Kondejewski et al. Design, Synthesis and Characterization of a peptide B-Sheet Model, Peptides: Chemistry, Structure and Biology, Ed. Pranin et al. Scientific Ltd. pp. 68-70, 1996.* |
Katsu et al. Mode of Action of the Gramicidin S Analogs Lacking Hydrophobic Amino Acid Residues on Biomembranes, Chem. Pharm. Bull. 38(10) 2280-2881 (1990).* |
Altmann and Mutter, “A General Strategy for the De Novo Design of Proteins—Template Assembled Synthetic Proteins,” Int. J. Biochem. 22(9):947-956, 1990. |
Angus et al., “Mapping and Characterization of Two Mutations to Antibiotic Supersusceptibility in Pseudomonas aeruginosa,” J. of General Microbiology 133:2905-2914, 1987. |
Braunschweiler and Ernst, “Coherence Transfer by Isotropic Mixing: Application to Proton Correlation Spectroscopy,” J. of Magnetic Resonance 53:521-528, 1983. |
Clark, “Novel Antibiotic Hypersensitive Mutants of Escherichia coli Genetic Mapping and Chemical Characterization,” FEMS Microbiology Letters 21:189-195, 1984. |
Creighton, Proteins: Structures and Molecular Principles, W. H. Freeman and Company, New York, 1983. |
Erickson and Merrifield, The Proteins, vol. II, Neurath and Hill eds., Academic Press, New York, 1976, Chapter 3, “Solid-Phase Peptide Synthesis,” 255-527. |
Guo et al., “Prediction of Peptide Retention Times in Reversed-Phase High-Performance Liquid Chromatography,” J. of Chromatography 359:499-517, 1986. |
Hancock and Wong, “Compounds Which Increase the Permeability of the Pseudomonas aeruginosa Outer Membrane,” Antimicrobial Agents and Chemotherapy 26(1):48-52, 1984. |
Hancock, “Aminoglycoside Uptake and Mode of Action—With Special Reference to Streptomycin and Gentamincin: Effects of Aminoglycosides on Cells,” J. of Antimicrobial Chemotherapy 8:429-445, 1981. |
Hull et al., “The Crystal Structure of a Hydrated Gramicidin S-Urea Complex,” Nature 275:206-207, 1978. |
Izumiya et al., Synthetic Aspects of Biologically Active Cyclic Peptides: Gramicidin S and Tyrocidines, Kodansha Ltd., Tokyo; Halsted Press, New York, 1979, 49-89. |
Kitagawa et al., “Convenient One-Pot Method for Formylation of Amines and Alcohols Using Formic Acid and 1,1′-Oxalyldiimidazole,” Chem. Pharm. Bull. 42(8):1655-1657, 1994. |
Klostermeyer, “Synthese von Gramicidin S mit Hilfe der Merrifield-Methode,” Chem. Ber. 101:2823-2831, 1968 (+English Summary). |
Krause et al., “Conformation of a Water-Soluble β-Sheet Model Peptide,” Int. J. Peptide Protein Res. 48:559-568, 1996. |
Kreiswirth et al., “The Toxic Shock Syndrome Exotoxin Structural Gene is Not Detectably Transmitted by a Prophage,” Nature 305:709-712, 1983. |
Kumar et al., “A Two-Dimensional Nuclear Overhauser Enhancement (2D NOE) Experiment for the Elucidation of Complete Proton-Proton Cross-Relaxation Networks in Biological Macromolecules,” Biochemical and Biophysical Research Communications 95(1):1-6, 1980. |
Loh et al., “Use of the Fluorescent Probe 1-N-Phenylnapthylamine to Study the Interactions of Aminoglycoside Antibiotics with the Outer Membrane of Pseudomonas aeruginosa,” Antimicrobial Agents and Chemotherapy 26(4):546-551, 1984. |
Losse and Neubert, “Synthese Von Gramicidin S Durch Neue Varianten Der Festphasensynthese,” Tetrahedron Letters 15:1267-1270, 1970 (+English Summary). |
Maeda et al., “Purification and Characterization of a New Metal Protease Which Hydrolyzes the Cyclic Decapeptide, Gramicidin S,” J. of Fermentation and Bioengineering 75(3):173-177, 1993. |
