFSGSGS
263


11.13


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL2
EIVMTQSPATLSLS
RASQSVSSYL
WYQQKPGQAPR
DSSNRAT
GIPARFSGSGS
264


11.14


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL2
EIVMTQSPATLSLS
RASQSVSSYL
WYQQKPGQAPR
DTSNRAT
GIPARFSGSGS
265


11.15


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL2
EIVMTQSPATLSLS
RASQSVSSYL
WYQQKPGQAPR
DASKRAT
GIPARFSGSGS
266


11.16


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
F
EIVLTQSPATLSLS
RASQSVSSYL
WFQQKPGQAPR
DASNRAT
GIPARFSGSGS
267


11.20


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL1
EIVLTQSPATLSLS
RASQSISSYL
WFQQKPGQAPR
DASNRAT
GIPARFSGSGS
268


11.21


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL2
EIVLTQSPATLSLS
RASQSVSSYL
WFQQKPGQAPR
DSSNRAT
GIPARFSGSGS
269


11.24


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-11
FL2
EIVLTQSPATLSLS
RASQSVSSYL
WFQQKPGQAPR
DTSNRAT
GIPARFSGSGS
270


11.25


PGERATLSC
A
LLIY

GTDFTLTISSL










EPEDFAVYYC






VK3-
VK3-15
Germ-
EIVMTQSPATLSVS
RASQSVSSNL
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
271


15

line
PGERATLSC
A
LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
L1
EIVMTQSPATLSVS
RASQSVGSNL
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
272


15.1


PGERATLSC
A
LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
L1
EIVMTQSPATLSVS
RASQSVSSSL
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
273


15.6


PGERATLSC
A
LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
L2
EIVMTQSPATLSVS
RASQSVSSNL
WYQQKPGQAPR
DASTRAT
GIPARFSGSGS
274


15.7


PGERATLSC
A
LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
L2
EIVMTQSPATLSVS
RASQSVSSNL
WYQQKPGQAPR
SASTRAT
GIPARFSGSGS
275


15.8


PGERATLSC
A
LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
F
EIVLTQSPATLSVS
RASQSVSSNL
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
276


15.10


PGERATLSC
A
LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
FL1
EIVLTQSPATLSVS
RASQSVGSNL
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
277


15.11


PGERATLSC
A
LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
FL1
EIVLTQSPATLSVS
RASQSVSTNL
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
278


15.14


PGERATLSC
A
LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
FL1
EIVLTQSPATLSVS
RASQSVSSDL
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
279


15.16


PGERATLSC
A
LLIY

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
F
EIVMTQSPATLSVS
RASQSVSSNL
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
280


15.20


PGERATLSC
A
LLIF

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
FL1
EIVMTQSPATLSVS
RASQSVGSNL
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
281


15.21


PGERATLSC
A
LLIF

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
FL1
EIVMTQSPATLSVS
RASQSVSSDL
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
282


15.25


PGERATLSC
A
LLIF

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-15
FL1
EIVMTQSPATLSVS
RASQSVSSSL
WYQQKPGQAPR
GASTRAT
GIPARFSGSGS
283


15.26


PGERATLSC
A
LLIF

GTEFTLTISSL










QSEDFAVYYC






VK3-
VK3-20
Germ-
EIVLTQSPGTLSLS
RASQSVSSSY
WYQQKPGQAPR
GASSRAT
GIPDRFSGSGS
284


20

line
PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
L1
EIVLTQSPGTLSLS
RASQSVRSSY
WYQQKPGQAPR
GASSRAT
GIPDRFSGSGS
285


20.1


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
L1
EIVLTQSPGTLSLS
RASQSVSSDY
WYQQKPGQAPR
GASSRAT
GIPDRFSGSGS
286


20.4


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
L2
EIVLTQSPGTLSLS
RASQSVSSSY
WYQQKPGQAPR
GASNRAT
GIPDRFSGSGS
287


20.7


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
L2
EIVLTQSPGTLSLS
RASQSVSSSY
WYQQKPGQAPR
GASRRAT
GIPDRFSGSGS
288


20.8


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
F
EIVMTQSPGTLSLS
RASQSVSSSY
WYQQKPGQAPR
GASSRAT
GIPDRFSGSGS
289


20.10


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
FL2
EIVMTQSPGTLSLS
RASQSVSSSY
WYQQKPGQAPR
GASNRAT
GIPDRFSGSGS
290


20.17


PGERATLSC
LA
LLIY

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
F
EIVLTQSPGTLSLS
RASQSVSSSY
WYQQKPGQAPR
GASSRAT
GIPDRFSGSGS
291


20.20


PGERATLSC
LA
LLIS

GTDFTLTISRL










EPEDFAVYYC






VK3-
VK3-20
FL1
EIVLTQSPGTLSLS
RASQSVSSNY
WYQQKPGQAPR
GASSRAT
GIPDRFSGSGS
292


20.22


PGERATLSC
LA
LLIS

GTDFTLTISRL










EPEDFAVYYC






VK4-
VK4-01
Germ-
DIVMTQSPDSLAVS
KSSQSVLYSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
293


01

line
LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
L1
DIVMTQSPDSLAVS
KSSQSLLYSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
294


01.1


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
L1
DIVMTQSPDSLAVS
KSSQSILYSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
295


01.2


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
L1
DIVMTQSPDSLAVS
KSSQSVLHSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
296


01.3


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
L1
DIVMTQSPDSLAVS
KSSQSVLFSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
297


01.4


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
L1
DIVMTQSPDSLAVS
KSSQSVLYTS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
298


01.5


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
L2
DIVMTQSPDSLAVS
KSSQSVLYSS
WYQQKPGQPPK
WASSRES
GVPDRFSGSGS
299


01.7


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
F
DIVLTQSPDSLAVS
KSSQSVLYSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
300


01.10


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
FL1
DIVLTQSPDSLAVS
KSSQSVLHSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
301


01.13


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
FL2
DIVLTQSPDSLAVS
KSSQSVLYSS
WYQQKPGQPPK
WASSRES
GVPDRFSGSGS
302


01.17


LGERATINC
NNKNYLA
LLIY

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
F
DIVMTQSPDSLAVS
KSSQSVLYSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
303


01.20


LGERATINC
NNKNYLA
LLIS

GTDFTLTISSL










QAEDVAVYYC






VK4-
VK4-01
FL1
DIVMTQSPDSLAVS
KSSQSVLHSS
WYQQKPGQPPK
WASTRES
GVPDRFSGSGS
304


01.23


LGERATINC
NNKNYLA
LLIS

GTDFTLTISSL










QAEDVAVYYC
















TABLE 4







Jumping dimer and trimer oligonucleotides for the VK1-39 sequences


with CDRL3 length nine and F as the junctional amino acid. i.e.,


The sequences depicted below occur between YYC and FGG, to yield:


YYC-[89-97]-FGG. The sequences in this table encompassed by po-


sitions “[89-97]” are disclosed as SEQ ID NOS 8721-8745, respec-


tively, in order of appearance.




















SEQ













ID











Name
Oligo
NO
89
90
91
92
93
94
95
96
97










Jumping Dimer


















VK1-39_1
SWMSWMAGC
305
DEHLQV
DEHLQV
S
Y
S
T
P
FY
T



TACAGTACT













CCTTWCACT















VK1-39_2
SWMCAAVNA
306
DEHLQV
Q
AEGIKLPQR
Y
S
T
P
FY
T



TACAGTACT



TV









CCTTWCACT















VK1-39_3
SWMCAAAGC
307
DEHLQV
Q
S
ADFHLPS
S
T
P
FY
T



BHCAGTACT




VY








CCTTWCACT















VK1-39_4
SWMCAAAGC
308
DEHLQV
Q
S
Y
ADFHILNP
T
P
FY
T



TACNHCACT





STVY







CCTTWCACT















VK1-39_5
SWMCAAAGC
309
DEHLQV
Q
S
Y
S
ADFHL
P
FY
T



TACAGTBHC






PSVY






CCTTWCACT















VK1-39_6
CAGSWMVNA
310
Q
DEHLQV
AEGIKLPQR
Y
S
T
P
FY
T



TACAGTACT



TV









CCTTWCACT















VK1-39_7
CAGSWMAGC
311
Q
DEHLQV
S
ADFHLPS
S
T
P
FY
T



BHCAGTACT




VY








CCTTWCACT















VK1-39_8
CAGSWMAGC
312
Q
DEHLQV
S
Y
ADFHILNP
T
P
FY
T



TACNHCACT





STVY







CCTTWCACT















VK1-39_9
CAGSWMAGC
313
Q
DEHLQV
S
Y
S
ADFHL
P
FY
T



TACAGTBHC






PSVY






CCTTWCACT















VK1-39_10
CAGCAAVNA
314
Q
Q
AEGIKLPQR
ADFHLPS
S
T
P
FY
T



BHCAGTACT



TV
VY








CCTTWCACT















VK1-39_11
CAGCAAVNA
315
Q
Q
AEGIKLPQR
Y
ADFHILNP
T
P
FY
T



TACNHCACT



TV

STVY







CCTTWCACT















VK1-39_12
CAGCAAVNA
316
Q
Q
AEGIKLPQR
Y
S
ADFHL
P
FY
T



TACAGTBHC



TV


PSVY






CCTTWCACT















VK1-39_13
CAGCAAAGC
317
Q
Q
S
ADFHLPS
ADFHILNP
T
P
FY
T



BHCNHCACT




VY
STVY







CCTTWCACT















VK1-39_14
CAGCAAAGC
318
Q
Q
S
ADFHLPS
S
ADFHL
P
FY
T



BHCAGTBHC




VY

PSVY






CCTTWCACT















VK1-39_15
CAGCAAAGC
319
Q
Q
S
Y
ADFHILNP
ADFHL
P
FY
T



TACNHCBHC





STVY
PSVY






CCTTWCACT




















Jumping Trimer


















VK1-
CAGCAAVNA
314
Q
Q
AEGIKLPQR
ADFHLPS
S
T
P
FY
T


39_10_0_9
BHCAGTACT



TV
VY








CCTTWCACT















VK1-
CAGCAAVNA
315
Q
Q
AEGIKLPQR
Y
ADFHILNP
T
P
FY
T


39_11_0_9
TACNHCACT



TV

STVY







CCTTWCACT















VK1-
CAGCAAVNA
316
Q
Q
AEGIKLPQR
Y
S
ADFHL
P
FY
T


39_12_0_9
TACAGTBHC



TV


PSVY






CCTTWCACT















VK1-
CAGCAAAGC
317
Q
Q
S
ADFHLPS
ADFHILNP
T
P
FY
T


39_13_0_9
BHCNHCACT




VY
STVY







CCTTWCACT















VK1-
CAGCAAAGC
318
Q
Q
S
ADFHLPS
S
ADFHL
P
FY
T


39_14_0_9
BHCAGTBHC




VY

PSVY






CCTTWCACT















VK1-
CAGCAAAGC
319
Q
Q
S
Y
ADFHILNP
ADFHL
P
FY
T


39_15_0_9
TACNHCBHC





STVY
PSVY






CCTTWCACT















VK1-
CAGCAAVNA
320
Q
Q
AEGIKLPQR
ADFHLPS
ADFHILNP
T
P
FY
T


39_t1_0_9
BHCNHCACT



TV
VY
STVY







CCTTWCACT















VK1-
CAGCAAVNA
321
Q
Q
AEGIKLPQR
ADFHLPS
S
ADFHL
P
FY
T


39_t2_0_9
BHCAGTBHC



TV
VY

PSVY






CCTTWCACT















VK1-
CAGCAAVNA
322
Q
Q
AEGIKLPQR
Y
ADFHILNP
ADFHL
P
FY
T


39_t3_0_9
TACNHCBHC



TV

STVY
PSVY






CCTTWCACT















VK1-
CAGCAAAGC
323
Q
Q
S
ADFHLPS
ADFHILNP
ADFHL
P
FY
T


39_t4_0_9
BHCNHCBHC




VY
STVY
PSVY






CCTTWCACT
















TABLE 5







Oligonucleotide sequences for exemplary VK jumping dimer and trimer sequences 


with CDRL3 length 8.














SEQ
SEQ ID




Portion of
ID
NO




Oligonucleotide
NO
(CDRL3



Sequence of Synthesized
Corresponding
(Oli-
Por-


Name
Oligonucleotide
to CDRL3 Proper
go)
tion)










Jumping Dimer











VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACA
SWMSWMTACAATAGTTACTWCACT
324
 948


05 1 0 8
ATAGTTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTTACTWCACT
325
 949


05 10 0 8
RMAGTTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCTACTWCACT
326
 950


05 11 0 8
ATMBCTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATAGTYWCTWCACT
327
 951


05 12 0 8
ATAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCTACTWCACT
328
 952


05 13 0 8
RMMBCTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMAGTYWCTWCACT
329
 953


05 14 0 8
RMAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACA
CAGCAGTACAATMBCYWCTWCACT
330
 954


05 15 0 8
ATMBCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCA
SWMCAGBHCAATAGTTACTWCACT
331
 955


05 2 0 8
ATAGTTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACV
SWMCAGTACVRMAGTTACTWCACT
332
 956


05 3 0 8
RMAGTTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATMBCTACTWCACT
333
 957


05 4 0 8
ATMBCTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATAGTYWCTWCACT
334
 958


05 5 0 8
ATAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCA
CAGSWMBHCAATAGTTACTWCACT
335
 959


05 6 0 8
ATAGTTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACV
CAGSWMTACVRMAGTTACTWCACT
336
 960


05 7 0 8
RMAGTTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATMBCTACTWCACT
337
 961


05 8 0 8
ATMBCTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATAGTYWCTWCACT
338
 962


05 9 0 8
ATAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACA
SWMSWMTACAATAGTTACMTCACT
339
 963


05 1 1 8
ATAGTTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTTACMTCACT
340
 964


05 10 1 8
RMAGTTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCTACMTCACT
341
 965


05 11 1 8
ATMBCTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATAGTYWCMTCACT
342
 966


05 12 1 8
ATAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCTACMTCACT
343
 967


05 13 1 8
RMMBCTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMAGTYWCMTCACT
344
 968


05 14 1 8
RMAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACA
CAGCAGTACAATMBCYWCMTCACT
345
 969


05 15 1 8
ATMBCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCA
SWMCAGBHCAATAGTTACMTCACT
346
 970


05 2 1 8
ATAGTTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACV
SWMCAGTACVRMAGTTACMTCACT
347
 971


05 3 1 8
RMAGTTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATMBCTACMTCACT
348
 972


05 4 1 8
ATMBCTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATAGTYWCMTCACT
349
 973


05 5 1 8
ATAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCA
CAGSWMBHCAATAGTTACMTCACT
350
 974


05 6 1 8
ATAGTTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACV
CAGSWMTACVRMAGTTACMTCACT
351
 975


05 7 1 8
RMAGTTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATMBCTACMTCACT
352
 976


05 8 1 8
ATMBCTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATAGTYWCMTCACT
353
 977


05 9 1 8
ATAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACA
SWMSWMTACAATAGTTACWGGACT
354
 978


05 1 2 8
ATAGTTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTTACWGGACT
355
 979


05 10 2 8
RMAGTTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCTACWGGACT
356
 980


05 11 2 8
ATMBCTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATAGTYWCWGGACT
357
 981


05 12 2 8
ATAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCTACWGGACT
358
 982


05 13 2 8
RMMBCTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMAGTYWCWGGACT
359
 983


05 14 2 8
RMAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACA
CAGCAGTACAATMBCYWCWGGACT
360
 984


05 15 2 8
ATMBCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCA
SWMCAGBHCAATAGTTACWGGACT
361
 985


05 2 2 8
ATAGTTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACV
SWMCAGTACVRMAGTTACWGGACT
362
 986


05 3 2 8
RMAGTTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATMBCTACWGGACT
363
 987


05 4 2 8
ATMBCTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATAGTYWCWGGACT
364
 988


05 5 2 8
ATAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCA
CAGSWMBHCAATAGTTACWGGACT
365
 989


05 6 2 8
ATAGTTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACV
CAGSWMTACVRMAGTTACWGGACT
366
 990


05 7 2 8
RMAGTTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATMBCTACWGGACT
367
 991


05 8 2 8
ATMBCTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATAGTYWCWGGACT
368
 992


05 9 2 8
ATAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACA
SWMSWMTACAATAGTTACCCTACT
369
 993


05 1 3 8
ATAGTTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTTACCCTACT
370
 994


05 10 3 8
RMAGTTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCTACCCTACT
371
 995


05 11 3 8
ATMBCTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATAGTYWCCCTACT
372
 996


05 12 3 8
ATAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCTACCCTACT
373
 997


05 13 3 8
RMMBCTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMAGTYWCCCTACT
374
 998


05 14 3 8
RMAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACA
CAGCAGTACAATMBCYWCCCTACT
375
 999


05 15 3 8
ATMBCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCA
SWMCAGBHCAATAGTTACCCTACT
376
1000


05 2 3 8
ATAGTTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACV
SWMCAGTACVRMAGTTACCCTACT
377
1001


05 3 3 8
RMAGTTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATMBCTACCCTACT
378
1002


05 4 3 8
ATMBCTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACA
SWMCAGTACAATAGTYWCCCTACT
379
1003


05 5 3 8
ATAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCA
CAGSWMBHCAATAGTTACCCTACT
380
1004


05 6 3 8
ATAGTTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACV
CAGSWMTACVRMAGTTACCCTACT
381
1005


05 7 3 8
RMAGTTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATMBCTACCCTACT
382
1006


05 8 3 8
ATMBCTACCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACA
CAGSWMTACAATAGTYWCCCTACT
383
1007


05 9 3 8
ATAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAA
SWMSWMGCAAATAGTTTCTWCACT
384
1008


12 1 0 8
ATAGTTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTTTCTWCACT
385
1009


12 10 0 8
HCAGTTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCTTCTWCACT
386
1010


12 11 0 8
ATNHCTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATAGTYWCTWCACT
387
1011


12 12 0 8
ATAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCTTCTWCACT
388
1012


12 13 0 8
HCNHCTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCAGTYWCTWCACT
389
1013


12 14 0 8
HCAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAA
CAGCAGGCAAATNHCYWCTWCACT
390
1014


12 15 0 8
ATNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAA
SWMCAGRNAAATAGTTTCTWCACT
391
1015


12 2 0 8
ATAGTTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAN
SWMCAGGCANHCAGTTTCTWCACT
392
1016


12 3 0 8
HCAGTTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATNHCTTCTWCACT
393
1017


12 4 0 8
ATNHCTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATAGTYWCTWCACT
394
1018


12 5 0 8
ATAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAA
CAGSWMRNAAATAGTTTCTWCACT
395
1019


12 6 0 8
ATAGTTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAN
CAGSWMGCANHCAGTTTCTWCACT
396
1020


12 7 0 8
HCAGTTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATNHCTTCTWCACT
397
1021


12 8 0 8
ATNHCTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATAGTYWCTWCACT
398
1022


12 9 0 8
ATAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAA
SWMSWMGCAAATAGTTTCMTCACT
399
1023


12 1 1 8
ATAGTTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTTTCMTCACT
400
1024


12 10 1 8
HCAGTTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCTTCMTCACT
401
1025


12 11 1 8
ATNHCTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATAGTYWCMTCACT
402
1026


12 12 1 8
ATAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCTTCMTCACT
403
1027


12 13 1 8
HCNHCTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCAGTYWCMTCACT
404
1028


12 14 1 8
HCAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAA
CAGCAGGCAAATNHCYWCMTCACT
405
1029


12 15 1 8
ATNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAA
SWMCAGRNAAATAGTTTCMTCACT
406
1030


12 2 1 8
ATAGTTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAN
SWMCAGGCANHCAGTTTCMTCACT
407
1031


12 3 1 8
HCAGTTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATNHCTTCMTCACT
408
1032


12 4 1 8
ATNHCTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATAGTYWCMTCACT
409
1033


12 5 1 8
ATAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAA
CAGSWMRNAAATAGTTTCMTCACT
410
1034


12 6 1 8
ATAGTTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAN
CAGSWMGCANHCAGTTTCMTCACT
411
1035


12 7 1 8
HCAGTTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATNHCTTCMTCACT
412
1036


12 8 1 8
ATNHCTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATAGTYWCMTCACT
413
1037


12 9 1 8
ATAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAA
SWMSWMGCAAATAGTTTCWGGACT
414
1038


12 1 2 8
ATAGTTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTTTCWGGACT
415
1039


12 10 2 8
HCAGTTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCTTCWGGACT
416
1040


12 11 2 8
ATNHCTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATAGTYWCWGGACT
417
1041


12 12 2 8
ATAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCTTCWGGACT
418
1042


12 13 2 8
HCNHCTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCAGTYWCWGGACT
419
1043


12 14 2 8
HCAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAA
CAGCAGGCAAATNHCYWCWGGACT
420
1044


12 15 2 8
ATNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAA
SWMCAGRNAAATAGTTTCWGGACT
421
1045


12 2 2 8
ATAGTTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAN
SWMCAGGCANHCAGTTTCWGGACT
422
1046


12 3 2 8
HCAGTTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATNHCTTCWGGACT
423
1047


12 4 2 8
ATNHCTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATAGTYWCWGGACT
424
1048


12 5 2 8
ATAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAA
CAGSWMRNAAATAGTTTCWGGACT
425
1049


12 6 2 8
ATAGTTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAN
CAGSWMGCANHCAGTTTCWGGACT
426
1050


12 7 2 8
HCAGTTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATNHCTTCWGGACT
427
1051


12 8 2 8
ATNHCTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATAGTYWCWGGACT
428
1052


12 9 2 8
ATAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAA
SWMSWMGCAAATAGTTTCCCTACT
429
1053


12 1 3 8
ATAGTTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTTTCCCTACT
430
1054


12 10 3 8
HCAGTTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCTTCCCTACT
431
1055


12 11 3 8
ATNHCTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATAGTYWCCCTACT
432
1056


12 12 3 8
ATAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCTTCCCTACT
433
1057


12 13 3 8
HCNHCTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCAGTYWCCCTACT
434
1058


12 14 3 8
HCAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAA
CAGCAGGCAAATNHCYWCCCTACT
435
1059


12 15 3 8
ATNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAA
SWMCAGRNAAATAGTTTCCCTACT
436
1060


12 2 3 8
ATAGTTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAN
SWMCAGGCANHCAGTTTCCCTACT
437
1061


12 3 3 8
HCAGTTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATNHCTTCCCTACT
438
1062


12 4 3 8
ATNHCTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAA
SWMCAGGCAAATAGTYWCCCTACT
439
1063


12 5 3 8
ATAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAA
CAGSWMRNAAATAGTTTCCCTACT
440
1064


12 6 3 8
ATAGTTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAN
CAGSWMGCANHCAGTTTCCCTACT
441
1065


12 7 3 8
HCAGTTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATNHCTTCCCTACT
442
1066


12 8 3 8
ATNHCTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAA
CAGSWMGCAAATAGTYWCCCTACT
443
1067


12 9 3 8
ATAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACG
SWMSWMTACGATAATCTCTWCACT
444
1068


33 1 0 8
ATAATCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATCTCTWCACT
445
1069


33 10 0 8
HCAATCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCCTCTWCACT
446
1070


33 11 0 8
ATNHCCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATAATYWCTWCACT
447
1071


33 12 0 8
ATAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCCTCTWCACT
448
1072


33 13 0 8
HCNHCCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCAATYWCTWCACT
449
1073


33 14 0 8
HCAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACG
CAGCAGTACGATNHCYWCTWCACT
450
1074


33 15 0 8
ATNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCG
SWMCAGBHCGATAATCTCTWCACT
451
1075


33 2 0 8
ATAATCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACN
SWMCAGTACNHCAATCTCTWCACT
452
1076


33 3 0 8
HCAATCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATNHCCTCTWCACT
453
1077


33 4 0 8
ATNHCCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATAATYWCTWCACT
454
1078


33 5 0 8
ATAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCG
CAGSWMBHCGATAATCTCTWCACT
455
1079


33 6 0 8
ATAATCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACN
CAGSWMTACNHCAATCTCTWCACT
456
1080


33 7 0 8
HCAATCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATNHCCTCTWCACT
457
1081


33 8 0 8
ATNHCCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATAATYWCTWCACT
458
1082


33 9 0 8
ATAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACG
SWMSWMTACGATAATCTCMTCACT
459
1083


33 1 1 8
ATAATCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATCTCMTCACT
460
1084


33 10 1 8
HCAATCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCCTCMTCACT
461
1085


33 11 1 8
ATNHCCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATAATYWCMTCACT
462
1086


33 12 1 8
ATAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCCTCMTCACT
463
1087


33 13 1 8
HCNHCCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCAATYWCMTCACT
464
1088


33 14 1 8
HCAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACG
CAGCAGTACGATNHCYWCMTCACT
465
1089


33 15 1 8
ATNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCG
SWMCAGBHCGATAATCTCMTCACT
466
1090


33 2 1 8
ATAATCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACN
SWMCAGTACNHCAATCTCMTCACT
467
1091


33 3 1 8
HCAATCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATNHCCTCMTCACT
468
1092


33 4 1 8
ATNHCCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATAATYWCMTCACT
469
1093


33 5 1 8
ATAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCG
CAGSWMBHCGATAATCTCMTCACT
470
1094


33 6 1 8
ATAATCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACN
CAGSWMTACNHCAATCTCMTCACT
471
1095


33 7 1 8
HCAATCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATNHCCTCMTCACT
472
1096


33 8 1 8
ATNHCCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATAATYWCMTCACT
473
1097


33 9 1 8
ATAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACG
SWMSWMTACGATAATCTCWGGACT
474
1098


33 1 2 8
ATAATCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATCTCWGGACT
475
1099


33 10 2 8
HCAATCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCCTCWGGACT
476
1100


33 11 2 8
ATNHCCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATAATYWCWGGACT
477
1101


33 12 2 8
ATAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCCTCWGGACT
478
1102


33 13 2 8
HCNHCCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCAATYWCWGGACT
479
1103


33 14 2 8
HCAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACG
CAGCAGTACGATNHCYWCWGGACT
480
1104


33 15 2 8
ATNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCG
SWMCAGBHCGATAATCTCWGGACT
481
1105


33 2 2 8
ATAATCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACN
SWMCAGTACNHCAATCTCWGGACT
482
1106


33 3 2 8
HCAATCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATNHCCTCWGGACT
483
1107


33 4 2 8
ATNHCCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATAATYWCWGGACT
484
1108


33 5 2 8
ATAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCG
CAGSWMBHCGATAATCTCWGGACT
485
1109


33 6 2 8
ATAATCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACN
CAGSWMTACNHCAATCTCWGGACT
486
1110


33 7 2 8
HCAATCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATNHCCTCWGGACT
487
1111


33 8 2 8
ATNHCCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATAATYWCWGGACT
488
1112


33 9 2 8
ATAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACG
SWMSWMTACGATAATCTCCCTACT
489
1113


33 1 3 8
ATAATCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATCTCCCTACT
490
1114


33 10 3 8
HCAATCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCCTCCCTACT
491
1115


33 11 3 8
ATNHCCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATAATYWCCCTACT
492
1116


33 12 3 8
ATAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCCTCCCTACT
493
1117


33 13 3 8
HCNHCCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCAATYWCCCTACT
494
1118


33 14 3 8
HCAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACG
CAGCAGTACGATNHCYWCCCTACT
495
1119


33 15 3 8
ATNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCG
SWMCAGBHCGATAATCTCCCTACT
496
1120


33 2 3 8
ATAATCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACN
SWMCAGTACNHCAATCTCCCTACT
497
1121


33 3 3 8
HCAATCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATNHCCTCCCTACT
498
1122


33 4 3 8
ATNHCCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACG
SWMCAGTACGATAATYWCCCTACT
499
1123


33 5 3 8
ATAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCG
CAGSWMBHCGATAATCTCCCTACT
500
1124


33 6 3 8
ATAATCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACN
CAGSWMTACNHCAATCTCCCTACT
501
1125


33 7 3 8
HCAATCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATNHCCTCCCTACT
502
1126


33 8 3 8
ATNHCCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACG
CAGSWMTACGATAATYWCCCTACT
503
1127


33 9 3 8
ATAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCT
SWMSWMAGCTACAGTACTTWCACT
504
1128


39 1 0 8
ACAGTACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTACTTWCACT
505
1129


39 10 0 8
HCAGTACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCACTTWCACT
506
1130


39 11 0 8
ACNHCACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACAGTBHCTWCACT
507
1131


39 12 0 8
ACAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCACTTWCACT
508
1132


39 13 0 8
HCNHCACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCAGTBHCTWCACT
509
1133


39 14 0 8
HCAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCT
CAGCAAAGCTACNHCBHCTWCACT
510
1134


39 15 0 8
ACNHCBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNAT
SWMCAAVNATACAGTACTTWCACT
511
1135


39 2 0 8
ACAGTACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCB
SWMCAAAGCBHCAGTACTTWCACT
512
1136


39 3 0 8
HCAGTACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACNHCACTTWCACT
513
1137


39 4 0 8
ACNHCACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACAGTBHCTWCACT
514
1138


39 5 0 8
ACAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNAT
CAGSWMVNATACAGTACTTWCACT
515
1139


39 6 0 8
ACAGTACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCB
CAGSWMAGCBHCAGTACTTWCACT
516
1140


39 7 0 8
HCAGTACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACNHCACTTWCACT
517
1141


39 8 0 8
ACNHCACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACAGTBHCTWCACT
518
1142


39 9 0 8
ACAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCT
SWMSWMAGCTACAGTACTMTCACT
519
1143


39 1 1 8
ACAGTACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTACTMTCACT
520
1144


39 10 1 8
HCAGTACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCACTMTCACT
521
1145


39 11 1 8
ACNHCACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACAGTBHCMTCACT
522
1146


39 12 1 8
ACAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCACTMTCACT
523
1147


39 13 1 8
HCNHCACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCAGTBHCMTCACT
524
1148


39 14 1 8
HCAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCT
CAGCAAAGCTACNHCBHCMTCACT
525
1149


39 15 1 8
ACNHCBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNAT
SWMCAAVNATACAGTACTMTCACT
526
1150


39 2 1 8
ACAGTACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCB
SWMCAAAGCBHCAGTACTMTCACT
527
1151


39 3 1 8
HCAGTACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACNHCACTMTCACT
528
1152


39 4 1 8
ACNHCACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACAGTBHCMTCACT
529
1153


39 5 1 8
ACAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNAT
CAGSWMVNATACAGTACTMTCACT
530
1154


39 6 1 8
ACAGTACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCB
CAGSWMAGCBHCAGTACTMTCACT
531
1155


39 7 1 8
HCAGTACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACNHCACTMTCACT
532
1156


39 8 1 8
ACNHCACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACAGTBHCMTCACT
533
1157


39 9 1 8
ACAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCT
SWMSWMAGCTACAGTACTWGGACT
534
1158


39 1 2 8
ACAGTACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTACTWGGACT
535
1159


39 10 2 8
HCAGTACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCACTWGGACT
536
1160


39 11 2 8
ACNHCACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACAGTBHCWGGACT
537
1161


39 12 2 8
ACAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCACTWGGACT
538
1162


39 13 2 8
HCNHCACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCAGTBHCWGGACT
539
1163


39 14 2 8
HCAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCT
CAGCAAAGCTACNHCBHCWGGACT
540
1164


39 15 2 8
ACNHCBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNAT
SWMCAAVNATACAGTACTWGGACT
541
1165


39 2 2 8
ACAGTACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCB
SWMCAAAGCBHCAGTACTWGGACT
542
1166


39 3 2 8
HCAGTACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACNHCACTWGGACT
543
1167


39 4 2 8
ACNHCACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACAGTBHCWGGACT
544
1168


39 5 2 8
ACAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNAT
CAGSWMVNATACAGTACTWGGACT
545
1169


39 6 2 8
ACAGTACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCB
CAGSWMAGCBHCAGTACTWGGACT
546
1170


39 7 2 8
HCAGTACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACNHCACTWGGACT
547
1171


39 8 2 8
ACNHCACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACAGTBHCWGGACT
548
1172


39 9 2 8
ACAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCT
SWMSWMAGCTACAGTACTCCTACT
549
1173


39 1 3 8
ACAGTACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTACTCCTACT
550
1174


39 10 3 8
HCAGTACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCACTCCTACT
551
1175


39 11 3 8
ACNHCACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACAGTBHCCCTACT
552
1176


39 12 3 8
ACAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCACTCCTACT
553
1177


39 13 3 8
HCNHCACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCAGTBHCCCTACT
554
1178


39 14 3 8
HCAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCT
CAGCAAAGCTACNHCBHCCCTACT
555
1179


39 15 3 8
ACNHCBHCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNAT
SWMCAAVNATACAGTACTCCTACT
556
1180


39 2 3 8
ACAGTACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCB
SWMCAAAGCBHCAGTACTCCTACT
557
1181


39 3 3 8
HCAGTACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACNHCACTCCTACT
558
1182


39 4 3 8
ACNHCACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCT
SWMCAAAGCTACAGTBHCCCTACT
559
1183


39 5 3 8
ACAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNAT
CAGSWMVNATACAGTACTCCTACT
560
1184


39 6 3 8
ACAGTACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCB
CAGSWMAGCBHCAGTACTCCTACT
561
1185


39 7 3 8
HCAGTACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACNHCACTCCTACT
562
1186


39 8 3 8
ACNHCACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCT
CAGSWMAGCTACAGTBHCCCTACT
563
1187


39 9 3 8
ACAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCAC
DTSSWMGCACTCCAGACTTWCACT
564
1188


28 1 0 8
TCCAGACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGACTTWCACT
565
1189


28 10 0 8
NACAGACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMACTTWCACT
566
1190


28 11 0 8
TCSRMACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCCAGVBCTWCACT
567
1191


28 12 0 8
TCCAGVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMACTTWCACT
568
1192


28 13 0 8
NASRMACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNACAGVBCTWCACT
569
1193


28 14 0 8
NACAGVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAC
ATGCAGGCACTCSRMVBCTWCACT
570
1194


28 15 0 8
TCSRMVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNAC
DTSCAGVNACTCCAGACTTWCACT
571
1195


28 2 0 8
TCCAGACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAM
DTSCAGGCAMNACAGACTTWCACT
572
1196


28 3 0 8
NACAGACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCSRMACTTWCACT
573
1197


28 4 0 8
TCSRMACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCCAGVBCTWCACT
574
1198


28 5 0 8
TCCAGVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNAC
ATGSWMVNACTCCAGACTTWCACT
575
1199


28 6 0 8
TCCAGACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAM
ATGSWMGCAMNACAGACTTWCACT
576
1200


28 7 0 8
NACAGACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCSRMACTTWCACT
577
1201


28 8 0 8
TCSRMACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCCAGVBCTWCACT
578
1202


28 9 0 8
TCCAGVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCAC
DTSSWMGCACTCCAGACTMTCACT
579
1203


28 1 1 8
TCCAGACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGACTMTCACT
580
1204


28 10 1 8
NACAGACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMACTMTCACT
581
1205


28 11 1 8
TCSRMACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCCAGVBCMTCACT
582
1206


28 12 1 8
TCCAGVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMACTMTCACT
583
1207


28 13 1 8
NASRMACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNACAGVBCMTCACT
584
1208


28 14 1 8
NACAGVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAC
ATGCAGGCACTCSRMVBCMTCACT
585
1209


28 15 1 8
TCSRMVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNAC
DTSCAGVNACTCCAGACTMTCACT
586
1210


28 2 1 8
TCCAGACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAM
DTSCAGGCAMNACAGACTMTCACT
587
1211


28 3 1 8
NACAGACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCSRMACTMTCACT
588
1212


28 4 1 8
TCSRMACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCCAGVBCMTCACT
589
1213


28 5 1 8
TCCAGVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNAC
ATGSWMVNACTCCAGACTMTCACT
590
1214


28 6 1 8
TCCAGACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAM
ATGSWMGCAMNACAGACTMTCACT
591
1215


28 7 1 8
NACAGACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCSRMACTMTCACT
592
1216


28 8 1 8
TCSRMACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCCAGVBCMTCACT
593
1217


28 9 1 8
TCCAGVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCAC
DTSSWMGCACTCCAGACTWGGACT
594
1218


28 1 2 8
TCCAGACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGACTWGGACT
595
1219


28 10 2 8
NACAGACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMACTWGGACT
596
1220


28 11 2 8
TCSRMACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCCAGVBCWGGACT
597
1221


28 12 2 8
TCCAGVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMACTWGGACT
598
1222


28 13 2 8
NASRMACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNACAGVBCWGGACT
599
1223


28 14 2 8
NACAGVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAC
ATGCAGGCACTCSRMVBCWGGACT
600
1224


28 15 2 8
TCSRMVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNAC
DTSCAGVNACTCCAGACTWGGACT
601
1225


28 2 2 8
TCCAGACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAM
DTSCAGGCAMNACAGACTWGGACT
602
1226


28 3 2 8
NACAGACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCSRMACTWGGACT
603
1227


28 4 2 8
TCSRMACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCCAGVBCWGGACT
604
1228


28 5 2 8
TCCAGVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNAC
ATGSWMVNACTCCAGACTWGGACT
605
1229


28 6 2 8
TCCAGACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAM
ATGSWMGCAMNACAGACTWGGACT
606
1230


28 7 2 8
NACAGACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCSRMACTWGGACT
607
1231


28 8 2 8
TCSRMACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCCAGVBCWGGACT
608
1232


28 9 2 8
TCCAGVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCAC
DTSSWMGCACTCCAGACTCCTACT
609
1233


28 1 3 8
TCCAGACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGACTCCTACT
610
1234


28 10 3 8
NACAGACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMACTCCTACT
611
1235


28 11 3 8
TCSRMACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCCAGVBCCCTACT
612
1236


28 12 3 8
TCCAGVBCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMACTCCTACT
613
1237


28 13 3 8
NASRMACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNACAGVBCCCTACT
614
1238


28 14 3 8
NACAGVBCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAC
ATGCAGGCACTCSRMVBCCCTACT
615
1239


28 15 3 8
TCSRMVBCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNAC
DTSCAGVNACTCCAGACTCCTACT
616
1240


28 2 3 8
TCCAGACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAM
DTSCAGGCAMNACAGACTCCTACT
617
1241


28 3 3 8
NACAGACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCSRMACTCCTACT
618
1242


28 4 3 8
TCSRMACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAC
DTSCAGGCACTCCAGVBCCCTACT
619
1243


28 5 3 8
TCCAGVBCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNAC
ATGSWMVNACTCCAGACTCCTACT
620
1244


28 6 3 8
TCCAGACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAM
ATGSWMGCAMNACAGACTCCTACT
621
1245


28 7 3 8
NACAGACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCSRMACTCCTACT
622
1246


28 8 3 8
TCSRMACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAC
ATGSWMGCACTCCAGVBCCCTACT
623
1247


28 9 3 8
TCCAGVBCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAA
SWMSWMAGAAGTAATTGGTWCACT
624
1248


11 1 0 8
GTAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATTGGTWCACT
625
1249


11 10 0 8
HCAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCTGGTWCACT
626
1250


11 11 0 8
GTNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTAATYWCTWCACT
627
1251


11 12 0 8
GTAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCTGGTWCACT
628
1252


11 13 0 8
HCNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCAATYWCTWCACT
629
1253


11 14 0 8
HCAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAA
CAGCAGAGAAGTNHCYWCTWCACT
630
1254


11 15 0 8
GTNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCA
SWMCAGBHCAGTAATTGGTWCACT
631
1255


11 2 0 8
GTAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAN
SWMCAGAGANHCAATTGGTWCACT
632
1256


11 3 0 8
HCAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTNHCTGGTWCACT
633
1257


11 4 0 8
GTNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTAATYWCTWCACT
634
1258


11 5 0 8
GTAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCA
CAGSWMBHCAGTAATTGGTWCACT
635
1259


11 6 0 8
GTAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAN
CAGSWMAGANHCAATTGGTWCACT
636
1260


11 7 0 8
HCAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTNHCTGGTWCACT
637
1261


11 8 0 8
GTNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTAATYWCTWCACT
638
1262


11 9 0 8
GTAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAA
SWMSWMAGAAGTAATTGGMTCACT
639
1263


11 1 1 8
GTAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATTGGMTCACT
640
1264


11 10 1 8
HCAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCTGGMTCACT
641
1265


11 11 1 8
GTNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTAATYWCMTCACT
642
1266


11 12 1 8
GTAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCTGGMTCACT
643
1267


11 13 1 8
HCNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCAATYWCMTCACT
644
1268


11 14 1 8
HCAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAA
CAGCAGAGAAGTNHCYWCMTCACT
645
1269


11 15 1 8
GTNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCA
SWMCAGBHCAGTAATTGGMTCACT
646
1270


11 2 1 8
GTAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAN
SWMCAGAGANHCAATTGGMTCACT
647
1271


11 3 1 8
HCAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTNHCTGGMTCACT
648
1272


11 4 1 8
GTNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTAATYWCMTCACT
649
1273


11 5 1 8
GTAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCA
CAGSWMBHCAGTAATTGGMTCACT
650
1274


11 6 1 8
GTAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAN
CAGSWMAGANHCAATTGGMTCACT
651
1275


11 7 1 8
HCAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTNHCTGGMTCACT
652
1276


11 8 1 8
GTNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTAATYWCMTCACT
653
1277


11 9 1 8
GTAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAA
SWMSWMAGAAGTAATTGGWGGACT
654
1278


11 1 2 8
GTAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATTGGWGGACT
655
1279


11 10 2 8
HCAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCTGGWGGACT
656
1280


11 11 2 8
GTNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTAATYWCWGGACT
657
1281


11 12 2 8
GTAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCTGGWGGACT
658
1282


11 13 2 8
HCNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCAATYWCWGGACT
659
1283


11 14 2 8
HCAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAA
CAGCAGAGAAGTNHCYWCWGGACT
660
1284


11 15 2 8
GTNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCA
SWMCAGBHCAGTAATTGGWGGACT
661
1285


11 2 2 8
GTAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAN
SWMCAGAGANHCAATTGGWGGACT
662
1286


11 3 2 8
HCAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTNHCTGGWGGACT
663
1287


11 4 2 8
GTNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTAATYWCWGGACT
664
1288


11 5 2 8
GTAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCA
CAGSWMBHCAGTAATTGGWGGACT
665
1289


11 6 2 8
GTAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAN
CAGSWMAGANHCAATTGGWGGACT
666
1290


11 7 2 8
HCAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTNHCTGGWGGACT
667
1291


11 8 2 8
GTNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTAATYWCWGGACT
668
1292


11 9 2 8
GTAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAA
SWMSWMAGAAGTAATTGGCCTACT
669
1293


11 1 3 8
GTAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATTGGCCTACT
670
1294


11 10 3 8
HCAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCTGGCCTACT
671
1295


11 11 3 8
GTNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTAATYWCCCTACT
672
1296


11 12 3 8
GTAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCTGGCCTACT
673
1297


11 13 3 8
HCNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCAATYWCCCTACT
674
1298


11 14 3 8
HCAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAA
CAGCAGAGAAGTNHCYWCCCTACT
675
1299


11 15 3 8
GTNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCA
SWMCAGBHCAGTAATTGGCCTACT
676
1300


11 2 3 8
GTAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAN
SWMCAGAGANHCAATTGGCCTACT
677
1301


11 3 3 8
HCAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTNHCTGGCCTACT
678
1302


11 4 3 8
GTNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAA
SWMCAGAGAAGTAATYWCCCTACT
679
1303


11 5 3 8
GTAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCA
CAGSWMBHCAGTAATTGGCCTACT
680
1304


11 6 3 8
GTAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAN
CAGSWMAGANHCAATTGGCCTACT
681
1305


11 7 3 8
HCAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTNHCTGGCCTACT
682
1306


11 8 3 8
GTNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAA
CAGSWMAGAAGTAATYWCCCTACT
683
1307


11 9 3 8
GTAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMT
SWMSWMTACAATAATTGGTWCACT
684
1308


15 1 0 8
ACAATAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATTGGTWCACT
685
1249


15 10 0 8
HCNHCAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCTGGTWCACT
686
1309


15 11 0 8
HCAATNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATAATYWCTWCACT
687
1310


15 12 0 8
HCAATAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCTGGTWCACT
688
1311


15 13 0 8
ACNHCNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCAATYWCTWCACT
689
1073


15 14 0 8
ACNHCAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACAATNHCYWCTWCACT
690
1312


15 15 0 8
ACAATNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGB
SWMCAGBHCAATAATTGGTWCACT
691
1313


15 2 0 8
HCAATAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACNHCAATTGGTWCACT
692
1314


15 3 0 8
ACNHCAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATNHCTGGTWCACT
693
1315


15 4 0 8
ACAATNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATAATYWCTWCACT
694
1316


15 5 0 8
ACAATAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMB
CAGSWMBHCAATAATTGGTWCACT
695
1317


15 6 0 8
HCAATAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACNHCAATTGGTWCACT
696
1318


15 7 0 8
ACNHCAATTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATNHCTGGTWCACT
697
1319


15 8 0 8
ACAATNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATAATYWCTWCACT
698
1320


15 9 0 8
ACAATAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMT
SWMSWMTACAATAATTGGMTCACT
699
1321


15 1 1 8
ACAATAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATTGGMTCACT
700
1264


15 10 1 8
HCNHCAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCTGGMTCACT
701
1322


15 11 1 8
HCAATNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATAATYWCMTCACT
702
1323


15 12 1 8
HCAATAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCTGGMTCACT
703
1324


15 13 1 8
ACNHCNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCAATYWCMTCACT
704
1088


15 14 1 8
ACNHCAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACAATNHCYWCMTCACT
705
1325


15 15 1 8
ACAATNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGB
SWMCAGBHCAATAATTGGMTCACT
706
1326


15 2 1 8
HCAATAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACNHCAATTGGMTCACT
707
1327


15 3 1 8
ACNHCAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATNHCTGGMTCACT
708
1328


15 4 1 8
ACAATNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATAATYWCMTCACT
709
1329


15 5 1 8
ACAATAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMB
CAGSWMBHCAATAATTGGMTCACT
710
1330


15 6 1 8
HCAATAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACNHCAATTGGMTCACT
711
1331


15 7 1 8
ACNHCAATTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATNHCTGGMTCACT
712
1332


15 8 1 8
ACAATNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATAATYWCMTCACT
713
1333


15 9 1 8
ACAATAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMT
SWMSWMTACAATAATTGGWGGACT
714
1334


15 1 2 8
ACAATAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATTGGWGGACT
715
1279


15 10 2 8
HCNHCAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCTGGWGGACT
716
1335


15 11 2 8
HCAATNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATAATYWCWGGACT
717
1336


15 12 2 8
HCAATAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCTGGWGGACT
718
1337


15 13 2 8
ACNHCNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCAATYWCWGGACT
719
1103


15 14 2 8
ACNHCAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACAATNHCYWCWGGACT
720
1338


15 15 2 8
ACAATNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGB
SWMCAGBHCAATAATTGGWGGACT
721
1339


15 2 2 8
HCAATAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACNHCAATTGGWGGACT
722
1340


15 3 2 8
ACNHCAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATNHCTGGWGGACT
723
1341


15 4 2 8
ACAATNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATAATYWCWGGACT
724
1342


15 5 2 8
ACAATAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMB
CAGSWMBHCAATAATTGGWGGACT
725
1343


15 6 2 8
HCAATAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACNHCAATTGGWGGACT
726
1344


15 7 2 8
ACNHCAATTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATNHCTGGWGGACT
727
1345


15 8 2 8
ACAATNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATAATYWCWGGACT
728
1346


15 9 2 8
ACAATAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMT
SWMSWMTACAATAATTGGCCTACT
729
1347


15 1 3 8
ACAATAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATTGGCCTACT
730
1294


15 10 3 8
HCNHCAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCTGGCCTACT
731
1348


15 11 3 8
HCAATNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATAATYWCCCTACT
732
1349


15 12 3 8
HCAATAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCTGGCCTACT
733
1350


15 13 3 8
ACNHCNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCAATYWCCCTACT
734
1118


15 14 3 8
ACNHCAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACAATNHCYWCCCTACT
735
1351


15 15 3 8
ACAATNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGB
SWMCAGBHCAATAATTGGCCTACT
736
1352


15 2 3 8
HCAATAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACNHCAATTGGCCTACT
737
1353


15 3 3 8
ACNHCAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATNHCTGGCCTACT
738
1354


15 4 3 8
ACAATNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGT
SWMCAGTACAATAATYWCCCTACT
739
1355


15 5 3 8
ACAATAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMB
CAGSWMBHCAATAATTGGCCTACT
740
1356


15 6 3 8
HCAATAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACNHCAATTGGCCTACT
741
1357


15 7 3 8
ACNHCAATTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATNHCTGGCCTACT
742
1358


15 8 3 8
ACAATNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMT
CAGSWMTACAATAATYWCCCTACT
743
1359


15 9 3 8
ACAATAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACG
SWMSWMTACGGAAGTAGTTWCACT
744
1360


20 1 0 8
GAAGTAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTAGTTWCACT
745
1361


20 10 0 8
HCAGTAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCAGTTWCACT
746
1362


20 11 0 8
GAVNCAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAAGTBHCTWCACT
747
1363


20 12 0 8
GAAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCAGTTWCACT
748
1364


20 13 0 8
HCVNCAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCAGTBHCTWCACT
749
1365


20 14 0 8
HCAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACG
CAGCAGTACGGAVNCBHCTWCACT
750
1366


20 15 0 8
GAVNCBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCG
SWMCAGBHCGGAAGTAGTTWCACT
751
1367


20 2 0 8
GAAGTAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACB
SWMCAGTACBHCAGTAGTTWCACT
752
1368


20 3 0 8
HCAGTAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAVNCAGTTWCACT
753
1369


20 4 0 8
GAVNCAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAAGTBHCTWCACT
754
1370


20 5 0 8
GAAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCG
CAGSWMBHCGGAAGTAGTTWCACT
755
1371


20 6 0 8
GAAGTAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACB
CAGSWMTACBHCAGTAGTTWCACT
756
1372


20 7 0 8
HCAGTAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAVNCAGTTWCACT
757
1373


20 8 0 8
GAVNCAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAAGTBHCTWCACT
758
1374


20 9 0 8
GAAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACG
SWMSWMTACGGAAGTAGTMTCACT
759
1375


20 1 1 8
GAAGTAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTAGTMTCACT
760
1376


20 10 1 8
HCAGTAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCAGTMTCACT
761
1377


20 11 1 8
GAVNCAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAAGTBHCMTCACT
762
1378


20 12 1 8
GAAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCAGTMTCACT
763
1379


20 13 1 8
HCVNCAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCAGTBHCMTCACT
764
1380


20 14 1 8
HCAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACG
CAGCAGTACGGAVNCBHCMTCACT
765
1381


20 15 1 8
GAVNCBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCG
SWMCAGBHCGGAAGTAGTMTCACT
766
1382


20 2 1 8
GAAGTAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACB
SWMCAGTACBHCAGTAGTMTCACT
767
1383


20 3 1 8
HCAGTAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAVNCAGTMTCACT
768
1384


20 4 1 8
GAVNCAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAAGTBHCMTCACT
769
1385


20 5 1 8
GAAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCG
CAGSWMBHCGGAAGTAGTMTCACT
770
1386


20 6 1 8
GAAGTAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACB
CAGSWMTACBHCAGTAGTMTCACT
771
1387


20 7 1 8
HCAGTAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAVNCAGTMTCACT
772
1388


20 8 1 8
GAVNCAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAAGTBHCMTCACT
773
1389


20 9 1 8
GAAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACG
SWMSWMTACGGAAGTAGTWGGACT
774
1390


20 1 2 8
GAAGTAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTAGTWGGACT
775
1391


20 10 2 8
HCAGTAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCAGTWGGACT
776
1392


20 11 2 8
GAVNCAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAAGTBHCWGGACT
777
1393


20 12 2 8
GAAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCAGTWGGACT
778
1394


20 13 2 8
HCVNCAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCAGTBHCWGGACT
779
1395


20 14 2 8
HCAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACG
CAGCAGTACGGAVNCBHCWGGACT
780
1396


20 15 2 8
GAVNCBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCG
SWMCAGBHCGGAAGTAGTWGGACT
781
1397


20 2 2 8
GAAGTAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACB
SWMCAGTACBHCAGTAGTWGGACT
782
1398


20 3 2 8
HCAGTAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAVNCAGTWGGACT
783
1399


20 4 2 8
GAVNCAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAAGTBHCWGGACT
784
1400


20 5 2 8
GAAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCG
CAGSWMBHCGGAAGTAGTWGGACT
785
1401


20 6 2 8
GAAGTAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACB
CAGSWMTACBHCAGTAGTWGGACT
786
1402


20 7 2 8
HCAGTAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAVNCAGTWGGACT
787
1403


20 8 2 8
GAVNCAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAAGTBHCWGGACT
788
1404


20 9 2 8
GAAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACG
SWMSWMTACGGAAGTAGTCCTACT
789
1405


20 1 3 8
GAAGTAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTAGTCCTACT
790
1406


20 10 3 8
HCAGTAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCAGTCCTACT
791
1407


20 11 3 8
GAVNCAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAAGTBHCCCTACT
792
1408


20 12 3 8
GAAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCAGTCCTACT
793
1409


20 13 3 8
HCVNCAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCAGTBHCCCTACT
794
1410


20 14 3 8
HCAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACG
CAGCAGTACGGAVNCBHCCCTACT
795
1411


20 15 3 8
GAVNCBHCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCG
SWMCAGBHCGGAAGTAGTCCTACT
796
1412


20 2 3 8
GAAGTAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACB
SWMCAGTACBHCAGTAGTCCTACT
797
1413


20 3 3 8
HCAGTAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAVNCAGTCCTACT
798
1414


20 4 3 8
GAVNCAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACG
SWMCAGTACGGAAGTBHCCCTACT
799
1415


20 5 3 8
GAAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCG
CAGSWMBHCGGAAGTAGTCCTACT
800
1416


20 6 3 8
GAAGTAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACB
CAGSWMTACBHCAGTAGTCCTACT
801
1417


20 7 3 8
HCAGTAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAVNCAGTCCTACT
802
1418


20 8 3 8
GAVNCAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACG
CAGSWMTACGGAAGTBHCCCTACT
803
1419


20 9 3 8
GAAGTBHCCCTACTTTTGGCGGAGGGACCAAG













Jumping Trimer











VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMMBCTACTWCACT
804
1420


05 t1 0 8
RMMBCTACTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMMBCTACMTCACT
805
1421


05 t1 1 8
RMMBCTACMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMMBCTACWGGACT
806
1422


05 t1 2 8
RMMBCTACWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMMBCTACYCTACT
807
1423


05 t1 3 8
RMMBCTACYCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCYWCTWCACT
808
1424


05 t2 0 8
ATMBCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCYWCMTCACT
809
1425


05 t2 1 8
ATMBCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCYWCWGGACT
810
1426


05 t2 2 8
ATMBCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCA
CAGCAGBHCAATMBCYWCYCTACT
811
1427


05 t2 3 8
ATMBCYWCYCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTYWCTWCACT
812
1428


05 t3 0 8
RMAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTYWCMTCACT
813
1429


05 t3 1 8
RMAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTYWCWGGACT
814
1430


05 t3 2 8
RMAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCV
CAGCAGBHCVRMAGTYWCYCTACT
815
1431


05 t3 3 8
RMAGTYWCYCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCYWCTWCACT
816
1432


05 t4 0 8
RMMBCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCYWCMTCACT
817
1433


05 t4 1 8
RMMBCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCYWCWGGACT
818
1434


05 t4 2 8
RMMBCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACV
CAGCAGTACVRMMBCYWCYCTACT
819
1435


05 t4 3 8
RMMBCYWCYCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCNHCTTCTWCACT
820
1436


12 t1 0 8
HCNHCTTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCNHCTTCMTCACT
821
1437


12 t1 1 8
HCNHCTTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCNHCTTCWGGACT
822
1438


12 t1 2 8
HCNHCTTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCNHCTTCCCTACT
823
1439


12 t1 3 8
HCNHCTTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTYWCTWCACT
824
1440


12 t2 0 8
HCAGTYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTYWCMTCACT
825
1441


12 t2 1 8
HCAGTYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTYWCWGGACT
826
1442


12 t2 2 8
HCAGTYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAN
CAGCAGRNANHCAGTYWCCCTACT
827
1443


12 t2 3 8
HCAGTYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCYWCTWCACT
828
1444


12 t3 0 8
ATNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCYWCMTCACT
829
1445


12 t3 1 8
ATNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCYWCWGGACT
830
1446


12 t3 2 8
ATNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAA
CAGCAGRNAAATNHCYWCCCTACT
831
1447


12 t3 3 8
ATNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCYWCTWCACT
832
1448


12 t4 0 8
HCNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCYWCMTCACT
833
1449


12 t4 1 8
HCNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCYWCWGGACT
834
1450


12 t4 2 8
HCNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAN
CAGCAGGCANHCNHCYWCCCTACT
835
1451


12 t4 3 8
HCNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCCTCTWCACT
836
1452


33 t1 0 8
HCNHCCTCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCCTCMTCACT
837
1453


33 t1 1 8
HCNHCCTCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCCTCWGGACT
838
1454


33 t1 2 8
HCNHCCTCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCCTCCCTACT
839
1455


33 t1 3 8
HCNHCCTCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCTWCACT
840
1456


33 t2 0 8
HCAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCMTCACT
841
1457


33 t2 1 8
HCAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCWGGACT
842
1458


33 t2 2 8
HCAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCCCTACT
843
1459


33 t2 3 8
HCAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCYWCTWCACT
844
1460


33 t3 0 8
ATNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCYWCMTCACT
845
1461


33 t3 1 8
ATNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCYWCWGGACT
846
1462


33 t3 2 8
ATNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCG
CAGCAGBHCGATNHCYWCCCTACT
847
1463


33 t3 3 8
ATNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCYWCTWCACT
848
1464


33 t4 0 8
HCNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCYWCMTCACT
849
1465


33 t4 1 8
HCNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCYWCWGGACT
850
1466


33 t4 2 8
HCNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACN
CAGCAGTACNHCNHCYWCCCTACT
851
1467


33 t4 3 8
HCNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCNHCACTTWCACT
852
1468


39 t1 0 8
HCNHCACTTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCNHCACTMTCACT
853
1469


39 t1 1 8
HCNHCACTMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCNHCACTWGGACT
854
1470


39 t1 2 8
HCNHCACTWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCNHCACTCCTACT
855
1471


39 t1 3 8
HCNHCACTCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTBHCTWCACT
856
1472


39 t2 0 8
HCAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTBHCMTCACT
857
1473


39 t2 1 8
HCAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTBHCWGGACT
858
1474


39 t2 2 8
HCAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAB
CAGCAAVNABHCAGTBHCCCTACT
859
1475


39 t2 3 8
HCAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCBHCTWCACT
860
1476


39 t3 0 8
ACNHCBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCBHCMTCACT
861
1477


39 t3 1 8
ACNHCBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCBHCWGGACT
862
1478


39 t3 2 8
ACNHCBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNAT
CAGCAAVNATACNHCBHCCCTACT
863
1479


39 t3 3 8
ACNHCBHCCCTACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCBHCTWCACT
864
1480


39 t4 0 8
HCNHCBHCTWCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCBHCMTCACT
865
1481


39 t4 1 8
HCNHCBHCMTCACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCBHCWGGACT
866
1482


39 t4 2 8
HCNHCBHCWGGACTTTTGGCGGAGGGACCAAG








VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCB
CAGCAAAGCBHCNHCBHCCCTACT
867
1483


39 t4 3 8
HCNHCBHCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNASRMACTTWCACT
868
1484


28 t1 0 8
NASRMACTTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNASRMACTMTCACT
869
1485


28 t1 1 8
NASRMACTMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNASRMACTWGGACT
870
1486


28 t1 2 8
NASRMACTWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNASRMACTCCTACT
871
1487


28 t1 3 8
NASRMACTCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGVBCTWCACT
872
1488


28 t2 0 8
NACAGVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGVBCMTCACT
873
1489


28 t2 1 8
NACAGVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGVBCWGGACT
874
1490


28 t2 2 8
NACAGVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAM
ATGCAGVNAMNACAGVBCCCTACT
875
1491


28 t2 3 8
NACAGVBCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMVBCTWCACT
876
1492


28 t3 0 8
TCSRMVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMVBCMTCACT
877
1493


28 t3 1 8
TCSRMVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMVBCWGGACT
878
1494


28 t3 2 8
TCSRMVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAC
ATGCAGVNACTCSRMVBCCCTACT
879
1495


28 t3 3 8
TCSRMVBCCCTACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMVBCTWCACT
880
1496


28 t4 0 8
NASRMVBCTWCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMVBCMTCACT
881
1497


28 t4 1 8
NASRMVBCMTCACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMVBCWGGACT
882
1498


28 t4 2 8
NASRMVBCWGGACTTTTGGCGGAGGGACCAAG








VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAM
ATGCAGGCAMNASRMVBCCCTACT
883
1499


28 t4 3 8
NASRMVBCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCTGGTWCACT
884
1500


11 t1 0 8
HCNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCTGGMTCACT
885
1501


11 t1 1 8
HCNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCTGGWGGACT
886
1502


11 t1 2 8
HCNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCNHCTGGCCTACT
887
1503


11 t1 3 8
HCNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCTWCACT
888
1456


11 t2 0 8
HCAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCMTCACT
889
1457


11 t2 1 8
HCAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCWGGACT
890
1458


11 t2 2 8
HCAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCN
CAGCAGBHCNHCAATYWCCCTACT
891
1459


11 t2 3 8
HCAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCYWCTWCACT
892
1504


11 t3 0 8
GTNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCYWCMTCACT
893
1505


11 t3 1 8
GTNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCYWCWGGACT
894
1506


11 t3 2 8
GTNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCA
CAGCAGBHCAGTNHCYWCCCTACT
895
1507


11 t3 3 8
GTNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCYWCTWCACT
896
1508


11 t4 0 8
HCNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCYWCMTCACT
897
1509


11 t4 1 8
HCNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCYWCWGGACT
898
1510


11 t4 2 8
HCNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAN
CAGCAGAGANHCNHCYWCCCTACT
899
1511


11 t4 3 8
HCNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCNHCTGGTWCACT
900
1500


15 t1 0 8
HCNHCNHCTGGTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCNHCTGGMTCACT
901
1501


15 t1 1 8
HCNHCNHCTGGMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCNHCTGGWGGACT
902
1502


15 t1 2 8
HCNHCNHCTGGWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCNHCTGGCCTACT
903
1503


15 t1 3 8
HCNHCNHCTGGCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATYWCTWCACT
904
1456


15 t2 0 8
HCNHCAATYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATYWCMTCACT
905
1457


15 t2 1 8
HCNHCAATYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATYWCWGGACT
906
1458


15 t2 2 8
HCNHCAATYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCNHCAATYWCCCTACT
907
1459


15 t2 3 8
HCNHCAATYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCYWCTWCACT
908
1512


15 t3 0 8
HCAATNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCYWCMTCACT
909
1513


15 t3 1 8
HCAATNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCYWCWGGACT
910
1514


15 t3 2 8
HCAATNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGB
CAGCAGBHCAATNHCYWCCCTACT
911
1515


15 t3 3 8
HCAATNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCYWCTWCACT
912
1464


15 t4 0 8
ACNHCNHCYWCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCYWCMTCACT
913
1465


15 t4 1 8
ACNHCNHCYWCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCYWCWGGACT
914
1466


15 t4 2 8
ACNHCNHCYWCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGT
CAGCAGTACNHCNHCYWCCCTACT
915
1467


15 t4 3 8
ACNHCNHCYWCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCVNCAGTTWCACT
916
1516


20 t1 0 8
HCVNCAGTTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCVNCAGTMTCACT
917
1517


20 t1 1 8
HCVNCAGTMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCVNCAGTWGGACT
918
1518


20 t1 2 8
HCVNCAGTWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCVNCAGTCCTACT
919
1519


20 t1 3 8
HCVNCAGTCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCTWCACT
920
1520


20 t2 0 8
HCAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCMTCACT
921
1521


20 t2 1 8
HCAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCWGGACT
922
1522


20 t2 2 8
HCAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCCCTACT
923
1523


20 t2 3 8
HCAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCBHCTWCACT
924
1524


20 t3 0 8
GAVNCBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCBHCMTCACT
925
1525


20 t3 1 8
GAVNCBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCBHCWGGACT
926
1526


20 t3 2 8
GAVNCBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCG
CAGCAGBHCGGAVNCBHCCCTACT
927
1527


20 t3 3 8
GAVNCBHCCCTACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCBHCTWCACT
928
1528


20 t4 0 8
HCVNCBHCTWCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCBHCMTCACT
929
1529


20 t4 1 8
HCVNCBHCMTCACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCBHCWGGACT
930
1530


20 t4 2 8
HCVNCBHCWGGACTTTTGGCGGAGGGACCAAG








VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACB
CAGCAGTACBHCVNCBHCCCTACT
931
1531


20 t4 3 8
HCVNCBHCCCTACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCNHCACTTWCACT
932
1532


01 t1 0 8
HCNHCACTTWCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCNHCACTMTCACT
933
1533


01 t1 1 8
HCNHCACTMTCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCNHCACTWGGACT
934
1534


01 t1 2 8
HCNHCACTWGGACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCNHCACTCCTACT
935
1535


01 t1 3 8
HCNHCACTCCTACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCTWCACT
936
1520


01 t2 0 8
HCAGTBHCTWCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCMTCACT
937
1521


01 t2 1 8
HCAGTBHCMTCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCWGGACT
938
1522


01 t2 2 8
HCAGTBHCWGGACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCB
CAGCAGBHCBHCAGTBHCCCTACT
939
1523


01 t2 3 8
HCAGTBHCCCTACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCT
CAGCAGBHCTACNHCBHCTWCACT
940
1536


01 t3 0 8
ACNHCBHCTWCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCT
CAGCAGBHCTACNHCBHCMTCACT
941
1537


01 t3 1 8
ACNHCBHCMTCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCT
CAGCAGBHCTACNHCBHCWGGACT
942
1538


01 t3 2 8
ACNHCBHCWGGACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCT
CAGCAGBHCTACNHCBHCCCTACT
943
1539


01 t3 3 8
ACNHCBHCCCTACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACB
CAGCAGTACBHCNHCBHCTWCACT
944
1540


01 t4 0 8
HCNHCBHCTWCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACB
CAGCAGTACBHCNHCBHCMTCACT
945
1541


01 t4 1 8
HCNHCBHCMTCACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACB
CAGCAGTACBHCNHCBHCWGGACT
946
1542


01 t4 2 8
HCNHCBHCWGGACTTTTGGCGGAGGGACCAAG








VK4-
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACB
CAGCAGTACBHCNHCBHCCCTACT
947
1543


01 t4 3 8
HCNHCBHCCCTACTTTTGGCGGAGGGACCAAG
















TABLE 6 







Oligonucleotide sequences for exemplary VK jumping dimer and trimer sequences with


CDRL3 length 9.














SEQ
SEQ ID




Portion of
ID
NO




Oligonucleotide
NO
(CDRL3




Corresponding to CDRL3
(Oli-
Por-


Name
Sequence of Synthesized Oligonucleotide
Proper
go)
tion)










Jumping Dimer











VK1-05 1 0 9
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYCTT
1544
2168



TTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYCTT
1545
2169


05 10 0 9
TTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMECTACYCTT
1546
2170


05 11 0 9
CTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYCTT
1547
2171


05 12 0 9
TYWCYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYCTT
1548
2172


05 13 0 9
CTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYCTT
1549
2173


05 14 0 9
TYWCYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYCTT
1550
2174


05 15 0 9
CYWCYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-05 2 0 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYCTT
1551
2175



TTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-05 3 0 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYCTT
1552
2176



TTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-05 4 0 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYCTT
1553
2177



CTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-05 5 0 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYCTT
1554
2178



TYWCYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-05 6 0 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYCTT
1555
2179



TTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-05 7 0 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYCTT
1556
2180



TTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-05 8 0 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYCTT
1557
2181



CTACYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-05 9 0 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYCTT
1558
2182



TYWCYCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-05 1 1 9
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYCTM
1559
2183



TTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYCTM
1560
2184


05 10 1 9
TTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMECTACYCTM
1561
2185


05 11 1 9
CTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYCTM
1562
2186


05 12 1 9
TYWCYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYCTM
1563
2187


05 13 1 9
CTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYCTM
1564
2188


05 14 1 9
TYWCYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYCTM
1565
2189


05 15 1 9
CYWCYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-05 2 1 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYCTM
1566
2190



TTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-05 3 1 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYCTM
1567
2191



TTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-05 4 1 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYCTM
1568
2192



CTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-05 5 1 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYCTM
1569
2193



TYWCYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-05 6 1 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYCTM
1570
2194



TTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-05 7 1 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYCTM
1571
2195



TTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-05 8 1 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYCTM
1572
2196



CTACYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-05 9 1 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYCTM
1573
2197



TYWCYCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-05 1 2 9
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYCTW
1574
2198



TTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYCTW
1575
2199


05 10 2 9
TTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMECTACYCTW
1576
2200


05 11 2 9
CTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYCTW
1577
2201


05 12 2 9
TYWCYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYCTW
1578
2202


05 13 2 9
CTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYCTW
1579
2203


05 14 2 9
TYWCYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYCTW
1580
2204


05 15 2 9
CYWCYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-05 2 2 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYCTW
1581
2205 



TTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-05 3 2 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYCTW
1582
2206



TTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-05 4 2 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYCTW
1583
2207



CTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-05 5 2 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYCTW
1584
2208



TYWCYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-05 6 2 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYCTW
1585
2209



TTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-05 7 2 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYCTW
1586
2210



TTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-05 8 2 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYCTW
1587
2211 



CTACYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-05 9 2 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYCTW
1588
2212



TYWCYCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-05 1 3 9
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYCTC
1589
2213



TTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYCTC
1590
2214


05 10 3 9
TTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMECTACYCTC
1591
2215 


05 11 3 9
CTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYCTC
1592
2216


05 12 3 9
TYWCYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYCTC
1593
2217


05 13 3 9
CTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYCTC
1594
2218


05 14 3 9
TYWCYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYCTC
1595
2219


05 15 3 9
CYWCYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-05 2 3 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYCTC
1596
2220



TTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-05 3 3 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYCTC
1597
2221



TTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-05 4 3 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYCTC
1598
2222



CTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-05 5 3 9
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYCTC
1599
2223



TYWCYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-05 6 3 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYCTC
1600
2224



TTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-05 7 3 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYCTC
1601
2225



TTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-05 8 3 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYCTC
1602
2226



CTACYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-05 9 3 9
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYCTC
1603
2227



TYWCYCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-12 1 0 9
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCCTT
1604
2228 



TTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCCTT
1605
2229


12 10 0 9
TTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCCTT
1606
2230


12 11 0 9
CTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCCTT
1607
2231


12 12 0 9
TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCCTT
1608
2232


12 13 0 9
CTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCCTT
1609
2233


12 14 0 9
TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCCTT
1610
2234


12 15 0 9
CYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-12 2 0 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCCTT
1611
2235



TTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-12 3 0 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCCTT
1612
2236



TTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-12 4 0 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCCTT
1613
2237



CTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-12 5 0 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCCTT
1614
2238



TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-12 6 0 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCCTT
1615
2239



TTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-12 7 0 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCCTT
1616
2240



TTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-12 8 0 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCCTT
1617
2241



CTTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-12 9 0 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCCTT
1618
2242



TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-12 1 1 9
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCCTM
1619
2243



TTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCCTM
1620
2244


12 10 1 9
TTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCCTM
1621
2245


12 11 1 9
CTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCCTM
1622
2246


12 12 1 9
TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCCTM
1623
2247


12 13 1 9
CTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCCTM
1624
2248


12 14 1 9
TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCCTM
1625
2249


12 15 1 9
CYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-12 2 1 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCCTM
1626
2250



TTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-12 3 1 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCCTM
1627
2251



TTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-12 4 1 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCCTM
1628
2252



CTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-12 5 1 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCCTM
1629
2253



TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-12 6 1 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCCTM
1630
2254



TTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-12 7 1 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCCTM
1631
2255



TTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-12 8 1 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCCTM
1632
2256



CTTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-12 9 1 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCCTM
1633
2257



TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-12 1 2 9
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCCTW
1634
2258



TTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCCTW
1635
2259


12 10 2 9
TTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCCTW
1636
2260


12 11 2 9
CTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCCTW
1637
2261


12 12 2 9
TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCCTW
1638
2262


12 13 2 9
CTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCCTW
1639
2263


12 14 2 9
TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCCTW
1640
2264


12 15 2 9
CYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-12 2 2 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCCTW
1641
2265



TTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-12 3 2 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCCTW
1642
2266



TTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-12 4 2 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCCTW
1643
2267



CTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-12 5 2 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCCTW
1644
2268



TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-12 6 2 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCCTW
1645
2269



TTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-12 7 2 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCCTW
1646
2270



TTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-12 8 2 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCCTW
1647
2271



CTTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-12 9 2 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCCTW
1648
2272



TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-12 1 3 9
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCCTC
1649
2273



TTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCCTC
1650
2274


12 10 3 9
TTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCCTC
1651
2275


12 11 3 9
CTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCCTC
1652
2276


12 12 3 9
TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCCTC
1653
2277


12 13 3 9
CTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCCTC
1654
2278


12 14 3 9
TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCCTC
1655
2279


12 15 3 9
CYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-12 2 3 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCCTC
1656
2280



TTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-12 3 3 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCCTC
1657
2281



TTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-12 4 3 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCCTC
1658
2282



CTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-12 5 3 9
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCCTC
1659
2283



TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-12 6 3 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCCTC
1660
2284



TTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-12 7 3 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCCTC
1661
2285



TTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-12 8 3 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCCTC
1662
2286



CTTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-12 9 3 9
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCCTC
1663
2287



TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-33 1 0 9
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCCTT
1664
2288



TCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCCTT
1665
2289


33 10 0 9
TCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCCTT
1666
2290


33 11 0 9
CCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCCTT
1667
2291


33 12 0 9
TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCCTT
1668
2292


33 13 0 9
CCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCCTT
1669
2293


33 14 0 9
TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCCTT
1670
2294


33 15 0 9
CYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-33 2 0 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCCTT
1671
2295



TCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-33 3 0 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCCTT
1672
2296



TCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-33 4 0 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCCTT
1673
2297



CCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-33 5 0 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCCTT
1674
2298



TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-33 6 0 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCCTT
1675
2299



TCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-33 7 0 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCCTT
1676
2300



TCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-33 8 0 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCCTT
1677
2301



CCTCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-33 9 0 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCCTT
1678
2302



TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-33 1 1 9
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCCTM
1679
2303



TCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCCTM
1680
2304


33 10 1 9
TCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCCTM
1681
2305 


33 11 1 9
CCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCCTM
1682
2306


33 12 1 9
TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCCTM
1683
2307


33 13 1 9
CCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCCTM
1684
2308


33 14 1 9
TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCCTM
1685
2309


33 15 1 9
CYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-33 2 1 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCCTM
1686
2310



TCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-33 3 1 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCCTM
1687
2311 



TCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-33 4 1 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCCTM
1688
2312



CCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-33 5 1 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCCTM
1689
2313



TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-33 6 1 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCCTM
1690
2314



TCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-33 7 1 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCCTM
1691
2315 



TCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-33 8 1 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCCTM
1692
2316



CCTCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-33 9 1 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCCTM
1693
2317



TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-33 1 2 9
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCCTW
1694
2318



TCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCCTW
1695
2319


33 10 2 9
TCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCCTW
1696
2320


33 11 2 9
CCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCCTW
1697
2321


33 12 2 9
TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCCTW
1698
2322


33 13 2 9
CCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCCTW
1699
2323


33 14 2 9
TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCCTW
1700
2324


33 15 2 9
CYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-33 2 2 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCCTW
1701
2325



TCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-33 3 2 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCCTW
1702
2326



TCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-33 4 2 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCCTW
1703
2327



CCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-33 5 2 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCCTW
1704
2328 



TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-33 6 2 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCCTW
1705
2329



TCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-33 7 2 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCCTW
1706
2330



TCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-33 8 2 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCCTW
1707
2331



CCTCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-33 9 2 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCCTW
1708
2332



TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-33 1 3 9
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCCTC
1709
2333



TCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCCTC
1710
2334


33 10 3 9
TCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCCTC
1711
2335


33 11 3 9
CCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCCTC
1712
2336


33 12 3 9
TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCCTC
1713
2337


33 13 3 9
CCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCCTC
1714
2338


33 14 3 9
TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCCTC
1715
2339


33 15 3 9
CYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-33 2 3 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCCTC
1716
2340



TCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-33 3 3 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCCTC
1717
2341



TCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-33  43 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCCTC
1718
2342



CCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-33 5 3 9
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCCTC
1719
2343



TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-33 6 3 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCCTC
1720
2344



TCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-33 7 3 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCCTC
1721
2345



TCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-33 8 3 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCCTC
1722
2346



CCTCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-33 9 3 9
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCCTC
1723
2347



TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-39 1 0 9
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCCTT
1724
305



TACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCCTT
1725
314


39 10 0 9
TACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCCTT
1726
315


39 11 0 9
CACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCCTT
1727
316


391 2 0 9
TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCCTT
1728
317


39 13 0 9
CACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCCTT
1729
318


39 14 0 9
TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCCTT
1730
319


39 15 0 9
CBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-39 2 0 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCCTT
1731
306



TACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-39 3 0 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCCTT
1732
307



TACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-39 4 0 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCCTT
1733
308



CACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-39 5 0 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCCTT
1734
309



TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-39 6 0 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCCTT
1735
310



TACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-39 7 0 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCCTT
1736
311



TACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-39 8 0 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCCTT
1737
312



CACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-39 9 0 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCCTT
1738
313



TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK1-39 1 1 9
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCCTM
1739
2348



TACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCCTM
1740
2349


39 10 1 9
TACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCCTM
1741
2350


39 11 1 9
CACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCCTM
1742
2351


39 12 1 9
TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCCTM
1743
2352


39 13 1 9
CACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCCTM
1744
2353


39 14 1 9
TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCCTM
1745
2354


39 15 1 9
CBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-39 2 1 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCCTM
1746
2355



TACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-39 3 1 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCCTM
1747
2356



TACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-39 4 1 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCCTM
1748
2357



CACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-39 5 1 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCCTM
1749
2358



TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-39 6 1 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCCTM
1750
2359



TACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-39 7 1 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCCTM
1751
2360



TACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-39 8 1 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCCTM
1752
2361



CACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-39 9 1 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCCTM
1753
2362



TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK1-39 1 2 9
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCCTW
1754
2363



TACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCCTW
1755
2364


39 10 2 9
TACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCCTW
1756
2365


39 11 2 9
CACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCCTW
1757
2366


39 12 2 9
TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCCTW
1758
2367


39 13 2 9
CACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCCTW
1759
2368


39 14 2 9
TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCCTW
1760
2369


39 15 2 9
CBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-39 2 2 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCCTW
1761
2370



TACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-39 3 2 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCCTW
1762
2371



TACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-39 4 2 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCCTW
1763
2372



CACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-39 5 2 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCCTW
1764
2373



TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-39 6 2 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCCTW
1765
2374



TACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-39 7 2 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCCTW
1766
2375



TACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-39 8 2 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCCTW
1767
2376



CACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-39 9 2 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCCTW
1768
2377



TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK1-39 1 3 9
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCCTC
1769
2378



TACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCCTC
1770
2379


39 10 3 9
TACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCCTC
1771
2380


39 11 3 9
CACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCCTC
1772
2381


39 12 3 9
TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCCTC
1773
2382


39 13 3 9
CACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCCTC
1774
2383


39 14 3 9
TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCCTC
1775
2384


39 15 3 9
CBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-39 2 3 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCCTC
1776
2385



TACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-39 3 3 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCCTC
1777
2386



TACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-39 4 3 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCCTC
1778
2387



CACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-39 5 3 9
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCCTC
1779
2388



TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-39 6 3 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCCTC
1780
2389



TACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-39 7 3 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCCTC
1781
2390



TACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-39 8 3 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCCTC
1782
2391



CACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK1-39 9 3 9
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCCTC
1783
2392



TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-28 1 0 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCCTT
1784
2393



GACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCCTT
1785
2394


28 10 0 9
GACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCCTT
1786
2395


28 11 0 9
MACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCCTT
1787
2396


28 12 0 9
GVBCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCCTT
1788
2397


28 13 0 9
MACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCCTT
1789
2398


28 14 0 9
GVBCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCCTT
1790
2399


28 15 0 9
MVBCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-28 2 0 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCCTT
1791
2400



GACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-28 3 0 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCCTT
1792
2401



GACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-28 4 0 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCCTT
1793
2402



MACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-28 5 0 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCCTT
1794
2403



GVBCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-28 6 0 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCCTT
1795
2404



GACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-28 7 0 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCCTT
1796
2405 



GACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-28 8 0 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCCTT
1797
2406



MACTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-28 9 0 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCCTT
1798
2407



GVBCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK2-28 1 1 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCCTM
1799
2408



GACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCCTM
1800
2409


28 10 1 9
GACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCCTM
1801
2410


28 11 1 9
MACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCCTM
1802
2411 


28 12 1 9
GVBCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCCTM
1803
2412


28 13 1 9
MACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCCTM
1804
2413


28 14 1 9
GVBCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCCTM
1805 
2414


28 15 1 9
MVBCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-28 2 1 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCCTM
1806
2415 



GACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-28 3 1 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCCTM
1807
2416



GACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-28 4 1 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCCTM
1808
2417



MACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-28 5 1 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCCTM
1809
2418



GVBCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-28 6 1 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCCTM
1810
2419



GACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-28 7 1 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCCTM
1811
2420



GACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-28 8 1 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCCTM
1812
2421



MACTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-28 9 1 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCCTM
1813
2422



GVBCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK2-28 1 2 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCCTW
1814
2423



GACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCCTW
1815
2424


28 10 2 9
GACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCCTW
1816
2425


28 11 2 9
MACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCCTW
1817
2426


28 12 2 9
GVBCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCCTW
1818
2427


28 13 2 9
MACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCCTW
1819
2428 


28 14 2 9
GVBCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCCTW
1820
2429


28 15 2 9
MVBCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-28 2 2 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCCTW
1821
2430



GACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-28 3 2 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCCTW
1822
2431



GACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-28 4 2 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCCTW
1823
2432



MACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-28 5 2 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCCTW
1824
2433



GVBCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-28 6 2 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCCTW
1825
2434



GACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-28 7 2 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCCTW
1826
2435



GACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-28 8 2 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCCTW
1827
2436



MACTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-28 9 2 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCCTW
1828
2437



GVBCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK2-28 1 3 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCCTC
1829
2438



GACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCCTC
1830
2439 


28 10 3 9
GACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCCTC
1831
2440


28 11 3 9
MACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCCTC
1832
2441


28 12 3 9
GVBCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCCTC
1833
2442


28 13 3 9
MACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCCTC
1834
2443


28 14 3 9
GVBCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCCTC
1835
2444


28 15 3 9
MVBCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-28 2 3 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCCTC
1836
2445



GACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-28 3 3 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCCTC
1837
2446



GACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-28 4 3 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCCTC
1838
2447



MACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-28 5 3 9
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCCTC
1839
2448



GVBCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-28 6 3 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCCTC
1840
2449



GACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-28 7 3 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCCTC
1841
2450



GACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-28 8 3 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCCTC
1842
2451



MACTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK2-28 9 3 9
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCCTC
1843
2452



GVBCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-11 1 0 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCCTT
1844
2453



TTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCCTT
1845
2454


11 10 0 9
TTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCCTT
1846
2455


11 11 0 9
CTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCCTT
1847
2456


11 12 0 9
TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCCTT
1848
2457


11 13 0 9
CTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCCTT
1849
2458


11 14 0 9
TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCCTT
1850
2459


11 15 0 9
CYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-11 2 0 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCCTT
1851
2460



TTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-11 3 0 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCCTT
1852
2461



TTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-11 4 0 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCCTT
1853
2462



CTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-11 5 0 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCCTT
1854
2463



TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-1 16 0 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCCTT
1855
2464



TTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-11 7 0 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCCTT
1856
2465



TTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-11 8 0 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCCTT
1857
2466



CTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-11 9 0 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCCTT
1858
2467



TYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-11 1 1 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCCTM
1859
2468



TTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCCTM
1860
2469


11 10 1 9
TTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCCTM
1861
2470


11 11 1 9
CTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCCTM
1862
2471


11 12 1 9
TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCCTM
1863
2472


11 13 1 9
CTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCCTM
1864
2473


11 14 1 9
TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCCTM
1865
2474


11 15 1 9
CYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-11 2 1 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCCTM
1866
2475



TTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-11 3 1 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCCTM
1867
2476



TTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-11 4 1 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCCTM
1868
2477



CTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-11 5 1 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCCTM
1869
2478



TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-11 6 1 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCCTM
1870
2479



TTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-11 7 1 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCCTM
1871
2480



TTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-11 8 1 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCCTM
1872
2481



CTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-11 9 1 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCCTM
1873
2482



TYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-11 1 2 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCCTW
1874
2483



TTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCCTW
1875
2484


11 10 2 9
TTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCCTW
1876
2485


11 11 2 9
CTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCCTW
1877
2486


11 12 2 9
TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCCTW
1878
2487


11 13 2 9
CTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCCTW
1879
2488


11 14 2 9
TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCCTW
1880
2489


11 15 2 9
CYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-11 2 2 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCCTW
1881
2490



TTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-11 3 2 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCCTW
1882
2491



TTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-11 4 2 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCCTW
1883
2492



CTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-11 5 2 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCCTW
1884
2493



TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-11 6 2 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCCTW
1885
2494



TTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-11 7 2 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCCTW
1886
2495



TTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-11 8 2 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCCTW
1887
2496



CTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-11 9 2 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCCTW
1888
2497



TYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-11 1 3 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCCTC
1889
2498



TTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCCTC
1890
2499


11 10 3 9
TTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCCTC
1891
2500


11 11 3 9
CTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCCTC
1892
2501


11 12 3 9
TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCCTC
1893
2502


11 13 3 9
CTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCCTC
1894
2503


11 14 3 9
TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCCTC
1895
2504


11 15 3 9
CYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-11 2 3 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCCTC
1896
2505 



TTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-11 3 3 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCCTC
1897
2506



TTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-11 4 3 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCCTC
1898
2507



CTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-1 15 3 9
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCCTC
1899
2508



TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-11 6 3 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCCTC
1900
2509



TTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-11 7 3 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCCTC
1901
2510



TTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-11 8 3 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCCTC
1902
2511 



CTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-11 9 3 9
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCCTC
1903
2512



TYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-15 1 0 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCCTT
1904
2513



TAATTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCCTT
1905
2454


15 10 0 9
CAATTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCCTT
1906
2514


15 11 0 9
TNHCTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCCTT
1907
2515 


15 12 0 9
TAATYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCCTT
1908
2516


15 13 0 9
CNHCTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCCTT
1909
2293


15 14 0 9
CAATYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCCTT
1910
2517


15 15 0 9
TNHCYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-15 2 0 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCCTT
1911
2518



TAATTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-15 3 0 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCCTT
1912
2519



CAATTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-15 4 0 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCCTT
1913
2520



TNHCTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-15 5 0 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCCTT
1914
2521



TAATYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-15 6 0 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCCTT
1915
2522



TAATTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-15 7 0 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCCTT
1916
2523



CAATTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-15 8 0 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCCTT
1917
2524



TNHCTGGCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-15 9 0 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCCTT
1918
2525



TAATYWCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-15 1 1 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCCTM
1919
2526



TAATTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCCTM
1920
2469


15 10 1 9
CAATTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCCTM
1921
2527


15 11 1 9
TNHCTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCCTM
1922
2528 


15 12 1 9
TAATYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCCTM
1923
2529


15 13 1 9
CNHCTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCCTM
1924
2308


15 14 1 9
CAATYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCCTM
1925
2530


15 15 1 9
TNHCYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-15 2 1 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCCTM
1926
2531



TAATTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-15 3 1 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCCTM
1927
2532



CAATTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-15 4 1 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCCTM
1928
2533



TNHCTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-15 5 1 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCCTM
1929
2534



TAATYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-15 6 1 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCCTM
1930
2535



TAATTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-15 7 1 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCCTM
1931
2536



CAATTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-15 8 1 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCCTM
1932
2537



TNHCTGGCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-15 9 1 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCCTM
1933
2538



TAATYWCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-15 1 2 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCCTW
1934
2539 



TAATTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCCTW
1935
2484


15 10 2 9
CAATTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCCTW
1936
2540


15 11 2 9
TNHCTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCCTW
1937
2541


15 12 2 9
TAATYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCCTW
1938
2542


15 13 2 9
CNHCTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCCTW
1939
2323


15 14 2 9
CAATYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCCTW
1940
2543


15 15 2 9
TNHCYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-15 2 2 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCCTW
1941
2544



TAATTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-15 3 2 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCCTW
1942
2545



CAATTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-15 4 2 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCCTW
1943
2546



TNHCTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-15 5 2 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCCTW
1944
2547



TAATYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-15 6 2 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCCTW
1945
2548



TAATTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-15 7 2 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCCTW
1946
2549



CAATTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-15 8 2 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCCTW
1947
2550



TNHCTGGCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-15 9 2 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCCTW
1948
2551



TAATYWCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-15 1 3 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCCTC
1949
2552



TAATTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCCTC
1950
2499


15 10 3 9
CAATTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCCTC
1951
2553


15 11 3 9
TNHCTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCCTC
1952
2554


15 12 3 9
TAATYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCCTC
1953
2555


15 13 3 9
CNHCTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCCTC
1954
2338


15 14 3 9
CAATYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCCTC
1955
2556


15 15 3 9
TNHCYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-15 2 3 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCCTC
1956
2557



TAATTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-15 3 3 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCCTC
1957
2558



CAATTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-15 4 3 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCCTC
1958
2559



TNHCTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-15 5 3 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCCTC
1959
2560



TAATYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-15 6 3 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCCTC
1960
2561



TAATTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-15 7 3 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCCTC
1961
2562



CAATTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-15 8 3 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCCTC
1962
2563



TNHCTGGCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-15 9 3 9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCCTC
1963
2564



TAATYWCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-20 1 0 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCCTT
1964
2565



TAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCCTT
1965
2566


20 10 0 9
TAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCCTT
1966
2567


20 11 0 9
CAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCCTT
1967
2568


20 12 0 9
TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCCTT
1968
2569


20 13 0 9
CAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCCTT
1969
2570


20 14 0 9
TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCCTT
1970
2571


20 15 0 9
CBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-20 2 0 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCCTT
1971
2572



TAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-20 3 0 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCCTT
1972
2573



TAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-20 4 0 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCCTT
1973
2574



CAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-20 5 0 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCCTT
1974
2575



TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-20 6 0 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCCTT
1975
2576



TAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-20 7 0 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCCTT
1976
2577



TAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-20 8 0 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCCTT
1977
2578



CAGTCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-20 9 0 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCCTT
1978
2579



TBHCCCTTWCACTTTTGGCGGAGGGACCAAG
WCACT







VK3-20 1 1 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCCTM
1979
2580



TAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCCTM
1980
2581


20 10 1 9
TAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCCTM
1981
2582


20 11 1 9
CAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCCTM
1982
2583


20 12 1 9
TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCCTM
1983
2584


20 13 1 9
CAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCCTM
1984
2585


20 14 1 9
TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCCTM
1985
2586


20 15 1 9
CBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-20 2 1 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCCTM
1986
2587



TAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-20 3 1 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCCTM
1987
2588



TAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-20 4 1 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCCTM
1988
2589



CAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-20 5 1 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCCTM
1989
2590



TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-20 6 1 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCCTM
 1990
2591



TAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-20 7 1 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCCTM
 1991
2592



TAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-20 8 1 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCCTM
 1992
2593



CAGTCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-20 9 1 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCCTM
 1993
2594



TBHCCCTMTCACTTTTGGCGGAGGGACCAAG
TCACT







VK3-20 1 2 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCCTW
 1994
2595



TAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCCTW
 1995
2596


20 10 2 9
TAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCCTW
 1996
2597


20 11 2 9
CAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCCTW
 1997
2598


20 12 2 9
TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCCTW
 1998
2599


20 13 2 9
CAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCCTW
 1999
2600


20 14 2 9
TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCCTW
2000
2601


20 15 2 9
CBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-20 2 2 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCCTW
2001
2602



TAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-20 3 2 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCCTW
2002
2603



TAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-20 4 2 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCCTW
2003
2604



CAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-20 5 2 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCCTW
2004
2605 



TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-20 6 2 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCCTW
2005
2606



TAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-20 7 2 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCCTW
2006
2607



TAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-20 8 2 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCCTW
2007
2608



CAGTCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-20 9 2 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCCTW
2008
2609



TBHCCCTWGGACTTTTGGCGGAGGGACCAAG
GGACT







VK3-20 1 3 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCCTC
2009
2610



TAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCCTC
2010
2611 


20 10 3 9
TAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCCTC
2011
2612


20 11 3 9
CAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCCTC
2012
2613


20 12 3 9
TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCCTC
2013
2614


20 13 3 9
CAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCCTC
2014
2615 


20 14 3 9
TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCCTC
2015
2616


20 15 3 9
CBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-20 2 3 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCCTC
2016
2617



TAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-20 3 3 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCCTC
2017
2618



TAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-20 4 3 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCCTC
2018
2619



CAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-20 5 3 9
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCCTC
2019
2620



TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-20 6 3 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCCTC
2020
2621



TAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-20 7 3 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCCTC
2021
2622



TAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-20 8 3 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCCTC
2022
2623



CAGTCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT







VK3-20 9 3 9
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCCTC
2023
2624



TBHCCCTCCTACTTTTGGCGGAGGGACCAAG
CTACT












Jumping Trimer











VK1-05_t1_0_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMBCTAC
CAGCAGBHCVRMMBCTACYCTTWC
2024
2625



YCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t1_1_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMBCTAC
CAGCAGBHCVRMMBCTACYCTMTC
2025
2626



YCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t1_2_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMBCTAC
CAGCAGBHCVRMMBCTACYCTWGG
2026
2627



YCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t1_3_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMBCTAC
CAGCAGBHCVRMMBCTACYCTCCT
2027
2628 



YCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t2_0_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMBCYWC
CAGCAGBHCAATMBCYWCYCTTWC
2028
2629



YCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t2_1_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMBCYWC
CAGCAGBHCAATMBCYWCYCTMTC
2029
2630



YCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t2_2_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMBCYWC
CAGCAGBHCAATMBCYWCYCTWGG
2030
2631



YCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t2_3_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMBCYWC
CAGCAGBHCAATMBCYWCYCTCCT
2031
2632



YCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t3_0_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAGTYWC
CAGCAGBHCVRMAGTYWCYCTTWC
2032
2633



YCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t3_1_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAGTYWC
CAGCAGBHCVRMAGTYWCYCTMTC
2033
2634



YCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t3_2_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAGTYWC
CAGCAGBHCVRMAGTYWCYCTWGG
2034
2635



YCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t3_3_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAGTYWC
CAGCAGBHCVRMAGTYWCYCTCCT
2035
2636



YCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t4_0_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMBCYWC
CAGCAGTACVRMMBCYWCYCTTWC
2036
2637



YCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t4_1_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMBCYWC
CAGCAGTACVRMMBCYWCYCTMTC
2037
2638



YCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t4_2_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMBCYWC
CAGCAGTACVRMMBCYWCYCTWGG
2038
2639 



YCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-05_t4_3_9
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMBCYWC
CAGCAGTACVRMMBCYWCYCTCCT
2039
2640



YCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNHCTTC
CAGCAGRNANHCNHCTTCCCTTWC
2040
2641


t1_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNHCTTC
CAGCAGRNANHCNHCTTCCCTMTC
2041
2642


t1_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNHCTTC
CAGCAGRNANHCNHCTTCCCTWGG
2042
2643


t1_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNHCTTC
CAGCAGRNANHCNHCTTCCCTCCT
2043
2644


t1_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAGCWC
CAGCAGRNANHCAGTYWCCCTTWC
2044
2645


t2_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAGTYWC
CAGCAGRNANHCAGTYWCCCTMTC
2045
2646


t2_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAGTYWC
CAGCAGRNANHCAGTYWCCCTWGG
2046
2647


t2_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAGTYWC
CAGCAGRNANHCAGTYWCCCTCCT
2047
2648


t2_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNHCYWC
CAGCAGRNAAATNHCYWCCCTTWC
2048
2649


t3_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNHCYWC
CAGCAGRNAAATNHCYWCCCTMTC
2049
2650


t3_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNHCYWC
CAGCAGRNAAATNHCYWCCCTWGG
2050
2651


t3_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNHCYWC
CAGCAGRNAAATNHCYWCCCTCCT
2051
2652


t3_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNHCYWC
CAGCAGGCANHCNHCYWCCCTTWC
2052
2653


t4_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNHCYWC
CAGCAGGCANHCNHCYWCCCTMTC
2053
2654


t4_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNHCYWC
CAGCAGGCANHCNHCYWCCCTWGG
2054
2655


t4_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-12 
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNHCYWC
CAGCAGGCANHCNHCYWCCCTCCT
2055
2656


t4_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-33
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNHCCTC
CAGCAGBHCNHCNHCCTCCCTTWC
2056
2657


t1_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-33
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNHCCTC
CAGCAGBHCNHCNHCCTCCCTMTC
2057
2658


t1_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-33
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNHCCTC
CAGCAGBHCNHCNHCCTCCCTWGG
2058
2659


t1_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-33
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNHCCTC
CAGCAGBHCNHCNHCCTCCCTCCT
2059
2660


t1_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-33_t2_
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTTWC
2060
2661


0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-33_t2_
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTMTC
2061
2662


1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-33_t2_
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTWGG
2062
2663


2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-33_t2_
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTCCT
2063
2664


3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-33_t3_
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNHCYWC
CAGCAGBHCGATNHCYWCCCTTWC
2064
2665


0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-33_t3_
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNHCYWC
CAGCAGBHCGATNHCYWCCCTMTC
2065
2666


1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-33_t3_
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNHCYWC
CAGCAGBHCGATNHCYWCCCTWGG
2066
2667


2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-33_t3_
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNHCYWC
CAGCAGBHCGATNHCYWCCCTCCT
2067
2668


3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-33_t4_
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNHCYWC
CAGCAGTACNHCNHCYWCCCTTWC
2068
2669


0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-33_t4_
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNHCYWC
CAGCAGTACNHCNHCYWCCCTMTC
2069
2670


1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-33_t4_
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNHCYWC
CAGCAGTACNHCNHCYWCCCTWGG
2070
2671


2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-33_t4_
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNHCYWC
CAGCAGTACNHCNHCYWCCCTCCT
2071
2672


3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNHCACT
CAGCAAVNABHCNHCACTCCTTWC
2072
320


t1_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNHCACT
CAGCAAVNABHCNHCACTCCTMTC
2073
2673


t1_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNHCACT
CAGCAAVNABHCNHCACTCCTWGG
2074
2674


t1_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNHCACT
CAGCAAVNABHCNHCACTCCTCCT
2075
2675


t1_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_t2_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAGTBHC
CAGCAAVNABHCAGTBHCCCTTWC
2076
321


0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_t2_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAGTBHC
CAGCAAVNABHCAGTBHCCCTMTC
2077
2676


1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_t2_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAGTBHC
CAGCAAVNABHCAGTBHCCCTWGG
2078
2677


2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAGTBHC
CAGCAAVNABHCAGTBHCCCTCCT
2079
2678


t2_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNHCBHC
CAGCAAVNATACNHCBHCCCTTWC
2080
322


t3_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNHCBHC
CAGCAAVNATACNHCBHCCCTMTC
2081
2679


t3_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNHCBHC
CAGCAAVNATACNHCBHCCCTWGG
2082
2680


t3_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNHCBHC
CAGCAAVNATACNHCBHCCCTCCT
2083
2681


t3_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNHCBHC
CAGCAAAGCBHCNHCBHCCCTTWC
2084
323


t4_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNHCBHC
CAGCAAAGCBHCNHCBHCCCTMTC
2085
2682


t4_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNHCBHC
CAGCAAAGCBHCNHCBHCCCTWGG
2086
2683


t4_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK1-39_
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNHCBHC
CAGCAAAGCBHCNHCBHCCCTCCT
2087
2684


t4_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASRMACT
ATGCAGVNAMNASRMACTCCTTWC
2088
2685


t1_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASRMACT
ATGCAGVNAMNASRMACTCCTMTC
2089
2686


t1_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASRMACT
ATGCAGVNAMNASRMACTCCTWGG
2090
2687


t1_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASRMACT
ATGCAGVNAMNASRMACTCCTCCT
2091
2688


t1_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACAGVBC
ATGCAGVNAMNACAGVBCCCTTWC
2092
2689


t2_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACAGVBC
ATGCAGVNAMNACAGVBCCCTMTC
2093
2690


t2_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACAGVBC
ATGCAGVNAMNACAGVBCCCTWGG
2094
2691


t2_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACAGVBC
ATGCAGVNAMNACAGVBCCCTCCT
2095
2692


t2_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSRMVBC
ATGCAGVNACTCSRMVBCCCTTWC
2096
2693


t3_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSRMVBC
ATGCAGVNACTCSRMVBCCCTMTC
2097
2694


t3_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSRMVBC
ATGCAGVNACTCSRMVBCCCTWGG
2098
2695


t3_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_t3_3_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSRMVBC
ATGCAGVNACTCSRMVBCCCTCCT
2099
2696



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_t4_0_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASRMVBC
ATGCAGGCAMNASRMVBCCCTTWC
2100
2697



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_t4_1_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASRMVBC
ATGCAGGCAMNASRMVBCCCTMTC
2101
2698



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_t4_2_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASRMVBC
ATGCAGGCAMNASRMVBCCCTWGG
2102
2699



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK2-28_t4_3_9
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASRMVBC
ATGCAGGCAMNASRMVBCCCTCCT
2103
2700



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t1_0_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCTGG
CAGCAGBHCNHCNHCTGGCCTTWC
2104
2701



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t1_1_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCTGG
CAGCAGBHCNHCNHCTGGCCTMTC
2105
2702



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t1_2_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCTGG
CAGCAGBHCNHCNHCTGGCCTWGG
2106
2703



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t1_3_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHCTGG
CAGCAGBHCNHCNHCTGGCCTCCT
2107
2704



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t2_0_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTTWC
2108
2661



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t2_1_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTMTC
2109
2662



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t2_2_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTWGG
2110
2663



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t2_3_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAATYWC
CAGCAGBHCNHCAATYWCCCTCCT
2111
2664



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t3_0_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNHCYWC
CAGCAGBHCAGTNHCYWCCCTTWC
2112
2705 



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t3_1_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNHCYWC
CAGCAGBHCAGTNHCYWCCCTMTC
2113
2706



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t3_2_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNHCYWC
CAGCAGBHCAGTNHCYWCCCTWGG
2114
2707



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t3_3_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNHCYWC
CAGCAGBHCAGTNHCYWCCCTCCT
2115
2708



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t4_0_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNHCYWC
CAGCAGAGANHCNHCYWCCCTTWC
2116
2709



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t4_1_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNHCYWC
CAGCAGAGANHCNHCYWCCCTMTC
2117
2710



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t4_2_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNHCYWC
CAGCAGAGANHCNHCYWCCCTWGG
2118
2711 



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK3-11_t4_3_9
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNHCYWC
CAGCAGAGANHCNHCYWCCCTCCT
2119
2712



CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t1_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHC
CAGCAGBHCNHCNHCTGGCCTTWC
2120
2701



TGGCCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t1_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHC
CAGCAGBHCNHCNHCTGGCCTMTC
2121
2702



TGGCCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t1_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHC
CAGCAGBHCNHCNHCTGGCCTWGG
2122
2703



TGGCCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t1_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNHC
CAGCAGBHCNHCNHCTGGCCTCCT
2123
2704



TGGCCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t2_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAAT
CAGCAGBHCNHCAATYWCCCTTWC
2124
2661



YWCCCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t2_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAAT
CAGCAGBHCNHCAATYWCCCTMTC
2125
2662



YWCCCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t2_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAAT
CAGCAGBHCNHCAATYWCCCTWGG
2126
2663



YWCCCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t2_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAAT
CAGCAGBHCNHCAATYWCCCTCCT
2127
2664



YWCCCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t3_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAATNHC
CAGCAGBHCAATNHCYWCCCTTWC
2128
2713



YWCCCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t3_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAATNHC
CAGCAGBHCAATNHCYWCCCTMTC
2129
2714



YWCCCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t3_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAATNHC
CAGCAGBHCAATNHCYWCCCTWGG
2130
2715 



YWCCCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t3_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAATNHC
CAGCAGBHCAATNHCYWCCCTCCT
2131
2716



YWCCCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t4_0_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNHCNHC
CAGCAGTACNHCNHCYWCCCTTWC
2132
2669



YWCCCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t4_1_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNHCNHC
CAGCAGTACNHCNHCYWCCCTMTC
2133
2670



YWCCCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t4_2_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNHCNHC
CAGCAGTACNHCNHCYWCCCTWGG
2134
2671



YWCCCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK3-15_t4_3_9
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNHCNHC
CAGCAGTACNHCNHCYWCCCTCCT
2135
2672



YWCCCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_t1_0_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVNCAGT
CAGCAGBHCBHCVNCAGTCCTTWC
2136
2717



CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_t1_1_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVNCAGT
CAGCAGBHCBHCVNCAGTCCTMTC
2137
2718



CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_t1_2_9
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVNCAGT
CAGCAGBHCBHCVNCAGTCCTWGG
2138
2719



CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVNCAGT
CAGCAGBHCBHCVNCAGTCCTCCT
2139
2720


t1_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTTWC
2140
2721


t2_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTMTC
2141
2722


t2_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTWGG
2142
2723


t2_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTCCT
2143
2724


t2_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVNCBHC
CAGCAGBHCGGAVNCBHCCCTTWC
2144
2725


t3_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVNCBHC
CAGCAGBHCGGAVNCBHCCCTMTC
2145
2726


t3_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVNCBHC
CAGCAGBHCGGAVNCBHCCCTWGG
2146
2727


t3_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVNCBHC
CAGCAGBHCGGAVNCBHCCCTCCT
2147
2728 


t3_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVNCBHC
CAGCAGTACBHCVNCBHCCCTTWC
2148
2729


t4_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVNCBHC
CAGCAGTACBHCVNCBHCCCTMTC
2149
2730


t4_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVNCBHC
CAGCAGTACBHCVNCBHCCCTWGG
2150
2731


t4_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK3-20_
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVNCBHC
CAGCAGTACBHCVNCBHCCCTCCT
2151
2732


t4_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNHCACT
CAGCAGBHCBHCNHCACTCCTTWC
2152
2733


t1_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNHCACT
CAGCAGBHCBHCNHCACTCCTMTC
2153
2734


t1_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNHCACT
CAGCAGBHCBHCNHCACTCCTWGG
2154
2735


t1_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNHCACT
CAGCAGBHCBHCNHCACTCCTCCT
2155
2736


t1_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTTWC
2156
2721


t2_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTMTC
2157
2722


t2_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTWGG
2158
2723


t2_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAGTBHC
CAGCAGBHCBHCAGTBHCCCTCCT
2159
2724


t2_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNHCBHC
CAGCAGBHCTACNHCBHCCCTTWC
2160
2737


t3_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNHCBHC
CAGCAGBHCTACNHCBHCCCTMTC
2161
2738


t3_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNHCBHC
CAGCAGBHCTACNHCBHCCCTWGG
2162
2739 


t3_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNHCBHC
CAGCAGBHCTACNHCBHCCCTCCT
2163
2740


t3_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNHCBHC
CAGCAGTACBHCNHCBHCCCTTWC
2164
2741


t4_0_9
CCTTWCACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNHCBHC
CAGCAGTACBHCNHCBHCCCTMTC
2165
2742


t4_1_9
CCTMTCACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNHCBHC
CAGCAGTACBHCNHCBHCCCTWGG
2166
2743


t4_2_9
CCTWGGACTTTTGGCGGAGGGACCAAG
ACT







VK4-01_
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNHCBHC
CAGCAGTACBHCNHCBHCCCTCCT
2167
2744


t4_3_9
CCTCCTACTTTTGGCGGAGGGACCAAG
ACT
















TABLE 7







Oligonucleotide sequences for exemplary VK


jumping dimer and trimer sequences with CDRL3 length 10.













Portion of

SEQ ID




Oligonucleotide
SEQ ID
NO




Corresponding to
NO
(CDRL3


Name
Sequence of Synthesized Oligonucleotide
CDRL3 Proper
(Oligo)
Portion)










Jumping Dimer











VK1-05 1 0 10
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYC
2745
3213



TTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 10 0 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYC
2746
3214



TTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 11 0 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMECTACYC
2747
3215



CTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 12 0 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYC
2748
3216



TYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 13 0 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYC
2749
3217



CTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 14 0 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYC
2750
3218



TYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 15 0 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYC
2751
3219



CYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 2 0 10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYC
2752
3220



TTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 3 0 10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYC
2753
3221



TTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 4 0 10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYC
2754
3222



CTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 5 0 10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYC
2755
3223



TYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 6 0 10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYC
2756
3224



TTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 7 0 10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYC
2757
3225



TTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 8 0 10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYC
2758
3226



CTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 9 0 10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYC
2759
3227



TYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-05 1 1 10
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYC
2760
3228



TTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 10 1 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYC
2761
3229



TTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 11 1 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMECTACYC
2762
3230



CTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 12 1 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYC
2763
3231



TYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 13 1 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYC
2764
3232



CTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 14 1 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYC
2765
3233



TYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 15 1 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYC
2766
3234



CYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 2 1 10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYC
2767
3235



TTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 3 1 10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYC
2768
3236



TTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 4 1 10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYC
2769
3237



CTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 5 1 10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYC
2770
3238



TYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 6 1 10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYC
2771
3239



TTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 7 1 10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYC
2772
3240



TTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 8 1 10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYC
2773
3241



CTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 9 1 10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYC
2774
3242



TYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-05 1 2 10
CCTGATGATTTTGCAACTTATTACTGCSWMSWMTACAATAG
SWMSWMTACAATAGTTACYC
2775
3243



TTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 10 2 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTTACYC
2776
3244



TTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 11 2 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMECTACYC
2777
3245



CTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 12 2 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATAG
CAGCAGBHCAATAGTYWCYC
2778
3246



TYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 13 2 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCTACYC
2779
3247



CTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 14 2 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMAG
CAGCAGTACVRMAGTYWCYC
2780
3248



TYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 15 2 10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACAATMB
CAGCAGTACAATMBCYWCYC
2781
3249



CYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 2 2 10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGBHCAATAG
SWMCAGBHCAATAGTTACYC
2782
3250



TTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 3 2 10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACVRMAG
SWMCAGTACVRMAGTTACYC
2783
3251



TTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 4 2 10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATMB
SWMCAGTACAATMBCTACYC
2784
3252



CTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 5 2 10
CCTGATGATTTTGCAACTTATTACTGCSWMCAGTACAATAG
SWMCAGTACAATAGTYWCYC
2785
3253



TYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 6 2 10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMBHCAATAG
CAGSWMBHCAATAGTTACYC
2786
3254



TTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 7 2 10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACVRMAG
CAGSWMTACVRMAGTTACYC
2787
3255



TTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 8 2 10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATMB
CAGSWMTACAATMBCTACYC
2788
3256



CTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-05 9 2 10
CCTGATGATTTTGCAACTTATTACTGCCAGSWMTACAATAG
CAGSWMTACAATAGTYWCYC
2789
3257



TYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 1 0 10
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCC
2790
3258



TTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 10 0 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCC
2791
3259



TTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 11 0 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCC
2792
3260



CTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 12 0 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCC
2793
3261



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 13 0 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCC
2794
3262



CTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 14 0 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCC
2795
3263



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 15 0 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCC
2796
3264



CYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 2 0 10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCC
2797
3265



TTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 3 0 10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCC
2798
3266



TTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 4 0 10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCC
2799
3267



CTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 5 0 10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCC
2800
3268



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 6 0 10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCC
2801
3269



TTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 7 0 10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCC
2802
3270



TTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 8 0 10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCC
2803
3271



CTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 9 0 10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCC
2804
3272



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-12 1 1 10
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCC
2805
3273



TTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 10 1 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCC
2806
3274



TTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 11 1 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCC
2807
3275



CTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 12 1 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCC
2808
3276



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 13 1 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCC
2809
3277



CTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 14 1 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCC
2810
3278



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 15 1 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCC
2811
3279



CYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 2 1 10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCC
2812
3280



TTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 3 1 10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCC
2813
3281



TTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 4 1 10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCC
2814
3282



CTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 5 1 10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCC
2815
3283



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 6 1 10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCC
2816
3284



TTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 7 1 10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCC
2817
3285



TTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 8 1 10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCC
2818
3286



CTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 9 1 10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCC
2819
3287



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-12 1 2 10
CCTGAAGATTTTGCAACTTATTACTGTSWMSWMGCAAATAG
SWMSWMGCAAATAGTTTCCC
2820
3288



TTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 10 2 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTTTCCC
2821
3289



TTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 11 2 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCTTCCC
2822
3290



CTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 12 2 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATAG
CAGCAGRNAAATAGTYWCCC
2823
3291



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 13 2 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCTTCCC
2824
3292



CTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 14 2 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCAG
CAGCAGGCANHCAGTYWCCC
2825
3293



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 15 2 10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCAAATNH
CAGCAGGCAAATNHCYWCCC
2826
3294



CYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 2 2 10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGRNAAATAG
SWMCAGRNAAATAGTTTCCC
2827
3295



TTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 3 2 10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCANHCAG
SWMCAGGCANHCAGTTTCCC
2828
3296



TTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 4 2 10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATNH
SWMCAGGCAAATNHCTTCCC
2829
3297



CTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 5 2 10
CCTGAAGATTTTGCAACTTATTACTGTSWMCAGGCAAATAG
SWMCAGGCAAATAGTYWCCC
2830
3298



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 6 2 10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMRNAAATAG
CAGSWMRNAAATAGTTTCCC
2831
3299



TTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 7 2 10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCANHCAG
CAGSWMGCANHCAGTTTCCC
2832
3300



TTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 8 2 10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATNH
CAGSWMGCAAATNHCTTCCC
2833
3301



CTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-12 9 2 10
CCTGAAGATTTTGCAACTTATTACTGTCAGSWMGCAAATAG
CAGSWMGCAAATAGTYWCCC
2834
3302



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 1 0 10
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCC
2835
3303



TCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 10 0 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCC
2836
3304



TCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 11 0 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCC
2837
3305



CCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 12 0 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCC
2838
3306



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 13 0 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCC
2839
3307



CCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 14 0 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCC
2840
3308



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 15 0 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCC
2841
3309



CYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 2 0 10
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCC
2842
3310



TCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 3 0 10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCC
2843
3311



TCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 4 0 10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCC
2844
3312



CCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 5 0 10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCC
2845
3313



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 6 0 10
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCC
2846
3314



TCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 7 0 10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCC
2847
3315



TCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 8 0 10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCC
2848
3316



CCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 9 0 10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCC
2849
3317



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-33 1 1 10
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCC
2850
3318



TCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 10 1 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCC
2851
3319



TCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 11 1 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCC
2852
3320



CCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 12 1 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCC
2853
3321



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 13 1 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCC
2854
3322



CCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 14 1 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCC
2855
3323



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 15 1 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCC
2856
3324



CYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 2 1 10
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCC
2857
3325



TCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 3 1 10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCC
2858
3326



TCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 4 1 10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCC
2859
3327



CCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 5 1 10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCC
2860
3328



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 6 1 10
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCC
2861
3329



TCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 7 1 10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCC
2862
3330



TCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 8 1 10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCC
2863
3331



CCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 9 1 10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCC
2864
3332



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-33 1 2 10
CCTGAAGATATTGCAACATATTACTGTSWMSWMTACGATAA
SWMSWMTACGATAATCTCCC
2865
3333



TCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 10 2 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATCTCCC
2866
3334



TCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 11 2 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCCTCCC
2867
3335



CCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 12 2 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATAA
CAGCAGBHCGATAATYWCCC
2868
3336



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 13 2 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCCTCCC
2869
3337



CCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 14 2 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCAA
CAGCAGTACNHCAATYWCCC
2870
3338



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 15 2 10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACGATNH
CAGCAGTACGATNHCYWCCC
2871
3339



CYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 2 2 10
CCTGAAGATATTGCAACATATTACTGTSWMCAGBHCGATAA
SWMCAGBHCGATAATCTCCC
2872
3340



TCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 3 2 10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACNHCAA
SWMCAGTACNHCAATCTCCC
2873
3341



TCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 4 2 10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATNH
SWMCAGTACGATNHCCTCCC
2874
3342



CCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 5 2 10
CCTGAAGATATTGCAACATATTACTGTSWMCAGTACGATAA
SWMCAGTACGATAATYWCCC
2875
3343



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 6 2 10
CCTGAAGATATTGCAACATATTACTGTCAGSWMBHCGATAA
CAGSWMBHCGATAATCTCCC
2876
3344



TCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 7 2 10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACNHCAA
CAGSWMTACNHCAATCTCCC
2877
3345



TCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 8 2 10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATNH
CAGSWMTACGATNHCCTCCC
2878
3346



CCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-33 9 2 10
CCTGAAGATATTGCAACATATTACTGTCAGSWMTACGATAA
CAGSWMTACGATAATYWCCC
2879
3347



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 1 0 10
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCC
2880
3348



TACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 10 0 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCC
2881
3349



TACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 11 0 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCC
2882
3350



CACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 12 0 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCC
2883
3351



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 13 0 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCC
2884
3352



CACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 14 0 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCC
2885
3353



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 15 0 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCC
2886
3354



CBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 2 0 10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCC
2887
3355



TACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 3 0 10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCC
2888
3356



TACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 4 0 10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCC
2889
3357



CACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 5 0 10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCC
2890
3358



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 6 0 10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCC
2891
3359



TACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 7 0 10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCC
2892
3360



TACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 8 0 10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCC
2893
3361



CACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 9 0 10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCC
2894
3362



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK1-39 1 1 10
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCC
2895
3363



TACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 10 1 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCC
2896
3364



TACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 11 1 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCC
2897
3365



CACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 12 1 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCC
2898
3366



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 13 1 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCC
2899
3367



CACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 14 1 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCC
2900
3368



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 15 1 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCC
2901
3369



CBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 2 1 10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCC
2902
3370



TACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 3 1 10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCC
2903
3371



TACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 4 1 10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCC
2904
3372



CACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 5 1 10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCC
2905
3373



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 6 1 10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCC
2906
3374



TACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 7 1 10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCC
2907
3375



TACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 8 1 10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCC
2908
3376



CACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 9 1 10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCC
2909
3377



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK1-39 1 2 10
CCTGAAGATTTTGCAACTTACTACTGTSWMSWMAGCTACAG
SWMSWMAGCTACAGTACTCC
2910
3378



TACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 10 2 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTACTCC
2911
3379



TACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 11 2 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCACTCC
2912
3380



CACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 12 2 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACAG
CAGCAAVNATACAGTBHCCC
2913
3381



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 13 2 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCACTCC
2914
3382



CACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 14 2 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCAG
CAGCAAAGCBHCAGTBHCCC
2915
3383



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 15 2 10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCTACNH
CAGCAAAGCTACNHCBHCCC
2916
3384



CBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 2 2 10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAVNATACAG
SWMCAAVNATACAGTACTCC
2917
3385



TACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 3 2 10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCBHCAG
SWMCAAAGCBHCAGTACTCC
2918
3386



TACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 4 2 10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACNH
SWMCAAAGCTACNHCACTCC
2919
3387



CACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 5 2 10
CCTGAAGATTTTGCAACTTACTACTGTSWMCAAAGCTACAG
SWMCAAAGCTACAGTBHCCC
2920
3388



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 6 2 10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMVNATACAG
CAGSWMVNATACAGTACTCC
2921
3389



TACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 7 2 10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCBHCAG
CAGSWMAGCBHCAGTACTCC
2922
3390



TACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 8 2 10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACNH
CAGSWMAGCTACNHCACTCC
2923
3391



CACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK1-39 9 2 10
CCTGAAGATTTTGCAACTTACTACTGTCAGSWMAGCTACAG
CAGSWMAGCTACAGTBHCCC
2924
3392



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 1 0 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCC
2925
3393



GACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 10 0 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCC
2926
3394



GACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 11 0 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCC
2927
3395



MACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 12 0 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCC
2928
3396



GVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 13 0 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCC
2929
3397



MACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 14 0 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCC
2930
3398



GVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 15 0 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCC
2931
3399



MVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 2 0 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCC
2932
3400



GACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 3 0 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCC
2933
3401



GACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 4 0 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCC
2934
3402



MACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 5 0 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCC
2935
3403



GVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 6 0 10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCC
2936
3404



GACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 7 0 10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCC
2937
3405



GACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 8 0 10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCC
2938
3406



MACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 9 0 10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCC
2939
3407



GVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK2-28 1 1 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCC
2940
3408



GACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 10 1 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCC
2941
3409



GACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 11 1 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCC
2942
3410



MACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 12 1 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCC
2943
3411



GVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 13 1 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCC
2944
3412



MACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 14 1 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCC
2945
3413



GVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 15 1 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCC
2946
3414



MVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 2 1 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCC
2947
3415



GACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 3 1 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCC
2948
3416



GACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 4 1 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCC
2949
3417



MACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 5 1 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCC
2950
3418



GVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 6 1 10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCC
2951
3419



GACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 7 1 10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCC
2952
3420



GACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 8 1 10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCC
2953
3421



MACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 9 1 10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCC
2954
3422



GVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK2-28 1 2 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSSWMGCACTCCA
DTSSWMGCACTCCAGACTCC
2955
3423



GACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 10 2 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGACTCC
2956
3424



GACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 11 2 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMACTCC
2957
3425



MACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 12 2 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCCA
ATGCAGVNACTCCAGVBCCC
2958
3426



GVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 13 2 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMACTCC
2959
3427



MACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 14 2 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNACA
ATGCAGGCAMNACAGVBCCC
2960
3428



GVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 15 2 10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCACTCSR
ATGCAGGCACTCSRMVBCCC
2961
3429



MVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 2 2 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGVNACTCCA
DTSCAGVNACTCCAGACTCC
2962
3430



GACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 3 2 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCAMNACA
DTSCAGGCAMNACAGACTCC
2963
3431



GACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 4 2 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCSR
DTSCAGGCACTCSRMACTCC
2964
3432



MACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 5 2 10
GCTGAGGATGTTGGGGTTTATTACTGCDTSCAGGCACTCCA
DTSCAGGCACTCCAGVBCCC
2965
3433



GVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 6 2 10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMVNACTCCA
ATGSWMVNACTCCAGACTCC
2966
3434



GACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 7 2 10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCAMNACA
ATGSWMGCAMNACAGACTCC
2967
3435



GACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 8 2 10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCSR
ATGSWMGCACTCSRMACTCC
2968
3436



MACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK2-28 9 2 10
GCTGAGGATGTTGGGGTTTATTACTGCATGSWMGCACTCCA
ATGSWMGCACTCCAGVBCCC
2969
3437



GVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 1 0 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCC
2970
3438



TTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 10 0 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCC
2971
3439



TTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 11 0 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCC
2972
3440



CTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 12 0 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCC
2973
3441



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 13 0 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCC
2974
3442



CTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 14 0 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCC
2975
3443



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 15 0 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCC
2976
3444



CYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 2 0 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCC
2977
3445



TTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 3 0 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCC
2978
3446



TTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 4 0 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCC
2979
3447



CTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 5 0 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCC
2980
3448



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 6 0 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCC
2981
3449



TTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 7 0 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCC
2982
3450



TTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 8 0 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCC
2983
3451



CTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 9 0 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCC
2984
3452



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-11 1 1 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCC
2985
3453



TTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 10 1 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCC
2986
3454



TTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 11 1 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCC
2987
3455



CTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 12 1 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCC
2988
3456



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 13 1 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCC
2989
3457



CTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 14 1 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCC
2990
3458



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 15 1 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCC
2991
3459



CYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 2 1 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCC
2992
3460



TTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 3 1 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCC
2993
3461



TTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 4 1 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCC
2994
3462



CTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 5 1 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCC
2995
3463



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 6 1 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCC
2996
3464



TTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 7 1 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCC
2997
3465



TTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 8 1 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCC
2998
3466



CTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 9 1 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCC
2999
3467



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-11 1 2 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMSWMAGAAGTAA
SWMSWMAGAAGTAATTGGCC
3000
3468



TTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 10 2 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATTGGCC
3001
3469



TTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 11 2 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCTGGCC
3002
3470



CTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 12 2 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTAA
CAGCAGBHCAGTAATYWCCC
3003
3471



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 13 2 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCTGGCC
3004
3472



CTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 14 2 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCAA
CAGCAGAGANHCAATYWCCC
3005
3473



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 15 2 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGAAGTNH
CAGCAGAGAAGTNHCYWCCC
3006
3474



CYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 2 2 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAGTAA
SWMCAGBHCAGTAATTGGCC
3007
3475



TTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 3 2 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGANHCAA
SWMCAGAGANHCAATTGGCC
3008
3476



TTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 4 2 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTNH
SWMCAGAGAAGTNHCTGGCC
3009
3477



CTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 5 2 10
CCTGAAGATTTTGCAGTTTATTACTGTSWMCAGAGAAGTAA
SWMCAGAGAAGTAATYWCCC
3010
3478



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 6 2 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAGTAA
CAGSWMBHCAGTAATTGGCC
3011
3479



TTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 7 2 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGANHCAA
CAGSWMAGANHCAATTGGCC
3012
3480



TTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 8 2 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTNH
CAGSWMAGAAGTNHCTGGCC
3013
3481



CTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-11 9 2 10
CCTGAAGATTTTGCAGTTTATTACTGTCAGSWMAGAAGTAA
CAGSWMAGAAGTAATYWCCC
3014
3482



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 1 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCC
3015
3483



TAATTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 10 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCC
3016
3439



CAATTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 11 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCC
3017
3484



TNHCTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 12 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCC
3018
3485



TAATYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 13 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCC
3019
3486



CNHCTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 14 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCC
3020
3308



CAATYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 15 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCC
3021
3487



TNHCYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 2 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCC
3022
3488



TAATTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 3 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCC
3023
3489



CAATTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 4 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCC
3024
3490



TNHCTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 5 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCC
3025
3491



TAATYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 6 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCC
3026
3492



TAATTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 7 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCC
3027
3493



CAATTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 8 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCC
3028
3494



TNHCTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 9 0 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCC
3029
3495



TAATYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-15 1 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCC
3030
3496



TAATTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 10 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCC
3031
3454



CAATTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 11 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCC
3032
3497



TNHCTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 12 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCC
3033
3498



TAATYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 13 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCC
3034
3499



CNHCTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 14 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCC
3035
3323



CAATYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 15 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCC
3036
3500



TNHCYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 2 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCC
3037
3501



TAATTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 3 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCC
3038
3502



CAATTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 4 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCC
3039
3503



TNHCTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 5 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCC
3040
3504



TAATYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 6 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCC
3041
3505



TAATTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 7 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCC
3042
3506



CAATTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 8 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCC
3043
3507



TNHCTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 9 1 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCC
3044
3508



TAATYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-15 1 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMSWMTACAA
SWMSWMTACAATAATTGGCC
3045
3509



TAATTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 10 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATTGGCC
3046
3469



CAATTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 11 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCTGGCC
3047
3510



TNHCTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 12 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATAATYWCCC
3048
3511



TAATYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 13 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCTGGCC
3049
3512



CNHCTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 14 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCAATYWCCC
3050
3338



CAATYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 15 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACAA
CAGCAGTACAATNHCYWCCC
3051
3513



TNHCYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 2 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGBHCAA
SWMCAGBHCAATAATTGGCC
3052
3514



TAATTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 3 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACNH
SWMCAGTACNHCAATTGGCC
3053
3515



CAATTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 4 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATNHCTGGCC
3054
3516



TNHCTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 5 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTSWMCAGTACAA
SWMCAGTACAATAATYWCCC
3055
3517



TAATYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 6 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMBHCAA
CAGSWMBHCAATAATTGGCC
3056
3518



TAATTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 7 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACNH
CAGSWMTACNHCAATTGGCC
3057
3519



CAATTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 8 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATNHCTGGCC
3058
3520



TNHCTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-15 9 2 10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGSWMTACAA
CAGSWMTACAATAATYWCCC
3059
3521



TAATYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 1 0 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCC
3060
3522



TAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 10 0 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCC
3061
3523



TAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 11 0 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCC
3062
3524



CAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 12 0 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCC
3063
3525



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 13 0 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCC
3064
3526



CAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 14 0 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCC
3065
3527



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 15 0 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCC
3066
3528



CBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 2 0 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCC
3067
3529



TAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 3 0 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCC
3068
3530



TAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 4 0 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCC
3069
3531



CAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 5 0 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCC
3070
3532



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 6 0 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCC
3071
3533



TAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 7 0 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCC
3072
3534



TAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 8 0 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCC
3073
3535



CAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 9 0 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCC
3074
3536



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TCCTTWCACT







VK3-20 1 1 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCC
3075
3537



TAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 10 1 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCC
3076
3538



TAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 11 1 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCC
3077
3539



CAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 12 1 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCC
3078
3540



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 13 1 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCC
3079
3541



CAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 14 1 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCC
3080
3542



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 15 1 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCC
3081
3543



CBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 2 1 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCC
3082
3544



TAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 3 1 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCC
3083
3545



TAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 4 1 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCC
3084
3546



CAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 5 1 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCC
3085
3547



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 6 1 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCC
3086
3548



TAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 7 1 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCC
3087
3549



TAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 8 1 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCC
3088
3550



CAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 9 1 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCC
3089
3551



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TCCTMTCACT







VK3-20 1 2 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMSWMTACGGAAG
SWMSWMTACGGAAGTAGTCC
3090
3552



TAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 10 2 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTAGTCC
3091
3553



TAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 11 2 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCAGTCC
3092
3554



CAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 12 2 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAAG
CAGCAGBHCGGAAGTBHCCC
3093
3555



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 13 2 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCAGTCC
3094
3556



CAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 14 2 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCAG
CAGCAGTACBHCAGTBHCCC
3095
3557



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 15 2 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACGGAVN
CAGCAGTACGGAVNCBHCCC
3096
3558



CBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 2 2 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGBHCGGAAG
SWMCAGBHCGGAAGTAGTCC
3097
3559



TAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 3 2 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACBHCAG
SWMCAGTACBHCAGTAGTCC
3098
3560



TAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 4 2 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAVN
SWMCAGTACGGAVNCAGTCC
3099
3561



CAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 5 2 10
CCTGAAGATTTTGCAGTGTATTACTGTSWMCAGTACGGAAG
SWMCAGTACGGAAGTBHCCC
3100
3562



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 6 2 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMBHCGGAAG
CAGSWMBHCGGAAGTAGTCC
3101
3563



TAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 7 2 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACBHCAG
CAGSWMTACBHCAGTAGTCC
3102
3564



TAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 8 2 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAVN
CAGSWMTACGGAVNCAGTCC
3103
3565



CAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT







VK3-20 9 2 10
CCTGAAGATTTTGCAGTGTATTACTGTCAGSWMTACGGAAG
CAGSWMTACGGAAGTBHCCC
3104
3566



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TCCTWGGACT












Jumping Trimer











VK1-05_t1_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMB
CAGCAGBHCVRMMBCTACYCTCC
3105
3567



CTACYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-05_t1_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMB
CAGCAGBHCVRMMBCTACYCTCC
3106
3568



CTACYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-05_t1_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMMB
CAGCAGBHCVRMMBCTACYCTCC
3107
3569



CTACYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-05_t2_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMBCYWCYCTCC
3108
3570



CYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-05_t2_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMBCYWCYCTCC
3109
3571



CYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-05_t2_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCAATMB
CAGCAGBHCAATMBCYWCYCTCC
3110
3572



CYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-05_t3_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTYWCYCTCC
3111
3573



TYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-05_t3_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTYWCYCTCC
3112
3574



TYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-05_t3_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGBHCVRMAG
CAGCAGBHCVRMAGTYWCYCTCC
3113
3575



TYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-05_t4_0_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCYWCYCTCC
3114
3576



CYWCYCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-05_t4_1_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCYWCYCTCC
3115
3577



CYWCYCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-05_t4_2_10
CCTGATGATTTTGCAACTTATTACTGCCAGCAGTACVRMMB
CAGCAGTACVRMMBCYWCYCTCC
3116
3578



CYWCYCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-12_t1_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNH
CAGCAGRNANHCNHCTTCCCTCC
3117
3579



CTTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-12_t1_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNH
CAGCAGRNANHCNHCTTCCCTCC
3118
3580



CTTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-12_t1_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCNH
CAGCAGRNANHCNHCTTCCCTCC
3119
3581



CTTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-12_t2_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTYWCCCTCC
3120
3582



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-12_t2_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCAG
CAGCAGRNANHCAGTYWCCCTCC
3121
3583



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-12_t2_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNANHCA
CAGCAGRNANHCAGTYWCCCTCC
3122
3584



GTYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-12_t3_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCYWCCCTCC
3123
3585



CYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-12_t3_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCYWCCCTCC
3124
3586



CYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-12_t3_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGRNAAATNH
CAGCAGRNAAATNHCYWCCCTCC
3125
3587



CYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-12_t4_0_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCYWCCCTCC
3126
3588



CYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-12_t4_1_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCYWCCCTCC
3127
3589



CYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-12_t4_2_10
CCTGAAGATTTTGCAACTTATTACTGTCAGCAGGCANHCNH
CAGCAGGCANHCNHCYWCCCTCC
3128
3590



CYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-33_t1_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNH
CAGCAGBHCNHCNHCCTCCCTCC
3129
3591



CCTCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-33_t1_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNH
CAGCAGBHCNHCNHCCTCCCTCC
3130
3592



CCTCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-33_t1_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCNH
CAGCAGBHCNHCNHCCTCCCTCC
3131
3593



CCTCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-33_t2_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATYWCCCTCC
3132
3594



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-33_t2_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATYWCCCTCC
3133
3595



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-33_t2_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATYWCCCTCC
3134
3596



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-33_t3_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCYWCCCTCC
3135
3597



CYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-33_t3_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCYWCCCTCC
3136
3598



CYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-33_t3_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGBHCGATNH
CAGCAGBHCGATNHCYWCCCTCC
3137
3599



CYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-33_t4_0_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCYWCCCTCC
3138
3600



CYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-33_t4_1_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCYWCCCTCC
3139
3601



CYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-33_t4_2_10
CCTGAAGATATTGCAACATATTACTGTCAGCAGTACNHCNH
CAGCAGTACNHCNHCYWCCCTCC
3140
3602



CYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-39_t1_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNH
CAGCAAVNABHCNHCACTCCTCC
3141
3603



CACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-39_t1_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNH
CAGCAAVNABHCNHCACTCCTCC
3142
3604



CACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-39_t1_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCNH
CAGCAAVNABHCNHCACTCCTCC
3143
3605



CACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-39_t2_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTBHCCCTCC
3144
3606



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-39_t2_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTBHCCCTCC
3145
3607



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-39_t2_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNABHCAG
CAGCAAVNABHCAGTBHCCCTCC
3146
3608



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-39_t3_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCBHCCCTCC
3147
3609



CBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-39_t3_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCBHCCCTCC
3148
3610



CBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-39_t3_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAVNATACNH
CAGCAAVNATACNHCBHCCCTCC
3149
3611



CBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK1-39_t4_0_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCBHCCCTCC
3150
3612



CBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK1-39_t4_1_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCBHCCCTCC
3151
3613



CBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK1-39_t4_2_10
CCTGAAGATTTTGCAACTTACTACTGTCAGCAAAGCBHCNH
CAGCAAAGCBHCNHCBHCCCTCC
3152
3614



CBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK2-28_t1_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASR
ATGCAGVNAMNASRMACTCCTCC
3153
3615



MACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK2-28_t1_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASR
ATGCAGVNAMNASRMACTCCTCC
3154
3616



MACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK2-28_t1_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNASR
ATGCAGVNAMNASRMACTCCTCC
3155
3617



MACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK2-28_t2_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGVBCCCTCC
3156
3618



GVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK2-28_t2_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGVBCCCTCC
3157
3619



GVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK2-28_t2_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNAMNACA
ATGCAGVNAMNACAGVBCCCTCC
3158
3620



GVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK2-28_t3_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMVBCCCTCC
3159
3621



MVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK2-28_t3_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMVBCCCTCC
3160
3622



MVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK2-28_t3_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGVNACTCSR
ATGCAGVNACTCSRMVBCCCTCC
3161
3623



MVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK2-28_t4_0_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMVBCCCTCC
3162
3624



MVBCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK2-28_t4_1_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMVBCCCTCC
3163
3625



MVBCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK2-28_t4_2_10
GCTGAGGATGTTGGGGTTTATTACTGCATGCAGGCAMNASR
ATGCAGGCAMNASRMVBCCCTCC
3164
3626



MVBCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK3-11_t1_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNH
CAGCAGBHCNHCNHCTGGCCTCC
3165
3627



CTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK3-11_t1_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNH
CAGCAGBHCNHCNHCTGGCCTCC
3166
3628



CTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK3-11_t1_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCNH
CAGCAGBHCNHCNHCTGGCCTCC
3167
3629



CTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK3-11_t2_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATYWCCCTCC
3168
3594



TYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK3-11_t2_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATYWCCCTCC
3169
3595



TYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK3-11_t2_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNHCAA
CAGCAGBHCNHCAATYWCCCTCC
3170
3596



TYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK3-11_t3_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCYWCCCTCC
3171
3630



CYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK3-11_t3_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCYWCCCTCC
3172
3631



CYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK3-11_t3_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAGTNH
CAGCAGBHCAGTNHCYWCCCTCC
3173
3632



CYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK3-11_t4_0_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCYWCCCTCC
3174
3633



CYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK3-11_t4_1_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCYWCCCTCC
3175
3634



CYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK3-11_t4_2_10
CCTGAAGATTTTGCAGTTTATTACTGTCAGCAGAGANHCNH
CAGCAGAGANHCNHCYWCCCTCC
3176
3635



CYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK3-15_t1_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCNHCTGGCCTCC
3177
3627



CNHCTGGCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK3-15_t1_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCNHCTGGCCTCC
3178
3628



CNHCTGGCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK3-15_t1_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCNHCTGGCCTCC
3179
3629



CNHCTGGCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK3-15_t2_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATYWCCCTCC
3180
3594



CAATYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK3-15_t2_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATYWCCCTCC
3181
3595



CAATYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK3-15_t2_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCNH
CAGCAGBHCNHCAATYWCCCTCC
3182
3596



CAATYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK3-15_t3_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCYWCCCTCC
3183
3636



TNHCYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK3-15_t3_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCYWCCCTCC
3184
3637



TNHCYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK3-15_t3_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGBHCAA
CAGCAGBHCAATNHCYWCCCTCC
3185
3638



TNHCYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK3-15_t4_0_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCYWCCCTCC
3186
3600



CNHCYWCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK3-15_t4_1_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCYWCCCTCC
3187
3601



CNHCYWCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK3-15_t4_2_10
CAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTACNH
CAGCAGTACNHCNHCYWCCCTCC
3188
3602



CNHCYWCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK3-20_t1_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVN
CAGCAGBHCBHCVNCAGTCCTCC
3189
3639



CAGTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK3-20_t1_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVN
CAGCAGBHCBHCVNCAGTCCTCC
3190
3640



CAGTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK3-20_t1_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCVN
CAGCAGBHCBHCVNCAGTCCTCC
3191
3641



CAGTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK3-20_t2_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTBHCCCTCC
3192
3642



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK3-20_t2_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTBHCCCTCC
3193
3643



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK3-20_t2_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTBHCCCTCC
3194
3644



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK3-20_t3_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCBHCCCTCC
3195
3645



CBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK3-20_t3_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCBHCCCTCC
3196
3646



CBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK3-20_t3_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGBHCGGAVN
CAGCAGBHCGGAVNCBHCCCTCC
3197
3647



CBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK3-20_t4_0_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCBHCCCTCC
3198
3648



CBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK3-20_t4_1_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCBHCCCTCC
3199
3649



CBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK3-20_t4_2_10
CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTACBHCVN
CAGCAGTACBHCVNCBHCCCTCC
3200
3650



CBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK4-01_t1_0_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNH
CAGCAGBHCBHCNHCACTCCTCC
3201
3651



CACTCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK4-01_t1_1_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNH
CAGCAGBHCBHCNHCACTCCTCC
3202
3652



CACTCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK4-01_t1_2_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCNH
CAGCAGBHCBHCNHCACTCCTCC
3203
3653



CACTCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK4-01_t2_0_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTBHCCCTCC
3204
3642



TBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK4-01_t2_1_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTBHCCCTCC
3205
3643



TBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK4-01_t2_2_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCBHCAG
CAGCAGBHCBHCAGTBHCCCTCC
3206
3644



TBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK4-01_t3_0_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNH
CAGCAGBHCTACNHCBHCCCTCC
3207
3654



CBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK4-01_t3_1_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNH
CAGCAGBHCTACNHCBHCCCTCC
3208
3655



CBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK4-01_t3_2_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGBHCTACNH
CAGCAGBHCTACNHCBHCCCTCC
3209
3656



CBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT







VK4-01_t4_0_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNH
CAGCAGTACBHCNHCBHCCCTCC
3210
3657



CBHCCCTCCTTWCACTTTTGGCGGAGGGACCAAG
TTWCACT







VK4-01_t4_1_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNH
CAGCAGTACBHCNHCBHCCCTCC
3211
3658



CBHCCCTCCTMTCACTTTTGGCGGAGGGACCAAG
TMTCACT







VK4-01_t4_2_10
GCTGAAGATGTGGCAGTTTATTACTGTCAGCAGTACBHCNH
CAGCAGTACBHCNHCBHCCCTCC
3212
3659



CBHCCCTCCTWGGACTTTTGGCGGAGGGACCAAG
TWGGACT
















TABLE 8





Number of unique CDRL3 amino acid sequences in exemplary


jumping dimer (“JD”) and jumping trimer (“JT”)


VK libraries and comparison to VK-v1.0.



















L = 8 aa
L = 9 aa
L = 10 aa







Jumping Dimer













Germline
JD
VK-v1.0
JD
VK-v1.0
JD
VK-v1.0





VK1-05
3549
3072
7098
6144
6084
13824


VK1-12
5250
2016
5250
2016
4500
5184


VK1-33
5502
4032
5502
4032
4716
10368


VK1-39
7224
3024
7224
3024
6192
7776


VK2-28
4396
2016
4396
2016
3768
5184


VK3-11
6048
2352
6048
2016
5184
6048


VK3-15
5789
2016
5789
2352
4962
5184


VK3-20
6405
2016
6671
2016
5490
5184


VK4-01
NPE*
2016
6405
2592
NPE*
5184


Total
4.42*104
2.26*104
5.44*104
2.62*104
4.09*104
6.39*104










Jumping Trimer













Germline
JT
VK-v1.0
JT
VK-v1.0
JT
VK-v1.0





VK1-05
7872
3072
13776
6144
11808
13824


VK1-12
14469
2016
14469
2016
12402
5184


VK1-33
15960
4032
15960
4032
13680
10368


VK1-39
28980
3024
28980
3024
24840
7776


VK2-28
12306
2016
12306
2016
10548
5184


VK3-11
18900
2352
18900
2016
16200
6048


VK3-15
18256
2016
18256
2352
15648
5184


VK3-20
23688
2016
23688
2016
20304
5184


VK4-01
23688
2016
23688
2592
20304
5184


Total
1.64*105
2.26*104
1.70*105
2.62*104
1.46*105
6.39*104





*Not Presently Exemplified. However, given the teachings of the specification, a person of ordinary skill in the art could readily produce a library of such lengths, and these lengths are included within the scope of the invention.













TABLE 9







Matching output for exemplary CDRH3 sequences from the HPS and TSP1. Amino acid


mismatches in the theoretical design are indicated in bold.

















Test
CDRH3 Sequence
SEQ ID
Mis-

SEQ ID

SEQ ID


SEQ ID


Case
from HPS
NO
matches
TN1
NO
DH
NO
N2
H3-JH
NO





1
RTAHHFDY
3660
0
R

TA

H
HFDY
4582





2.1
VGIVGAASY
3661
0
V

GIVGA
3751
AS
Y






2.2
VGIVGAASY
3661
0
VG

IVGA
3755
AS
Y






3.1
DRYSGHDLGY
3662
1
DR

YSGYD
4389
LG
Y






4.1
GIAAADSNWLDP
3663
1


GIAAA
4448
D
SNWFDP
4600





4.2
GIAAADSNWLDP
3663
1


IAAA
4452
D
SNWFDP
4600





5.1
ERTINWGWGGVYAFDI
3664
3
EGTG
3707
NWG


GGV

YAFDI
4540





5.2
ERTINWGWGGVYAFDI
3664
3
EGTG
3707
NWG

WGT
YAFDI
4540





5.3
ERTINWGWGGVYAFDI
3664
3
ERGG
3719
NWG


GGV

YAFDI
4540





5.4
ERTINWGWGGVYAFDI
3664
3
ERGG
3719
NWG

WGT
YAFDI
4540
















TABLE 10







Theoretical segment pool of 212 TN1 sequences


contained in Theoretical Segment Pool 1 (TSP1).











TN1

TN1




Segment
Amino Acid
Segment
Amino Acid
SEQ ID


Name
Sequence
Name
Sequence
NO





P000

P107
PT
n/a





P001
E
P108
EPT
n/a





P002
D
P109
DPT
n/a





P003
G
P110
GPT
n/a





P004
EG
P111
PV
n/a





P005
DG
P112
EPV
n/a





P006
GG
P113
DPV
n/a





P007
R
P114
GPV
n/a





P008
ER
P115
RP
n/a





P009
DR
P116
ERP
n/a





P010
GR
P117
DRP
n/a





P011
S
P118
GRP
n/a





P012
ES
P119
SP
n/a





P013
DS
P120
ESP
n/a





P014
GS
P121
DSP
n/a





P015
P
P122
GSP
n/a





P016
EP
P123
LP
n/a





P017
DP
P124
ELP
n/a





P018
GP
P125
DLP
n/a





P019
L
P126
GLP
n/a





P020
EL
P127
AP
n/a





P021
DL
P128
EAP
n/a





P022
GL
P129
DAP
n/a





P023
A
P130
GAP
n/a





P024
EA
P131
TP
n/a





P025
DA
P132
ETP
n/a





P026
GA
P133
DTP
n/a





P027
T
P134
GTP
n/a





P028
ET
P135
VP
n/a





P029
DT
P136
EVP
n/a





P030
GT
P137
DVP
n/a





P031
V
P138
GVP
n/a





P032
EV
P139
AGG
n/a





P033
DV
P140
EAGG
3665





P034
GV
P141
DAGG
3666





P035
EGG
P142
GAGG
3667





P036
DGG
P143
EGAG
3668





P037
GGG
P144
DGAG
3669





P038
EGR
P145
GGAG
3670





P039
DGR
P146
EGGA
3671





P040
GGR
P147
DGGA
3672





P041
EGS
P148
GGGA
3673





P042
DGS
P149
EGGG
3674





P043
GGS
P150
DGGG
3675





P044
EGP
P151
GGGG
3676





P045
DGP
P152
EGGL
3677





P046
GGP
P153
DGGL
3678





P047
EGL
P154
GGGL
3679





P048
DGL
P155
EGGP
3680





P049
GGL
P156
DGGP
3681





P050
EGA
P157
GGGP
3682





P051
DGA
P158
EGGR
3683





P052
GGA
P159
DGGR
3684





P053
EGT
P160
GGGR
3685





P054
DGT
P161
EGGS
3686





P055
GGT
P162
DGGS
3687





P056
EGV
P163
GGGS
3688





P057
DGV
P164
EGGT
3689





P058
GGV
P165
DGGT
3690





P059
RG
P166
GGGT
3691





P060
ERG
P167
EGGV
3692





P061
DRG
P168
DGGV
3693





P062
GRG
P169
GGGV
3694





P063
SG
P170
EGLG
3695





P064
ESG
P171
DGLG
3696





P065
DSG
P172
GGLG
3697





P066
GSG
P173
EGPG
3698





P067
PG
P174
DGPG
3699





P068
EPG
P175
GGPG
3700





P069
DPG
P176
EGRG
3701





P070
GPG
P177
DGRG
3702





P071
LG
P178
GGRG
3703





P072
ELG
P179
EGSG
3704





P073
DLG
P180
DGSG
3705





P074
GLG
P181
GGSG
3706





P075
AG
P182
EGTG
3707





P076
EAG
P183
DGTG
3708





P077
DAG
P184
GGTG
3709





P078
GAG
P185
EGVG
3710





P079
TG
P186
DGVG
3711





P080
ETG
P187
GGVG
3712





P081
DTG
P188
LGG
n/a





P082
GTG
P189
ELGG
3713





P083
VG
P190
DLGG
3714





P084
EVG
P191
GLGG
3715





P085
DVG
P192
PGG
n/a





P086
GVG
P193
EPGG
3716





P087
PR
P194
DPGG
3717





P088
EPR
P195
GPGG
3718





P089
DPR
P196
RGG
n/a





P090
GPR
P197
ERGG
3719





P091
PS
P198
DRGG
3720





P092
EPS
P199
GRGG
3721





P093
DPS
P200
SGG
n/a





P094
GPS
P201
ESGG
3722





P095
PP
P202
DSGG
3723





P096
EPP
P203
GSGG
3724





P097
DPP
P204
TGG
n/a





P098
GPP
P205
ETGG
3725





P099
PL
P206
DTGG
3726





P100
EPL
P207
GTGG
3727





P101
DPL
P208
VGG
n/a





P102
GPL
P209
EVGG
3728





P103
PA
P210
DVGG
3729





P104
EPA
P211
GVGG
3730





P105
DPA








P106
GPA
















TABLE 11







1K DH Theoretical Segment Pool sequences (1,111 DH segments).












