Technical Field
The present invention relates to an antiseptic cap equipped syringe, and more specifically to antiseptic caps disposed on syringes.
Background Art
Catheters are widely used to treat patients requiring a variety of medical procedures. Catheters can either be acute, or temporary, for short-term use or chronic for long-term treatment. Catheters are commonly inserted into central veins (such as the vena cava) from peripheral vein sites to provide access to a patient's vascular system. Catheters offer many advantages for patients; for example, chronic catheters provide ready access without repeated punctures or repeated vessel cannulation for administration of large volumes of fluids, nutrients and medications and for withdrawal of blood on an intermittent basis. With respect to the use of catheters for infusion of fluids, examples include the infusion of drugs, electrolytes or fluids used in chemotherapy. In chemotherapy, catheters are used for infusion of drugs on an intermittent basis, ranging from daily to weekly. Another example includes the use of catheters in hyperalimentation treatment, wherein the catheters are usually used for infusion of large volumes of fluids.
For hemodialysis, catheters are commonly used—usually three times per week—for aspiration of blood for dialysis treatment and rapid return of the blood to circulation after treatment. Although a preferred mode of vascular access for a hemodialysis patient involves using an arteriovenous (AV) fistula of either the upper or lower extremities or an arteriovenous “bridge” graft (typically utilizing PTFE), use of these access devices is not always possible or desirable. When either of these modes of vascular access is not available, for example, due to a paucity of adequate blood vessels for creation of AV “shunts” or due to nonoptimally functioning established AV shunts, a large bore venous line catheter is typically required for hemodialysis. Catheters used for hemodialysis usually include two relatively large diameter lumens (usually molded as one catheter) for aspiration and rapid return of blood required during the hemodialysis procedure. One lumen of such a catheter is used for aspiration, or removal, of blood, while the other lumen is used for returning the blood to the patient's bloodstream.
Catheter connections, such as, for example, connections of catheters to dialysis machine tubing, to IV line tubing, to infusion ports and to catheter caps, which are used to seal the end of a catheter to protect the sterility of the catheter and prevent fluid loss and/or particle contamination, are most often made utilizing the medical industry's standardized Luer taper fittings. These fittings, which may either be male couplings or female couplings, include a tapered end of standardized dimensions. Coupling is made by the press-fit of mating parts. A threaded lock-fit or other type of securing mechanism is commonly utilized to ensure the integrity of the pressure fit of the Luer fittings.
Catheters, especially chronic venous catheters, provide challenges in their use. One such challenge is that such catheters can become occluded by a thrombus. In order to prevent clotting of catheters in blood vessels between uses, such as, for example, between dialysis treatments when the catheter is essentially nonfunctioning and dwells inside a “central” vein (i.e. superior vena cava, inferior vena cava, iliac, etc.), the lumens of the catheter are often filled with a lock solution of a concentrated solution of the commonly used anticoagulant, heparin (up to 10,000 units of heparin per catheter lumen).
As used herein, the terms “lock solution” or “locking solution” refer to a solution that is injected or otherwise infused into a lumen of a catheter with the intention of allowing a substantial portion of the lock solution to remain in the lumen and not in the systemic blood circulation until it is desired or required to access that particular lumen again, typically for additional treatment, i.e., infusion or withdrawal of fluid. In addition, attention has been given to the development of alternative lock solutions with the goal of improving the patency rates of vascular catheters. For example, lower-alcohol containing locking solutions are under development wherein the lower alcohols include ethanol, propanol and butanol. Anti-microbial and or anticoagulant additives can optionally be added to the lower-alcohol containing locking solution. Preferably the lock solution can remain in the lumen for a desired amount of time lasting from about 1 hour to 3 or 4 days or longer.
For the reasons set forth above, significant care must be taken when infusing medications, nutrients and the like into a catheter, and when “locking” a catheter between uses, to minimize the risks associated with an indwelling catheter, including the risk of thrombosis or clotting, the risk of excessive anticoagulating and the risk of infection. Syringes are typically used to administer the required amount of catheter lock solution (determined by the catheter manufacturer) into an indwelling catheter after a given use. Flush procedures also require that care be taken to prevent blood reflux into the catheter. Reflux in I.V. therapy is the term commonly used to describe the fluid that is drawn back into the catheter after a flush procedure. The concern is that the reflux fluid contains blood or solution that could cause the catheter to occlude. To ensure that reflux does not occur, flush procedures suggest two techniques: 1) at the end of the flush solution delivery, the user maintains pressure on the syringe plunger while clamping the I.V. line; or 2) while delivering the last 0.5 ml of flush solution disconnect the syringe from the I.V. port or clamp the IV. line. Either technique maintains positive pressure on the fluid in the catheter to prevent reflux of fluid and blood.
It has been found that the use of antiseptic caps, such as the cap manufactured and sold by Excelsior under the trademark SwabCap, greatly reduce the incidence of infections, resulting in, among other things, significant health benefits for patients and vast cost savings.
In light of the above-described problems, there is a continuing need for advancements in catheter lock techniques, devices and procedures to improve the safety and efficacy of catheter locking procedures and of overall patient care.
The present invention relates to an antiseptic cap and syringe combination. The combination includes a syringe barrel having an access point connection, and a tip cap having a proximal chamber and a distal chamber. The proximal chamber releasably receives and engages the access point connection of the syringe. The distal chamber removably receives and engages an antiseptic cap. In one embodiment, the distal chamber has a plurality of ribs for coacting with a plurality of ribs on the antiseptic cap to prevent relative rotational movement between the distal chamber and the antiseptic cap.
In one embodiment, a combination syringe tip cap and antiseptic cap includes a first chamber having means for releasably engaging an access point connection on a syringe. A second chamber is formed integrally with the first chamber. An antiseptic cap is positioned within the second chamber, and means for releasably engaging the antiseptic cap is provided in the second chamber.
A method of storing an antiseptic cap of a syringe is provided. The method includes the steps of providing a syringe having a barrel, a plunger, an access point connection and a tip cap, providing a chamber on the syringe, and releasably engaging an antiseptic cap within the chamber.