Moore et al., “Interaction of Polycationic Antibiotics with Pseudomonas aeruginosa Lipopolysaccharide and Lipid A Studied by Using Dansyl-Polymyxin,” Antimicrobial Agents and Chemotherapy 29(3), 496-500, 1986. |
Neu, “The Crisis in Antibiotic Resistance,” Science 257:1064-1073, 1992. |
Parker et al., “New Hydrophilicity Scale Derived from High-Performance Liquid Chromatography Peptide Retention Data: Correlation of Predicted Surface Residues with Antigenicity and X-ray-Derived Accessible Sites,” Biochemistry 25:5425-5432, 1986. |
Peterson et al., “Decrease Binding of Antibiotics to Lipopolysaccharides from Polymyxin-Resistant Strains of Escherichia coli and Salmonella typhimurium,” Antimicrobial Agents and Chemotherapy 31(2):230-237, 1987. |
Piantini et al., “Multiple Quantum Filters for Elucidating NMR Coupling Networks,” J. Am. Chem. Soc. 104:6800-6801, 1982. |
Rackovsky and Scheraga, “Intermolecular Anti-Parallel β Sheet: Comparison of Predicted and Observed Conformations of Gramicidin S,” Proc. Natl. Acad. Sci. 77(12):6965-6967 1980. |
Rothemund et al., “Peptide Destabilization by Two Adjacent D-Amino Acids in Single-Stranded Amphipathic α-Helices,” Peptide Research 9:79-87, 1996. |
Sato et al., “Studies of Peptide Antibiotics. XXXV. Synthesis of Gramicidin S by a Fragment Solid-Phase Method,” Bulletin of the Chemical Society of Japan 50(8):1999-2004, 1977. |
Sawyer et al., “Interaction of Macrophage Cationic Proteins with the Outer Membrane of Pseudomonas aeruginosa,” Infection and Immunity 56(3):693-698, 1988. |
Schwyzer and Ludescher, “Untersuchungen über die Konformation des cyclischen Hexapeptids cyclo-Glycyl-L-prolyl-glycyl-glycyl-L-prolyl-glycyl mittels protonenmagnetischer Resonanz und Parallelen zum Cyclodecapeptid Gramicidin S,” Helvetica Chimica Acta 52(7):2033-2040, 1969 (English Summary on page 2033). |
Schwyzer et al., “Verdoppelungserscheinungen beim ringschluss von Peptiden V. Relative Bedeutung der sterischen Hinderung und der Assoziation über Wasserstoff-Brücken bei Tripeptiden. Spektroskopische Versuche zur Konformationsbestimmung,” Fasciculus 47(54):441-464, 1964 (English Summary on p. 463). |
Sönnichsen et al., “Effect of Trifluoroethanol on Protein Secondary Structure: An NMR and CD Study Using a Synthetic Actin Peptide,” Biochemistry 31:8790-8798, 1992. |
States et al., “A Two-Dimensional Nuclear Overhauser Experiment with Pure Absorption Phase in Four Quandrants,” Journal of Magnetic Resonance 48:286-292, 1982. |
Tamaki et al., “Adsorption of Cyclic Peptides Analogous to Gramicidin S and Gratisin onto Octadecylsilica Stationary Phase and Bacterial Cells,” J. of Chromatography 413:287-292, 1987. |
Wishart et al., “The Chemical Shift Index: A Fast and Simple Method for the Assignment of Protein Secondary Structure Through NMR Spectroscopy,” Biochemistry 31:1647-1651, 1992. |
Woody, “Circular Dichroism,” Methods in Enzymology 246:34-71, 1995. |
Yukioka et al., “Enzymatic Hydrolysis of Gramicidin S,” The J. of Biochemistry 60(3):295-302, 1996. |
Zhou et al., “Effect of Preferred Binding Domains on Peptide Retention Behavior in Reversed-Phase Chromatography: Amphipathic α-Helices,” Peptide Research 3:8-20, 1990. |
Ando, S., et al., “Studies of Peptide Antibiotics,” Int. J. Peptide Protein Res., 25:15-26 (1985). |
Ando, S., et al., “Antimicrobial Specificity and Hemolytic Activity of Cyclized Basic Amphiphilic B-structural Model Peptides and their Interactions with Phospholipid Bilayers,” Biochim. Biophys. Acta, 1147:42-49 (1993). |