DH Segment
Amino Acid
SEQ ID
DH Segment
Amino Acid
SEQ ID


Name
Sequence
NO
Name
Sequence
NO





DHUNIV 001
GTTGTT
3731
DHUNIV 557
YDYV
4107





DHUNIV 002
GTTGT
3732
DHUNIV 558
DYVW
4108





DHUNIV 003
TTGTT
3733
DHUNIV 559
YVWG
4109





DHUNIV 004
GTTG
3734
DHUNIV 560
VWGS
4110





DHUNIV 005
TTGT
3735
DHUNIV 561
WGSY
4111





DHUNIV 006
TGTT
3736
DHUNIV 562
GSYA
4112





DHUNIV 007
GTT
n/a
DHUNIV 563
SYAY
4113





DHUNIV 008
TTG
n/a
DHUNIV 564
YAYT
4114





DHUNIV 009
TGT
n/a
DHUNIV 565
YYD
n/a





DHUNIV 010
GT
n/a
DHUNIV 566
YDY
n/a





DHUNIV 011
TT
n/a
DHUNIV 567
DYV
n/a





DHUNIV 012
TG
n/a
DHUNIV 568
YVW
n/a





DHUNIV 013
VQLER
3737
DHUNIV 569
VWG
n/a





DHUNIV 014
VQLE
3738
DHUNIV 570
WGS
n/a





DHUNIV 015
QLER
3739
DHUNIV 571
SYA
n/a





DHUNIV 016
VQL
n/a
DHUNIV 572
YAY
n/a





DHUNIV 017
QLE
n/a
DHUNIV 573
AYT
n/a





DHUNIV 018
LER
n/a
DHUNIV 574
YD
n/a





DHUNIV 019
VQ
n/a
DHUNIV 575
DY
n/a





DHUNIV 020
QL
n/a
DHUNIV 576
YV
n/a





DHUNIV 021
LE
n/a
DHUNIV 577
VW
n/a





DHUNIV 022
ER
n/a
DHUNIV 578
WG
n/a





DHUNIV 023
YNWND
3740
DHUNIV 579
IMITFGGVMLIP
4115





DHUNIV 024
YNWN
3741
DHUNIV 580
IMITFGGVMLI
4116





DHUNIV 025
NWND
3742
DHUNIV 581
MITFGGVMLIP
4117





DHUNIV 026
YNW
n/a
DHUNIV 582
IMITFGGVML
4118





DHUNIV 027
NWN
n/a
DHUNIV 583
MITFGGVMLI
4119





DHUNIV 028
WND
n/a
DHUNIV 584
ITFGGVMLIP
4120





DHUNIV 029
YN
n/a
DHUNIV 585
IMITFGGVM
4121





DHUNIV 030
NW
n/a
DHUNIV 586
MITFGGVML
4122





DHUNIV 031
WN
n/a
DHUNIV 587
ITFGGVMLI
4123





DHUNIV 032
ND
n/a
DHUNIV 588
TFGGVMLIP
4124





DHUNIV 033
GITGTT
3743
DHUNIV 589
IMITFGGV
4125





DHUNIV 034
GITGT
3744
DHUNIV 590
MITFGGVM
4126





DHUNIV 035
ITGTT
3745
DHUNIV 591
ITFGGVML
4127





DHUNIV 036
GITG
3746
DHUNIV 592
TFGGVMLI
4128





DHUNIV 037
ITGT
3747
DHUNIV 593
FGGVMLIP
4129





DHUNIV 038
GIT
n/a
DHUNIV 594
IMITFGG
4130





DHUNIV 039
ITG
n/a
DHUNIV 595
MITFGGV
4131





DHUNIV 040
GI
n/a
DHUNIV 596
ITFGGVM
4132





DHUNIV 041
IT
n/a
DHUNIV 597
TFGGVML
4133





DHUNIV 042
GIVGATT
3748
DHUNIV 598
FGGVMLI
4134





DHUNIV 043
GIVGAT
3749
DHUNIV 599
GGVMLIP
4135





DHUNIV 044
IVGATT
3750
DHUNIV 600
IMITFG
4136





DHUNIV 045
GIVGA
3751
DHUNIV 601
MITFGG
4137





DHUNIV 046
IVGAT
3752
DHUNIV 602
ITFGGV
4138





DHUNIV 047
VGATT
3753
DHUNIV 603
TFGGVM
4139





DHUNIV 048
GIVG
3754
DHUNIV 604
FGGVML
4140





DHUNIV 049
IVGA
3755
DHUNIV 605
GGVMLI
4141





DHUNIV 050
VGAT
3756
DHUNIV 606
GVMLIP
4142





DHUNIV 051
GATT
3757
DHUNIV 607
IMITF
4143





DHUNIV 052
GIV
n/a
DHUNIV 608
MITFG
4144





DHUNIV 053
IVG
n/a
DHUNIV 609
ITFGG
4145





DHUNIV 054
VGA
n/a
DHUNIV 610
TFGGV
4146





DHUNIV 055
GAT
n/a
DHUNIV 611
FGGVM
4147





DHUNIV 056
ATT
n/a
DHUNIV 612
GGVML
4148





DHUNIV 057
IV
n/a
DHUNIV 613
GVMLI
4149





DHUNIV 058
VG
n/a
DHUNIV 614
VMLIP
4150





DHUNIV 059
GA
n/a
DHUNIV 615
IMIT
4151





DHUNIV 060
AT
n/a
DHUNIV 616
MITF
4152





DHUNIV 061
WELL
3758
DHUNIV 617
ITFG
4153





DHUNIV 062
WEL
n/a
DHUNIV 618
TFGG
4154





DHUNIV 063
ELL
n/a
DHUNIV 619
FGGV
4155





DHUNIV 064
WE
n/a
DHUNIV 620
GGVM
4156





DHUNIV 065
EL
n/a
DHUNIV 621
GVML
4157





DHUNIV 066
LL
n/a
DHUNIV 622
VMLI
4158





DHUNIV 067
YSGSYY
3759
DHUNIV 623
MLIP
4159





DHUNIV 068
YSGSY
3760
DHUNIV 624
IMI
n/a





DHUNIV 069
SGSYY
3761
DHUNIV 625
MIT
n/a





DHUNIV 070
YSGS
3762
DHUNIV 626
ITF
n/a





DHUNIV 071
SGSY
3763
DHUNIV 627
TFG
n/a





DHUNIV 072
GSYY
3764
DHUNIV 628
FGG
n/a





DHUNIV 073
YSG
n/a
DHUNIV 629
GGV
n/a





DHUNIV 074
SGS
n/a
DHUNIV 630
GVM
n/a





DHUNIV 075
GSY
n/a
DHUNIV 631
VML
n/a





DHUNIV 076
SYY
n/a
DHUNIV 632
MLI
n/a





DHUNIV 077
YS
n/a
DHUNIV 633
LIP
n/a





DHUNIV 078
SG
n/a
DHUNIV 634
IM
n/a





DHUNIV 079
GS
n/a
DHUNIV 635
MI
n/a





DHUNIV 080
SY
n/a
DHUNIV 636
TF
n/a





DHUNIV 081
YY
n/a
DHUNIV 637
VM
n/a





DHUNIV 082
LEL
n/a
DHUNIV 638
LI
n/a





DHUNIV 083
YNWNY
3765
DHUNIV 639
WLLL
4160





DHUNIV 084
NWNY
3766
DHUNIV 640
WLL
n/a





DHUNIV 085
WNY
n/a
DHUNIV 641
WL
n/a





DHUNIV 086
NY
n/a
DHUNIV 642
YYYDSSGYYY
4161





DHUNIV 087
RIL
n/a
DHUNIV 643
YYYDSSGYY
4162





DHUNIV 088
LLL
n/a
DHUNIV 644
YYDSSGYYY
4163





DHUNIV 089
RI
n/a
DHUNIV 645
YYYDSSGY
4164





DHUNIV 090
IL
n/a
DHUNIV 646
YYDSSGYY
4165





DHUNIV 091
WW
n/a
DHUNIV 647
YDSSGYYY
4166





DHUNIV 092
GYCSGGSCYS
3767
DHUNIV 648
YYYDSSG
4167





DHUNIV 093
GYCSGGSCY
3768
DHUNIV 649
YYDSSGY
4168





DHUNIV 094
YCSGGSCYS
3769
DHUNIV 650
YDSSGYY
4169





DHUNIV 095
GYCSGGSC
3770
DHUNIV 651
DSSGYYY
4170





DHUNIV 096
YCSGGSCY
3771
DHUNIV 652
YYYDSS
4171





DHUNIV 097
CSGGSCYS
3772
DHUNIV 653
YYDSSG
4172





DHUNIV 098
YCSGGSC
3773
DHUNIV 654
YDSSGY
4173





DHUNIV 099
CSGGSCY
3774
DHUNIV 655
DSSGYY
4174





DHUNIV 100
CSGGSC
3775
DHUNIV 656
SSGYYY
4175





DHUNIV 101
SGGS
3776
DHUNIV 657
YYYDS
4176





DHUNIV 102
SGG
n/a
DHUNIV 658
YYDSS
4177





DHUNIV 103
GGS
n/a
DHUNIV 659
YDSSG
4178





DHUNIV 104
GY
n/a
DHUNIV 660
DSSGY
4179





DHUNIV 105
GG
n/a
DHUNIV 661
SSGYY
4180





DHUNIV 106
DIVVVVAATP
3777
DHUNIV 662
SGYYY
4181





DHUNIV 107
DIVVVVAAT
3778
DHUNIV 663
YYYD
4182





DHUNIV 108
IVVVVAATP
3779
DHUNIV 664
YYDS
4183





DHUNIV 109
DIVVVVAA
3780
DHUNIV 665
YDSS
4184





DHUNIV 110
IVVVVAAT
3781
DHUNIV 666
DSSG
4185





DHUNIV 111
VVVVAATP
3782
DHUNIV 667
SSGY
4186





DHUNIV 112
DIVVVVA
3783
DHUNIV 668
SGYY
4187





DHUNIV 113
IVVVVAA
3784
DHUNIV 669
GYYY
4188





DHUNIV 114
VVVVAAT
3785
DHUNIV 670
YDS
n/a





DHUNIV 115
VVVAATP
3786
DHUNIV 671
DSS
n/a





DHUNIV 116
DIVVVV
3787
DHUNIV 672
SSG
n/a





DHUNIV 117
IVVVVA
3788
DHUNIV 673
SGY
n/a





DHUNIV 118
VVVVAA
3789
DHUNIV 674
GYY
n/a





DHUNIV 119
VVVAAT
3790
DHUNIV 675
DS
n/a





DHUNIV 120
VVAATP
3791
DHUNIV 676
ITMIVVVITT
4189





DHUNIV 121
DIVVV
3792
DHUNIV 677
ITMIVVVIT
4190





DHUNIV 122
IVVVV
3793
DHUNIV 678
TMIVVVITT
4191





DHUNIV 123
VVVVA
3794
DHUNIV 679
ITMIVVVI
4192





DHUNIV 124
VVVAA
3795
DHUNIV 680
TMIVVVIT
4193





DHUNIV 125
VVAAT
3796
DHUNIV 681
MIVVVITT
4194





DHUNIV 126
VAATP
3797
DHUNIV 682
ITMIVVV
4195





DHUNIV 127
DIVV
3798
DHUNIV 683
TMIVVVI
4196





DHUNIV 128
IVVV
3799
DHUNIV 684
MIVVVIT
4197





DHUNIV 129
VVVV
3800
DHUNIV 685
IVVVITT
4198





DHUNIV 130
VVVA
3801
DHUNIV 686
ITMIVV
4199





DHUNIV 131
VVAA
3802
DHUNIV 687
TMIVVV
4200





DHUNIV 132
VAAT
3803
DHUNIV 688
MIVVVI
4201





DHUNIV 133
AATP
3804
DHUNIV 689
IVVVIT
4202





DHUNIV 134
DIV
n/a
DHUNIV 690
VVVITT
4203





DHUNIV 135
IVV
n/a
DHUNIV 691
ITMIV
4204





DHUNIV 136
VVV
n/a
DHUNIV 692
TMIVV
4205





DHUNIV 137
VVA
n/a
DHUNIV 693
MIVVV
4206





DHUNIV 138
VAA
n/a
DHUNIV 694
VVVIT
4207





DHUNIV 139
AAT
n/a
DHUNIV 695
VVITT
4208





DHUNIV 140
ATP
n/a
DHUNIV 696
ITMI
4209





DHUNIV 141
DI
n/a
DHUNIV 697
TMIV
4210





DHUNIV 142
VV
n/a
DHUNIV 698
MIVV
4211





DHUNIV 143
VA
n/a
DHUNIV 699
VVIT
4212





DHUNIV 144
AA
n/a
DHUNIV 700
VITT
4213





DHUNIV 145
TP
n/a
DHUNIV 701
TMI
n/a





DHUNIV 146
YQLL
3805
DHUNIV 702
MIV
n/a





DHUNIV 147
YQL
n/a
DHUNIV 703
VIT
n/a





DHUNIV 148
QT
n/a
DHUNIV 704
ITT
n/a





DHUNIV 149
YQ
n/a
DHUNIV 705
VLRFLEWLLY
4214





DHUNIV 150
GYCSSTSCYA
3806
DHUNIV 706
VLRFLEWLL
4215





DHUNIV 151
GYCSSTSCY
3807
DHUNIV 707
LRFLEWLLY
4216





DHUNIV 152
YCSSTSCYA
3808
DHUNIV 708
VLRFLEWL
4217





DHUNIV 153
GYCSSTSC
3809
DHUNIV 709
LRFLEWLL
4218





DHUNIV 154
YCSSTSCY
3810
DHUNIV 710
RFLEWLLY
4219





DHUNIV 155
CSSTSCYA
3811
DHUNIV 711
VLRFLEW
4220





DHUNIV 156
YCSSTSC
3812
DHUNIV 712
LRFLEWL
4221





DHUNIV 157
CSSTSCY
3813
DHUNIV 713
RFLEWLL
4222





DHUNIV 158
CSSTSC
3814
DHUNIV 714
FLEWLLY
4223





DHUNIV 159
SSTS
3815
DHUNIV 715
VLRFLE
4224





DHUNIV 160
SST
n/a
DHUNIV 716
LRFLEW
4225





DHUNIV 161
STS
n/a
DHUNIV 717
RFLEWL
4226





DHUNIV 162
SS
n/a
DHUNIV 718
FLEWLL
4227





DHUNIV 163
ST
n/a
DHUNIV 719
LEWLLY
4228





DHUNIV 164
TS
n/a
DHUNIV 720
VLRFL
4229





DHUNIV 165
YA
n/a
DHUNIV 721
LRFLE
4230





DHUNIV 166
DIVVVPAAMP
3816
DHUNIV 722
RFLEW
4231





DHUNIV 167
DIVVVPAAM
3817
DHUNIV 723
FLEWL
4232





DHUNIV 168
IVVVPAAMP
3818
DHUNIV 724
LEWLL
4233





DHUNIV 169
DIVVVPAA
3819
DHUNIV 725
EWLLY
4234





DHUNIV 170
IVVVPAAM
3820
DHUNIV 726
VLRF
4235





DHUNIV 171
VVVPAAMP
3821
DHUNIV 727
LRFL
4236





DHUNIV 172
DIVVVPA
3822
DHUNIV 728
RFLE
4237





DHUNIV 173
IVVVPAA
3823
DHUNIV 729
FLEW
4238





DHUNIV 174
VVVPAAM
3824
DHUNIV 730
LEWL
4239





DHUNIV 175
VVPAAMP
3825
DHUNIV 731
EWLL
4240





DHUNIV 176
DIVVVP
3826
DHUNIV 732
WLLY
4241





DHUNIV 177
IVVVPA
3827
DHUNIV 733
VLR
n/a





DHUNIV 178
VVVPAA
3828
DHUNIV 734
LRF
n/a





DHUNIV 179
VVPAAM
3829
DHUNIV 735
RFL
n/a





DHUNIV 180
VPAAMP
3830
DHUNIV 736
FLE
n/a





DHUNIV 181
IVVVP
3831
DHUNIV 737
LEW
n/a





DHUNIV 182
VVVPA
3832
DHUNIV 738
EWL
n/a





DHUNIV 183
VVPAA
3833
DHUNIV 739
RF
n/a





DHUNIV 184
VPAAM
3834
DHUNIV 740
FL
n/a





DHUNIV 185
PAAMP
3835
DHUNIV 741
EW
n/a





DHUNIV 186
VVVP
3836
DHUNIV 742
YYDFWSGYYT
4242





DHUNIV 187
VVPA
3837
DHUNIV 743
YYDFWSGYY
4243





DHUNIV 188
VPAA
3838
DHUNIV 744
YDFWSGYYT
4244





DHUNIV 189
PAAM
3839
DHUNIV 745
YYDFWSGY
4245





DHUNIV 190
AAMP
3840
DHUNIV 746
YDFWSGYY
4246





DHUNIV 191
VVP
n/a
DHUNIV 747
DFWSGYYT
4247





DHUNIV 192
VPA
n/a
DHUNIV 748
YYDFWSG
4248





DHUNIV 193
PAA
n/a
DHUNIV 749
YDFWSGY
4249





DHUNIV 194
AAM
n/a
DHUNIV 750
DFWSGYY
4250





DHUNIV 195
AMP
n/a
DHUNIV 751
FWSGYYT
4251





DHUNIV 196
VP
n/a
DHUNIV 752
YYDFWS
4252





DHUNIV 197
PA
n/a
DHUNIV 753
YDFWSG
4253





DHUNIV 198
AM
n/a
DHUNIV 754
DFWSGY
4254





DHUNIV 199
MP
n/a
DHUNIV 755
FWSGYY
4255





DHUNIV 200
YQLLY
3841
DHUNIV 756
WSGYYT
4256





DHUNIV 201
QLLY
3842
DHUNIV 757
YYDFW
4257





DHUNIV 202
LLY
n/a
DHUNIV 758
YDFWS
4258





DHUNIV 203
LY
n/a
DHUNIV 759
DFWSG
4259





DHUNIV 204
GYCSSTSCYT
3843
DHUNIV 760
FWSGY
4260





DHUNIV 205
YCSSTSCYT
3844
DHUNIV 761
WSGYY
4261





DHUNIV 206
CSSTSCYT
3845
DHUNIV 762
SGYYT
4262





DHUNIV 207
YT
n/a
DHUNIV 763
YYDF
4263





DHUNIV 208
DIVVVPAAIP
3846
DHUNIV 764
YDFW
4264





DHUNIV 209
DIVVVPAAI
3847
DHUNIV 765
DFWS
4265





DHUNIV 210
IVVVPAAIP
3848
DHUNIV 766
FWSG
4266





DHUNIV 211
IVVVPAAI
3849
DHUNIV 767
WSGY
4267





DHUNIV 212
VVVPAAIP
3850
DHUNIV 768
GYYT
4268





DHUNIV 213
VVVPAAI
3851
DHUNIV 769
YDF
n/a





DHUNIV 214
VVPAAIP
3852
DHUNIV 770
DFW
n/a





DHUNIV 215
VVPAAI
3853
DHUNIV 771
FWS
n/a





DHUNIV 216
VPAAIP
3854
DHUNIV 772
WSG
n/a





DHUNIV 217
VPAAI
3855
DHUNIV 773
YYT
n/a





DHUNIV 218
PAAIP
3856
DHUNIV 774
DF
n/a





DHUNIV 219
PAAI
3857
DHUNIV 775
FW
n/a





DHUNIV 220
AAIP
3858
DHUNIV 776
WS
n/a





DHUNIV 221
AAI
n/a
DHUNIV 777
ITIFGVVIIP
4269





DHUNIV 222
AIP
n/a
DHUNIV 778
ITIFGVVII
4270





DHUNIV 223
Al
n/a
DHUNIV 779
TIFGVVIIP
4271





DHUNIV 224
IP
n/a
DHUNIV 780
ITIFGVVI
4272





DHUNIV 225
WIL
n/a
DHUNIV 781
TIFGVVII
4273





DHUNIV 226
WI
n/a
DHUNIV 782
IFGVVIIP
4274





DHUNIV 227
SILWW
3859
DHUNIV 783
ITIFGVV
4275





DHUNIV 228
SILW
3860
DHUNIV 784
TIFGVVI
4276





DHUNIV 229
ILWW
3861
DHUNIV 785
IFGVVII
4277





DHUNIV 230
SIL
n/a
DHUNIV 786
FGVVIIP
4278





DHUNIV 231
ILW
n/a
DHUNIV 787
ITIFGV
4279





DHUNIV 232
LWW
n/a
DHUNIV 788
TIFGVV
4280





DHUNIV 233
LLF
n/a
DHUNIV 789
IFGVVI
4281





DHUNIV 234
SI
n/a
DHUNIV 790
FGVVII
4282





DHUNIV 235
LW
n/a
DHUNIV 791
GVVIIP
4283





DHUNIV 236
LF
n/a
DHUNIV 792
ITIFG
4284





DHUNIV 237
AYCGGDCYS
3862
DHUNIV 793
TIFGV
4285





DHUNIV 238
AYCGGDCY
3863
DHUNIV 794
IFGVV
4286





DHUNIV 239
YCGGDCYS
3864
DHUNIV 795
FGVVI
4287





DHUNIV 240
AYCGGDC
3865
DHUNIV 796
GVVII
4288





DHUNIV 241
YCGGDCY
3866
DHUNIV 797
VVIIP
4289





DHUNIV 242
CGGDCYS
3867
DHUNIV 798
ITIF
4290





DHUNIV 243
YCGGDC
3868
DHUNIV 799
TIFG
4291





DHUNIV 244
CGGDCY
3869
DHUNIV 800
IFGV
4292





DHUNIV 245
CGGDC
3870
DHUNIV 801
FGVV
4293





DHUNIV 246
GGD
n/a
DHUNIV 802
GVVI
4294





DHUNIV 247
AY
n/a
DHUNIV 803
VVII
4295





DHUNIV 248
GD
n/a
DHUNIV 804
VIIP
4296





DHUNIV 249
HIVVVIAIP
3871
DHUNIV 805
ITI
n/a





DHUNIV 250
HIVVVIAI
3872
DHUNIV 806
TIF
n/a





DHUNIV 251
IVVVIAIP
3873
DHUNIV 807
IFG
n/a





DHUNIV 252
HIVVVIA
3874
DHUNIV 808
FGV
n/a





DHUNIV 253
IVVVIAI
3875
DHUNIV 809
GVV
n/a





DHUNIV 254
VVVIAIP
3876
DHUNIV 810
IIP
n/a





DHUNIV 255
HIVVVI
3877
DHUNIV 811
TI
n/a





DHUNIV 256
IVVVIA
3878
DHUNIV 812
IF
n/a





DHUNIV 257
VVVIAI
3879
DHUNIV 813
VLRYFDWLL
4297





DHUNIV 258
VVIAIP
3880
DHUNIV 814
VLRYFDWL
4298





DHUNIV 259
HIVVV
3881
DHUNIV 815
LRYFDWLL
4299





DHUNIV 260
IVVVI
3882
DHUNIV 816
VLRYFDW
4300





DHUNIV 261
VVVIA
3883
DHUNIV 817
LRYFDWL
4301





DHUNIV 262
VVIAI
3884
DHUNIV 818
RYFDWLL
4302





DHUNIV 263
VIAIP
3885
DHUNIV 819
VLRYFD
4303





DHUNIV 264
HIVV
3886
DHUNIV 820
LRYFDW
4304





DHUNIV 265
VVVI
3887
DHUNIV 821
RYFDWL
4305





DHUNIV 266
VVIA
3888
DHUNIV 822
YFDWLL
4306





DHUNIV 267
VIAI
3889
DHUNIV 823
VLRYF
4307





DHUNIV 268
IAIP
3890
DHUNIV 824
LRYFD
4308





DHUNIV 269
HIV
n/a
DHUNIV 825
RYFDW
4309





DHUNIV 270
VVI
n/a
DHUNIV 826
YFDWL
4310





DHUNIV 271
VIA
n/a
DHUNIV 827
FDWLL
4311





DHUNIV 272
IAI
n/a
DHUNIV 828
VLRY
4312





DHUNIV 273
HI
n/a
DHUNIV 829
LRYF
4313





DHUNIV 274
VI
n/a
DHUNIV 830
RYFD
4314





DHUNIV 275
IA
n/a
DHUNIV 831
YFDW
4315





DHUNIV 276
HIVVVTAIP
3891
DHUNIV 832
FDWL
4316





DHUNIV 277
HIVVVTAI
3892
DHUNIV 833
DWLL
4317





DHUNIV 278
IVVVTAIP
3893
DHUNIV 834
LRY
n/a





DHUNIV 279
HIVVVTA
3894
DHUNIV 835
RYF
n/a





DHUNIV 280
IVVVTAI
3895
DHUNIV 836
YFD
n/a





DHUNIV 281
VVVTAIP
3896
DHUNIV 837
FDW
n/a





DHUNIV 282
HIVVVT
3897
DHUNIV 838
DWL
n/a





DHUNIV 283
IVVVTA
3898
DHUNIV 839
RY
n/a





DHUNIV 284
VVVTAI
3899
DHUNIV 840
YF
n/a





DHUNIV 285
VVTAIP
3900
DHUNIV 841
FD
n/a





DHUNIV 286
IVVVT
3901
DHUNIV 842
DW
n/a





DHUNIV 287
VVVTA
3902
DHUNIV 843
YYDILTGYYN
4318





DHUNIV 288
VVTAI
3903
DHUNIV 844
YYDILTGYY
4319





DHUNIV 289
VTAIP
3904
DHUNIV 845
YDILTGYYN
4320





DHUNIV 290
VVVT
3905
DHUNIV 846
YYDILTGY
4321





DHUNIV 291
VVTA
3906
DHUNIV 847
YDILTGYY
4322





DHUNIV 292
VTAI
3907
DHUNIV 848
DILTGYYN
4323





DHUNIV 293
TAIP
3908
DHUNIV 849
YYDILTG
4324





DHUNIV 294
VVT
n/a
DHUNIV 850
YDILTGY
4325





DHUNIV 295
VTA
n/a
DHUNIV 851
DILTGYY
4326





DHUNIV 296
TAI
n/a
DHUNIV 852
ILTGYYN
4327





DHUNIV 297
VT
n/a
DHUNIV 853
YYDILT
4328





DHUNIV 298
TA
n/a
DHUNIV 854
YDILTG
4329





DHUNIV 299
RILY
3909
DHUNIV 855
DILTGY
4330





DHUNIV 300
ILY
n/a
DHUNIV 856
ILTGYY
4331





DHUNIV 301
MLY
n/a
DHUNIV 857
LTGYYN
4332





DHUNIV 302
ML
n/a
DHUNIV 858
YYDIL
4333





DHUNIV 303
GYCTNGVCYT
3910
DHUNIV 859
YDILT
4334





DHUNIV 304
GYCTNGVCY
3911
DHUNIV 860
DILTG
4335





DHUNIV 305
YCTNGVCYT
3912
DHUNIV 861
ILTGY
4336





DHUNIV 306
GYCTNGVC
3913
DHUNIV 862
LTGYY
4337





DHUNIV 307
YCTNGVCY
3914
DHUNIV 863
TGYYN
4338





DHUNIV 308
CTNGVCYT
3915
DHUNIV 864
YYDI
4339





DHUNIV 309
YCTNGVC
3916
DHUNIV 865
YDIL
4340





DHUNIV 310
CTNGVCY
3917
DHUNIV 866
DILT
4341





DHUNIV 311
CTNGVC
3918
DHUNIV 867
ILTG
4342





DHUNIV 312
TNGV
3919
DHUNIV 868
LTGY
4343





DHUNIV 313
TNG
n/a
DHUNIV 869
TGYY
4344





DHUNIV 314
NGV
n/a
DHUNIV 870
GYYN
4345





DHUNIV 315
TN
n/a
DHUNIV 871
YDI
n/a





DHUNIV 316
NG
n/a
DHUNIV 872
DIL
n/a





DHUNIV 317
GV
n/a
DHUNIV 873
ILT
n/a





DHUNIV 318
DIVLMVYAIP
3920
DHUNIV 874
LTG
n/a





DHUNIV 319
DIVLMVYAI
3921
DHUNIV 875
TGY
n/a





DHUNIV 320
IVLMVYAIP
3922
DHUNIV 876
LT
n/a





DHUNIV 321
DIVLMVYA
3923
DHUNIV 877
LVIIT
4346





DHUNIV 322
IVLMVYAI
3924
DHUNIV 878
LVII
4347





DHUNIV 323
VLMVYAIP
3925
DHUNIV 879
LVI
n/a





DHUNIV 324
DIVLMVY
3926
DHUNIV 880
LV
n/a





DHUNIV 325
IVLMVYA
3927
DHUNIV 881
DYGDY
4348





DHUNIV 326
VLMVYAI
3928
DHUNIV 882
DYGD
4349





DHUNIV 327
LMVYAIP
3929
DHUNIV 883
YGDY
4350





DHUNIV 328
DIVLMV
3930
DHUNIV 884
DYG
n/a





DHUNIV 329
IVLMVY
3931
DHUNIV 885
YGD
n/a





DHUNIV 330
VLMVYA
3932
DHUNIV 886
GDY
n/a





DHUNIV 331
LMVYAI
3933
DHUNIV 887
TTVTT
4351





DHUNIV 332
MVYAIP
3934
DHUNIV 888
TTVT
4352





DHUNIV 333
DIVLM
3935
DHUNIV 889
TVTT
4353





DHUNIV 334
IVLMV
3936
DHUNIV 890
TTV
n/a





DHUNIV 335
VLMVY
3937
DHUNIV 891
TVT
n/a





DHUNIV 336
LMVYA
3938
DHUNIV 892
VTT
n/a





DHUNIV 337
MVYAI
3939
DHUNIV 893
TV
n/a





DHUNIV 338
VYAIP
3940
DHUNIV 894
LRW
n/a





DHUNIV 339
DIVL
3941
DHUNIV 895
RW
n/a





DHUNIV 340
IVLM
3942
DHUNIV 896
DYGGNS
4354





DHUNIV 341
VLMV
3943
DHUNIV 897
DYGGN
4355





DHUNIV 342
LMVY
3944
DHUNIV 898
YGGNS
4356





DHUNIV 343
MVYA
3945
DHUNIV 899
DYGG
4357





DHUNIV 344
VYAI
3946
DHUNIV 900
YGGN
4358





DHUNIV 345
YAIP
3947
DHUNIV 901
GGNS
4359





DHUNIV 346
IVL
n/a
DHUNIV 902
YGG
n/a





DHUNIV 347
VLM
n/a
DHUNIV 903
GGN
n/a





DHUNIV 348
LMV
n/a
DHUNIV 904
GNS
n/a





DHUNIV 349
MVY
n/a
DHUNIV 905
GN
n/a





DHUNIV 350
VYA
n/a
DHUNIV 906
NS
n/a





DHUNIV 351
YAI
n/a
DHUNIV 907
TTVVTP
4360





DHUNIV 352
VL
n/a
DHUNIV 908
TTVVT
4361





DHUNIV 353
LM
n/a
DHUNIV 909
TVVTP
4362





DHUNIV 354
MV
n/a
DHUNIV 910
TTVV
4363





DHUNIV 355
VY
n/a
DHUNIV 911
TVVT
4364





DHUNIV 356
VLLWFGELL
3948
DHUNIV 912
VVTP
4365





DHUNIV 357
VLLWFGEL
3949
DHUNIV 913
TVV
n/a





DHUNIV 358
LLWFGELL
3950
DHUNIV 914
VTP
n/a





DHUNIV 359
VLLWFGE
3951
DHUNIV 915
LQ
n/a





DHUNIV 360
LLWFGEL
3952
DHUNIV 916
DYSNY
4366





DHUNIV 361
LWFGELL
3953
DHUNIV 917
DYSN
4367





DHUNIV 362
VLLWFG
3954
DHUNIV 918
YSNY
4368





DHUNIV 363
LLWFGE
3955
DHUNIV 919
DYS
n/a





DHUNIV 364
LWFGEL
3956
DHUNIV 920
YSN
n/a





DHUNIV 365
WFGELL
3957
DHUNIV 921
SNY
n/a





DHUNIV 366
VLLWF
3958
DHUNIV 922
SN
n/a





DHUNIV 367
LLWFG
3959
DHUNIV 923
VDIVATIT
4369





DHUNIV 368
LWFGE
3960
DHUNIV 924
VDIVATI
4370





DHUNIV 369
WFGEL
3961
DHUNIV 925
DIVATIT
4371





DHUNIV 370
FGELL
3962
DHUNIV 926
VDIVAT
4372





DHUNIV 371
VLLW
3963
DHUNIV 927
DIVATI
4373





DHUNIV 372
LLWF
3964
DHUNIV 928
IVATIT
4374





DHUNIV 373
LWFG
3965
DHUNIV 929
VDIVA
4375





DHUNIV 374
WFGE
3966
DHUNIV 930
DIVAT
4376





DHUNIV 375
FGEL
3967
DHUNIV 931
IVATI
4377





DHUNIV 376
GELL
3968
DHUNIV 932
VATIT
4378





DHUNIV 377
VLL
n/a
DHUNIV 933
VDIV
4379





DHUNIV 378
LLW
n/a
DHUNIV 934
DIVA
4380





DHUNIV 379
LWF
n/a
DHUNIV 935
IVAT
4381





DHUNIV 380
WFG
n/a
DHUNIV 936
VATI
4382





DHUNIV 381
FGE
n/a
DHUNIV 937
ATIT
4383





DHUNIV 382
GEL
n/a
DHUNIV 938
VDI
n/a





DHUNIV 383
WF
n/a
DHUNIV 939
IVA
n/a





DHUNIV 384
FG
n/a
DHUNIV 940
VAT
n/a





DHUNIV 385
GE
n/a
DHUNIV 941
ATI
n/a





DHUNIV 386
YYYGSGSYYN
3969
DHUNIV 942
TIT
n/a





DHUNIV 387
YYYGSGSYY
3970
DHUNIV 943
VD
n/a





DHUNIV 388
YYGSGSYYN
3971
DHUNIV 944
WLRL
4384





DHUNIV 389
YYYGSGSY
3972
DHUNIV 945
WLR
n/a





DHUNIV 390
YYGSGSYY
3973
DHUNIV 946
GYSGYDY
4385





DHUNIV 391
YGSGSYYN
3974
DHUNIV 947
GYSGYD
4386





DHUNIV 392
YYYGSGS
3975
DHUNIV 948
YSGYDY
4387





DHUNIV 393
YYGSGSY
3976
DHUNIV 949
GYSGY
4388





DHUNIV 394
YGSGSYY
3977
DHUNIV 950
YSGYD
4389





DHUNIV 395
GSGSYYN
3978
DHUNIV 951
SGYDY
4390





DHUNIV 396
YYYGSG
3979
DHUNIV 952
GYSG
4391





DHUNIV 397
YYGSGS
3980
DHUNIV 953
YSGY
4392





DHUNIV 398
YGSGSY
3981
DHUNIV 954
SGYD
4393





DHUNIV 399
GSGSYY
3982
DHUNIV 955
GYDY
4394





DHUNIV 400
SGSYYN
3983
DHUNIV 956
GYS
n/a





DHUNIV 401
YYYGS
3984
DHUNIV 957
GYD
n/a





DHUNIV 402
YYGSG
3985
DHUNIV 958
VEMATIT
4395





DHUNIV 403
YGSGS
3986
DHUNIV 959
VEMATI
4396





DHUNIV 404
GSGSY
3987
DHUNIV 960
EMATIT
4397





DHUNIV 405
GSYYN
3988
DHUNIV 961
VEMAT
4398





DHUNIV 406
YYYG
3989
DHUNIV 962
EMATI
4399





DHUNIV 407
YYGS
3990
DHUNIV 963
MATIT
4400





DHUNIV 408
YGSG
3991
DHUNIV 964
VEMA
4401





DHUNIV 409
GSGS
3992
DHUNIV 965
EMAT
4402





DHUNIV 410
SYYN
3993
DHUNIV 966
MATI
4403





DHUNIV 411
YYY
n/a
DHUNIV 967
VEM
n/a





DHUNIV 412
YYG
n/a
DHUNIV 968
EMA
n/a





DHUNIV 413
YGS
n/a
DHUNIV 969
MAT
n/a





DHUNIV 414
GSG
n/a
DHUNIV 970
VE
n/a





DHUNIV 415
YYN
n/a
DHUNIV 971
EM
n/a





DHUNIV 416
YG
n/a
DHUNIV 972
MA
n/a





DHUNIV 417
ITMVRGVIIT
3994
DHUNIV 973
RWLQL
4404





DHUNIV 418
ITMVRGVII
3995
DHUNIV 974
RWLQ
4405





DHUNIV 419
TMVRGVIIT
3996
DHUNIV 975
WLQL
4406





DHUNIV 420
ITMVRGVI
3997
DHUNIV 976
RWL
n/a





DHUNIV 421
TMVRGVII
3998
DHUNIV 977
WLQ
n/a





DHUNIV 422
MVRGVIIT
3999
DHUNIV 978
LQL
n/a





DHUNIV 423
ITMVRGV
4000
DHUNIV 979
RDGYNY
4407





DHUNIV 424
TMVRGVI
4001
DHUNIV 980
RDGYN
4408





DHUNIV 425
MVRGVII
4002
DHUNIV 981
DGYNY
4409





DHUNIV 426
VRGVIIT
4003
DHUNIV 982
RDGY
4410





DHUNIV 427
ITMVRG
4004
DHUNIV 983
DGYN
4411





DHUNIV 428
TMVRGV
4005
DHUNIV 984
GYNY
4412





DHUNIV 429
MVRGVI
4006
DHUNIV 985
RDG
n/a





DHUNIV 430
VRGVII
4007
DHUNIV 986
DGY
n/a





DHUNIV 431
RGVIIT
4008
DHUNIV 987
GYN
n/a





DHUNIV 432
ITMVR
4009
DHUNIV 988
YNY
n/a





DHUNIV 433
TMVRG
4010
DHUNIV 989
RD
n/a





DHUNIV 434
MVRGV
4011
DHUNIV 990
DG
n/a





DHUNIV 435
VRGVI
4012
DHUNIV 991
VDTAMVT
4413





DHUNIV 436
RGVII
4013
DHUNIV 992
VDTAMV
4414





DHUNIV 437
GVIIT
4014
DHUNIV 993
DTAMVT
4415





DHUNIV 438
ITMV
4015
DHUNIV 994
VDTAM
4416





DHUNIV 439
TMVR
4016
DHUNIV 995
DTAMV
4417





DHUNIV 440
MVRG
4017
DHUNIV 996
TAMVT
4418





DHUNIV 441
VRGV
4018
DHUNIV 997
VDTA
4419





DHUNIV 442
RGVI
4019
DHUNIV 998
DTAM
4420





DHUNIV 443
GVII
4020
DHUNIV 999
TAMV
4421





DHUNIV 444
VIIT
4021
DHUNIV 1000
AMVT
4422





DHUNIV 445
ITM
n/a
DHUNIV 1001
VDT
n/a





DHUNIV 446
TMV
n/a
DHUNIV 1002
DTA
n/a





DHUNIV 447
MVR
n/a
DHUNIV 1003
TAM
n/a





DHUNIV 448
VRG
n/a
DHUNIV 1004
AMV
n/a





DHUNIV 449
RGV
n/a
DHUNIV 1005
MVT
n/a





DHUNIV 450
GVI
n/a
DHUNIV 1006
DT
n/a





DHUNIV 451
VII
n/a
DHUNIV 1007
WIQLWL
4423





DHUNIV 452
IIT
n/a
DHUNIV 1008
WIQLW
4424





DHUNIV 453
TM
n/a
DHUNIV 1009
IQLWL
4425





DHUNIV 454
VR
n/a
DHUNIV 1010
WIQL
4426





DHUNIV 455
RG
n/a
DHUNIV 1011
IQLW
4427





DHUNIV 456
II
n/a
DHUNIV 1012
QLWL
4428





DHUNIV 457
VLLWFRELL
4022
DHUNIV 1013
WIQ
n/a





DHUNIV 458
VLLWFREL
4023
DHUNIV 1014
IQL
n/a





DHUNIV 459
LLWFRELL
4024
DHUNIV 1015
QLW
n/a





DHUNIV 460
VLLWFRE
4025
DHUNIV 1016
LWL
n/a





DHUNIV 461
LLWFREL
4026
DHUNIV 1017
IQ
n/a





DHUNIV 462
LWFRELL
4027
DHUNIV 1018
GYSYGY
4429





DHUNIV 463
VLLWFR
4028
DHUNIV 1019
GYSYG
4430





DHUNIV 464
LLWFRE
4029
DHUNIV 1020
YSYGY
4431





DHUNIV 465
LWFREL
4030
DHUNIV 1021
GYSY
4432





DHUNIV 466
WFRELL
4031
DHUNIV 1022
YSYG
4433





DHUNIV 467
LLWFR
4032
DHUNIV 1023
SYGY
4434





DHUNIV 468
LWFRE
4033
DHUNIV 1024
YSY
n/a





DHUNIV 469
WFREL
4034
DHUNIV 1025
SYG
n/a





DHUNIV 470
FRELL
4035
DHUNIV 1026
YGY
n/a





DHUNIV 471
LWFR
4036
DHUNIV 1027
GYSSSWY
4435





DHUNIV 472
WFRE
4037
DHUNIV 1028
GYSSSW
4436





DHUNIV 473
FREL
4038
DHUNIV 1029
YSSSWY
4437





DHUNIV 474
RELL
4039
DHUNIV 1030
GYSSS
4438





DHUNIV 475
WFR
n/a
DHUNIV 1031
YSSSW
4439





DHUNIV 476
FRE
n/a
DHUNIV 1032
SSSWY
4440





DHUNIV 477
REL
n/a
DHUNIV 1033
GYSS
4441





DHUNIV 478
FR
n/a
DHUNIV 1034
YSSS
4442





DHUNIV 479
RE
n/a
DHUNIV 1035
SSSW
4443





DHUNIV 480
ITMVQGVIIT
4040
DHUNIV 1036
SSWY
4444





DHUNIV 481
ITMVQGVII
4041
DHUNIV 1037
YSS
n/a





DHUNIV 482
TMVQGVIIT
4042
DHUNIV 1038
SSS
n/a





DHUNIV 483
ITMVQGVI
4043
DHUNIV 1039
SSW
n/a





DHUNIV 484
TMVQGVII
4044
DHUNIV 1040
SWY
n/a





DHUNIV 485
MVQGVIIT
4045
DHUNIV 1041
SW
n/a





DHUNIV 486
ITMVQGV
4046
DHUNIV 1042
WY
n/a





DHUNIV 487
TMVQGVI
4047
DHUNIV 1043
GIAAAGT
4445





DHUNIV 488
MVQGVII
4048
DHUNIV 1044
GIAAAG
4446





DHUNIV 489
VQGVIIT
4049
DHUNIV 1045
IAAAGT
4447





DHUNIV 490
ITMVQG
4050
DHUNIV 1046
GIAAA
4448





DHUNIV 491
TMVQGV
4051
DHUNIV 1047
IAAAG
4449





DHUNIV 492
MVQGVI
4052
DHUNIV 1048
AAAGT
4450





DHUNIV 493
VQGVII
4053
DHUNIV 1049
GIAA
4451





DHUNIV 494
QGVIIT
4054
DHUNIV 1050
IAAA
4452





DHUNIV 495
ITMVQ
4055
DHUNIV 1051
AAAG
4453





DHUNIV 496
TMVQG
4056
DHUNIV 1052
AAGT
4454





DHUNIV 497
MVQGV
4057
DHUNIV 1053
GIA
n/a





DHUNIV 498
VQGVI
4058
DHUNIV 1054
IAA
n/a





DHUNIV 499
QGVII
4059
DHUNIV 1055
AAA
n/a





DHUNIV 500
TMVQ
4060
DHUNIV 1056
AAG
n/a





DHUNIV 501
MVQG
4061
DHUNIV 1057
AGT
n/a





DHUNIV 502
VQGV
4062
DHUNIV 1058
AG
n/a





DHUNIV 503
QGVI
4063
DHUNIV 1059
QQLV
4455





DHUNIV 504
MVQ
n/a
DHUNIV 1060
QQL
n/a





DHUNIV 505
VQG
n/a
DHUNIV 1061
QLV
n/a





DHUNIV 506
QGV
n/a
DHUNIV 1062
QQ
n/a





DHUNIV 507
QG
n/a
DHUNIV 1063
GYSSGWY
4456





DHUNIV 508
LRLGEL
4064
DHUNIV 1064
GYSSGW
4457





DHUNIV 509
LRLGE
4065
DHUNIV 1065
YSSGWY
4458





DHUNIV 510
RLGEL
4066
DHUNIV 1066
GYSSG
4459





DHUNIV 511
LRLG
4067
DHUNIV 1067
YSSGW
4460





DHUNIV 512
RLGE
4068
DHUNIV 1068
SSGWY
4461





DHUNIV 513
LGEL
4069
DHUNIV 1069
YSSG
4462





DHUNIV 514
LRL
n/a
DHUNIV 1070
SSGW
4463





DHUNIV 515
RLG
n/a
DHUNIV 1071
SGWY
4464





DHUNIV 516
LGE
n/a
DHUNIV 1072
SGW
n/a





DHUNIV 517
LR
n/a
DHUNIV 1073
GWY
n/a





DHUNIV 518
RL
n/a
DHUNIV 1074
GW
n/a





DHUNIV 519
LG
n/a
DHUNIV 1075
GIAVAGT
4465





DHUNIV 520
YYDYVWGSYAYT
4070
DHUNIV 1076
GIAVAG
4466





DHUNIV 521
YYDYVWGSYAY
4071
DHUNIV 1077
IAVAGT
4467





DHUNIV 522
YDYVWGSYAYT
4072
DHUNIV 1078
GIAVA
4468





DHUNIV 523
YYDYVWGSYA
4073
DHUNIV 1079
IAVAG
4469





DHUNIV 524
YDYVWGSYAY
4074
DHUNIV 1080
AVAGT
4470





DHUNIV 525
DYVWGSYAYT
4075
DHUNIV 1081
GIAV
4471





DHUNIV 526
YYDYVWGSY
4076
DHUNIV 1082
IAVA
4472





DHUNIV 527
YDYVWGSYA
4077
DHUNIV 1083
AVAG
4473





DHUNIV 528
DYVWGSYAY
4078
DHUNIV 1084
VAGT
4474





DHUNIV 529
YVWGSYAYT
4079
DHUNIV 1085
IAV
n/a





DHUNIV 530
YYDYVWGS
4080
DHUNIV 1086
AVA
n/a





DHUNIV 531
YDYVWGSY
4081
DHUNIV 1087
VAG
n/a





DHUNIV 532
DYVWGSYA
4082
DHUNIV 1088
AV
n/a





DHUNIV 533
YVWGSYAY
4083
DHUNIV 1089
QWLV
4475





DHUNIV 534
VWGSYAYT
4084
DHUNIV 1090
QWL
n/a





DHUNIV 535
YYDYVWG
4085
DHUNIV 1091
WLV
n/a





DHUNIV 536
YDYVWGS
4086
DHUNIV 1092
QW
n/a





DHUNIV 537
DYVWGSY
4087
DHUNIV 1093
EYSSSS
4476





DHUNIV 538
YVWGSYA
4088
DHUNIV 1094
EYSSS
4477





DHUNIV 539
VWGSYAY
4089
DHUNIV 1095
YSSSS
4478





DHUNIV 540
WGSYAYT
4090
DHUNIV 1096
EYSS
4479





DHUNIV 541
YYDYVW
4091
DHUNIV 1097
SSSS
4480





DHUNIV 542
YDYVWG
4092
DHUNIV 1098
EYS
n/a





DHUNIV 543
DYVWGS
4093
DHUNIV 1099
EY
n/a





DHUNIV 544
YVWGSY
4094
DHUNIV 1100
SIAARP
4481





DHUNIV 545
VWGSYA
4095
DHUNIV 1101
SIAAR
4482





DHUNIV 546
WGSYAY
4096
DHUNIV 1102
IAARP
4483





DHUNIV 547
GSYAYT
4097
DHUNIV 1103
SIAA
4484





DHUNIV 548
YYDYV
4098
DHUNIV 1104
IAAR
4485





DHUNIV 549
YDYVW
4099
DHUNIV 1105
AARP
4486





DHUNIV 550
DYVWG
4100
DHUNIV 1106
SIA
n/a





DHUNIV 551
YVWGS
4101
DHUNIV 1107
AAR
n/a





DHUNIV 552
VWGSY
4102
DHUNIV 1108
ARP
n/a





DHUNIV 553
WGSYA
4103
DHUNIV 1109
AR
n/a





DHUNIV 554
GSYAY
4104
DHUNIV 1110
RP
n/a





DHUNIV 555
SYAYT
4105
DHUNIV 1111
NWG
n/a





DHUNIV556
YYDY
4106
















TABLE 12







Theoretical segment pool of 141 N2 segments in Theoretical


Segment Pool 1 (TSP1).









Segment Type
Sequences
Number





“Zero”
(no addition) V segment joins
 1



directly to D segment



Monomers
G, P, R, A, S, L, T, V, D, E,
18



F, H, I, K, M, Q, W, Y



Dimers
GG, GP, GR, GA, GS, GL, GT,
82



GV, PG, RG, AG, SG, LG, TG,




VG, PP, PR, PA, PS, PL, PT,




PV, RP, AP, SP, LP, TP, VP,




AR, AS, AT, AY, DL, DT, EA,




EK, FH, FS, HL, HW, IS, KV,




LD, LE, LR, LS, LT, NR, NT,




QE, QL, QT, RA, RD, RE, RF,




RH, RL, RR, RS, RV, SA, SD,




SE, SF, SI, SK, SL, SQ, SR,




SS, ST, SV, TA, TR, TS, TT,




TW, VD, VS, WS, YS



Trimers
GGG, GPG, GRG, GAG, GSG, GLG,
40



GTG, GVG, PGG, RGG, AGG, SGG,




LGG, TGG, VGG, GGP, GGR, GGA,




GGS, GGL, GGT, GGV, AAE, AYH,




DTL, EKR, ISR, NTP, PKS, PRP,




PTA, PTQ, REL, RPL, SAA, SAL,




SGL, SSE, TGL, WGT
















TABLE 13







Theoretical segment pool of 285 H3-JH segments.









H3-JH




Segment
Amino Acid



Name
Sequence
SEQ ID NO





JHUNIV 001
TEYFQH
4487





JHUNIV 002
EYFQH
4488





JHUNIV 003
YFQH
4489





JHUNIV 004
FQH
n/a





JHUNIV 005
QH
n/a





JHUNIV 006
H
n/a





JHUNIV 007

n/a





JHUNIV 008
SEYFQH
4490





JHUNIV 009
PEYFQH
4491





JHUNIV 010
FEYFQH
4492





JHUNIV 011
HEYFQH
4493





JHUNIV 012
REYFQH
4494





JHUNIV 013
LEYFQH
4495





JHUNIV 014
NEYFQH
4496





JHUNIV 015
IEYFQH
4497





JHUNIV 016
DEYFQH
4498





JHUNIV 017
GEYFQH
4499





JHUNIV 018
VEYFQH
4500





JHUNIV 019
YEYFQH
4501





JHUNIV 020
NYFQH
4502





JHUNIV 021
QYFQH
4503





JHUNIV 022
LYFQH
4504





JHUNIV 023
SYFQH
4505





JHUNIV 024
RYFQH
4506





JHUNIV 025
PYFQH
4507





JHUNIV 026
IYFQH
4508





JHUNIV 027
TYFQH
4509





JHUNIV 028
GYFQH
4510





JHUNIV 029
VYFQH
4511





JHUNIV 030
AYFQH
4512





JHUNIV 031
NFQH
4513





JHUNIV 032
DFQH
4514





JHUNIV 033
HFQH
4515





JHUNIV 034
FFQH
4516





JHUNIV 035
SFQH
4517





JHUNIV 036
RFQH
4518





JHUNIV 037
LFQH
4519





JHUNIV 038
PFQH
4520





JHUNIV 039
IFQH
4521





JHUNIV 040
TFQR
4522





JHUNIV 041
GFQH
4523





JHUNIV 042
VFQH
4524





JHUNIV 043
AFQH
4525





JHUNIV 044
AEYFQH
4526





JHUNIV 045
YWYFDL
4527





JHUNIV 046
WYFDL
4528





JHUNIV 047
YFDL
4529





JHUNIV 048
FDL
n/a





JHUNIV 049
DL
n/a





JHUNIV 050
L
n/a





JHUNIV 051
DWYFDL
4530





JHUNIV 052
HWYFDL
4531





JHUNIV 053
NWYFDL
4532





JHUNIV 054
GYFDL
4533





JHUNIV 055
RYFDL
4534





JHUNIV 056
HFDL
4535





JHUNIV 057
NFDL
4536





JHUNIV 058
DFDL
4537





JHUNIV 059
DAFDI
4538





JHUNIV 060
AFDI
4539





JHUNIV 061
FDI
n/a





JHUNIV 062
DI
n/a





JHUNIV 063
I
n/a





JHUNIV 064
YAFDI
4540





JHUNIV 065
HAFDI
4541





JHUNIV 066
FAFDI
4542





JHUNIV 067
SAFDI
4543





JHUNIV 068
RAFDI
4544





JHUNIV 069
LAFDI
4545





JHUNIV 070
PAFDI
4546





JHUNIV 071
IAFDI
4547





JHUNIV 072
TAFDI
4548





JHUNIV 073
GAFDI
4549





JHUNIV 074
VAFDI
4550





JHUNIV 075
AAFDI
4551





JHUNIV 076
TFDI
4552





JHUNIV 077
SFDI
4553





JHUNIV 078
PFDI
4554





JHUNIV 079
FFDI
4555





JHUNIV 080
HFDI
4556





JHUNIV 081
RFDI
4557





JHUNIV 082
LFDI
4558





JHUNIV 083
NFDI
4559





JHUNIV 084
IFDI
4560





JHUNIV 085
DFDI
4561





JHUNIV 086
GFDI
4562





JHUNIV 087
VFDI
4563





JHUNIV 088
YFDI
4564





JHUNIV 089
IDI
n/a





JHUNIV 090
VDI
n/a





JHUNIV 091
LDI
n/a





JHUNIV 092
SDI
n/a





JHUNIV 093
HDI
n/a





JHUNIV 094
RDI
n/a





JHUNIV 095
PDI
n/a





JHUNIV 096
NDI
n/a





JHUNIV 097
TDI
n/a





JHUNIV 098
DDI
n/a





JHUNIV 099
GDI
n/a





JHUNIV 100
ADI
n/a





JHUNIV 101
YDI
n/a





JHUNIV 102
NAFDI
4565





JHUNIV 103
DYFDY
4566





JHUNIV 104
YFDY
4567





JHUNIV 105
FDY
n/a





JHUNIV 106
DY
n/a





JHUNIV 107
Y
n/a





JHUNIV 108
YYFDY
4568





JHUNIV 109
HYFDY
4569





JHUNIV 110
FYFDY
4570





JHUNIV 111
SYFDY
4571





JHUNIV 112
RYFDY
4572





JHUNIV 113
LYFDY
4573





JHUNIV 114
PYFDY
4574





JHUNIV 115
IYFDY
4575





JHUNIV 116
TYFDY
4576





JHUNIV 117
GYFDY
4577





JHUNIV 118
VYFDY
4578





JHUNIV 119
AYFDY
4579





JHUNIV 120
NFDY
4580





JHUNIV 121
DFDY
4581





JHUNIV 122
HFDY
4582





JHUNIV 123
FFDY
4583





JHUNIV 124
SFDY
4584





JHUNIV 125
RFDY
4585





JHUNIV 126
LFDY
4586





JHUNIV 127
PFDY
4587





JHUNIV 128
IFDY
4588





JHUNIV 129
TFDY
4589





JHUNIV 130
GFDY
4590





JHUNIV 131
VFDY
4591





JHUNIV 132
AFDY
4592





JHUNIV 133
IDY
n/a





JHUNIV 134
VDY
n/a





JHUNIV 135
LDY
n/a





JHUNIV 136
SDY
n/a





JHUNIV 137
HDY
n/a





JHUNIV 138
RDY
n/a





JHUNIV 139
PDY
n/a





JHUNIV 140
NDY
n/a





JHUNIV 141
TDY
n/a





JHUNIV 142
DDY
n/a





JHUNIV 143
GDY
n/a





JHUNIV 144
ADY
n/a





JHUNIV 145
YDY
n/a





JHUNIV 146
NYFDY
4593





JHUNIV 147
DNWFDP
4594





JHUNIV 148
NWFDP
4595





JHUNIV 149
WFDP
4596





JHUNIV 150
FDP
n/a





JHUNIV 151
DP
n/a





JHUNIV 152
P
n/a





JHUNIV 153
YNWFDP
4597





JHUNIV 154
HNWFDP
4598





JHUNIV 155
FNWFDP
4599





JHUNIV 156
SNWFDP
4600





JHUNIV 157
RNWFDP
4601





JHUNIV 158
LNWFDP
4602





JHUNIV 159
PNWFDP
4603





JHUNIV 160
INWFDP
4604





JHUNIV 161
TNWFDP
4605





JHUNIV 162
GNWFDP
4606





JHUNIV 163
VNWFDP
4607





JHUNIV 164
ANWFDP
4608





JHUNIV 165
DWFDP
4609





JHUNIV 166
YWFDP
4610





JHUNIV 167
HWFDP
4611





JHUNIV 168
FWFDP
4612





JHUNIV 169
SWFDP
4613





JHUNIV 170
RWFDP
4614





JHUNIV 171
LWFDP
4615





JHUNIV 172
PWFDP
4616





JHUNIV 173
IWFDP
4617





JHUNIV 174
TWFDP
4618





JHUNIV 175
GWFDP
4619





JHUNIV 176
VWFDP
4620





JHUNIV 177
AWFDP
4621





JHUNIV 178
RFDP
4622





JHUNIV 179
GFDP
4623





JHUNIV 180
LFDP
4624





JHUNIV 181
SFDP
4625





JHUNIV 182
QFDP
4626





JHUNIV 183
PFDP
4627





JHUNIV 184
KFDP
4628





JHUNIV 185
MFDP
4629





JHUNIV 186
TFDP
4630





JHUNIV 187
EFDP
4631





JHUNIV 188
VFDP
4632





JHUNIV 189
AFDP
4633





JHUNIV 190
NNWFDP
4634





JHUNIV 191
DYYYYYGMDV
4635





JHUNIV 192
YYYYYGMDV
4636





JHUNIV 193
YYYYGMDV
4637





JHUNIV 194
YYYGMDV
4638





JHUNIV 195
YYGMDV
4639





JHUNIV 196
YGMDV
4640





JHUNIV 197
GMDV
4641





JHUNIV 198
MDV
n/a





JHUNIV 199
DV
n/a





JHUNIV 200
V
n/a





JHUNIV 201
YYYYYYGMDV
4642





JHUNIV 202
HYYYYYGMDV
4643





JHUNIV 203
FYYYYYGMDV
4644





JHUNIV 204 
SYYYYYGMDV
4645





JHUNIV 205
RYYYYYGMDV
4646





JHUNIV 206
LYYYYYGMDV
4647





JHUNIV 207
PYYYYYGMDV
4648





JHUNIV 208
IYYYYYGMDV
4649





JHUNIV 209
TYYYYYGMDV
4650





JHUNIV 210
GYYYYYGMDV
4651





JHUNIV 211
VYYYYYGMDV
4652





JHUNIV 212
AYYYYYGMDV
4653





JHUNIV 213
NYYYYGMDV
4654





JHUNIV 214
DYYYYGMDV
4655





JHUNIV 215
HYYYYGMDV
4656





JHUNIV 216
FYYYYGMDV
4657





JHUNIV 217
SYYYYGMDV
4658





JHUNIV 218
RYYYYGMDV
4659





JHUNIV 219
LYYYYGMDV
4660





JHUNIV 220
PYYYYGMDV
4661





JHUNIV 221
IYYYYGMDV
4662





JHUNIV 222
TYYYYGMDV
4663





JHUNIV 223
GYYYYGMDV
4664





JHUNIV 224
VYYYYGMDV
4665





JHUNIV 225
AYYYYGMDV
4666





JHUNIV 226
NYYYGMDV
4667





JHUNIV 227
DYYYGMDV
4668





JHUNIV 228
HYYYGMDV
4669





JHUNIV 229
FYYYGMDV
4670





JHUNIV 230
SYYYGMDV
4671





JHUNIV 231
RYYYGMDV
4672





JHUNIV 232
LYYYGMDV
4673





JHUNIV 233
PYYYGMDV
4674





JHUNIV 234
IYYYGMDV
4675





JHUNIV 235
TYYYGMDV
4676





JHUNIV 236
GYYYGMDV
4677





JHUNIV 237
VYYYGMDV
4678





JHUNIV 238
AYYYGMDV
4679





JHUNIV 239
NYYYYYGMDV
4680





JHUNIV 240
DYYYYYYMDV
4681





JHUNIV 241
YYYYYYMDV
4682





JHUNIV 242
YYYYYMDV
4683





JHUNIV 243
YYYYMDV
4684





JHUNIV 244
YYYMDV
4685





JHUNIV 245
YYMDV
4686





JHUNIV 246
YMDV
4687





JHUNIV 247
YYYYYYYMDV
4688





JHUNIV 248
HYYYYYYMDV
4689





JHUNIV 249
FYYYYYYMDV
4690





JHUNIV 250
SYYYYYYMDV
4691





JHUNIV 251
RYYYYYYMDV
4692





JHUNIV 252
LYYYYYYMDV
4693





JHUNIV 253
PYYYYYYMDV
4694





JHUNIV 254
IYYYYYYMDV
4695





JHUNIV 255
TYYYYYYMDV
4696





JHUNIV 256
GYYYYYYMDV
4697





JHUNIV 257
VYYYYYYMDV
4698





JHUNIV 258
AYYYYYYMDV
4699





JHUNIV 259
NYYYYYMDV
4700





JHUNIV 260
DYYYYYMDV
4701





JHUNIV 261
HYYYYYMDV
4702





JHUNIV 262
FYYYYYMDV
4703





JHUNIV 263
SYYYYYMDV
4704





JHUNIV 264
RYYYYYMDV
4705





JHUNIV 265
LYYYYYMDV
4706





JHUNIV 266
PYYYYYMDV
4707





JHUNIV 267
IYYYYYMDV
4708





JHUNIV 268
TYYYYYMDV
4709





JHUNIV 269
GYYYYYMDV
4710





JHUNIV 270
VYYYYYMDV
4711





JHUNIV 271
AYYYYYMDV
4712





JHUNIV 272
NYYYYMDV
4713





JHUNIV 273
DYYYYMDV
4714





JHUNIV 274
HYYYYMDV
4715





JHUNIV 275
FYYYYMDV
4716





JHUNIV 276
SYYYYMDV
4717





JHUNIV 277
RYYYYMDV
4718





JHUNIV 278
LYYYYMDV
4719





JHUNIV 279
PYYYYMDV
4720





JHUNIV 280
IYYYYMDV
4721





JHUNIV 281
TYYYYMDV
4722





JHUNIV 282
GYYYYMDV
4723





JHUNIV 283
VYYYYMDV
4724





JHUNIV 284
AYYYYMDV
4725





JHUNIV 285
NYYYYYYMDV
4726
















TABLE 14







Twelve germline IGHJ genes and alleles.









IGHJ Gene
DNA Sequence
SEQ ID NO





IGHJ1-01
GCTGAATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCAG
4727





IGHJ2-01
CTACTGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTCTCCTCAG
4728





IGHJ3-01
ATGCTTTTGATGTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAG
4729





IGHJ3-02
ATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAG
4730





IGHJ4-01
ACTACTTTGACTACTGGGGCCAAGGAACCCTGGTCACCGTCTCCTCAG
4731





IGHJ4-02
ACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG
4732





IGHJ4-03
GCTACTTTGACTACTGGGGCCAAGGGACCCTGGTCACCGTCTCCTCAG
4733





IGHJ5-01
ACAACTGGTTCGACTCCTGGGGCCAAGGAACCCTGGTCACCGTCTCCTCAG
4734





IGHJ5-02
ACAACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG
4735





IGHJ6-01
ATTACTACTACTACTACGGTATGGACGTCTGGGGGCAAGGGACCACGGTCACCGTCT
4736



CCTCAG






IGHJ6-02
ATTACTACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCT
4737



CCTCAG






IGHJ6-03
ATTACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACGGTCACCGTCT
4738



CCTCAG
















TABLE 15







Theoretical segment pool of 248 parent H3-JH segments.












H3-JH


H3-JH




Parent
Amino

Parent




Segment
Acid
SEQ ID
Segment
Amino Acid
SEQ ID


Name
Sequence
NO
Name
Sequence
NO





JHparent001
ADI
n/a
JHparent125
TAFDI
4548





JHparent002
ADY
n/a
JHparent126
TWFDP
4618





JHparent003
DDI
n/a
JHparent127
TYFDY
4576





JHparent004
DDY
n/a
JHparent128
TYFQH
4509





JHparent005
GDI
n/a
JHparent129
VAFDI
4550





JHparent006
GDY
n/a
JHparent130
VWFDP
4620





JHparent007
HDI
n/a
JHparent131
VYFDY
4578





JHparent008
HDY
n/a
JHparent132
VYFQH
4511





JHparent009
IDI
n/a
JHparent133
WYFDL
4528





JHparent010
IDY
n/a
JHparent134
YAFDI
4540





JHparent011
LDI
n/a
JHparent135
YWFDP
4610





JHparent012
LDY
n/a
JHparent136
YYFDY
4568





JHparent013
NDI
n/a
JHparent137
AEYFQH
4526





JHparent014
NDY
n/a
JHparent138
ANWFDP
4608





JHparent015
PDI
n/a
JHparent139
DEYFQH
4498





JHparent016
PDY
n/a
JHparent140
DNWFDP
4594





JHparent017
RDI
n/a
JHparent141
DWYFDL
4530





JHparent018
RDY
n/a
JHparent142
FEYFQH
4492





JHparent019
SDI
n/a
JHparent143
FNWFDP
4599





JHparent020
SDY
n/a
JHparent144
GEYFQH
4499





JHparent021
TDI
n/a
JHparent145
GNWFDP
4606





JHparent022
TDY
n/a
JHparent146
HEYFQH
4493





JHparent023
VDI
n/a
JHparent147
HNWFDP
4598





JHparent024
VDY
n/a
JHparent148
HWYFDL
4531





JHparent025
YDI
n/a
JHparent149
IEYFQH
4497





JHparent026
YDY
n/a
JHparent150
INWFDP
4604





JHparent027
AFDP
4633
JHparent151
LEYFQH
4495





JHparent028
AFDY
4592
JHparent152
LNWFDP
4602





JHparent029
AFQH
4525
JHparent153
NEYFQH
4496





JHparent030
DFDI
4561
JHparent154
NNWFDP
4634





JHparent031
DFDL
4537
JHparent155
NWYFDL
4532





JHparent032
DFDY
4581
JHparent156
PEYFQH
4491





JHparent033
DFQH
4514
JHparent157
PNWFDP
4603





JHparent034
EFDP
4631
JHparent158
REYFQH
4494





JHparent035
FFDI
4555
JHparent159
RNWFDP
4601





JHparent036
FFDY
4583
JHparent160
SEYFQH
4490





JHparent037
FFQH
4516
JHparent161
SNWFDP
4600





JHparent038
GFDI
4562
JHparent162
TEYFQH
4487





JHparent039
GFDP
4623
JHparent163
TNWFDP
4605





JHparent040
GFDY
4590
JHparent164
VEYFQH
4500





JHparent041
GFQH
4523
JHparent165
VNWFDP
4607





JHparent042
HFDI
4556
JHparent166
YEYFQH
4501





JHparent043
HFDL
4535
JHparent167
YNWFDP
4597





JHparent044
HFDY
4582
JHparent168
YWYFDL
4527





JHparent045
HFQH
4515
JHparent169
AYYYGMDV
4679





JHparent046
IFDI
4560
JHparent170
AYYYYMDV
4725





JHparent047
IFDY
4588
JHparent171
DYYYGMDV
4668





JHparent048
IFQH
4521
JHparent172
DYYYYMDV
4714





JHparent049
KFDP
4628
JHparent173
FYYYGMDV
4670





JHparent050
LFDI
4558
JHparent174
FYYYYMDV
4716





JHparent051
LFDP
4624
JHparent175
GYYYGMDV
4677





JHparent052
LFDY
4586
JHparent176
GYYYYMDV
4723





JHparent053
LFQH
4519
JHparent177
HYYYGMDV
4669





JHparent054
MFDP
4629
JHparent178
HYYYYMDV
4715





JHparent055
NFDI
4559
JHparent179
IYYYGMDV
4675





JHparent056
NFDL
4536
JHparent180
IYYYYMDV
4721





JHparent057
NFDY
4580
JHparent181
LYYYGMDV
4673





JHparent058
NFQH
4513
JHparent182
LYYYYMDV
4719





JHparent059
PFDI
4554
JHparent183
NYYYGMDV
4667





JHparent060
PFDP
4627
JHparent184
NYYYYMDV
4713





JHparent061
PFDY
4587
JHparent185
PYYYGMDV
4674





JHparent062
PFQH
4520
JHparent186
PYYYYMDV
4720





JHparent063
QFDP
4626
JHparent187
RYYYGMDV
4672





JHparent064
RFDI
4557
JHparent188
RYYYYMDV
4718





JHparent065
RFDP
4622
JHparent189
SYYYGMDV
4671





JHparent066
RFDY
4585
JHparent190
SYYYYMDV
4717





JHparent067
RFQH
4518
JHparent191
TYYYGMDV
4676





JHparent068
SFDI
4553
JHparent192
TYYYYMDV
4722





JHparent069
SFDP
4625
JHparent193
VYYYGMDV
4678





JHparent070
SFDY
4584
JHparent194
VYYYYMDV
4724





JHparent071
SFQH
4517
JHparent195
AYYYYGMDV
4666





JHparent072
TFDI
4552
JHparent196
AYYYYYMDV
4712





JHparent073
TFDP
4630
JHparent197
DYYYYGMDV
4655





JHparent074
TFDY
4589
JHparent198
DYYYYYMDV
4701





JHparent075
TFQH
4522
JHparent199
FYYYYGMDV
4657





JHparent076
VFDI
4563
JHparent200
FYYYYYMDV
4703





JHparent077
VFDP
4632
JHparent201
GYYYYGMDV
4664





JHparent078
VFDY
4591
JHparent202
GYYYYYMDV
4710





JHparent079
VFQH
4524
JHparent203
HYYYYGMDV
4656





JHparent080
YFDI
4564
JHparent204
HYYYYYMDV
4702





JHparent081
YFDL
4529
JHparent205
IYYYYGMDV
4662





JHparent082
AAFDI
4551
JHparent206
IYYYYYMDV
4708





JHparent083
AWFDP
4621
JHparent207
LYYYYGMDV
4660





JHparent084
AYFDY
4579
JHparent208
LYYYYYMDV
4706





JHparent085
AYFQH
4512
JHparent209
NYYYYGMDV
4654





JHparent086
DAFDI
4538
JHparent210
NYYYYYMDV
4700





JHparent087
DWFDP
4609
JHparent211
PYYYYGMDV
4661





JHparent088
DYFDY
4566
JHparent212
PYYYYYMDV
4707





JHparent089
FAFDI
4542
JHparent213
RYYYYGMDV
4659





JHparent090
FWFDP
4612
JHparent214
RYYYYYMDV
4705





JHparent091
FYFDY
4570
JHparent215
SYYYYGMDV
4658





JHparent092
GAFDI
4549
JHparent216
SYYYYYMDV
4704





JHparent093
GWFDP
4619
JHparent217
TYYYYGMDV
4663





JHparent094
GYFDL
4533
JHparent218
TYYYYYMDV
4709





JHparent095
GYFDY
4577
JHparent219
VYYYYGMDV
4665





JHparent096
GYFQH
4510
JHparent220
VYYYYYMDV
4711





JHparent097
HAFDI
4541
JHparent221
AYYYYYGMDV
4653





JHparent098
HWFDP
4611
JHparent222
AYYYYYYMDV
4699





JHparent099
HYFDY
4569
JHparent223
DYYYYYGMDV
4635





JHparent100
IAFDI
4547
JHparent224
DYYYYYYMDV
4681





JHparent101
IWFDP
4617
JHparent225
FYYYYYGMDV
4644





JHparent102
IYFDY
4575
JHparent226
FYYYYYYMDV
4690





JHparent103
IYFQH
4508
JHparent227
GYYYYYGMDV
4651





JHparent104
KYFQH
4502
JHparent228
GYYYYYYMDV
4697





JHparent105
LAFDI
4545
JHparent229
HYYYYYGMDV
4643





JHparent106
LWFDP
4615
JHparent230
HYYYYYYMDV
4689





JHparent107
LYFDY
4573
JHparent231
IYYYYYGMDV
4649





JHparent108
LYFQH
4504
JHparent232
IYYYYYYMDV
4695





JHparent109
NAFDI
4565
JHparent233
LYYYYYGMDV
4647





JHparent110
NYFDY
4593
JHparent234
LYYYYYYMDV
4693





JHparent111
PAFDI
4546
JHparent235
NYYYYYGMDV
4680





JHparent112
PWFDP
4616
JHparent236
NYYYYYYMDV
4726





JHparent113
PYFDY
4574
JHparent237
PYYYYYGMDV
4648





JHparent114
PYFQH
4507
JHparent238
PYYYYYYMDV
4694





JHparent115
QYFQH
4503
JHparent239
RYYYYYGMDV
4646





JHparent116
RAFDI
4544
JHparent240
RYYYYYYMDV
4692





JHparent117
RWFDP
4614
JHparent241
SYYYYYGMDV
4645





JHparent118
RYFDL
4534
JHparent242
SYYYYYYMDV
4691





JHparent119
RYFDY
4572
JHparent243
TYYYYYGMDV
4650





JHparent120
RYFQH
4506
JHparent244
TYYYYYYMDV
4696





JHparent121
SAFDI
4543
JHparent245
VYYYYYGMDV
4652





JHparent122
SWFDP
4613
JHparent246
VYYYYYYMDV
4698





JHparent123
SYFDY
4571
JHparent247
YYYYYYGMDV
4642





JHparent124
SYFQH
4505
JHparent248
YYYYYYYMDV
4688
















TABLE 16







Polynucleotide sequences of 27 human IGHD genes and alleles.









IGHD Gene
Polynucleotide Sequence
SEQ ID NO





IGHD1-(1)-01
GGTACAACTGGAACGAC
4739





IGHD1-20
GGTATAACTGGAACGAC
4740





IGHD1-26
GGTATAGTGGGAGCTACTAC
4741





IGHD1-7
GGTATAACTGGAACTAC
4742





IGHD2-15-01
AGGATATTGTAGTGGTGGTAGCTGCTACTCC
4743





IGHD2-2-x
AGGATATTGTAGTAGTACCAGCTGCTATGCC
4744





IGHD2-2-y
AGGATATTGTAGTAGTACCAGCTGCTATACC
4745





IGHD2-2-z
TGGATATTGTAGTAGTACCAGCTGCTATGCC
4746





IGHD2-21-01
AGCATATTGTGGTGGTGATTGCTATTCC
4747





IGHD2-21-02
AGCATATTGTGGTGGTGACTGCTATTCC
4748





IGHD2-8-01
AGGATATTGTACTAATGGTGTATGCTATACC
4749





IGHD3-10-01
GTATTACTATGGTTCGGGGAGTTATTATAAC
4750





IGHD3-10-03
GTATTACTATGGTTCAGGGAGTTATTATAAC
4751





IGHD3-16-02
GTATTATGATTACGTTTGGGGGAGTTATGCTTATACC
4752





IGHD3-22-01
GTATTACTATGATAGTAGTGGTTATTACTAC
4753





IGHD3-3-01
GTATTACGATTTTTGGAGTGGTTATTATACC
4754





IGHD3-9-01
GTATTACGATATTTTGACTGGTTATTATAAC
4755





IGHD4-17
TGACTACGGTGACTAC
4756





IGHD4-23-01
TGACTACGGTGGTAACTCC
4757





IGHD4-4/11-
TGACTACAGTAACTAC
4758


01







IGHD5-12-01
GTGGATATAGTGGCTACGATTAC
4759





IGHD5-24-01
GTAGAGATGGCTACAATTAC
4760





IGHD5-5/18-
GTGGATACAGCTATGGTTAC
4761


01







IGHD6-13-01
GGGTATAGCAGCAGCTGGTAC
4762





IGHD6-19-01
GGGTATAGCAGTGGCTGGTAC
4763





IGHD6-6-01
GAGTATAGCAGCTCGTCC
4764





IGHD7-27-01
CTAACTGGGGA
4765
















TABLE 17







Theoretical segment pool of 73 DH parent Segments. ″Z″ represents a stop


codon.












DH Parent


DH Parent




Segment
Amino Acid

Segment
Amino Acid



Name
Sequence
SEQ ID NO
Name
Sequence
SEQ ID NO





DHparent001
LTG
n/a
DHparent038
WIZWLRL
4776





DHparent002
NWG
n/a
DHparent039
VDIVATIT
4369





DHparent003
ZLG
n/a
DHparent040
AYCGGDCYS
3862





DHparent004
DYGDY
4348
DHparent041
HIVVVIAIP
3871





DHparent005
DYSNY
4366
DHparent042
HIVVVTAIP
3891





DHparent006
TTVTT
4351
DHparent043
SILWWZLLF
4777





DHparent007
VQLER
3737
DHparent044
DIVLMVYAIP
3920





DHparent008
VZLEL
4766
DHparent045
DIVVVPAAIP
3846





DHparent009
VZLER
4767
DHparent046
DIVVVPAAMP
3816





DHparent010
VZQLV
4768
DHparent047
DIVVVVAATP
3777





DHparent011
YNWND
3740
DHparent048
GYCSGGSCYS
3767





DHparent012
YNWNY
3765
DHparent049
GYCSSTSCYA
3806





DHparent013
ZLQZL
4769
DHparent050
GYCSSTSCYT
3843





DHparent014
ZLRZL
4770
DHparent051
GYCTNGVCYT
3910





DHparent015
DYGGNS
4354
DHparent052
ITIFGVVIIP
4269





DHparent016
EYSSSS
4476
DHparent053
ITIFZLVIIT
4778 & 8746





DHparent017
GITGTT
3743
DHparent054
ITMIVVVITT
4189





DHparent018
GTTGTT
3731
DHparent055
ITMVQGVIIT
4040





DHparent019
GYSYGY
4429
DHparent056
ITMVRGVIIT
3994





DHparent020
RDGYNY
4407
DHparent057
RILYZWCMLY
4779 & 8747





DHparent021
SIAARP
4481
DHparent058
RILZWWZLLL
4780





DHparent022
TTVVTP
4360
DHparent059
RILZZYQLLC
4781





DHparent023
VZQQLV
4771
DHparent060
RILZZYQLLY
4782





DHparent024
VZQWLV
4772
DHparent061
VLLWFGELLZ
4783





DHparent025
VZWELL
4773
DHparent062
VLLWFRELLZ
4784





DHparent026
WIQLWL
4423
DHparent063
VLLZZZWLLL
4785





DHparent027
YSGSYY
3759
DHparent064
VLRFLEWLLY
4214





DHparent028
ZLRWZL
4774
DHparent065
VLRYFDWLLZ
4786





DHparent029
ZRWLQL
4775
DHparent066
WILZZYQLLC
4787





DHparent030
GIAAAGT
4445
DHparent067
YYDFWSGYYT
4242





DHparent031
GIAVAGT
4465
DHparent068
YYDILTGYYN
4318





DHparent032
GIVGATT
3748
DHparent069
YYYDSSGYYY
4161





DHparent033
GYSGYDY
4385
DHparent070
YYYGSGSYYN
3969





DHparent034
GYSSGWY
4456
DHparent071
IMITFGGVMLIP
4115





DHparent035
GYSSSWY
4435
DHparent072
VLZLRLGELCLY
4788





DHparent036
VDTAMVT
4413
DHparent073
YYDYVWGSYAYT
4070





DHparent037
VEMATIT
4395
















TABLE 18







Application of Equation 1 to Test Case 1.









Type
Segment
Weight





TN1
R
1.0





DH
TA
1.0





N2
H
1.0





H3-JH
HFDY (SEC ID NO: 4582)
1.0
















TABLE 19







Application of Equation 1 to Test Cases 2.1


and 2.1.









Type
Segment
Weight





TN1
V and VG
0.5 each





DH
GIVGA (SEQ ID NO:
0.5 each



3751) and IVGA (SEQ ID




NO: 3755)






N2
AS
1.0





H3-JH
Y
1.0
















TABLE 20







APPLICATION of Equation 1 to Test Case 3.1.









Type
Segment
Weight





TN1
DR
1.0





DH
YSGYD (SEQ ID NO:
0.8



4389)






N2
LG
1.0





H3-JH
Y
1.0
















TABLE 21







Application of Equation 1 to Test Cases 4.1


and 4.2.









Type
Segment
Weight





TN1
″-″ and G
0.5 each





DH
GIAAA (SEQ ID NO:
0.5 each



4448) and IAAA (SEQ ID




NO: 4452)






N2
D
1.0





H3-JH
SNWFDP (SEQ ID NO:
0.83



4600
















TABLE 22







Application of Equation 1 to all Test Cases.









Type
Segments
Weight





TN1
DR, R, VG, V, G and ″_″
0.25, 0.25, 0.125,




0.125, 0.125 and 0.125




respectively





DH
TA, YSGYD, (SEQ ID NO: 4389), IAAA,
0.25, 0.20, 0.125,



(SEQ ID NO: 4452), GIAAA, (SEQ ID NO: 4448),
0.125, 0.125 and 0.125



IVGA (SEQ ID NO: 3755), and
respectively



GIVGA (SEQ ID NO: 3751)






N2
AS, H, D and LG
0.25 each





H3-JH
Y, HFDY (SEQ ID NO: 4582) and SNWFDP
0.50, 0.25 and 0.209



(SEQ ID NO: 4600).
















TABLE 23







Segments used in Exemplary Library Design 1 (ELD-1). The sequences


collectively form a theoretical segment pool that comprises


individual theoretical segment pools of TN1, DH, N2, and H3-JH


segments.














Segment

SEQ

SEQ


SEQ


No.
TN1
ID NO
DH
ID NO
N2
H3-JH
ID NO





  1

n/a
YYYDSSGYY
4162

DAFDI
4538





  2
G
n/a
YGDY
4350
Y
YYFDY
4568





  3
D
n/a
DYGDY
4348
G
Y
n/a





  4
A
n/a
YYYDSSGY
4164
D
FDY
n/a





  5
V
n/a
YCSSTSCY
3810
S
DY
n/a





  6
DR
n/a
YYDSSGY
4168
P
YGMDV
4640





  7
S
n/a
YCSGGSCY
3771
F

n/a





  8
L
n/a
YCSSTSC
3812
L
LDY
n/a





  9
DL
n/a
GG
n/a
A
GAFDI
4549





 10
R
n/a
RG
n/a
E
YFDY
4567





 11
GR
n/a
SGSY
3763
V
YYGMDV
4639





 12
T
n/a
YYDSSGYY
4165
H
AFDI
4539





 13
GG
n/a
SS
n/a
T
PFDY
4587





 14
E
n/a
YDFWSGY
4249
R
GMDV
4641





 15
DS
n/a
GYCSSTSC
3809
W
GWFDP
4619





 16
VG
n/a
DY
n/a
SG
YYYYGMDV
4637





 17
DG
n/a
YYYDSSG
4167
I
IDY
n/a





 18
AP
n/a
CSSTSCY
3813
RG
GYFDY
4577





 19
GL
n/a
YYDFWSGY
4245
K
GFDY
4590





 20
GS
n/a
SSGWY
4461
LG
MDV
n/a





 21
DRG
n/a
AG
n/a
Q
VDY
n/a





 22
DLG
n/a
DSSGY
4179
GP
YYYGMDV
4638





 23
VP
n/a
SSSW
4443
PG
NWFDP
4595





 24
DP
n/a
VGAT
3756
LP
PDY
n/a





 25
P
n/a
SY
n/a
AG
WFDP
4596





 26
EG
n/a
DTAM
4420
GS
NFDY
4580





 27
GA
n/a
IAAAG
4449
TS
YWYFDL
4527





 28
AG
n/a
YSSSW
4439
SS
NAFDI
4565





 29
GV
n/a
GS
n/a
GG
HFDY
4582





 30
GP
n/a
YYDSSG
4172
YS
SFDY
4584





 31
ER
n/a
VG
n/a
M
YYYYYGMDV
4636





 32
DV
n/a
YSSSWY
4437
SL
DYYYGMDV
4668





 33
VGG
n/a
YCSGGSC
3773
SP
DFDY
4581





 34
SG
n/a
YDSSGYY
4169
SD
YNWFDP
4597





 35
GRG
n/a
GI
n/a
AP
DYYYYGMDV
4655





 36
DA
n/a
GYCSGGSCY
3768
GR
YYYMDV
4685





 37
DRP
n/a
YSSS
4442
TG
LFDY
4586





 38
DSG
n/a
SSGW
4463
SR
DYFDY
4566





 39
GPR
n/a
TA
n/a
LD
NYYYYGMDV
4654





 40
DT
n/a
DSSGYY
4174
LS
GDY
n/a





 41
GGG
n/a
GYCSSTSCY
3807
GA
YDY
n/a





 42
DRGG
3720
TTVT
4352
VG
SYFDY
4571





 43
PL
n/a
YSSGWY
4458
PP
YYMDV
4686





 44
DPS
n/a
GW
n/a
RR
TFDY
4589





 45
LP
n/a
LG
n/a
GSG
YYYYYYGMDV
4642





 46
RG
n/a
DYGD
4349
GT
FFDY
4583





 47
GT
n/a
TVTT
4353
TP
SYYYYGMDV
4658





 48
LG
n/a
AAA
n/a
RP
VFDY
4591





 49
DLP
n/a
YSSGW
4460
RD
YAFDI
4540





 50
DGR
n/a
LV
n/a
QL
SDY
n/a





 51
ERG
n/a
YYDFWSGYY
4243
TT
WYFDL
4528





 52
DGS
n/a
YYDSSGYYY
4163
PL
DWFDP
4609





 53
ES
n/a
YYDFWSG
4248
RS
AFDY
4592





 54
PS
n/a
YGD
n/a
WS
PYYYYGMDV
4661





 55
GGS
n/a
YG
n/a
RV
HYFDY
4569





 56
DPR
n/a
GT
n/a
RF
DV
n/a





 57
EA
n/a
YSGSY
3760
SF
RFDY
4585





 58
GGR
n/a
YYYGSGSY
3972
PT
NYFDY
4593





 59
DGG
n/a
LR
n/a
PS
IFDY
4588





 60
SP
n/a
SSS
n/a
AT
ADY
n/a





 61
DPG
n/a
GD
n/a
RL
HYYYGMDV
4669





 62
DSGG
3723
CSGGSCY
3774
SV
GYYYYYGMDV
4651





 63
DPL
n/a
GY
n/a
RA
DWYFDL
4530





 64
TP
n/a
YCGGDCY
3866
GRG
GYYYGMDV
4677





 65
AGG
n/a
QWLV
4475
VP
YYYYMDV
4684





 66
PR
n/a
IAAA
4452
SQ
V
n/a





 67
DGT
n/a
QG
n/a
AS
FDP
n/a





 68
GLG
n/a
YCSSTSCYT
3844
PR
DDY
n/a





 69
DSP
n/a
SG
n/a
VD
GYYYYGMDV
4664





 70
GGV
n/a
TTVTT
4351
GV
YMDV
4687





 71
GPS
n/a
QQL
n/a
LT
NWYFDL
4532





 72
GVG
n/a
IAVA
4472
TR
PYFDY
4574





 73
GGA
n/a
GDY
n/a
VS
FDI
n/a





 74
RP
n/a
YYYDSSGYYY
4161
SGL
NDY
n/a





 75
DPP
n/a
DGYN
4411
RGG
HYYYYYGMDV
4643





 76
DPT
n/a
CSSTSC
3814
LR
VYYYGMDV
4678





 77
EV
n/a
IVVVPAAI
3849
SGG
VYFDY
4578





 78
GAP
n/a
AVAG
4473
SA
SNWFDP
4600





 79
DGRG
3702
AA
n/a
AY
NYYYGMDV
4667





 80
GPP
n/a
DSSG
4185
LE
LYYYYGMDV
4660





 81
DLGG
3714
VR
n/a
TGG
DYYYYYGMDV
4635





 82
ET
n/a
YDFWSG
4253
GL
AAFDI
4551





 83
DGGP
3681
GYSSSWY
4435
GAG
SWFDP
4613





 84
DGGR
3684
SGW
n/a
TA
SYYYYYGMDV
4645





 85
DGSG
3705
WG
n/a
IS
SYYYGMDV
4671





 86
GTG
n/a
SGSYY
3761
ST
P
n/a





 87
DPGG
3717
RY
n/a
SSE
YYYYYMDV
4683





 88
DGGS
3687
DS
n/a
GLG
RAFDI
4544





 89
GGT
n/a
TT
n/a
PRP
RYFDY
4572





 90
GGRG
3703
YCSGGSCYS
3769
RPL
FYYYYGMDV
4657





 91
EGR
n/a
PA
n/a
EA
GNWFDP
4606





 92
DGA
n/a
IVVVPAA
3823
LGG
RWFDP
4614





 93
DGL
n/a
IAAAGT
4447
FS
GFDP
4623





 94
EL
n/a
AAAG
4453
DL
DYYYYMDV
4714





 95
EGG
n/a
GYCSGGSC
3770
GGG
PYYYGMDV
4674





 96
LGG
n/a
SGWY
4464
AR
DP
n/a





 97
DPA
n/a
DYGGN
4355
RE
HAFDI
4541





 98
EGV
n/a
YYYDS
4176
PA
DNWFDP
4594





 99
GSG
n/a
YSSG
4462
PTQ
LNWFDP
4602





100
GGP
n/a
YDSSGY
4173
AGG
AYYYYGMDV
4666





101


VAG
n/a
GGV







102


SSW
n/a
SI







103


GSGSY
3987
SAA







104


SSSS
4480
GGS







105


NW
n/a
GGA







106


DFWSGY
4254
GPG







107


QQLV
4455
PGG







108


YGGN
4358
AAE







109


YDSSG
4178
GGR







110


GYSYG
4430
TW







111


TV
n/a
GGP







112


NG
n/a
GGL







113


IVGAT
3752
VGG







114


IVGA
3755
GTG







115


YGSGSY
3981
NR







116


SSWY
4444
NTP







117


ST
n/a
PV







118


DFWSGYY
4250
EK







119


GSY
n/a
GVG







120


YYDSS
4177
KV







121


VGA
n/a
EKR







122


AT
n/a
QT







123


RP
n/a
SE







124


YYYGSGS
3975
SAL







125


GIAAAG
4446
FH







126


SGY
n/a
RH







127


TG
n/a
PTA







128


LT
n/a
HL







129


RD
n/a
WGT







130


WEL
n/a
REL







131


YSYG
4433
NT







132


TVT
n/a
HW







133


GYCSGGSCYS
3767
PKS







134


AR
n/a
DT







135


YYGSGSY
3976
DTL







136


RW
n/a
SK







137


DIVVVPA
3822
TGL







138


YSGS
3762
AYH







139


GYSSSW
4436
TSR







140


YSSSS
4478
GGT







141


YYYDSS
4171
QE







142


QL
n/a








143


GYSGYD
4386








144


GE
n/a








145


MA
n/a








146


DSS
n/a








147


RF
n/a








148


DTAMV
4417








149


YYGSGSYY
3973








150


VDTAMV
4414








151


FGVV
4293








152


EYSSS
4477








153


TTV
n/a








154


SWY
n/a








155


IAARP
4483








156


VE
n/a








157


SIAA
4484








158


YSGYD
4389








159


DIVVVPAA
3819








160


CSGGSC
3775








161


DW
n/a








162


TS
n/a








163


RL
n/a








164


YSS
n/a








165


GN
n/a








166


SN
n/a








167


GYSY
4432








168


YYDS
4183








169


VDTAM
4416








170


LE
n/a








171


AVAGT
4470








172


YSY
n/a








173


SW
n/a








174


SSG
n/a








175


FGV
n/a








176


VP
n/a








177


VA
n/a








178


SYY
n/a








179


QWL
n/a








180


GSG
n/a








181


TIFGVV
4280








182


AVA
n/a








183


FWSGY
4260








184


YSGSYY
3759








185


IAVAG
4469








186


YS
n/a








187


YQL
n/a








188


SIAAR
4482








189


YCGGDC
3868








190


NWNY
3766








191


SSSWY
4440








192


GIAVA
4468








193


YSYGY
4431








194


GIAAA
4448








195


YYG
n/a








196


AAG
n/a








197


AV
n/a








198


AYCGGDCY
3863








199


YYGSGS
3980








200


EY
n/a
















TABLE 24







Segments used in Exemplary Library Design 2 (ELD-2). The sequences collectively


form a theoretical segment pool that comprises individual theoretical segment


pools of TN1, DH, N2, and H3-JH segments.