A method of using an antiseptic cap disposed on a tip cap of a syringe having a barrel, a plunger, an access point connection and a tip cap is also provided. The method includes the steps of removing the tip cap from the syringe, and using the syringe. The method further includes the step of removing a cover over the antiseptic cap. Steps of using a tip cap to position the antiseptic cap on an access point, and removing the tip cap from engagement with the antiseptic cap, leaving the antiseptic cap on the access point are included.
In one embodiment, a method of using an antiseptic cap assembly disposed on a tip cap of a syringe is provided. The method includes the steps of removing the tip cap from the syringe, using the syringe, and removing the antiseptic cap from the tip cap. Also, the method includes the step of positioning the antiseptic cap on an access point. The step of removing the antiseptic cap from the tip cap includes removing an antiseptic cap assembly from the tip cap, the antiseptic cap assembly including an antiseptic cap and a cap holder, attaching the antiseptic cap assembly to an access point, and removing the cap holder from the antiseptic cap.
In one embodiment, a combination syringe tip cap and antiseptic cap includes a first chamber having means for releasably engaging an access point connection on a syringe, and a second chamber formed integrally with the first chamber. An antiseptic cap assembly has an antiseptic cap, and the antiseptic cap assembly is removably positioned within the second chamber.
In another embodiment, an antiseptic cap and syringe combination includes a syringe barrel having an access point connection, and a plunger received at one end by the barrel. The plunger has a chamber removeably receiving an antiseptic cap assembly at a second end. A tip cap has a proximal chamber for releasably receiving the access point connection of the syringe, and a distal chamber for removeably receiving a second antiseptic cap assembly.
In another embodiment, an antiseptic cap and syringe combination includes a syringe barrel having an access point connection, and a plunger received at one end by the barrel. A chamber is interconnected with the syringe barrel for removeably receiving an antiseptic cap assembly.
In another embodiment, an antiseptic cap and syringe combination includes a syringe barrel having an access point connection and an antiseptic cap. A flexible ring for engaging the access point, and a chamber interconnected with the flexible ring for removeably receiving an antiseptic cap are provided.
In another embodiment, an antiseptic cap and syringe combination includes a syringe barrel having an access point connection and a tip cap including a proximal chamber releasably receiving and engaging the access point connection of the syringe. A distal projection extends from the tip cap, and an antiseptic cap assembly has a chamber for receiving the distal projection of the tip cap at one end and an antiseptic cap at the other end.
In another embodiment, an antiseptic cap and syringe combination includes a syringe barrel having an access point connection, a tip cap including a proximal chamber for engaging the access point connection and a distal attachment chamber, and a cap assembly. The cap assembly includes an engagement protrusion for removeably engaging the tip cap.
a,b are, respectively, side views in cutaway showing an antiseptic cap with a centrally disposed actuation post mounted on a valve with the valve in the unactivated and activated positions;
a,b are perspective front and back views of an antiseptic cap without a thread cover connected to a Cardinal SMART SITE access site;
a,b are perspective front and back views of an antiseptic cap with a thread cover connected to a Hospira (ICU) C1000 Clave access device;
a,b are perspective front and back views of an antiseptic cap without a thread cover connected to a Hospira (ICU) C1000 Clave access device;
a,b are perspective front and back views of an antiseptic cap with a thread cover connected to a B. Braun ULTRASITE access device;
a,b are perspective front and back views of an antiseptic cap without a thread cover connected to a B. Braun ULTRASITE access device;
a,b are perspective front and back views of an antiseptic cap with a thread cover connected to a Rymed INVISION PLUS access device;
a,b are perspective front and back views of an antiseptic cap without a thread cover connected to a Rymed INVISION PLUS access device;
While this invention is susceptible of embodiment In many different forms, there is shown in the drawings, and will be described herein in detail, specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.
In one preferred form of the invention the chamber 18 of the syringe assembly 10 will be filled with a locking solution or a flush solution for use with an indwelling, central venous catheter. The manner of using a locking or flush solution with a catheter is well known in the art. Suitable locking or flushing solutions will be set forth below. The flush or locking solution is injected into a fluid access site of the catheter to clean and disinfect the catheter and can be withdrawn from the catheter or allowed to remain in an end portion of the catheter to serve as a barrier to the ingress of pathogens and contaminants.
The antiseptic cap plunger assembly 12 has an elongate shaft 40, a proximal end 42 and a distal end 44. The elongate shaft 40, in one preferred form of the invention, is generally cruciform in cross-sectional shape. A stopper or piston 50 is connected to the distal end 44 of the plunger 12. The piston 50 is dimensioned such that when inserted into the syringe barrel chamber 18 an outer circumferential surface of the piston is in fluid-tight engagement with an inner surface 54 of the syringe barrel. The piston assembly 12 when moved proximally (or when being withdrawn) can draw fluid into the chamber and when moved distally (or when inserted into the syringe chamber) can drive fluid out of the chamber.
A housing 60 is located at the proximal end of the plunger assembly 12 and has a wall 62 defining a chamber 64 having an open end 66 which can be sealed by any suitable structure or material such as a cap or by a foil material 68. An optional annular flange 70 extends radially outwardly from the wall 62 and provides a surface upon which the sealing structure can be attached.
It is desirable that during the rotation of the syringe barrel that the antiseptic cap assembly 80 does not rotate with respect to the housing and/or optionally that the plunger assembly 12 does not rotate with respect to the syringe barrel 14 so that the threads 88 of the antiseptic cap can fully engage the threads of the access site. The present invention provides a mechanism associated with the assembly 10 for preventing the rotation of the antiseptic cap assembly 80 with respect to the plunger assembly 12 and more preferably a mechanism on either the plunger assembly or on the antiseptic cap 80 to prevent relative rotational movement between the antiseptic cap 80 and the plunger assembly 12. In an even more preferred form of the invention, the mechanism for preventing relative rotation of the antiseptic cap 80 with respect to the plunger assembly 12 has mating portions on both parts that when assembled cooperatively engage one another to prevent relative rotation. It is also contemplated that a separate mechanism, device or member could be used to lock the two parts together to achieve this purpose.