Ando, S., et al., “Drastic Reduction of Antimicrobial Activity by Replacement of Orn Residues with Lys in Cyclized Amphiphilic β-structural Model Peptides,” Int. J. Peptide Protein Res., 46:97-105 (1995). |
Ando, Setsuko et al., “Biological Activities of Basic Amino Acid Rich Gramicidin S-Related Cyclic Peptides,” FFI Journal, 170:75-81 (1996). |
Aoyagi, Haruhiko et al., “Design and synthesis of bioactive cyclic peptides, AM-toxin I and gramicidin S,” Journal of Molecular Graphics, 5:35-40 (Mar. 1987). |
Aoyagi, H., et al., “Syntheses of Antibacterial Peptides, Gramicidin S Analogs and Designed Amphiphilic Oligopeptides,” Tetrahedron, 44:877-866 (1988). |
Gough, M., et al., “Antiendotoxin Activity of Cationic Peptide Antimicrobial Agents,” Infection and Immunity, 64:4922-4927 (1996). |
Katayama, T., et al., “Quantitative Structure-Hydrophobicity and Structure-Activity Relationships of Antibacterial Gramicidin S Analogs,” J. Pharm. Sci., 83:1357-1362 (1994). |
Katsu, T., et al., “Mode of Action of the Gramicidin S Analogs Lacking Hydrophilic Amino Acid Residues on Biomembranes,” Chem. Pharm. Bull., 38:2880-2881 (1990). |
Komiya, Ryoichi et al., “Interaction of Basic Tetradecapeptides Containing Isoleucine or Leucine Residues with Phospholipid Membrane and Their Hemolytic Activities,” Protein Research Foundation, Osaka 201-204 (1996). |
Kondejewski, L. H., et al., Chapter 22: “Design, Synthesis and Characterization of a Peptide β-sheet Model,” in P.T.P. Kaumaya and R.S. Hodges, Eds., (Mayflower Scientific Ltd., 1996). |
Kondejewski, L.H., et al., “Gramicidin S is Actice Against Both Gram-Positive and Gram-Negative Bacteria,” Int. J. Peptide Protein Res., 47:460-466 (1996). |
Krauss, E.M. and Chan, S.I., “Complexation and Phase Transfer of Nucleic Acids by Gramicidin S,” Biochmistry, 23:73-77 (1984). |
Legendre, J.-Y. and Szoka, F.C.Jr., “Cyclic Amphipathic Peptide-DNA Complexes Mediate High-Efficiency Transfection of Adherent Mammalian Cells”, Proc. Natl. Acad. Sci., 90:893-897 (1993). |
Matsushima, S., et al., “Immunosuppressive Effect of Gramicidin S on Experimental Ocular Neuritis and Allergic Encephalomyelitis,” Jpn. J. Ophthamol., 34:306-313 (1990). |
Ono, S., et al., “Environment-Dependent Conformation and Antimicrobial Activity of a Gramicidin S Analog Containing Leucine and Lysine Residues,” FEBS Lett., 220:332-336 (1987). |
Tamaki, M., et al., “Synthesis of Gramicidin S Analogues Consisting of Fourteen Amino Acid Residues,” Bull. Chem. Soc. Jpn., 61:3925-3929 (1988). |
Tamaki, M. and Akabori, S., “Synthesis and Properties of Gramicidin S Analogs Consisting of Eight Amino Acid Residues,” Bull. Chem. Soc. Jpn., 64:2569-2571 (1991). |
Tamaki, M., et al., “Role of Ring Size on the Secondary Structure and Antibiotic Activity of Gramicidin S,” Int. J. Peptide Protein Res., 46:299-302 (1995). |
Thennarasu, S. and Nagaraj, R., “Design of 16-residue Peptides Possessing Antimicrobial and Hemolytic Activities or Only Antimicrobial Activity from an Inactive Peptide,” Int. J. Peptide Protein Res., 46:480-486 (1995). |
Vaara, M. and Porro, M., “Group of Peptides that Act Synergistically with Hydrophobic Antibiotics Against Gram-Negative Enteric Bacteria,” Antimicrob. Agents Chemother., 40:1801-1805 (1996). |
Wishart, D.S., et al., “A Method for the Facile Solid-Phase Synthesis of Gramicidin S and its Analogs,” Letters in Peptide Science, 3:53-60 (1996). |