Segment

SEQ

SEQ

SEQ

SEQ


No.
TN1
ID NO
DH
ID NO
N2
ID NO
H3-JH
ID NO





  1

n/a
YYYDSSGYY
4162

n/a
DAFDI
4538





  2
G
n/a
YGDY
4350
G
n/a
YYFDY
4568





  3
D
n/a
DYGDY
4348
D
n/a
Y
n/a





  4
A
n/a
YYYDSSGY
4164
A
n/a
FDY
n/a





  5
V
n/a
YCSSTSCY
3810
v
n/a
DY
n/a





  6
S
n/a
YYDSSGY
4168
s
n/a
YGMDV
4640





  7
DR
n/a
YCSGGSCY
3771
DR
n/a

n/a





  8
L
n/a
YCSSTSC
3812
L
n/a
LDY
n/a





  9
R
n/a
GG
n/a
R
n/a
GAFDI
4549





 10
DL
n/a
RG
n/a
DL
n/a
YFDY
4567





 11
T
n/a
SGSY
3763
T
n/a
YYGMDV
4639





 12
E
n/a
YYDSSGYY
4165
E
n/a
AFDI
4539





 13
GR
n/a
SS
n/a
GR
n/a
PFDY
4587





 14
GG
n/a
YDFWSGY
4249
GG
n/a
GMDV
4641





 15
DG
n/a
GYCSSTSC
3809
DG
n/a
GWFDP
4619





 16
DS
n/a
DY
n/a
DS
n/a
YYYYGMDV
4637





 17
VG
n/a
YYYDSSG
4167
VG
n/a
IDY
n/a





 18
EG
n/a
CSSTSCY
3813
EG
n/a
GYFDY
4577





 19
P
n/a
YYDFWSGY
4245
P
n/a
GFDY
4590





 20
GL
n/a
SSGWY
4461
GL
n/a
MDV
n/a





 21
GS
n/a
AG
n/a
GS
n/a
VDY
n/a





 22
DP
n/a
DSSGY
4179
DP
n/a
YYYGMDV
4638





 23
GP
n/a
SSSW
4443
GP
n/a
NWFDP
4595





 24
GA
n/a
VGAT
3756
GA
n/a
PDY
n/a





 25
GV
n/a
SY
n/a
GV
n/a
WFDP
4596





 26
H
n/a
DTAM
4420
H
n/a
NFDY
4580





 27
DRG
n/a
IAAAG
4449
DRG
n/a
YWYFDL
4527





 28
DQ
n/a
YSSSW
4439
DQ
n/a
NAFDI
4565





 29
AG
n/a
GS
n/a
AG
n/a
HFDY
4582





 30
DLG
n/a
YYDSSG
4172
DLG
n/a
SFDY
4584





 31
DV
n/a
VG
n/a
DV
n/a
YYYYYGMDV
4636





 32
Q
n/a
YSSSWY
4437
Q
n/a
DYYYGMDV
4668





 33
N
n/a
YCSGGSC
3773
N
n/a
DFDY
4581





 34
AP
n/a
YDSSGYY
4169
AP
n/a
YNWFDP
4597





 35
GGG
n/a
GI
n/a
GGG
n/a
DYYYYGMDV
4655





 36
DH
n/a
GYCSGGSCY
3768
DH
n/a
YYYMDV
4685





 37
VP
n/a
YSSS
4442
VP
n/a
LFDY
4586





 38
SG
n/a
SSGW
4463
SG
n/a
DYFDY
4566





 39
GRG
n/a
TA
n/a
GRG
n/a
NYYYYGMDV
4654





 40
AR
n/a
DSSGYY
4174
AR
n/a
GDY
n/a





 41
RG
n/a
GYCSSTSCY
3807
RG
n/a
YDY
n/a





 42
ER
n/a
TTVT
4352
ER
n/a
SYFDY
4571





 43
DA
n/a
YSSGWY
4458
DA
n/a
YYMDV
4686





 44
AS
n/a
GW
n/a
AS
n/a
TFDY
4589





 45
PL
n/a
LG
n/a
PL
n/a
YYYYYYGMDV
4642





 46
DQG
n/a
DYGD
4349
DQG
n/a
FFDY
4583





 47
VL
n/a
TVTT
4353
VL
n/a
SYYYYGMDV
4658





 48
GT
n/a
AAA
n/a
GT
n/a
VFDY
4591





 49
DGG
n/a
YSSGW
4460
DGG
n/a
YAFDI
4540





 50
DSG
n/a
LV
n/a
DSG
n/a
SDY
n/a





 51
VGG
n/a
YYDFWSGYY
4243
VGG
n/a
WYFDL
4528





 52
F
n/a
YYDSSGYYY
4163
F
n/a
DWFDP
4609





 53
AL
n/a
YYDFWSG
4248
AL
n/a
AFDY
4592





 54
PS
n/a
YGD
n/a
PS
n/a
PYYYYGMDV
4661





 55
ES
n/a
YG
n/a
ES
n/a
HYFDY
4569





 56
ERG
n/a
GT
n/a
ERG
n/a
DV
n/a





 57
GGV
n/a
YSGSY
3760
GGV
n/a
RFDY
4585





 58
DRP
n/a
YYYGSGSY
3972
DRP
n/a
NYFDY
4593





 59
EA
n/a
LR
n/a
EA
n/a
IFDY
4588





 60
TP
n/a
SSS
n/a
TP
n/a
ADY
n/a





 61
GPR
n/a
GD
n/a
GPR
n/a
HYYYGMDV
4669





 62
LH
n/a
CSGGSCY
3774
LH
n/a
GYYYYYGMDV
4651





 63
SR
n/a
GY
n/a
SR
n/a
DWYFDL
4530





 64
LP
n/a
YCGGDCY
3866
LP
n/a
GYYYGMDV
4677





 65
LG
n/a
QWLV
4475
LG
n/a
YYYYMDV
4684





 66
DT
n/a
IAAA
4452
DT
n/a
V
n/a





 67
VA
n/a
QG
n/a
VA
n/a
FDP
n/a





 68
SL
n/a
YCSSTSCYT
3844
Sm
n/a
DDY
n/a





 69
EGG
n/a
SG
n/a
EGG
n/a
GYYYYGMDV
4664





 70
DRS
n/a
TTVTT
4351
DRS
n/a
YMDV
4687





 71
K
n/a
QQL
n/a
K
n/a
NWYFDL
4532





 72
DPG
n/a
IAVA
4472
DPG
n/a
PYFDY
4574





 73
I
n/a
GDY
n/a
I
n/a
FDI
n/a





 74
GD
n/a
YYYDSSGYYY
4161
GD
n/a
NDY
n/a





 75
DGT
n/a
DGYN
4411
DGT
n/a
HYYYYYGMDV
4643





 76
GPP
n/a
CSSTSC
3814
GPP
n/a
VYYYGMDV
4678





 77
DPP
n/a
IVVVPAAI
3849
DPP
n/a
VYFDY
4578





 78
RR
n/a
AVAG
4473
RR
n/a
SNWFDP
4600





 79
EGV
n/a
AA
n/a
EGV
n/a
NYYYGMDV
4667





 80
GF
n/a
DSSG
4185
GF
n/a
LYYYYGMDV
4660





 81
GVG
n/a
VR
n/a
GVG
n/a
DYYYYYGMDV
4635





 82
DPS
n/a
YDFWSG
4253
DPS
n/a
AAFDI
4551





 83
VD
n/a
GYSSSWY
4435
VD
n/a
SWFDP
4613





 84
GGT
n/a
SGW
n/a
GGT
n/a
SYYYYYGMDV
4645





 85
DK
n/a
WG
n/a
DK
n/a
SYYYGMDV
4671





 86
GTG
n/a
SGSYY
3761
GTG
n/a
P
n/a





 87
DF
n/a
RY
n/a
DF
n/a
YYYYYMDV
4683





 88
GQ
n/a
DS
n/a
GQ
n/a
RAFDI
4544





 89
SP
n/a
TT
n/a
SP
n/a
RYFDY
4572





 90
QG
n/a
YCSGGSCYS
3769
QG
n/a
FYYYYGMDV
4657





 91
DLT
n/a
PA
n/a
DLT
n/a
GNWFDP
4606





 92
AK
n/a
IVVVPAA
3823
AK
n/a
RWFDP
4614





 93
GPS
n/a
IAAAGT
4447
GPS
n/a
GFDP
4623





 94
QR
n/a
AAAG
4453
QR
n/a
DYYYYMDV
4714





 95
VR
n/a
GYCSGGSC
3770
VR
n/a
PYYYGMDV
4674





 96
DSP
n/a
SGWY
4464
DSP
n/a
DP
n/a





 97
DPL
n/a
DYGGN
4355
DPL
n/a
HAFDI
4541





 98
EGR
n/a
YYYDS
4176
EGR
n/a
DNWFDP
4594





 99
GRRG
4789
YSSG
4462
GRRG
4789
LNWFDP
4602





100
EV
n/a
YDSSGY
4173
EV
n/a
AYYYYGMDV
4666





101


VAG
n/a
RP
n/a







102


SSW
n/a
GH
n/a







103


GSGSY
3987
DGR
n/a







104


SSSS
4480
AA
n/a







105


NW
n/a
DD
n/a







106


DFWSGY
4254
W
n/a







107


QQLV
4455
GGS
n/a







108


YGGN
4358
DIS
n/a







109


YDSSG
4178
GGA
n/a







110


GYSYG
4430
GK
n/a







111


TV
n/a
DGP
n/a







112


NG
n/a
DLK
n/a







113


IVGAT
3752
ET
n/a







114


IVGA
3755
TT
n/a







115


YGSGSY
3981
VH
n/a







116


SSWY
4444
AE
n/a







117


ST
n/a
VS
n/a







118


DFWSGYY
4250
LGG
n/a







119


GSY
n/a
C
n/a







120


YYDSS
4177
DKG
n/a







121


VGA
n/a
HA
n/a







122


AT
n/a
VI
n/a







123


RP
n/a
HP
n/a







124


YYYGSGS
3975
GGE
n/a







125


GIAAAG
4446
EP
n/a







126


SGY
n/a
EF
n/a







127


TG
n/a
DRN
n/a







128


LT
n/a
DWG
n/a







129


RD
n/a
GE
n/a







130


WEL
n/a
DRA
n/a







131


YSYG
4433
VN
n/a







132


TVT
n/a
DRE
n/a







133


GYCSGGSCYS
3767
DLA
n/a







134


AR
n/a
EN
n/a







135


YYGSGSY
3976
VT
n/a







136


RW
n/a
HG
n/a







137


DIVVVPA
3822
RA
n/a







138


YSGS
3762
M
n/a







139


GYSSSW
4436
DVP
n/a







140


YSSSS
4478
GAP
n/a







141


YYYDSS
4171
GLG
n/a







142


QL
n/a
GPG
n/a







143


GYSGYD
4386
PG
n/a







144


GE
n/a
DSS
n/a







145


MA
n/a
SS
n/a







146


DSS
n/a
AGG
n/a







147


RF
n/a
GGR
n/a







148


DTAMV
4417
GPN
n/a







149


YYGSGSYY
3973
DRL
n/a







150


VDTAMV
4414
GRR
n/a







151


FGVV
4293
DSGG
3723







152


EYSSS
4477
TR
n/a







153


TTV
n/a
DLS
n/a







154


SWY
n/a
RGG
n/a







155


IAARP
4483
Y
n/a







156


VE
n/a
EVR
n/a







157


SIAA
4484
LI
n/a







158


YSGYD
4389
TF
n/a







159


DIVVVPAA
3819
LK
n/a







160


CSGGSC
3775
DLE
n/a







161


DW
n/a
GY
n/a







162


TS
n/a
DGS
n/a







163


RL
n/a
GVR
n/a







164


YSS
n/a
GQR
n/a







165


GN
n/a
EGL
n/a







166


SN
n/a
VLG
n/a







167


GYSY
4432
QP
n/a







168


YYDS
4183
VM
n/a







169


VDTAM
4416
VE
n/a







170


LE
n/a
DQGG
4790







171


AVAGT
4470
PN
n/a







172


YSY
n/a
DGL
n/a







173


SW
n/a
PV
n/a







174


SSG
n/a
HR
n/a







175


FGV
n/a
AD
n/a







176


VP
n/a
DLF
n/a







177


VA
n/a
LD
n/a







178


SYY
n/a
GGD
n/a







179


QWL
n/a
DRR
n/a







180


GSG
n/a
DHH
n/a







181


TIFGVV
4280
DW
n/a







182


AVA
n/a
DAS
n/a







183


FWSGY
4260
GW
n/a







184


YSGSYY
3759
SC
n/a







185


IAVAG
4469
GLR
n/a







186


YS
n/a
DGA
n/a







187


YQL
n/a
LA
n/a







188


SIAAR
4482
EEG
n/a







189


YCGGDC
3868
AV
n/a







190


NWNY
3766
VQ
n/a







191


SSSWY
4440
AH
n/a







192


GIAVA
4468
RS
n/a







193


YSYGY
4431
WA
n/a







194


GIAAA
4448
LR
n/a







195


YYG
n/a
GSG
n/a







196


AAG
n/a
GGSG
3706







197


AV
n/a
DLR
n/a







198


AYCGGDCY
3863
VWG
n/a







199


YYGSGS
3980
HL
n/a







200


EY
n/a
EH
n/a
















TABLE 25





Segments used in Exemplary Library Design 3 (ELD-3). The sequences collectively form a


theoretical segment pool that comprises individual theoretical segment pools of TN1, DH, N2,


and H3-JH segments.
























TN1










(plus

TN1








AR
SEQ
Nucleotides
SEQ

SEQ

SEQ


Segment
Or
ID
(plus AR or
ID

ID

ID


No.
AK)1
NO
AK)1
NO
DH
NO
DH Nucleotides
NO





1
AR
n/a
GCCAGA
n/a
GT
n/a
GGTACT
n/a





2
ARE
n/a
GCCAGAGAG
n/a
TT
n/a
ACTACT
n/a





3
ARD
n/a
GCCAGAGAC
n/a
TG
n/a
ACAGGC
n/a





4
ARG
n/a
GCCAGAGGA
n/a
ER
n/a
GAGCGT
n/a





5
AREG
4791
GCCAGAGAGGGA
4963
QLE
n/a
CAATTAGAG
n/a





6
ARDG
4792
GCCAGAGACGGA
4964
LER
n/a
TTAGAGCGT
n/a





7
ARGG
4793
GCCAGAGGTGGA
4965
VGAT
3756
GTTGGCGCAACT
5135





8
ARA
n/a
GCCAGGAGA
n/a
YSG
n/a
TATAGTGGT
n/a





9
ARER
4794
GCCAGAGAGAGA
4966
YSGSY
3760
TACTCTGGCTCTTAT
5136





10
ARDR
4795
GCCAGAGACAGA
4967
VG
n/a
GTAGGC
n/a





11
ARGR
4796
GCCAGAGGCAGA
4968
AT
n/a
GCCACT
n/a





12
ARS
n/a
GCCAGATCT
n/a
WEL
n/a
TGGGAGCTT
n/a





13
ARES
4797
GCCAGAGAATCT
4969
YS
n/a
TACAGC
n/a





14
ARDS
4798
GCCAGAGACTCT
4970
SG
n/a
AGTGGT
n/a





15
ARGS
4799
GCCAGAGGTTCT
4971
GS
n/a
GGTTCT
n/a





16
ARP
n/a
GCCAGACCT
n/a
SY
n/a
AGCTAC
n/a





17
ARDP
4800
GCCAGAGACCCT
4972
CSSTSC
3814
TGTAGTAGTACAAGTTGC
5137





18
ARGP
4801
GCCAGAGGGCCT
4973
CSSTSCY
3813
TGCTCATCTACATCATGCTAT
5138





19
ARL
n/a
GCCAGATTG
n/a
YCSSTSC
3812
TATTGTTCAAGTACATCTTGT
5139





20
ARDL
4802
GCCAGAGACTTG
4974
GYCSSTSC
3809
GGGTATTGCTCCAGTACCTCATGT
5140





21
ARGL
4803
GCCAGAGGGTTG
4975
YCSSTSCY
3810
TACTGCAGCAGCACAAGTTGTTAC
5141





22
ARA
n/a
GCCAGAGCT
n/a
GYCSSTSCY
3807
GGGTATTGCAGTTCAACTAGTTGTTAT
5142





23
AREA
4804
GCCAGAGAGGCT
4976
YCSSTSCYT
3844
TACTGTTCATCAACCTCCTGTTATACT
5143





24
ARDA
4805
GCCAGAGATGCT
4977
PAA
n/a
CCTGCCGCT
n/a





25
ARGA
4806
GCCAGAGGTGCT
4978
CSGGSCY
3774
TGCTCTGGGGGTAGCTGCTAT
5144





26
ART
n/a
GCCAGAACT
n/a
YCSGGSC
3773
TACTGTAGCGGTGGTAGTTGC
5145





27
ARET
4807
GCCAGAGAGACT
4979
GYCSGGSC
3770
GGATACTGTAGTGGCGGATCCTGC
5146





28
ARDT
4808
GCCAGAGATACT
4980
YCSGGSCY
3771
TACTGCTCCGGAGGAAGTTGTTAT
5147





29
ARGT
4809
GCCAGAGGCACT
4981
GYCSGGSCY
3768
GGTTATTGCAGTGGGGGTTCATGTTAC
5148





30
ARV
n/a
GCCAGAGTG
n/a
YCSGGSCYS
3769
TACTGTTCCGGAGGTAGCTGTTACTCT
5149





31
AREV
4810
GCCAGAGAGGTG
4982
RI
n/a
AGAATC
n/a





32
ARDV
4811
GCCAGAGATGTG
4983
GY
n/a
GGATAT
n/a





33
ARGV
4812
GCCAGAGGGGTG
4984
GG
n/a
GGCGGT
n/a





34
AREG
4813
GCCAGAGAGGGAG
4985
ATP
n/a
GCTACCCCT
n/a



G

GA










35
ARDG
4814
GCCAGAGATGGTG
4986
DI
n/a
GACATC
n/a



G

GA










36
ARGG
4815
GCCAGAGGTGGAG
4987
TP
n/a
ACTCCT
n/a



G

GA










37
ARDG
4816
GCCAGAGACGGCA
4988
GD
n/a
GGAGAT
n/a



R

GA










38
ARGG
4817
GCCAGAGGCGGTT
4989
AYCGGDCY
3863
GCCTATTGCGGTGGTGACTGCTAT
5150



S

CT










39
ARGG
4818
GCCAGAGGTGGGC
4990
AYCGGDC
3865
GCATATTGCGGAGGGGATTGC
5151



P

CT










40
ARGG
4819
GCCAGAGGAGGTG
4991
YCGGDCY
3866
TATTGTGGTGGGGACTGCTAT
5152



A

CT










41
ARDG
4820
GCCAGAGACGGTA
4992
YCGGDC
3868
TACTGCGGAGGCGATTGC
5153



T

CT










42
ARGG
4821
GCCAGAGGTGGAA
4993
HI
n/a
CACATC
n/a



T

CT










43
AREG
4822
GCCAGAGAGGGAG
4994
TA
n/a
ACAGCT
n/a



V

TG










44
ARGG
4823
GCCAGAGGTGGCG
4995
GYCSSTSCYA
3806
GGGTACTGCTCTAGCACTTCATGCTACGCC
5154



V

TG










45
ARRG
4824
GCCAGAAGAGGA
4996
SS
n/a
AGTTCT
n/a





46
ARER
4825
GCCAGAGAGCGTG
4997
ST
n/a
AGTACT
n/a



G

GA










47
ARDR
4826
GCCAGAGATCGTG
4998
TS
n/a
ACCAGC
n/a



G

GA










48
ARGR
4827
GCCAGAGGCAGGG
4999
PAAMP
3835
CCAGCAGCTATGCCT
5155



G

GA










49
ARSG
4828
GCCAGATCAGGA
5000
PA
n/a
CCCGCC
n/a





50
ARDS
4829
GCCAGAGACTCAG
5001
MP
n/a
ATGCCT
n/a



G

GA










51
ARDP
4830
GCCAGAGATCCAG
5002
VYAIP
3940
GTCTATGCAATTCCT
5156



G

GA










52
ARLG
4831
GCCAGATTGGGA
5003
WFGE
3966
TGGTTTGGGGAG
5157





53
ARDL
4832
GCCAGAGACTTGG
5004
FGE
n/a
TTTGGAGAG
n/a



G

GA










54
ARAG
4833
GCCAGAGCTGGA
5005
GEL
n/a
GGCGAGCTT
n/a





55
ARVG
4834
GCCAGAGTGGGA
5006
WFG
n/a
TGGTTCGGT
n/a





56
ARGV
4835
GCCAGAGGCGTAT
5007
GSG
n/a
GGTTCAGGC
n/a



G

GA










57
ARPR
4836
GCCAGACCCAGA
5008
SGSY
3763
AGTGGATCTTAT
5158





58
ARGP
4837
GCCAGAGGACCAA
5009
YYGS
3990
TATTATGGCAGT
5159



R

GA










59
ARPS
4838
GCCAGACCATCT
5010
YYYG
3969
TACTACTATGGC
5160





60
ARDP
4839
GCCAGAGATCCCT
5011
GSGSY
3987
GGCAGCGGTTCCTAC
5161



S

CT










61
ARGP
4840
GCAAGAGGACCTT
5012
SGSYY
3761
AGTGGATCCTATTAC
5162



S

CT










62
ARDP
4841
GC CAGAGACCCAC
5013
YYYGSG
3979
TATTACTACGGGTCTGGC
5163



P

CT










63
ARGP
4842
GCCAGAGGACCGC
5014
SGS
n/a
AGCGGCAGT
n/a



P

CT










64
ARPL
4843
GCCAGACCGTTG
5015
YYYGSGS
3975
TATTACTACGGATCTGGCTCT
5164





65
ARDP
4844
GCCAGAGATCCTT
5016
YYYGSGSY
3972
TATTACTATGGCTCTGGTAGCTAC
5165



L

TG










66
ARRP
4845
GCCAGAAGGCCT
5027
YGS
n/a
TATGGCTCC
n/a





67
ARDR
4846
GCCAGAGCCGTC
5018
YYG
n/a
TACTATGGT
n/a



P

CT










68
ARSP
4847
GCCAGATCACCT
5019
YYY
n/a
TATTATTAT
n/a





69
ARLP
4848
GCCAGACTTCCT
5020
MVRG
4017
ATGGTAAGAGGT
5166





70
ARAP
4849
GCCAGAGCCCCT
5021
TMVRG
4010
ACCATGGTGAGGGGT
5167





71
ARTP
4850
GCCAGAACTCCT
5022
RGV
n/a
AGAGGAGTT
n/a





72
ARVP
4851
GCCAGAGTCCCT
5023
VRG
n/a
GTCAGAGGC
n/a





73
ARVG
4852
GCCAGAGTTGGAG
5024
FG
n/a
TTCGGC
n/a



G

GA










74
ARQ
n/a
GCAAGACAG
n/a
GE
n/a
GGCGAG
n/a





75
ARH
n/a
GCCAGACAC
n/a
YG
n/a
TACGGC
n/a





76
ARDQ
4853
GCCAGGGACCAG
5025
VR
n/a
GTGCGT
n/a





77
ARDH
4854
GCAAGAGACCAC
5026
RG
n/a
AGAGGT
n/a





78
ARAR
4855
GCAAGGGCTAGA
5027
FRE
n/a
TTCAGGGAG
n/a





79
ARAS
4856
GCTAGGGCATCT
5028
RE
n/a
AGAGAG
n/a





80
ARDQ
4857
GCTAGGGATCAGG
5029
QG
n/a
CAAGGT
n/a



G

GA










81
ARSR
4858
GCTAGATCAAGA
5030
LR
n/a
TTACGT
n/a





82
ARDR
4859
GCCAGGGACAGGT
5031
YYDYVWGSYA
4070
TACTATGATTACGTCTGGGGGTCTTATGCTTA
5168



S

CT

YT

CACT






83
ARSL
4860
GCTAGATCTTTG
5032
YYDYVWGSYA
4071
TACTACGACTATGTATGGGGCTCATATGCTTA
5169







Y

C






84
ARLH
4861
GCTAGGTTGCAC
5033
YYDYVWGSYA
4073
TACTACGATTACGTATGGGGAAGCTACGCT
5170





85
ARDL
4862
GCCAGGGATTTGA
5034
YDYYWGSYAY
4074
TATGATTATGTGTGGGGGTCATACGCATAC
5171



T

CT










86
ARK
n/a
GCCAGAAAG
n/a
DY
n/a
GATTAC
n/a





87
ARAE
4863
GCAAGAGCCGAG
5035
WG
n/a
TGGGGC
n/a





88
ARDL
4864
GCAAGGGATTTGT
5036
DYVWGSYAYT
4075
GATTATGTGTGGGGGTCTTACGCCTACACC
5172



S

CT










89
ARGD
4865
GCTAGAGGGGAC
5037
YDYVWGSYA
4077
TACGACTATGTGTGGGGTTCCTATGCT
5173





90
ARRR
4866
GCTAGGAGGAGA
5038
YYDS
4183
TACTACGATTCC
5174





91
ARDK
4867
GCTAGAGATAAG
5039
YYYD
4182
TATTATTATGAC
5175





92
ARVS
4868
GCTAGAGTATCT
5040
DSSGY
4179
GACAGTTCCGGGTAC
5176





93
ARDR
486
GCCAGAGACAGGT
5041
YDSSG
4178
TATGATAGCTCAGGT
5177



L
4869
TG










94
ARGQ
4870
GCTAGGGGCCAG
5042
YYDSS
4177
TACTATGACTCATCC
5178





95
ARVR
4871
GCCAGGGTCAGA
5043
YYYDS
4176
TATTATTACGATAGT
5179





96
ARAK
4872
GCTAGGGCTAAG
5044
GYY
n/a
GGATATTAC
n/a





97
ARGK
4873
GCCAGGGGTAAG
5045
DSSGYY
4174
GATTCTTCCGGGTACTAC
0





98
ARDI
4874
GCAAGGGATATTT
5046
YDSSGY
4173
TATGATTCCAGCGGATAC
5181



S

CT










99
ARDF
4875
GCTAGGGATTTCA
5047
YYDSSG
4172
TACTACGATAGCTCCGGT
5182



T

CT










100
ARQG
4876
GCCAGGCAGGGA
5048
YYYDSS
4171
TATTATTACGACTCTTCC
5183





101
AK
n/a
GCCAAG
n/a
YDSSGYY
4169
TACGACTCTTCTGGTTATTAC
5184





102
AKE
n/a
GCCAAGGAG
n/a
YYDSSGY
4168
TATTATGACAGCAGCGGGTAT
5185





103
AKD
n/a
GCCAAGGAC
n/a
YYYDSSG
4167
TACTACTACGATTCCAGCGGT
5186





104
AKG
n/a
GCCAAGGGA
n/a
YDSYSGYYY
4166
TACGACAGTTCCGGATATTATTAC
5187





105
AKEG
4877
GCCAAGGAAGGA
5049
SGY
n/a
AGCGGATAT
n/a





106
AKDG
4878
GCCAAGGACGGA
5050
YYDSSGYY
4165
TACTATGATAGTAGTGGGTACTAT
5188





107
AKGG
4879
GCCAAGGGCGGA
5051
YYYDSSGY
4164
TACTACTATGACAGCTCAGGGTAT
5189





108
AKR
n/a
GCCAAGAGA
n/a
YYDSSGYYY
4163
TATTACGACAGCAGTGGCTACTACTAT
5190





109
AKER
4880
GCCAAGGAAAGA
5052
YYYDSSGYY
4162
TACTACTACGATAGCTCTGGATACTAT
5191





110
AKDR
4881
GCCAAGGACAGA
5053
YYYDSSGYYY
5161
TATTATTACGATTCCAGTGGTTATTATTAT
5192





111
AKGR
4882
GCCAAGGGCAGA
5054
YDS
n/a
TACGACTCC
n/a





112
AKS
n/a
GCCAAGTCT
n/a
YYD
n/a
TACTATGAC
n/a





113
AKES
4883
GCCAAGGAATCT
5055
DSSG
4185
GACTCATCCGGT
5193





114
AKDS
4884
GCCAAGGATTCT
5056
GYYY
4188
GGTTACTATTAC
5194





115
AKGS
4885
GCCAAGGGATCT
5057
SGYY
4187
AGCGGCTACTAT
5195





116
AKP
n/a
GCCAAGCCT
n/a
DS
n/a
GACTCT
n/a





117
AKDP
4886
GCCAAGGATCCT
5058
RFLEW
4231
AGATTTTTGGAGTGG
5196





118
AKGP
4887
GCCAAGGGTCCT
5059
EWL
n/a
GAATGGCTT
n/a





119
AKL
n/a
GCCAAGTTG
n/a
RF
n/a
AGATTC
n/a





120
AXDL
4888
GCCAAGGACTTG
5060
YYDFWSGYYT
4242
TACTATGATTTTGGAGTGGATATTATACC
5197





121
AKGL
4889
GCCAAGGGGTTG
5061
YDFWSG
4253
TATGATTTTTGGTCTGGT
5198





122
AKA
n/a
GCCAAGGCT
n/a
DFWSGY
4254
GATTTTTGGAGCGGCTAT
5199





123
AKEA
4890
GCCAAGGAAGCT
5062
FWSGY
4260
TTTTGGAGCGGGTAT
5200





124
AKDA
4891
GCCAAGGACGCT
5063
YYDFWSGYY
4243
TACTACGACTTCTGGAGCGGGTATTAC
5201





125
AKGA
4892
GCCAAGGGCGCT
5064
YYDFWSGY
4245
TACTACGATTTTTGGTCTGGATAT
5202





126
AKT
n/a
GCCAAGACT
n/a
YDFWSGYY
4246
TATGACTTTTGGAGTGGTTACTAC
5203





127
AKET
4893
GCCAAGGAAACT
5065
YYDFWSG
4248
TACTACGATTTCTGGTCAGGC
5204





128
AKDT
4894
GCCAAGGATACT
5066
YDFWSGY
4249
TATGACTTCTGGAGTGGTTAC
5205





129
AKGT
4895
GCCAAGGGAACT
5067
DFWSGYY
4250
GACTTCTGGTCAGGATACTAC
5206





130
AKV
n/a
GCCAAGGTG
n/a
VLRYF
4307
GTGTTGAGGTACTTC
5207





131
AKEV
4896
GCCAAGGAAGTG
5068
LRYFD
4308
TTAAGATACTTTGAT
5208





132
AKDV
4897
GCCAAGGACGTG
5069
RYFDW
4309
AGATACTTTGATTGG
5209





133
AKGV
4898
GCCAAGGGCGTG
5070
VLRY
4312
GTGTTGAGGTAT
5210





134
AKEG
4899
GCCAAGGAGGGAG
5071
LRYF
4313
TTGAGATATTTC
5211



G

GA










135
AKDG
4900
GCCAAGGACGGTG
5072
RYFD
4314
AGATACTTTGAT
5212



G

GA










136
AKGG
4901
GCCAAGGGAGGAG
5073
VLRYFDWL
4298
GTCTTAAGGTACTTCGATTGGCTT
5213



G

GA










137
AKDG
4902
GCCAAGGACGGTA
5074
LRY
n/a
TTAAGATAC
n/a



R

GA










138
AKGG
4903
GCCAAGGGAGGTT
5075
RYF
n/a
AGATACTTC
n/a



S

CT










139
AKGG
4904
GCCAAGGGAGGTC
5076
RY
n/a
AGATAT
n/a



P

CT










140
AKGG
4905
GCCAAGGGAGGCG
5077
FD
n/a
TTCGAT
n/a



A

CT










141
AKDG
4906
GCCAAGGATGGCA
5078
DW
n/a
GATTGG
n/a



T

CT










142
AKGG
4907
GCCAAGGGAGGCA
5079
VLRYFDW
4300
GTCTTAAGATACTTTGATTGG
5214



T

CT










143
AKEG
4908
GCCAAGGAAGGAG
5080
VLRYFD
4303
GTGTTGAGGTACTTTGAC
5215



V

TG










144
AKGG
4909
GCCAAGGGCGGTG
5081
LRYFDW
4304
TTAAGATACTTCGATTGG
5216



V

TG










145
AKRG
4910
GCCAAGAGAGGA
5082
RYFDWL
4305
AGATATTTCGACTGGCTT
5217





146
AKER
4911
GCCAAGGAGAGAG
5083
YDILTGYY
4322
TATGACATATTGACTGGCTACTAC
5218



G

GA










147
AKDR
4912
GCCAAGGATAGGG
5084
YDILTGY
4325
TATGATATATTAACTGGGTAC
5219



G

GA










148
AKGR
4913
GCCAAGGGTAGGG
5085
DILTGYY
4326
GATATCTTAACCGGGTATTAT
5220



G

GA










149
AKSG
4914
GCCAAGTCTGGA
5086
DYG
n/a
GATTATGGT
n/a





150
AKDS
4915
GCCAAGGATAGTG
5087
GDY
n/a
GGGGACTAC
n/a



G

GA










151
AKDP
4916
GCCAAGGACCCCG
5088
YGD
n/a
TACGGTGAC
n/a



G

GA










152
AKLG
4917
GCCAAGTTAGGA
5089
DYGD
4349
GATTACGGCGAT
5221





153
AKDL
4918
GCCAAGGATCTTG
5090
YGDY
4350
TACGGCGATTAT
5222



G

GA










154
AKAG
4919
GCCAAGGCTGGA
5091
DYGDY
4348
GACTACGGAGATTAT
5223





155
AKVG
4920
GCCAAGGTAGGA
5092
TTVTT
4351
ACCACAGTAACCACC
5224





156
AKGV
4921
GCCAAGGGTGTCG
5093
TTVT
4352
ACAACTGTGACT
5225



G

GA










157
AKPR
4922
GCCAAGCCTAGA
5094
TVTT
4353
ACAGTAACTACT
5226





158
AKGP
4923
GCCAAGGGCCCCA
5095
RW
n/a
AGATGG
n/a



R

GA










159
AKPS
4924
GCCAAGCCTTCT
5096
VTP
n/a
GTAACTCCT
n/a





160
AKDP
4925
GCCAAGGATCCCT
5097
VD
n/a
GTTGAC
n/a



S

CT










161
AKGP
4926
GCCAAAGGGCCAT
5098
GYSGYD
4386
GGCTACTCAGGATACGAC
5227



S

CT










162
AKDP
4927
GCCAAGGATCCAC
5099
YSGYD
4389
TATAGCGGATATGAC
5228



P

CT










163
AKGP
4928
GCCAAGGGCCCTC
5100
RD
n/a
AGAGAT
n/a



P

CT










164
AKPL
4929
GCCAAGCCGTTG
5101
RDGY
4410
AGAGATGGTTAC
5229





165
AKDP
4930
GCCAAGGACCCTT
5102
RDG
n/a
AGAGATGGT
n/a



L

TG










166
AKRP
4931
GCCAAGAGGCCT
5103
DTAM
4420
GATACTGCTATG
5230





167
AKDR
4932
GCCAAGGACCGTC
5104
YGY
n/a
TACGGCTAC
n/a



P

CT










168
AKSP
4933
GCCAAGAGTCCT
5105
YSY
n/a
TATTCTTAC
n/a





169
AKLP
4934
GCCAAGCTACCT
5106
YSYG
4433
TATTCATATGGT
5231





170
AKAP
4935
GCCAAGGCTCCT
5107
GYSYG
4430
GGATATAGTTATGGC
5232





171
AKTP
4936
GCCAAGACGCCT
5108
SSS
n/a
AGTTCAAGC
n/a





172
AKVP
4937
GCCAAGGTACCT
5109
YSSSWY
4437
TACAGTAGCTCTTGGTAC
5233





173
AKVG
4938
GCCAAGGTGGGTG
5110
GYSSSWY
4435
GGCTACAGTTCAAGCTGGTAT
5234



G

GA










174
AKQ
n/a
GCAAAACAG
n/a
SSW
n/a
AGTTCCTGG
n/a





175
AKH
n/a
GCCAAACAC
n/a
SWY
n/a
AGCTGGTAC
n/a





176
AKDQ
4939
GCCAAGGATCAG
5111
SSSW
4443
AGTAGCTCTTGG
5235





177
AKDH
4940
GCTAAAGACCAC
5112
YSSS
4442
TACAGCAGCTCC
5236





178
AKAR
4941
GCCAAGGCAAGA
5113
YSSSW
4449
TACTCTTCCTCATGG
5237





179
AKAS
4942
GCCAAGGCATCT
5114
SW
n/a
AGCTGG
n/a





180
AKDQ
4943
GCAAAGGATCAGG
5115
AG
n/a
GCTGGT
n/a



G

GA










181
AKSR
4944
GCCAAGAGTAGA
5116
QQLV
4455
CAGCAATTGGTT
5238





182
AKDR
4945
GCAAAAGACAGGT
5117
QQL
n/a
CAGCAACTT
n/a



S

CT










183
AKSL
4946
GCAAAGAGCTTG
5118
GWY
n/a
GGTTGGTAC
n/a





184
AKLH
4947
GCTAAATTGCAC
5119
SSGWY
4461
AGCTCTGGATGGTAC
5239





185
AKDL
4948
GCCAAGGACTTGA
5120
YSSGW
4460
TATAGTAGCGGATGG
5240



T

CT










186
AKK
n/a
GCTAAAAAG
n/a
YSSGWY
4458
TATAGCAGCGGTTGGTAC
5241





187
AKAE
4949
GCTAAAGCAGAG
5121
GYSSGWY
4456
GGTTATTCATCAGGTTGGTAT
5242





188
AKDL
4950
GCAAAAGACTTGT
5122
SGW
n/a
AGTGGTTGG
n/a



S

CT










189
AKGD
4951
GCAAAAGGGGAC
5123
YSS
n/a
TACAGTTCC
n/a





190
AKAR
4952
GCAAAAAGGAGA
5124
SGWY
4464
AGTGGTTGGTAT
5243





191
AKDK
4953
GCAAAAGACAAG
5125
SSGW
4463
AGTTCCGGTTGG
5244





192
AKVS
4954
GCCAAAGTATCT
5126
YSSG
4462
TACTCAAGTGGT
5245





193
AKDR
4955
GCAAAAGACAGGT
5127
GW
n/a
GGTTGG
n/a



L

TG










194
AKGQ
4956
GCCAAAGGACAG
5128
QWLV
4475
CAGTGGTTAGTT
5246





195
AKVR
4957
GCAAAAGTCAGA
5129
EYSS
4479
GAGTACTCATCC
5247





196
AKAK
4958
GCAAAGGCAAAG
5130
SIAARP
4481
AGCATAGCAGCAAGGCCT
5248





197
AKGK
4959
GCAAAGGGCAAG
5131
RP
n/a
CGTCCT
n/a





198
AKDI
4960
GCAAAGGACATTT
5132
IAARP
4483
ATAGCAGCAAGGCCT
5249



S

CT










199
AKDF
4961
GCTAAAGATTTCA
5133
AARP
4486
GCCGCAAGACCT
5250



T

CT










200
AKQG
4962
GCCAAGCAAGGA
5134
ARP
n/a
GCTAGACCT
n/a











SEQ

SEQ




Segment

N2

ID

ID




No.
N2
Nucleotides
H3-JH
NO
H3-JH Nucleotides
NO







1



n/a

n/a







2
A
GCT
Y
n/a
TAT
n/a







3
D
GAT
DI
n/a
GATATT
n/a







4
E
GAG
DL
n/a
GACTTG
n/a







5
F
TTC
DP
n/a
GATCCT
n/a







6
G
GGC
DV
n/a
GATGTA
n/a







7
H
CAT
DY
n/a
GACTAT
n/a







8
I
ATC
QH
n/a
CAGCAC
n/a







9
K
AAA
ADY
n/a
GCTGATTAT
n/a







10
L
CTG
DDY
n/a
GATGACTAT
n/a







11
M
ATG
FDI
n/a
TTTGACATT
n/a







12
P
CCT
FDL
n/a
TTCGACTTA
n/a







13
Q
CAG
FDP
n/a
TTTGACCCT
n/a







14
R
AGG
FDY
n/a
TTCGACTAT
n/a







15
S
TCA
FQH
n/a
TTCCAGCAC
n/a







16
T
ACC
GDY
n/a
GGTGACTAC
n/a







17
V
GTT
IDY
n/a
ATCGACTAT
n/a







18
W
TGG
LDY
n/a
TTGGACTAT
n/a







19
Y
TAC
MDV
n/a
ATGGATGTG
n/a







20
AD
GCTGAT
PDY
n/a
CCAGATTAT
n/a







21
AG
GCAGGC
SDY
n/a
TCTGATTAC
n/a







22
AP
GCCCCA
VDY
n/a
GTTGACTAC
n/a







23
AQ
GCTCAG
YDY
n/a
TATGATTAC
n/a







24
AR
GCTAGG
AFDI
4539
GCCTTCGATATC
5251







25
AS
GCTAGT
AFDY
4592
GCCTTCGATTAC
5252







26
AT
GCTACC
DFDY
4581
GATTTCGACTAT
5253







27
AY
GCCTAC
FFDY
4583
TTCTTCGATTAC
5254







28
DA
GACGCC
GFDP
4623
GGGTTGACCCA
5255







29
DD
GACGAT
GFDY
4590
GGGTTCGACTAC
5256







30
DE
GACGAG
GMDV
4641
GGCATGGATGTA
5257







31
DG
GATGGT
HFDY
4582
CACTTTGACTAT
5258







32
DL
GACTTG
IFDY
4588
ATATTCGATTAC
5259







33
DP
GACCCT
LFDY
4586
TTATTTGATTAT
5260







34
DS
GACTCC
NFDY
4580
AACTTTGATTAC
5261







35
DY
GATTAT
PFDY
4587
CCCTTCGACTAT
5262







36
EA
GAGGCC
RFDY
4585
AGGTTTGACTAT
5263







37
ED
GAGGAC
SFDY
4584
AGTTTCGATTAC
5264







38
EG
GAAGGA
TFDY
4589
ACATTTGACTAC
5265







39
EK
GAGAAA
VFDY
4591
GTTTTCGATTAT
5266







40
ER
GAAAGA
WFDP
4596
TGGTTCGATCCA
5267







41
ES
GAATCT
YFDL
4529
TATTTCGACTTA
5268







42
ET
GAAACA
YFDY
4567
TACTTCGATTAC
5269







43
FA
TTCGCT
YFQH
4489
TATTTCCAGCAC
5270







44
FH
TTCCAT
YMDV
4687
TATATGGATGTC
5271







45
FL
TTCTTG
DAFDI
4538
GATGCCTTCGACATA
5272







46
FR
TTTAGG
DWFDP
4609
GACTGGTTTGACCCC
5273







47
FS
TTTAGT
DYFDY
4566
GACTACTTTGATTAC
5274







48
GA
GGAGCC
EYFQH
4488
GAATACTTCCAACAC
5275







49
GD
GGTGAT
GAFDI
4549
GGCGCATTCGATATT
5276







50
GE
GGTGAG
GWFDP
4619
GGGTGGTTTGATCCA
5277







51
GG
GGAGGC
GYFDY
4577
GGCTATTTTGACTAC
5278







52
GL
GGATTG
HAFDI
4541
CATGCTTTTGATATA
5279







53
GP
GGACCA
HYFDY
4569
CATTACTTCGATTAC
5280







54
GR
GGTAGG
NAFDI
4565
AACGCATTCGATATT
5281







55
GS
GGCAGT
NWFDP
4595
AACTGGTTCGATCCA
5282







56
GT
GGAACA
NYFDY
4593
AATTATTTCGACTAT
5283







57
GV
GGAGTT
PYFDY
4574
CCCTACTTTGACTAT
5284







58
GW
GGATGG
RAFDI
4544
AGAGCCTTTGATATC
5285







59
GY
GGATAT
RYFDY
4572
AGGTACTTCGATTAC
5286







60
HE
CATGAG
SWFDP
4613
TCATGGTTCGACCCC
5287







61
HL
CATTTG
SYFDY
4571
AGTTACTTTGACTAT
5288







62
HP
CATCCT
TYFDY
4576
ACTTATTTCGACTAC
5289







63
HS
CACTCC
VAFDI
4550
GTGGCCTTCGACATT
5290







64
IF
ATCTTC
VYFDY
4578
GTCTATTTTGATTAT
5291







65
IG
ATCGGC
WYFDL
4528
TGGTATTTCGATTTG
5292







66
IR
ATAAGG
YAFDI
4540
TACGCATTTGACATC
5293







67
IS
ATCAGT
YGMDV
4640
TACGGCATGGACGTG
5294







68
KG
AAAGGA
YYFDY
4568
TATTATTTTGATTAC
5295







69
KR
AAGAGA
YYMDV
4686
TATTATATGGACGTC
5296







70
KV
AAAGTG
AEYFQH
4526
GCAGAGTACTTCCAGCAC
5297







71
LD
TTGGAT
DNWFDP
4594
GACAATTGGTTTGATCCC
5298







72
LE
TTAGAG
DWYFDL
4530
GATTGGTACTTCGACTTG
5299







73
LG
TTAGGT
GNWFDP
4606
GGGAATTGGTTTGATCCT
5300







74
LH
TTACAT
NWYFDL
4532
AACTGGTATTTCGACTTA
5301







75
LL
TTATTG
PNWFDP
4603
CCCAATTGGTTTGATCCA
5302







76
LP
TTACCA
SNWFDP
4600
AGTAATTGGTTTGACCCC
5303







77
LR
TTGAGG
YNWFDP
4597
TATAATTGGTTTGATCCT
5304







78
LS
TTAAGC
YWYFDL
4527
TATTGGTATTTTGATTTG
5305







79
LT
TTGACA
YYGMDV
4639
TACTATGGGATGGACGTG
5306







80
LV
TTGGTA
YYYMDV
4685
TACTATTACATGGACGTT
5307







81
LW
TTGTGG
YYYGMDV
4638
TATTATTACGGTATGGACGTC
5308







82
LY
TTGTAC
YYYYMDV
4684
TACTATTATTACATGGATGTC
5309







83
MG
ATGGGC
DYYYGMDV
4668
GACTATTATTACGGTATGGATGTT
5310







84
MT
ATGACC
GYYYGMDV
4677
GGCTACTATTATGGTATGGACGTC
5311







85
PA
CCTGCT
HYYYGMDV
4669
CATTACTACTATGGGATGGATGTA
5312







86
PD
CCTGAT
NYYYYMDV
4713
AACTATTATTATTATATGGATGTC
5313







87
PE
CCTGAG
PYYYYMDV
4720
CCCTACTACTACTATATGGATGTG
5314







88
PF
CCTTTC
RYYYYMDV
4718
AGGTATTACTACTACATGGACGTC
5315







89
PG
CCTGGT
YYYYGMDV
4637
TACTATTATTATGGGATGGATGTG
5316







90
PH
CCACAT
DYYYYGMDV
4665
GATTACTATTATTACGGAATGGATGTT
5317







91
PL
CCATTA
GYYYYGMDV
4654
GGGTATTACTACTACGGCATGGACGTA
5318







92
PP
CCTCCA
NYYYYGMDV
4654
AATTACTATTACTATGGCATGGATGTG
5319







93
PQ
CCTCAG
PYYYYGMDV
4661
CCATATTACTATTACGGCATGGATGTC
5320







94
PR
CCAAGG
SYYYYGMDV
4658
AGCTACTACTACTACGGAATGGACGTC
5321







95
PS
CCTTCT
YYYYYGMDV
4636
TACTACTACTATTACGGTATGGACGTA
5322







96
PT
CCTACA
DYYYYYYMD
4681
GATTATTATTACTACTACTACATGGAT
5323







V

GTA








97
PV
CCTGTT
GYYYYYGMD
4651
GGTTATTATTACTACTATGGGATGGAT
5324







V

GTA








98
QG
CAGGGC
HYYYYYGMD
4643
CACTACTATTATTATTACGGGATGGAT
5325







V

GTA








99
QL
CAATTA
RYYYYYYMD
4692
AGATACTACTACTATTATTACATGGAT
5326







V

GTA








100
QP
CAGCCA
YYYYYYGMD
4642
TATTACTACTATTACTATGGTATGGAC
5327







V

GTT








101
QS
CAGTCA











102
QT
CAGACT











103
RA
AGGGCT











104
RD
AGGGAC











105
RE
AGGGAG











106
RF
AGATTC











107
RG
AGGGGA











108
RH
AGGCAT











109
RL
AGATTA











110
am
AGGATG











111
RP
AGGCCA











112
RR
CGTAGA











113
RS
AGAAGT











114
RV
AGAGTG











115
RY
AGATAT











116
SA
TCAGCC











117
SD
TCAGAC











118
SE
TCCGAG











119
SF
TCATTC











120
SG
AGCGGA











121
SH
AGTCAC











122
SI
TCTATC











123
SK
AGTAAA











124
SL
TCCTTG











125
SP
AGCCCA











126
SQ
AGCCAA











127
SR
TCAAGA











128
SS
TCCTCA











129
ST
AGTACA











130
SV
TCAGTA











131
SW
TCATGG











132
SY
TCTTAC











133
TA
ACCGCC











134
TG
ACTGGC











135
TP
ACACCA











136
TR
ACAAGA











137
TS
ACATCT











138
TT
ACTACT











139
TV
ACAGTT











140
TW
ACTTGG











141
TY
ACTTAT











142
VA
GTAGCC











143
VD
GTCGAC











144
VG
GTTGGA











145
VL
GTCTTG











146
VP
GTTCCT











147
VR
GTGAGA











148
VS
GTTTCA











149
VT
GTTACC











150
VV
GTAGTA











151
WG
TGGGGT











152
WS
TGGTCA











153
YA
TACGCT











154
YD
TATGAC











155
YE
TATGAG











156
YS
TATTCT











157
AA
GCTGCCGCT









A












158
AG
GCAGGCATG









M












159
DG
GATGGGGGT









G












160
DG
GATGGTGTA









V












161
FG
TTCGGGGGC









G












162
GA
GGAGCTGGA









G












163
GG
GGAGGGGCC









A












164
GG
GGAGGCGGT









G












165
GG
GGAGGCTTA









L












166
GG
GGTGGTAGA









R












167
GG
GGCGGGAGC









S












168
GG
GGTGGGGTA









V












169
GL
GGATTAGGC









G












170
GP
GGCCCCGGC









G












171
GP
GGACCACCT









P












172
GR
GGAAGGGGC









G












173
GS
GGATCTGGC









G












174
GT
GGAACTGGC









G












175
GV
GGAGTAGGT









G












176
LG
TTGGGAGGC









G












177
LG
TTGGGCCAC









H












178
PG
CCTGGCGGC









G












179
PK
CCAAAGCAG









Q












180
PK
CCTAAAAGG









R












181
PT
CCAACTCAG









Q












182
RF
AGGTTTGAG









E












183
RG
AGGGGAGGT









G












184
RG
AGGGGATTG









L












185
RG
AGGGGTAGT











186
RP
AGGCCATTA









L












187
RP
AGGCCATAT









Y












188
SA
TCTGCCGCC









A












189
SG
AGCGGGGAG









E












190
SG
TCTGGCGGC









G












191
SG
TCAGGGTTA









KL












192
SG
AGCGGTTGG









W












193
SG
AGCGGCTAC









Y












194
SR
TCAAGAGGT









G












195
SS
TCATCAGAG









E












196
SS
AGCTCATGG









W












197
TG
ACCGGTGGC









G












198
VG
GTTGGCAGA









R












199
VQ
GTGCAAGGA









G












200
VT
GTCACAGCT









A






1“AR” and “AK” refer to the last two C-terminal amino acids of the heavy chain chassis used in the current example. They are not part of the TN1 segment.














TABLE 26







Theoretical segment pool of 300 TN1 segments (plus AR/AK; which is not part of TN1) used in the


library of Example 12.











Peptide

Nucleotide




(plus AR or AK)1
SEQ ID NO
(plus AR or AK)1
SEQ ID NO
In ELD-3?





AR
n/a
GCCAGA
n/a
YES





AK
n/a
GCCAAG
n/a
YES





ARE
n/a
GCCAGAGAG
n/a
YES





AKE
n/a
GCCAAGGAG
n/a
YES





ARD
n/a
GCCAGAGAC
n/a
YES





AKD
n/a
GCCAAGGAC
n/a
YES





ARG
n/a
GCCAGAGGA
n/a
YES





AKG
n/a
GCCAAGGGA
n/a
YES





AREG
4791
GCCAGAGAGGGA
4963
YES





AKEG
4877
GCCAAGGAAGGA
5049
YES





ARDG
4792
GCCAGAGACGGA
4964
YES





AKDG
4878
GCCAAGGACGGA
5050
YES





ARGG
4793
GCCAGAGGTGGA
4965
YES





AKGG
4879
GCCAAGGGCGGA
5051
YES





ARR
n/a
GCCAGGAGA
n/a
YES





AKR
n/a
GCCAAGAGA
n/a
YES





ARER
4794
GCCAGAGAGAGA
4966
YES





AKER
4880
GCCAAGGAAAGA
5052
YES





ARDR
4795
GCCAGAGACAGA
4967
YES





AKDR
4881
GCCAAGGACAGA
5053
YES





ARGR
4796
GCCAGAGGCAGA
4968
YES





AKGR
4882
GCCAAGGGCAGA
5054
YES





ARS
n/a
GCCAGATCT
n/a
YES





AKS
n/a
GCCAAGTCT
n/a
YES





ARES
4797
GCCAGAGAATCT
4969
YES





AKES
4883
GCCAAGGAATCT
5055
YES





ARDS
4798
GCCAGAGACTCT
4970
YES





AKDS
4884
GCCAAGGATTCT
5056
YES





ARGS
4799
GCCAGAGGTTCT
4971
YES





AKGS
4885
GCCAAGGGATCT
5057
YES





ARP
n/a
GCCAGACCT
n/a
YES





AKP
n/a
GCCAAGCCT
n/a
YES





AREP
5328
GCCAGAGAGCCT
5428
NO





AKEP
5329
GCCAAGGAGCCT
5429
NO





ARDP
4800
GCCAGAGACCCT
4972
YES





AKDP
4886
GCCAAGGATCCT
5058
YES





ARGP
4801
GCCAGAGGGCCT
4973
YES





AKGP
4887
GCCAAGGGTCCT
5059
YES





ARL
n/a
GCCAGATTG
n/a
YES





AKL
n/a
GCCAAGTTG
n/a
YES





AREL
5330
GCCAGAGAGTTG
5430
NO





AKEL
5331
GCCAAGGAATTG
5431
NO





ARDL
4802
GCCAGAGACTTG
4974
YES





AKDL
4888
GCCAAGGACTTG
5060
YES





ARGL
4803
GCCAGAGGGTTG
4975
YES





AKGL
4889
GCCAAGGGGTTG
5061
YES





ARA
n/a
GCCAGAGCT
n/a
YES





AKA
n/a
GCCAAGGCT
n/a
YES





AREA
4804
GCCAGAGAGGCT
4976
YES





AKEA
4890
GCCAAGGAAGCT
5062
YES





ARDA
4805
GCCAGAGATGCT
4977
YES





AKDA
4891
GCCAAGGACGCT
5063
YES





ARGA
4806
GCCAGAGGTGCT
4978
YES





AKGA
4892
GCCAAGGGCGCT
5064
YES





ART
n/a
GCCAGAACT
n/a
YES





AKT
n/a
GCCAAGACT
n/a
YES





ARET
4807
GCCAGAGAGACT
4979
YES





AKET
4893
GCCAAGGAAACT
5065
YES





ARDT
4808
GCCAGAGATACT
4980
YES





AKDT
4894
GCCAAGGATACT
5066
YES





ARGT
4809
GCCAGAGGCACT
4981
YES





AKGT
4895
GCCAAGGGAACT
5067
YES





ARV
n/a
GCCAGAGTG
n/a
YES





AKV
n/a
GCCAAGGTG
n/a
YES





AREV
4810
GCCAGAGAGGTG
4982
YES





AKEV
4896
GCCAAGGAAGTG
5068
YES





ARDV
4811
GCCAGAGATGTG
4983
YES





AKDV
4897
GCCAAGGACGTG
5069
YES





ARGV
4812
GCCAGAGGGGTG
4984
YES





AKGV
4898
GCCAAGGGCGTG
5070
YES





AREGG
4813
GCCAGAGAGGGAGGA
4985
YES





AKEGG
4899
GCCAAGGAGGGAGGA
5071
YES





ARDGG
4814
GCCAGAGATGGTGGA
4986
YES





AKDGG
4900
GCCAAGGACGGTGGA
5072
YES





ARGGG
4815
GCCAGAGGTGGAGGA
4987
YES





AKGGG
4901
GCCAAGGGAGGAGGA
5073
YES





AREGR
5332
GCCAGAGAAGGGAGA
5432
NO





AKEGR
5333
GCCAAGGAAGGCAGA
5433
NO





ARDGR
4816
GCCAGAGACGGCAGA
4988
YES





AKDGR
4902
GCCAAGGACGGTAGA
5074
YES





ARGGR
5334
GCCAGAGGAGGTAGA
5434
NO





AKGGR
5335
GCCAAGGGAGGTAGA
5435
NO





AREGS
5336
GCCAGAGAAGGATCT
5436
NO





AKEGS
5337
GCCAAGGAAGGATCT
5437
NO





ARDGS
5338
GCCAGAGACGGATCT
5438
NO





AKDGS
5339
GCCAAGGATGGTTCT
5439
NO





ARGGS
4817
GCCAGAGGCGGTTCT
4989
YES





AKGGS
4903
GCCAAGGGAGGTTCT
5075
YES





AREGP
5340
GCCAGAGAAGGTCCT
5440
NO





AKEGP
5341
GCCAAGGAGGGGCCT
5441
NO





ARDGP
5342
GCCAGAGACGGTCCT
5442
NO





AKDGP
5343
GCCAAGGACGGTCCT
5443
NO





ARGGP
4818
GCCAGAGGTGGGCCT
4990
YES





AKGGP
4904
GCCAAGGGAGGTCCT
5076
YES





AREGL
5344
GCCAGAGAGGGCTTG
5444
NO





AKEGL
5345
GCCAAGGAAGGGTTG
5445
NO





ARDGL
5346
GCCAGAGATGGGTTG
5446
NO





AKDGL
5347
GCCAAGGACGGTTTG
5447
NO





ARGGL
5348
GCCAGAGGTGGATTG
5448
NO





AKGGL
5349
GCCAAGGGAGGGTTG
5449
NO





AREGA
5350
GCCAGAGAAGGAGCT
5450
NO





AKEGA
5351
GCCAAGGAGGGAGCT
5451
NO





ARDGA
5352
GCCAGAGATGGCGCT
5452
NO





AKDGA
5353
GCCAAGGATGGAGCT
5453
NO





ARGGA
4819
GCCAGAGGAGGTGCT
4991
YES





AKGGA
4905
GCCAAGGGAGGCGCT
5077
YES





ARDGT
4820
GCCAGAGACGGTACT
4992
YES





AKDGT
4906
GCCAAGGATGGCACT
5078
YES





ARGGT
4821
GCCAGAGGTGGAACT
4993
YES





AKGGT
4907
GCCAAGGGAGGCACT
5079
YES





AREGV
4822
GCCAGAGAGGGAGTG
4994
YES





AKEGV
4908
GCCAAGGAAGGAGTG
5080
YES





ARDGV
5354
GCCAGAGATGGTGTG
5454
NO





AKDGV
5355
GCCAAGGATGGTGTG
5455
NO





ARGGV
4823
GCCAGAGGTGGCGTG
4995
YES





AKGGV
4909
GCCAAGGGCGGTGTG
5081
YES





ARRG
4824
GCCAGAAGAGGA
4996
YES





AKRG
4910
GCCAAGAGAGGA
5082
YES





ARERG
4825
GCCAGAGAGCGTGGA
4997
YES





AKERG
4911
GCCAAGGAGAGAGGA
5083
YES





ARDRG
4826
GCCAGAGATCGTGGA
4998
YES





AKDRG
4912
GCCAAGGATAGGGGA
5084
YES





ARGRG
4827
GCCAGAGGCAGGGGA
4999
YES





AKGRG
4913
GCCAAGGGTAGGGGA
5085
YES





ARSG
4828
GCCAGATCAGGA
5000
YES





AKSG
4914
GCCAAGTCTGGA
5086
YES





ARESG
5356
GCCAGAGAGTCTGGA
5456
NO





AKESG
5357
GCCAAGGAAAGTGGA
5457
NO





ARDSG
4829
GCCAGAGACTCAGGA
5001
YES





AKDSG
4915
GCCAAGGATAGTGGA
5087
YES





ARGSG
5358
GCCAGAGGCTCTGGA
5458
NO





AKGSG
5359
GCCAAGGGGTCTGGA
5459
NO





ARPG
5360
GCCAGACCAGGA
5460
NO





AKPG
5361
GCCAAGCCCGGA
5461
NO





ARDPG
4830
GCCAGAGATCCAGGA
5002
YES





AKDPG
4916
GCCAAGGACCCCGGA
5088
YES





ARGPG
5362
GCCAGAGGACCTGGA
5462
NO





AKGPG
5363
GCCAAGGGGCCTGGA
5463
NO





ARLG
4831
GCCAGATTGGGA
5003
YES





AKLG
4917
GCCAAGTTAGGA
5089
YES





ARDLG
4832
GCCAGAGACTTGGGA
5004
YES





AKDLG
4918
GCCAAGGATCTTGGA
5090
YES





ARGLG
5364
GCCAGAGGACTAGGA
5464
NO





AKGLG
5365
GCCAAGGGTTTGGGA
5465
NO





ARAG
4833
GCCAGAGCTGGA
5005
YES





AKAG
4919
GCCAAGGCTGGA
5091
YES





AREAG
5366
GCCAGAGAAGCCGGA
5466
NO





AKEAG
5367
GCCAAGGAGGCTGGA
5467
NO





ARDAG
5368
GCCAGAGACGCAGGA
5468
NO





AKDAG
5369
GCCAAGGATGCCGGA
5469
NO





ARGAG
5370
GCCAGAGGTGCCGGA
5470
NO





AKGAG
5371
GCCAAGGGAGCAGGA
5471
NO





ARTG
5372
GCCAGAACTGGA
5472
NO





AKTG
5373
GCCAAGACCGGA
5473
NO





ARDTG
5374
GCCAGAGACACGGGA
5474
NO





AKDTG
5375
GCCAAGGATACGGGA
5475
NO





ARVG
4834
GCCAGAGTGGGA
5006
YES





AKVG
4920
GCCAAGGTAGGA
5092
YES





AREVG
5376
GCCAGAGAAGTCGGA
5476
NO





AKEVG
5377
GCCAAGGAGGTAGGA
5477
NO





ARDVG
5378
GCCAGAGATGTAGGA
5478
NO





AKDVG
5379
GCCAAGGACGTAGGA
5479
NO





ARGVG
4835
GCCAGAGGCGTAGGA
5007
YES





AKGVG
4921
GCCAAGGGTGTCGGA
5093
YES





ARPR
4836
GCCAGACCCAGA
5008
YES





AKPR
4922
GCCAAGCCTAGA
5094
YES





ARDPR
5380
GCCAGAGATCCAAGA
5480
NO





AKDPR
5381
GCCAAGGATCCTAGA
5481
NO





ARGPR
4837
GCCAGAGGACCAAGA
5009
YES





AKGPR
4923
GCCAAGGGCCCCAGA
5095
YES





ARPS
4838
GCCAGACCATCT
5010
YES





AKPS
4924
GCCAAGCCTTCT
5096
YES





ARDPS
4839
GCCAGAGATCCCTCT
5011
YES





AKDPS
4925
GCCAAGGATCCCTCT
5097
YES





ARGPS
4840
GCAAGAGGACCTTCT
5012
YES





AKGPS
4926
GCCAAAGGGCCATCT
5098
YES





ARPP
5382
GCCAGACCACCT
5482
NO





AKPP
5383
GCCAAGCCACCT
5483
NO





ARDPP
4841
GCCAGAGACCCACCT
5013
YES





AKDPP
4927
GCCAAGGATCCACCT
5099
YES





ARGPP
4842
GCCAGAGGACCGCCT
5014
YES





AKGPP
4928
GCCAAGGGCCCTCCT
5100
YES





ARPL
4843
GCCAGACCGTTG
5015
YES





AKPL
4929
GCCAAGCCGTTG
5101
YES





ARDPL
4844
GCCAGAGATCCTTTG
5016
YES





AKDPL
4930
GCCAAGGACCCTTTG
5102
YES





ARGPL
5384
GCCAGAGGTCCCTTG
5484
NO





AKGPL
5385
GCCAAGGGGCCGTTG
5485
NO





ARPA
5386
GCCAGACCAGCT
5486
NO





AKPA
5387
GCCAAGCCGGCT
5487
NO





ARDPA
5388
GCCAGAGATCCCGCT
5488
NO





AKDPA
5389
GCCAAGGACCCCGCT
5489
NO





ARPT
5390
GCCAGACCTACT
5490
NO





AKPT
5391
GCCAAGCCTACT
5491
NO





ARDPT
5392
GCCAGAGATCCGACT
5492
NO





AKDPT
5393
GCCAAGGACCCTACT
5493
NO





ARGPT
5394
GCCAGAGGACCCACT
5494
NO





AKGPT
5395
GCCAAGGGGCCCACT
5495
NO





ARPV
5396
GCCAGACCGGTG
5496
NO





AKPV
5397
GCCAAGCCAGTG
5497
NO





ARDPV
5398
GCCAGAGATCCGGTG
5498
NO





AKDPV
5399
GCCAAGGACCCTGTG
5499
NO





ARRP
4845
GCCAGAAGGCCT
5017
YES





AKRP
4931
GCCAAGAGGCCT
5103
YES





ARDRP
4846
GCCAGAGACCGTCCT
5018
YES





AKDRP
4932
GCCAAGGACCGTCCT
5104
YES





ARGRP
5400
GCCAGAGGAAGGCCT
5500
NO





AKGRP
5401
GCCAAGGGCCGTCCT
5501
NO





ARSP
4847
GCCAGATCACCT
5019
YES





AKSP
4933
GCCAAGAGTCCT
5105
YES





ARDSP
5402
GCCAGAGACTCTCCT
5502
NO





AKDSP
5403
GCCAAGGACTCCCCT
5503
NO





ARGSP
5404
GCCAGAGGTTCCCCT
5504
NO





AKGSP
5405
GCCAAGGGTTCACCT
5505
NO





ARLP
4848
GCCAGACTTCCT
5020
YES





AKLP
4934
GCCAAGCTACCT
5106
YES





ARDLP
5406
GCCAGAGATCTTCCT
5506
NO





AKDLP
5407
GCCAAGGATCTACCT
5507
NO





ARAP
4849
GCCAGAGCCCCT
5021
YES





AKAP
4935
GCCAAGGCTCCT
5107
YES





ARDAP
5408
GCCAGAGATGCTCCT
5508
NO





AKDAP
5409
GCCAAGGATGCTCCT
5509
NO





ARGAP
5410
GCCAGAGGGGCCCCT
5510
NO





AKGAP
5411
GCCAAGGGTGCCCCT
5511
NO





ARTP
4850
GCCAGAACTCCT
5022
YES





AKTP
4936
GCCAAGACGCCT
5108
YES





ARDTP
5412
GCCAGAGATACCCCT
5512
NO





AKDTP
5413
GCCAAGGACACGCCT
5513
NO





ARVP
4851
GCCAGAGTCCCT
5023
YES





AKVP
4937
GCCAAGGTACCT
5109
YES





ARAGG
5414
GCCAGAGCTGGCGGA
5514
NO





AKAGG
5415
GCCAAGGCCGGTGGA
5515
NO





ARDGGG
5416
GCCAGAGATGGTGGCGGA
5516
NO





AKDGGG
5417
GCCAAGGACGGCGGTGGA
5517
NO





ARLGG
5418
GCCAGATTGGGCGGA
5518
NO





AKLGG
5419
GCCAAGCTAGGCGGA
5519
NO





ARDLGG
5420
GCCAGAGATTTGGGTGGA
5520
NO





AKDLGG
5421
GCCAAGGATTTGGGTGGA
5521
NO





ARRGG
5422
GCCAGAAGAGGTGGA
5522
NO





AKRGG
5423
GCCAAGAGAGGAGGA
5523
NO





ARDRGG
5424
GCCAGAGACCGTGGCGGA
5524
NO





AKDRGG
5425
GCCAAGGACAGAGGTGGA
5525
NO





ARSGG
5426
GCCAGATCAGGCGGA
5526
NO





AKSGG
5427
GCCAAGTCCGGTGGA
5527
NO





ARVGG
4852
GCCAGAGTTGGAGGA
5024
YES





AKVGG
4938
GCCAAGGTGGGTGGA
5110
YES





ARQ
n/a
GCAAGACAG
n/a
YES





AKQ
n/a
GCAAAACAG
n/a
YES





ARH
n/a
GCCAGACAC
n/a
YES





AKH
n/a
GCCAAACAC
n/a
YES





ARDQ
4853
GCCAGGGACCAG
5025
YES





AKDQ
4939
GCCAAGGATCAG
5111
YES





ARDH
4854
GCAAGAGACCAC
5026
YES





AKDH
4940
GCTAAAGACCAC
5112
YES





ARAR
4855
GCAAGGGCTAGA
5027
YES





AKAR
4941
GCCAAGGCAAGA
5113
YES





ARAS
4856
GCTAGGGCATCT
5028
YES





AKAS
4942
GCCAAGGCATCT
5114
YES





ARDQG
4857
GCTAGGGATCAGGGA
5029
YES





AKDQG
4943
GCAAAGGATCAGGGA
5115
YES





ARSR
4858
GCTAGATCAAGA
5030
YES





AKSR
4944
GCCAAGAGTAGA
5116
YES





ARDRS
4859
GCCAGGGACAGGTCT
5031
YES





AKDRS
4945
GCAAAAGACAGGTCT
5117
YES





ARSL
4860
GCTAGATCTTTG
5032
YES





AKSL
4946
GCAAAGAGCTTG
5118
YES





ARLH
4861
GCTAGGTTGCAC
5033
YES





AKLH
4947
GCTAAATTGCAC
5119
YES





ARDLT
4862
GCCAGGGATTTGACT
5034
YES





AKDLT
4948
GCCAAGGACTTGACT
5120
YES





ARK
n/a
GCCAGAAAG
n/a
YES





AKK
n/a
GCTAAAAAG
n/a
YES





ARAE
4863
GCAAGAGCCGAG
5035
YES





AKAE
4949
GCTAAAGCAGAG
5121
YES





ARDLS
4864
GCAAGGGATTTGTCT
5036
YES





AKDLS
4950
GCAAAAGACTTGTCT
5122
YES





ARGD
4865
GCTAGAGGGGAC
5037
YES





AKGD
4951
GCAAAAGGGGAC
5123
YES





ARRR
4866
GCTAGGAGGAGA
5038
YES





AKRR
4952
GCAAAAAGGAGA
5124
YES





ARDK
4867
GCTAGAGATAAG
5039
YES





AKDK
4953
GCAAAAGACAAG
5125
YES





ARVS
4868
GCTAGAGTATCT
5040
YES





AKVS
4954
GCCAAAGTATCT
5126
YES





ARDRL
4869
GCCAGAGACAGGTTG
5041
YES





AKDRL
4955
GCAAAAGACAGGTTG
5127
YES





ARGQ
4870
GCTAGGGGCCAG
5042
YES





AKGQ
4956
GCCAAAGGACAG
5128
YES





ARVR
4871
GCCAGGGTCAGA
5043
YES





AKVR
4957
GCAAAAGTCAGA
5129
YES





ARAK
4872
GCTAGGGCTAAG
5044
YES





AKAK
4958
GCAAAGGCAAAG
5130
YES





ARGK
4873
GCCAGGGGTAAG
5045
YES





AKGK
4959
GCAAAGGGCAAG
5131
YES





ARDIS
4874
GCAAGGGATATTTCT
5046
YES





AKDIS
4960
GCAAAGGACATTTCT
5132
YES





ARDFT
4875
GCTAGGGATTTCACT
5047
YES





AKDFT
4961
GCTAAAGATTTCACT
5133
YES





ARQG
4876
GCCAGGCAGGGA
5048
YES





AKQG
4962
GCCAAGCAAGGA
5134
YES






1“AR” and “AK” refer to the last two C-terminal amino acids of the heavy chain chassis used in the current example. They are not part of the TN1 segment.














TABLE 27







Theoretical segment pool of degenerate oligonuc-


leotide sequences encoding DH segments of Example


13.













SEQ




Peptide
ID


Name
Degenerate Oligo
Length
NO













DH 001
KHTGAK
2
n/a





DH 002
KHTKGG
2
n/a





DH 003
KHTCMT
2
n/a





DH 004
KHTMCT
2
n/a





DH 005
GVCWSG
2
n/a





DH 006
SVCYAT
2
n/a





DH 007
BYCSAG
2
n/a





DH 008
SBAMAG
2
n/a





DH 009
VSCMAA
2
n/a





DH 010
GRABYT
2
n/a





DH 011
GRAKBG
2
n/a





DH 012
RDAGAK
2
n/a





DH 013
RDAGRT
2
n/a





DH 014
YHTSAC
2
n/a





DH 015
YHTKAC
2
n/a





DH 016
YHTMCG
2
n/a





DH 017
MHAGAW
2
n/a





DH 018
MHAGRT
2
n/a





DH 019
MHAMCT
2
n/a





DH 020
MBCYAT
2
n/a





DH 021
CVACNG
2
n/a





DH 022
MSCAHG
2
n/a





DH 023
CRGKBG
2
n/a





DH 024
WSGHCT
2
n/a





DH 025
WGGKHT
2
n/a





DH 026
BGGSAK
2
n/a





DH 027
BWCAMA
2
n/a





DH 028
BHCTGG
2
n/a





DH 029
TGGVBT
2
n/a





DH 030
BHCAGT
2
n/a





DH 031
SRTATT
2
n/a





DH 032
ACABHT
2
n/a





DH 033
SVCGCT
2
n/a





DH 034
ATGSVT
2
n/a





DH 035
SWGAGG
2
n/a





DH 036
GTAGCAVBT
3
n/a





DH 037
DBGSWACTT
3
n/a





DH 038
VNCBCAGGT
3
n/a





DH 039
VNCDCATAT
3
n/a





DH 040
VHAKKGTTG
3
n/a





DH 041
CCAGCABHT
3
n/a





DH 042
VHASRACTT
3
n/a





DH 043
BHCAGCRST
3
n/a





DH 044
BHCGGAKMT
3
n/a





DH 045
BHCGGAGDT
3
n/a





DH 046
BHCAGCKMT
3
n/a





DH 047
NHCCRACTT
3
n/a





DH 048
NHCAGCKGG
3
n/a





DH 049
BHCGGAKSG
3
n/a





DH 050
VBCGGAGNT
3
n/a





DH 051
NHCAGCGVT
3
n/a





DH 052
NHCTACGVT
3
n/a





DH 053
NHCAGCGVG
3
n/a





DH 054
VHATGGSYG
3
n/a





DH 055
VNCGHCTAT
3
n/a





DH 056
GGTRNACTT
3
n/a





DH 057
NHCABAGGT
3
n/a





DH 058
VHAGCAGNT
3
n/a





DH 059
DBGKYCGGT
3
n/a





DH 060
BHCGGARKT
3
n/a





DH 061
NHCGTAGVT
3
n/a





DH 062
VNTTHCTAT
3
n/a





DH 063
GTAGTABHT
3
n/a





DH 064
VBCGNCCTT
3
n/a





DH 065
BHCGGAGNG
3
n/a





DH 066
VNCGHCGGT
3
n/a





DH 067
AGGBHCGGT
3
n/a





DH 068
VNCTBGTAT
3
n/a





DH 069
VNCTBGCTT
3
n/a





DH 070
NHCKACTAT
3
n/a





DH 071
CTARNACTT
3
n/a





DH 072
NHCBCAGGT
3
n/a





DH 073
NHCTACBAT
3
n/a





DH 074
BHCACAGCCAKS
4
5528





DH 075
VHGGBAGCAACT
4
5529





DH 076
DBGTTCGGAGNG
4
5530





DH 077
BHCGGAKMCTAT
4
5531





DH 078
TACAGCAGCVBT
4
5532





DH 079
VHGGTARSAGGT
4
5533





DH 080
VBCGACGGATHT
4
5534





DH 081
NHCTACGGAGVT
4
5535





DH 082
VHGRYGGCAACT
4
5536





DH 083
VHATACAGCRST
4
5537





DH 084
CAGTGGCTABHT
4
5538





DH 085
VHAGTAGCAGNT
4
5539





DH 086
VBCACAGTARMG
4
5540





DH 087
AGCAGCAGCDBG
4
5541





DH 088
NHCTMCTACGGT
4
5542





DH 089
BHCAGCTGGTHT
4
5543





DH 090
VHACAACTAGNT
4
5544





DH 091
BHCGGAAGCKMT
4
5545





DH 092
BHCGGATSGTAT
4
5546





DH 093
NHCAGCGGABGG
4
5547





DH 094
BHCGGATACKMT
4
5548





DH 095
VHAGTAACARMG
4
5549





DH 096
GCAGCAGCAVBT
4
5550





DH 097
VBCAYATTCGGT
4
5551





DH 098
GTAGCAGCAVHA
4
5552





DH 099
NHCTACTACGVT
4
5553





DH 100
VBCKMCGGATAT
4
5554





DH 101
VHACAACTAKKG
4
5555





DH 102
VHGGGARKCGCT
4
5556





DH 103
VBTBTCGGAGAG
4
5557





DH 104
BHCTACAGCKMT
4
5558





DH 105
VHAGTASSAGCT
4
5559





DH 106
VBTCDAGGAGTT
4
5560





DH 107
GACAGCAGCDBG
4
5561





DH 108
VBCGVCTACAGT
4
5562





DH 109
NHCTACGGAKCT
4
5563





DH 110
NHCTACTACTHT
4
5564





DH 111
BHCVGCTACAGT
4
5565





DH 112
VBCTGGTTCGGT
4
5566





DH 113
VNCTACTACTHT
4
5567





DH 114
VHABTCGGAGGT
4
5568





DH 115
NHCATGGTAAGAGVT
5
5569





DH 116
NHCTACGGAGACTHT
5
5570





DH 117
VBCTACAGCTACGNT
5
5571





DH 118
VNCAGCGGAAGCTHT
5
5572





DH 119
VBCTTTCTAGAATBG
5
5573





DH 120
BHCGGAAGCTACKMT
5
5574





DH 121
NHCAGCGGAAGCTHT
5
5575





DH 122
BHCAGCAGCAGCTBG
5
5576





DH 123
BHCAGCAGCGGATBG
5
5577





DH 124
VBCACAGTAACAANA
5
5578





DH 125
BHCAGCAGCAGCTHT
5
5579





DH 126
NHCAGCGGATGGTHT
5
5580





DH 127
NHCAGCGGATACGVT
5
5581





DH 128
NHCTACTACGACABT
5
5582





DH 129
BHCAGCAGCGGATHT
5
5583





DH 130
VHAGCAGCAAGACNT
5
5584





DH 131
VHGTACTACTACGVT
5
5585





DH 132
VBCACAATGGTACRG
5
5586





DH 133
NHCATGGTACRAGGT
5
5587





DH 134
NHCTSGGGAAGCTAT
5
5588





DH 135
BHCAGCAGCAGCTGGTHT
6
5589





DH 136
NHCTACTACGACAGCABT
6
5590





DH 137
VBCTACAGCGGATACGNT
6
5591





DH 138
BHCAGCAGCGGATGGTHT
6
5592





DH 139
NHCTACTACGGAAGCGVT
6
5593





DH 140
BHCAGCAGCGGATACTHT
6
5594





DH 141
NHCTACGACAGCAGCGVT
6
5595





DH 142
NHCGACTTCTGGAGCGVT
6
5596





DH 143
BHCGACAGCAGCGGATHT
6
5597





DH 144
SNATACTTCGACTGGYYT
6
5598





DH 145
TGTRGCRGCACAAGCTGT
6
5599





DH 146
NHCTACTACGGAAGCGVG
6
5600





DH 147
TGTRGCRGCGGAAGCTGT
6
5601





DH 148
NHCTTTTGGAGCGGATHT
6
5602





DH 149
NHCTACTACGACAGCAGCGVT
7
5603





DH 150
NHCGACATACTAACAGGATHT
7
5604





DH 151
NHCTACGACTTCTGGAGCGVT
7
5605





DH 152
BHCTGTAGCAGCACAAGCTGT
7
5606





DH 153
DBGTACAGCAGCAGCTGGTHT
7
5607





DH 154
NHCTACGACAGCAGCGGATHT
7
5608





DH 155
NHCTACTACGGAAGCGGAABT
7
5609





DH 156
DBGTACAGCAGCGGATGGTHT
7
5610





DH 157
BHCTGTAGCGGAGGAAGCTGT
7
5611





DH 158
TGTAGCGGAGGAAGCTGTYHT
7
5612





DH 159
TGTAGCAGCACAAGCTGTYHT
7
5613





DH 160
NHCTGTGGAGGAGACTGTTHT
7
5614





DH 161
NHCGACTTCTGGAGCGGATHT
7
5615





DH 162
BHCGACAGCAGCGGATACTHT
7
5616





DH 163
VHATACTGTGGAGGAGACTGT
7
5617





DH 164
NHCTACTACGACAGCAGCGGATHT
8
5618





DH 165
NHCTACTACGGAAGCGGAAGCTHT
8
5619





DH 166
VBCTACTGTAGCAGCACAAGCTGT
8
5620





DH 167
VBCTACTGTAGCGGAGGAAGCTGT
8
5621





DH 168
NHCTACGACTTCTGGAGCGGATHT
8
5622





DH 169
NHCGACATACTAACAGGATACTHT
8
5623





DH 170
BHCTGTAGCGGAGGAAGCTGTTHT
8
5624





DH 171
BHCTGTAGCAGCACAAGCTGTTHT
8
5625





DH 172
VHATACTGTGGAGGAGACTGTTHT
8
5626





DH 173
NHCTACGACAGCAGCGGATACTHT
8
5627





DH 174
VNCTACTACGGAAGCGGAAGCTMT
8
5628





DH 175
NHCGACTTCTGGAGCGGATACTHT
8
5629





DH 176
VHACTAAGATACTTCGACTGGYWT
8
5630





DH 177
NHCTACTACGACAGCAGCGGATACTHT
9
5631





DH 178
VBCTACTGTAGCGGAGGAAGCTGTTHT
9
5632





DH 179
VBCTACTGTAGCAGCACAAGCTGTTHT
9
5633





DH 180
NHCTACGACTTCTGGAGCGGATACTHT
9
5634





DH 181
BHCTGTAGCGGAGGAAGCTGTTACTHT
9
5635





DH 182
NHCTACTACGACAGCAGCGGATACTAC
10
5636



THT







DH 183
NHCTACGACTACGTATGGGGAAGCTAC
11
5637



GCATHT







DH 184
NHCTACGACTACGTATGGGGAAGCTAC
12
5638



GCATACAHA
















TABLE 28







Theoretical segment pool of unique DH polypeptide


segments encoded by the degenerate oligonucleo-


tides of Table 27.