If a user of the assembly 10 grasps the assembly 10 by the antiseptic cap and plunger assembly 12 then the interlocking structures between the piston assembly 12 and the syringe barrel 14 would not necessarily be needed. Accordingly,
In one preferred form of the invention the housing 60 will have a feature or structure that forms an interference fit with an external surface 83 of the antiseptic cap 80. Even more preferably, an internal surface 63 of the side wall 62 of the housing 60 will have a feature or structure to form an interference fit with a portion of the antiseptic cap assembly 80. In another preferred form of the invention the antiseptic cap assembly 80 will have a feature to form an interference fit with the housing 60 and even more preferably the outer surface 83 of the antiseptic cap 80 will have a feature to contact the inner surface 63 of the housing side wall 62.
In another preferred form of the invention the plunger housing 60 and the cap assembly 80 each will have a feature or structure that cooperatively engage one another to prevent relative rotation of the cap assembly 80 and the housing 60.
The antiseptic cap 82 has a plurality of circumferentially spaced and axially extending ribs 120 extending along an external surface 122 of the cap 82 (external ribs 120) from an annular flange 123. The external ribs 120 are dimensioned for engaging a portion of the interior wall of the housing 62 to prevent relative rotation of the cap and the plunger assembly 12 and define a plurality of external slots one of each between each adjacent pair of external ribs. When the cap 82 is positioned within the chamber 64 (
As with the cap and plunger assembly rotational locking features or structures, the optional plunger assembly 12 and syringe barrel 14 locking feature or structure can be positioned alone on the plunger assembly 12, or alone on the syringe barrel 14 or have cooperating structures on both the plunger assembly 12 and the syringe barrel 14. It is also contemplated that a separate mechanism, device or member could be used to lock the two parts together to achieve this purpose.
It is contemplated that the antiseptic cap assembly 80 of the present invention need not be coupled or combined with a plunger or a syringe barrel.
A suitable absorbent material 86 includes medical grade materials capable of storing and releasing an antiseptic liquid, or liquid having other medical purposes, and includes materials such as sponges, rupturable capsules and other materials or devices capable of serving this purpose. Suitable sponges can include any sponge suitable for use for medical purposes and can be naturally occurring or synthetic. The sponges can be die cut into suitable shapes or can be molded into the desired shape. It is desirable that the sponge 86 be attached to the antiseptic cap 82 to prevent the sponge 86 from inadvertently falling out of the cap 82.
a, b show the cap 200 having a coaxially disposed and axially extending actuating post 220 circumferentially surrounded by a sponge 86 having a centrally positioned hole to fit over the post 220.
The thread cover 302 can provide a universal fit to most commercially available valves, connectors and access devices, or the thread cover 302 can be customized to dock with a particular access device.
The cap holder 402 has a proximal and distal ends 408, 410, and an inner wall surface 412 and an outer wall surface 414, an opening 416 into the chamber 406, and a radially outwardly extending flange 418 circumjacent the opening 416 and extending from the proximal end 408 of the cap holder 402. The cap holder 402 will also have an optional bottom wall 419.
In a preferred form of the invention, the cap holder 402 or the antiseptic cap 82 will have a structure, element or the like that prevents the relative rotation of the cap holder 402 and the antiseptic cap 82 until the antiseptic cap assembly 80 is securely docked to the access device 38. Also, in a preferred form of the invention the cap holder 402 or the plunger assembly 12′ will have a structure, element or the like for preventing the relative rotation of the cap holder 402 and the plunger assembly 12′ until the antiseptic cap assembly 80 is securely docked to the access device 38. Any of the anti-rotation devices discussed above to stop the rotation of the antiseptic cap assembly 80 with the plunger assembly 12 would be suitable for, these purposes. Also, it is contemplated the devices discussed above in reference to
In yet another preferred form of the invention, the cap holder 402, the cap holder assembly 404 or the plunger assembly 12′ will have a structure, element or the like that resists the relative axial movement of these parts when the cap holder 402 or the cap holder assembly 404 is positioned fully within the plunger assembly 12′. In one preferred form of the invention the cap holder 402 has an annular protuberance 440 that is dimensioned to fit within an annular groove 442 on the inner wall surface 414 of the cap holder and preferably extends in line with the base portions of the plunger ribs 434. A second locking structure is provided having a plurality of teeth 450 which extend axially outward from the outer wall surface 414 of the cap holder and are positioned in slots 424. In a preferred form of the invention the teeth extend axially outwardly to a height beyond the height of the ribs 434. The teeth 450 can be positioned in one or more of the slots or in each of the slots 424 or in alternating slots or, as is shown, circumferentially spaced 90° from one another. The teeth 450 preferably are positioned at an intermediate portion, between the base and the apex, of a slot 424. The teeth 450 are dimensioned to fit within a segmented annular groove 452 that extends circumferentially about the inner surface 412 crossing through the plunger ribs 434 at an intermediate portion, between the base and the apex, of the plunger ribs 434.
a,b,c respectively show the assembly 400 in a ready-for-use position, docked position, and used position. The assembly 400 is used in essentially the same fashion as described above with respect to
The syringe barrel and plunger can be fabricated from any material suitable for its purpose and includes glass and polymeric material. Suitable polymeric materials include, but are not limited to, homopolymers, copolymers and terpolymers formed from monomers such as olefins, cyclic olefins, amides, esters, and ethers. The polymeric material may be a blend of more than one polymeric material and can be a monolayer structure or a multilayer structure. In one preferred form of the invention the syringe barrel and the plunger are injection molded from a polypropylene material.
The distal end of the antiseptic cap 502 has a top annular flange 520 extending radially inwardly from the first cylindrical wall 506 and defines a generally circular opening 522. A second cylindrical wall 524 extends axially downwardly from the top annular flange 520 and is coaxially disposed within the first cylindrical wall 506. When the antiseptic cap 502 is attached to the plunger button 512 a bottom peripheral edge of the second cylindrical wall 524 will abut a top surface of the plunger button 512 thereby capturing, by oppositely directed axially forces, the plunger button 512 between the tabs 516 and the second cylindrical wall. It is contemplated, however, that a second set of tabs could be provided spaced axially away from the first set of tabs and the piston button 512 could be trapped between the two sets of tabs. Further, it is contemplated other attaching means could be used that are well know in the art and the attaching member shown is merely exemplary.