Name
Sequence
Length
SEQ ID NO













PDH 0001
YE
2
n/a





PDH 0002
DD
2
n/a





PDH 0003
VD
2
n/a





PDH 0004
FD
2
n/a





PDH 0005
AE
2
n/a





PDH 0006
SD
2
n/a





PDH 0007
YD
2
n/a





PDH 0008
VE
2
n/a





PDH 0009
DE
2
n/a





PDH 0010
AD
2
n/a





PDH 0011
FE
2
n/a





PDH 0012
SE
2
n/a





PDH 0013
VG
2
n/a





PDH 0014
FW
2
n/a





PDH 0015
YG
2
n/a





PDH 0016
DW
2
n/a





PDH 0017
FG
2
n/a





PDH 0018
AW
2
n/a





PDH 0019
DG
2
n/a





PDH 0020
YW
2
n/a





PDH 0021
SG
2
n/a





PDH 0022
AG
2
n/a





PDH 0023
VW
2
n/a





PDH 0024
SW
2
n/a





PDH 0025
VP
2
n/a





PDH 0026
DH
2
n/a





PDH 0027
DP
2
n/a





PDH 0028
YP
2
n/a





PDH 0029
SH
2
n/a





PDH 0030
VH
2
n/a





PDH 0031
FH
2
n/a





PDH 0032
YH
2
n/a





PDH 0033
FP
2
n/a





PDH 0034
AP
2
n/a





PDH 0035
SP
2
n/a





PDH 0036
AH
2
n/a





PDH 0037
YT
2
n/a





PDH 0038
DT
2
n/a





PDH 0039
AT
2
n/a





PDH 0040
ST
2
n/a





PDH 0041
FT
2
n/a





PDH 0042
VT
2
n/a





PDH 0043
AS
2
n/a





PDH 0044
AR
2
n/a





PDH 0045
DS
2
n/a





PDH 0046
GT
2
n/a





PDH 0047
GS
2
n/a





PDH 0048
GW
2
n/a





PDH 0049
GR
2
n/a





PDH 0050
DR
2
n/a





PDH 0051
PH
2
n/a





PDH 0052
RH
2
n/a





PDH 0053
PY
2
n/a





PDH 0054
GH
2
n/a





PDH 0055
GY
2
n/a





PDH 0056
RY
2
n/a





PDH 0057
HH
2
n/a





PDH 0058
HY
2
n/a





PDH 0059
DY
2
n/a





PDH 0060
AY
2
n/a





PDH 0061
AQ
2
n/a





PDH 0062
FQ
2
n/a





PDH 0063
LE
2
n/a





PDH 0064
PE
2
n/a





PDH 0065
LQ
2
n/a





PDH 0066
PQ
2
n/a





PDH 0067
VQ
2
n/a





PDH 0068
SQ
2
n/a





PDH 0069
RK
2
n/a





PDH 0070
GK
2
n/a





PDH 0071
AK
2
n/a





PDH 0072
RQ
2
n/a





PDH 0073
GQ
2
n/a





PDH 0074
LK
2
n/a





PDH 0075
VK
2
n/a





PDH 0076
PK
2
n/a





PDH 0077
SK
2
n/a





PDH 0078
TK
2
n/a





PDH 0079
TQ
2
n/a





PDH 0080
GL
2
n/a





PDH 0081
GP
2
n/a





PDH 0082
GV
2
n/a





PDH 0083
EF
2
n/a





PDH 0084
GF
2
n/a





PDH 0085
EL
2
n/a





PDH 0086
EA
2
n/a





PDH 0087
ES
2
n/a





PDH 0088
EP
2
n/a





PDH 0089
GA
2
n/a





PDH 0090
EV
2
n/a





PDH 0091
GG
2
n/a





PDH 0092
EG
2
n/a





PDH 0093
EW
2
n/a





PDH 0094
IE
2
n/a





PDH 0095
RE
2
n/a





PDH 0096
KE
2
n/a





PDH 0097
GD
2
n/a





PDH 0098
ID
2
n/a





PDH 0099
RD
2
n/a





PDH 0100
EE
2
n/a





PDH 0101
GE
2
n/a





PDH 0102
KD
2
n/a





PDH 0103
ED
2
n/a





PDH 0104
IG
2
n/a





PDH 0105
RG
2
n/a





PDH 0106
KG
2
n/a





PDH 0107
LD
2
n/a





PDH 0108
LH
2
n/a





PDH 0109
PD
2
n/a





PDH 0110
HD
2
n/a





PDH 0111
SY
2
n/a





PDH 0112
FY
2
n/a





PDH 0113
YY
2
n/a





PDH 0114
LY
2
n/a





PDH 0115
LT
2
n/a





PDH 0116
HP
2
n/a





PDH 0117
HT
2
n/a





PDH 0118
LP
2
n/a





PDH 0119
PT
2
n/a





PDH 0120
PP
2
n/a





PDH 0121
TE
2
n/a





PDH 0122
QE
2
n/a





PDH 0123
TD
2
n/a





PDH 0124
QD
2
n/a





PDH 0125
PG
2
n/a





PDH 0126
LG
2
n/a





PDH 0127
TG
2
n/a





PDH 0128
QG
2
n/a





PDH 0129
QP
2
n/a





PDH 0130
QT
2
n/a





PDH 0131
KT
2
n/a





PDH 0132
KP
2
n/a





PDH 0133
IP
2
n/a





PDH 0134
TP
2
n/a





PDH 0135
TT
2
n/a





PDH 0136
IT
2
n/a





PDH 0137
IH
2
n/a





PDH 0138
IY
2
n/a





PDH 0139
TH
2
n/a





PDH 0140
TY
2
n/a





PDH 0141
RR
2
n/a





PDH 0142
QL
2
n/a





PDH 0143
QQ
2
n/a





PDH 0144
PL
2
n/a





PDH 0145
RP
2
n/a





PDH 0146
PR
2
n/a





PDH 0147
RL
2
n/a





PDH 0148
QR
2
n/a





PDH 0149
PM
2
n/a





PDH 0150
TM
2
n/a





PDH 0151
RT
2
n/a





PDH 0152
RM
2
n/a





PDH 0153
SM
2
n/a





PDH 0154
QA
2
n/a





PDH 0155
RA
2
n/a





PDH 0156
QS
2
n/a





PDH 0157
QV
2
n/a





PDH 0158
RS
2
n/a





PDH 0159
QW
2
n/a





PDH 0160
RW
2
n/a





PDH 0161
RV
2
n/a





PDH 0162
WS
2
n/a





PDH 0163
WT
2
n/a





PDH 0164
TS
2
n/a





PDH 0165
WP
2
n/a





PDH 0166
SS
2
n/a





PDH 0167
WV
2
n/a





PDH 0168
WF
2
n/a





PDH 0169
RF
2
n/a





PDH 0170
WA
2
n/a





PDH 0171
WD
2
n/a





PDH 0172
WY
2
n/a





PDH 0173
WQ
2
n/a





PDH 0174
WE
2
n/a





PDH 0175
WH
2
n/a





PDH 0176
YK
2
n/a





PDH 0177
FK
2
n/a





PDH 0178
DK
2
n/a





PDH 0179
HK
2
n/a





PDH 0180
LW
2
n/a





PDH 0181
PW
2
n/a





PDH 0182
HW
2
n/a





PDH 0183
WI
2
n/a





PDH 0184
WG
2
n/a





PDH 0185
WL
2
n/a





PDH 0186
WR
2
n/a





PDH 0187
YS
2
n/a





PDH 0188
LS
2
n/a





PDH 0189
HS
2
n/a





PDH 0190
FS
2
n/a





PDH 0191
PS
2
n/a





PDH 0192
VS
2
n/a





PDH 0193
GI
2
n/a





PDH 0194
HI
2
n/a





PDH 0195
RI
2
n/a





PDH 0196
DI
2
n/a





PDH 0197
TF
2
n/a





PDH 0198
TL
2
n/a





PDH 0199
TV
2
n/a





PDH 0200
TA
2
n/a





PDH 0201
PA
2
n/a





PDH 0202
HA
2
n/a





PDH 0203
DA
2
n/a





PDH 0204
AA
2
n/a





PDH 0205
MR
2
n/a





PDH 0206
MA
2
n/a





PDH 0207
MD
2
n/a





PDH 0208
MP
2
n/a





PDH 0209
MH
2
n/a





PDH 0210
MG
2
n/a





PDH 0211
VR
2
n/a





PDH 0212
ER
2
n/a





PDH 0213
LR
2
n/a





PDH 0214
VAL
3
n/a





PDH 0215
VAR
3
n/a





PDH 0216
VAI
3
n/a





PDH 0217
VAA
3
n/a





PDH 0218
VAT
3
n/a





PDH 0219
VAP
3
n/a





PDH 0220
VAV
3
n/a





PDH 0221
VAG
3
n/a





PDH 0222
VAS
3
n/a





PDH 0223
VVL
3
n/a





PDH 0224
VEL
3
n/a





PDH 0225
REL
3
n/a





PDH 0226
TLL
3
n/a





PDH 0227
WEL
3
n/a





PDH 0228
RLL
3
n/a





PDH 0229
TQL
3
n/a





PDH 0230
RVL
3
n/a





PDH 0231
GLL
3
n/a





PDH 0232
TEL
3
n/a





PDH 0233
GVL
3
n/a





PDH 0234
LQL
3
n/a





PDH 0235
MEL
3
n/a





PDH 0236
SLL
3
n/a





PDH 0237
LVL
3
n/a





PDH 0238
MQL
3
n/a





PDH 0239
AVL
3
n/a





PDH 0240
AQL
3
n/a





PDH 0241
SQL
3
n/a





PDH 0242
GQL
3
n/a





PDH 0243
LEL
3
n/a





PDH 0244
TVL
3
n/a





PDH 0245
RQL
3
n/a





PDH 0246
LLL
3
n/a





PDH 0247
VQL
3
n/a





PDH 0248
ALL
3
n/a





PDH 0249
AEL
3
n/a





PDH 0250
WLL
3
n/a





PDH 0251
WVL
3
n/a





PDH 0252
SEL
3
n/a





PDH 0253
VLL
3
n/a





PDH 0254
MVL
3
n/a





PDH 0255
GEL
3
n/a





PDH 0256
MLL
3
n/a





PDH 0257
SVL
3
n/a





PDH 0258
WQL
3
n/a





PDH 0259
ISG
3
n/a





PDH 0260
DSG
3
n/a





PDH 0261
VPG
3
n/a





PDH 0262
VSG
3
n/a





PDH 0263
GAG
3
n/a





PDH 0264
IPG
3
n/a





PDH 0265
APG
3
n/a





PDH 0266
TSG
3
n/a





PDH 0267
DPG
3
n/a





PDH 0268
LSG
3
n/a





PDH 0269
LAG
3
n/a





PDH 0270
NPG
3
n/a





PDH 0271
PAG
3
n/a





PDH 0272
SAG
3
n/a





PDH 0273
ASG
3
n/a





PDH 0274
RPG
3
n/a





PDH 0275
HPG
3
n/a





PDH 0276
GSG
3
n/a





PDH 0277
GPG
3
n/a





PDH 0278
IAG
3
n/a





PDH 0279
LPG
3
n/a





PDH 0280
AAG
3
n/a





PDH 0281
TPG
3
n/a





PDH 0282
PSG
3
n/a





PDH 0283
PPG
3
n/a





PDH 0284
SPG
3
n/a





PDH 0285
RAG
3
n/a





PDH 0286
HAG
3
n/a





PDH 0287
SSG
3
n/a





PDH 0288
HSG
3
n/a





PDH 0289
RSG
3
n/a





PDH 0290
TAG
3
n/a





PDH 0291
DAG
3
n/a





PDH 0292
NAG
3
n/a





PDH 0293
NSG
3
n/a





PDH 0294
GTY
3
n/a





PDH 0295
ITY
3
n/a





PDH 0296
LTY
3
n/a





PDH 0297
ISY
3
n/a





PDH 0298
GAY
3
n/a





PDH 0299
LAY
3
n/a





PDH 0300
HSY
3
n/a





PDH 0301
AAY
3
n/a





PDH 0302
ASY
3
n/a





PDH 0303
TAY
3
n/a





PDH 0304
NAY
3
n/a





PDH 0305
HTY
3
n/a





PDH 0306
RTY
3
n/a





PDH 0307
PTY
3
n/a





PDH 0308
RAY
3
n/a





PDH 0309
ATY
3
n/a





PDH 0310
STY
3
n/a





PDH 0311
DSY
3
n/a





PDH 0312
GSY
3
n/a





PDH 0313
IAY
3
n/a





PDH 0314
PAY
3
n/a





PDH 0315
VTY
3
n/a





PDH 0316
PSY
3
n/a





PDH 0317
TTY
3
n/a





PDH 0318
VAY
3
n/a





PDH 0319
NTY
3
n/a





PDH 0320
DAY
3
n/a





PDH 0321
TSY
3
n/a





PDH 0322
DTY
3
n/a





PDH 0323
RSY
3
n/a





PDH 0324
SSY
3
n/a





PDH 0325
NSY
3
n/a





PDH 0326
SAY
3
n/a





PDH 0327
HAY
3
n/a





PDH 0328
LSY
3
n/a





PDH 0329
VSY
3
n/a





PDH 0330
IVL
3
n/a





PDH 0331
KWL
3
n/a





PDH 0332
KVL
3
n/a





PDH 0333
PLL
3
n/a





PDH 0334
LGL
3
n/a





PDH 0335
QWL
3
n/a





PDH 0336
EGL
3
n/a





PDH 0337
EWL
3
n/a





PDH 0338
EVL
3
n/a





PDH 0339
QLL
3
n/a





PDH 0340
AGL
3
n/a





PDH 0341
VWL
3
n/a





PDH 0342
ELL
3
n/a





PDH 0343
KGL
3
n/a





PDH 0344
ILL
3
n/a





PDH 0345
IGL
3
n/a





PDH 0346
AWL
3
n/a





PDH 0347
LWL
3
n/a





PDH 0348
QGL
3
n/a





PDH 0349
PVL
3
n/a





PDH 0350
VGL
3
n/a





PDH 0351
IWL
3
n/a





PDH 0352
KLL
3
n/a





PDH 0353
PGL
3
n/a





PDH 0354
PWL
3
n/a





PDH 0355
QVL
3
n/a





PDH 0356
TGL
3
n/a





PDH 0357
TWL
3
n/a





PDH 0358
PAD
3
n/a





PDH 0359
PAL
3
n/a





PDH 0360
PAA
3
n/a





PDH 0361
PAH
3
n/a





PDH 0362
PAP
3
n/a





PDH 0363
PAS
3
n/a





PDH 0364
PAF
3
n/a





PDH 0365
PAV
3
n/a





PDH 0366
IQL
3
n/a





PDH 0367
KRL
3
n/a





PDH 0368
PRL
3
n/a





PDH 0369
KQL
3
n/a





PDH 0370
QRL
3
n/a





PDH 0371
KEL
3
n/a





PDH 0372
EEL
3
n/a





PDH 0373
PEL
3
n/a





PDH 0374
VRL
3
n/a





PDH 0375
QEL
3
n/a





PDH 0376
LRL
3
n/a





PDH 0377
IEL
3
n/a





PDH 0378
QQL
3
n/a





PDH 0379
IRL
3
n/a





PDH 0380
EQL
3
n/a





PDH 0381
ERL
3
n/a





PDH 0382
TRL
3
n/a





PDH 0383
ARL
3
n/a





PDH 0384
PQL
3
n/a





PDH 0385
HSS
3
n/a





PDH 0386
VST
3
n/a





PDH 0387
HSA
3
n/a





PDH 0388
YSG
3
n/a





PDH 0389
ASS
3
n/a





PDH 0390
HST
3
n/a





PDH 0391
VSS
3
n/a





PDH 0392
YSA
3
n/a





PDH 0393
DST
3
n/a





PDH 0394
PST
3
n/a





PDH 0395
AST
3
n/a





PDH 0396
FSS
3
n/a





PDH 0397
LST
3
n/a





PDH 0398
SST
3
n/a





PDH 0399
FST
3
n/a





PDH 0400
FSG
3
n/a





PDH 0401
SSS
3
n/a





PDH 0402
LSA
3
n/a





PDH 0403
LSS
3
n/a





PDH 0404
PSA
3
n/a





PDH 0405
DSA
3
n/a





PDH 0406
ASA
3
n/a





PDH 0407
SSA
3
n/a





PDH 0408
DSS
3
n/a





PDH 0409
PSS
3
n/a





PDH 0410
YSS
3
n/a





PDH 0411
FSA
3
n/a





PDH 0412
YST
3
n/a





PDH 0413
VSA
3
n/a





PDH 0414
SGA
3
n/a





PDH 0415
AGD
3
n/a





PDH 0416
LGA
3
n/a





PDH 0417
SGY
3
n/a





PDH 0418
SGD
3
n/a





PDH 0419
FGY
3
n/a





PDH 0420
DGY
3
n/a





PDH 0421
LGS
3
n/a





PDH 0422
FGS
3
n/a





PDH 0423
DGS
3
n/a





PDH 0424
YGS
3
n/a





PDH 0425
YGA
3
n/a





PDH 0426
VGD
3
n/a





PDH 0427
PGS
3
n/a





PDH 0428
VGY
3
n/a





PDH 0429
VGS
3
n/a





PDH 0430
VGA
3
n/a





PDH 0431
LGD
3
n/a





PDH 0432
AGY
3
n/a





PDH 0433
LGY
3
n/a





PDH 0434
HGD
3
n/a





PDH 0435
HGA
3
n/a





PDH 0436
PGA
3
n/a





PDH 0437
YGD
3
n/a





PDH 0438
PGD
3
n/a





PDH 0439
YGY
3
n/a





PDH 0440
PGY
3
n/a





PDH 0441
SGS
3
n/a





PDH 0442
HGY
3
n/a





PDH 0443
FGD
3
n/a





PDH 0444
FGA
3
n/a





PDH 0445
AGS
3
n/a





PDH 0446
DGD
3
n/a





PDH 0447
DGA
3
n/a





PDH 0448
HGS
3
n/a





PDH 0449
AGA
3
n/a





PDH 0450
SGV
3
n/a





PDH 0451
LGV
3
n/a





PDH 0452
AGG
3
n/a





PDH 0453
SGG
3
n/a





PDH 0454
DGV
3
n/a





PDH 0455
PGV
3
n/a





PDH 0456
HGV
3
n/a





PDH 0457
YGV
3
n/a





PDH 0458
LGG
3
n/a





PDH 0459
VGG
3
n/a





PDH 0460
VGV
3
n/a





PDH 0461
FGV
3
n/a





PDH 0462
PGG
3
n/a





PDH 0463
YGG
3
n/a





PDH 0464
HGG
3
n/a





PDH 0465
DGG
3
n/a





PDH 0466
AGV
3
n/a





PDH 0467
FGG
3
n/a





PDH 0468
HSD
3
n/a





PDH 0469
YSD
3
n/a





PDH 0470
ASD
3
n/a





PDH 0471
FSY
3
n/a





PDH 0472
FSD
3
n/a





PDH 0473
SSD
3
n/a





PDH 0474
VSD
3
n/a





PDH 0475
PSD
3
n/a





PDH 0476
LSD
3
n/a





PDH 0477
YSY
3
n/a





PDH 0478
DSD
3
n/a





PDH 0479
SRL
3
n/a





PDH 0480
DQL
3
n/a





PDH 0481
FRL
3
n/a





PDH 0482
YRL
3
n/a





PDH 0483
HQL
3
n/a





PDH 0484
NQL
3
n/a





PDH 0485
NRL
3
n/a





PDH 0486
FQL
3
n/a





PDH 0487
DRL
3
n/a





PDH 0488
HRL
3
n/a





PDH 0489
YQL
3
n/a





PDH 0490
VSW
3
n/a





PDH 0491
PSW
3
n/a





PDH 0492
HSW
3
n/a





PDH 0493
NSW
3
n/a





PDH 0494
FSW
3
n/a





PDH 0495
ASW
3
n/a





PDH 0496
TSW
3
n/a





PDH 0497
LSW
3
n/a





PDH 0498
DSW
3
n/a





PDH 0499
ISW
3
n/a





PDH 0500
SSW
3
n/a





PDH 0501
YSW
3
n/a





PDH 0502
SGW
3
n/a





PDH 0503
FGW
3
n/a





PDH 0504
LGW
3
n/a





PDH 0505
AGW
3
n/a





PDH 0506
VGW
3
n/a





PDH 0507
YGW
3
n/a





PDH 0508
PGW
3
n/a





PDH 0509
DGW
3
n/a





PDH 0510
HGW
3
n/a





PDH 0511
IGD
3
n/a





PDH 0512
GGA
3
n/a





PDH 0513
IGG
3
n/a





PDH 0514
GGD
3
n/a





PDH 0515
GGV
3
n/a





PDH 0516
RGD
3
n/a





PDH 0517
TGV
3
n/a





PDH 0518
RGV
3
n/a





PDH 0519
GGG
3
n/a





PDH 0520
IGA
3
n/a





PDH 0521
IGV
3
n/a





PDH 0522
RGG
3
n/a





PDH 0523
RGA
3
n/a





PDH 0524
TGD
3
n/a





PDH 0525
TGA
3
n/a





PDH 0526
TGG
3
n/a





PDH 0527
NSA
3
n/a





PDH 0528
NSD
3
n/a





PDH 0529
TSD
3
n/a





PDH 0530
TSA
3
n/a





PDH 0531
ISA
3
n/a





PDH 0532
ISD
3
n/a





PDH 0533
HYD
3
n/a





PDH 0534
HYG
3
n/a





PDH 0535
FYD
3
n/a





PDH 0536
FYG
3
n/a





PDH 0537
LYA
3
n/a





PDH 0538
LYD
3
n/a





PDH 0539
VYA
3
n/a





PDH 0540
VYD
3
n/a





PDH 0541
TYA
3
n/a





PDH 0542
LYG
3
n/a





PDH 0543
DYD
3
n/a





PDH 0544
HYA
3
n/a





PDH 0545
TYD
3
n/a





PDH 0546
TYG
3
n/a





PDH 0547
YYA
3
n/a





PDH 0548
DYG
3
n/a





PDH 0549
YYD
3
n/a





PDH 0550
NYG
3
n/a





PDH 0551
NYD
3
n/a





PDH 0552
PYG
3
n/a





PDH 0553
YYG
3
n/a





PDH 0554
PYD
3
n/a





PDH 0555
NYA
3
n/a





PDH 0556
FYA
3
n/a





PDH 0557
PYA
3
n/a





PDH 0558
VYG
3
n/a





PDH 0559
AYD
3
n/a





PDH 0560
IYG
3
n/a





PDH 0561
AYA
3
n/a





PDH 0562
SYG
3
n/a





PDH 0563
IYD
3
n/a





PDH 0564
IYA
3
n/a





PDH 0565
AYG
3
n/a





PDH 0566
DYA
3
n/a





PDH 0567
SYD
3
n/a





PDH 0568
SYA
3
n/a





PDH 0569
TSE
3
n/a





PDH 0570
HSE
3
n/a





PDH 0571
YSE
3
n/a





PDH 0572
ASE
3
n/a





PDH 0573
NSE
3
n/a





PDH 0574
FSE
3
n/a





PDH 0575
DSE
3
n/a





PDH 0576
ISE
3
n/a





PDH 0577
SSE
3
n/a





PDH 0578
VSE
3
n/a





PDH 0579
PSE
3
n/a





PDH 0580
LSE
3
n/a





PDH 0581
EWP
3
n/a





PDH 0582
PWP
3
n/a





PDH 0583
KWA
3
n/a





PDH 0584
IWP
3
n/a





PDH 0585
LWA
3
n/a





PDH 0586
LWV
3
n/a





PDH 0587
AWV
3
n/a





PDH 0588
AWA
3
n/a





PDH 0589
PWA
3
n/a





PDH 0590
QWP
3
n/a





PDH 0591
PWV
3
n/a





PDH 0592
TWV
3
n/a





PDH 0593
TWP
3
n/a





PDH 0594
QWA
3
n/a





PDH 0595
KWP
3
n/a





PDH 0596
QWV
3
n/a





PDH 0597
EWV
3
n/a





PDH 0598
VWA
3
n/a





PDH 0599
AWP
3
n/a





PDH 0600
VWV
3
n/a





PDH 0601
TWA
3
n/a





PDH 0602
EWA
3
n/a





PDH 0603
IWV
3
n/a





PDH 0604
VWP
3
n/a





PDH 0605
IWA
3
n/a





PDH 0606
LWP
3
n/a





PDH 0607
KWV
3
n/a





PDH 0608
HDY
3
n/a





PDH 0609
IVY
3
n/a





PDH 0610
PVY
3
n/a





PDH 0611
AVY
3
n/a





PDH 0612
GVY
3
n/a





PDH 0613
LVY
3
n/a





PDH 0614
GDY
3
n/a





PDH 0615
ADY
3
n/a





PDH 0616
VVY
3
n/a





PDH 0617
NVY
3
n/a





PDH 0618
SDY
3
n/a





PDH 0619
RVY
3
n/a





PDH 0620
LDY
3
n/a





PDH 0621
HVY
3
n/a





PDH 0622
PDY
3
n/a





PDH 0623
RDY
3
n/a





PDH 0624
SVY
3
n/a





PDH 0625
IDY
3
n/a





PDH 0626
DDY
3
n/a





PDH 0627
NDY
3
n/a





PDH 0628
VDY
3
n/a





PDH 0629
DVY
3
n/a





PDH 0630
TVY
3
n/a





PDH 0631
TDY
3
n/a





PDH 0632
GKL
3
n/a





PDH 0633
GIL
3
n/a





PDH 0634
GRL
3
n/a





PDH 0635
GGL
3
n/a





PDH 0636
GAL
3
n/a





PDH 0637
GTL
3
n/a





PDH 0638
LRG
3
n/a





PDH 0639
DTG
3
n/a





PDH 0640
ARG
3
n/a





PDH 0641
YIG
3
n/a





PDH 0642
ITG
3
n/a





PDH 0643
PIG
3
n/a





PDH 0644
DIG
3
n/a





PDH 0645
ATG
3
n/a





PDH 0646
STG
3
n/a





PDH 0647
HTG
3
n/a





PDH 0648
VRG
3
n/a





PDH 0649
YRG
3
n/a





PDH 0650
NIG
3
n/a





PDH 0651
VIG
3
n/a





PDH 0652
IRG
3
n/a





PDH 0653
LTG
3
n/a





PDH 0654
SRG
3
n/a





PDH 0655
VTG
3
n/a





PDH 0656
AIG
3
n/a





PDH 0657
IIG
3
n/a





PDH 0658
FTG
3
n/a





PDH 0659
HIG
3
n/a





PDH 0660
HRG
3
n/a





PDH 0661
PTG
3
n/a





PDH 0662
YTG
3
n/a





PDH 0663
PRG
3
n/a





PDH 0664
TIG
3
n/a





PDH 0665
DRG
3
n/a





PDH 0666
TRG
3
n/a





PDH 0667
FIG
3
n/a





PDH 0668
NTG
3
n/a





PDH 0669
FRG
3
n/a





PDH 0670
LIG
3
n/a





PDH 0671
NRG
3
n/a





PDH 0672
TTG
3
n/a





PDH 0673
SIG
3
n/a





PDH 0674
EAG
3
n/a





PDH 0675
KAV
3
n/a





PDH 0676
IAD
3
n/a





PDH 0677
IAV
3
n/a





PDH 0678
KAD
3
n/a





PDH 0679
QAA
3
n/a





PDH 0680
LAA
3
n/a





PDH 0681
QAD
3
n/a





PDH 0682
AAD
3
n/a





PDH 0683
AAA
3
n/a





PDH 0684
LAD
3
n/a





PDH 0685
VAD
3
n/a





PDH 0686
TAA
3
n/a





PDH 0687
TAD
3
n/a





PDH 0688
TAV
3
n/a





PDH 0689
EAA
3
n/a





PDH 0690
AAV
3
n/a





PDH 0691
QAV
3
n/a





PDH 0692
EAV
3
n/a





PDH 0693
LAV
3
n/a





PDH 0694
QAG
3
n/a





PDH 0695
KAA
3
n/a





PDH 0696
IAA
3
n/a





PDH 0697
KAG
3
n/a





PDH 0698
EAD
3
n/a





PDH 0699
WVG
3
n/a





PDH 0700
VFG
3
n/a





PDH 0701
SFG
3
n/a





PDH 0702
RFG
3
n/a





PDH 0703
WAG
3
n/a





PDH 0704
WFG
3
n/a





PDH 0705
SVG
3
n/a





PDH 0706
TVG
3
n/a





PDH 0707
GFG
3
n/a





PDH 0708
MVG
3
n/a





PDH 0709
MFG
3
n/a





PDH 0710
LVG
3
n/a





PDH 0711
WSG
3
n/a





PDH 0712
AFG
3
n/a





PDH 0713
MAG
3
n/a





PDH 0714
LFG
3
n/a





PDH 0715
MSG
3
n/a





PDH 0716
VVG
3
n/a





PDH 0717
RVG
3
n/a





PDH 0718
AVG
3
n/a





PDH 0719
GVG
3
n/a





PDH 0720
TFG
3
n/a





PDH 0721
DGI
3
n/a





PDH 0722
LGI
3
n/a





PDH 0723
SGI
3
n/a





PDH 0724
HGI
3
n/a





PDH 0725
PGI
3
n/a





PDH 0726
VGI
3
n/a





PDH 0727
YGI
3
n/a





PDH 0728
FGI
3
n/a





PDH 0729
AGI
3
n/a





PDH 0730
DVD
3
n/a





PDH 0731
FVA
3
n/a





PDH 0732
DVA
3
n/a





PDH 0733
YVD
3
n/a





PDH 0734
YVA
3
n/a





PDH 0735
DVG
3
n/a





PDH 0736
HVG
3
n/a





PDH 0737
VVD
3
n/a





PDH 0738
HVD
3
n/a





PDH 0739
VVA
3
n/a





PDH 0740
IVA
3
n/a





PDH 0741
AVD
3
n/a





PDH 0742
YVG
3
n/a





PDH 0743
TVD
3
n/a





PDH 0744
FVG
3
n/a





PDH 0745
FVD
3
n/a





PDH 0746
TVA
3
n/a





PDH 0747
PVG
3
n/a





PDH 0748
PVA
3
n/a





PDH 0749
AVA
3
n/a





PDH 0750
PVD
3
n/a





PDH 0751
NVG
3
n/a





PDH 0752
IVD
3
n/a





PDH 0753
HVA
3
n/a





PDH 0754
SVA
3
n/a





PDH 0755
SVD
3
n/a





PDH 0756
IVG
3
n/a





PDH 0757
NVA
3
n/a





PDH 0758
LVD
3
n/a





PDH 0759
LVA
3
n/a





PDH 0760
NVD
3
n/a





PDH 0761
AYY
3
n/a





PDH 0762
LFY
3
n/a





PDH 0763
RFY
3
n/a





PDH 0764
IFY
3
n/a





PDH 0765
TYY
3
n/a





PDH 0766
RYY
3
n/a





PDH 0767
PYY
3
n/a





PDH 0768
VYY
3
n/a





PDH 0769
SFY
3
n/a





PDH 0770
GYY
3
n/a





PDH 0771
GFY
3
n/a





PDH 0772
DFY
3
n/a





PDH 0773
VFY
3
n/a





PDH 0774
HYY
3
n/a





PDH 0775
SYY
3
n/a





PDH 0776
PFY
3
n/a





PDH 0777
LYY
3
n/a





PDH 0778
IYY
3
n/a





PDH 0779
TFY
3
n/a





PDH 0780
NFY
3
n/a





PDH 0781
HFY
3
n/a





PDH 0782
AFY
3
n/a





PDH 0783
DYY
3
n/a





PDH 0784
NYY
3
n/a





PDH 0785
VVV
3
n/a





PDH 0786
VVF
3
n/a





PDH 0787
VVP
3
n/a





PDH 0788
VVH
3
n/a





PDH 0789
VVS
3
n/a





PDH 0790
GDL
3
n/a





PDH 0791
SAL
3
n/a





PDH 0792
RAL
3
n/a





PDH 0793
RGL
3
n/a





PDH 0794
IAL
3
n/a





PDH 0795
LDL
3
n/a





PDH 0796
TDL
3
n/a





PDH 0797
ADL
3
n/a





PDH 0798
VDL
3
n/a





PDH 0799
IDL
3
n/a





PDH 0800
SDL
3
n/a





PDH 0801
TAL
3
n/a





PDH 0802
RDL
3
n/a





PDH 0803
AAL
3
n/a





PDH 0804
SGL
3
n/a





PDH 0805
PDL
3
n/a





PDH 0806
LAL
3
n/a





PDH 0807
AGE
3
n/a





PDH 0808
SGE
3
n/a





PDH 0809
HGE
3
n/a





PDH 0810
LGE
3
n/a





PDH 0811
VGE
3
n/a





PDH 0812
PGE
3
n/a





PDH 0813
YGE
3
n/a





PDH 0814
DGE
3
n/a





PDH 0815
FGE
3
n/a





PDH 0816
SDG
3
n/a





PDH 0817
NDG
3
n/a





PDH 0818
GDG
3
n/a





PDH 0819
HDG
3
n/a





PDH 0820
ADG
3
n/a





PDH 0821
TDG
3
n/a





PDH 0822
IDG
3
n/a





PDH 0823
DDG
3
n/a





PDH 0824
VDG
3
n/a





PDH 0825
RDG
3
n/a





PDH 0826
LDG
3
n/a





PDH 0827
PDG
3
n/a





PDH 0828
RHG
3
n/a





PDH 0829
RLG
3
n/a





PDH 0830
RYG
3
n/a





PDH 0831
DLY
3
n/a





PDH 0832
IWY
3
n/a





PDH 0833
LWY
3
n/a





PDH 0834
ALY
3
n/a





PDH 0835
RWY
3
n/a





PDH 0836
SLY
3
n/a





PDH 0837
HLY
3
n/a





PDH 0838
ILY
3
n/a





PDH 0839
SWY
3
n/a





PDH 0840
GLY
3
n/a





PDH 0841
RLY
3
n/a





PDH 0842
DWY
3
n/a





PDH 0843
NLY
3
n/a





PDH 0844
VWY
3
n/a





PDH 0845
GWY
3
n/a





PDH 0846
AWY
3
n/a





PDH 0847
HWY
3
n/a





PDH 0848
PLY
3
n/a





PDH 0849
LLY
3
n/a





PDH 0850
TWY
3
n/a





PDH 0851
TLY
3
n/a





PDH 0852
NWY
3
n/a





PDH 0853
VLY
3
n/a





PDH 0854
PWY
3
n/a





PDH 0855
GSL
3
n/a





PDH 0856
ISL
3
n/a





PDH 0857
DWL
3
n/a





PDH 0858
SSL
3
n/a





PDH 0859
TSL
3
n/a





PDH 0860
VSL
3
n/a





PDH 0861
DSL
3
n/a





PDH 0862
HWL
3
n/a





PDH 0863
ASL
3
n/a





PDH 0864
SWL
3
n/a





PDH 0865
NWL
3
n/a





PDH 0866
NLL
3
n/a





PDH 0867
DLL
3
n/a





PDH 0868
RSL
3
n/a





PDH 0869
PSL
3
n/a





PDH 0870
HLL
3
n/a





PDH 0871
GWL
3
n/a





PDH 0872
HSL
3
n/a





PDH 0873
NSL
3
n/a





PDH 0874
LSL
3
n/a





PDH 0875
RWL
3
n/a





PDH 0876
FDY
3
n/a





PDH 0877
YYY
3
n/a





PDH 0878
FYY
3
n/a





PDH 0879
YDY
3
n/a





PDH 0880
LIL
3
n/a





PDH 0881
LKL
3
n/a





PDH 0882
LTL
3
n/a





PDH 0883
YAG
3
n/a





PDH 0884
FPG
3
n/a





PDH 0885
YPG
3
n/a





PDH 0886
FAG
3
n/a





PDH 0887
FYH
3
n/a





PDH 0888
LYH
3
n/a





PDH 0889
IYH
3
n/a





PDH 0890
SYH
3
n/a





PDH 0891
TYH
3
n/a





PDH 0892
YYH
3
n/a





PDH 0893
NYH
3
n/a





PDH 0894
PYH
3
n/a





PDH 0895
AYH
3
n/a





PDH 0896
VYH
3
n/a





PDH 0897
HYH
3
n/a





PDH 0898
DYH
3
n/a





PDH 0899
YTAM
4
5639





PDH 0900
HTAI
4
5640





PDH 0901
YTAS
4
5641





PDH 0902
YTAI
4
5642





PDH 0903
YTAR
4
5643





PDH 0904
PTAS
4
5644





PDH 0905
LTAM
4
5645





PDH 0906
DTAI
4
5646





PDH 0907
FTAS
4
5647





PDH 0908
FTAM
4
5648





PDH 0909
LTAS
4
5649





PDH 0910
ATAI
4
5650





PDH 0911
STAI
4
5651





PDH 0912
FTAR
4
5652





PDH 0913
DTAM
4
4420





PDH 0914
STAR
4
5653





PDH 0915
LTAR
4
5654





PDH 0916
FTAI
4
5655





PDH 0917
LTAI
4
5656





PDH 0918
STAM
4
5657





PDH 0919
ATAM
4
5658





PDH 0920
STAS
4
5659





PDH 0921
ATAR
4
5660





PDH 0922
HTAS
4
5661





PDH 0923
HTAM
4
5662





PDH 0924
VTAI
4
3907





PDH 0925
DTAR
4
5663





PDH 0926
HTAR
4
5664





PDH 0927
ATAS
4
5665





PDH 0928
VTAM
4
5666





PDH 0929
PTAR
4
5667





PDH 0930
DTAS
4
5668





PDH 0931
VTAS
4
5669





PDH 0932
PTAM
4
5670





PDH 0933
VTAR
4
5671





PDH 0934
PTAI
4
5672





PDH 0935
LVAT
4
5673





PDH 0936
LAAT
4
5674





PDH 0937
MVAT
4
5675





PDH 0938
TGAT
4
5676





PDH 0939
AVAT
4
5677





PDH 0940
VAAT
4
3803





PDH 0941
PAAT
4
5678





PDH 0942
KGAT
4
5679





PDH 0943
EGAT
4
5680





PDH 0944
PVAT
4
5681





PDH 0945
AGAT
4
5682





PDH 0946
QAAT
4
5683





PDH 0947
AAAT
4
5684





PDH 0948
VVAT
4
5685





PDH 0949
VGAT
4
3756





PDH 0950
TVAT
4
5686





PDH 0951
EVAT
4
5687





PDH 0952
LGAT
4
5688





PDH 0953
KAAT
4
5689





PDH 0954
MGAT
4
5690





PDH 0955
PGAT
4
5691





PDH 0956
QVAT
4
5692





PDH 0957
KVAT
4
5693





PDH 0958
EAAT
4
5694





PDH 0959
TAAT
4
5695





PDH 0960
MAAT
4
5696





PDH 0961
QGAT
4
5697





PDH 0962
RFGA
4
5698





PDH 0963
MFGE
4
5699





PDH 0964
MFGA
4
5700





PDH 0965
VFGG
4
5701





PDH 0966
RFGE
4
5702





PDH 0967
MFGV
4
5703





PDH 0968
VFGA
4
5704





PDH 0969
VFGE
4
5705





PDH 0970
VFGV
4
5706





PDH 0971
MFGG
4
5707





PDH 0972
LFGV
4
5708





PDH 0973
SFGE
4
5709





PDH 0974
SFGA
4
5710





PDH 0975
RFGG
4
5711





PDH 0976
SFGV
4
5712





PDH 0977
LFGA
4
5713





PDH 0978
SFGG
4
5714





PDH 0979
LFGG
4
5715





PDH 0980
LFGE
4
5716





PDH 0981
WFGE
4
3966





PDH 0982
WFGG
4
5717





PDH 0983
WFGV
4
5718





PDH 0984
WFGA
4
5719





PDH 0985
TFGG
4
4154





PDH 0986
TFGE
4
5720





PDH 0987
AFGV
4
5721





PDH 0988
AFGA
4
5722





PDH 0989
GFGV
4
5723





PDH 0990
GFGA
4
5724





PDH 0991
GFGG
4
5725





PDH 0992
TFGV
4
5726





PDH 0993
AFGE
4
5727





PDH 0994
TFGA
4
5728





PDH 0995
RFGV
4
5729





PDH 0996
AFGG
4
5730





PDH 0997
GFGE
4
5731





PDH 0998
AGDY
4
5732





PDH 0999
PGYY
4
5733





PDH 1000
VGAY
4
5734





PDH 1001
HGSY
4
5735





PDH 1002
SGSY
4
3763





PDH 1003
PGDY
4
5736





PDH 1004
LGDY
4
5737





PDH 1005
DGAY
4
5738





PDH 1006
FGDY
4
5739





PDH 1007
LGAY
4
5740





PDH 1008
DGYY
4
5741





PDH 1009
VGSY
4
5742





PDH 1010
YGAY
4
5743





PDH 1011
FGYY
4
5744





PDH 1012
DGDY
4
5745





PDH 1013
AGYY
4
5746





PDH 1014
YGSY
4
5747





PDH 1015
VGYY
4
5748





PDH 1016
AGAY
4
5749





PDH 1017
DGSY
4
5750





PDH 1018
HGDY
4
5751





PDH 1019
FGAY
4
5752





PDH 1020
HGYY
4
5753





PDH 1021
YGYY
4
5754





PDH 1022
SGYY
4
4187





PDH 1023
SGAY
4
5755





PDH 1024
AGSY
4
5756





PDH 1025
HGAY
4
5757





PDH 1026
PGAY
4
5758





PDH 1027
PGSY
4
5759





PDH 1028
LGSY
4
5760





PDH 1029
VGDY
4
5761





PDH 1030
SGDY
4
5762





PDH 1031
LGYY
4
5763





PDH 1032
FGSY
4
5764





PDH 1033
YGDY
4
4350





PDH 1034
YSSV
4
5765





PDH 1035
YSSI
4
5766





PDH 1036
YSSS
4
4442





PDH 1037
YSSR
4
5767





PDH 1038
YSSP
4
5768





PDH 1039
YSSA
4
5769





PDH 1040
YSSL
4
5770





PDH 1041
YSSG
4
4462





PDH 1042
YSST
4
5771





PDH 1043
EVRG
4
5772





PDH 1044
PVRG
4
5773





PDH 1045
PVTG
4
5774





PDH 1046
EVAG
4
5775





PDH 1047
MVTG
4
5776





PDH 1048
MVGG
4
5777





PDH 1049
EVGG
4
3728





PDH 1050
QVRG
4
5778





PDH 1051
MVRG
4
4017





PDH 1052
QVGG
4
5779





PDH 1053
VVAG
4
5780





PDH 1054
EVTG
4
5781





PDH 1055
VVRG
4
5782





PDH 1056
PVAG
4
5783





PDH 1057
LVAG
4
5784





PDH 1058
LVRG
4
5785





PDH 1059
QVTG
4
5786





PDH 1060
PVGG
4
5787





PDH 1061
AVGG
4
5788





PDH 1062
TVGG
4
5789





PDH 1063
KVGG
4
5790





PDH 1064
TVAG
4
5791





PDH 1065
AVTG
4
5792





PDH 1066
KVRG
4
5793





PDH 1067
LVTG
4
5794





PDH 1068
AVRG
4
5795





PDH 1069
LVGG
4
5796





PDH 1070
AVAG
4
4473





PDH 1071
QVAG
4
5797





PDH 1072
KVTG
4
5798





PDH 1073
TVTG
4
5799





PDH 1074
VVGG
4
5800





PDH 1075
KVAG
4
5801





PDH 1076
MVAG
4
5802





PDH 1077
VVTG
4
5803





PDH 1078
TVRG
4
5804





PDH 1079
SDGY
4
5805





PDH 1080
IDGF
4
5806





PDH 1081
ADGY
4
5807





PDH 1082
ADGS
4
5808





PDH 1083
RDGF
4
5809





PDH 1084
IDGS
4
5810





PDH 1085
GDGS
4
5811





PDH 1086
LDGY
4
5812





PDH 1087
GDGY
4
5813





PDH 1088
IDGY
4
5814





PDH 1089
SDGS
4
5815





PDH 1090
SDGF
4
5816





PDH 1091
VDGF
4
5817





PDH 1092
GDGF
4
5818





PDH 1093
TDGY
4
5819





PDH 1094
RDGY
4
4410





PDH 1095
VDGY
4
5820





PDH 1096
TDGS
4
5821





PDH 1097
RDGS
4
5822





PDH 1098
LDGF
4
5823





PDH 1099
VDGS
4
5824





PDH 1100
ADGF
4
5825





PDH 1101
LDGS
4
5826





PDH 1102
PDGS
4
5827





PDH 1103
PDGF
4
5828





PDH 1104
PDGY
4
5829





PDH 1105
TDGF
4
5830





PDH 1106
NYGG
4
5831





PDH 1107
TYGD
4
5832





PDH 1108
LYGD
4
5833





PDH 1109
FYGG
4
5834





PDH 1110
SYGG
4
5835





PDH 1111
TYGG
4
5836





PDH 1112
LYGA
4
5837





PDH 1113
SYGA
4
5838





PDH 1114
LYGG
4
5839





PDH 1115
VYGD
4
5840





PDH 1116
SYGD
4
5841





PDH 1117
AYGG
4
5842





PDH 1118
VYGG
4
5843





PDH 1119
HYGG
4
5844





PDH 1120
FYGA
4
5845





PDH 1121
NYGD
4
5846





PDH 1122
TYGA
4
5847





PDH 1123
FYGD
4
5848





PDH 1124
IYGD
4
5849





PDH 1125
DYGD
4
4349





PDH 1126
PYGD
4
5850





PDH 1127
DYGA
4
5851





PDH 1128
HYGA
4
5852





PDH 1129
PYGA
4
5853





PDH 1130
PYGG
4
5854





PDH 1131
HYGD
4
5855





PDH 1132
AYGA
4
5856





PDH 1133
VYGA
4
5857





PDH 1134
YYGD
4
5858





PDH 1135
AYGD
4
5859





PDH 1136
NYGA
4
5860





PDH 1137
YYGA
4
5861





PDH 1138
YYGG
4
5862





PDH 1139
IYGG
4
5863





PDH 1140
IYGA
4
5864





PDH 1141
DYGG
4
4357





PDH 1142
LMAT
4
5865





PDH 1143
VTAT
4
5866





PDH 1144
KMAT
4
5867





PDH 1145
QMAT
4
5868





PDH 1146
ETAT
4
5869





PDH 1147
TTAT
4
5870





PDH 1148
TMAT
4
5871





PDH 1149
PTAT
4
5872





PDH 1150
VMAT
4
5873





PDH 1151
LTAT
4
5874





PDH 1152
KTAT
4
5875





PDH 1153
MMAT
4
5876





PDH 1154
ATAT
4
5877





PDH 1155
QTAT
4
5878





PDH 1156
PMAT
4
5879





PDH 1157
MTAT
4
5880





PDH 1158
EMAT
4
4402





PDH 1159
AMAT
4
5881





PDH 1160
TYSA
4
5882





PDH 1161
LYSS
4
5883





PDH 1162
LYST
4
5884





PDH 1163
QYSS
4
5885





PDH 1164
VYST
4
5886





PDH 1165
VYSS
4
5887





PDH 1166
AYSA
4
5888





PDH 1167
PYSG
4
5889





PDH 1168
PYST
4
5890





PDH 1169
VYSA
4
5891





PDH 1170
PYSS
4
5892





PDH 1171
VYSG
4
5893





PDH 1172
PYSA
4
5894





PDH 1173
KYST
4
5895





PDH 1174
QYST
4
5896





PDH 1175
TYSG
4
5897





PDH 1176
TYST
4
5898





PDH 1177
QYSA
4
5899





PDH 1178
AYSS
4
5900





PDH 1179
TYSS
4
5901





PDH 1180
IYSA
4
5902





PDH 1181
AYST
4
5903





PDH 1182
IYSG
4
5904





PDH 1183
EYSS
4
4479





PDH 1184
KYSG
4
5905





PDH 1185
EYSA
4
5906





PDH 1186
LYSG
4
5907





PDH 1187
AYSG
4
5908





PDH 1188
EYSG
4
5909





PDH 1189
LYSA
4
5910





PDH 1190
QYSG
4
5911





PDH 1191
IYST
4
5912





PDH 1192
EYST
4
5913





PDH 1193
KYSS
4
5914





PDH 1194
IYSS
4
5915





PDH 1195
KYSA
4
5916





PDH 1196
QWLS
4
5917





PDH 1197
QWLL
4
5918





PDH 1198
QWLP
4
5919





PDH 1199
QWLD
4
5920





PDH 1200
QWLY
4
5921





PDH 1201
QWLA
4
5922





PDH 1202
QWLV
4
4475





PDH 1203
QWLH
4
5923





PDH 1204
QWLF
4
5924





PDH 1205
PVAD
4
5925





PDH 1206
PVAA
4
5926





PDH 1207
IVAA
4
5927





PDH 1208
EVAA
4
5928





PDH 1209
EVAV
4
5929





PDH 1210
VVAA
4
3802





PDH 1211
IVAD
4
5930





PDH 1212
EVAD
4
5931





PDH 1213
IVAG
4
5932





PDH 1214
QVAD
4
5933





PDH 1215
AVAA
4
5934





PDH 1216
AVAV
4
5935





PDH 1217
AVAD
4
5936





PDH 1218
KVAA
4
5937





PDH 1219
QVAA
4
5938





PDH 1220
TVAV
4
5939





PDH 1221
LVAD
4
5940





PDH 1222
LVAA
4
5941





PDH 1223
IVAV
4
5942





PDH 1224
VVAD
4
5943





PDH 1225
VVAV
4
5944





PDH 1226
QVAV
4
5945





PDH 1227
PVAV
4
5946





PDH 1228
KVAV
4
5947





PDH 1229
LVAV
4
5948





PDH 1230
TVAD
4
5949





PDH 1231
KVAD
4
5950





PDH 1232
TVAA
4
5951





PDH 1233
STVA
4
5952





PDH 1234
STVK
4
5953





PDH 1235
RTVA
4
5954





PDH 1236
ITVT
4
5955





PDH 1237
PTVA
4
5956





PDH 1238
ATVT
4
5957





PDH 1239
ATVK
4
5958





PDH 1240
VTVK
4
5959





PDH 1241
TTVK
4
5960





PDH 1242
PTVE
4
5961





PDH 1243
VTVT
4
5962





PDH 1244
STVT
4
5963





PDH 1245
VTVE
4
5964





PDH 1246
TTVT
4
4352





PDH 1247
LTVA
4
5965





PDH 1248
RTVT
4
5966





PDH 1249
LTVE
4
5967





PDH 1250
TTVE
4
5968





PDH 1251
RTVK
4
5969





PDH 1252
VTVA
4
5970





PDH 1253
STVE
4
5971





PDH 1254
ATVA
4
5972





PDH 1255
GTVE
4
5973





PDH 1256
GTVA
4
5974





PDH 1257
ITVE
4
5975





PDH 1258
PTVT
4
5976





PDH 1259
ITVA
4
5977





PDH 1260
ATVE
4
5978





PDH 1261
GTVK
4
5979





PDH 1262
LTVK
4
5980





PDH 1263
ITVK
4
5981





PDH 1264
RTVE
4
5982





PDH 1265
LTVT
4
5983





PDH 1266
TTVA
4
5984





PDH 1267
PTVK
4
5985





PDH 1268
GTVT
4
5986





PDH 1269
SSSA
4
5987





PDH 1270
SSSS
4
4480





PDH 1271
SSSL
4
5988





PDH 1272
SSSW
4
4443





PDH 1273
SSSR
4
5989





PDH 1274
SSSV
4
5990





PDH 1275
SSST
4
5991





PDH 1276
SSSM
4
5992





PDH 1277
SSSG
4
5993





PDH 1278
LSYG
4
5994





PDH 1279
PYYG
4
5995





PDH 1280
ASYG
4
5996





PDH 1281
FYYG
4
5997





PDH 1282
DSYG
4
5998





PDH 1283
VYYG
4
5999





PDH 1284
IYYG
4
6000





PDH 1285
DYYG
4
6001





PDH 1286
HYYG
4
6002





PDH 1287
SYYG
4
6003





PDH 1288
YYYG
4
3989





PDH 1289
VSYG
4
6004





PDH 1290
NSYG
4
6005





PDH 1291
SSYG
4
6006





PDH 1292
FSYG
4
6007





PDH 1293
ISYG
4
6008





PDH 1294
TSYG
4
6009





PDH 1295
LYYG
4
6010





PDH 1296
PSYG
4
6011





PDH 1297
AYYG
4
6012





PDH 1298
YSYG
4
4433





PDH 1299
HSYG
4
6013





PDH 1300
NYYG
4
6014





PDH 1301
TYYG
4
6015





PDH 1302
FSWY
4
6016





PDH 1303
SSWF
4
6017





PDH 1304
DSWS
4
6018





PDH 1305
LSWS
4
6019





PDH 1306
DSWY
4
6020





PDH 1307
LSWF
4
6021





PDH 1308
LSWY
4
6022





PDH 1309
VSWS
4
6023





PDH 1310
HSWY
4
6024





PDH 1311
SSWS
4
6025





PDH 1312
PSWS
4
6026





PDH 1313
SSWY
4
4444





PDH 1314
FSWF
4
6027





PDH 1315
FSWS
4
6028





PDH 1316
PSWF
4
6029





PDH 1317
VSWF
4
6030





PDH 1318
HSWF
4
6031





PDH 1319
VSWY
4
6032





PDH 1320
HSWS
4
6033





PDH 1321
DSWF
4
6034





PDH 1322
PSWY
4
6035





PDH 1323
ASWY
4
6036





PDH 1324
YSWS
4
6037





PDH 1325
ASWF
4
6038





PDH 1326
ASWS
4
6039





PDH 1327
YSWF
4
6040





PDH 1328
YSWY
4
6041





PDH 1329
IQLV
4
6042





PDH 1330
AQLG
4
6043





PDH 1331
IQLA
4
6044





PDH 1332
EQLV
4
6045





PDH 1333
AQLA
4
6046





PDH 1334
IQLG
4
6047





PDH 1335
KQLD
4
6048





PDH 1336
TQLV
4
6049





PDH 1337
QQLA
4
6050





PDH 1338
AQLD
4
6051





PDH 1339
IQLD
4
6052





PDH 1340
AQLV
4
6053





PDH 1341
KQLA
4
6054





PDH 1342
KQLG
4
6055





PDH 1343
LQLD
4
6056





PDH 1344
LQLG
4
6057





PDH 1345
TQLA
4
6058





PDH 1346
VQLD
4
6059





PDH 1347
TQLD
4
6060





PDH 1348
VQLA
4
6061





PDH 1349
EQLD
4
6062





PDH 1350
VQLG
4
6063





PDH 1351
TQLG
4
6064





PDH 1352
PQLD
4
6065





PDH 1353
QQLV
4
4455





PDH 1354
QQLD
4
6066





PDH 1355
PQLA
4
6067





PDH 1356
PQLG
4
6068





PDH 1357
VQLV
4
6069





PDH 1358
QQLG
4
6070





PDH 1359
KQLV
4
6071





PDH 1360
LQLV
4
6072





PDH 1361
LQLA
4
6073





PDH 1362
EQLA
4
6074





PDH 1363
PQLV
4
6075





PDH 1364
EQLG
4
6076





PDH 1365
DGSA
4
6077





PDH 1366
DGSS
4
6078





PDH 1367
SGSA
4
6079





PDH 1368
DGSD
4
6080





PDH 1369
SGSD
4
6081





PDH 1370
PGSD
4
6082





PDH 1371
FGSS
4
6083





PDH 1372
HGSA
4
6084





PDH 1373
YGSS
4
6085





PDH 1374
FGSA
4
6086





PDH 1375
FGSD
4
6087





PDH 1376
LGSA
4
6088





PDH 1377
LGSS
4
6089





PDH 1378
AGSD
4
6090





PDH 1379
VGSS
4
6091





PDH 1380
AGSS
4
6092





PDH 1381
HGSD
4
6093





PDH 1382
VGSA
4
6094





PDH 1383
YGSA
4
6095





PDH 1384
YGSD
4
6096





PDH 1385
AGSA
4
6097





PDH 1386
HGSS
4
6098





PDH 1387
VGSD
4
6099





PDH 1388
PGSA
4
6100





PDH 1389
PGSS
4
6101





PDH 1390
SGSS
4
6102





PDH 1391
LGSD
4
6103





PDH 1392
SGWY
4
4464





PDH 1393
PGWY
4
6104





PDH 1394
FGWY
4
6105





PDH 1395
YGWY
4
6106





PDH 1396
AGWY
4
6107





PDH 1397
VGWY
4
6108





PDH 1398
LGWY
4
6109





PDH 1399
DGWY
4
6110





PDH 1400
HGWY
4
6111





PDH 1401
PSGW
4
6112





PDH 1402
YSGW
4
6113





PDH 1403
FSGR
4
6114





PDH 1404
VSGG
4
6115





PDH 1405
NSGR
4
6116





PDH 1406
DSGR
4
6117





PDH 1407
ASGR
4
6118





PDH 1408
FSGW
4
6119





PDH 1409
DSGW
4
6120





PDH 1410
VSGR
4
6121





PDH 1411
ISGW
4
6122





PDH 1412
LSGW
4
6123





PDH 1413
DSGG
4
3723





PDH 1414
HSGR
4
6124





PDH 1415
NSGW
4
6125





PDH 1416
HSGG
4
6126





PDH 1417
HSGW
4
6127





PDH 1418
ISGG
4
6128





PDH 1419
YSGR
4
6129





PDH 1420
ISGR
4
6130





PDH 1421
YSGG
4
6131





PDH 1422
NSGG
4
6132





PDH 1423
SSGW
4
4463





PDH 1424
VSGW
4
6133





PDH 1425
SSGR
4
6134





PDH 1426
LSGR
4
6135





PDH 1427
PSGR
4
6136





PDH 1428
FSGG
4
6137





PDH 1429
TSGR
4
6138





PDH 1430
TSGW
4
6139





PDH 1431
ASGG
4
6140





PDH 1432
LSGG
4
6141





PDH 1433
ASGW
4
6142





PDH 1434
PSGG
4
6143





PDH 1435
TSGG
4
6144





PDH 1436
SSGG
4
6145





PDH 1437
VGYD
4
6146





PDH 1438
AGYD
4
6147





PDH 1439
DGYD
4
6148





PDH 1440
AGYA
4
6149





PDH 1441
DGYA
4
6150





PDH 1442
FGYA
4
6151





PDH 1443
FGYD
4
6152





PDH 1444
PGYA
4
6153





PDH 1445
DGYS
4
6154





PDH 1446
YGYA
4
6155





PDH 1447
FGYS
4
6156





PDH 1448
VGYA
4
6157





PDH 1449
PGYD
4
6158





PDH 1450
PGYS
4
6159





PDH 1451
VGYS
4
6160





PDH 1452
YGYD
4
6161





PDH 1453
HGYA
4
6162





PDH 1454
YGYS
4
6163





PDH 1455
HGYD
4
6164





PDH 1456
SGYS
4
6165





PDH 1457
LGYA
4
6166





PDH 1458
HGYS
4
6167





PDH 1459
LGYD
4
6168





PDH 1460
AGYS
4
6169





PDH 1461
LGYS
4
6170





PDH 1462
SGYD
4
4393





PDH 1463
SGYA
4
6171





PDH 1464
QVTA
4
6172





PDH 1465
PVTA
4
6173





PDH 1466
LVTT
4
6174





PDH 1467
PVTT
4
6175





PDH 1468
PVTE
4
6176





PDH 1469
QVTT
4
6177





PDH 1470
AVTA
4
6178





PDH 1471
QVTK
4
6179





PDH 1472
IVTA
4
6180





PDH 1473
PVTK
4
6181





PDH 1474
LVTK
4
6182





PDH 1475
AVTE
4
6183





PDH 1476
LVTA
4
6184





PDH 1477
EVTA
4
6185





PDH 1478
LVTE
4
6186





PDH 1479
EVTE
4
6187





PDH 1480
IVTE
4
6188





PDH 1481
VVTA
4
3906





PDH 1482
TVTK
4
6189





PDH 1483
TVTT
4
4353





PDH 1484
IVTT
4
6190





PDH 1485
VVTE
4
6191





PDH 1486
IVTK
4
6192





PDH 1487
TVTE
4
6193





PDH 1488
AVTT
4
6194





PDH 1489
KVTA
4
6195





PDH 1490
KVTE
4
6196





PDH 1491
AVTK
4
6197





PDH 1492
EVTK
4
6198





PDH 1493
KVTK
4
6199





PDH 1494
VVTK
4
6200





PDH 1495
TVTA
4
6201





PDH 1496
QVTE
4
6202





PDH 1497
VVTT
4
6203





PDH 1498
EVTT
4
6204





PDH 1499
KVTT
4
6205





PDH 1500
AAAG
4
4453





PDH 1501
AAAS
4
6206





PDH 1502
AAAL
4
6207





PDH 1503
AAAR
4
6208





PDH 1504
AAAI
4
6209





PDH 1505
AAAV
4
6210





PDH 1506
AAAP
4
6211





PDH 1507
AAAA
4
6212





PDH 1508
AIFG
4
6213





PDH 1509
ATFG
4
6214





PDH 1510
PTFG
4
6215





PDH 1511
TTFG
4
6216





PDH 1512
ITFG
4
4153





PDH 1513
RTFG
4
6217





PDH 1514
STFG
4
6218





PDH 1515
SIFG
4
6219





PDH 1516
LIFG
4
6220





PDH 1517
RIFG
4
6221





PDH 1518
TIFG
4
4291





PDH 1519
GIFG
4
6222





PDH 1520
IIFG
4
6223





PDH 1521
LTFG
4
6224





PDH 1522
VIFG
4
6225





PDH 1523
PIFG
4
6226





PDH 1524
GTFG
4
6227





PDH 1525
VTFG
4
6228





PDH 1526
VAAK
4
6229





PDH 1527
VAAL
4
6230





PDH 1528
VAAP
4
6231





PDH 1529
VAAQ
4
6232





PDH 1530
VAAA
4
6233





PDH 1531
VAAE
4
6234





PDH 1532
VAAV
4
6235





PDH 1533
VAAI
4
6236





PDH 1534
YYYD
4
4182





PDH 1535
VYYA
4
6237





PDH 1536
AYYD
4
6238





PDH 1537
YYYA
4
6239





PDH 1538
PYYD
4
6240





PDH 1539
IYYD
4
6241





PDH 1540
VYYD
4
6242





PDH 1541
IYYA
4
6243





PDH 1542
TYYA
4
6244





PDH 1543
LYYD
4
6245





PDH 1544
DYYD
4
6246





PDH 1545
SYYD
4
6247





PDH 1546
LYYA
4
6248





PDH 1547
HYYA
4
6249





PDH 1548
DYYA
4
6250





PDH 1549
SYYA
4
6251





PDH 1550
FYYD
4
6252





PDH 1551
FYYA
4
6253





PDH 1552
PYYA
4
6254





PDH 1553
AYYA
4
6255





PDH 1554
HYYD
4
6256





PDH 1555
NYYA
4
6257





PDH 1556
TYYD
4
6258





PDH 1557
NYYD
4
6259





PDH 1558
GYGY
4
6260





PDH 1559
LYGY
4
6261





PDH 1560
SSGY
4
4186





PDH 1561
RYGY
4
6262





PDH 1562
TYGY
4
6263





PDH 1563
TSGY
4
6264





PDH 1564
VYGY
4
6265





PDH 1565
ISGY
4
6266





PDH 1566
ASGY
4
6267





PDH 1567
PSGY
4
6268





PDH 1568
RSGY
4
6269





PDH 1569
GAGY
4
6270





PDH 1570
AAGY
4
6271





PDH 1571
LSGY
4
6272





PDH 1572
SYGY
4
4434





PDH 1573
VSGY
4
6273





PDH 1574
VAGY
4
6274





PDH 1575
TAGY
4
6275





PDH 1576
PAGY
4
6276





PDH 1577
SAGY
4
6277





PDH 1578
RAGY
4
6278





PDH 1579
IAGY
4
6279





PDH 1580
AYGY
4
6280





PDH 1581
PYGY
4
6281





PDH 1582
LAGY
4
6282





PDH 1583
IYGY
4
6283





PDH 1584
GSGY
4
6284





PDH 1585
LQLL
4
6285





PDH 1586
AQLW
4
6286





PDH 1587
TQLW
4
6287





PDH 1588
QQLL
4
6288





PDH 1589
IQLW
4
4427





PDH 1590
EQLL
4
6289





PDH 1591
QQLW
4
6290





PDH 1592
IQLL
4
6291





PDH 1593
EQLW
4
6292





PDH 1594
VQLW
4
6293





PDH 1595
KQLW
4
6294





PDH 1596
KQLL
4
6295





PDH 1597
PQLW
4
6296





PDH 1598
VQLL
4
6297





PDH 1599
TQLL
4
6298





PDH 1600
PQLL
4
6299





PDH 1601
LQLW
4
6300





PDH 1602
AQLL
4
6301





PDH 1603
LGVA
4
6302





PDH 1604
LGGA
4
6303





PDH 1605
KGIA
4
6304





PDH 1606
KGSA
4
6305





PDH 1607
VGIA
4
6306





PDH 1608
KGGA
4
6307





PDH 1609
MGGA
4
6308





PDH 1610
TGGA
4
6309





PDH 1611
QGSA
4
6310





PDH 1612
QGIA
4
6311





PDH 1613
EGSA
4
6312





PDH 1614
PGVA
4
6313





PDH 1615
QGVA
4
6314





PDH 1616
EGIA
4
6315





PDH 1617
AGVA
4
6316





PDH 1618
MGVA
4
6317





PDH 1619
EGGA
4
3671





PDH 1620
PGIA
4
6318





PDH 1621
AGGA
4
6319





PDH 1622
VGGA
4
6320





PDH 1623
EGVA
4
6321





PDH 1624
PGGA
4
6322





PDH 1625
QGGA
4
6323





PDH 1626
AGIA
4
6324





PDH 1627
LGIA
4
6325





PDH 1628
MGIA
4
6326





PDH 1629
TGSA
4
6327





PDH 1630
TGIA
4
6328





PDH 1631
MGSA
4
6329





PDH 1632
KGVA
4
6330





PDH 1633
TGVA
4
6331





PDH 1634
VGVA
4
6332





PDH 1635
PFGE
4
6333





PDH 1636
VVGE
4
6334





PDH 1637
ALGE
4
6335





PDH 1638
IFGE
4
6336





PDH 1639
PLGE
4
6337





PDH 1640
ILGE
4
6338





PDH 1641
PVGE
4
6339





PDH 1642
RVGE
4
6340





PDH 1643
LLGE
4
6341





PDH 1644
SVGE
4
6342





PDH 1645
GLGE
4
6343





PDH 1646
IVGE
4
6344





PDH 1647
RLGE
4
4068





PDH 1648
LVGE
4
6345





PDH 1649
SLGE
4
6346





PDH 1650
TLGE
4
6347





PDH 1651
VLGE
4
6348





PDH 1652
TVGE
4
6349





PDH 1653
GVGE
4
6350





PDH 1654
AVGE
4
6351





PDH 1655
PYSY
4
6352





PDH 1656
PYSD
4
6353





PDH 1657
DYSD
4
6354





PDH 1658
DYSA
4
6355





PDH 1659
SYSD
4
6356





PDH 1660
FYSY
4
6357





PDH 1661
VYSY
4
6358





PDH 1662
FYSS
4
6359





PDH 1663
SYSS
4
6360





PDH 1664
YYSS
4
6361





PDH 1665
YYSY
4
6362





PDH 1666
AYSY
4
6363





PDH 1667
AYSD
4
6364





PDH 1668
HYSY
4
6365





PDH 1669
VYSD
4
6366





PDH 1670
FYSA
4
6367





PDH 1671
SYSY
4
6368





PDH 1672
SYSA
4
6369





PDH 1673
FYSD
4
6370





PDH 1674
YYSD
4
6371





PDH 1675
LYSY
4
6372





PDH 1676
YYSA
4
6373





PDH 1677
HYSS
4
6374





PDH 1678
DYSS
4
6375





PDH 1679
HYSA
4
6376





PDH 1680
DYSY
4
6377





PDH 1681
HYSD
4
6378





PDH 1682
LYSD
4
6379





PDH 1683
AVPA
4
6380





PDH 1684
AVRA
4
6381





PDH 1685
PVRA
4
6382





PDH 1686
PVPA
4
6383





PDH 1687
IVGA
4
3755





PDH 1688
EVPA
4
6384





PDH 1689
LVGA
4
6385





PDH 1690
IVRA
4
6386





PDH 1691
QVGA
4
6387





PDH 1692
IVPA
4
6388





PDH 1693
EVGA
4
6389





PDH 1694
LVPA
4
6390





PDH 1695
QVPA
4
6391





PDH 1696
AVGA
4
6392





PDH 1697
QVRA
4
6393





PDH 1698
TVRA
4
6394





PDH 1699
KVGA
4
6395





PDH 1700
VVPA
4
3837





PDH 1701
VVGA
4
6396





PDH 1702
EVRA
4
6397





PDH 1703
LVRA
4
6398





PDH 1704
VVRA
4
6399





PDH 1705
PVGA
4
6400





PDH 1706
TVGA
4
6401





PDH 1707
KVRA
4
6402





PDH 1708
KVPA
4
6403





PDH 1709
TVPA
4
6404





PDH 1710
GRGV
4
6405





PDH 1711
SRGV
4
6406





PDH 1712
ILGV
4
6407





PDH 1713
AQGV
4
6408





PDH 1714
TQGV
4
6409





PDH 1715
VQGV
4
4062





PDH 1716
PQGV
4
6410





PDH 1717
SQGV
4
6411





PDH 1718
RRGV
4
6412





PDH 1719
PLGV
4
6413





PDH 1720
PRGV
4
6414





PDH 1721
IRGV
4
6415





PDH 1722
ALGV
4
6416





PDH 1723
VRGV
4
4018





PDH 1724
TRGV
4
6417





PDH 1725
TLGV
4
6418





PDH 1726
GQGV
4
6419





PDH 1727
RQGV
4
6420





PDH 1728
ARGV
4
4812





PDH 1729
RLGV
4
6421





PDH 1730
LRGV
4
6422





PDH 1731
SLGV
4
6423





PDH 1732
VLGV
4
6424





PDH 1733
IQGV
4
6425





PDH 1734
LLGV
4
6426





PDH 1735
LQGV
4
6427





PDH 1736
GLGV
4
6428





PDH 1737
DSSW
4
6429





PDH 1738
DSSR
4
6430





PDH 1739
DSSV
4
6431





PDH 1740
DSST
4
6432





PDH 1741
DSSM
4
6433





PDH 1742
DSSG
4
4185





PDH 1743
DSSA
4
6434





PDH 1744
DSSS
4
6435





PDH 1745
DSSL
4
6436





PDH 1746
TGYS
4
6437





PDH 1747
SDYS
4
6438





PDH 1748
IAYS
4
6439





PDH 1749
VDYS
4
6440





PDH 1750
LDYS
4
6441





PDH 1751
PDYS
4
6442





PDH 1752
SAYS
4
6443





PDH 1753
TDYS
4
6444





PDH 1754
LAYS
4
6445





PDH 1755
GAYS
4
6446





PDH 1756
GDYS
4
6447





PDH 1757
VAYS
4
6448





PDH 1758
RDYS
4
6449





PDH 1759
IDYS
4
6450





PDH 1760
RAYS
4
6451





PDH 1761
PAYS
4
6452





PDH 1762
ADYS
4
6453





PDH 1763
TAYS
4
6454





PDH 1764
IGYS
4
6455





PDH 1765
GGYS
4
6456





PDH 1766
RGYS
4
6457





PDH 1767
AAYS
4
6458





PDH 1768
LYGS
4
6459





PDH 1769
TYGS
4
6460





PDH 1770
DYGS
4
6461





PDH 1771
SYGS
4
6462





PDH 1772
FYGS
4
6463





PDH 1773
YYGS
4
3990





PDH 1774
NYGS
4
6464





PDH 1775
HYGS
4
6465





PDH 1776
VYGS
4
6466





PDH 1777
AYGS
4
6467





PDH 1778
PYGS
4
6468





PDH 1779
IYGS
4
6469





PDH 1780
YYYS
4
6470





PDH 1781
SYYS
4
6471





PDH 1782
YYYY
4
6472





PDH 1783
PYYF
4
6473





PDH 1784
FYYS
4
6474





PDH 1785
NYYS
4
6475





PDH 1786
NYYF
4
6476





PDH 1787
FYYF
4
6477





PDH 1788
FYYY
4
6478





PDH 1789
AYYY
4
6479





PDH 1790
SYYY
4
6480





PDH 1791
DYYY
4
6481





PDH 1792
AYYS
4
6482





PDH 1793
IYYY
4
6483





PDH 1794
LYYY
4
6484





PDH 1795
DYYS
4
6485





PDH 1796
AYYF
4
6486





PDH 1797
PYYS
4
6487





PDH 1798
IYYS
4
6488





PDH 1799
YYYF
4
6489





PDH 1800
HYYS
4
6490





PDH 1801
PYYY
4
6491





PDH 1802
HYYF
4
6492





PDH 1803
HYYY
4
6493





PDH 1804
LYYS
4
6494





PDH 1805
VYYF
4
6495





PDH 1806
SYYF
4
6496





PDH 1807
IYYF
4
6497





PDH 1808
LYYF
4
6498





PDH 1809
DYYF
4
6499





PDH 1810
TYYS
4
6500





PDH 1811
NYYY
4
6501





PDH 1812
TYYF
4
6502





PDH 1813
TYYY
4
6503





PDH 1814
VYYS
4
6504





PDH 1815
VYYY
4
6505





PDH 1816
FSYS
4
6506





PDH 1817
VRYS
4
6507





PDH 1818
YSYS
4
6508





PDH 1819
LRYS
4
6509





PDH 1820
ARYS
4
6510





PDH 1821
FRYS
4
6511





PDH 1822
SRYS
4
6512





PDH 1823
DSYS
4
6513





PDH 1824
LSYS
4
6514





PDH 1825
HRYS
4
6515





PDH 1826
PSYS
4
6516





PDH 1827
HSYS
4
6517





PDH 1828
ASYS
4
6518





PDH 1829
YRYS
4
6519





PDH 1830
SSYS
4
6520





PDH 1831
PRYS
4
6521





PDH 1832
VSYS
4
6522





PDH 1833
DRYS
4
6523





PDH 1834
TWFG
4
6524





PDH 1835
GWFG
4
6525





PDH 1836
RWFG
4
6526





PDH 1837
PWFG
4
6527





PDH 1838
LWFG
4
3965





PDH 1839
VWFG
4
6528





PDH 1840
SWFG
4
6529





PDH 1841
AWFG
4
6530





PDH 1842
IWFG
4
6531





PDH 1843
RYYY
4
6532





PDH 1844
RYYS
4
6533





PDH 1845
RYYF
4
6534





PDH 1846
GYYF
4
6535





PDH 1847
GYYS
4
6536





PDH 1848
GYYY
4
4188





PDH 1849
KFGG
4
6537





PDH 1850
ALGG
4
6538





PDH 1851
ILGG
4
6539





PDH 1852
EFGG
4
6540





PDH 1853
QFGG
4
6541





PDH 1854
PLGG
4
6542





PDH 1855
VLGG
4
6543





PDH 1856
IVGG
4
6544





PDH 1857
LLGG
4
6545





PDH 1858
QLGG
4
6546





PDH 1859
KLGG
4
6547





PDH 1860
IFGG
4
6548





PDH 1861
ELGG
4
3713





PDH 1862
PFGG
4
6549





PDH 1863
TLGG
4
6550





PDH 1864
YMVRD
5
6551





PDH 1865
SMVRG
5
6552





PDH 1866
FMVRD
5
6553





PDH 1867
FMVRA
5
6554





PDH 1868
DMVRA
5
6555





PDH 1869
HMVRG
5
6556





PDH 1870
LMVRG
5
6557





PDH 1871
DMVRD
5
6558





PDH 1872
LMVRA
5
6559





PDH 1873
DMVRG
5
6560





PDH 1874
AMVRA
5
6561





PDH 1875
AMVRD
5
6562





PDH 1876
NMVRA
5
6563





PDH 1877
NMVRG
5
6564





PDH 1878
FMVRG
5
6565





PDH 1879
SMVRD
5
6566





PDH 1880
YMVRA
5
6567





PDH 1881
SMVRA
5
6568





PDH 1882
PMVRD
5
6569





PDH 1883
YMVRG
5
6570





PDH 1884
TMVRG
5
4010





PDH 1885
PMVRA
5
6571





PDH 1886
PMVRG
5
6572





PDH 1887
VMVRA
5
6573





PDH 1888
NMVRD
5
6574





PDH 1889
VMVRG
5
6575





PDH 1890
TMVRD
5
6576





PDH 1891
VMVRD
5
6577





PDH 1892
TMVRA
5
6578





PDH 1893
AMVRG
5
6579





PDH 1894
LMVRD
5
6580





PDH 1895
HMVRD
5
6581





PDH 1896
HMVRA
5
6582





PDH 1897
IMVRD
5
6583





PDH 1898
IMVRA
5
6584





PDH 1899
IMVRG
5
6585





PDH 1900
AYGDF
5
6586





PDH 1901
VYGDS
5
6587





PDH 1902
DYGDY
5
4348





PDH 1903
NYGDF
5
6588





PDH 1904
DYGDS
5
6589





PDH 1905
HYGDS
5
6590





PDH 1906
HYGDY
5
6591





PDH 1907
IYGDS
5
6592





PDH 1908
LYGDS
5
6593





PDH 1909
LYGDF
5
6594





PDH 1910
AYGDY
5
6595





PDH 1911
AYGDS
5
6596





PDH 1912
SYGDS
5
6597





PDH 1913
SYGDY
5
6598





PDH 1914
NYGDS
5
6599





PDH 1915
HYGDF
5
6600





PDH 1916
FYGDS
5
6601





PDH 1917
IYGDF
5
6602





PDH 1918
FYGDY
5
6603





PDH 1919
VYGDY
5
6604





PDH 1920
NYGDY
5
6605





PDH 1921
YYGDS
5
6606





PDH 1922
YYGDF
5
6607





PDH 1923
PYGDY
5
6608





PDH 1924
SYGDF
5
6609





PDH 1925
TYGDS
5
6610





PDH 1926
TYGDY
5
6611





PDH 1927
LYGDY
5
6612





PDH 1928
DYGDF
5
6613





PDH 1929
IYGDY
5
6614





PDH 1930
VYGDF
5
6615





PDH 1931
FYGDF
5
6616





PDH 1932
TYGDF
5
6617





PDH 1933
PYGDF
5
6618





PDH 1934
PYGDS
5
6619





PDH 1935
YYGDY
5
6620





PDH 1936
TYSYD
5
6621





PDH 1937
PYSYG
5
6622





PDH 1938
RYSYD
5
6623





PDH 1939
AYSYV
5
6624





PDH 1940
PYSYA
5
6625





PDH 1941
TYSYV
5
6626





PDH 1942
PYSYD
5
6627





PDH 1943
TYSYG
5
6628





PDH 1944
AYSYD
5
6629





PDH 1945
RYSYA
5
6630





PDH 1946
PYSYV
5
6631





PDH 1947
GYSYG
5
4430





PDH 1948
GYSYA
5
6632





PDH 1949
GYSYD
5
6633





PDH 1950
GYSYV
5
6634





PDH 1951
LYSYG
5
6635





PDH 1952
SYSYV
5
6636





PDH 1953
LYSYA
5
6637





PDH 1954
LYSYD
5
6638





PDH 1955
RYSYV
5
6639





PDH 1956
IYSYD
5
6640





PDH 1957
VYSYV
5
6641





PDH 1958
IYSYG
5
6642





PDH 1959
IYSYA
5
6643





PDH 1960
IYSYV
5
6644





PDH 1961
RYSYG
5
6645





PDH 1962
VYSYA
5
6646





PDH 1963
AYSYA
5
6647





PDH 1964
SYSYA
5
6648





PDH 1965
VYSYG
5
6649





PDH 1966
AYSYG
5
6650





PDH 1967
VYSYD
5
6651





PDH 1968
TYSYA
5
6652





PDH 1969
SYSYD
5
6653





PDH 1970
SYSYG
5
6654





PDH 1971
LYSYV
5
6655





PDH 1972
GSGSS
5
6656





PDH 1973
GSGSF
5
6657





PDH 1974
ASGSS
5
6658





PDH 1975
RSGSY
5
6659





PDH 1976
NSGSY
5
6660





PDH 1977
NSGSS
5
6661





PDH 1978
TSGSS
5
6662





PDH 1979
RSGSS
5
6663





PDH 1980
SSGSY
5
6664





PDH 1981
VSGSF
5
6665





PDH 1982
HSGSY
5
6666





PDH 1983
TSGSY
5
6667





PDH 1984
SSGSF
5
6668





PDH 1985
LSGSF
5
6669





PDH 1986
NSGSF
5
6670





PDH 1987
PSGSY
5
6671





PDH 1988
TSGSF
5
6672





PDH 1989
PSGSS
5
6673





PDH 1990
PSGSF
5
6674





PDH 1991
GSGSY
5
3987





PDH 1992
ISGSS
5
6675





PDH 1993
ISGSY
5
6676





PDH 1994
ASGSY
5
6677





PDH 1995
RSGSF
5
6678





PDH 1996
DSGSS
5
6679





PDH 1997
DSGSY
5
6680





PDH 1998
LSGSS
5
6681





PDH 1999
SSGSS
5
6682





PDH 2000
HSGSF
5
6683





PDH 2001
HSGSS
5
6684





PDH 2002
LSGSY
5
6685





PDH 2003
ASGSF
5
6686





PDH 2004
VSGSY
5
6687





PDH 2005
ISGSF
5
6688





PDH 2006
VSGSS
5
6689





PDH 2007
DSGSF
5
6690





PDH 2008
IFLES
5
6691





PDH 2009
IFLEL
5
6692





PDH 2010
RFLES
5
6693





PDH 2011
LFLEL
5
6694





PDH 2012
TFLES
5
6695





PDH 2013
GFLEW
5
6696





PDH 2014
GFLES
5
6697





PDH 2015
TFLEW
5
6698





PDH 2016
TFLEL
5
6699





PDH 2017
VFLEW
5
6700





PDH 2018
SFLEL
5
6701





PDH 2019
VFLES
5
6702





PDH 2020
GFLEL
5
6703





PDH 2021
VFLEL
5
6704





PDH 2022
AFLEL
5
6705





PDH 2023
PFLES
5
6706





PDH 2024
SFLEW
5
6707





PDH 2025
AFLES
5
6708





PDH 2026
AFLEW
5
6709





PDH 2027
LFLEW
5
6710





PDH 2028
PFLEL
5
6711





PDH 2029
RFLEW
5
4231





PDH 2030
RFLEL
5
6712





PDH 2031
LFLES
5
6713





PDH 2032
PFLEW
5
6714





PDH 2033
SFLES
5
6715





PDH 2034
IFLEW
5
6716





PDH 2035
PGSYS
5
6717





PDH 2036
AGSYA
5
6718





PDH 2037
HGSYS
5
6719





PDH 2038
HGSYY
5
6720





PDH 2039
PGSYY
5
6721





PDH 2040
SGSYS
5
6722





PDH 2041
SGSYD
5
6723





PDH 2042
SGSYA
5
6724





PDH 2043
LGSYS
5
6725





PDH 2044
VGSYS
5
6726





PDH 2045
DGSYY
5
6727





PDH 2046
FGSYS
5
6728





PDH 2047
FGSYY
5
6729





PDH 2048
HGSYD
5
6730





PDH 2049
LGSYA
5
6731





PDH 2050
HGSYA
5
6732





PDH 2051
LGSYD
5
6733





PDH 2052
DGSYS
5
6734





PDH 2053
VGSYD
5
6735





PDH 2054
VGSYY
5
6736





PDH 2055
AGSYY
5
6737





PDH 2056
YGSYS
5
6738





PDH 2057
AGSYS
5
6739





PDH 2058
AGSYD
5
6740





PDH 2059
VGSYA
5
6741





PDH 2060
DGSYD
5
6742





PDH 2061
FGSYD
5
6743





PDH 2062
DGSYA
5
6744





PDH 2063
YGSYA
5
6745





PDH 2064
FGSYA
5
6746





PDH 2065
YGSYD
5
6747





PDH 2066
LGSYY
5
6748





PDH 2067
SGSYY
5
3761





PDH 2068
PGSYA
5
6749





PDH 2069
PGSYD
5
6750





PDH 2070
YGSYY
5
6751





PDH 2071
FSGSF
5
6752





PDH 2072
FSGSY
5
6753





PDH 2073
YSGSF
5
6754





PDH 2074
YSGSS
5
6755





PDH 2075
FSGSS
5
6756





PDH 2076
YSGSY
5
3760





PDH 2077
ASSSW
5
6757





PDH 2078
VSSSS
5
6758





PDH 2079
YSSSS
5
4478





PDH 2080
YSSSL
5
6759





PDH 2081
VSSSW
5
6760





PDH 2082
ASSSL
5
6761





PDH 2083
HSSSL
5
6762





PDH 2084
PSSSL
5
6763





PDH 2085
ASSSS
5
6764





PDH 2086
HSSSW
5
6765





PDH 2087
VSSSL
5
6766





PDH 2088
FSSSL
5
6767





PDH 2089
HSSSS
5
6768





PDH 2090
FSSSW
5
6769





PDH 2091
SSSSS
5
6770





PDH 2092
DSSSS
5
6771





PDH 2093
SSSSL
5
6772





PDH 2094
FSSSS
5
6773





PDH 2095
LSSSW
5
6774





PDH 2096
DSSSL
5
6775





PDH 2097
LSSSS
5
6776





PDH 2098
LSSSL
5
6777





PDH 2099
SSSSW
5
6778





PDH 2100
DSSSW
5
6779





PDH 2101
PSSSW
5
6780





PDH 2102
PSSSS
5
6781





PDH 2103
YSSSW
5
4439





PDH 2104
HSSGW
5
6782





PDH 2105
FSSGL
5
6783





PDH 2106
SSSGW
5
6784





PDH 2107
SSSGS
5
6785





PDH 2108
DSSGL
5
6786





PDH 2109
HSSGS
5
6787





PDH 2110
FSSGW
5
6788





PDH 2111
ASSGW
5
6789





PDH 2112
DSSGW
5
6790





PDH 2113
DSSGS
5
6791





PDH 2114
ASSGL
5
6792





PDH 2115
LSSGL
5
6793





PDH 2116
FSSGS
5
6794





PDH 2117
ASSGS
5
6795





PDH 2118
PSSGS
5
6796





PDH 2119
LSSGW
5
6797





PDH 2120
LSSGS
5
6798





PDH 2121
YSSGL
5
6799





PDH 2122
VSSGS
5
6800





PDH 2123
PSSGW
5
6801





PDH 2124
PSSGL
5
6802





PDH 2125
VSSGL
5
6803





PDH 2126
VSSGW
5
6804





PDH 2127
YSSGW
5
4460





PDH 2128
SSSGL
5
6805





PDH 2129
HSSGL
5
6806





PDH 2130
YSSGS
5
6807





PDH 2131
VTVTT
5
6808





PDH 2132
RTVTT
5
6809





PDH 2133
LTVTK
5
6810





PDH 2134
ATVTK
5
6811





PDH 2135
GTVTT
5
6812





PDH 2136
VTVTK
5
6813





PDH 2137
LTVTR
5
6814





PDH 2138
ATVTT
5
6815





PDH 2139
RTVTR
5
6816





PDH 2140
VTVTR
5
6817





PDH 2141
TTVTK
5
6818





PDH 2142
GTVTR
5
6819





PDH 2143
TTVTI
5
6820





PDH 2144
RTVTK
5
6821





PDH 2145
LTVTT
5
6822





PDH 2146
VTVTI
5
6823





PDH 2147
GTVTK
5
6824





PDH 2148
TTVTR
5
6825





PDH 2149
GTVTI
5
6826





PDH 2150
PTVTI
5
6827





PDH 2151
TTVTT
5
4351





PDH 2152
STVTT
5
6828





PDH 2153
STVTI
5
6829





PDH 2154
ITVTI
5
6830





PDH 2155
STVTK
5
6831





PDH 2156
STVTR
5
6832





PDH 2157
ATVTI
5
6833





PDH 2158
ITVTT
5
6834





PDH 2159
ITVTR
5
6835





PDH 2160
LTVTI
5
6836





PDH 2161
PTVTR
5
6837





PDH 2162
ATVTR
5
6838





PDH 2163
PTVTK
5
6839





PDH 2164
RTVTI
5
6840





PDH 2165
ITVTK
5
6841





PDH 2166
PTVTT
5
6842





PDH 2167
ASSSF
5
6843





PDH 2168
ASSSY
5
6844





PDH 2169
PSSSF
5
6845





PDH 2170
HSSSF
5
6846





PDH 2171
VSSSY
5
6847





PDH 2172
YSSSF
5
6848





PDH 2173
FSSSF
5
6849





PDH 2174
HSSSY
5
6850





PDH 2175
VSSSF
5
6851





PDH 2176
SSSSY
5
6852





PDH 2177
SSSSF
5
6853





PDH 2178
LSSSY
5
6854





PDH 2179
DSSSY
5
6855





PDH 2180
FSSSY
5
6856





PDH 2181
PSSSY
5
6857





PDH 2182
YSSSY
5
6858





PDH 2183
DSSSF
5
6859





PDH 2184
LSSSF
5
6860





PDH 2185
FSGWF
5
6861





PDH 2186
FSGWS
5
6862





PDH 2187
ISGWY
5
6863





PDH 2188
FSGWY
5
6864





PDH 2189
ISGWS
5
6865





PDH 2190
PSGWS
5
6866





PDH 2191
DSGWF
5
6867





PDH 2192
PSGWY
5
6868





PDH 2193
PSGWF
5
6869





PDH 2194
TSGWY
5
6870





PDH 2195
ASGWF
5
6871





PDH 2196
LSGWF
5
6872





PDH 2197
ISGWF
5
6873





PDH 2198
SSGWY
5
4461





PDH 2199
SSGWS
5
6874





PDH 2200
SSGWF
5
6875





PDH 2201
NSGWS
5
6876





PDH 2202
NSGWY
5
6877





PDH 2203
NSGWF
5
6878





PDH 2204
VSGWS
5
6879





PDH 2205
VSGWY
5
6880





PDH 2206
YSGWF
5
6881





PDH 2207
LSGWS
5
6882





PDH 2208
ASGWY
5
6883





PDH 2209
LSGWY
5
6884





PDH 2210
TSGWF
5
6885





PDH 2211
TSGWS
5
6886





PDH 2212
DSGWY
5
6887





PDH 2213
DSGWS
5
6888





PDH 2214
ASGWS
5
6889





PDH 2215
HSGWF
5
6890





PDH 2216
HSGWS
5
6891





PDH 2217
YSGWS
5
6892





PDH 2218
HSGWY
5
6893





PDH 2219
YSGWY
5
6894





PDH 2220
VSGWF
5
6895





PDH 2221
ISGYD
5
6896





PDH 2222
HSGYA
5
6897





PDH 2223
ISGYA
5
6898





PDH 2224
HSGYG
5
6899





PDH 2225
TSGYD
5
6900





PDH 2226
TSGYA
5
6901





PDH 2227
DSGYA
5
6902





PDH 2228
LSGYA
5
6903





PDH 2229
FSGYA
5
6904





PDH 2230
LSGYD
5
6905





PDH 2231
FSGYG
5
6906





PDH 2232
SSGYD
5
6907





PDH 2233
SSGYA
5
6908





PDH 2234
ISGYG
5
6909





PDH 2235
HSGYD
5
6910





PDH 2236
ASGYD
5
6911





PDH 2237
YSGYA
5
6912





PDH 2238
YSGYD
5
4389





PDH 2239
VSGYA
5
6913





PDH 2240
VSGYG
5
6914





PDH 2241
SSGYG
5
6915





PDH 2242
DSGYD
5
6916





PDH 2243
DSGYG
5
6917





PDH 2244
FSGYD
5
6918





PDH 2245
LSGYG
5
6919





PDH 2246
TSGYG
5
6920





PDH 2247
NSGYA
5
6921





PDH 2248
NSGYG
5
6922





PDH 2249
NSGYD
5
6923





PDH 2250
PSGYA
5
6924





PDH 2251
PSGYG
5
6925





PDH 2252
PSGYD
5
6926





PDH 2253
ASGYG
5
6927





PDH 2254
VSGYD
5
6928





PDH 2255
ASGYA
5
6929





PDH 2256
YSGYG
5
6930





PDH 2257
FYYDS
5
6931





PDH 2258
YYYDT
5
6932





PDH 2259
DYYDS
5
6933





PDH 2260
AYYDS
5
6934





PDH 2261
AYYDT
5
6935





PDH 2262
DYYDI
5
6936





PDH 2263
VYYDI
5
6937





PDH 2264
FYYDT
5
6938





PDH 2265
LYYDI
5
6939





PDH 2266
PYYDI
5
6940





PDH 2267
HYYDI
5
6941





PDH 2268
IYYDI
5
6942





PDH 2269
LYYDS
5
6943





PDH 2270
SYYDI
5
6944





PDH 2271
NYYDT
5
6945





PDH 2272
NYYDS
5
6946





PDH 2273
SYYDT
5
6947





PDH 2274
AYYDI
5
6948





PDH 2275
SYYDS
5
6949





PDH 2276
DYYDT
5
6950





PDH 2277
VYYDT
5
6951





PDH 2278
YYYDI
5
6952





PDH 2279
VYYDS
5
6953





PDH 2280
FYYDI
5
6954





PDH 2281
YYYDS
5
4176





PDH 2282
TYYDT
5
6955





PDH 2283
NYYDI
5
6956





PDH 2284
HYYDS
5
6957





PDH 2285
LYYDT
5
6958





PDH 2286
IYYDT
5
6959





PDH 2287
IYYDS
5
6960





PDH 2288
PYYDT
5
6961





PDH 2289
PYYDS
5
6962





PDH 2290
TYYDI
5
6963





PDH 2291
HYYDT
5
6964





PDH 2292
TYYDS
5
6965





PDH 2293
DSSGY
5
4179





PDH 2294
SSSGY
5
6966





PDH 2295
DSSGF
5
6967





PDH 2296
HSSGY
5
6968





PDH 2297
SSSGF
5
6969





PDH 2298
ASSGF
5
6970





PDH 2299
ASSGY
5
6971





PDH 2300
LSSGF
5
6972





PDH 2301
FSSGY
5
6973





PDH 2302
FSSGF
5
6974





PDH 2303
YSSGF
5
6975





PDH 2304
PSSGY
5
6976





PDH 2305
VSSGY
5
6977





PDH 2306
LSSGY
5
6978





PDH 2307
HSSGF
5
6979





PDH 2308
PSSGF
5
6980





PDH 2309
VSSGF
5
6981





PDH 2310
YSSGY
5
6982





PDH 2311
QAARH
5
6983





PDH 2312
QAARP
5
6984





PDH 2313
TAARR
5
6985





PDH 2314
QAARL
5
6986





PDH 2315
KAARR
5
6987





PDH 2316
KAARP
5
6988





PDH 2317
KAARH
5
6989





PDH 2318
TAARH
5
6990





PDH 2319
TAARP
5
6991





PDH 2320
EAARL
5
6992





PDH 2321
EAARP
5
6993





PDH 2322
AAARL
5
6994





PDH 2323
LAARL
5
6995





PDH 2324
IAARL
5
6996





PDH 2325
IAARH
5
6997





PDH 2326
LAARR
5
6998





PDH 2327
LAARH
5
6999





PDH 2328
EAARH
5
7000





PDH 2329
IAARR
5
7001





PDH 2330
QAARR
5
7002





PDH 2331
IAARP
5
4483





PDH 2332
EAARR
5
7003





PDH 2333
KAARL
5
7004





PDH 2334
PAARR
5
7005





PDH 2335
PAARP
5
7006





PDH 2336
PAARH
5
7007





PDH 2337
PAARL
5
7008





PDH 2338
VAARR
5
7009





PDH 2339
AAARH
5
7010





PDH 2340
VAARP
5
7011





PDH 2341
VAARH
5
7012





PDH 2342
AAARP
5
7013





PDH 2343
AAARR
5
7014





PDH 2344
TAARL
5
7015





PDH 2345
LAARP
5
7016





PDH 2346
VAARL
5
7017





PDH 2347
EYYYG
5
7018





PDH 2348
VYYYD
5
7019





PDH 2349
EYYYA
5
7020





PDH 2350
VYYYG
5
7021





PDH 2351
EYYYD
5
7022





PDH 2352
PYYYD
5
7023





PDH 2353
PYYYG
5
7024





PDH 2354
AYYYG
5
7025





PDH 2355
TYYYA
5
7026





PDH 2356
TYYYG
5
7027





PDH 2357
TYYYD
5
7028





PDH 2358
QYYYA
5
7029





PDH 2359
QYYYG
5
7030





PDH 2360
QYYYD
5
7031





PDH 2361
VYYYA
5
7032





PDH 2362
LYYYG
5
7033





PDH 2363
LYYYD
5
7034





PDH 2364
LYYYA
5
7035





PDH 2365
AYYYD
5
7036





PDH 2366
AYYYA
5
7037





PDH 2367
PYYYA
5
7038





PDH 2368
MYYYD
5
7039





PDH 2369
KYYYD
5
7040





PDH 2370
KYYYG
5
7041





PDH 2371
MYYYA
5
7042





PDH 2372
KYYYA
5
7043





PDH 2373
MYYYG
5
7044





PDH 2374
LTMVR
5
7045





PDH 2375
RTMVQ
5
7046





PDH 2376
VTMVQ
5
7047





PDH 2377
TTMVR
5
7048





PDH 2378
LTMVQ
5
7049





PDH 2379
STMVQ
5
7050





PDH 2380
ATMVQ
5
7051





PDH 2381
PTMVR
5
7052





PDH 2382
RTMVR
5
7053





PDH 2383
ITMVQ
5
4055





PDH 2384
GTMVR
5
7054





PDH 2385
VTMVR
5
7055





PDH 2386
PTMVQ
5
7056





PDH 2387
ITMVR
5
4009





PDH 2388
ATMVR
5
7057





PDH 2389
STMVR
5
7058





PDH 2390
TTMVQ
5
7059





PDH 2391
GTMVQ
5
7060





PDH 2392
HMVQG
5
7061





PDH 2393
DMVQG
5
7062





PDH 2394
LMVQG
5
7063





PDH 2395
SMVQG
5
7064





PDH 2396
FMVQG
5
7065





PDH 2397
NMVQG
5
7066





PDH 2398
VMVQG
5
7067





PDH 2399
TMVQG
5
4056





PDH 2400
PMVQG
5
7068





PDH 2401
YMVQG
5
7069





PDH 2402
AMVQG
5
7070





PDH 2403
IMVQG
5
7071





PDH 2404
PWGSY
5
7072





PDH 2405
TWGSY
5
7073





PDH 2406
SWGSY
5
7074





PDH 2407
HWGSY
5
7075





PDH 2408
LWGSY
5
7076





PDH 2409
DWGSY
5
7077





PDH 2410
FWGSY
5
7078





PDH 2411
AWGSY
5
7079





PDH 2412
YWGSY
5
7080





PDH 2413
IWGSY
5
7081





PDH 2414
NWGSY
5
7082





PDH 2415
VWGSY
5
4102





PDH 2416
FSSSWF
6
7083





PDH 2417
HSSSWS
6
7084





PDH 2418
VSSSWF
6
7085





PDH 2419
HSSSWY
6
7086





PDH 2420
VSSSWS
6
7087





PDH 2421
LSSSWY
6
7088





PDH 2422
VSSSWY
6
7089





PDH 2423
HSSSWF
6
7090





PDH 2424
ASSSWY
6
7091





PDH 2425
DSSSWS
6
7092





PDH 2426
PSSSWY
6
7093





PDH 2427
ASSSWS
6
7094





PDH 2428
DSSSWF
6
7095





PDH 2429
DSSSWY
6
7096





PDH 2430
YSSSWS
6
7097





PDH 2431
YSSSWF
6
7098





PDH 2432
ASSSWF
6
7099





PDH 2433
LSSSWS
6
7100





PDH 2434
SSSSWS
6
7101





PDH 2435
YSSSWY
6
4437





PDH 2436
PSSSWS
6
7102





PDH 2437
SSSSWY
6
7103





PDH 2438
LSSSWF
6
7104





PDH 2439
PSSSWF
6
7105





PDH 2440
FSSSWS
6
7106





PDH 2441
SSSSWF
6
7107





PDH 2442
FSSSWY
6
7108





PDH 2443
AYYDST
6
7109





PDH 2444
AYYDSI
6
7110





PDH 2445
YYYDST
6
7111





PDH 2446
PYYDST
6
7112





PDH 2447
VYYDSS
6
7113





PDH 2448
NYYDSI
6
7114





PDH 2449
PYYDSS
6
7115





PDH 2450
YYYDSS
6
4171





PDH 2451
YYYDSI
6
7116





PDH 2452
VYYDST
6
7117





PDH 2453
VYYDSI
6
7118





PDH 2454
NYYDST
6
7119





PDH 2455
LYYDST
6
7120





PDH 2456
NYYDSS
6
7121





PDH 2457
SYYDSI
6
7122





PDH 2458
LYYDSS
6
7123





PDH 2459
SYYDST
6
7124





PDH 2460
LYYDSI
6
7125





PDH 2461
SYYDSS
6
7126





PDH 2462
DYYDSI
6
7127





PDH 2463
DYYDST
6
7128





PDH 2464
DYYDSS
6
7129





PDH 2465
FYYDSS
6
7130





PDH 2466
TYYDSI
6
7131





PDH 2467
FYYDST
6
7132





PDH 2468
IYYDST
6
7133





PDH 2469
FYYDSI
6
7134





PDH 2470
IYYDSS
6
7135





PDH 2471
TYYDSS
6
7136





PDH 2472
TYYDST
6
7137





PDH 2473
HYYDSS
6
7138





PDH 2474
HYYDST
6
7139





PDH 2475
IYYDSI
6
7140





PDH 2476
HYYDSI
6
7141





PDH 2477
PYYDSI
6
7142





PDH 2478
AYYDSS
6
7143





PDH 2479
LYSGYA
6
7144





PDH 2480
GYSGYV
6
7145





PDH 2481
SYSGYD
6
7146





PDH 2482
LYSGYD
6
7147





PDH 2483
IYSGYV
6
7148





PDH 2484
SYSGYG
6
7149





PDH 2485
IYSGYG
6
7150





PDH 2486
SYSGYA
6
7151





PDH 2487
PYSGYG
6
7152





PDH 2488
VYSGYD
6
7153





PDH 2489
PYSGYA
6
7154





PDH 2490
VYSGYV
6
7155





PDH 2491
GYSGYG
6
7156





PDH 2492
VYSGYA
6
7157





PDH 2493
PYSGYV
6
7158





PDH 2494
GYSGYA
6
7159





PDH 2495
IYSGYD
6
7160





PDH 2496
PYSGYD
6
7161





PDH 2497
RYSGYV
6
7162





PDH 2498
RYSGYA
6
7163





PDH 2499
RYSGYG
6
7164





PDH 2500
GYSGYD
6
4386





PDH 2501
IYSGYA
6
7165





PDH 2502
AYSGYA
6
7166





PDH 2503
RYSGYD
6
7167





PDH 2504
AYSGYG
6
7168





PDH 2505
AYSGYD
6
7169





PDH 2506
AYSGYV
6
7170





PDH 2507
VYSGYG
6
7171





PDH 2508
TYSGYV
6
7172





PDH 2509
TYSGYD
6
7173





PDH 2510
TYSGYA
6
7174





PDH 2511
TYSGYG
6
7175





PDH 2512
SYSGYV
6
7176





PDH 2513
LYSGYV
6
7177





PDH 2514
LYSGYG
6
7178





PDH 2515
SSSGWF
6
7179





PDH 2516
PSSGWY
6
7180





PDH 2517
FSSGWF
6
7181





PDH 2518
PSSGWS
6
7182





PDH 2519
FSSGWS
6
7183





PDH 2520
ASSGWY
6
7184





PDH 2521
FSSGWY
6
7185





PDH 2522
ASSGWS
6
7186





PDH 2523
SSSGWS
6
7187





PDH 2524
YSSGWY
6
4458





PDH 2525
SSSGWY
6
7188





PDH 2526
HSSGWS
6
7189





PDH 2527
DSSGWS
6
7190





PDH 2528
YSSGWS
6
7191





PDH 2529
LSSGWF
6
7192





PDH 2530
HSSGWY
6
7193





PDH 2531
DSSGWF
6
7194





PDH 2532
DSSGWY
6
7195





PDH 2533
LSSGWY
6
7196





PDH 2534
HSSGWF
6
7197





PDH 2535
VSSGWS
6
7198





PDH 2536
LSSGWS
6
7199





PDH 2537
VSSGWY
6
7200





PDH 2538
VSSGWF
6
7201





PDH 2539
PSSGWF
6
7202





PDH 2540
ASSGWF
6
7203





PDH 2541
YSSGWF
6
7204





PDH 2542
IYYGSA
6
7205





PDH 2543
PYYGSG
6
7206





PDH 2544
PYYGSA
6
7207





PDH 2545
PYYGSD
6
7208





PDH 2546
VYYGSD
6
7209





PDH 2547
AYYGSA
6
7210





PDH 2548
VYYGSA
6
7211





PDH 2549
NYYGSA
6
7212





PDH 2550
YYYGSA
6
7213





PDH 2551
AYYGSD
6
7214





PDH 2552
NYYGSD
6
7215





PDH 2553
YYYGSD
6
7216





PDH 2554
FYYGSD
6
7217





PDH 2555
NYYGSG
6
7218





PDH 2556
YYYGSG
6
3979





PDH 2557
FYYGSA
6
7219





PDH 2558
FYYGSG
6
7220





PDH 2559
AYYGSG
6
7221





PDH 2560
LYYGSG
6
7222





PDH 2561
DYYGSD
6
7223





PDH 2562
LYYGSA
6
7224





PDH 2563
TYYGSD
6
7225





PDH 2564
DYYGSG
6
7226





PDH 2565
DYYGSA
6
7227





PDH 2566
LYYGSD
6
7228





PDH 2567
HYYGSD
6
7229





PDH 2568
TYYGSA
6
7230





PDH 2569
TYYGSG
6
7231





PDH 2570
HYYGSA
6
7232





PDH 2571
SYYGSG
6
7233





PDH 2572
HYYGSG
6
7234





PDH 2573
SYYGSD
6
7235





PDH 2574
VYYGSG
6
7236





PDH 2575
SYYGSA
6
7237





PDH 2576
IYYGSG
6
7238





PDH 2577
IYYGSD
6
7239





PDH 2578
VSSGYS
6
7240





PDH 2579
VSSGYY
6
7241





PDH 2580
FSSGYY
6
7242





PDH 2581
ASSGYF
6
7243





PDH 2582
ASSGYS
6
7244





PDH 2583
FSSGYS
6
7245





PDH 2584
SSSGYY
6
7246





PDH 2585
ASSGYY
6
7247





PDH 2586
FSSGYF
6
7248





PDH 2587
HSSGYY
6
7249





PDH 2588
DSSGYY
6
4174





PDH 2589
HSSGYS
6
7250





PDH 2590
SSSGYS
6
7251





PDH 2591
DSSGYS
6
7252





PDH 2592
DSSGYF
6
7253





PDH 2593
HSSGYF
6
7254





PDH 2594
PSSGYF
6
7255





PDH 2595
SSSGYF
6
7256





PDH 2596
YSSGYY
6
7257





PDH 2597
YSSGYF
6
7258





PDH 2598
YSSGYS
6
7259





PDH 2599
PSSGYS
6
7260





PDH 2600
PSSGYY
6
7261





PDH 2601
LSSGYY
6
7262





PDH 2602
LSSGYF
6
7263





PDH 2603
LSSGYS
6
7264





PDH 2604
VSSGYF
6
7265





PDH 2605
TYDSSD
6
7266





PDH 2606
YYDSSA
6
7267





PDH 2607
YYDSSG
6
4172





PDH 2608
LYDSSD
6
7268





PDH 2609
LYDSSA
6
7269





PDH 2610
PYDSSA
6
7270





PDH 2611
LYDSSG
6
7271





PDH 2612
PYDSSD
6
7272





PDH 2613
VYDSSD
6
7273





PDH 2614
HYDSSG
6
7274





PDH 2615
VYDSSG
6
7275





PDH 2616
VYDSSA
6
7276





PDH 2617
PYDSSG
6
7277





PDH 2618
SYDSSA
6
7278





PDH 2619
FYDSSG
6
7279





PDH 2620
NYDSSA
6
7280





PDH 2621
SYDSSG
6
7281





PDH 2622
FYDSSA
6
7282





PDH 2623
NYDSSD
6
7283





PDH 2624
SYDSSD
6
7284





PDH 2625
FYDSSD
6
7285





PDH 2626
DYDSSG
6
7286





PDH 2627
AYDSSG
6
7287





PDH 2628
NYDSSG
6
7288





PDH 2629
IYDSSA
6
7289





PDH 2630
DYDSSD
6
7290





PDH 2631
IYDSSG
6
7291





PDH 2632
AYDSSD
6
7292





PDH 2633
DYDSSA
6
7293





PDH 2634
IYDSSD
6
7294





PDH 2635
HYDSSA
6
7295





PDH 2636
AYDSSA
6
7296





PDH 2637
HYDSSD
6
7297





PDH 2638
TYDSSG
6
7298





PDH 2639
TYDSSA
6
7299





PDH 2640
YYDSSD
6
7300





PDH 2641
TDFWSA
6
7301





PDH 2642
ADFWSG
6
7302





PDH 2643
PDFWSG
6
7303





PDH 2644
VDFWSD
6
7304





PDH 2645
TDFWSD
6
7305





PDH 2646
HDFWSA
6
7306





PDH 2647
HDFWSD
6
7307





PDH 2648
TDFWSG
6
7308





PDH 2649
LDFWSA
6
7309





PDH 2650
LDFWSG
6
7310





PDH 2651
HDFWSG
6
7311





PDH 2652
LDFWSD
6
7312





PDH 2653
FDFWSG
6
7313





PDH 2654
DDFWSD
6
7314





PDH 2655
VDFWSA
6
7315





PDH 2656
SDFWSD
6
7316





PDH 2657
SDFWSG
6
7317





PDH 2658
NDFWSD
6
7318





PDH 2659
SDFWSA
6
7319





PDH 2660
NDFWSA
6
7320





PDH 2661
NDFWSG
6
7321





PDH 2662
VDFWSG
6
7322





PDH 2663
IDFWSD
6
7323





PDH 2664
IDFWSG
6
7324





PDH 2665
FDFWSA
6
7325





PDH 2666
ADFWSD
6
7326





PDH 2667
IDFWSA
6
7327





PDH 2668
FDFWSD
6
7328





PDH 2669
DDFWSG
6
7329





PDH 2670
ADFWSA
6
7330





PDH 2671
YDFWSA
6
7331





PDH 2672
PDFWSD
6
7332





PDH 2673
YDFWSG
6
4253





PDH 2674
DDFWSA
6
7333





PDH 2675
PDFWSA
6
7334





PDH 2676
YDFWSD
6
7335





PDH 2677
DDSSGY
6
7336





PDH 2678
LDSSGY
6
7337





PDH 2679
HDSSGS
6
7338





PDH 2680
DDSSGF
6
7339





PDH 2681
DDSSGS
6
7340





PDH 2682
LDSSGS
6
7341





PDH 2683
HDSSGY
6
7342





PDH 2684
SDSSGS
6
7343





PDH 2685
SDSSGF
6
7344





PDH 2686
PDSSGS
6
7345





PDH 2687
SDSSGY
6
7346





PDH 2688
PDSSGY
6
7347





PDH 2689
ADSSGY
6
7348





PDH 2690
ADSSGS
6
7349





PDH 2691
ADSSGF
6
7350





PDH 2692
YDSSGF
6
7351





PDH 2693
VDSSGF
6
7352





PDH 2694
FDSSGF
6
7353





PDH 2695
VDSSGY
6
7354





PDH 2696
YDSSGY
6
4173





PDH 2697
FDSSGS
6
7355





PDH 2698
VDSSGS
6
7356





PDH 2699
YDSSGS
6
7357





PDH 2700
FDSSGY
6
7358





PDH 2701
LDSSGF
6
7359





PDH 2702
HDSSGF
6
7360





PDH 2703
PDSSGF
6
7361





PDH 2704
EYFDWS
6
7362





PDH 2705
QYFDWL
6
7363





PDH 2706
RYFDWF
6
7364





PDH 2707
AYFDWF
6
7365





PDH 2708
PYFDWF
6
7366





PDH 2709
PYFDWP
6
7367





PDH 2710
LYFDWP
6
7368





PDH 2711
EYFDWP
6
7369





PDH 2712
EYFDWL
6
7370





PDH 2713
RYFDWL
6
4305





PDH 2714
LYFDWL
6
7371





PDH 2715
PYFDWL
6
7372





PDH 2716
LYFDWS
6
7373





PDH 2717
QYFDWS
6
7374





PDH 2718
QYFDWF
6
7375





PDH 2719
VYFDWF
6
7376





PDH 2720
RYFDWP
6
7377





PDH 2721
AYFDWP
6
7378





PDH 2722
LYFDWF
6
7379





PDH 2723
AYFDWL
6
7380





PDH 2724
GYFDWF
6
7381





PDH 2725
GYFDWS
6
7382





PDH 2726
VYFDWL
6
7383





PDH 2727
VYFDWS
6
7384





PDH 2728
VYFDWP
6
7385





PDH 2729
RYFDWS
6
7386





PDH 2730
PYFDWS
6
7387





PDH 2731
QYFDWP
6
7388





PDH 2732
EYFDWF
6
7389





PDH 2733
AYFDWS
6
7390





PDH 2734
GYFDWL
6
7391





PDH 2735
GYFDWP
6
7392





PDH 2736
CGSTSC
6
7393





PDH 2737
CSGTSC
6
7394





PDH 2738
CSSTSC
6
3814





PDH 2739
CGGTSC
6
7395





PDH 2740
PYYGSE
6
7396





PDH 2741
VYYGSE
6
7397





PDH 2742
AYYGSE
6
7398





PDH 2743
NYYGSE
6
7399





PDH 2744
FYYGSE
6
7400





PDH 2745
YYYGSE
6
7401





PDH 2746
DYYGSE
6
7402





PDH 2747
TYYGSE
6
7403





PDH 2748
HYYGSE
6
7404





PDH 2749
LYYGSE
6
7405





PDH 2750
IYYGSE
6
7406





PDH 2751
SYYGSE
6
7407





PDH 2752
CSSGSC
6
7408





PDH 2753
CGGGSC
6
7409





PDH 2754
CGSGSC
6
7410





PDH 2755
CSGGSC
6
3775





PDH 2756
PFWSGS
6
7411





PDH 2757
DFWSGF
6
7412





PDH 2758
PFWSGY
6
7413





PDH 2759
AFWSGY
6
7414





PDH 2760
AFWSGS
6
7415





PDH 2761
AFWSGF
6
7416





PDH 2762
PFWSGF
6
7417





PDH 2763
VFWSGY
6
7418





PDH 2764
YFWSGF
6
7419





PDH 2765
IFWSGS
6
7420





PDH 2766
VFWSGF
6
7421





PDH 2767
VFWSGS
6
7422





PDH 2768
IFWSGF
6
7423





PDH 2769
IFWSGY
6
7424





PDH 2770
SFWSGF
6
7425





PDH 2771
YFWSGY
6
7426





PDH 2772
FFWSGS
6
7427





PDH 2773
YFWSGS
6
7428





PDH 2774
FFWSGY
6
7429





PDH 2775
LFWSGF
6
7430





PDH 2776
TFWSGF
6
7431





PDH 2777
NFWSGF
6
7432





PDH 2778
HFWSGF
6
7433





PDH 2779
NFWSGS
6
7434





PDH 2780
SFWSGS
6
7435





PDH 2781
TFWSGS
6
7436





PDH 2782
NFWSGY
6
7437





PDH 2783
DFWSGY
6
4254





PDH 2784
LFWSGY
6
7438





PDH 2785
HFWSGS
6
7439





PDH 2786
SFWSGY
6
7440





PDH 2787
TFWSGY
6
7441





PDH 2788
DFWSGS
6
7442





PDH 2789
LFWSGS
6
7443





PDH 2790
HFWSGY
6
7444





PDH 2791
FFWSGF
6
7445





PDH 2792
DYYDSSG
7
7446





PDH 2793
SYYDSSG
7
7447





PDH 2794
IYYDSSG
7
7448





PDH 2795
HYYDSSG
7
7449





PDH 2796
SYYDSSA
7
7450





PDH 2797
SYYDSSD
7
7451





PDH 2798
IYYDSSA
7
7452





PDH 2799
AYYDSSA
7
7453





PDH 2800
IYYDSSD
7
7454





PDH 2801
AYYDSSD
7
7455





PDH 2802
HYYDSSD
7
7456





PDH 2803
VYYDSSD
7
7457





PDH 2804
HYYDSSA
7
7458





PDH 2805
AYYDSSG
7
7459





PDH 2806
VYYDSSA
7
7460





PDH 2807
LYYDSSG
7
7461





PDH 2808
VYYDSSG
7
7462





PDH 2809
LYYDSSD
7
7463





PDH 2810
FYYDSSG
7
7464





PDH 2811
LYYDSSA
7
7465





PDH 2812
FYYDSSD
7
7466





PDH 2813
TYYDSSG
7
7467





PDH 2814
PYYDSSG
7
7468





PDH 2815
FYYDSSA
7
7469





PDH 2816
TYYDSSD
7
7470





PDH 2817
NYYDSSG
7
7471





PDH 2818
TYYDSSA
7
7472





PDH 2819
PYYDSSA
7
7473





PDH 2820
YYYDSSG
7
4167





PDH 2821
PYYDSSD
7
7474





PDH 2822
NYYDSSA
7
7475





PDH 2823
YYYDSSD
7
7476





PDH 2824
NYYDSSD
7
7477





PDH 2825
YYYDSSA
7
7478





PDH 2826
DYYDSSD
7
7479





PDH 2827
DYYDSSA
7
7480





PDH 2828
FDILTGF
7
7481





PDH 2829
FDILTGS
7
7482





PDH 2830
LDILTGY
7
7483





PDH 2831
YDILTGF
7
7484





PDH 2832
LDILTGS
7
7485





PDH 2833
SDILTGF
7
7486





PDH 2834
IDILTGS
7
7487





PDH 2835
PDILTGS
7
7488





PDH 2836
PDILTGF
7
7489





PDH 2837
IDILTGF
7
7490





PDH 2838
IDILTGY
7
7491





PDH 2839
PDILTGY
7
7492





PDH 2840
YDILTGY
7
4325





PDH 2841
DDILTGF
7
7493





PDH 2842
YDILTGS
7
7494





PDH 2843
HDILTGY
7
7495





PDH 2844
TDILTGF
7
7496





PDH 2845
VDILTGY
7
7497





PDH 2846
LDILTGF
7
7498





PDH 2847
VDILTGS
7
7499





PDH 2848
HDILTGS
7
7500





PDH 2849
ADILTGS
7
7501





PDH 2850
HDILTGF
7
7502





PDH 2851
NDILTGS
7
7503





PDH 2852
NDILTGF
7
7504





PDH 2853
ADILTGY
7
7505





PDH 2854
VDILTGF
7
7506





PDH 2855
TDILTGY
7
7507





PDH 2856
ADILTGF
7
7508





PDH 2857
NDILTGY
7
7509





PDH 2858
TDILTGS
7
7510





PDH 2859
SDILTGS
7
7511





PDH 2860
DDILTGY
7
7512





PDH 2861
SDILTGY
7
7513





PDH 2862
DDILTGS
7
7514





PDH 2863
FDILTGY
7
7515





PDH 2864
SYDFWSA
7
7516





PDH 2865
FYDFWSG
7
7517





PDH 2866
IYDFWSD
7
7518





PDH 2867
LYDFWSD
7
7519





PDH 2868
AYDFWSD
7
7520





PDH 2869
IYDFWSA
7
7521





PDH 2870
PYDFWSD
7
7522





PDH 2871
AYDFWSA
7
7523





PDH 2872
SYDFWSG
7
7524





PDH 2873
FYDFWSA
7
7525





PDH 2874
PYDFWSA
7
7526





PDH 2875
YYDFWSG
7
4248





PDH 2876
FYDFWSD
7
7527





PDH 2877
IYDFWSG
7
7528





PDH 2878
PYDFWSG
7
7529





PDH 2879
YYDFWSA
7
7530





PDH 2880
YYDFWSD
7
7531





PDH 2881
NYDFWSD
7
7532





PDH 2882
VYDFWSA
7
7533





PDH 2883
NYDFWSA
7
7534





PDH 2884
VYDFWSD
7
7535





PDH 2885
VYDFWSG
7
7536





PDH 2886
NYDFWSG
7
7537





PDH 2887
DYDFWSA
7
7538





PDH 2888
DYDFWSD
7
7539





PDH 2889
DYDFWSG
7
7540





PDH 2890
HYDFWSG
7
7541





PDH 2891
TYDFWSG
7
7542





PDH 2892
HYDFWSA
7
7543





PDH 2893
LYDFWSG
7
7544





PDH 2894
HYDFWSD
7
7545





PDH 2895
TYDFWSA
7
7546





PDH 2896
SYDFWSD
7
7547





PDH 2897
TYDFWSD
7
7548





PDH 2898
LYDFWSA
7
7549





PDH 2899
AYDFWSG
7
7550





PDH 2900
SCSSTSC
7
7551





PDH 2901
HCSSTSC
7
7552





PDH 2902
PCSSTSC
7
7553





PDH 2903
ACSSTSC
7
7554





PDH 2904
VCSSTSC
7
7555





PDH 2905
LCSSTSC
7
7556





PDH 2906
YCSSTSC
7
3812





PDH 2907
FCSSTSC
7
7557





PDH 2908
DCSSTSC
7
7558





PDH 2909
RYSSSWS
7
7559





PDH 2910
VYSSSWY
7
7560





PDH 2911
GYSSSWY
7
4435





PDH 2912
VYSSSWS
7
7561





PDH 2913
TYSSSWY
7
7562





PDH 2914
TYSSSWF
7
7563





PDH 2915
TYSSSWS
7
7564





PDH 2916
GYSSSWF
7
7565





PDH 2917
LYSSSWF
7
7566





PDH 2918
AYSSSWS
7
7567





PDH 2919
SYSSSWF
7
7568





PDH 2920
WYSSSWS
7
7569





PDH 2921
WYSSSWF
7
7570





PDH 2922
MYSSSWS
7
7571





PDH 2923
SYSSSWS
7
7572





PDH 2924
LYSSSWY
7
7573





PDH 2925
AYSSSWY
7
7574





PDH 2926
AYSSSWF
7
7575





PDH 2927
LYSSSWS
7
7576





PDH 2928
WYSSSWY
7
7577





PDH 2929
VYSSSWF
7
7578





PDH 2930
SYSSSWY
7
7579





PDH 2931
RYSSSWF
7
7580





PDH 2932
MYSSSWF
7
7581





PDH 2933
RYSSSWY
7
7582





PDH 2934
MYSSSWY
7
7583





PDH 2935
GYSSSWS
7
7584





PDH 2936
IYDSSGY
7
7585





PDH 2937
PYDSSGS
7
7586





PDH 2938
VYDSSGF
7
7587





PDH 2939
PYDSSGY
7
7588





PDH 2940
NYDSSGS
7
7589





PDH 2941
LYDSSGY
7
7590





PDH 2942
NYDSSGY
7
7591





PDH 2943
LYDSSGS
7
7592





PDH 2944
VYDSSGY
7
7593





PDH 2945
VYDSSGS
7
7594





PDH 2946
LYDSSGF
7
7595





PDH 2947
NYDSSGF
7
7596





PDH 2948
YYDSSGY
7
4168





PDH 2949
YYDSSGS
7
7597





PDH 2950
DYDSSGS
7
7598





PDH 2951
TYDSSGY
7
7599





PDH 2952
TYDSSGF
7
7600





PDH 2953
TYDSSGS
7
7601





PDH 2954
YYDSSGF
7
7602





PDH 2955
AYDSSGS
7
7603





PDH 2956
HYDSSGY
7
7604





PDH 2957
AYDSSGY
7
7605





PDH 2958
HYDSSGF
7
7606





PDH 2959
HYDSSGS
7
7607





PDH 2960
FYDSSGF
7
7608





PDH 2961
IYDSSGF
7
7609





PDH 2962
DYDSSGY
7
7610





PDH 2963
DYDSSGF
7
7611





PDH 2964
PYDSSGF
7
7612





PDH 2965
SYDSSGS
7
7613





PDH 2966
SYDSSGF
7
7614





PDH 2967
AYDSSGF
7
7615





PDH 2968
FYDSSGY
7
7616





PDH 2969
SYDSSGY
7
7617





PDH 2970
IYDSSGS
7
7618





PDH 2971
FYDSSGS
7
7619





PDH 2972
HYYGSGI
7
7620





PDH 2973
SYYGSGI
7
7621





PDH 2974
AYYGSGT
7
7622





PDH 2975
DYYGSGI
7
7623





PDH 2976
VYYGSGT
7
7624





PDH 2977
AYYGSGS
7
7625





PDH 2978
VYYGSGI
7
7626





PDH 2979
VYYGSGS
7
7627





PDH 2980
HYYGSGS
7
7628





PDH 2981
LYYGSGS
7
7629





PDH 2982
HYYGSGT
7
7630





PDH 2983
LYYGSGT
7
7631





PDH 2984
PYYGSGS
7
7632





PDH 2985
SYYGSGS
7
7633





PDH 2986
NYYGSGS
7
7634





PDH 2987
IYYGSGS
7
7635





PDH 2988
DYYGSGT
7
7636





PDH 2989
PYYGSGI
7
7637





PDH 2990
PYYGSGT
7
7638





PDH 2991
SYYGSGT
7
7639





PDH 2992
FYYGSGS
7
7640





PDH 2993
YYYGSGS
7
3975





PDH 2994
NYYGSGT
7
7641





PDH 2995
IYYGSGT
7
7642





PDH 2996
DYYGSGS
7
7643





PDH 2997
TYYGSGS
7
7644





PDH 2998
FYYGSGT
7
7645





PDH 2999
YYYGSGT
7
7646





PDH 3000
TYYGSGT
7
7647





PDH 3001
YYYGSGI
7
7648





PDH 3002
FYYGSGI
7
7649





PDH 3003
AYYGSGI
7
7650





PDH 3004
TYYGSGI
7
7651





PDH 3005
IYYGSGI
7
7652





PDH 3006
LYYGSGI
7
7653





PDH 3007
NYYGSGI
7
7654





PDH 3008
TYSSGWF
7
7655





PDH 3009
TYSSGWS
7
7656





PDH 3010
VYSSGWF
7
7657





PDH 3011
GYSSGWF
7
7658





PDH 3012
MYSSGWS
7
7659





PDH 3013
SYSSGWF
7
7660





PDH 3014
MYSSGWY
7
7661





PDH 3015
LYSSGWY
7
7662





PDH 3016
MYSSGWF
7
7663





PDH 3017
WYSSGWS
7
7664





PDH 3018
WYSSGWY
7
7665





PDH 3019
AYSSGWS
7
7666





PDH 3020
RYSSGWF
7
7667





PDH 3021
LYSSGWF
7
7668





PDH 3022
AYSSGWY
7
7669





PDH 3023
RYSSGWY
7
7670





PDH 3024
SYSSGWY
7
7671





PDH 3025
RYSSGWS
7
7672





PDH 3026
GYSSGWY
7
4456





PDH 3027
WYSSGWF
7
7673





PDH 3028
AYSSGWF
7
7674





PDH 3029
GYSSGWS
7
7675





PDH 3030
VYSSGWY
7
7676





PDH 3031
VYSSGWS
7
7677





PDH 3032
LYSSGWS
7
7678





PDH 3033
TYSSGWY
7
7679





PDH 3034
SYSSGWS
7
7680





PDH 3035
FCSGGSC
7
7681





PDH 3036
LCSGGSC
7
7682





PDH 3037
SCSGGSC
7
7683





PDH 3038
YCSGGSC
7
3773





PDH 3039
DCSGGSC
7
7684





PDH 3040
HCSGGSC
7
7685





PDH 3041
PCSGGSC
7
7686





PDH 3042
ACSGGSC
7
7687





PDH 3043
VCSGGSC
7
7688





PDH 3044
CSGGSCH
7
7689





PDH 3045
CSGGSCL
7
7690





PDH 3046
CSGGSCS
7
7691





PDH 3047
CSGGSCY
7
3774





PDH 3048
CSGGSCP
7
7692





PDH 3049
CSGGSCF
7
7693





PDH 3050
CSSTSCY
7
3813





PDH 3051
CSSTSCL
7
7694





PDH 3052
CSSTSCF
7
7695





PDH 3053
CSSTSCH
7
7696





PDH 3054
CSSTSCS
7
7697





PDH 3055
CSSTSCP
7
7698





PDH 3056
ICGGDCF
7
7699





PDH 3057
VCGGDCS
7
7700





PDH 3058
DCGGDCF
7
7701





PDH 3059
SCGGDCF
7
7702





PDH 3060
NCGGDCY
7
7703





PDH 3061
VCGGDCY
7
7704





PDH 3062
SCGGDCS
7
7705





PDH 3063
NCGGDCS
7
7706





PDH 3064
HCGGDCF
7
7707





PDH 3065
LCGGDCS
7
7708





PDH 3066
LCGGDCY
7
7709





PDH 3067
ICGGDCY
7
7710





PDH 3068
LCGGDCF
7
7711





PDH 3069
ICGGDCS
7
7712





PDH 3070
VCGGDCF
7
7713





PDH 3071
HCGGDCS
7
7714





PDH 3072
YCGGDCF
7
7715





PDH 3073
HCGGDCY
7
7716





PDH 3074
FCGGDCF
7
7717





PDH 3075
YCGGDCS
7
7718





PDH 3076
DCGGDCS
7
7719





PDH 3077
YCGGDCY
7
3866





PDH 3078
DCGGDCY
7
7720





PDH 3079
PCGGDCF
7
7721





PDH 3080
FCGGDCS
7
7722





PDH 3081
FCGGDCY
7
7723





PDH 3082
ACGGDCF
7
7724





PDH 3083
ACGGDCY
7
7725





PDH 3084
ACGGDCS
7
7726





PDH 3085
PCGGDCY
7
7727





PDH 3086
PCGGDCS
7
7728





PDH 3087
SCGGDCY
7
7729





PDH 3088
NCGGDCF
7
7730





PDH 3089
TCGGDCS
7
7731





PDH 3090
TCGGDCY
7
7732





PDH 3091
TCGGDCF
7
7733





PDH 3092
NDFWSGF
7
7734





PDH 3093
HDFWSGF
7
7735





PDH 3094
SDFWSGF
7
7736





PDH 3095
NDFWSGY
7
7737





PDH 3096
HDFWSGS
7
7738





PDH 3097
DDFWSGF
7
7739





PDH 3098
HDFWSGY
7
7740





PDH 3099
SDFWSGY
7
7741





PDH 3100
FDFWSGF
7
7742





PDH 3101
PDFWSGY
7
7743





PDH 3102
IDFWSGF
7
7744





PDH 3103
SDFWSGS
7
7745





PDH 3104
PDFWSGS
7
7746





PDH 3105
TDFWSGF
7
7747





PDH 3106
LDFWSGS
7
7748





PDH 3107
DDFWSGY
7
7749





PDH 3108
LDFWSGY
7
7750





PDH 3109
FDFWSGS
7
7751





PDH 3110
ADFWSGF
7
7752





PDH 3111
FDFWSGY
7
7753





PDH 3112
TDFWSGS
7
7754





PDH 3113
PDFWSGF
7
7755





PDH 3114
VDFWSGF
7
7756





PDH 3115
TDFWSGY
7
7757





PDH 3116
IDFWSGY
7
7758





PDH 3117
DDFWSGS
7
7759





PDH 3118
YDFWSGS
7
7760





PDH 3119
YDFWSGF
7
7761





PDH 3120
IDFWSGS
7
7762





PDH 3121
NDFWSGS
7
7763





PDH 3122
YDFWSGY
7
4249





PDH 3123
LDFWSGF
7
7764





PDH 3124
ADFWSGY
7
7765





PDH 3125
VDFWSGS
7
7766





PDH 3126
ADFWSGS
7
7767





PDH 3127
VDFWSGY
7
7768





PDH 3128
YDSSGYS
7
7769





PDH 3129
VDSSGYF
7
7770





PDH 3130
VDSSGYS
7
7771





PDH 3131
ADSSGYS
7
7772





PDH 3132
HDSSGYF
7
7773





PDH 3133
ADSSGYY
7
7774





PDH 3134
DDSSGYY
7
7775





PDH 3135
DDSSGYS
7
7776





PDH 3136
SDSSGYS
7
7777





PDH 3137
SDSSGYF
7
7778





PDH 3138
PDSSGYS
7
7779





PDH 3139
SDSSGYY
7
7780





PDH 3140
PDSSGYY
7
7781





PDH 3141
HDSSGYY
7
7782





PDH 3142
PDSSGYF
7
7783





PDH 3143
FDSSGYF
7
7784





PDH 3144
HDSSGYS
7
7785





PDH 3145
ADSSGYF
7
7786





PDH 3146
DDSSGYF
7
7787





PDH 3147
LDSSGYF
7
7788





PDH 3148
LDSSGYY
7
7789





PDH 3149
LDSSGYS
7
7790





PDH 3150
FDSSGYY
7
7791





PDH 3151
FDSSGYS
7
7792





PDH 3152
YDSSGYF
7
7793





PDH 3153
YDSSGYY
7
4169





PDH 3154
VDSSGYY
7
7794





PDH 3155
EYCGGDC
7
7795





PDH 3156
QYCGGDC
7
7796





PDH 3157
AYCGGDC
7
3865





PDH 3158
IYCGGDC
7
7797





PDH 3159
TYCGGDC
7
7798





PDH 3160
PYCGGDC
7
7799





PDH 3161
LYCGGDC
7
7800





PDH 3162
VYCGGDC
7
7801





PDH 3163
KYCGGDC
7
7802





PDH 3164
VYYDSSGF
8
7803





PDH 3165
IYYDSSGF
8
7804





PDH 3166
YYYDSSGY
8
4164





PDH 3167
PYYDSSGF
8
7805





PDH 3168
HYYDSSGF
8
7806





PDH 3169
HYYDSSGY
8
7807





PDH 3170
AYYDSSGF
8
7808





PDH 3171
HYYDSSGS
8
7809





PDH 3172
DYYDSSGY
8
7810





PDH 3173
DYYDSSGS
8
7811





PDH 3174
YYYDSSGS
8
7812





PDH 3175
SYYDSSGF
8
7813





PDH 3176
LYYDSSGF
8
7814





PDH 3177
NYYDSSGF
8
7815





PDH 3178
NYYDSSGY
8
7816





PDH 3179
IYYDSSGY
8
7817





PDH 3180
SYYDSSGS
8
7818





PDH 3181
AYYDSSGS
8
7819





PDH 3182
IYYDSSGS
8
7820





PDH 3183
AYYDSSGY
8
7821





PDH 3184
DYYDSSGF
8
7822





PDH 3185
SYYDSSGY
8
7823





PDH 3186
NYYDSSGS
8
7824





PDH 3187
LYYDSSGY
8
7825





PDH 3188
PYYDSSGS
8
7826





PDH 3189
LYYDSSGS
8
7827





PDH 3190
PYYDSSGY
8
7828





PDH 3191
TYYDSSGY
8
7829





PDH 3192
TYYDSSGS
8
7830





PDH 3193
FYYDSSGF
8
7831





PDH 3194
FYYDSSGY
8
7832





PDH 3195
FYYDSSGS
8
7833





PDH 3196
VYYDSSGS
8
7834





PDH 3197
TYYDSSGF
8
7835





PDH 3198
YYYDSSGF
8
7836





PDH 3199
VYYDSSGY
8
7837





PDH 3200
TYYGSGSS
8
7838





PDH 3201
SYYGSGSY
8
7839





PDH 3202
SYYGSGSS
8
7840





PDH 3203
HYYGSGSF
8
7841





PDH 3204
PYYGSGSF
8
7842





PDH 3205
AYYGSGSS
8
7843





PDH 3206
AYYGSGSF
8
7844





PDH 3207
AYYGSGSY
8
7845





PDH 3208
YYYGSGSF
8
7846





PDH 3209
TYYGSGSY
8
7847





PDH 3210
YYYGSGSY
8
3972





PDH 3211
PYYGSGSS
8
7848





PDH 3212
PYYGSGSY
8
7849





PDH 3213
DYYGSGSY
8
7850





PDH 3214
VYYGSGSY
8
7851





PDH 3215
VYYGSGSF
8
7852





PDH 3216
YYYGSGSS
8
7853





PDH 3217
LYYGSGSF
8
7854





PDH 3218
LYYGSGSY
8
7855





PDH 3219
DYYGSGSS
8
7856





PDH 3220
VYYGSGSS
8
7857





PDH 3221
IYYGSGSS
8
7858





PDH 3222
FYYGSGSY
8
7859





PDH 3223
FYYGSGSS
8
7860





PDH 3224
LYYGSGSS
8
7861





PDH 3225
SYYGSGSF
8
7862





PDH 3226
IYYGSGSY
8
7863





PDH 3227
IYYGSGSF
8
7864





PDH 3228
FYYGSGSF
8
7865





PDH 3229
DYYGSGSF
8
7866





PDH 3230
NYYGSGSS
8
7867





PDH 3231
NYYGSGSY
8
7868





PDH 3232
TYYGSGSF
8
7869





PDH 3233
HYYGSGSY
8
7870





PDH 3234
HYYGSGSS
8
7871





PDH 3235
NYYGSGSF
8
7872





PDH 3236
AYCSSTSC
8
7873





PDH 3237
PYCSSTSC
8
7874





PDH 3238
RYCSSTSC
8
7875





PDH 3239
IYCSSTSC
8
7876





PDH 3240
LYCSSTSC
8
7877





PDH 3241
VYCSSTSC
8
7878





PDH 3242
TYCSSTSC
8
7879





PDH 3243
SYCSSTSC
8
7880





PDH 3244
GYCSSTSC
8
3809





PDH 3245
IYCSGGSC
8
7881





PDH 3246
VYCSGGSC
8
7882





PDH 3247
LYCSGGSC
8
7883





PDH 3248
AYCSGGSC
8
7884





PDH 3249
TYCSGGSC
8
7885





PDH 3250
GYCSGGSC
8
3770





PDH 3251
RYCSGGSC
8
7886





PDH 3252
PYCSGGSC
8
7887





PDH 3253
SYCSGGSC
8
7888





PDH 3254
FYDFWSGY
8
7889





PDH 3255
AYDFWSGF
8
7890





PDH 3256
NYDFWSGF
8
7891





PDH 3257
IYDFWSGF
8
7892





PDH 3258
DYDFWSGS
8
7893





PDH 3259
DYDFWSGY
8
7894





PDH 3260
NYDFWSGY
8
7895





PDH 3261
VYDFWSGF
8
7896





PDH 3262
VYDFWSGS
8
7897





PDH 3263
YYDFWSGF
8
7898





PDH 3264
PYDFWSGF
8
7899





PDH 3265
FYDFWSGS
8
7900





PDH 3266
HYDFWSGF
8
7901





PDH 3267
HYDFWSGY
8
7902





PDH 3268
YYDFWSGS
8
7903





PDH 3269
PYDFWSGY
8
7904





PDH 3270
PYDFWSGS
8
7905





PDH 3271
VYDFWSGY
8
7906





PDH 3272
SYDFWSGS
8
7907





PDH 3273
YYDFWSGY
8
4245





PDH 3274
LYDFWSGF
8
7908





PDH 3275
HYDFWSGS
8
7909





PDH 3276
SYDFWSGY
8
7910





PDH 3277
SYDFWSGF
8
7911





PDH 3278
LYDFWSGS
8
7912





PDH 3279
TYDFWSGF
8
7913





PDH 3280
LYDFWSGY
8
7914





PDH 3281
AYDFWSGY
8
7915





PDH 3282
AYDFWSGS
8
7916





PDH 3283
TYDFWSGS
8
7917





PDH 3284
IYDFWSGY
8
7918





PDH 3285
TYDFWSGY
8
7919





PDH 3286
NYDFWSGS
8
7920





PDH 3287
DYDFWSGF
8
7921





PDH 3288
IYDFWSGS
8
7922





PDH 3289
FYDFWSGF
8
7923





PDH 3290
HDILTGYS
8
7924





PDH 3291
PDILTGYY
8
7925





PDH 3292
PDILTGYF
8
7926





PDH 3293
TDILTGYS
8
7927





PDH 3294
HDILTGYY
8
7928





PDH 3295
YDILTGYF
8
7929





PDH 3296
IDILTGYS
8
7930





PDH 3297
IDILTGYY
8
7931





PDH 3298
IDILTGYF
8
7932





PDH 3299
LDILTGYF
8
7933





PDH 3300
LDILTGYY
8
7934





PDH 3301
LDILTGYS
8
7935





PDH 3302
DDILTGYF
8
7936





PDH 3303
FDILTGYF
8
7937





PDH 3304
SDILTGYF
8
7938





PDH 3305
ADILTGYY
8
7939





PDH 3306
VDILTGYY
8
7940





PDH 3307
VDILTGYS
8
7941





PDH 3308
ADILTGYS
8
7942





PDH 3309
DDILTGYS
8
7943





PDH 3310
FDILTGYS
8
7944





PDH 3311
SDILTGYS
8
7945





PDH 3312
DDILTGYY
8
7946





PDH 3313
SDILTGYY
8
7947





PDH 3314
YDILTGYY
8
4322





PDH 3315
FDILTGYY
8
7948





PDH 3316
HDILTGYF
8
7949





PDH 3317
NDILTGYY
8
7950





PDH 3318
NDILTGYF
8
7951





PDH 3319
PDILTGYS
8
7952





PDH 3320
VDILTGYF
8
7953





PDH 3321
TDILTGYY
8
7954





PDH 3322
TDILTGYF
8
7955





PDH 3323
YDILTGYS
8
7956





PDH 3324
NDILTGYS
8
7957





PDH 3325
ADILTGYF
8
7958





PDH 3326
SCSGGSCS
8
7959





PDH 3327
HCSGGSCF
8
7960





PDH 3328
DCSGGSCS
8
7961





PDH 3329
PCSGGSCF
8
7962





PDH 3330
PCSGGSCY
8
7963





PDH 3331
SCSGGSCY
8
7964





PDH 3332
PCSGGSCS
8
7965





PDH 3333
LCSGGSCY
8
7966





PDH 3334
ACSGGSCY
8
7967





PDH 3335
ACSGGSCS
8
7968





PDH 3336
ACSGGSCF
8
7969





PDH 3337
VCSGGSCY
8
7970





PDH 3338
VCSGGSCF
8
7971





PDH 3339
VCSGGSCS
8
7972





PDH 3340
YCSGGSCS
8
7973





PDH 3341
YCSGGSCF
8
7974





PDH 3342
DCSGGSCF
8
7975





PDH 3343
DCSGGSCY
8
7976





PDH 3344
FCSGGSCS
8
7977





PDH 3345
FCSGGSCY
8
7978





PDH 3346
FCSGGSCF
8
7979





PDH 3347
SCSGGSCF
8
7980





PDH 3348
YCSGGSCY
8
3771





PDH 3349
LCSGGSCF
8
7981





PDH 3350
LCSGGSCS
8
7982





PDH 3351
HCSGGSCS
8
7983





PDH 3352
HCSGGSCY
8
7984





PDH 3353
ACSSTSCY
8
7985





PDH 3354
YCSSTSCF
8
7986





PDH 3355
FCSSTSCY
8
7987





PDH 3356
PCSSTSCF
8
7988





PDH 3357
FCSSTSCS
8
7989





PDH 3358
DCSSTSCF
8
7990





PDH 3359
VCSSTSCS
8
7991





PDH 3360
VCSSTSCF
8
7992





PDH 3361
LCSSTSCS
8
7993





PDH 3362
VCSSTSCY
8
7994





PDH 3363
ACSSTSCS
8
7995





PDH 3364
LCSSTSCY
8
7996





PDH 3365
LCSSTSCF
8
7997





PDH 3366
FCSSTSCF
8
7998





PDH 3367
HCSSTSCY
8
7999





PDH 3368
HCSSTSCS
8
8000





PDH 3369
HCSSTSCF
8
8001





PDH 3370
SCSSTSCF
8
8002





PDH 3371
SCSSTSCS
8
8003





PDH 3372
YCSSTSCS
8
8004





PDH 3373
DCSSTSCY
8
8005





PDH 3374
DCSSTSCS
8
8006





PDH 3375
SCSSTSCY
8
8007





PDH 3376
PCSSTSCS
8
8008





PDH 3377
ACSSTSCF
8
8009





PDH 3378
PCSSTSCY
8
8010





PDH 3379
YCSSTSCY
8
3810





PDH 3380
LYCGGDCS
8
8011





PDH 3381
EYCGGDCS
8
8012





PDH 3382
LYCGGDCY
8
8013





PDH 3383
VYCGGDCS
8
8014





PDH 3384
VYCGGDCY
8
8015





PDH 3385
AYCGGDCY
8
3863





PDH 3386
AYCGGDCF
8
8016





PDH 3387
EYCGGDCY
8
8017





PDH 3388
TYCGGDCF
8
8018





PDH 3389
LYCGGDCF
8
8019





PDH 3390
AYCGGDCS
8
8020





PDH 3391
QYCGGDCF
8
8021





PDH 3392
QYCGGDCS
8
8022





PDH 3393
KYCGGDCF
8
8023





PDH 3394
KYCGGDCY
8
8024





PDH 3395
QYCGGDCY
8
8025





PDH 3396
KYCGGDCS
8
8026





PDH 3397
VYCGGDCF
8
8027





PDH 3398
IYCGGDCF
8
8028





PDH 3399
IYCGGDCY
8
8029





PDH 3400
IYCGGDCS
8
8030





PDH 3401
PYCGGDCS
8
8031





PDH 3402
PYCGGDCF
8
8032





PDH 3403
TYCGGDCY
8
8033





PDH 3404
EYCGGDCF
8
8034





PDH 3405
PYCGGDCY
8
8035





PDH 3406
TYCGGDCS
8
8036





PDH 3407
DYDSSGYS
8
8037





PDH 3408
YYDSSGYF
8
8038





PDH 3409
LYDSSGYS
8
8039





PDH 3410
AYDSSGYS
8
8040





PDH 3411
AYDSSGYY
8
8041





PDH 3412
NYDSSGYY
8
8042





PDH 3413
IYDSSGYS
8
8043





PDH 3414
FYDSSGYF
8
8044





PDH 3415
DYDSSGYY
8
8045





PDH 3416
YYDSSGYS
8
8046





PDH 3417
TYDSSGYY
8
8047





PDH 3418
TYDSSGYS
8
8048





PDH 3419
PYDSSGYF
8
8049





PDH 3420
IYDSSGYY
8
8050





PDH 3421
IYDSSGYF
8
8051





PDH 3422
YYDSSGYY
8
4165





PDH 3423
NYDSSGYS
8
8052





PDH 3424
NYDSSGYF
8
8053





PDH 3425
VYDSSGYY
8
8054





PDH 3426
VYDSSGYF
8
8055





PDH 3427
FYDSSGYY
8
8056





PDH 3428
FYDSSGYS
8
8057





PDH 3429
SYDSSGYY
8
8058





PDH 3430
SYDSSGYS
8
8059





PDH 3431
PYDSSGYS
8
8060





PDH 3432
PYDSSGYY
8
8061





PDH 3433
LYDSSGYY
8
8062





PDH 3434
VYDSSGYS
8
8063





PDH 3435
SYDSSGYF
8
8064





PDH 3436
LYDSSGYF
8
8065





PDH 3437
HYDSSGYY
8
8066





PDH 3438
HYDSSGYS
8
8067





PDH 3439
TYDSSGYF
8
8068





PDH 3440
AYDSSGYF
8
8069





PDH 3441
DYDSSGYF
8
8070





PDH 3442
HYDSSGYF
8
8071





PDH 3443
RYYGSGSY
8
8072





PDH 3444
RYYGSGSS
8
8073





PDH 3445
GYYGSGSS
8
8074





PDH 3446
GYYGSGSY
8
8075





PDH 3447
FDFWSGYS
8
8076





PDH 3448
HDFWSGYF
8
8077





PDH 3449
FDFWSGYY
8
8078





PDH 3450
SDFWSGYS
8
8079





PDH 3451
SDFWSGYY
8
8080





PDH 3452
PDFWSGYS
8
8081





PDH 3453
HDFWSGYS
8
8082





PDH 3454
IDFWSGYY
8
8083





PDH 3455
HDFWSGYY
8
8084





PDH 3456
NDFWSGYF
8
8085





PDH 3457
YDFWSGYS
8
8086





PDH 3458
IDFWSGYS
8
8087





PDH 3459
PDFWSGYY
8
8088





PDH 3460
SDFWSGYF
8
8089





PDH 3461
VDFWSGYS
8
8090





PDH 3462
IDFWSGYF
8
8091





PDH 3463
YDFWSGYY
8
4246





PDH 3464
YDFWSGYF
8
8092





PDH 3465
TDFWSGYY
8
8093





PDH 3466
DDFWSGYS
8
8094





PDH 3467
LDFWSGYS
8
8095





PDH 3468
DDFWSGYY
8
8096





PDH 3469
DDFWSGYF
8
8097





PDH 3470
VDFWSGYY
8
8098





PDH 3471
VDFWSGYF
8
8099





PDH 3472
NDFWSGYY
8
8100





PDH 3473
FDFWSGYF
8
8101





PDH 3474
NDFWSGYS
8
8102





PDH 3475
LDFWSGYY
8
8103





PDH 3476
ADFWSGYY
8
8104





PDH 3477
ADFWSGYS
8
8105





PDH 3478
TDFWSGYS
8
8106





PDH 3479
TDFWSGYF
8
8107





PDH 3480
ADFWSGYF
8
8108





PDH 3481
LDFWSGYF
8
8109





PDH 3482
PDFWSGYF
8
8110





PDH 3483
LLRYFDWY
8
8111





PDH 3484
QLRYFDWY
8
8112





PDH 3485
PLRYFDWL
8
8113





PDH 3486
ILRYFDWF
8
8114





PDH 3487
ILRYFDWY
8
8115





PDH 3488
ALRYFDWL
8
8116





PDH 3489
QLRYFDWF
8
8117





PDH 3490
KLRYFDWL
8
8118





PDH 3491
TLRYFDWL
8
8119





PDH 3492
TLRYFDWH
8
8120





PDH 3493
ELRYFDWL
8
8121





PDH 3494
ELRYFDWH
8
8122





PDH 3495
PLRYFDWH
8
8123





PDH 3496
ELRYFDWY
8
8124





PDH 3497
ELRYFDWF
8
8125





PDH 3498
LLRYFDWL
8
8126





PDH 3499
VLRYFDWF
8
8127





PDH 3500
TLRYFDWF
8
8128





PDH 3501
ALRYFDWF
8
8129





PDH 3502
ILRYFDWH
8
8130





PDH 3503
QLRYFDWL
8
8131





PDH 3504
QLRYFDWH
8
8132





PDH 3505
VLRYFDWY
8
8133





PDH 3506
TLRYFDWY
8
8134





PDH 3507
ILRYFDWL
8
8135





PDH 3508
LLRYFDWH
8
8136





PDH 3509
VLRYFDWH
8
8137





PDH 3510
KLRYFDWY
8
8138





PDH 3511
KLRYFDWF
8
8139





PDH 3512
ALRYFDWH
8
8140





PDH 3513
ALRYFDWY
8
8141





PDH 3514
VLRYFDWL
8
4298





PDH 3515
KLRYFDWH
8
8142





PDH 3516
PLRYFDWY
8
8143





PDH 3517
PLRYFDWF
8
8144





PDH 3518
LLRYFDWF
8
8145





PDH 3519
IYYDSSGYS
9
8146





PDH 3520
TYYDSSGYS
9
8147





PDH 3521
HYYDSSGYY
9
8148





PDH 3522
TYYDSSGYY
9
8149





PDH 3523
HYYDSSGYS
9
8150





PDH 3524
NYYDSSGYF
9
8151





PDH 3525
AYYDSSGYS
9
8152





PDH 3526
DYYDSSGYF
9
8153





PDH 3527
DYYDSSGYS
9
8154





PDH 3528
LYYDSSGYS
9
8155





PDH 3529
NYYDSSGYS
9
8156





PDH 3530
HYYDSSGYF
9
8157





PDH 3531
DYYDSSGYY
9
8158





PDH 3532
LYYDSSGYY
9
8159





PDH 3533
IYYDSSGYY
9
8160





PDH 3534
LYYDSSGYF
9
8161





PDH 3535
IYYDSSGYF
9
8162





PDH 3536
AYYDSSGYF
9
8163





PDH 3537
AYYDSSGYY
9
8164





PDH 3538
FYYDSSGYS
9
8165





PDH 3539
YYYDSSGYS
9
8166





PDH 3540
FYYDSSGYY
9
8167





PDH 3541
FYYDSSGYF
9
8168





PDH 3542
YYYDSSGYY
9
4162





PDH 3543
YYYDSSGYF
9
8169





PDH 3544
VYYDSSGYF
9
8170





PDH 3545
PYYDSSGYY
9
8171





PDH 3546
PYYDSSGYS
9
8172





PDH 3547
VYYDSSGYS
9
8173





PDH 3548
SYYDSSGYY
9
8174





PDH 3549
NYYDSSGYY
9
8175





PDH 3550
VYYDSSGYY
9
8176





PDH 3551
SYYDSSGYS
9
8177





PDH 3552
SYYDSSGYF
9
8178





PDH 3553
TYYDSSGYF
9
8179





PDH 3554
PYYDSSGYF
9
8180





PDH 3555
PYCSGGSCF
9
8181





PDH 3556
TYCSGGSCF
9
8182





PDH 3557
IYCSGGSCF
9
8183





PDH 3558
VYCSGGSCS
9
8184





PDH 3559
TYCSGGSCY
9
8185





PDH 3560
VYCSGGSCF
9
8186





PDH 3561
TYCSGGSCS
9
8187





PDH 3562
GYCSGGSCS
9
8188





PDH 3563
IYCSGGSCS
9
8189





PDH 3564
GYCSGGSCY
9
3768





PDH 3565
IYCSGGSCY
9
8190





PDH 3566
VYCSGGSCY
9
8191





PDH 3567
AYCSGGSCF
9
8192





PDH 3568
GYCSGGSCF
9
8193





PDH 3569
LYCSGGSCF
9
8194





PDH 3570
RYCSGGSCF
9
8195





PDH 3571
LYCSGGSCS
9
8196





PDH 3572
RYCSGGSCY
9
8197





PDH 3573
AYCSGGSCS
9
8198





PDH 3574
SYCSGGSCY
9
8199





PDH 3575
SYCSGGSCF
9
8200





PDH 3576
AYCSGGSCY
9
8201





PDH 3577
SYCSGGSCS
9
8202





PDH 3578
PYCSGGSCS
9
8203





PDH 3579
LYCSGGSCY
9
8204





PDH 3580
RYCSGGSCS
9
8205





PDH 3581
PYCSGGSCY
9
8206





PDH 3582
TYCSSTSCY
9
8207





PDH 3583
AYCSSTSCY
9
8208





PDH 3584
AYCSSTSCS
9
8209





PDH 3585
RYCSSTSCS
9
8210





PDH 3586
TYCSSTSCS
9
8211





PDH 3587
PYCSSTSCY
9
8212





PDH 3588
PYCSSTSCS
9
8213





PDH 3589
RYCSSTSCY
9
8214





PDH 3590
VYCSSTSCS
9
8215





PDH 3591
VYCSSTSCY
9
8216





PDH 3592
LYCSSTSCF
9
8217





PDH 3593
LYCSSTSCY
9
8218





PDH 3594
PYCSSTSCF
9
8219





PDH 3595
VYCSSTSCF
9
8220





PDH 3596
IYCSSTSCY
9
8221





PDH 3597
IYCSSTSCS
9
8222





PDH 3598
IYCSSTSCF
9
8223





PDH 3599
SYCSSTSCS
9
8224





PDH 3600
LYCSSTSCS
9
8225





PDH 3601
SYCSSTSCY
9
8226





PDH 3602
SYCSSTSCF
9
8227





PDH 3603
GYCSSTSCY
9
3807





PDH 3604
GYCSSTSCF
9
8228





PDH 3605
GYCSSTSCS
9
8229





PDH 3606
RYCSSTSCF
9
8230





PDH 3607
TYCSSTSCF
9
8231





PDH 3608
AYCSSTSCF
9
8232





PDH 3609
IYDFWSGYY
9
8233





PDH 3610
NYDFWSGYY
9
8234





PDH 3611
PYDFWSGYF
9
8235





PDH 3612
SYDFWSGYF
9
8236





PDH 3613
VYDFWSGYF
9
8237





PDH 3614
VYDFWSGYY
9
8238





PDH 3615
HYDFWSGYY
9
8239





PDH 3616
HYDFWSGYF
9
8240





PDH 3617
HYDFWSGYS
9
8241





PDH 3618
IYDFWSGYS
9
8242





PDH 3619
NYDFWSGYS
9
8243





PDH 3620
AYDFWSGYS
9
8244





PDH 3621
SYDFWSGYS
9
8245





PDH 3622
PYDFWSGYS
9
8246





PDH 3623
AYDFWSGYY
9
8247





PDH 3624
SYDFWSGYY
9
8248





PDH 3625
PYDFWSGYY
9
8249





PDH 3626
FYDFWSGYY
9
8250





PDH 3627
FYDFWSGYF
9
8251





PDH 3628
DYDFWSGYS
9
8252





PDH 3629
FYDFWSGYS
9
8253





PDH 3630
DYDFWSGYF
9
8254





PDH 3631
LYDFWSGYY
9
8255





PDH 3632
AYDFWSGYF
9
8256





PDH 3633
LYDFWSGYS
9
8257





PDH 3634
DYDFWSGYY
9
8258





PDH 3635
LYDFWSGYF
9
8259





PDH 3636
YYDFWSGYY
9
4243





PDH 3637
TYDFWSGYY
9
8260





PDH 3638
TYDFWSGYF
9
8261





PDH 3639
YYDFWSGYS
9
8262





PDH 3640
YYDFWSGYF
9
8263





PDH 3641
TYDFWSGYS
9
8264





PDH 3642
VYDFWSGYS
9
8265





PDH 3643
NYDFWSGYF
9
8266





PDH 3644
IYDFWSGYF
9
8267





PDH 3645
FCSGGSCYS
9
8268





PDH 3646
LCSGGSCYS
9
8269





PDH 3647
VCSGGSCYS
9
8270





PDH 3648
ACSGGSCYS
9
8271





PDH 3649
ACSGGSCYY
9
8272





PDH 3650
FCSGGSCYY
9
8273





PDH 3651
LCSGGSCYF
9
8274





PDH 3652
LCSGGSCYY
9
8275





PDH 3653
VCSGGSCYY
9
8276





PDH 3654
YCSGGSCYS
9
3769





PDH 3655
PCSGGSCYS
9
8277





PDH 3656
PCSGGSCYY
9
8278





PDH 3657
PCSGGSCYF
9
8279





PDH 3658
YCSGGSCYF
9
8280





PDH 3659
YCSGGSCYY
9
8281





PDH 3660
SCSGGSCYY
9
8282





PDH 3661
HCSGGSCYF
9
8283





PDH 3662
DCSGGSCYY
9
8284





PDH 3663
SCSGGSCYF
9
8285





PDH 3664
DCSGGSCYS
9
8286





PDH 3665
HCSGGSCYS
9
8287





PDH 3666
SCSGGSCYS
9
8288





PDH 3667
FCSGGSCYF
9
8289





PDH 3668
ACSGGSCYF
9
8290





PDH 3669
DCSGGSCYF
9
8291





PDH 3670
HCSGGSCYY
9
8292





PDH 3671
VCSGGSCYF
9
8293





PDH 3672
FYYDSSGYYY
10
8294





PDH 3673
YYYDSSGYYF
10
8295





PDH 3674
PYYDSSGYYY
10
8296





PDH 3675
VYYDSSGYYS
10
8297





PDH 3676
PYYDSSGYYS
10
8298





PDH 3677
FYYDSSGYYS
10
8299





PDH 3678
NYYDSSGYYY
10
8300





PDH 3679
NYYDSSGYYS
10
8301





PDH 3680
DYYDSSGYYS
10
8302





PDH 3681
HYYDSSGYYF
10
8303





PDH 3682
DYYDSSGYYY
10
8304





PDH 3683
NYYDSSGYYF
10
8305





PDH 3684
HYYDSSGYYY
10
8306





PDH 3685
LYYDSSGYYF
10
8307





PDH 3686
IYYDSSGYYS
10
8308





PDH 3687
YYYDSSGYYS
10
8309





PDH 3688
IYYDSSGYYF
10
8310





PDH 3689
YYYDSSGYYY
10
4161





PDH 3690
HYYDSSGYYS
10
8311





PDH 3691
TYYDSSGYYS
10
8312





PDH 3692
IYYDSSGYYY
10
8313





PDH 3693
TYYDSSGYYF
10
8314





PDH 3694
LYYDSSGYYS
10
8315





PDH 3695
TYYDSSGYYY
10
8316





PDH 3696
LYYDSSGYYY
10
8317





PDH 3697
AYYDSSGYYF
10
8318





PDH 3698
FYYDSSGYYF
10
8319





PDH 3699
AYYDSSGYYY
10
8320





PDH 3700
VYYDSSGYYY
10
8321





PDH 3701
SYYDSSGYYF
10
8322





PDH 3702
PYYDSSGYYF
10
8323





PDH 3703
SYYDSSGYYY
10
8324





PDH 3704
AYYDSSGYYS
10
8325





PDH 3705
DYYDSSGYYF
10
8326





PDH 3706
SYYDSSGYYS
10
8327





PDH 3707
VYYDSSGYYF
10
8328





PDH 3708
IYDYVWGSYAS
11
8329





PDH 3709
AYDYVWGSYAS
11
8330





PDH 3710
IYDYVWGSYAY
11
8331





PDH 3711
NYDYVWGSYAY
11
8332





PDH 3712
NYDYVWGSYAS
11
8333





PDH 3713
YYDYVWGSYAF
11
8334





PDH 3714
DYDYVWGSYAF
11
8335





PDH 3715
SYDYVWGSYAY
11
8336





PDH 3716
DYDYVWGSYAS
11
8337





PDH 3717
DYDYVWGSYAY
11
8338





PDH 3718
FYDYVWGSYAS
11
8339





PDH 3719
NYDYVWGSYAF
11
8340





PDH 3720
YYDYVWGSYAS
11
8341





PDH 3721
FYDYVWGSYAY
11
8342





PDH 3722
SYDYVWGSYAS
11
8343





PDH 3723
PYDYVWGSYAF
11
8344





PDH 3724
TYDYVWGSYAY
11
8345





PDH 3725
VYDYVWGSYAY
11
8346





PDH 3726
SYDYVWGSYAF
11
8347





PDH 3727
FYDYVWGSYAF
11
8348





PDH 3728
HYDYVWGSYAS
11
8349





PDH 3729
VYDYVWGSYAS
11
8350





PDH 3730
VYDYVWGSYAF
11
8351





PDH 3731
YYDYVWGSYAY
11
4071





PDH 3732
AYDYVWGSYAY
11
8352





PDH 3733
LYDYVWGSYAS
11
8353





PDH 3734
TYDYVWGSYAF
11
8354





PDH 3735
AYDYVWGSYAF
11
8355





PDH 3736
HYDYVWGSYAY
11
8356





PDH 3737
TYDYVWGSYAS
11
8357





PDH 3738
LYDYVWGSYAF
11
8358





PDH 3739
PYDYVWGSYAY
11
8359





PDH 3740
PYDYVWGSYAS
11
8360





PDH 3741
HYDYVWGSYAF
11
8361





PDH 3742
LYDYVWGSYAY
11
8362





PDH 3743
IYDYVWGSYAF
11
8363





PDH 3744
NYDYVWGSYAYT
12
8364





PDH 3745
NYDYVWGSYAYI
12
8365





PDH 3746
IYDYVWGSYAYI
12
8366





PDH 3747
YYDYVWGSYAYK
12
8367





PDH 3748
NYDYVWGSYAYK
12
8368





PDH 3749
YYDYVWGSYAYT
12
4070





PDH 3750
PYDYVWGSYAYT
12
8369





PDH 3751
DYDYVWGSYAYI
12
8370





PDH 3752
PYDYVWGSYAYK
12
8371





PDH 3753
FYDYVWGSYAYI
12
8372





PDH 3754
VYDYVWGSYAYT
12
8373





PDH 3755
DYDYVWGSYAYK
12
8374





PDH 3756
IYDYVWGSYAYT
12
8375





PDH 3757
IYDYVWGSYAYK
12
8376





PDH 3758
LYDYVWGSYAYI
12
8377





PDH 3759
HYDYVWGSYAYK
12
8378





PDH 3760
TYDYVWGSYAYI
12
8379





PDH 3761
HYDYVWGSYAYT
12
8380





PDH 3762
AYDYVWGSYAYT
12
8381





PDH 3763
AYDYVWGSYAYK
12
8382





PDH 3764
AYDYVWGSYAYI
12
8383





PDH 3765
TYDYVWGSYAYK
12
8384





PDH 3766
DYDYVWGSYAYT
12
8385





PDH 3767
VYDYVWGSYAYK
12
8386





PDH 3768
TYDYVWGSYAYT
12
8387





PDH 3769
FYDYVWGSYAYK
12
8388





PDH 3770
LYDYVWGSYAYK
12
8389





PDH 3771
VYDYVWGSYAYI
12
8390





PDH 3772
LYDYVWGSYAYT
12
8391





PDH 3773
PYDYVWGSYAYI
12
8392





PDH 3774
FYDYVWGSYAYT
12
8393





PDH 3775
YYDYVWGSYAYI
12
8394





PDH 3776
SYDYVWGSYAYI
12
8395





PDH 3777
HYDYVWGSYAYI
12
8396





PDH 3778
SYDYVWGSYAYT
12
8397





PDH 3779
SYDYVWGSYAYK
12
8398
















TABLE 29







Theoretical segment pool of oligonucleotide


sequences encoding N2 segments of Example 14.