The second cylindrical wall 524 defines a chamber as is shown in greater detail in
The piston 50 can be formed from any suitable material including a polymeric material or a silicone material. The stopper can be selected from a material with a desired durometer so that reflux is reduced when the stopper engages an inner surface of the distal end wall of the syringe barrel.
Suitable locking and flush solutions include a lower alcohol selected from ethanol, propanol and butanol. The locking solution can be a single lower alcohol or a blend of lower alcohols.
Suitable locking solutions can also include a lower alcohol with an antimicrobial and or an anticoagulant. Suitable locking solutions can contain at least one lower alcohol in a range from 1% to 99% by volume and at least one other anti-microbial and/or anti-coagulant compound in a range from 1% to 99% by volume. The lower alcohol will usually be in aqueous solution, typically at 1% to 99% by volume, usually from 5% to 95% by volume. The at least one other anti-microbial is selected from the group consisting of taurolidine and triclosan, and the at least one anti-coagulant is selected from the group consisting of riboflavin, sodium citrate, ethylene diamine tetraacetic acid, and citric acid.
In one preferred form of the invention, the syringe assembly 10 will be pre-filled with one of the locking solutions and will be packaged by a manufacture and shipped to a health care provider. A cannula or needle will be attached to the distal end of the barrel and placed into fluid communication with the fluid access site of an indwelling central venous catheter. The flush solution will be injected into the catheter to clean or lock the catheter. Afterwards, the cap assembly 80 will be removed from the plunger 17 and the cap will be docked to the fluid access site of the catheter.
Citrate Salt Containing Antiseptic Solutions
In one form, the antiseptic is a solution a citrate salt and in another form of the invention the citrate salt solution is a hypertonic solution. The term hypertonic is used herein to refer to a fluid having an osmotic concentration and a density greater than the osmotic concentration and density of the blood of the patient. The antiseptic solution preferably comprises a citrate salt with a concentration range, in weight percent, of from about 1.5% to about 50% with an osmolality of about 300 to about 6400 mOsm. More preferably, the antiseptic solution comprises citrate salt in a concentration range of from about 10% to about 40%, yet more preferably, in a concentration range of from about 20% to about 30%.
In a preferred embodiment, the antiseptic solution is prepared to have a pH lower than that of the pH of the patient's blood. The citrate salt solution may be prepared to have a pH lower than about 6.5, more preferably, from about 4.5 to about 6.5. Also, the citrate salt solution can include pharmaceutically acceptable agents such as sodium chloride and sodium heparin. The citrate salt solution can also include a variety of other antibacterial, antimicrobial and anticoagulant agents such as gentamicin, vancomycin, and mixtures of these agents. Additional anticoagulant agents include, for example heparin, urokinase, tissue plasminogen activation (tPA) and mixtures of these agents.
By “pharmaceutically acceptable,” it is meant that the citrate salt solution and the included salts and other additives which are, within the scope of sound medical judgment, suitable for use in contact with tissues of humans and lower animals without undue toxicity, irritation, and allergic response. It is also typically necessary that a composition be sterilized to reduce the risk of infection.
Antibacterial Agent Containing Antiseptic Solutions
An antimicrobial agent containing antiseptic solution of the present invention may contain at least one alcohol, at least one antimicrobial agent and at least one chelator and/or anticoagulant. Various antimicrobial substances as disclosed herein and that are well known to one of ordinary skill in the art may be combined with the locking solution in order to inhibit infection. The antimicrobial locking solution of the present invention may be use for filling or flushing a medical device such as an indwelling device such as an implanted catheter. Other medical devices that are contemplated for use in the present invention are disclosed herein.
In another preferred form of the invention, the antiseptic agent can contain antibacterial agents such as those classified as aminoglycosides, beta lactams, quinolones or fluoroquinolones, macrolides, sulfonamides, sulfamethaxozoles, tetracyclines, treptogramins, oxazolidinones (such as linezolid), clindamycins, lincomycins, rifamycins, glycopeptides, polymxins, lipo-peptide antibiotics, as well as pharmacologically acceptable sodium salts, pharmacologically acceptable calcium salts, pharmacologically acceptable potassium salts, lipid formulations, derivatives and/or analogs of the above.
The aminoglycosides are bactericidal antibiotics that bind to the 30S ribosome and inhibit bacterial protein synthesis. They are typically active against aerobic gram-negative bacilli and staphylococci. Exemplary aminoglycosides that may be used in some specific aspects of the invention include amikacin, kanamycin, gentamicin, tobramycin, or netilmicin.
Suitable beta lactams are selected from a class of antibacterials that inhibit bacterial cell wall synthesis. A majority of the clinically useful beta-lactams belong to either the penicillin group (penam) or cephalosporin (cephem) groups. The beta-lactams also include the carbapenems (e.g., imipenem), and monobactams (e.g., aztreonam). Inhibitors of beta-lactamase such as clavulanic acid and its derivatives are also included in this category.
Non-limiting examples of the penicillin group of antibiotics that may be used in the solutions of the present invention include amoxicillin, ampicillin, benzathine penicillin G, carbenicillin, cloxacillin, dicloxacillin, piperacillin, or ticarcillin, etc. Examples of cephalosporins include ceftiofur, ceftiofur sodium, cefazolin, cefaclor, ceftibuten, ceftizoxime, cefoperazone, cefuroxime, cefprozil, ceftazidime, cefotaxime, cefadroxil, cephalexin, cefamandole, cefepime, cefdinir, cefriaxone, cefixime, cefpodoximeproxetil, cephapirin, cefoxitin, cefotetan etc. Other examples of beta lactams include mipenem or meropenem which are extremely active parenteral antibiotics with a spectrum against almost all gram-positive and gram-negative organisms, both aerobic and anaerobic and to which Enterococci, B. fragilis, and P. aeruginosa are particularly susceptible.
Suitable beta lactamase inhibitors include clavulanate, sulbactam, or tazobactam. In some aspects of the present invention, the antibacterial solutions may comprise a combination of at least one beta lactam and at least one beta lactamase inhibitor.
Macrolide antibiotics are another class of bacteriostatic agents that bind to the 50S subunit of ribosomes and inhibit bacterial protein synthesis. These drugs are active against aerobic and anaerobic gram-positive cocci, with the exception of enterococci, and against gramnegative anaerobes. Exemplary macrolides include erythromycin, azithromycin, clarithromycin.
Quinolones and fluoroquinolones typically function by their ability to inhibit the activity of DNA gyrase. Examples include nalidixic acid, cinoxacin, trovafloxacin, ofloxacin, levofloxacin, grepafloxacin, trovafloxacin, sparfloxacin, norfloxacin, ciprofloxacin, moxifloxacin and gatifloxacin.
Sulphonamides are synthetic bacteriostatic antibiotics with a wide spectrum against most gram-positive and many gram-negative organisms. These drugs inhibit multiplication of bacteria by acting as competitive inhibitors of p-aminobenzoic acid in the folic acid metabolism cycle. Examples include mafenide, sulfisoxazole, sulfamethoxazole, and sulfadiazine.
The tetracycline group of antibiotics include tetracycline derivatives such as tigecycline which is an investigational new drug (IND), minocycline, doxycycline or demeclocycline and analogs such as anhydrotetracycline, chlorotetracycline, or epioxytetracycline.
Suitable streptogramin class of antibacterial agents include quinupristin, dalfopristin or the combination of two streptogramins.
Drugs of the rifamycin class typically inhibit DNA-dependent RNA polymerase, leading to suppression of RNA synthesis and have a very broad spectrum of activity against most gram-positive and gram-negative bacteria including Pseudomonas aeruginosa and Mycobacterium species. An exemplary rifamycin is rifampicin.
Other antibacterial drugs are glycopeptides such as vancomycin, teicoplanin and derivatives thereof. Yet other antibacterial drugs are the polymyxins which are exemplified by colistin.
In addition to these several other antibacterial agents such as prestinomycin, chloramphenicol, trimethoprim, fusidic acid, metronidazole, bacitracin, spectinomycin, nitrofurantion, daptomycin or other leptopeptides, oritavancin, dalbavancin, ramoplamin, ketolide etc. may be used in preparing the antiseptic solutions described herein. Of these, metronidazole is active only against protozoa, such as Giardia lamblia, Entamoeba histolytica and Trichomonas vaginalis, and strictly anaerobic bacteria. Spectinomycin, is a bacteriostatic antibiotic that binds to the 30S subunit of the ribosome, thus inhibiting bacterial protein synthesis and nitrofurantoin is used orally for the treatment or prophylaxis of UTI as it is active against Escherichia coli, Klebsiella-Enterobacter species, staphylococci, and enterococci.
In other embodiments, the antimicrobial agent is an antifungal agent. Some exemplary classes of antifungal agents include imidazoles or triazoles such as clotrimazole, miconazole, ketoconazole, econazole, butoconazole, omoconazole, oxiconazole, terconazole, itraconazole, fluconazole, voriconazole, posaconazole, ravuconazole or flutrimazole; the polyene antifungals such as amphotericin B, liposomal amphoterecin B, natamycin, nystatin and nystatin lipid formulations; the cell wall active cyclic lipopeptide antifungals, including the echinocandins such as caspofungin, micafungin, anidulfungin, cilofungin; LY121019; LY303366; the allylamine group of antifungals such as terbinafine. Yet other non-limiting examples of antifungal agents include naftifine, tolnaftate, mediocidin, candicidin, trichomycin, hamycin, aurefungin, ascosin, ayfattin, azacolutin, trichomycin, levorin, heptamycin, candimycin, griseofulvin, BF-796, MTCH 24, BTG-137586, pradimicins (MNS 18184), benanomicin; ambisome; nikkomycin Z; flucytosine, or perimycin.
In another preferred form of the invention, the antimicrobial agent is an antiviral agent. Non-limiting examples of antiviral agents include cidofovir, amantadine, rimantadine, acyclovir, gancyclovir, pencyclovir, famciclovir, foscamet, ribavirin, or valcyclovir. In some forms of the invention the antimicrobial agent is an innate immune peptide or proteins. Some exemplary classes of innate peptides or proteins are transferrins, lactoferrins, defensins, phospholipases, lysozyme, cathelicidins, serprocidins, bacteriocidal permeability increasing proteins, amphipathic alpha helical peptides, and other synthetic antimicrobial proteins.
In other embodiments of the invention, the antimicrobial agent is an antiseptic agent. Several antiseptic agents are known in the art and these include a taurinamide derivative, a phenol, a quaternary ammonium surfactant, a chlorine-containing agent, a quinaldinium, a lactone, a dye, a thiosemicarbazone, a quinone, a carbamate, urea, salicylamide, carbanilide, a guanide, an amidine, an imidazoline biocide, acetic acid, benzoic acid, sorbic acid, propionic acid, boric acid, dehydroacetic acid, sulfurous acid, vanillic acid, esters of p-hydroxybenzoic acid, isopropanol, propylene glycol, benzyl alcohol, chlorobutanol, phenylethyl alcohol, 2-bromo-2-nitropropan-1,3-diol, formaldehyde, glutaraldehyde, calcium hypochlorite, potassium hypochlorite, sodium hypochlorite, iodine (in various solvents), povidone-iodine, hexamethylenetetramine, noxythiolin, 1-(3-choroallyl)-3,5,7-triazol-azoniaadamantane chloride, taurolidine, taurultam, N(5-nitro-2-furfurylidene)-1-amino-hydantoin, 5-nitro-2-furaldehyde semicarbazone, 3,4,4′-trichlorocarbanilide, 3,4′,5-tribromosalicylanilide, 3-trifluoromethyl-4,4′-dichlorocarbanilide, 8-hydroxyquinoline, 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid, 1,4-dihydro-1-ethyl-6-fluoro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid, hydrogen peroxide, peracetic acid, phenol, sodium oxychlorosene, parachlorometaxylenol, 2,4,4′-trichloro-2′-hydroxydiphenol, thymol, chlorhexidine, benzalkonium chloride, cetylpyridinium chloride, silver sulfadiazine, or silver nitrate.