Degenerate
Peptide

SEQ


Name
Oligo
Length

ID NO





N2 000

0
Not degenerate
n/a





N2 001
GCT
1
Not degenerate
n/a





N2 002
GAT
1
Not degenerate
n/a





N2 003
GAG
1
Not degenerate
n/a





N2 004
TTT
1
Not degenerate
n/a





N2 005
GGC
1
Not degenerate
n/a





N2 006
CAT
1
Not degenerate
n/a





N2 007
ATC
1
Not degenerate
n/a





N2 008
AAA
1
Not degenerate
n/a





N2 009
TTG
1
Not degenerate
n/a





N2 010
ATG
1
Not degenerate
n/a





N2 011
CCT
1
Not degenerate
n/a





N2 012
CAA
1
Not degenerate
n/a





N2 013
AGG
1
Not degenerate
n/a





N2 014
TCA
1
Not degenerate
n/a





N2 015
ACC
1
Not degenerate
n/a





N2 016
GTT
1
Not degenerate
n/a





N2 017
TGG
1
Not degenerate
n/a





N2 018
TAC
1
Not degenerate
n/a





N2 019
GMCKHT
2

n/a





N2 020
GMCSVT
2

n/a





N2 021
GMCSHT
2

n/a





N2 022
GMCSVG
2

n/a





N2 023
GMTDYT
2

n/a





N2 024
KHCGAS
2

n/a





N2 025
KHCGRC
2

n/a





N2 026
KHCGWG
2

n/a





N2 027
KHTTTM
2

n/a





N2 028
KHTTYC
2

n/a





N2 029
KHTTWC
2

n/a





N2 030
KHCRGA
2

n/a





N2 031
KHCKGG
2

n/a





N2 032
KHCCWC
2

n/a





N2 033
KHCCMT
2

n/a





N2 034
KHCMCA
2

n/a





N2 035
GVCSWG
2

n/a





N2 036
GVCMKC
2

n/a





N2 037
GVCWSG
2

n/a





N2 038
SVCYAC
2

n/a





N2 039
GNAAHA
2

n/a





N2 040
BYCSAG
2

n/a





N2 041
RBAAWA
2

n/a





N2 042
RBAAYA
2

n/a





N2 043
SBAMAA
2

n/a





N2 044
VSCMAA
2

n/a





N2 045
GRARVG
2

n/a





N2 046
GRADYT
2

n/a





N2 047
GRABYT
2

n/a





N2 048
GRAKBG
2

n/a





N2 049
RDAGMT
2

n/a





N2 050
RDAGAK
2

n/a





N2 051
RDAGRT
2

n/a





N2 052
RDAGWG
2

n/a





N2 053
RDARGG
2

n/a





N2 054
RDACYA
2

n/a





N2 055
SDACSA
2

n/a





N2 056
VWACYA
2

n/a





N2 057
VWATYA
2

n/a





N2 058
VWAASA
2

n/a





N2 059
YHCGMC
2

n/a





N2 060
YHCGMG
2

n/a





N2 061
YHCGST
2

n/a





N2 062
YHCSCG
2

n/a





N2 063
YHCKCG
2

n/a





N2 064
YHCSAC
2

n/a





N2 065
YHCKAC
2

n/a





N2 066
YHCRGA
2

n/a





N2 067
YHCCWC
2

n/a





N2 068
YHCMCA
2

n/a





N2 069
WTCYHT
2

n/a





N2 070
HYCGWG
2

n/a





N2 071
HYCTTM
2

n/a





N2 072
HYCAGM
2

n/a





N2 073
HYCTMC
2

n/a





N2 074
VKCTWT
2

n/a





N2 075
CNCVGC
2

n/a





N2 076
MHAGAK
2

n/a





N2 077
MHAGRC
2

n/a





N2 078
MHAGWG
2

n/a





N2 079
MHAMCA
2

n/a





N2 080
ANAGBT
2

n/a





N2 081
MBCYAC
2

n/a





N2 082
MBCAWA
2

n/a





N2 083
MHGGKA
2

n/a





N2 084
CNABTT
2

n/a





N2 085
CVACNA
2

n/a





N2 086
CVAYSG
2

n/a





N2 087
MSCAHG
2

n/a





N2 088
CRAKBG
2

n/a





N2 089
WSGHCA
2

n/a





N2 090
WGGKHC
2

n/a





N2 091
MBCATR
2

n/a





N2 092
AYABSG
2

n/a





N2 093
VYCAWG
2

n/a





N2 094
BGGSAK
2

n/a





N2 095
AHGRYT
2

n/a





N2 096
BWCAMA
2

n/a





N2 097
BHCTGG
2

n/a





N2 098
TGGBHC
2

n/a





N2 099
TGGVBT
2

n/a





N2 100
NHCGCAGCC
3

n/a





N2 101
BHCGGAATG
3

n/a





N2 102
BHCGGAGGA
3

n/a





N2 103
BHCGGAGTA
3

n/a





N2 104
VNCGCAGGA
3

n/a





N2 105
VBCGGAGCC
3

n/a





N2 106
VBCGGAGGA
3

n/a





N2 107
VBCGGACTA
3

n/a





N2 108
VBCGGAAGG
3

n/a





N2 109
VBCGGAAGC
3

n/a





N2 110
VBCGGAGTA
3

n/a





N2 111
VNCCTTGGA
3

n/a





N2 112
VNCCCAGGA
3

n/a





N2 113
VNCCCACCA
3

n/a





N2 114
VNCAGAGGA
3

n/a





N2 115
VNCAGCGGA
3

n/a





N2 116
VBCACAGGA
3

n/a





N2 117
VNCGTAGGA
3

n/a





N2 118
BHCGGACAC
3

n/a





N2 119
NHCAAACAA
3

n/a





N2 120
NHCAAAAGA
3

n/a





N2 121
BHCACACAA
3

n/a





N2 122
VNCTTTGAG
3

n/a





N2 123
VNCCCACTA
3

n/a





N2 124
VNCCCATAC
3

n/a





N2 125
BHCGGAGAG
3

n/a





N2 126
BHCGGACTA
3

n/a





N2 127
BHCGGATGG
3

n/a





N2 128
BHCGGATAC
3

n/a





N2 129
NHCAGAGGA
3

n/a





N2 130
NHCAGCGAG
3

n/a





N2 131
NHCAGCTGG
3

n/a





N2 132
VHAGGAGGA
3

n/a





N2 133
BHCGGAAGG
3

n/a





N2 134
NHCCAAGGA
3

n/a





N2 135
BHCACAGCT
3

n/a





N2 136
GGABHCGGATAC
4

8399





N2 137
AGABHCGGATAC
4

8400





N2 138
AGCBHCGGATAC
4

8401





N2 139
CCABHCGGATAC
4

8402





N2 140
GGTAGAVHGTAC
4

8403





N2 141
AGGAGAVHGTAC
4

8404





N2 142
GGABHCGGATGG
4

8405





N2 143
GGABHCGGACTA
4

8406





N2 144
GGABHCACAGCT
4

8407





N2 145
GGABHCACACAA
4

8408
















TABLE 30







Theoretical segment


pool of unique N2 polypeptide segments encoded


by the oligonucleotides of Table 29.










Name
Sequence
Length
SEQ ID NO





PN2 000

0
#N/A





PN2 001
A
1
#N/A





PN2 002
D
1
#N/A





PN2 003
E
1
#N/A





PN2 004
F
1
#N/A





PN2 005
G
1
#N/A





PN2 006
H
1
#N/A





PN2 007
I
1
#N/A





PN2 008
K
1
#N/A





PN2 009
L
1
#N/A





PN2 010
M
1
#N/A





PN2 011
P
1
#N/A





PN2 012
Q
1
#N/A





PN2 013
R
1
#N/A





PN2 014
S
1
#N/A





PN2 015
T
1
#N/A





PN2 016
V
1
#N/A





PN2 017
W
1
#N/A





PN2 018
Y
1
#N/A





PN2 019
GW
2
#N/A





PN2 020
GV
2
#N/A





PN2 021
GT
2
#N/A





PN2 022
GS
2
#N/A





PN2 023
GR
2
#N/A





PN2 024
GQ
2
#N/A





PN2 025
GP
2
#N/A





PN2 026
GY
2
#N/A





PN2 027
GG
2
#N/A





PN2 028
GF
2
#N/A





PN2 029
GE
2
#N/A





PN2 030
GD
2
#N/A





PN2 031
GA
2
#N/A





PN2 032
GL
2
#N/A





PN2 033
GK
2
#N/A





PN2 034
GI
2
#N/A





PN2 035
GH
2
#N/A





PN2 036
MG
2
#N/A





PN2 037
MA
2
#N/A





PN2 038
MI
2
#N/A





PN2 039
MT
2
#N/A





PN2 040
MV
2
#N/A





PN2 041
FP
2
#N/A





PN2 042
FQ
2
#N/A





PN2 043
FR
2
#N/A





PN2 044
FS
2
#N/A





PN2 045
FT
2
#N/A





PN2 046
FV
2
#N/A





PN2 047
FW
2
#N/A





PN2 048
FY
2
#N/A





PN2 049
FA
2
#N/A





PN2 050
FD
2
#N/A





PN2 051
FE
2
#N/A





PN2 052
FF
2
#N/A





PN2 053
FG
2
#N/A





PN2 054
FH
2
#N/A





PN2 055
FK
2
#N/A





PN2 056
FL
2
#N/A





PN2 057
SY
2
#N/A





PN2 058
SS
2
#N/A





PN2 059
SR
2
#N/A





PN2 060
SQ
2
#N/A





PN2 061
SP
2
#N/A





PN2 062
SW
2
#N/A





PN2 063
SV
2
#N/A





PN2 064
ST
2
#N/A





PN2 065
SK
2
#N/A





PN2 066
SI
2
#N/A





PN2 067
SH
2
#N/A





PN2 068
SM
2
#N/A





PN2 069
SL
2
#N/A





PN2 070
SA
2
#N/A





PN2 071
SG
2
#N/A





PN2 072
SF
2
#N/A





PN2 073
SE
2
#N/A





PN2 074
SD
2
#N/A





PN2 075
YH
2
#N/A





PN2 076
YK
2
#N/A





PN2 077
YL
2
#N/A





PN2 078
YA
2
#N/A





PN2 079
YE
2
#N/A





PN2 080
YD
2
#N/A





PN2 081
YG
2
#N/A





PN2 082
YF
2
#N/A





PN2 083
YY
2
#N/A





PN2 084
YP
2
#N/A





PN2 085
YS
2
#N/A





PN2 086
YR
2
#N/A





PN2 087
YT
2
#N/A





PN2 088
YW
2
#N/A





PN2 089
YV
2
#N/A





PN2 090
LF
2
#N/A





PN2 091
LD
2
#N/A





PN2 092
LE
2
#N/A





PN2 093
LL
2
#N/A





PN2 094
LM
2
#N/A





PN2 095
LK
2
#N/A





PN2 096
LH
2
#N/A





PN2 097
LI
2
#N/A





PN2 098
LW
2
#N/A





PN2 099
LT
2
#N/A





PN2 100
LR
2
#N/A





PN2 101
LS
2
#N/A





PN2 102
LP
2
#N/A





PN2 103
LQ
2
#N/A





PN2 104
LY
2
#N/A





PN2 105
LG
2
#N/A





PN2 106
LA
2
#N/A





PN2 107
RT
2
#N/A





PN2 108
RV
2
#N/A





PN2 109
RW
2
#N/A





PN2 110
RP
2
#N/A





PN2 111
RQ
2
#N/A





PN2 112
RR
2
#N/A





PN2 113
RS
2
#N/A





PN2 114
RY
2
#N/A





PN2 115
RD
2
#N/A





PN2 116
RE
2
#N/A





PN2 117
RF
2
#N/A





PN2 118
RG
2
#N/A





PN2 119
RA
2
#N/A





PN2 120
RL
2
#N/A





PN2 121
RM
2
#N/A





PN2 122
RH
2
#N/A





PN2 123
RI
2
#N/A





PN2 124
RK
2
#N/A





PN2 125
LV
2
#N/A





PN2 126
IP
2
#N/A





PN2 127
EL
2
#N/A





PN2 128
VK
2
#N/A





PN2 129
EI
2
#N/A





PN2 130
EK
2
#N/A





PN2 131
EE
2
#N/A





PN2 132
ED
2
#N/A





PN2 133
EG
2
#N/A





PN2 134
EF
2
#N/A





PN2 135
EA
2
#N/A





PN2 136
IT
2
#N/A





PN2 137
ET
2
#N/A





PN2 138
EW
2
#N/A





PN2 139
EV
2
#N/A





PN2 140
EP
2
#N/A





PN2 141
ES
2
#N/A





PN2 142
ER
2
#N/A





PN2 143
II
2
#N/A





PN2 144
IH
2
#N/A





PN2 145
VR
2
#N/A





PN2 146
VT
2
#N/A





PN2 147
KA
2
#N/A





PN2 148
KG
2
#N/A





PN2 149
KE
2
#N/A





PN2 150
KD
2
#N/A





PN2 151
KI
2
#N/A





PN2 152
KL
2
#N/A





PN2 153
KS
2
#N/A





PN2 154
KR
2
#N/A





PN2 155
KP
2
#N/A





PN2 156
KV
2
#N/A





PN2 157
KT
2
#N/A





PN2 158
DK
2
#N/A





PN2 159
DH
2
#N/A





PN2 160
DI
2
#N/A





PN2 161
DF
2
#N/A





PN2 162
DG
2
#N/A





PN2 163
DD
2
#N/A





PN2 164
DE
2
#N/A





PN2 165
DA
2
#N/A





PN2 166
DY
2
#N/A





PN2 167
DV
2
#N/A





PN2 168
DW
2
#N/A





PN2 169
DT
2
#N/A





PN2 170
DR
2
#N/A





PN2 171
DS
2
#N/A





PN2 172
DP
2
#N/A





PN2 173
DQ
2
#N/A





PN2 174
QQ
2
#N/A





PN2 175
QP
2
#N/A





PN2 176
QS
2
#N/A





PN2 177
QR
2
#N/A





PN2 178
QT
2
#N/A





PN2 179
QW
2
#N/A





PN2 180
QA
2
#N/A





PN2 181
QE
2
#N/A





PN2 182
QD
2
#N/A





PN2 183
QG
2
#N/A





PN2 184
QF
2
#N/A





PN2 185
QL
2
#N/A





PN2 186
WG
2
#N/A





PN2 187
WF
2
#N/A





PN2 188
WE
2
#N/A





PN2 189
WD
2
#N/A





PN2 190
WA
2
#N/A





PN2 191
WL
2
#N/A





PN2 192
WI
2
#N/A





PN2 193
WH
2
#N/A





PN2 194
WV
2
#N/A





PN2 195
WT
2
#N/A





PN2 196
WS
2
#N/A





PN2 197
WR
2
#N/A





PN2 198
WQ
2
#N/A





PN2 199
WP
2
#N/A





PN2 200
WY
2
#N/A





PN2 201
PR
2
#N/A





PN2 202
PS
2
#N/A





PN2 203
PP
2
#N/A





PN2 204
PQ
2
#N/A





PN2 205
PV
2
#N/A





PN2 206
PW
2
#N/A





PN2 207
PT
2
#N/A





PN2 208
PY
2
#N/A





PN2 209
PA
2
#N/A





PN2 210
PF
2
#N/A





PN2 211
PG
2
#N/A





PN2 212
PD
2
#N/A





PN2 213
PE
2
#N/A





PN2 214
PK
2
#N/A





PN2 215
PH
2
#N/A





PN2 216
PI
2
#N/A





PN2 217
PL
2
#N/A





PN2 218
PM
2
#N/A





PN2 219
DL
2
#N/A





PN2 220
IY
2
#N/A





PN2 221
VA
2
#N/A





PN2 222
VD
2
#N/A





PN2 223
VE
2
#N/A





PN2 224
VF
2
#N/A





PN2 225
VG
2
#N/A





PN2 226
VH
2
#N/A





PN2 227
VI
2
#N/A





PN2 228
IS
2
#N/A





PN2 229
IR
2
#N/A





PN2 230
VL
2
#N/A





PN2 231
VM
2
#N/A





PN2 232
IW
2
#N/A





PN2 233
IV
2
#N/A





PN2 234
VP
2
#N/A





PN2 235
VQ
2
#N/A





PN2 236
IK
2
#N/A





PN2 237
VS
2
#N/A





PN2 238
IM
2
#N/A





PN2 239
IL
2
#N/A





PN2 240
VV
2
#N/A





PN2 241
VW
2
#N/A





PN2 242
IA
2
#N/A





PN2 243
VY
2
#N/A





PN2 244
IE
2
#N/A





PN2 245
ID
2
#N/A





PN2 246
IG
2
#N/A





PN2 247
IF
2
#N/A





PN2 248
TQ
2
#N/A





PN2 249
TF
2
#N/A





PN2 250
HY
2
#N/A





PN2 251
HR
2
#N/A





PN2 252
HS
2
#N/A





PN2 253
HP
2
#N/A





PN2 254
HW
2
#N/A





PN2 255
HT
2
#N/A





PN2 256
HK
2
#N/A





PN2 257
HH
2
#N/A





PN2 258
HL
2
#N/A





PN2 259
HA
2
#N/A





PN2 260
HG
2
#N/A





PN2 261
HD
2
#N/A





PN2 262
HE
2
#N/A





PN2 263
QV
2
#N/A





PN2 264
TY
2
#N/A





PN2 265
TV
2
#N/A





PN2 266
TW
2
#N/A





PN2 267
TT
2
#N/A





PN2 268
TR
2
#N/A





PN2 269
TS
2
#N/A





PN2 270
TP
2
#N/A





PN2 271
TL
2
#N/A





PN2 272
TM
2
#N/A





PN2 273
TK
2
#N/A





PN2 274
TH
2
#N/A





PN2 275
TI
2
#N/A





PN2 276
TG
2
#N/A





PN2 277
TD
2
#N/A





PN2 278
TE
2
#N/A





PN2 279
TA
2
#N/A





PN2 280
AA
2
#N/A





PN2 281
AE
2
#N/A





PN2 282
AD
2
#N/A





PN2 283
AG
2
#N/A





PN2 284
AF
2
#N/A





PN2 285
AI
2
#N/A





PN2 286
AH
2
#N/A





PN2 287
AK
2
#N/A





PN2 288
AM
2
#N/A





PN2 289
AL
2
#N/A





PN2 290
AQ
2
#N/A





PN2 291
AP
2
#N/A





PN2 292
AS
2
#N/A





PN2 293
AR
2
#N/A





PN2 294
AT
2
#N/A





PN2 295
AW
2
#N/A





PN2 296
AV
2
#N/A





PN2 297
AY
2
#N/A





PN2 298
AGM
3
#N/A





PN2 299
AGL
3
#N/A





PN2 300
AGH
3
#N/A





PN2 301
AGG
3
#N/A





PN2 302
AGE
3
#N/A





PN2 303
AGA
3
#N/A





PN2 304
TQG
3
#N/A





PN2 305
AGY
3
#N/A





PN2 306
AGW
3
#N/A





PN2 307
AGV
3
#N/A





PN2 308
AGS
3
#N/A





PN2 309
AGR
3
#N/A





PN2 310
SPY
3
#N/A





PN2 311
SPP
3
#N/A





PN2 312
TAG
3
#N/A





PN2 313
SPL
3
#N/A





PN2 314
TAA
3
#N/A





PN2 315
SPG
3
#N/A





PN2 316
VAA
3
#N/A





PN2 317
VAG
3
#N/A





PN2 318
NPL
3
#N/A





PN2 319
PAA
3
#N/A





PN2 320
NPG
3
#N/A





PN2 321
LAG
3
#N/A





PN2 322
LAA
3
#N/A





PN2 323
NPY
3
#N/A





PN2 324
ALG
3
#N/A





PN2 325
RLG
3
#N/A





PN2 326
TSG
3
#N/A





PN2 327
DTA
3
#N/A





PN2 328
PAG
3
#N/A





PN2 329
QGG
3
#N/A





PN2 330
DLG
3
#N/A





PN2 331
DTQ
3
#N/A





PN2 332
LSG
3
#N/A





PN2 333
LSE
3
#N/A





PN2 334
PGR
3
#N/A





PN2 335
VLG
3
#N/A





PN2 336
LSW
3
#N/A





PN2 337
AFE
3
#N/A





PN2 338
TTG
3
#N/A





PN2 339
FTQ
3
#N/A





PN2 340
IGV
3
#N/A





PN2 341
NFE
3
#N/A





PN2 342
IGS
3
#N/A





PN2 343
IGR
3
#N/A





PN2 344
PGS
3
#N/A





PN2 345
IGG
3
#N/A





PN2 346
GRG
3
#N/A





PN2 347
IGA
3
#N/A





PN2 348
DSG
3
#N/A





PN2 349
IGL
3
#N/A





PN2 350
HLG
3
#N/A





PN2 351
HPP
3
#N/A





PN2 352
AKQ
3
#N/A





PN2 353
GLG
3
#N/A





PN2 354
LFE
3
#N/A





PN2 355
GGV
3
#N/A





PN2 356
GGS
3
#N/A





PN2 357
GGR
3
#N/A





PN2 358
GGG
3
#N/A





PN2 359
GGA
3
#N/A





PN2 360
GGL
3
#N/A





PN2 361
YTA
3
#N/A





PN2 362
LTQ
3
#N/A





PN2 363
FQG
3
#N/A





PN2 364
LVG
3
#N/A





PN2 365
LTA
3
#N/A





PN2 366
LTG
3
#N/A





PN2 367
DPY
3
#N/A





PN2 368
DFE
3
#N/A





PN2 369
DPG
3
#N/A





PN2 370
HTA
3
#N/A





PN2 371
DPP
3
#N/A





PN2 372
PGG
3
#N/A





PN2 373
VPP
3
#N/A





PN2 374
PGA
3
#N/A





PN2 375
VPY
3
#N/A





PN2 376
PGV
3
#N/A





PN2 377
VPL
3
#N/A





PN2 378
STG
3
#N/A





PN2 379
STA
3
#N/A





PN2 380
HGV
3
#N/A





PN2 381
HGW
3
#N/A





PN2 382
HGR
3
#N/A





PN2 383
HGL
3
#N/A





PN2 384
HGM
3
#N/A





PN2 385
STQ
3
#N/A





PN2 386
HGH
3
#N/A





PN2 387
HGG
3
#N/A





PN2 388
DSW
3
#N/A





PN2 389
HGE
3
#N/A





PN2 390
TFE
3
#N/A





PN2 391
PGY
3
#N/A





PN2 392
PGL
3
#N/A





PN2 393
PGM
3
#N/A





PN2 394
DKR
3
#N/A





PN2 395
DKQ
3
#N/A





PN2 396
VFE
3
#N/A





PN2 397
PRG
3
#N/A





PN2 398
PGH
3
#N/A





PN2 399
PPL
3
#N/A





PN2 400
EGG
3
#N/A





PN2 401
RAG
3
#N/A





PN2 402
SAA
3
#N/A





PN2 403
FGW
3
#N/A





PN2 404
SAG
3
#N/A





PN2 405
FGR
3
#N/A





PN2 406
FGH
3
#N/A





PN2 407
FGG
3
#N/A





PN2 408
TPG
3
#N/A





PN2 409
LPY
3
#N/A





PN2 410
TPL
3
#N/A





PN2 411
LPP
3
#N/A





PN2 412
LPL
3
#N/A





PN2 413
TPP
3
#N/A





PN2 414
LPG
3
#N/A





PN2 415
HRG
3
#N/A





PN2 416
TPY
3
#N/A





PN2 417
APY
3
#N/A





PN2 418
IPG
3
#N/A





PN2 419
APP
3
#N/A





PN2 420
PQG
3
#N/A





PN2 421
IPL
3
#N/A





PN2 422
IPP
3
#N/A





PN2 423
APL
3
#N/A





PN2 424
SFE
3
#N/A





PN2 425
APG
3
#N/A





PN2 426
YSE
3
#N/A





PN2 427
IFE
3
#N/A





PN2 428
YSW
3
#N/A





PN2 429
PKR
3
#N/A





PN2 430
RTG
3
#N/A





PN2 431
PKQ
3
#N/A





PN2 432
HGY
3
#N/A





PN2 433
TKR
3
#N/A





PN2 434
NLG
3
#N/A





PN2 435
VKR
3
#N/A





PN2 436
RFE
3
#N/A





PN2 437
SSW
3
#N/A





PN2 438
NPP
3
#N/A





PN2 439
SSE
3
#N/A





PN2 440
SSG
3
#N/A





PN2 441
YGR
3
#N/A





PN2 442
ATG
3
#N/A





PN2 443
ATA
3
#N/A





PN2 444
HPL
3
#N/A





PN2 445
ISW
3
#N/A





PN2 446
ATQ
3
#N/A





PN2 447
ISG
3
#N/A





PN2 448
ISE
3
#N/A





PN2 449
DGR
3
#N/A





PN2 450
ASW
3
#N/A





PN2 451
DGG
3
#N/A





PN2 452
DGE
3
#N/A





PN2 453
HPG
3
#N/A





PN2 454
DGH
3
#N/A





PN2 455
DGL
3
#N/A





PN2 456
DGM
3
#N/A





PN2 457
LKQ
3
#N/A





PN2 458
DGV
3
#N/A





PN2 459
DGW
3
#N/A





PN2 460
PVG
3
#N/A





PN2 461
ASG
3
#N/A





PN2 462
IRG
3
#N/A





PN2 463
VTA
3
#N/A





PN2 464
TSE
3
#N/A





PN2 465
FRG
3
#N/A





PN2 466
ASE
3
#N/A





PN2 467
VTG
3
#N/A





PN2 468
GTG
3
#N/A





PN2 469
LGW
3
#N/A





PN2 470
VTQ
3
#N/A





PN2 471
TLG
3
#N/A





PN2 472
YAA
3
#N/A





PN2 473
DGY
3
#N/A





PN2 474
ITG
3
#N/A





PN2 475
HVG
3
#N/A





PN2 476
RPP
3
#N/A





PN2 477
AAG
3
#N/A





PN2 478
RSG
3
#N/A





PN2 479
AAA
3
#N/A





PN2 480
TGR
3
#N/A





PN2 481
TGS
3
#N/A





PN2 482
TGV
3
#N/A





PN2 483
RPY
3
#N/A





PN2 484
TGA
3
#N/A





PN2 485
TGG
3
#N/A





PN2 486
RPG
3
#N/A





PN2 487
RPL
3
#N/A





PN2 488
TGL
3
#N/A





PN2 489
FKQ
3
#N/A





PN2 490
FKR
3
#N/A





PN2 491
SLG
3
#N/A





PN2 492
LGM
3
#N/A





PN2 493
LGA
3
#N/A





PN2 494
NRG
3
#N/A





PN2 495
LGG
3
#N/A





PN2 496
LGE
3
#N/A





PN2 497
LGY
3
#N/A





PN2 498
LGR
3
#N/A





PN2 499
LGS
3
#N/A





PN2 500
LGV
3
#N/A





PN2 501
GFE
3
#N/A





PN2 502
LQG
3
#N/A





PN2 503
HSG
3
#N/A





PN2 504
HSE
3
#N/A





PN2 505
HSW
3
#N/A





PN2 506
DPL
3
#N/A





PN2 507
GPL
3
#N/A





PN2 508
HAA
3
#N/A





PN2 509
TAG
3
#N/A





PN2 510
GPG
3
#N/A





PN2 511
IAA
3
#N/A





PN2 512
HAG
3
#N/A





PN2 513
DQG
3
#N/A





PN2 514
GPY
3
#N/A





PN2 515
GPP
3
#N/A





PN2 516
VQG
3
#N/A





PN2 517
RGR
3
#N/A





PN2 518
RGS
3
#N/A





PN2 519
SKQ
3
#N/A





PN2 520
RGV
3
#N/A





PN2 521
SKR
3
#N/A





PN2 522
RGA
3
#N/A





PN2 523
RGG
3
#N/A





PN2 524
RGL
3
#N/A





PN2 525
VGL
3
#N/A





PN2 526
VGM
3
#N/A





PN2 527
VGH
3
#N/A





PN2 528
FGY
3
#N/A





PN2 529
VGE
3
#N/A





PN2 530
VGG
3
#N/A





PN2 531
VGA
3
#N/A





PN2 532
YKR
3
#N/A





PN2 533
YKQ
3
#N/A





PN2 534
VGY
3
#N/A





PN2 535
VGV
3
#N/A





PN2 536
VGW
3
#N/A





PN2 537
VGR
3
#N/A





PN2 538
VGS
3
#N/A





PN2 539
FTA
3
#N/A





PN2 540
PSG
3
#N/A





PN2 541
PSE
3
#N/A





PN2 542
NVG
3
#N/A





PN2 543
FGV
3
#N/A





PN2 544
FGL
3
#N/A





PN2 545
ILG
3
#N/A





PN2 546
PGW
3
#N/A





PN2 547
FSE
3
#N/A





PN2 548
DVG
3
#N/A





PN2 549
FSW
3
#N/A





PN2 550
IKR
3
#N/A





PN2 551
IKQ
3
#N/A





PN2 552
DSE
3
#N/A





PN2 553
FGM
3
#N/A





PN2 554
VRG
3
#N/A





PN2 555
NKQ
3
#N/A





PN2 556
TVG
3
#N/A





PN2 557
NQG
3
#N/A





PN2 558
SRG
3
#N/A





PN2 559
YRG
3
#N/A





PN2 560
FGE
3
#N/A





PN2 561
PLG
3
#N/A





PN2 562
PPG
3
#N/A





PN2 563
NSE
3
#N/A





PN2 564
NSG
3
#N/A





PN2 565
PPP
3
#N/A





PN2 566
GAG
3
#N/A





PN2 567
PPY
3
#N/A





PN2 568
FAA
3
#N/A





PN2 569
NSW
3
#N/A





PN2 570
HPY
3
#N/A





PN2 571
PSW
3
#N/A





PN2 572
ARG
3
#N/A





PN2 573
SGS
3
#N/A





PN2 574
NAA
3
#N/A





PN2 575
NAG
3
#N/A





PN2 576
SGW
3
#N/A





PN2 577
GSG
3
#N/A





PN2 578
DRG
3
#N/A





PN2 579
RVG
3
#N/A





PN2 580
HKR
3
#N/A





PN2 581
HKQ
3
#N/A





PN2 582
AQG
3
#N/A





PN2 583
VPG
3
#N/A





PN2 584
AKR
3
#N/A





PN2 585
VVG
3
#N/A





PN2 586
SGL
3
#N/A





PN2 587
VKQ
3
#N/A





PN2 588
SVG
3
#N/A





PN2 589
SQG
3
#N/A





PN2 590
LKR
3
#N/A





PN2 591
PTG
3
#N/A





PN2 592
PGE
3
#N/A





PN2 593
PTA
3
#N/A





PN2 594
LLG
3
#N/A





PN2 595
PTQ
3
#N/A





PN2 596
TRG
3
#N/A





PN2 597
GVG
3
#N/A





PN2 598
IVG
3
#N/A





PN2 599
LRG
3
#N/A





PN2 600
HTQ
3
#N/A





PN2 601
AVG
3
#N/A





PN2 602
IPY
3
#N/A





PN2 603
YQG
3
#N/A





PN2 604
HFE
3
#N/A





PN2 605
RRG
3
#N/A





PN2 606
LGH
3
#N/A





PN2 607
LGL
3
#N/A





PN2 608
TSW
3
#N/A





PN2 609
TKQ
3
#N/A





PN2 610
IQG
3
#N/A





PN2 611
HQG
3
#N/A





PN2 612
SGY
3
#N/A





PN2 613
DAG
3
#N/A





PN2 614
DAA
3
#N/A





PN2 615
SGR
3
#N/A





PN2 616
SGV
3
#N/A





PN2 617
SGH
3
#N/A





PN2 618
SGM
3
#N/A





PN2 619
SGA
3
#N/A





PN2 620
SGE
3
#N/A





PN2 621
SGG
3
#N/A





PN2 622
YTQ
3
#N/A





PN2 623
YGG
3
#N/A





PN2 624
YGE
3
#N/A





PN2 625
PFE
3
#N/A





PN2 626
VSW
3
#N/A





PN2 627
YGM
3
#N/A





PN2 628
YGL
3
#N/A





PN2 629
YGH
3
#N/A





PN2 630
YGW
3
#N/A





PN2 631
YGV
3
#N/A





PN2 632
NKR
3
#N/A





PN2 633
VSE
3
#N/A





PN2 634
KGG
3
#N/A





PN2 635
VSG
3
#N/A





PN2 636
YGY
3
#N/A





PN2 637
RPGY
4
8409





PN2 638
SAGY
4
6277





PN2 639
PSGY
4
6268





PN2 640
RFGY
4
8410





PN2 641
RLGY
4
8411





PN2 642
PYGY
4
6281





PN2 643
GREY
4
8412





PN2 644
GRKY
4
8413





PN2 645
GHGW
4
8414





PN2 646
RVGY
4
8415





PN2 647
GLGL
4
8416





PN2 648
GHGY
4
8417





PN2 649
RDGY
4
4410





PN2 650
RRVY
4
8418





PN2 651
GLGW
4
8419





PN2 652
GHGL
4
8420





PN2 653
GLGY
4
8421





PN2 654
PVGY
4
8422





PN2 655
GPGY
4
8423





PN2 656
GPGW
4
8424





PN2 657
PDGY
4
5829





PN2 658
GPGL
4
8425





PN2 659
GVTA
4
8426





PN2 660
GRLY
4
8427





PN2 661
RRAY
4
8428





PN2 662
GHTQ
4
8429





PN2 663
GVGL
4
8430





PN2 664
SYGY
4
4434





PN2 665
RRQY
4
8431





PN2 666
GATQ
4
8432





PN2 667
PFGY
4
8433





PN2 668
GVGY
4
8434





PN2 669
GVGW
4
8435





PN2 670
RAGY
4
6278





PN2 671
GATA
4
8436





PN2 672
RYGY
4
6262





PN2 673
GRAY
4
8437





PN2 674
GRMY
4
8438





PN2 675
GRTY
4
8439





PN2 676
PPGY
4
8440





PN2 677
RRPY
4
8441





PN2 678
RHGY
4
8442





PN2 679
GDGY
4
5813





PN2 680
SVGY
4
8443





PN2 681
GVTQ
4
8444





PN2 682
GDGW
4
8445





PN2 683
GRQY
4
8446





PN2 684
GDGL
4
8447





PN2 685
SHGY
4
8448





PN2 686
GSGY
4
6284





PN2 687
GFGY
4
8449





PN2 688
GFGW
4
8450





PN2 689
GSGW
4
8451





PN2 690
GFGL
4
8452





PN2 691
GSGL
4
8453





PN2 692
RRLY
4
8454





PN2 693
GFTA
4
8455





PN2 694
PLGY
4
8456





PN2 695
GYTQ
4
8457





PN2 696
GLTQ
4
8458





PN2 697
GHTA
4
8459





PN2 698
PHGY
4
8460





PN2 699
GFTQ
4
8461





PN2 700
GRVY
4
8462





PN2 701
GYTA
4
8463





PN2 702
GLTA
4
8464





PN2 703
PAGY
4
6276





PN2 704
RRKY
4
8465





PN2 705
SSGY
4
4186





PN2 706
GPTQ
4
8466





PN2 707
SDGY
4
5805





PN2 708
GPTA
4
8467





PN2 709
GDTQ
4
8468





PN2 710
GAGW
4
8469





PN2 711
GAGY
4
6270





PN2 712
GDTA
4
8470





PN2 713
SFGY
4
8471





PN2 714
GAGL
4
8472





PN2 715
GSTQ
4
8473





PN2 716
GRPY
4
8474





PN2 717
SLGY
4
8475





PN2 718
GSTA
4
8476





PN2 719
GYGL
4
8477





PN2 720
RSGY
4
6269





PN2 721
RREY
4
8478





PN2 722
SPGY
4
8479





PN2 723
GYGY
4
6260





PN2 724
RRTY
4
8480





PN2 725
GYGW
4
8481





PN2 726
RRMY
4
8482
















TABLE 31 







Theoretical segment pool of oligonucleotides encoding JH segments of Example 15.













Pep-

SEQ




tide
De-
ID


Name
Degenerate Oligo
Length
generate
NO














JH4 001
TGGGGACAGGGTACATTGGTCACCGTCTCCTCA
0

8483





JH1 002
CATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8484





JH1 003
ATTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8485





JH1 004
TACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8486





JH1 005
CCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8487





JH1 006
GTCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8488





JH1 007
GATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8489





JH1 008
TTCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8490





JH1 009
AATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8491





JH1 010
AGTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8492





JH1 011
ACTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8493





JH1 200
GCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
1

8494





JH4 013
GATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8495





JH4 016
GCTTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8496





JH4 017
TTCTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8497





JH4 018
GGCTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8498





JH4 019
CATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8499





JH4 023
AGTTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8500





JH4 024
GTTTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8501





JH4 025
TACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2

8502





JH4 022
CSATACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2
YES
8503





JH3 012
RACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
2
YES
8504





JH5 014
RACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2
YES
8505





JH3 015
RACGTATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
2
YES
8506





JH4 021
AMCTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2
YES
8507





JH4 020
MTATACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
2
YES
8508





JH4 029
TTCGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8509





JH4 030
ATTGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8510





JH4 031
GTGGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8511





JH4 032
TTAGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8512





JH4 033
TCCGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8513





JH4 034
CACGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8514





JH4 035
AGAGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8515





JH4 036
CCAGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8516





JH4 037
AACGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8517





JH4 038
ACTGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8518





JH4 039
GATGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8519





JH4 040
GGTGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8520





JH4 041
GCAGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8521





JH4 042
TACGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8522





JH5 043
TTCGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3

8523





JH6 044
ATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
3

8524





JH1 026
TTMCAACACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3
YES
8525





JH3 046
STAGACGTATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
3
YES
8526





JH3 028
TTMGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
3
YES
8527





JH2 027
TTMGACCTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
3
YES
8528





JH5 045
TYAGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
3
YES
8529





JH3 049
GCCTTTGATATTTGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
4

8530





JH4 051
TACTTTGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8531





JH4 052
AATTTCGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8532





JH4 053
GACTTCGACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8533





JH4 054
CATTTCGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8534





JH4 055
TTCTTTGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8535





JH4 056
TCTTTTGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8536





JH4 057
AGATTCGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8537





JH4 058
TTGTTCGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8538





JH4 059
CCCTTCGACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8539





JH4 060
ATTTTCGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8540





JH4 061
ACCTTTGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8541





JH4 062
GGATTCGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8542





JH4 063
GTTTTCGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8543





JH4 064
GCTTTTGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8544





JH5 065
TGGTTTGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4

8545





JH6 068
GGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
4

8546





JH6 070
YCAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
4
YES
8547





JH6 069
KACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
4
YES
8548





JH3 198
STATTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
4
YES
8549





JH2 048
KACTTCGACCTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
4
YES
8550





JH1 047
KACTTCCAACACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4
YES
8551





JH5 067
GSATTCGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4
YES
8552





JH3 050
YCATTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
4
YES
8553





JH5 066
AGMTTCGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
4
YES
8554





JH2 072
TGGTACTTCGACTTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
5

8555





JH3 075
GACGCATTTGATATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8556





JH3 076
TACGCATTTGATATTTGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8557





JH3 077
CACGCATTCGACATCTGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8558





JH3 078
TTCGCATTCGATATCTGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8559





JH3 079
TCAGCTTTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8560





JH3 080
AGAGCCTTCGATATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8561





JH3 081
TTAGCCTTCGATATCTGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8562





JH3 082
GGAGCCTTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5

8563





JH4 086
GACTATTTTGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8564





JH4 087
TATTACTTTGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8565





JH4 088
CACTATTTCGACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8566





JH4 089
TTCTATTTTGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8567





JH4 090
AGTTATTTTGACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8568





JH4 091
AGATACTTTGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8569





JH4 092
TTATATTTCGACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8570





JH4 093
CCCTACTTTGACTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8571





JH4 095
GGATATTTCGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8572





JH4 096
GTTTACTTTGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8573





JH4 097
GCTTACTTTGATTATTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8574





JH4 098
AACTACTTCGATTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8575





JH5 099
AATTGGTTCGATCCTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8576





JH5 100
GATTGGTTTGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8577





JH5 101
TATTGGTTTGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8578





JH5 102
CACTGGTTCGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8579





JH5 103
TTCTGGTTTGACCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8580





JH5 104
TCTTGGTTTGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8581





JH5 105
AGATGGTTTGATCCTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8582





JH5 107
GGTTGGTTCGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8583





JH5 109
GCTTGGTTTGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5

8584





JH6 110
TACGGTATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
5

8585





JH6 112
GATGGGATGGATGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
5

8586





JH3 084
SCAGCATTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5
YES
8587





JH5 106
MCATGGTTCGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5
YES
8588





JH2 073
RGCTACTTCGACCTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
5
YES
8589





JH4 094
AYATACTTCGACTACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5
YES
8590





JH5 108
RTATGGTTCGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5
YES
8591





JH6 113
CWCGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
5
YES
8592





JH6 114
KCAGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
5
YES
8593





JH3 083
RTAGCATTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5
YES
8594





JH1 071
RAGTACTTCCAACACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
5
YES
8595





JH3 085
AMCGCATTCGACATATGGGGTCAGGGTACAATGGTCACCGTCTCCTCA
5
YES
8596





JH2 074
CKATACTTCGACCTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
5
YES
8597





JH6 111
KACTACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
5
YES
8598





JH2 116
TACTGGTACTTCGATTTGTGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
6

8599





JH2 117
GATTGGTACTTCGATTTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
6

8600





JH5 120
GATAATTGGTTCGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8601





JH5 121
TATAACTGGTTCGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8602





JH5 122
CACAATTGGTTCGACCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8603





JH5 123
TTCAATTGGTTTGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8604





JH5 124
AGCAACTGGTTCGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8605





JH5 125
AGAAACTGGTTTGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8606





JH5 126
TTAAATTGGTTCGACCCTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8607





JH5 127
CCCAATTGGTTTGATCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8608





JH5 128
ATAAATTGGTTCGACCCTTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8609





JH5 129
ACTAACTGGTTTGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8610





JH5 130
GGTAACTGGTTTGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8611





JH5 131
GTGAACTGGTTTGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8612





JH5 132
GCCAACTGGTTCGATCCCTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8613





JH5 133
AACAATTGGTTCGACCCATGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6

8614





JH6 134
TACTACGGCATGGATGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6

8615





JH6 136
GATTATGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6

8616





JH6 137
TTCTACGGTATGGATGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6

8617





JH6 138
CATTACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6

8618





JH6 139
TTGTACGGAATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6

8619





JH6 140
AACTATGGCATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6

8620





JH2 118
CWCTGGTACTTCGACCTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
6
YES
8621





JH6 141
SCATACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6
YES
8622





JH1 115
SCAGAATACTTCCAACACTGGGGACAGGGTACATTGGTCACCGTCTCCTCA
6
YES
8623





JH6 135
KACTACTACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
6
YES
8624





JH6 199
GKATACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6
YES
8625





JH6 142
AKCTACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6
YES
8626





JH2 119
ARCTGGTACTTCGACCTATGGGGGAGAGGTACCTTGGTCACCGTCTCCTCA
6
YES
8627





JH6 143
ASATACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
6
YES
8628





JH6 144
TATTACTATGGTATGGATGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
7

8629





JH6 145
TATTACTATTATATGGATGTTTGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
7

8630





JH6 146
GATTACTACGGCATGGATGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
7

8631





JH6 148
AACTACTACGGCATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
7

8632





JH6 147
CWCTACTACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
7
YES
8633





JH6 150
RACTACTACTACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
7
YES
8634





JH6 149
YCATACTACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
7
YES
8635





JH6 151
TATTACTACTACGGAATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8636





JH6 152
AATTATTATTACGGCATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8637





JH6 153
GATTACTATTACGGTATGGATGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8638





JH6 154
CACTATTACTACGGCATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8639





JH6 155
TTCTATTATTATGGTATGGATGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8640





JH6 156
TCTTACTACTATGGGATGGACGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8641





JH6 157
AGATATTACTACGGCATGGATGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8642





JH6 158
TTATACTACTATGGGATGGATGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8643





JH6 159
CCTTACTACTATGGCATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8644





JH6 160
ACCTATTACTATGGTATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8645





JH6 161
GGATACTACTATGGGATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8646





JH6 163
GCCTACTATTATGGCATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8

8647





JH6 164
TACTACTATTATTATATGGACGTTTGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
8

8648





JH6 165
AACTACTACTACTATATGGATGTTTGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
8

8649





JH6 166
GATTATTATTACTATATGGACGTCTGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
8

8650





JH6 162
RTATACTACTACGGAATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
8
YES
8651





JH6 168
RGCTACTACTACTACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
8
YES
8652





JH6 167
CMCTACTACTACTACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
8
YES
8653





JH6 169
TATTACTATTATTACGGGATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8654





JH6 170
AATTATTATTATTATGGGATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8655





JH6 171
GACTATTACTATTATGGAATGGATGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8656





JH6 172
CATTATTATTATTACGGAATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8657





JH6 173
TTCTATTACTATTATGGCATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8658





JH6 174
AGCTACTACTATTATGGTATGGACGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8659





JH6 175
AGATATTACTACTATGGCATGGATGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8660





JH6 176
TTATACTACTATTACGGCATGGATGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8661





JH6 177
CCCTATTATTACTACGGAATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8662





JH6 178
ATCTATTACTATTATGGCATGGATGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8663





JH6 179
ACCTATTACTACTATGGCATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8664





JH6 180
GGCTACTATTACTATGGGATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8665





JH6 181
GTCTACTATTATTATGGCATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8666





JH6 182
GCTTACTATTACTACGGCATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
9

8667





JH6 183
GATTATTATTATTACTATGGTATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8668





JH6 184
TACTATTACTACTATTATGGCATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8669





JH6 185
CACTACTACTATTATTATGGGATGGACGTATGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8670





JH6 186
TTCTATTATTATTATTACGGAATGGACGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8671





JH6 187
AGCTACTATTACTACTATGGGATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8672





JH6 188
AGATATTACTATTACTATGGTATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8673





JH6 189
TTGTACTATTACTATTATGGAATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8674





JH6 190
CCTTACTATTATTATTATGGGATGGATGTCTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8675





JH6 191
ATATATTACTATTACTACGGGATGGATGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8676





JH6 192
ACCTACTATTATTATTACGGGATGGACGTTTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8677





JH6 193
GGTTACTATTATTACTACGGGATGGACGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8678





JH6 194
GTGTATTACTATTACTACGGGATGGACGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8679





JH6 195
GCCTATTACTACTACTATGGGATGGATGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8680





JH6 196
AATTATTATTACTATTACGGTATGGACGTGTGGGGCCAGGGAACAACTGTCACCGTCTCCTCA
10

8681





JH6 197
KACTACTACTACTACTACTACATGGACGTATGGGGCAAGGGTACAACTGTCACCGTCTCCTCA
10
YES
8682
















TABLE 32 







Theoretical segment pool of unique


H3-JH polypeptide segments encoded


by the oligonucleotides of Table 31.










Name
Sequence
Length
SEQ ID NO













PJH4 001

0
n/a





PJH1 002
H
1
n/a





PJH1 003
I
1
n/a





PJH1 004
Y
1
n/a





PJH1 005
P
1
n/a





PJH1 006
V
1
n/a





PJH1 007
D
1
n/a





PJH1 008
F
1
n/a





PJH1 009
N
1
n/a





PJH1 010
S
1
n/a





PJH1 011
T
1
n/a





PJH1 200
A
1
n/a





PJH4 013
DY
2
n/a





PJH4 016
AY
2
n/a





PJH4 017
FY
2
n/a





PJH4 018
GY
2
n/a





PJH4 019
HY
2
n/a





PJH4 023
SY
2
n/a





PJH4 024
VY
2
n/a





PJH4 025
YY
2
n/a





PJH3 012A
NI
2
n/a





PJH3 012B
DI
2
n/a





PJH3 015A
NV
2
n/a





PJH3 015B
DV
2
n/a





PJH4 020A
LY
2
n/a





PJH4 020B
IY
2
n/a





PJH4 021A
NY
2
n/a





PJH4 021B
TY
2
n/a





PJH4 022A
PY
2
n/a





PJH4 022B
RY
2
n/a





PJH5 014A
NP
2
n/a





PJH5 014B
DP
2
n/a





PJH4 029
FDY
3
n/a





PJH4 030
IDY
3
n/a





PJH4 031
VDY
3
n/a





PJH4 032
LDY
3
n/a





PJH4 033
SDY
3
n/a





PJH4 034
HDY
3
n/a





PJH4 035
RDY
3
n/a





PJH4 036
PDY
3
n/a





PJH4 037
NDY
3
n/a





PJH4 038
TDY
3
n/a





PJH4 039
DDY
3
n/a





PJH4 040
GDY
3
n/a





PJH4 041
ADY
3
n/a





PJH4 042
YDY
3
n/a





PJH5 043
FDP
3
n/a





PJH6 044
MDV
3
n/a





PJH1 026A
LQH
3
n/a





PJH1 026B
FQH
3
n/a





PJH2 027A
FDL
3
n/a





PJH2 027B
LDL
3
n/a





PJH3 028A
FDI
3
n/a





PJH3 028B
LDI
3
n/a





PJH3 046A
VDV
3
n/a





PJH3 046B
LDV
3
n/a





PJH5 045A
LDP
3
n/a





PJH5 045B
SDP
3
n/a





PJH3 049
AFDI
4
4539





PJH4 051
YFDY
4
4567





PJH4 052
NFDY
4
4580





PJH4 053
DFDY
4
4581





PJH4 054
HFDY
4
4582





PJH4 055
FFDY
4
4583





PJH4 056
SFDY
4
4584





PJH4 057
RFDY
4
4585





PJH4 058
LFDY
4
4586





PJH4 059
PFDY
4
4587





PJH4 060
IFDY
4
4588





PJH4 061
TFDY
4
4589





PJH4 062
GFDY
4
4590





PJH4 063
VFDY
4
4591





PJH4 064
AFDY
4
4592





PJH5 065
WFDP
4
4596





PJH6 068
GMDV
4
4641





PJH1 047A
YFQH
4
4489





PJH1 047B
DFQH
4
4514





PJH2 048A
DFDL
4
4537





PJH2 048B
YFDL
4
4529





PJH3 050A
PFDI
4
4554





PJH3 050B
SFDI
4
4553





PJH3 198A
VFDI
4
4563





PJH3 198B
LFDI
4
4558





PJH5 066A
RFDP
4
4622





PJH5 066B
SFDP
4
4625





PJH5 067A
GFDP
4
4623





PJH5 067B
AFDP
4
4633





PJH6 069A
YMDV
4
4687





PJH6 069B
DMDV
4
8683





PJH6 070A
PMDV
4
8684





PJH6 070B
SMDV
4
8685





PJH2 072
WYFDL
5
4528





PJH3 075
DAFDI
5
4538





PJH3 076
YAFDI
5
4540





PJH3 077
HAFDI
5
4541





PJH3 078
FAFDI
5
4542





PJH3 079
SAFDI
5
4543





PJH3 080
RAFDI
5
4544





PJH3 081
LAFDI
5
4545





PJH3 082
GAFDI
5
4549





PJH4 086
DYFDY
5
4566





PJH4 087
YYFDY
5
4568





PJH4 088
HYFDY
5
4569





PJH4 089
FYFDY
5
4570





PJH4 090
SYFDY
5
4571





PJH4 091
RYFDY
5
4572





PJH4 092
LYFDY
5
4573





PJH4 093
PYFDY
5
4574





PJH4 095
GYFDY
5
4577





PJH4 096
VYFDY
5
4578





PJH4 097
AYFDY
5
4579





PJH4 098
NYFDY
5
4593





PJH5 099
NWFDP
5
4595





PJH5 100
DWFDP
5
4609





PJH5 101
YWFDP
5
4610





PJH5 102
HWFDP
5
4611





PJH5 103
FWFDP
5
4612





PJH5 104
SWFDP
5
4613





PJH5 105
RWFDP
5
4614





PJH5 107
GWFDP
5
4619





PJH5 109
AWFDP
5
4621





PJH6 110
YGMDV
5
4640





PJH6 112
DGMDV
5
8686





PJH1 071A
EYFQH
5
4488





PJH1 071B
KYFQH
5
4502





PJH2 073A
SYFDL
5
8687





PJH2 073B
GYFDL
5
4533





PJH2 074A
RYFDL
5
4534





PJH2 074B
LYFDL
5
8688





PJH3 083A
IAFDI
5
4547





PJH3 083B
VAFDI
5
4550





PJH3 084A
PAFDI
5
4546





PJH3 084B
AAFDI
5
4551





PJH3 085A
NAFDI
5
4565





PJH3 085B
TAFDI
5
4548





PJH4 094A
IYFDY
5
4575





PJH4 094B
TYFDY
5
4576





PJH5 106A
PWFDP
5
4616





PJH5 106B
TWFDP
5
4618





PJH5 108A
IWFDP
5
4617





PJH5 108B
VWFDP
5
4620





PJH6 111A
YYMDV
5
4686





PJH6 111B
DYMDV
5
8689





PJH6 113A
HGMDV
5
8690





PJH6 113B
LGMDV
5
8691





PJH6 114A
SGMDV
5
8692





PJH6 114B
AGMDV
5
8693





PJH2 116
YWYFDL
6
4527





PJH2 117
DWYFDL
6
4530





PJH5 120
DNWFDP
6
4594





PJH5 121
YNWFDP
6
4597





PJH5 122
HNWFDP
6
4598





PJH5 123
FNWFDP
6
4599





PJH5 124
SNWFDP
6
4600





PJH5 125
RNWFDP
6
4601





PJH5 126
LNWFDP
6
4602





PJH5 127
PNWFDP
6
4603





PJH5 128
INWFDP
6
4604





PJH5 129
TNWFDP
6
4605





PJH5 130
GNWFDP
6
4606





PJH5 131
VNWFDP
6
4607





PJH5 132
ANWFDP
6
4608





PJH5 133
NNWFDP
6
4634





PJH6 134
YYGMDV
6
4639





PJH6 136
DYGMDV
6
8694





PJH6 137
FYGMDV
6
8695





PJH6 138
HYGMDV
6
8696





PJH6 139
LYGMDV
6
8697





PJH6 140
NYGMDV
6
8698





PJH1 115A
AEYFQH
6
4526





PJH1 115B
PEYFQH
6
4491





PJH2 118A
LWYFDL
6
8699





PJH2 118B
HWYFDL
6
4531





PJH2 119A
NWYFDL
6
4532





PJH2 119B
SWYFDL
6
8700





PJH6 135A
DYYMDV
6
8701





PJH6 135B
YYYMDV
6
4685





PJH6 141A
AYGMDV
6
8702





PJH6 141B
PYGMDV
6
8703





PJH6 142A
SYGMDV
6
8704





PJH6 142B
IYGMDV
6
8705





PJH6 143A
TYGMDV
6
8706





PJH6 143B
RYGMDV
6
8707





PJH6 199A
GYGMDV
6
8708





PJH6 199B
VYGMDV
6
8709





PJH6 144
YYYGMDV
7
4638





PJH6 145
YYYYMDV
7
4684





PJH6 146
DYYGMDV
7
8710





PJH6 148
NYYGMDV
7
8711





PJH6 147A
LYYGMDV
7
8712





PJH6 147B
HYYGMDV
7
8713





PJH6 149A
SYYGMDV
7
8714





PJH6 149B
PYYGMDV
7
8715





PJH6 150A
NYYYMDV
7
8716





PJH6 150B
DYYYMDV
7
8717





PJH6 151
YYYYGMDV
8
4637





PJH6 152
NYYYGMDV
8
4667





PJH6 153
DYYYGMDV
8
4668





PJH6 154
HYYYGMDV
8
4669





PJH6 155
FYYYGMDV
8
4670





PJH6 156
SYYYGMDV
8
4671





PJH6 157
RYYYGMDV
8
4672





PJH6 158
LYYYGMDV
8
4673





PJH6 159
PYYYGMDV
8
4674





PJH6 160
TYYYGMDV
8
4676





PJH6 161
GYYYGMDV
8
4677





PJH6 163
AYYYGMDV
8
4679





PJH6 164
YYYYYMDV
8
4683





PJH6 165
NYYYYMDV
8
4713





PJH6 166
DYYYYMDV
8
4714





PJH6 162A
VYYYGMDV
8
4678





PJH6 162B
IYYYGMDV
8
4675





PJH6 167A
HYYYYMDV
8
4715





PJH6 167B
PYYYYMDV
8
4720





PJH6 168A
SYYYYMDV
8
4717





PJH6 168B
GYYYYMDV
8
4723





PJH6 169
YYYYYGMDV
9
4636





PJH6 170
NYYYYGMDV
9
4654





PJH6 171
DYYYYGMDV
9
4655





PJH6 172
HYYYYGMDV
9
4656





PJH6 173
FYYYYGMDV
9
4657





PJH6 174
SYYYYGMDV
9
4658





PJH6 175
RYYYYGMDV
9
4659





PJH6 176
LYYYYGMDV
9
4660





PJH6 177
PYYYYGMDV
9
4661





PJH6 178
IYYYYGMDV
9
4662





PJH6 179
TYYYYGMDV
9
4663





PJH6 180
GYYYYGMDV
9
4664





PJH6 181
VYYYYGMDV
9
4665





PJH6 182
AYYYYGMDV
9
4666





PJH6 183
DYYYYYGMDV
10
4635





PJH6 184
YYYYYYGMDV
10
4642





PJH6 185
HYYYYYGMDV
10
4643





PJH6 186
FYYYYYGMDV
10
4644





PJH6 187
SYYYYYGMDV
10
4645





PJH6 188
RYYYYYGMDV
10
4646





PJH6 189
LYYYYYGMDV
10
4647





PJH6 190
PYYYYYGMDV
10
4648





PJH6 191
IYYYYYGMDV
10
4649





PJH6 192
TYYYYYGMDV
10
4650





PJH6 193
GYYYYYGMDV
10
4651





PJH6 194
VYYYYYGMDV
10
4652





PJH6 195
AYYYYYGMDV
10
4653





PJH6 196
NYYYYYGMDV
10
4680





PJH6 197A
DYYYYYYMDV
10
4681





PJH6 197B
YYYYYYYMDV
10
4688









EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments and methods described herein. Such equivalents are intended to be encompassed by the scope of the following claims.









APPENDIX A





GI NUMBERS OF 3,571 SEQUENCES


IN THE HEALTHY PREIMMUNE SET


(HPS)




