In another preferred form of the invention, the antiseptic solution includes a basic reagent and a dye. The basic reagent may be a guanidium compound, a biguanide, a bipyridine, a phenoxide antiseptic, an alkyl oxide, an aryl oxide, a thiol, a halide, an aliphatic amine, or an aromatic amine. In some specific aspects, the basic reagent is a guanidium compound. Non-limiting examples of guanidium compounds include chlorhexidine, alexidine, hexamidine. In other specific embodiments, the basic reagent is a bipyridine. One example of a bipyridine is octenidine. In yet other aspects, the basic reagent is a phenoxide antiseptic.
The dye may be a triarylmethane dye, a monoazo dye, a diazo dye, an indigoid dye, a xanthene dye, an anthraquinone dye, a quinoline dye, an FD&C dye. Non-limiting examples of triarylmethane dye include gentian violet, crystal violet, ethyl violet, or brilliant green. Exemplary monoazo dyes include FD&C Yellow No. 5, or FD&C Yellow No. 6. Other non-limiting examples of FD&C dye include Blue No. 1 or Green No. 3. One non-limiting example of diazo dyes is D&C Red No. 17. An example of an indigoid dye is FD&C Blue No. 2. An example of a xanthene dye is FD&C Red No. 3; of an anthraquinone dye is D&C Green No. 6; and of an quinoline dye is D&C Yellow No. 1.
Other examples of antiseptics that may be used to the solutions of the invention are the phenoxide antiseptics such as clofoctol, chloroxylenol or triclosan. Still other antiseptic agents that may be used to prepare the amntimicrobial solutions of the invention are gendine, genlenol, genlosan, or genfoctol.
One of skill in the art will appreciate that one can use one or more of the antimicrobial agents including one or more antibacterial agent, and/or one or more antifungal agent, and/or one or more antiviral agent, and/or one or more antiseptic agent, and/or combinations thereof.
A wide variety of chelator agents are contemplated as useful in preparing the antiseptic solutions of the invention. This includes chelators such as EDTA free acid, EDTA 2Na, EDTA. 3Na, EDTA 4Na, EDTA 2K, EDTA 2Li, EDTA 2NH4, EDTA 3K, Ba(II)-EDTA, Ca(II)-EDTA, Co(II)-EDTACu(II)-EDTA, Dy(III)-EDTA, Eu(III)-EDTA, Fe(III)-EDTA, In(III-EDTA, La(III)-EDTA, CyDTA, DHEG, diethylenetriamine penta acetic acid (DTPA), DTPA-OH, EDDA, EDDP, EDDPO, EDTA-OH, EDTPO, EGTA, HBED, HDTA, HIDA, IDA, MethylEDTA, NTA, NTP, NTPO, O-Bistren, TTHA, EGTA, DMSA, deferoxamine, dimercaprol, zinc citrate, a combination of bismuth and citrate, penicillamine, succimer or Etidronate. It is contemplated that any chelator which binds barium, calcium, cerium, cobalt, copper, iron, magnesium, manganese, nickel, strontium, or zinc will be acceptable for use in the present invention.
Alternatively, one may use at least one anticoagulant such as heparin, hirudin, EGTA, EDTA, urokinase, streptokinase, hydrogen peroxide etc., in the preparation of the antimicrobial solutions of the invention.
In addition to the alcohols set forth above, a variety of alcohols are contemplated as useful in the preparation of the instant antiseptic solution, and include any antimicrobially active alcohol. Non-limiting examples of alcohols include ethanol, methanol, isopropanol, propylene glycol, benzyl alcohol, chlorobutanol, phenylethyl alcohol, and the like.
One of skill in the art will appreciate that the solutions of the instant invention can comprise various combinations of at least one alcohol, at least one antimicrobial agent, and at least one chelator/anticoagulant. In some specific embodiments, the solution of the invention comprises at least one alcohol, at least one tetracycline and at least one chelator/anticoagulant. In a specific aspect, such an antimicrobial solution comprises ethanol, at least one tetracycline and EDTA or heparin.
In other specific aspects, such a solution comprises ethanol, minocycline and EDTA or heparin. In one embodiment of this aspect, the concentration of minocycline is 0.001 mg/ml to 100 mg/ml. In another embodiment, the concentration of minocycline is about 3 mg/ml. In another aspect, the concentration of EDTA is in the range of 10-100 mg/ml. In one embodiment of this aspect, the concentration of EDTA is about 30 mg/ml.
In another preferred form of the invention, the antiseptic solution includes a pharmacologically acceptable sodium salt, a pharmacologically acceptable calcium salt, a pharmacologically acceptable potassium salt and about one milligram per milliliter polyhexamethylene biguanide hydrochloride in an aqueous admixture. Additionally, the solution of the invention may also contain a pharmacologically acceptable salt of lactic acid.
Salt Containing Antiseptic Solutions
One preferred antiseptic solution includes a pharmacologically acceptable sodium salt such as sodium chloride or the like in a concentration of between about 820 mg to about 900 mg, a pharmacologically acceptable calcium salt, such as calcium chloride dihydrate or the like in a concentration between about 30.0 mg to about 36.0 mg, a pharmacologically acceptable potassium salt, such as potassium chloride or the like in a concentration between about 28.5 to about 31.5 mg and about one milligram per milliliter polyhexamethylene biguanide hydrochloride in an aqueous admixture with one hundred milliliters of water for injection U.S.P. For particular applications, the solution of the invention may also include sodium lactate in a concentration between about 290 mg and about 330 mg in the one hundred milliliter aqueous admixture.
Photo-Oxidant Solutions
In another preferred form of the present invention, the antiseptic solution contains an anticoagulant and a photo-oxidant. In certain embodiments, a photo-oxidant is selected that has an antiseptic effect. As used herein, the term “photo-oxidant” is intended to refer to a compound (usually an organic dye) that has photo-oxidation properties, in which the compound exhibits an increased oxidizing potential upon exposure to radiant energy such as light. The term “photooxidant” also refers to a composition that releases one or more electrons when struck by light.
In one preferred aspect of the invention, the photo-oxidant is methylene blue, which advantageously provides antibiotic and antifungal activity, and also provides a color to make the antiseptic solution clearly identifiable. In addition to methylene blue, other photo-oxidants may include Rose Bengal, hypericin, methylene violet, proflavine, rivanol, acriflavine, toluide blue, trypan blue, neutral red, a variety of other dyes or mixtures thereof. Therefore, in alternate aspects of the invention, one or more alternative photo-oxidants, preferably a colored photo-oxidant is used in accordance with the invention in place of methylene blue.
Enhanced Viscosity Solutions
In another preferred form of the invention, the antiseptic solution includes a low viscosity antibacterial agent mixed with a viscosity increasing agent. Examples of antibacterial agents which may be used, in addition to those described above, comprise alcohols, chlorhexidine, Chlorpactin, iodine, tauroline, citric acid, and soluble citric acid salts, particularly sodium citrate, optionally mixed with water.
Suitable viscosity increasing agents include Carbopol, starch, methylcellulose, carboxypolymethylene, carboxymethyl cellulose, hydroxypropylcellulose, or the like. Carbopol is a cross-linked polyacrylic acid based polymer sold by Noveon, Inc. It is preferably neutralized to about pH 7 with a base material such as tetrahydroxypropyl ethylene diamine, triethanolamine, or sodium hydroxide. Derivatives of starch may also be used, such as hydroxyethylstarch, hydroxypropylstarch, or starch having bonded organic acid ester groups, to improve compatibility with antibacterial agents such as alcohols, for example, ethanol or isopropanol. Such ester groups may be the reaction product of two to twelve carbon organic acids with the starch, for example. Also, the elevated viscosity antiseptic solution may be created by the use of a fat emulsion, or other dispersions in water/alcohol of glycerol mono or di esters of fatty acids, or fatty acid esters of other polyols such as sugars having one or more bonded fatty acid groups per molecule. Analogous compounds with ether linkages may also be used.
Also, other materials such as alginic acid, with or without calcium citrate may be used, or polyvinyl alcohol, with or without borax, povidone, polyethylene glycol alginate, sodium alginate, and/or tragacanth. If desired, the fluid of this invention may also contain an effective amount of an antithrombogenic agent such as heparin, and a diluent such as water, along with other desired ingredients.
In one preferred form of the invention, the antiseptic solution contains a mixture of isopropyl alcohol and neutralized Carbopol, with other optional ingredients being present such as water, antithrombogenic agents such as heparin, and the like. Preferably, about 0.4 to 2 weight percent of Carbopol is present. Citric acid may also be present as an antibacterial agent, either with or as a substitute for another anti-bacterial agent such as isopropyl alcohol or ethanol.
In another embodiment, the antiseptic solution is a gel of an isopropyl alcohol, optionally with up to about 30 weight percent water, and about 2.2 weight percent hydroxypropylcellulose, to form a high viscosity antiseptic solution.
In yet another preferred form of the invention, the antiseptic solution contains carbohydrates and/or glucose degradation products. Suitable carbohydrates are chosen form the group of glucose and/or fructose. Suitable degradation products include 3-deoxyglucosone (3-DG), acetaldehyde, formaldehyde, acetaldehyde, glyoxal, methylglyoxal; 5-hydroxymethyl-2-furaldehyde (5-HMF), 2-furaldehyde, and 3,4-dideoxyglucosone-3-ene (3,4-DGE).
Other suitable agents to be used in this embodiment of the antiseptic solution includes substances having anticoagulatory properties i.e., inhibitors of the coagulation cascade such as heparin of standard and low molecular weight, fractionated heparin, synthetic inhibitors in the coagulation cascade, Futhan as a broad protease inhibitor, complexing and chelating substances such as citrate, EDTA, EGTA, substances and mixtures used for preservation of blood products (platelets or plasma), CDPA (citrate, sodium phosphate, dextrose, adenine), synthetic or natural thrombin inhibitor substances. Other suitable additives include fucosidan, riboflavin, vitamin E, alphatocopherol, folic acid and amino acids. Furthermore, antiinflammatory compounds and drugs could also be used, e.g. cortison, mycophenolic acid (MPA) and derivates thereof, sirolimus, tacrolimus and cyclosporin, diclofenac, etc.
Inhibitory peptides can also be used in the antiseptic solution such as defensins, (dermacidine), and others. Radicals, such as reactive oxygene species, NO-releasing systems or nitric oxide (NO), and peroxynitrite may also be used. A buffer composition may also be included in the antiseptic solution, and in one preferred form of the invention, the buffer contains lactate, bicarbonate, pyruvate, ethyl pyruvate and citric acid in combination and mixtures including adjustment of pH by acetic acid, hydrochloric acid or sulphuric acid. Furthermore, viscosity enhancing additives may be added, such as lipids or lipidic substances (also to get water insoluble vitamins or complexes into solution), nutrients in high concentration density gradient e.g. aminoacid containing fluids, polyglucose, lcodextrin, pectine, hydroxyethyl starch (HES), alginate, hyaluronic acid, etc.
Taurolidine Antiseptic Solutions and Gels
The antiseptic solutions of the present invention can include Taurolidine and/or Taurultam to prevent clotting and Biofilm formation or the elements can be combined with other antimicrobial agents. One embodiment of the present invention is a gel with thixotropic properties to keep the solution inside the antiseptic cap and not spill out during the time interval between uses. This is accomplished by making a hydrogel matrix as a drug delivery vehicle containing a biocompatible antimicrobial agent alone or with another active agent, which may be useful for particular purposes. The hydrogel matrix is biocompatible and, biodegradable in the bloodstream. The matrix can be a hydrogel (e.g., pectin, gelatin, etc), a protein (e.g., collagen, hemoglobin, etc), a colloidal substance (e.g., serum albumin etc.), an emulsion or other adjuvant. Preferably, the matrix shall have structural integrity and be thixotropic. Thixotropy is a property, which is exhibited by certain gels. It is a property characterized by a solid or semisolid substance that when shaken, stirred or subject to high shear forces becomes fluid like and can flow and then returns to the semisolid state when the forces and/movement are stopped. Alternatively, the gel could have the properties similar to that of the colloidal dispersion which resists movement, or flow until a high shear force is imparted to the fluid and then it flows easily.