33628
1052674
1685242
1770847



37745
1052676
1685246
1770848



37747
1052683
1685248
1770851



37749
1052685
1685250
1770852



37751
1052691
1685252
1770853



37753
1052692
1685254
1770854



37755
1052693
1685256
1770855



37757
1052695
1685258
1770860



37759
1154682
1685260
1770861



37761
1154691
1685264
1770865



37763
1154698
1685266
1770866



37765
1154699
1685268
1770867



37767
1154706
1770744
1770869



37769
1154710
1770746
1770870



37773
1154713
1770747
1770872



37777
1154715
1770751
1770874



38383
1154724
1770755
1770875



38391
1154754
1770756
1770876



38393
1154769
1770758
1770877



38397
1154770
1770759
1770878



38401
1154805
1770761
1770879



185292
1154807
1770763
1770880



264183
1154808
1770765
1770881



297147
1154809
1770766
1770882



306949
1154810
1770770
1770883



306951
1154811
1770771
1770884



306953
1154813
1770772
1770885



483332
1154818
1770775
1770887



483333
1154820
1770776
1770888



483335
1154822
1770777
1770891



483336
1154824
1770779
1770892



483338
1154825
1770780
1770893



483339
1154834
1770783
1770894



483348
1154837
1770784
1770895



483350
1154838
1770785
1770896



510999
1154839
1770789
1770898



547164
1154840
1770791
1770902



587252
1154841
1770792
1770904



587254
1154843
1770793
1770905



587266
1154844
1770794
1770906



587276
1154845
1770795
1770908



587278
1154847
1770796
1770909



587280
1154848
1770797
1770910



587286
1197299
1770799
1770911



587288
1197300
1770800
1770912



587291
1197304
1770801
1770913



587293
1197307
1770805
1770914



587295
1197308
1770806
1770915



587299
1197309
1770807
1770916



587301
1197312
1770808
1770918



587304
1197313
1770809
1770922



587306
1197314
1770810
1770932



587308
1197315
1770811
1770936



587311
1197316
1770812
1770937



587313
1197318
1770813
1770950



587315
1197319
1770814
1770952



587317
1197321
1770815
1770954



1052611
1197322
1770816
1770958



1052620
1197323
1770817
1770961



1052622
1197324
1770818
1770962



1052626
1197325
1770820
1770963



1052627
1197326
1770822
1770964



1052634
1197327
1770824
1770967



1052637
1197328
1770826
1770969



1052639
1495508
1770829
1770971



1052640
1495511
1770830
1770972



1052642
1495512
1770831
1770974



1052644
1495516
1770833
1770976



1052655
1495518
1770835
1770979



1052656
1592729
1770836
1770981



1052657
1685210
1770837
1770982



1052658
1685220
1770839
1770983



1052659
1685222
1770840
1770989



1052662
1685228
1770843
1770992



1052668
1685234
1770844
1770994



1052669
1685238
1770845
1770995



1052671
1685240
1770846
1770997



1770998
1791142
3170752
3170974



1771002
1791144
3170754
3170978



1771004
1791152
3170756
3170980



1771008
1791154
3170758
3170984



1771010
1791160
3170760
3170986



1771014
1791164
3170762
3170988



1771016
1791176
3170764
3170990



1771017
1791182
3170766
3170992



1771018
1791184
3170768
3171006



1771022
1791186
3170772
3171008



1771026
1791190
3170774
3171010



1771027
1791194
3170778
3171016



1771029
1791196
3170782
3171018



1771033
1791200
3170784
3171020



1771034
1791204
3170786
3171022



1771035
1791206
3170788
3171024



1771036
1869905
3170794
3171026



1771038
1869907
3170796
3171028



1771039
1869912
3170802
3171030



1771042
1869913
3170808
3171038



1771044
1869915
3170810
3171040



1771045
1869918
3170812
3171042



1771055
1869919
3170816
3171044



1771057
1934921
3170820
3171242



1771058
2367538
3170822
3608440



1771059
2388836
3170824
3608462



1771060
2388837
3170826
3954953



1771061
2388839
3170830
3954955



1771063
2388840
3170832
4530538



1791008
2388841
3170834
4530544



1791010
2388842
3170836
4753741



1791012
2388843
3170840
4959477



1791018
2388846
3170842
4995315



1791020
2388847
3170844
4995317



1791026
2388848
3170846
4995319



1791028
2388851
3170848
4995321



1791030
2388852
3170852
4995323



1791032
2388853
3170854
4995325



1791034
2388856
3170856
4995327



1791036
2388859
3170858
4995329



1791040
2388861
3170862
4995331



1791042
2388862
3170864
4995333



1791046
2388863
3170866
4995335



1791050
2388864
3170868
4995337



1791052
2388865
3170870
4995339



1791054
2388868
3170872
4995341



1791058
2388871
3170874
4995343



1791060
2388873
3170876
4995345



1791062
2388875
3170878
4995347



1791064
2388876
3170880
4995349



1791072
2388878
3170882
4995351



1791074
2773082
3170884
4995353



1791076
3170658
3170890
4995355



1791078
3170662
3170894
4995357



1791080
3170664
3170898
4995359



1791082
3170668
3170902
4995361



1791084
3170670
3170908
4995365



1791086
3170686
3170910
4995367



1791088
3170688
3170916
4995375



1791090
3170692
3170918
4995383



1791096
3170694
3170922
4995385



1791098
3170696
3170924
4995389



1791100
3170702
3170926
4995391



1791104
3170704
3170930
4995393



1791106
3170712
3170932
4995397



1791108
3170714
3170934
4995399



1791110
3170716
3170936
4995400



1791112
3170720
3170938
4995404



1791114
3170722
3170944
4995406



1791116
3170726
3170946
4995408



1791118
3170728
3170954
4995410



1791122
3170730
3170958
4995418



1791124
3170734
3170960
4995422



1791130
3170736
3170964
4995426



1791132
3170738
3170966
4995428



1791134
3170740
3170968
4995430



1791136
3170748
3170970
4995432



4995434
5834089
6531600
8489286



4995436
5834091
6723523
8489289



4995438
5834093
6723525
8489291



4995440
5834095
6723527
11137164



4995442
5834097
6723531
11137170



4995446
5834099
6723535
11137172



4995456
5834101
6723537
11137174



4995462
5834103
6723543
11137178



4995466
5834105
6723545
11137183



4995470
5834107
6723549
11137186



4995474
5834109
6723551
11137188



4995476
5834113
6723558
11137196



4995478
5834115
6723565
11137200



4995480
5834119
6723581
11137205



4995482
5834121
6723583
11137215



4995484
5834123
6723595
11137219



4995486
5834125
6723597
11137229



4995488
5834127
6723599
11137231



4995490
5834129
7161042
11137242



4995492
5834131
7161061
11137251



4995494
5834133
7161129
11137253



4995496
5834135
7161136
11137261



4995498
5834137
7161164
11137262



4995500
5834139
8249510
11137274



4995502
5834141
8249514
11137276



4995504
5834143
8249518
11137279



4995506
5834145
8249524
11137281



4995508
5834147
8249528
11137283



4995510
5834149
8249538
11137285



4995512
5834151
8249546
11137289



4995514
5834153
8249552
11137290



4995516
5834155
8249554
11137293



4995520
5834159
8249558
11137295



4995524
5834161
8249560
11137298



4995530
5834163
8249562
11137301



4995535
5834165
8249566
11137303



4995537
5834169
8249568
11137305



4995539
5834175
8249608
11137307



4995549
5834177
8249622
11137309



4995555
5834179
8249632
11137313



4995557
5834183
8249650
11137315



4995563
5834185
8249652
11137317



4995569
5834187
8249654
11137319



4995575
5834191
8249656
11137322



4995581
5834193
8249662
11137326



4995589
5834195
8249674
11137329



4995591
5834197
8249682
11137333



5833973
5834199
8249698
11137335



5833980
5834201
8249712
11137339



5833984
5834203
8249716
11137343



5833986
5834205
8249718
11137348



5834003
5834207
8249730
11137350



5834011
5834209
8249738
11137352



5834015
5834213
8249740
11137354



5834019
5834215
8249744
11137359



5834031
6013039
8249754
11137361



5834035
6013043
8249756
11137363



5834037
6013045
8249760
11137365



5834039
6531445
8249772
11137367



5834041
6531457
8249778
11137369



5834043
6531461
8249784
11137371



5834047
6531465
8249786
11137373



5834049
6531481
8249788
11137375



5834051
6531489
8249790
11137377



5834053
6531493
8249812
11137379



5834055
6531495
8249816
11137382



5834057
6531507
8249826
11137386



5834059
6531509
8249828
11137388



5834065
6531511
8249838
11137392



5834069
6531513
8250248
11137399



5834071
6531517
8250255
11137403



5834073
6531521
8489274
11137407



5834075
6531525
8489276
11137411



5834077
6531533
8489278
11137413



5834079
6531537
8489280
11137415



5834081
6531539
8489282
11137418



5834083
6531554
8489284
11137420



11137422
13172069
21702275
47846518



11137426
13172073
21702277
47846520



11137428
13172083
21702281
47846524



11137430
13172091
21702282
47846526



11137432
13172093
21702287
47846528



11137439
13172099
21702289
47846530



11137441
13172117
21702291
47846532



11137445
13172125
21702293
47846534



11137448
13172129
21702295
47846538



11137450
13172133
21702297
47846540



11137452
13172135
21702299
47846542



11137454
13172137
21702301
47846544



11137460
13172141
21702303
47846546



11137462
13172143
21702305
47846548



11137467
13172147
21702307
47846550



11137470
13172149
21702309
47846558



11137474
13172151
21702311
47846562



11137476
13172155
21702313
47846564



11137480
13172157
21702314
47846566



11137482
13172159
21702315
47846570



11137487
13172163
23337033
47846572



11137494
13172169
27370812
47846574



11137500
13172177
31076438
47846578



11137502
13623574
33873883
47846580



11137507
14289029
33989177
47846582



11137509
14289035
37987904
47846586



13171905
14289037
37987932
47846588



13171909
14289049
37987938
47846590



13171911
14289057
37987960
47846594



13171913
14289061
37987970
47846596



13171915
14289065
39644659
47846598



13171917
14289067
39645530
47846600



13171921
14289071
47846366
47846602



13171923
14289073
47846370
47846604



13171925
14289079
47846372
47846606



13171927
14289097
47846376
47846612



13171929
14289099
47846378
47846614



13171931
14289109
47846380
47846618



13171935
14289111
47846386
47846620



13171937
16075408
47846388
47846626



13171939
16075410
47846394
47846632



13171941
16075412
47846398
47846644



13171945
16075414
47846416
47846646



13171947
16075416
47846418
47846658



13171949
16075418
47846420
47846660



13171951
16075420
47846422
47846664



13171953
16075422
47846426
47846666



13171955
16075424
47846428
47846674



13171957
16075426
47846430
47846678



13171959
16075428
47846432
47846680



13171961
16075430
47846434
47846684



13171965
16075432
47846438
47846690



13171967
16075434
47846442
47846692



13171969
16075436
47846446
47846696



13171971
16075438
47846448
47846698



13171973
16075440
47846450
47846716



13171975
16075442
47846456
47846718



13171977
16075444
47846458
47846724



13171981
16075448
47846466
47846728



13171987
16075450
47846468
47846730



13171999
16075452
47846472
47846734



13172003
16075454
47846476
47846750



13172005
16075456
47846478
47846752



13172007
16075458
47846482
47846756



13172009
16075460
47846484
47846762



13172013
16075464
47846486
47846764



13172019
16075466
47846488
47846768



13172021
16076270
47846490
47846778



13172025
16076286
47846492
47846782



13172027
17511791
47846494
47846784



13172033
18044958
47846498
47846786



13172037
19171939
47846506
49256420



13172043
19550754
47846508
49256426



13172045
19848531
47846510
49258105



13172053
19848533
47846512
49523831



13172061
19848543
47846514
49523833



13172065
19848545
47846516
49523835



49523837
54779258
54780723
145910938



49523841
54779260
54780731
145910942



49523843
54779262
54780733
145910945



49523849
54779264
54780735
145910949



49523851
54779266
54780741
145910952



49523853
54779268
54780745
145910955



49523855
54779270
54780753
145910958



49523861
54779272
54780757
145910966



49523865
54779274
54780759
145910969



49523871
54779276
54780761
145910972



49523873
54779278
54780763
145910975



49523879
54779280
54780765
145910983



49523881
54779282
54780767
145910986



49523887
54779284
54780771
145910989



49523895
54779286
54780775
145910992



49523905
54779288
54780777
145910995



49523919
54779290
54780779
145910998



49523921
54779292
54780781
145911001



49523923
54779296
54780783
145911004



49523927
54779298
54780785
145911013



49523929
54779300
54780787
145911017



49523931
54779302
54780791
145911020



49523946
54779306
54780793
145911023



49523950
54779308
54780795
145911026



54779136
54779310
54780801
145911029



54779140
54779314
54780803
145911032



54779142
54779316
54780805
145911038



54779144
54779318
54780807
145911041



54779146
54779320
54780809
145911044



54779148
54779322
54780815
145911047



54779150
54779324
54780817
145911050



54779152
54779328
54780821
145911053



54779156
54779330
54780825
145911061



54779158
54779332
54780827
145911064



54779160
54779334
54780831
145911072



54779162
54779336
54780833
145911075



54779166
54779338
54780835
145911081



54779168
54779340
54780837
145911086



54779170
54779342
54780839
145911090



54779172
54779344
54780841
145911092



54779174
54779350
54780843
145911096



54779178
54779354
54780845
145911102



54779180
54779356
54780847
145911105



54779182
54779358
54780853
145911108



54779184
54779360
54780857
145911111



54779186
54779362
54780859
145911133



54779188
54779364
54780861
145911150



54779190
54780155
54780863
145911156



54779192
54780163
55228577
145911159



54779194
54780167
55228579
145911162



54779196
54780171
55228584
145911165



54779198
54780177
55228638
145911171



54779200
54780179
55228640
145911174



54779204
54780185
55228646
145911177



54779206
54780187
55228650
145911180



54779208
54780191
55228651
145911183



54779210
54780193
55228652
145911186



54779212
54780209
60688113
145911190



54779214
54780211
74095346
145911193



54779218
54780213
74095348
145911199



54779220
54780227
74095350
145911202



54779222
54780229
74095355
145911205



54779224
54780235
74095358
145911214



54779226
54780237
91979763
145911217



54779228
54780239
91979789
145911220



54779230
54780243
91979839
145911223



54779232
54780247
91979849
145911226



54779234
54780251
111918091
145911235



54779236
54780253
111918116
145911238



54779238
54780259
111918127
145911248



54779240
54780709
111918184
145911257



54779242
54780711
111918251
145911287



54779244
54780713
111918262
145911291



54779248
54780715
111918647
145911294



54779250
54780717
121488404
145911298



54779252
54780719
145910925
145911301



54779256
54780721
145910934
145911305



145911308
145911823
145912707
145913746



145911311
145911832
145912717
145913752



145911314
145911840
145912725
145913757



145911317
145911849
145912735
145913766



145911320
145911857
145912744
145913772



145911323
145911883
145912753
145913777



145911326
145911892
145912760
145913782



145911329
145911914
145912780
145913787



145911332
145911936
145912790
145913792



145911335
145911938
145912799
145913797



145911338
145911940
145912814
145913803



145911341
145911942
145912824
145913808



145911344
145911944
145912844
145913813



145911347
145911946
145912853
145913840



145911350
145911948
145912861
145913852



145911353
145911950
145912868
145913856



145911356
145911953
145912879
145913867



145911359
145911959
145912888
145913875



145911362
145911968
145912898
145913879



145911365
145911983
145912909
145913883



145911368
145911992
145912919
145913888



145911371
145912001
145912930
145913893



145911374
145912009
145912940
145913898



145911377
145912023
145912949
145913902



145911384
145912037
145912958
145913915



145911388
145912044
145912978
145913919



145911391
145912059
145912996
145913921



145911394
145912100
145913026
145913923



145911397
145912107
145913035
145913927



145911400
145912114
145913042
145913929



145911403
145912123
145913066
145913932



145911407
145912132
145913107
145913943



145911410
145912152
145913138
145913955



145911413
145912167
145913155
145913961



145911416
145912176
145913181
145913965



145911421
145912186
145913209
145913969



145911427
145912211
145913219
145913973



145911436
145912220
145913232
145913977



145911442
145912229
145913236
145913980



145911451
145912238
145913241
145913984



145911457
145912249
145913248
145913988



145911466
145912260
145913257
145913991



145911482
145912278
145913268
145913995



145911491
145912308
145913278
145914000



145911498
145912353
145913288
145914004



145911502
145912361
145913297
145914011



145911510
145912371
145913308
145914017



145911517
145912381
145913344
145914020



145911523
145912399
145913354
145914023



145911536
145912409
145913377
145914026



145911544
145912418
145913386
145914038



145911553
145912436
145913394
145914045



145911561
145912446
145913404
145914049



145911568
145912456
145913415
145914056



145911576
145912466
145913425
145914060



145911585
145912470
145913433
145914063



145911597
145912479
145913470
145938277



145911604
145912495
145913480
145938293



145911611
145912504
145913489
145938315



145911618
145912508
145913518
145938332



145911621
145912528
145913528
145938348



145911655
145912547
145913539
145938356



145911663
145912566
145913549
145938362



145911679
145912575
145913569
145938375



145911687
145912587
145913578
145938384



145911695
145912589
145913588
145938391



145911703
145912591
145913596
145938403



145911713
145912595
145913608
145938411



145911722
145912598
145913620
145938421



145911746
145912614
145913640
145938426



145911748
145912624
145913650
145938430



145911750
145912635
145913660
145938438



145911752
145912647
145913670
145938446



145911754
145912674
145913682
145938454



145911768
145912682
145913687
145938462



145911786
145912691
145913722
145938470



145911795
145912700
145913730
145938490



145938504
145939392
145940316
145940902



145938513
145939407
145940325
145940907



145938531
145939416
145940332
145940912



145938537
145939432
145940340
145940917



145938553
145939449
145940354
145940921



145938562
145939459
145940362
145940926



145938570
145939470
145940370
145940940



145938577
145939475
145940379
145941075



145938596
145939484
145940387
145941079



145938621
145939501
145940399
145941083



145938629
145939514
145940404
145941090



145938639
145939566
145940411
145941097



145938647
145939578
145940416
145941111



145938674
145939586
145940428
145941118



145938680
145939593
145940439
145941131



145938689
145939602
145940441
145941134



145938698
145939609
145940445
145941137



145938706
145939634
145940448
145941143



145938713
145939643
145940450
145941151



145938721
145939651
145940452
145941158



145938730
145939657
145940456
145941167



145938737
145939670
145940461
145941176



145938755
145939678
145940468
145941194



145938771
145939686
145940482
145941226



145938808
145939694
145940489
145941231



145938830
145939699
145940494
145941239



145938837
145939704
145940498
145941247



145938865
145939707
145940508
145941255



145938874
145939711
145940510
145941262



145938892
145939718
145940515
145941276



145938899
145939724
145940520
145941296



145938906
145939730
145940530
145941328



145938916
145939738
145940535
145941336



145938926
145939747
145940541
145941349



145938944
145939753
145940547
145941358



145938952
145939760
145940552
145941365



145938969
145939766
145940557
145941373



145938986
145939768
145940567
145941380



145938995
145939770
145940573
145941388



145939005
145939776
145940583
145941393



145939023
145939778
145940593
145941399



145939030
145939782
145940597
145941425



145939044
145939788
145940602
145941459



145939053
145939805
145940613
145941466



145939061
145939817
145940631
145941474



145939069
145939824
145940636
145941483



145939083
145939834
145940645
145941488



145939085
145939844
145940650
145941499



145939087
145939858
145940656
145941505



145939093
145939865
145940662
145941512



145939095
145939872
145940675
145941518



145939097
145939879
145940681
145941539



145939106
145939900
145940700
145941544



145939132
145939910
145940706
145941550



145939147
145939921
145940711
145941558



145939155
145939940
145940727
145941571



145939161
145939949
145940735
145941577



145939169
145939970
145940742
145941588



145939181
145939986
145940748
145941597



145939189
145940002
145940756
145941605



145939197
145940029
145940762
145941618



145939206
145940036
145940774
145941634



145939215
145940043
145940783
145941639



145939231
145940052
145940789
145941644



145939237
145940070
145940797
145941650



145939252
145940091
145940804
145941657



145939271
145940115
145940818
145941669



145939285
145940124
145940825
145941674



145939302
145940133
145940832
145941680



145939309
145940152
145940838
145941685



145939317
145940167
145940846
145941698



145939331
145940173
145940853
145941704



145939338
145940190
145940858
145941717



145939346
145940218
145940865
145941724



145939356
145940226
145940877
145941731



145939367
145940239
145940884
145941745



145939384
145940269
145940891
145941752



145941758
159034235
159034347
159034453



145941764
159034236
159034348
159034455



145941791
159034238
159034349
159034460



145941806
159034239
159034350
159034461



145941819
159034240
159034354
159034462



145941822
159034241
159034355
159034463



145941824
159034242
159034356
159034464



145941828
159034243
159034358
159034465



145941837
159034244
159034359
159034466



145941854
159034245
159034362
159034467



145941863
159034249
159034364
159034468



145941877
159034250
159034365
159034471



145941886
159034252
159034366
159034472



145941908
159034253
159034367
159034474



145941915
159034254
159034368
159034476



145941933
159034258
159034369
159034479



145942086
159034259
159034370
159034481



145942146
159034260
159034372
159034482



145942158
159034262
159034373
159034484



145942175
159034266
159034375
159034485



145942206
159034267
159034376
159034486



145942223
159034268
159034378
159034490



145942261
159034273
159034379
159034492



145942265
159034274
159034381
159034493



145942309
159034276
159034383
159034494



145942383
159034277
159034384
159034495



145942405
159034278
159034385
159034497



145942487
159034279
159034386
159034499



145942497
159034280
159034387
159034500



145942506
159034282
159034388
159034501



145942509
159034283
159034389
159034502



145942544
159034284
159034390
159034503



145942565
159034285
159034392
159034504



145942606
159034286
159034393
159034511



148717962
159034287
159034395
159034512



148717964
159034288
159034396
159034515



148717966
159034290
159034397
159034516



148910865
159034291
159034398
159034518



159034187
159034293
159034399
159034521



159034188
159034296
159034400
159034522



159034189
159034297
159034402
159034523



159034190
159034298
159034403
159034524



159034191
159034299
159034404
159034526



159034192
159034300
159034405
159034527



159034193
159034301
159034408
159034529



159034194
159034302
159034410
159034530



159034195
159034303
159034414
159034531



159034196
159034304
159034415
159034532



159034197
159034305
159034417
159034534



159034198
159034306
159034419
159034535



159034200
159034307
159034420
159034536



159034202
159034308
159034421
159034537



159034203
159034309
159034422
159034538



159034204
159034310
159034423
159034539



159034205
159034311
159034424
159034540



159034207
159034313
159034425
159034541



159034208
159034315
159034426
159034542



159034209
159034316
159034429
159034543



159034211
159034318
159034430
159034545



159034212
159034320
159034431
159034546



159034213
159034323
159034433
159034547



159034214
159034324
159034434
159034549



159034215
159034325
159034435
159034550



159034216
159034328
159034436
159034552



159034217
159034329
159034438
159034554



159034218
159034330
159034439
159034556



159034219
159034331
159034440
159034559



159034222
159034335
159034441
159034562



159034223
159034337
159034443
159034563



159034224
159034339
159034444
159034564



159034225
159034340
159034445
159034565



159034226
159034341
159034446
159034566



159034227
159034342
159034447
159034568



159034228
159034343
159034448
159034570



159034230
159034344
159034449
159034571



159034231
159034345
159034450
159034572



159034233
159034346
159034451
159034573



159034575
159034697
159034801
159034904



159034576
159034698
159034802
159034905



159034578
159034699
159034804
159034906



159034580
159034700
159034805
159034907



159034581
159034701
159034809
159034908



159034582
159034704
159034811
159034909



159034584
159034705
159034812
159034910



159034587
159034706
159034813
159034911



159034588
159034708
159034815
159034912



159034589
159034709
159034816
159034913



159034591
159034710
159034817
159034914



159034596
159034711
159034818
159034917



159034599
159034712
159034819
159034918



159034600
159034713
159034820
159034919



159034601
159034714
159034821
159034920



159034602
159034717
159034822
159034923



159034604
159034718
159034823
159034925



159034607
159034720
159034824
159034926



159034609
159034721
159034825
159034928



159034611
159034722
159034827
159034929



159034612
159034725
159034828
159034931



159034613
159034726
159034829
159034934



159034617
159034728
159034831
159034935



159034619
159034729
159034832
159034936



159034620
159034730
159034833
159034937



159034621
159034731
159034834
159034938



159034622
159034732
159034835
159034939



159034625
159034733
159034837
159034940



159034626
159034734
159034838
159034942



159034628
159034736
159034839
159034945



159034629
159034737
159034840
159034946



159034631
159034738
159034842
159034947



159034632
159034741
159034843
159034948



159034634
159034742
159034844
159034950



159034635
159034743
159034845
159034952



159034636
159034744
159034846
159034953



159034637
159034745
159034847
159034954



159034638
159034747
159034848
159034955



159034640
159034748
159034849
159034957



159034641
159034749
159034852
159034959



159034642
159034750
159034853
159034961



159034643
159034751
159034856
159034962



159034647
159034752
159034858
159034963



159034648
159034754
159034859
159034964



159034649
159034756
159034860
159034965



159034650
159034758
159034861
159034967



159034651
159034759
159034862
159034970



159034652
159034760
159034863
159034971



159034653
159034762
159034864
159034973



159034654
159034763
159034866
159034974



159034657
159034764
159034869
159034975



159034658
159034765
159034871
159034976



159034659
159034766
159034872
159034978



159034660
159034767
159034874
159034980



159034661
159034768
159034876
159034981



159034664
159034771
159034877
159034982



159034665
159034773
159034879
159034983



159034668
159034774
159034880
159034984



159034669
159034778
159034882
159034985



159034672
159034779
159034883
159034987



159034673
159034780
159034885
159034988



159034676
159034781
159034886
159034989



159034677
159034782
159034887
159034991



159034678
159034783
159034888
159034992



159034679
159034784
159034889
159034993



159034680
159034786
159034890
159034995



159034681
159034787
159034892
159034996



159034683
159034788
159034893
159034997



159034686
159034789
159034894
159034998



159034687
159034790
159034895
159035002



159034688
159034791
159034897
159035003



159034689
159034793
159034898
159035005



159034690
159034794
159034899
159035007



159034692
159034795
159034900
159035008



159034693
159034796
159034901
159035009



159034695
159034798
159034902
159035010



159034696
159034799
159034903
159035013



159035014
159035117
159035234
159035362



159035015
159035118
159035235
159035363



159035016
159035120
159035238
159035364



159035017
159035122
159035239
159035366



159035018
159035123
159035240
159035368



159035021
159035124
159035241
159035369



159035022
159035125
159035242
159035370



159035023
159035126
159035245
159035372



159035024
159035128
159035247
159035373



159035025
159035129
159035250
159035374



159035026
159035130
159035253
159035378



159035027
159035131
159035256
159035380



159035028
159035133
159035257
159035382



159035031
159035134
159035260
159035384



159035033
159035135
159035261
159035385



159035034
159035136
159035262
159035386



159035035
159035137
159035263
159035390



159035036
159035138
159035264
159035391



159035038
159035139
159035265
159035393



159035039
159035140
159035267
159035394



159035040
159035143
159035268
159035395



159035041
159035145
159035269
159035400



159035042
159035146
159035270
159035401



159035043
159035147
159035272
159035402



159035044
159035149
159035273
159035403



159035045
159035150
159035274
159035404



159035046
159035151
159035275
159035405



159035047
159035152
159035277
159035406



159035049
159035155
159035279
159035407



159035050
159035158
159035280
159035408



159035051
159035159
159035282
159035413



159035052
159035160
159035284
159035418



159035053
159035162
159035285
159035420



159035054
159035163
159035287
159035422



159035055
159035164
159035288
159035423



159035056
159035166
159035289
159035424



159035057
159035170
159035290
159035425



159035058
159035172
159035292
159035426



159035060
159035173
159035293
159035427



159035061
159035174
159035294
159035430



159035063
159035175
159035296
159035432



159035064
159035176
159035299
159035433



159035065
159035177
159035302
159035435



159035066
159035179
159035303
159035436



159035067
159035180
159035305
159035437



159035072
159035181
159035307
159035439



159035073
159035182
159035308
159035441



159035074
159035183
159035309
159035445



159035075
159035185
159035310
159035446



159035076
159035186
159035312
159035447



159035079
159035187
159035313
159035449



159035080
159035188
159035314
159035450



159035081
159035191
159035315
159035451



159035083
159035192
159035316
159035452



159035084
159035193
159035318
159035453



159035085
159035194
159035319
159035454



159035086
159035195
159035320
159035456



159035087
159035199
159035321
159035457



159035089
159035201
159035323
159035458



159035090
159035204
159035327
159035459



159035092
159035205
159035329
159035461



159035097
159035206
159035330
159035463



159035100
159035207
159035331
159035464



159035101
159035208
159035334
159035466



159035102
159035209
159035335
159035468



159035103
159035210
159035338
159035470



159035104
159035211
159035342
159035472



159035106
159035212
159035343
159035473



159035108
159035213
159035344
159035475



159035109
159035215
159035346
159035476



159035110
159035218
159035348
159035477



159035111
159035221
159035349
159035479



159035112
159035224
159035350
159035483



159035113
159035226
159035351
159035484



159035114
159035227
159035353
159035490



159035115
159035230
159035360
159035492



159035116
159035232
159035361
159035493



159035496
159035605
162950148
162950323



159035497
159035609
162950152
162950325



159035498
159035610
162950188
162950326



159035499
159035611
162950189
162950327



159035501
159035612
162950191
162950328



159035502
159035614
162950199
162950329



159035503
159035618
162950202
162950330



159035507
159035619
162950204
162950333



159035508
159035624
162950205
162950334



159035512
159035626
162950210
162950335



159035513
159035627
162950211
162950337



159035514
159035628
162950213
162950338



159035515
159035630
162950227
162950339



159035516
159035631
162950241
162950341



159035519
159035632
162950243
162950342



159035520
159035633
162950244
162950343



159035523
159035634
162950245
162950344



159035524
159035636
162950248
162950345



159035525
159035637
162950249
162950347



159035526
159035638
162950250
162950348



159035527
159035640
162950251
162950350



159035528
159035641
162950252
162950352



159035529
159035642
162950253
162950353



159035531
159035644
162950254
162950355



159035532
159035646
162950255
162950359



159035533
159035649
162950257
162950360



159035535
159035650
162950258
162950361



159035536
159035653
162950260
162950363



159035537
159035655
162950261
162950365



159035538
159035656
162950263
162950367



159035541
159035658
162950265
162950369



159035542
159035659
162950266
162950372



159035546
159035661
162950267
162950373



159035548
159035662
162950269
162950374



159035549
159035663
162950270
162950375



159035550
159035664
162950272
162950377



159035552
162950025
162950273
162950381



159035553
162950028
162950275
162950382



159035554
162950034
162950277
162950384



159035556
162950035
162950278
162950385



159035557
162950039
162950279
162950386



159035559
162950043
162950282
162950387



159035560
162950050
162950284
162950388



159035562
162950051
162950285
162950390



159035563
162950052
162950286
162950391



159035564
162950054
162950287
162950392



159035565
162950055
162950288
162950393



159035566
162950057
162950289
162950394



159035567
162950065
162950290
162950396



159035568
162950067
162950291
162950397



159035569
162950077
162950292
162950398



159035570
162950097
162950293
162950399



159035571
162950098
162950294
162950400



159035573
162950100
162950295
162950401



159035574
162950111
162950296
162950404



159035575
162950114
162950297
162950405



159035576
162950115
162950298
162950406



159035577
162950120
162950299
162950408



159035581
162950121
162950300
162950410



159035582
162950123
162950301
162950411



159035583
162950125
162950302
162950416



159035584
162950126
162950303
162950418



159035585
162950127
162950305
162950419



159035586
162950128
162950306
162950420



159035589
162950129
162950308
162950421



159035590
162950130
162950309
162950423



159035591
162950132
162950310
162950425



159035592
162950133
162950311
162950426



159035593
162950134
162950312
162950428



159035594
162950137
162950313
162950430



159035595
162950138
162950314
162950431



159035596
162950139
162950315
162950432



159035597
162950140
162950316
162950433



159035598
162950141
162950317
162950434



159035602
162950143
162950318
162950435



159035603
162950146
162950319
162950437



159035604
162950147
162950321
162950438



162950439
162950566
162950674




162950440
162950568
162950675




162950441
162950570
162950676




162950442
162950571
162950685




162950444
162950572
162950686




162950445
162950573
162950688




162950446
162950574
162950689




162950447
162950575
162950691




162950449
162950577
162950692




162950450
162950578
162950693




162950451
162950579
162950694




162950453
162950580
162950695




162950454
162950581
162950696




162950456
162950582
162950697




162950461
162950583
162950698




162950463
162950584
162950710




162950464
162950585
162950714




162950465
162950586
162950716




162950466
162950587
162950720




162950467
162950589
162950724




162950469
162950590
162950725




162950470
162950591
162950726




162950471
162950592
162950728




162950474
162950593
162950729




162950476
162950594
194719560




162950481
162950596
194719575




162950483
162950597
218454113




162950484
162950598
218454117




162950485
162950599
219937557




162950487
162950600





162950489
162950602





162950490
162950604





162950491
162950605





162950492
162950606





162950493
162950609





162950494
162950610





162950496
162950611





162950498
162950613





162950500
162950614





162950503
162950615





162950504
162950617





162950514
162950618





162950515
162950619





162950516
162950620





162950517
162950621





162950518
162950622





162950519
162950626





162950520
162950627





162950522
162950628





162950525
162950629





162950526
162950631





162950527
162950632





162950528
162950633





162950529
162950634





162950530
162950635





162950531
162950640





162950532
162950641





162950534
162950642





162950535
162950644





162950536
162950645





162950537
162950646





162950539
162950647





162950540
162950649





162950542
162950650





162950543
162950651





162950546
162950652





162950547
162950654





162950551
162950655





162950552
162950656





162950555
162950659





162950556
162950660





162950557
162950661





162950558
162950662





162950559
162950665





162950562
162950666





162950564
162950671





162950565
162950673









Claims
  • 1. A method of making a library comprising synthetic polynucleotides that encode an antibody heavy chain containing at least about 104 unique antibody CDRH3 amino acid sequences, wherein each of the polynucleotides encoding the at least about 104 unique antibody CDRH3 amino acid sequences has an antibody CDRH3 amino acid sequence represented by the following formula: [TN1]-[DH]-[N2]-[H3-JH], the method comprising: (a) providing a theoretical segment pool containing TN1, DH, N2, and H3-JH segments, wherein the H3-JH segments are provided according to the following steps: (i) obtaining a set of polynucleotide sequences of human IGHJ genes and alleles;(ii) progressively deleting at least one nucleotide base from the 5′ end of the polynucleotide sequences of (i);(iii) systematically adding at least one nucleotide base to the 5′ end of the polynucleotide sequences from (ii); and(iv) translating the modified polynucleotide sequences of (iii) and selecting unique amino acid sequences to thereby provide the H3-JH theoretical segment pool;(b) providing a reference set of preimmune CDRH3 sequences having sequence diversities and length diversities similar to naturally occurring human antibody sequences before these sequences have undergone negative selection and/or hypermutation;(c) utilizing combinations of the TN1, DH, N2, and H3-JH segments contained in the theoretical segment pool of (a) to identify the closest match(es) to each CDRH3 sequence in the reference set of (b);(d) selecting segments from the closest match(es) identified in step (c) for inclusion in a library comprising synthetic polynucleotides that encode an antibody heavy chain; and(e) synthesizing the synthetic polynucleotides that encode an antibody heavy chain;
  • 2. The method of claim 1, wherein step (a)(ii) comprises progressive single base deletions.
  • 3. The method of claim 1, wherein step (a)(ii) comprises progressively deleting at least one nucleotide base until only the sequence corresponding to FRM4 remains.
  • 4. The method of claim 1, wherein step (a)(ii) comprises progressively deleting at least one nucleotide base until the polynucleotide sequence encodes only a single amino acid residue in the H3-JH segment.
  • 5. The method of claim 1, wherein step (a)(iii) comprises systematically adding 1 or 2 nucleotide bases to the 5′ end of the polynucleotide sequences from (ii).
  • 6. The method of claim 1, wherein the unique sequences selected in step (a)(iv) do not comprise FRM4.
  • 7. The method of claim 1, wherein the segments selected for inclusion in the synthetic library are selected according to their segment usage weight in the reference set of CDRH3 sequences.
  • 8. The method of claim 1, wherein the segments selected for inclusion in the synthetic library are selected according to one or more physicochemical properties.
  • 9. The method of claim 1, further comprising selecting additional TN1 and N2 segments occurring in the reference set but not in the theoretical segment pool.
  • 10. The method of claim 1, wherein stop codons are reduced or eliminated from the library.
  • 11. The method of claim 1, wherein the unpaired Cys residues, N-linked glycosylation motifs, and deamidation motifs are reduced or eliminated in the translation products of the library.
  • 12. The method of claim 1, wherein the H3-JH segments are about 0 to about 10 amino acids in length.
  • 13. The method of claim 1, wherein the theoretical segment pool contains TN1 segments corresponding to any of the TN1 polypeptides of Tables 10 and 18-26, or a polypeptide produced by translation of any of the TN1-encoding polynucleotides of Tables 25-26.
  • 14. The method of claim 1, wherein the theoretical segment pool contains DH segments corresponding to any of the DH polypeptides of Tables 11, 17-25 and 28, or a polypeptide produced by translation of any of the DH-encoding polynucleotides of Tables 16, 25, and 27.
  • 15. The method of claim 1, wherein the theoretical segment pool contains N2 segments corresponding to any of the N2 polypeptides of Tables 12, 18-25, and 30, or a polypeptide produced by translation of any of the N2-encoding polynucleotides of Tables 25 and 29.
  • 16. The method of claim 1, wherein the theoretical segment pool contains H3-JH segments corresponding to any of the H3-JH polypeptides of Tables 13, 15, 18-25, and 32, or a polypeptide produced by translation of any of the H3-JH encoding polynucleotides of Tables 14, 25, and 31.
  • 17. The method of claim 1, wherein the unique sequences of (iv) do not have stop codons, unpaired Cys residues, deamidation motifs, or Asn in the last or next to last position that can lead to N-linked glycosylation motifs.
  • 18. The method of claim 1, wherein step (a)(iii) comprises systematically adding a NN doublet or NNN triplet at the 5′ end of the sequence.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 15/151,626, filed on May 11, 2016, which is a divisional of U.S. application Ser. No. 13/810,570, filed on Apr. 1, 2013, which is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/US2011/044063, filed on Jul. 14, 2011, which claims priority to U.S. Provisional Application No. 61/365,194, filed on Jul. 16, 2010. The disclosure of each of U.S. application Ser. No. 15/151,626; U.S. application Ser. No. 13/810,570 and U.S. Provisional Application No. 61/365,194 are hereby incorporated herein by reference in their entirety.

US Referenced Citations (176)
Number Name Date Kind
4946778 Ladner et al. Aug 1990 A
5118605 Urdea Jun 1992 A
5223409 Ladner et al. Jun 1993 A
5283173 Fields et al. Feb 1994 A
5380833 Urdea Jan 1995 A
5525490 Erickson et al. Jun 1996 A
5530101 Queen et al. Jun 1996 A
5565332 Hoogenboom et al. Oct 1996 A
5571698 Ladner et al. Nov 1996 A
5618920 Robinson et al. Apr 1997 A
5658727 Barbas et al. Aug 1997 A
5688666 Bass et al. Nov 1997 A
5695941 Brent et al. Dec 1997 A
5723323 Kauffman et al. Mar 1998 A
5733743 Johnson et al. Mar 1998 A
5739281 Thogersen et al. Apr 1998 A
5750373 Garrard et al. May 1998 A
5767260 Whitlow et al. Jun 1998 A
5780279 Matthews et al. Jul 1998 A
5798208 Crea Aug 1998 A
5811238 Stemmer et al. Sep 1998 A
5814476 Kauffman et al. Sep 1998 A
5817483 Kauffman et al. Oct 1998 A
5821047 Garrard et al. Oct 1998 A
5824514 Kauffman et al. Oct 1998 A
5830663 Embleton et al. Nov 1998 A
5837242 Holliger et al. Nov 1998 A
5837500 Ladner et al. Nov 1998 A
5840479 Little et al. Nov 1998 A
5846765 Matthews et al. Dec 1998 A
5858657 Winter et al. Jan 1999 A
5858671 Jones Jan 1999 A
5863765 Berry et al. Jan 1999 A
5866344 Georgiou Feb 1999 A
5869250 Cheng et al. Feb 1999 A
5871907 Winter et al. Feb 1999 A
5872215 Osbourne et al. Feb 1999 A
5885793 Griffiths et al. Mar 1999 A
5888773 Jost et al. Mar 1999 A
5917018 Thogersen et al. Jun 1999 A
5922545 Mattheakis et al. Jul 1999 A
5928868 Liu et al. Jul 1999 A
5935831 Quax et al. Aug 1999 A
5948620 Hurd et al. Sep 1999 A
5955275 Kamb Sep 1999 A
5962255 Griffiths et al. Oct 1999 A
5965368 Vidal et al. Oct 1999 A
5969108 McCafferty et al. Oct 1999 A
5976862 Kauffman et al. Nov 1999 A
5994515 Hoxie Nov 1999 A
5994519 Osbourn et al. Nov 1999 A
6010884 Griffiths et al. Jan 2000 A
6017732 Jespers et al. Jan 2000 A
6027910 Klis et al. Feb 2000 A
6040136 Garrard et al. Mar 2000 A
6057098 Buechler et al. May 2000 A
6057101 Nandabalan et al. May 2000 A
6072036 Marasco et al. Jun 2000 A
6083693 Nandabalan et al. Jul 2000 A
6114147 Frenken et al. Sep 2000 A
6132963 Brent et al. Oct 2000 A
6140471 Johnson et al. Oct 2000 A
6159705 Trueheart et al. Dec 2000 A
6171795 Korman et al. Jan 2001 B1
6172197 McCafferty et al. Jan 2001 B1
6180336 Osbourn et al. Jan 2001 B1
6187535 LeGrain et al. Feb 2001 B1
6200759 Dove et al. Mar 2001 B1
6225447 Winter et al. May 2001 B1
6248516 Winter et al. Jun 2001 B1
6291158 Winter et al. Sep 2001 B1
6291159 Winter et al. Sep 2001 B1
6291160 Lerner et al. Sep 2001 B1
6291161 Lerner et al. Sep 2001 B1
6291650 Winter et al. Sep 2001 B1
6300064 Knappik et al. Oct 2001 B1
6300065 Kieke et al. Oct 2001 B1
6319690 Little et al. Nov 2001 B1
6342588 Osbourn et al. Jan 2002 B1
6358733 Motwani et al. Mar 2002 B1
6406863 Zhu et al. Jun 2002 B1
6410246 Zhu et al. Jun 2002 B1
6410271 Zhu et al. Jun 2002 B1
6420113 Buechler et al. Jul 2002 B1
6423538 Wittrup et al. Jul 2002 B1
6489123 Osbourn et al. Dec 2002 B2
6492107 Kauffman et al. Dec 2002 B1
6492123 Holliger et al. Dec 2002 B1
6492160 Griffiths et al. Dec 2002 B1
6521404 Griffiths et al. Feb 2003 B1
6531580 Huse et al. Mar 2003 B1
6544731 Griffiths et al. Apr 2003 B1
6545142 Winter et al. Apr 2003 B1
6555313 Griffiths et al. Apr 2003 B1
6569641 Kauffman et al. May 2003 B1
6582915 Griffiths et al. Jun 2003 B1
6589527 Winter et al. Jul 2003 B1
6589741 Pluckthun et al. Jul 2003 B2
6593081 Griffiths et al. Jul 2003 B1
6610472 Zhu et al. Aug 2003 B1
6653443 Zhang et al. Nov 2003 B2
6664048 Wanker et al. Dec 2003 B1
6680192 Lerner et al. Jan 2004 B1
6696245 Winter et al. Feb 2004 B2
6696248 Knappik et al. Feb 2004 B1
6696251 Wittrup et al. Feb 2004 B1
6699658 Wittrup et al. Mar 2004 B1
6706484 Knappik et al. Mar 2004 B1
6753136 Lohning Jun 2004 B2
6806079 McCafferty et al. Oct 2004 B1
6828422 Achim et al. Dec 2004 B1
6833441 Wang et al. Dec 2004 B2
6846634 Tomlinson et al. Jan 2005 B1
6916605 McCafferty et al. Jul 2005 B1
6919183 Fandl et al. Jul 2005 B2
6969586 Lerner et al. Nov 2005 B1
7005503 Hua et al. Feb 2006 B2
7063943 McCafferty et al. Jun 2006 B1
7083945 Chen et al. Aug 2006 B1
7094571 Harvey et al. Aug 2006 B2
7138496 Hua et al. Nov 2006 B2
7166423 Miltenyi et al. Jan 2007 B1
7189841 Lerner et al. Mar 2007 B2
7208293 Ladner et al. Apr 2007 B2
7435553 Fandl et al. Oct 2008 B2
7465787 Wittrup et al. Dec 2008 B2
7569357 Kranz et al. Aug 2009 B2
10138478 Vasquez et al. Nov 2018 B2
20010037016 Ning et al. Nov 2001 A1
20010041333 Short et al. Nov 2001 A1
20020004215 Osbourn et al. Jan 2002 A1
20020026653 Allen et al. Feb 2002 A1
20020037280 Lieber et al. Mar 2002 A1
20020169284 Ashkenazi et al. Nov 2002 A1
20020177170 Luo et al. Nov 2002 A1
20020197691 Sugiyama Dec 2002 A1
20030022240 Luo et al. Jan 2003 A1
20030091995 Buechler et al. May 2003 A1
20030114659 Winter et al. Jun 2003 A1
20030130496 Winter et al. Jul 2003 A1
20030148372 Tomlinson et al. Aug 2003 A1
20030165988 Hua et al. Sep 2003 A1
20030190674 Griffiths et al. Oct 2003 A1
20030228302 Crea Dec 2003 A1
20030232333 Ladner et al. Dec 2003 A1
20030232395 Hufton Dec 2003 A1
20040038921 Kreutzer et al. Feb 2004 A1
20040110941 Winter et al. Jun 2004 A2
20040146976 Wittrup et al. Jul 2004 A1
20040157214 McCafferty et al. Aug 2004 A1
20040157215 McCafferty et al. Aug 2004 A1
20040219611 Racher Nov 2004 A1
20050202512 Tomlinson et al. Sep 2005 A1
20060003334 Achim et al. Jan 2006 A1
20060019260 Lerner et al. Jan 2006 A1
20060159673 Kojima Jul 2006 A1
20060166252 Ladner et al. Jul 2006 A1
20060234302 Hoet et al. Oct 2006 A1
20060257937 Ladner Nov 2006 A1
20070031879 Ley et al. Feb 2007 A1
20070099267 Harvey et al. May 2007 A1
20070258954 Iverson et al. Nov 2007 A1
20080108514 Mattheus Hoogenboom May 2008 A1
20080153712 Crea Jun 2008 A1
20080171059 Howland et al. Jul 2008 A1
20090082213 Horowitz et al. Mar 2009 A1
20090181855 Vasquez et al. Jul 2009 A1
20100009866 Prinz et al. Jan 2010 A1
20100056386 Vasquez et al. Mar 2010 A1
20100292103 Ladner Nov 2010 A1
20110009280 Hufton et al. Jan 2011 A1
20110082054 Ladner Apr 2011 A1
20110118147 Ladner May 2011 A1
20110136695 Crea Jun 2011 A1
20110172125 Ladner Jul 2011 A1
20160244750 Vasquez et al. Aug 2016 A1
Foreign Referenced Citations (43)
Number Date Country
19624562 Jan 1998 DE
0469897 Feb 1992 EP
1438400 Jul 2004 EP
H05-68599 Mar 1993 JP
WO-8801649 Mar 1988 WO
WO-8806630 Sep 1988 WO
WO-9401567 Jan 1994 WO
WO-9407922 Apr 1994 WO
WO-9418330 Aug 1994 WO
WO-9526400 Oct 1995 WO
WO-9708320 Mar 1997 WO
WO-9720923 Jun 1997 WO
WO-9749809 Dec 1997 WO
WO-9849198 Nov 1998 WO
WO-9906834 Feb 1999 WO
WO-9928502 Jun 1999 WO
WO-9936569 Jul 1999 WO
WO-9950461 Oct 1999 WO
WO-9953049 Oct 1999 WO
WO-9955367 Nov 1999 WO
WO-0018905 Apr 2000 WO
WO-0054057 Sep 2000 WO
WO-0179229 Oct 2001 WO
WO-0179481 Oct 2001 WO
WO-02055718 Jul 2002 WO
WO-03029456 Apr 2003 WO
WO-2004065611 Aug 2004 WO
WO-2005007121 Jan 2005 WO
WO-2005023993 Mar 2005 WO
WO-2005054273 Jun 2005 WO
WO-2006138700 Dec 2006 WO
WO-2007054816 May 2007 WO
WO-2007056441 May 2007 WO
WO-2008019366 Feb 2008 WO
WO-2008042754 Apr 2008 WO
WO-2008053275 May 2008 WO
WO-2008067547 Jun 2008 WO
WO-2009036379 Mar 2009 WO
WO-2009132287 Oct 2009 WO
WO-2010005863 Jan 2010 WO
WO-2010054007 May 2010 WO
WO-2010105256 Sep 2010 WO
WO-2012009568 Jan 2012 WO
Non-Patent Literature Citations (281)
Entry
Abbas et al., “Cellular and Molecular Immunology”, 4th ed., p. 43, Figure 3-1,. W.B. Saunders Co. (2000).
Abbas et al., Cellular and Molecular Immunology, Fourth Edition—Section III Maturation, Activation, and Regulation of Lymphocytes, 125-133 (2000).
Adams, G.P. and Schier, R., “Generating Improved Single-Chain Fv Molecules for Tumor Targeting” Journal of Immunological Methods, 231:249-260 (1999).
Adams, G.P. and Weiner, L. M., “Monoclonal antibody therapy of cancer” Nature Biotechnology, 23(9) 1147-1157 (2005).
Akamatsu, Y. et al., “Construction of a human Ig combinatorial library from genomic V segments and synthetic CDR3 fragments” J. Immunol., 51(9):4651-4659 (1993).
Allen, J.B. et al., “Finding prospective partners in the library: the two-hybrid system and phage display find a match” TIBS, 20:(12):511-516 (1995).
Alt, F.W. and Baltimore, D., “Joining of Immunoglobulin Heavy Chain Gene Segments: Implications from a Chromosome with Evidence of Three D-JH Fusions” PNAS, 79:4118-4122 (1982).
Arden, B., “Conserved motifs in T-cell receptor CDR1 and CDR2: implications for ligand and CDS co-receptor binding” Current Opinion In Immunology, Current Biology LTD., 10(1):74-81 (1998).
Aronheim, Ami et al., “Isolation of an AP-1 Repressor by a Novel Method for Detecting Protein-Protein Interactions” Molecular and Cellular Biology, 17(6):3094-3102 (1997).
Aujame, L. et al., “High affinity human antibodies by phage display” Human Antibodies, 8(4):155-168 (1997).
Ayala, M. et al., “Variable region sequence modulates periplasmic export of a single-chain Fv antibody fragment in Escherichia coli” BioTechniques, 18(5):832-838, 840-2 (1995).
Bahler et al., “Clonal Salivary Gland Infiltrates Associated with Myoepithelial Sialadenitis (Sjogren's Syndrome) Begin as Nonmalignant Antigen-Selected Expansions”, Blood, 91(6):1864-1872 (1998).
Bakkus et al., “Evidence that Multiple Myeloma Ig Heavy Chain VDJ Genes Contain Somatic Mutations but Show no Intraclonal Variation”, Blood, 80(9):2326-2335 (1992).
Balint, R.F. and Larrick, J.W., “Antibody engineering by parsimonious mutagenesis” Gene, 137:109-118 (1993).
Barbas et al., “Molecular Profile of an Antibody Response to HIV-1 as Probed by Combinatorial Libraries”, J. Mol. Bioi., 230:812-823 (1993).
Barbas, C.F. 3rd et al., “Human autoantibody recognition of DNA” Proc. Natl. Acad. Sci., 92:2529-2533 (1995).
Barbas, C.F. 3rd et al., “Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem” Proceedings of the National Academy of Sciences of USA, 89:4457-4461 (1992).
Barbas, C.F. 3rd, et al., “Assembly of combinatorial antibody libraries on phage surfaces: The gene III site” Proc. Natl. Acad. Sci., 88:7978-7982 (1991).
Basu, M. et al., “Synthesis of compositionally unique DNA by terminal deoxynucleotidyl transferase” Biochem. Biophys. Res. Comm., 111(3):1105-1112 (1983).
Bhatia, S.K. et al., “Rolling adhesion kinematics of yeast engineered to express selectins” Biotech. Prog., 19:1033-1037 (2003).
Binz, H.K. et al., “Engineering novel binding proteins from nonimmunoglobulin domains” Nat. Biotechnol., 23(10):1257-1268 (2005).
Bird, R.E. et al., “Single-chain antigen-binding proteins” Science, 242(4877):423-426 (1988).
Boder and Wittrup, “Yeast Surface Display for Directed Evolution of Protein Expression, Affinity, and Stability” Methods in Enzymology 328:430-444 (2000).
Boder and Wittrup, “Yeast surface display system for antibody engineering” pp. 283 (1996).
Boder et al., “Yeast Surface Display of a Noncovalent MHC Class II Heterodimer Complexed With Antigenic Peptide” Biotechnology and Bioengineering 92(4):485-491 (2005).
Boder, E.T. and Jiang, W., “Engineering Antibodies for Cancer Therapy” Annu. Rev. Chem. Biomol. Eng. 2:53-75 (2011).
Boder, E.T. and Wittrup, K.D., “Optimal screening of surface-displayed polypeptide libraries” Biotechnol Prog.,14(1):55-62 (1998).
Boder, E.T. and Wittrup, K.D., “Yeast surface display for screening combinatorial polypeptide libraries” Nat Biotechnol.,15(6):553-7 (1997).
Boder, E.T. et al., “Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity” Proc Natl Acad Sci USA, 97(20):10701-5 (2000).
Borth, N. et al., “Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting” Biotechnol. and Bioengin., 71(4):266-273 (2000-2001).
Bradbury, A., “Display Technologies Expand Their Horizons” TIBTECH 17:137-138 (1999).
Bradbury, A., “Molecular Library Technologies at the Millennium”, TIBTECH 18:132-133 (2000).
Bradbury, A., “Recent advances in phage display: the report of the Phage Club first meeting” Immunotechnology, 3(3):227-231 (1997).
Breitling, F. et al., “A surface expression vector for antibody screening” Gene, 104(2):147-153 (1991).
Brezinschek, H.P. et al., “Analysis of the human VH gene repertoire. Differential effects of selection and somatic hypermutation on human peripheral CD5(+)/IgM+ and CD5(−)/IgM+ B cells” The American Society for Clinical Investigation, Inc., 99(10):2488-2501 (1997).
Broder, Y.C. et al., “The ras recruitment system, a novel approach to the study of protein-protein interactions” Current Biology 8(20):1121-1124 (1998).
Brophy et al., “A yeast display system for engineering functional peptide-MHC complexes” Journal of Immunological Methods 272:235-246 (2003).
Burke et al., “Methods in Yeast Genetics”, pp. 40-41 (2000).
Burton, D.R. et al., “A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropostive individuals” Proc. Natl. Acad. Sci., 88(22):10134-10137 (1991).
Canaán-Haden, L., “Purification and application of a single-chain Fv antibody fragment specific to hepatitis B virus surface antigen” BioTechniques, 19(4) 606-608, 610, 612 passim(1995).
Cappellaro et al., “Mating type-specific cell—cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and alpha-agglutinin1” The EMBO Journal 13(20)4737-4744 (1994).
Carroll et al., “Absence of Ig V Region Gene Somatic Hypermutation in Advanced Burkitt's Lymphoma”, J. Immunol.,143(2):692-698 (1989).
Casset, F.et al., “A peptide mimetic of an anti-CD4 monoclonal antibody by rational design” Biochemical and Biophysical Research Communications, 307(1):198-205, (2003).
Castelli, L.A. et al., “High-level secretion of correctily processed beta-lactamase from Saccharomyces ceravisiae using a high-copy-number secretion vector” Biomolecular Research Institute, 142(1):113-117 (1994).
Caton, A.J. and Koprowski, H., “Influenza virus hemagglutinin-specific antibodies isolated from a combinatorial expression library are closely related to the immune response of the donor” Proc. Natl. Acad. Science, USA, 87(16):6450-6454 (1990).
Cattaneo, A. and Biocca, S., “The selection of intracellular antibodies” TIBTECH, 17:115-120 (1999).
Chang, C.N. et al., “Expression of antibody Fab domains on bacteriophage surfaces. Potential use for antibody selection” J. Immunol, 147(10):3610-3614. (1991).
Chang, H.C. et al., “A general method for facilitating heterodimeric pairing between two proteins: Application to expression of alpha and beta T-cell receptor extracellular segments” Proc Natl. Acad. Sci., USA, 91:11408-11412 (1994).
Chaudhary, V.K. et al., “A rapid method of cloning functional variable-region antibody genes in Escherichia coli as single-chain immunotoxins” Proc. Natl. Acad. Sci., 87(3):1066-1070 (1990).
Chen, W. et al., “Characterization of germline antibody libraries from human umbilical cord blood and selection of monoclonal antibodies to viral envelope glycoproteins: Implications for mechanisms of immune evasion and design of vaccine immunogens” Biochem. Biophys. Res. Commun. 1-6 (2012).
Chiswell, David and McCaffery, John, “Phage antibodies: will new ‘coliclonal’ antibodies replace monoclonal antibodies?” TIBTECH, 10(3):80-84 (1992).
Cho et al., “A yeast surface display system for the discovery of ligands that trigger cell activation” journal of Immunological Methods 220:179-188 (1998).
Chothia, C. and Lesk, A.M., “Canonical structures for the hypervariable regions of immunoglobulins” J. Mol. Biol., 196(4):901-917 (1987).
Chothia, C. et al., “Conformations of immunoglobulin hypervariable regions” Nature, 342(6252):877-883 (1989).
Chothia, C. et al., “Structural repertoire of the human VH segments” J. Mol. Biol., 227(3):799-817 (1992).
Cioe, L., Cloning and Nucleotide Sequence of a Mouse Erythrocyte beta-Spectrin cDNA, Blood, 70:915-920 (1987).
Clackson, T. and Wells, J.A., “In vitro selection from protein and peptide libraries” Trends Biotechnol., 12(5):173-184 (1994).
Clackson, T. et al., “Making antibody fragments using phage display libraries” Nature, 352(6336):624-628 (1991).
Co, M.S. and Queen, C., “Humanized antibodies for therapy” Nature, 351(6326):501-502 (1991).
Colby et al., “Development of a Human Light Chain Variable Domain (VL) Intracellular Antibody Specific for the Amino Terminus of Huntingtin via Yeast Surface Display” J. Mol. Biol. 901-912 (2004).
Collins, A.M. et al., “Partitioning of rearranged Ig genes by mutation analysis demonstrates D-D fusion and V gene replacement in the expressed human repertoire” J. Immunol., 172(1):340-348 (2004).
Collins, A.M. et al., “The reported germline repertoire of human immunoglobulin kappa chain genes is relatively complete and accurate” Immunogenetics, 60(11):669-676 (2008).
Corbett, S.J. et al., “Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, nverted D egments, “minor” D segments or D-D recombination” J. Mol. Bioi., 270:587-597 (1997).
Courtney, B.C. et al., “A phage display vector with improved stability, applicability and ease of manipulation”, Gene, 165(1):139-140 (1995).
Couto, J.R. et al., “Designing human consensus antibodies with minimal positional templates”, Cancer Res., (23 Suppl):5973s-5977s (1995).
Crameri, R. and Suter, M., “Display of biologically active proteins on the surface of filamentous phages: a cDNA cloning system for selection of functional gene products linked to the genetic information responsible for their production” Gene, 137(1):69-75 (1993).
Cwirla, S.E., et al., “Peptides on phage: a vast library of peptides for identifying ligands” Proc. Natl. Acad. Sci. USA, 87(16):6378-6382 (1990).
Davi et al., “High Frequency of Somatic Mutations in the VH Genes Expressed in Prolymphocytic Leukemia”, Blood, 88 (10):3953-3961 (1996).
Davies, J. and Riechmann, L., “Affinity improvement of single antibody VH domains: residues in all three hypervariable regions affect antigen binding” Immunotechnology 2(3):169-179 (1996).
de Haard et al., “A Large Non-immunized Human Fab Fragment Phage Library That Permits Rapid Isolation and Kinetic Analysis of High Affinity Antibodies” Journal of Biological Chemistry, 274(26):18218-18230 (1999).
De Jaeger, G. et al., “Analysis of the interaction between single-chain variable fragments and their antigen in a reducing intracellular environment using the two-hybrid system” FEBS Lett., 467(2-3):316-320 (2000).
de Kruif, J. et al., “Selection and application of human single chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions” J. Mol. Biol. 248(1):97-105 (1995).
Delves, P.J. “Antibody production: essential techniques” John Wiley & Sons, New York, pp. 90-113 (1997).
DiPietro et al., “Limited number of immunoglobulin VH regions expressed in the mutant rabbit ‘Alicia’”, Eur. J. Immunol., 20:1401-1404 (1990).
Dranginis et al., “A Biochemical Guide to Yeast Adhesins: Glycoproteins for Social and Antisocial Occasions” Microbiology and Molecular Biology Reviews 71(2)282-294 (2007).
Esposito et al., “Phage display of a human antibody against Clostridium tetani toxin”, Gene, 148:167-168 (1994).
Fan, Z. et al., “Three-dimensional structure of an Fv from a human IgM immunoglobulin” J. Mol. Biol., 228(1):188-207 (1992).
Fellouse, F.A. et al., “High-throughput Generation of Synthetic Antibodies from Highly Functional Minimalist Phage-displayed Libraries” J. Mol. Biol. 373(4):924-940 (2007).
Fellouse, F.A. et al., “Molecular Recognition by a Binary Code” J. Mol, Biol. 348(5):1153-1162 (2005).
Fellouse, F.A. et al., “Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition” PNAS, 101(34):12467-12472 (2004).
Fields, S. and Sternglanz, R., “The two-hybrid system: an assay for protein-protein interactions” Trends Genet.,10(8):286-292 (1994).
Fields. S. and Song, O., “A novel genetic system to detect protein-protein interactions” Nature, 340(6230):245-246 (1989).
Firth, A.E. and Patrick, W.M., “Glue-It and Pedel-AA: new programmes for analyzing protein diversity in randomized libraries” Nucleic Acids Res., 36:W281-W285 (2008).
Flyak, A. et al., In silico analysis of the structure of variable domains of mouse single-chain antibodies specific to the human recombinant interferon beta1b, Cytol Genet, 43(1):54-60 (2009).
Foote, J. and Winter, G., Antibody Framework Residues Affecting the Conformation of the Hypervariable Loops, J. Mol. Biol., 224:487-499 (1992).
Frazer, J. K., and J. D. Capra, “Immunoglobulins: Structure and Function”, in Fundamental Immunology, Fourth Edition, William E. Paul, ed., Lippincot-Raven Publishers, Philadelphia, pp. 41-43 and 51-52 (1999).
Frykman, S. and Srienc, F., “Quantitating secretion rates of individual cells: design of secretion assays” Biotechnol. & Bioeng., 59(2):214-226 (1998).
Fuh, G., “Synthetic antibodies as therapeutics” Expert Opin. Biol. Ther., 7(1):73-87 (2007).
Fusco, et al., In vivo construction of cDNA libraries for use in the yeast two-hybrid system. Yeast, 15(8):715-720 (1999).
Gietz et al., “Improved method for high efficiency transformation of intact yeast cells” Nucleic Acids Res., 20(6):1425 (1992).
Gietz, R.D. and R.H. Schiestl, “Transforming Yeast with DNA” Methods in Molecular and Cellular Biology (Invited Chapter), 5:255-269 (1995).
Gilfillan, S. et al., “Efficient immune responses in mice lacking N-region diversity” Eur. J. Immunol., 25(11):3115-3122 (1995).
Griffin et al., “Blockade of T Cell Activation Using a Surface-Linked Single-Chain Antibody to CTLA-4 (CD152)” J Immunol. 64(9):4433-4442 (2000).
Griffiths, A.D. et al., “Isolation of high affinity human antibodies directly from large synthetic repertoires,” EMBO J., 13(14):3245-3260 (1994).
Griffiths, A.D. et al., Human anti-self antibodies with high specificity from phage display libraries, EMBO J., 12(2):725-734 (1993).
Hamilton and Gerngross, “Glycosylation engineering in yeast: the advent of fully humanized yeast” Current Opinion in Biotechnology 18:387-392 (2007).
Hanes, J. et al., “Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display” Nat Biotechnol. 18:(12):1287-1292 (2000).
Hasan, N. and Szybalski, W., “Control of cloned gene expression by promoter inversion in vivo: construction of improved vectors with a multiple cloning site and the Ptac promoter” Gene, 56(1):145-151 (1987).
Hawkins, R.E. and Winter, G., “Cell selection strategies for making antibodies from variable gene libraries: trapping the memory pool” Eur. J. Immunol., 22(3):867-870 (1992).
He, M. and Taussig, M.J., “Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites” Nucleic Acids Res., 25(24):5132-5134 (1997).
Hoet, R.M. et al., “Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity” Nat. Biotechnol., 23(3):344-348 (2005).
Hoet, R.M. et al., “The importance of the light chain for the epitope specificity of human anti-U1 small nuclear RNA autoantibodies present in systemic lupus erythematosus patients” Journal of Immunology,163(6):3304-3312 (1999).
Holler et al., “In vitro evolution of a T cell recepto with high affinity for peptide / MHC” Proc. Natl. Acad. Sci. 97(10):5387-5392 (2000).
Holmes, P. and Al-Rubeai, M., “Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors” J. Immunol. Methods, 230(1-2):141-147 (1999).
Hoogenboom and Chames, “Natural and designer binding sites made by phage display technology” Immunology Today 21(8):371-378 (2000).
Hoogenboom, H.R. and Winter, G., “By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro” J. Mol. Biol., 227(2):381-388 (1992).
Hoogenboom, H.R. et al., “Antibody phage display technology and its applications” Immunotechnology, 4(1):1-20 (1998).
Hoogenboom, H.R. et al., “Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains” Nucleic Acids Research, 19(15):4133-4137 (1991).
Hoogenboom, H.R., “Designing and optimizing library selection strategies for generating high-affinity antibodies” Trends Biotechnol. 15(2):62-70 (1997).
Horwitz A.H. et al., “Secretion of functional antibody and Fab fragments from yeast cells” Proc. Natl. Acad. Sci. USA, 85(22):8678-8682 (1988).
Hoshino, Y. et al., “The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo” PNAS 109(1):33-38 (2012).
Hua, S.B. et al., “Construction of a modular yeast two-hybrid cDNA library from human EST clones for the human genome protein linkage map” Gene, 215(1):143-152 (1998).
Hua, S.B. et al., “Minimum length sequence homology required for in vivo cloning by homologous recombination in yeast” Plasmid, 38(2):91-96 (1997).
Huang et al., “A Majority of Ig H Chain eDNA of Normal Human Adult Blood Lymphocytes Resembles eDNA for Fetal Ig and Natural Autoantibodies”, J. Immunol., 151:5290-5300 (1993).
Huang, D. and Shusta, E.V. et al., “Secretion and surface display of green fluorescent protein using the yeast Saccharomyces cerevisiae” Biotechnol. Prog., 21(2):349-357 (2005).
Hubberstey and Wildeman, “Use of interplasmid recombination to generate stable selectable markers for yeast transformation: application to studies of actin gene control” Genome 33(5):696-706 (1990).
Huse, W.D. et al., “Generation of a large combinatorial library of the immunoglobin repertoire in phage lambda” Science 246(4935):1275-1281 (1989).
Huston, J.S. et al., “Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli” Proc. Natl. Acad. Sci. USA 85(16):5879-5883 (1988).
Imai and Yamamoto, “The fission yeast mating pheromone P-factor: its molecular structure, gene structure, and ability to induce gene expression and G1 arrest in the mating partner” Genes & Development 8:328-338 (1993).
International Preliminary Report of Patentability for PCT/US2011/044063, dated Jan. 31, 2013.
International Search Report and the Written Opinion of the International Searching Authority for PCT/US2011/044063, dated Feb. 14, 2012.
Ivanov, I.I. et al., “Development of the expressed Ig CDR-H3 repertoire is marked by focusing of constraints in length, amino acid use, and charge that are first established in early B cell progenitors,” J. Immunol., 174(12):7773-7780 (2005).
Ivanovski et al., “Somatic Hypermutation, Clonal Diversity, and Preferential Expression of the VH 51p1/VL kv325 Immunoglobin Gene Combination in Hepatitis C Virus-Associated Immunocytomas”, Blood, 91(7):2433-2442 (1998).
Jackson, K.J., et al., “Identifying highly mutated IGHD genes in the junctions of rearranged human immunoglobulin heavy chain genes,” J. Immunol. Methods, 324(1-2):26-37 (2007).
Jirholt, P. et al., “Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework”, Gene, 215(2):471-476 (1998).
Johns M. et al., “In vivo selection of sFv from phage display libraries” J. Immunol. Methods, 239(1-2):137-151 (2000).
Juul, L. et al., “The normally expressed kappa immunoglobulin light chain gene repertoire and somatic mutations studied by single-sided specific polymerase chain reaction (PCR); frequent occurrence of features often assigned to autoimmunity” Clin. Exp. Immunol., 109(1):194-203 (1997).
Kang, A.S. et al., “Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces” Proc. Natl. Acad. Sci., 88(10):4363-4666 (1991).
Karu et al., “Recombinant Antibody Technology” ILAR Journal 37(3) pp. 1-9 (1995).
Kieke et al., “High Affinity T Cell Receptors from Yeast Display Libraries Block T Cell Activation by Superantigens” J. Mol. Biol. 307:1305-1315 (2001).
Kieke, M.C. et al., “Isolation of anti-T cell receptor scFv mutants by yeast surface display”. Protein Eng. 10(11):1303-1310 (1997).
Kieke, M.C. et al., “Selection of functional T cell receptor mutants from a yeast surface-display library” Proc. Natl. Acad. Sci. USA, 96(10):5651-5656 (1999).
Klein, R. et al., “Expressed human immunoglobulin kappa genes and their hypermutation” Eur. J. Immunol., 23(12):3248-3262 (1993).
Knappik, A. et al., “Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides” J. Mol. Biol., 296(1):57-86 (2000).
Koiwai, O. et al., “Isolation and characterization of bovine and mouse terminal deoxynucleotidyltransferase cDNAs expressible in mammalian cells” Nucleic Acids Res., 14(14):5777-5792 (1986).
Kokubu F. et al., Complete structure and organization of immunoglobulin heavy chain constant region genes in a phylogenetically primitive vertebrate, The EMBO Journal, 7(7):1979-1988 (1988).
Kontermann, R.E. and Müller, R., “Intracellular and cell surface displayed single-chain diabodies”, J. Immunol. Methods, 226(1-2):179-188 (1999).
Kostrub, C.F. et al., “Use of gap repair in fission yeast to obtain novel alleles of specific genes” Nucleic Acids Research, 26(20):4783-4784 (1998).
Kranz and Voss, “Restricted reassociation of heavy and light chains from hapten-specific monoclonal antibodies” Proc. Natl. Acad. Sci. 78(9):5807-5811 (1981).
Kretzschmar, T. and von Rüden, T., “Antibody discovery: phage display” Curr. Opin. Biotechnol., 13(6):598-602 (2002).
Lake, D.F. et al., “Generation of diverse single-chain proteins using a universal (Gly4-Ser)3 encoding oligonucleotide” BioTechniques, 19(5):700-702 (1995).
Lee, C.E., et al., “Reconsidering the human immunoglobulin heavy-chain locus: 1. An evaluation of the expressed human IGHD gene repertoire” Immunogenetics, 57(12):917-925 (2006).
Lee, C.V. et al., “High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold” J. Mol. Biol. 340(5):1073-1093 (2004).
Lee, S.Y. et al., “Microbial cell-surface display” Trends Biotechnol., 21(1):45-52 (2003).
Leonard, B. et al., “Co-expression of antibody fab heavy and light chain genes from separate evolved compatible replicons in E. coli” J. Immunol. Methods, 317(1-2):56-63 (2006).
Lerner, R.A. et al.,“Antibodies without immunization” Science,258(5086):1313-314 (1992).
Lewin, B., “Genes V”, p. 99, Oxford University Press (1994).
Lieber et al., “Lymphoid V(D)J recombination: Nucleotide insertion at signal joints as well as coding joints”, Proc. Natl. Acad. Sci. USA, 85:8588-8592 (1988).
Lieber, M.R., “Site-specific recombination in the immune system”, FASEB J., 5:2934-2944 (1991).
Lin et al., “Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface” Appl. Microbiol. Biotechnol. 62:226-232 (2003).
Little, M. et al., “Generation of a large complex antibody library from multiple donors” J. Immunol Methods, 231(1-2):3-9 (1999).
Liu et al., “Normal Human IgD+IgM- Germinal Center B Cells can Express up to 80 Mutations in the Variable Region of their IgD Transcripts”, Immunity, 4:603-613 (1996).
Liu, Q. et al., “Rapid construction of recombinant DNA by the univector plasmid-fusion system” Methods Enzymol. 328:530-49 (2000).
Love J.C. et al., “A microengraving method for rapid selection of single cells producing antigen-specific antibodies” Nature Biotechnol. 24(6):703-707 (2006).
Lowman, H.B. et al., “Selecting high-affinity binding proteins by monovalent phage display” Biochemistry, 30(45):10832-10838 (1991).
Ma et al., “Association of Transport-Defective Light Chains with Immunoglobulin Heavy Chain Binding Protein” Molecular Immunology 27(7):623-630 (1990).
Ma, H. et al., “Plasmid construction by homologous recombination in yeast” Gene, 58(2-3):201-216 (1987).
MacCallum, R.M. et al., “Antibody-antigen interactions: contact analysis and binding site topography” J. Mol. Biol., 262(5):732-745 (1996).
Manivasakam and Schiestl, High efficiency transformation of Saccharomyces cerevisiae by electroporation Nucleic Acids Research 21(18)4414-4415 (1993).
Manz, R. et al., “Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix” Proc. Natl. Acad. Sci. USA, 92(6):1921-1925 (1995).
Marks, J.D. et al., “By-passing Immunization. Human Antibodies from V-gene Libraries Displayed on Phage” J. Mol. Biol., 222(3):581-597 (1991).
Marks, J.D. et al., “By-passing Immunization: building high affinity human antibodies by chain shuffling” Biotechnology (NY), 10(7):779-783 (1992).
Martin, A.C., “Accessing the Kabat antibody sequence database by computer” Proteins, 25(1):130-133 (1996).
Martin, A.C.and Thornton, J.M., “Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies” J. Mol. Biol., 263(5):800-815 (1996).
Matolcsy et al., “Molecular Characterization of IgA- and/or IgG-Switched Chronic Lymphocytic Leukemia B Cells”, Blood, 89(5):1732-1739 (1997).
Matsuda, F. et al., “The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus” J. Exp. Med., 188(11):2151-2162 (1998).
Mattila, P.S. et al., “Extensive allelic sequence variation in the J region of the human immunoglobulin heavy chain gene locus” Eur. J. Immunol., 9(:)2578-2582 (1995).
Mazor Y. et al., “Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli” Nature Biotecnol., 25(5):563-565 (2007).
McCafferty, J. et al., “Phage antibodies: filamentous phage displaying antibody variable domains” Nature, 348(6301):552-554 (1990).
McCormack, W.T., Comparison of latent and nominal rabbit Ig VHa1 allotype cDNA sequences. J. Immunol., 141(6):2063-2071 (1988).
Mcintosh et al., “Analysis of Immunoglobulin Gk Antithyroid Peroxidase Antibodies from Different Tissues in Hashimoto's Thyroiditis”, J. Clin. Endocrinol. Metab., 82(11):3818-3825 (1997).
Mimran, A. et al., “GCN4-Based Expression System (pGES): Translationally Regulated Yeast Expression Vectors” BioTechniques, 28(3):552-554, 556, 558-560 (2000).
Mollova, S. et al., “Visualising the immune repertoire” BMC Systems Biology, 1(S1):P30 (2007).
Mouquet et al., “Enhanced HIV-1 neutralization by antibody heteroligation”, PNAS, published on line before printing, Jan. 4, 2012, doi:10.1073/pnas.1120059109.
Mullinax, R.L. et al., “Identification of human antibody fragment clones specific for tetanus toxoid in a bacteriophage lambda immunoexpression library” Proc. Natl. Acad. Sci., 87(20):8095-8099 (1990).
Mézard, C. et al., “Recombination between similar but not identical DNA sequences during yeast transformation occurs within short stretches of identity” Cell, 70(4):659-670 (1992).
Nakamura, Y. et al., “Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain” Appl. Microbiol. Biotechnol., 57(4):500-505 (2001).
Nissim et al., “Antibody fragments from a ‘single pot’ phage display library as immunochemical reagents”, The EMBO Journal, 13(3):692-698 (1994).
Oldenburg, K.R et al., “Recombination-mediated PCR-directed plasmid construction in vivo in yeast” Nucleic Acids Res, 25(2):451-452 (1997).
Onda, T. et al., “A phage display system for detection of T cell receptor-antigen interactions” Mol Immunol., 32(17-18):1387-1397 (1995).
Orr et al., “Rapid Method for Measuring ScFv Thermal Stability by Yeast Surface Display” Biotechnol. Prog. 19:631-638 (2003).
Panka, D.J. et al., “Variable region framework differences result in decreased or increased affinity of variant anti-digoxin antibodies” Proc. Natl. Acad. Sci. USA, 85(9):3080-3084 (1988).
Parthasarathy, R. et al., “An immobilized biotin ligase: surface display of Escherichia coli BirA on Saccharomyces cerevisiae” Biotechnol. Prog., 21(6):1627-1631 (2005).
Pasqualini, R. and Ruoslahti, E., “Organ targeting in vivo using phage display peptide libraries” Nature, 380(6572):364-366 (1996).
Patel et al., “Parallel selection of antibody libraries on phage and yeast surfaces via a cross-species display” Protein Engineering, Design & Selection, pp. 1-9 (2011).
Patrick, W.M. et al., “User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries” Protein Engineering, 16(6):451-457 (2003).
Pearson, B.M. et al., “Construction of PCR-ligated long flanking homology cassettes for use in the functional analysis of six unknown open reading frames from the left and right arms of Saccharomyces cerevisiae chromosome XV” Yeast, 14(4):391-399 (1998).
Pepper et al., “A Decade of Yeast Surface Display Technology: Where Are We Now?” Combinatorial Chemistry & High Throughput Screening 11:127-134 (2008).
Persson, M.A. et al., “Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning” Proc. Natl. Acad. Sci. USA, 88(6):2432-2436 (1991).
Philibert, P. et al., “A focused antibody library for selected scFvs expressed at high levels in the cytoplasm” BMC Biotechnol., 7:81 (2007).
Pini, A. et al., “Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel” Journal of Biological Chemistry, 273(34):21769-21776 (1998).
Pluckthun, A., “Antibody engineering: Advances from the use of Escherichia coli expression systems” Biotechnology (NY) 9(6):545-551 (1991).
Pogue and Goodnow, “Gene Dose-dependent Maturation and Receptor Editing of B Cells Expressing Immumoglobulin (Ig)G1 or IgM/IgG1 Tail Antigen Receptors” J. Exp. Med 191(6) 1031-1043 (2000).
Powell, Richard and McLane, Kathryn Evans, “Construction, assembly and selection of combinatorial antibody libraries.” Genetic Engineering with PCR (Horton and Tait, Eds. 1998), vol. 5 of The Current Innovations in Molecular Biol series, Horizon Scientific Press, pp. 155-172.
Prabakaran, P. et al., “Expressed antibody repertoires in human cord blood cells: 454 sequencing and IMGT/High V-QUEST analysis of germline gene usage, junctional diversity, and somatic mutations” Immunogenetics (2011), pp. 1-14.
Prabakaran, P. et al., Supplemental “Expressed antibody repertoires in human cord blood cells: 454 sequencing and IMGT/High V-QUEST analysis of germline gene usage, junctional diversity, and somatic mutations” Immunogenetics (2011), pp. 1-6.
Proba, K. et al., “Antibody scFv fragments without disulfide bonds made by molecular evolution”. J Mol Biol. 275(2):245-253 (1998).
Pörtner-Taliana, A. et al., “In vivo selection of single-chain antibodies using a yeast two-hybrid system”, J. Immunol. Methods, 238(1-2):161-172 (2000).
Rader, C and Barbas, C.F. 3rd, “Phage display of combinatorial antibody libraries” Curr. Opin. Biotechnol., 8(4):503-508 (1997).
Rader, C. et al., “A phage display approach for rapid antibody humanization: designed combinatorial V gene libraries” Proc. Natl. Acad. Sci. USA, 95(15):8910-8915 (1998).
Rajan, S. and Sidhu, S., “Simplified Synthetic Antibody Libraries” Methods in Enzymology 202 3-23 (2012).
Rakestraw, J.A. and Wittrup, K.D., “Dissertation Abstracts International”, 68(1B):43, abstract only (2006).
Rakestraw, J.A. et al., “A Flow Cytometric Assay for Screening Improved Heterologous Protein Secretion in Yeast.” Biotechnol. Prog., 22(4):1200-1208 (2006).
Rauchenberger, R. et al., “Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3” J. Biol. Chem., 278(40):38194-38205 (2003).
Raymond, C.K. et al., “General method for plasmid construction using homologous recombination” BioTechniques, 26(1):134-138, 140-141 (1999).
Retter, I. et al., “VBASE2, an integrative V gene database” Nucleic Acids Res., 33:D671-D674 (2005).
Rhoden, J.J. and Wittrup, K.D., “Dose Dependence of Intratumoral Perivascular Distribution of Monoclonal Antibodies” Journal of Pharmaceutical Sciences 101(2): 860-867 (2012).
Roitt, I. et al., “Immunoglobulins: A Family of Proteins”, in Immunology, Sixth Edition, Mosby, Harcourt Publishers Limited, London, pp. 67-70 and 80 (2001).
Roman, T. et al., Evolution of specific antigen recognition: size reduction and restricted length distribution of the CDRH3 regions in the rainbow trout, Eur J Immunol, 25(1):269-73 (1995).
Rothe, C. et al., The Human Combinatorial Antibody Library HuCAL GOLD Combines Diversification of All Six CDRs According to the Natural Immune System with a Novel Display Method for Efficient Selection of High-Affinity Antibodies, J. Mol. Biol., 376:1182-1200 (2008).
Rudikoff, S. et al., “Single amino acid substitution altering antigen-binding specificity” Proc. Natl. Acad. Sci. USA, 79(6):1979-1983 (1982).
Ruiz, M. et al., “The human immunoglobulin heavy diversity (IGHD) and joining (IGHJ) segments.” Exp. Clin. Irnrnunogenet, 16(3):173-184 (1999).
Ryu, D.D. and Nam, D.H., “Recent progress in biomolecular engineering” Biotechnol Prog, 16(1):2-16 (2000).
Saada, R. et al., “Models for antigen receptor gene rearrangement: CDR3 length” Immunol. Cell Biol., 85(4):323-332 (2007).
Sahota et al., “Ig VH Gene Mutational Patterns Indicate Different Tumor Cell Status in Human Myeloma and Monoclonal Gammopathy of Undetermined Significance”, Blood, 87(2):746-755 (1996).
Sblattero, D. and Bradbury, A., “A definitive set of oligonucleotide primers for amplifying human V regions” Immunotechnology, 3(4):271-278 (1998).
Sblattero, D. and Bradbury, A., “Exploiting recombination in single bacteria to make large phage antibody libraries” Nat. Biotechnol., 18(1):75-80 (2000).
Scaviner, D. et al., “Protein displays of the human immunoglobulin heavy, kappa and lambda variable and joining regions.” Exp. Clin. Immunogenet., 16(4):234-240 (1999).
Schable, K.F. and Zachau, H.G., “The variable genes of the human immunoglobulin kappa locus” Biol. Chem. Hoppe Seyler, 374(11):1001-1022 (1993).
Schoonbroodt, S. et al., “Oligonucleotide-assisted cleavage and ligation: a novel directional DNA cloning technology to capture cDNAs. Application in the construction of a human immune antibody phage-display library” Nucleic Acids Research, 33(9):e81:2-14 (2005).
Schreuder et al., “Immobilizing proteins on the surface of yeast cells” Trends Biotechnol. 14(4)115-120 (1996).
Schreuder et al., “Targeting of a Heterologous Protein to the Cell Wall of Saccharamyces cerevisiae” Yeast 9:399-409 (1993).
Schwager, J. et al., Amino acid sequence of heavy chain from Xenopus levis IgM deduced from cDNA sequence: Implications for evolution of immunoglobulin domains, Proc. Natl. Acad. Sci. USA, 85:2245-2249 (1988).
Seed, B., “Developments in expression cloning.” Current Opinion in Biotechnology, 6(5):567-573 (1995).
Sharifmoghadam, et al., “The fission yeast Map4 protein is a novel adhesin required for mating” FEBS Letters 580:4457-4462 (2006).
Sheets, M.D. et al., “Efficient construction of a large nonimmune phage antibody library: The production of high-affinity human single-chain antibodies to protein antigens.” Proc. Natl. Acad. Sci. USA, 95(11):6157-6162 (1998).
Shen et al., “Delineation of Functional Regions within the Subunits of the Saccharomyces cerevisiae Cell Adhesion Molecule a-Agglutinin” The Journal of Biological Chemistry 276(19):15768-15775 (2001).
Shimoda et al., “Natural polyreactive immunoglobulin A antibodies produced in mouse Peyer's patches”, Immunology, 97:9-17 (1999).
Short, M.K. et al., “Contribution of antibody heavy chain CDR1 to digoxin binding analyzed by random mutagenesis of phage-displayed Fab 26-10” J. Biol. Chem., 270(48):28541-28550 (1995).
Shusta, E.V. et al., “Directed evolution of a stable scaffold forT-cell receptor engineering” Nat. Biotechnol.,18(7):754-759 (2000).
Shusta, E.V. et al., “Yeast Polypeptide Fusion Surface Display Levels Predict Thermal Stability and Soluble Secretion Efficiency” J. Mol. Biol. 292 949-956 (1999).
Sidhu, S.S, et al., “Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions” J. Mol. Biol. 338(2):229-310 (2004).
Skerra, A., “Alternative non-antibody scaffolds for molecular recognition” Current Opin. Biotechnol. 18(4):295-304 (2007).
Smith, G., “Homologous Recombination Near and Far from DNA Breaks: Alternative Roles and Contrasting Views” Annu Rev Genet 35:243-274 (2001).
Smith, G.P. and Petrenko, V.A., “Phage Display” Chern. Rev., 97(2):391-410 (1997).
Soderlind, E. et al., “Domain libraries: synthetic diversity for de novo design of antibody V-regions” Gene, 160(2): 269-272 (1995).
Soderlind, E. et al., “The immune diversity in a test tube—non-immunised antibody libraries and functional variability in defined protein scaffolds” Combinatorial Chemistry & High Throughput Screening, 4(5):409-416 (2001).
Souriau and Hudson, “Recombinant antibodies for cancer diagnosis and therapy” Expert Opin. Biol. Ther. 1(5):845-855 (2001).
Souto-Carneiro, M.M. et al., “Characterization of the Hurnan Ig Heavy Chain Antigen Binding Complementarity Determining Region 3 Using a Newly Developed Software Algorithm, JOINSOLVER,” J. Immunol., 172(11):6790-6802 (2004).
Starwalt et al., “Directed evolution of a single-chain class II MHC product by yeast display” Protein Engineering 16(2):147-156 (2003).
Stewart, A.K. et al., “High-frequency representation of a single VH gene in the expressed human B cell repertoire” J. Exp. Med., 177(2):409-418 (1993).
Stohl, W. and Hilbert, D.M., “The discovery and development of belimumab: the anti-BLyS-lupus connection” Nature Biology 30(1):69-77 (2012).
Struhl et al., “High-frequency transformation of yeast: Autonomous replication of hybrid DNA molecules” Proc. Natl. Acad. Sci. 76(3):1035-1039 (1979).
Suzuki, M. et al., “Light chain determines the binding property of human anti-dsDNA IgG autoantibodies” Biochem. Biophys. Res. Commun., 271(1):240-243 (2000).
Swers et al., “Integrated Mimicry of B Cell Antibody Mutagenesis Using Yeast Homologous Recombination” Mol. Biotechnol. 46:57-69 (2011).
Swers, J.S. et al., “Shuffled antibody libraries created by in vivo homologous recombination and yeast surface display” Nuc. Acids. Res. 32(3), e36, 1-8 (2004).
Tavladoraki, P. et al., “Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack” Nature, 366(6454):469-472 (1993).
Terskikh, A.V. et al., “Peptabody”: A new type of high avidity binding protein Proc. Natl. Acad., 94(5):1663-1668 (1997).
Tomlinson, I.M. et al., “The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops” Journal of Molecular Biology, 227(3):776-798 (1992).
Tomlinson, I.M. et al., “The structural repertoire of the human V kappa domain” EMBO J., 14(18):4628-4638 (1995).
Tsurushita, N. et al., “Phage display vectors for in vivo recombination of immunoglobulin heavy and light chain genes to make large combinatorial libraries” Gene, 172(1):59-63 (1996).
Ueda and Tanaka, “Cell Surface Engineering of Yeast: Construction of Arming Yeast with Biocatalyst” Journal of Bioscience and Bioengineering 90(2):125:136 (2000).
Ueda, M. and Tanaka, A., “Genetic immobilization of proteins on the yeast cell surface” Biotechnology Advances, 18(2):121-140 (2000).
van den Beucken et al., “Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries” FEBS Letters 546:288-294 (2003).
VanAntwerp and Wittrup, “Fine Affinity Discrimination by Yeast Surface Display and Flow Cytometry” Biotechnol. Prog. 16:31-37 (2000).
Vander Vaart, J.M. et al., “Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins” Appl. Environ. Microbiol., 63(2):615-620 (1997).
Vaswani, S.K. and Hamilton, R.G., “Humanized antibodies as potential therapeutic drugs” Ann. Allergy Athma Immunol., 81(2):105-115 (1998).
Vendel, M.C. et al., “Secretion from bacterial versus mammalian cells yields a recombinant scFv with variable folding properties” Arch. Biochem. Biophys. 1-6 (2012).
Visintin. M. et al., “Selection of antibodies for intracellular function using a two-hybrid in vivo system.”, Proc. Natl. Acad. Sci. USA 96(21):11723-11728 (1999).
Volpe, J.M. and Kepler, T.B., “Genetic correlates of autoreactivity and autoreactive potential in human Ig heavy chains” Immunome Res., 5:1 (2009).
Volpe, J.M. et al., “SoDA: Implementation of a 3D Alignment Algorithm for Inference of Antigen Receptor Recombinations,” Bioinforrnatics, 22(4):438-444 (2006).
Vugmeyster, Y. et al., “Complex Pharmacokinetics of a Humanized Antibody Against Human Amyloid Beta Peptide, Anti-Abeta Ab2, in Nonclinical Species” Pharm Res, 28:1696-1706 (2011).
Walhout, A.J. et al., “GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes” Methods in Enzymology, 328:575-92 (2000).
Wang, Y. et al., “Many human immunoglobulin heavy-chain IGHV gene polymorphisms have been reported in error” Immunol. Cell. Biol., 86(2):111-115 (epub 2007-2008).
Weaver-Feldhaus, J.M. et al., “Yeast mating for combinatorial Fab library generation and surface display” FEBS Lett., 564(1-2):24-34 (2004).
Welschof et al., “Amino acid sequence based PCR primers for amplification of rearranged human heavy and light chain immunoglobulin variable region genes”, J. Immunol. Meth., 179:203-214 (1995).
Wen et al., “T cells recognize the VH complementarity-determining region 3 of the idiotypic protein of B cell non-Hodgkin's lymphoma”, Eur. J. Immunol., 27:1043-1047 (1997).
Wentz, A.E. and Shusta, E.V., “A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins” Appl. Environ. Microbiol., 73(4):1189-1198 (2007).
Winkler et al., “Analysis of immunoglobulin variable region genes from human IgG anti-DNA hybridomas”, Eur. J. Immunol., 22:1719-1728 (1992).
Winter G. and Milstein C., “Man-made antibodies” Nature, 349(6307):293-299 (1991).
Winter, Greg, “Synthetic human antibodies and a strategy for protein engineering”, FEBS Letters, 430:92-94 (1998).
Wood et al., “The synthesis and in vivo assembly of functional antibodies in yeast” Nature 314:(6010)446-449 (1985).
Woods and Gietz, “High-Efficiency Transformation of Plasmid DNA into Yeast”, Methods in Molecular Biology, 177:85-97 (2001).
Wu, H. et al., “Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues” J. Mol. Biol., 294(1):151-162 (1999).
Wörn, A. and Plückthun, A., “An intrinsically stable antibody scFv fragment can tolerate the loss of both disulfide bonds and fold correctly.” FEBS Lett., 427(3):357-361 (1998).
Xu, J.L. and Davis, M.M., “Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities” Immunity, 13(1):37-45 (2000).
Yang, W.P. et al., “CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range” J. Molecular Biology, 254(3):392-403 (1995).
Yeung and Wittrup, “Quantitative Screening of Yeast Surface-Displayed Polypeptide Libraries by Magnetic Bead Capture” Biotechnol. Prog. 18(2):212-220 (2002).
Zemlin, M. et al., “Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures” J. Mol. Biol. 334(4):733-749 (2003).
Zeng et al., “CD146, an epithelial-mesenchymal transition inducer, is associated with triple-negative breast cancer”, published on line before print Dec. 30, 2011, doi:1010.1073/pnas.1111053108.
Zucconi, A. et al., “Domain repertoires as a tool to derive protein recognition rules” FEBS Letters, 480(1):49-54 (2000).
Related Publications (1)
Number Date Country
20180371454 A1 Dec 2018 US
Provisional Applications (1)
Number Date Country
61365194 Jul 2010 US
Divisions (2)
Number Date Country
Parent 15151626 May 2016 US
Child 16126987 US
Parent 13810570 US
Child 15151626 US