Other ingredients may be added to the gel matrix to provide further functional benefit. The preferred antimicrobial is Taurolidine, which can be added to the matrix as a micro particle powder, or encapsulated in liposomes, microspheres, or nanospheres. It should be appreciated that numerous active agents and drugs can be added to the thixotropic gel including sterileants, lysing agents (such as Urokinase), imaging enhancers, catheter surface modifiers, antibiotics and antimicrobial chemicals.
A hydrogel comprises a three-dimensional molecular network containing large quantities of water giving them good biocompatibility with material consistency that is soft solid-like with high diffusive properties to gases, chemicals and proteins. Suitable hydrogels include natural polymers including serum albumin, collagen, or alginates, polyvinyl alcohol, poly (ethylene oxide) or poly (hydroxyethylene) and polyelectrolytes, such as poly(acrylic acid), poly(styrene sulfonate), and carboxymethylcellulose (CMC).
One preferred form of the antiseptic solution includes Taurolidine with Salicylic acid or Sodium Salicylate in an aqueous solvent. Salicylic Acid and Sodium Salicylate are drugs that have been used with antibiotic locks in catheters to enhance the biocidal action of the antibiotic alone and to inhibit the attachment of microbes to surfaces. This last attribute is especially important because the initiation of a Biofilm expression and growth require that the individual bacteria must first attach themselves to the underlying surface. By stopping attachment, Biofilm formation is blocked.
Sodium salicylate has been demonstrated to have remarkable antibacterial activity, including the ability to enhance the activities of certain antibiotics. This drug inhibits adherence, growth and Biofilm formation.
EDTA Containing Antiseptic Solutions
In one preferred antiseptic solution of the present invention provides antimicrobial, antifungal, anti-viral and anti-amoebic properties and may also serve as an anti-coagulant. Specified salts and compositions of ethylene diamine tetraacetic acid (EDTA) (C10H12N2Na4O8) are used at specified concentrations and pH levels.
The EDTA formulations of the present invention are safe for human administration and are biocompatible and non-corrosive. They may also have anticoagulant properties and are thus useful for preventing and/or treating a variety of catheter-related infections. In one embodiment, antiseptic solutions of the present invention have at least four, and preferably at least five, of the following properties: anticoagulant properties; inhibitory and/or bactericidal activity against a broad spectrum of bacteria in a planktonic form; inhibitory and/or fungicidal activity against a spectrum of fungal pathogens; inhibitory and/or bactericidal activity against a broad spectrum of bacteria in a sessile form; inhibitory activity against protozoan infections; inhibitory activity against Acanthamoeba infections; safe and biocompatible, at least in modest volumes, in contact with a patient; safe and biocompatible, at least in modest volumes, in a patient's bloodstream; and safe and compatible with industrial objects and surfaces. The antiseptic solution can have a pH higher than physiological pH such as a pH of >8.0, or at a pH>8.5, or at a pH>9, or at a pH>9.5.
In another preferred form of the invention, the antiseptic solution contain a sodium EDTA salt (or combination of sodium salts) in solution at a pH in the range between 8.5 and 12.5 and, in another embodiment, at a pH of between 9.5 and 11.5 and, in yet another embodiment, at a pH of between 10.5 and 11.5.
When used herein, the term “EDTA salt” may refer to a single salt, such as a di-sodium or tri-sodium or tetra-sodium salt, or another EDTA salt form, or it may refer to a combination of such salts. The composition of EDTA salt(s) depends both on the EDTA salts used to formulate the composition, and on the pH of the composition. For antiseptic solutions of the present invention consisting of sodium EDTA salt(s), and at the desired pH ranges (specified above), the sodium EDTA salts are predominantly present in both the tri-sodium and tetra-sodium salt forms.
In one embodiment, the antiseptic solution contains a combination of at least the tri-sodium and tetra-sodium salts of EDTA, and more preferably solutions containing at least 10% of the EDTA in the composition is present in the tetra-sodium salt form. In yet another embodiment, at least 50% and, more preferably at least 60%, of the EDTA in the composition is present in the tri-sodium salt form.
EDTA solutions of the present invention are preferably provided in a sterile and non-pyrogenic form and may be packaged in any convenient fashion. The compositions may be prepared under sterile, aseptic conditions, or they may be sterilized following preparation and/or packaging using any of a variety of suitable sterilization techniques.
Formulation and production of antiseptic compositions of the present invention is generally straightforward. In one embodiment, desired antiseptic solutions of the present invention are formulated by dissolving one or more EDTA salt(s) in an aqueous solvent, such as purified water, to the desired concentration and adjusting the pH of the EDTA salt solution to the desired pH. The antiseptic solution may then be sterilized using conventional means, such as autoclaving, UV irradiation, filtration and/or ultrafiltration, and other means. The preferred osmolarity range for EDTA solutions is from 240-500 mOsM/Kg, more preferably from 300-420 mOsrn/Kg. The solutions are preferably formulated using USP materials.
Antiseptic solutions containing sodium salts of EDTA other than tri- and tetra-sodium salts, such as di-sodium EDTA, is also contemplated. For example di-sodium EDTA solutions can be used but such solutions have a lower pH in solution than the desired pH range of compositions of the present invention but, upon pH adjustment to the desired range using a pH adjustment material, such as sodium hydroxide, sodium acetate, and other well-known pH adjustment agents, EDTA solutions prepared using di-sodium salts are converted to the preferred combination di- and/or tri- and/or tetra-sodium salt EDTA solutions of the present invention. Thus, different forms and combinations of EDTA salts may be used in the preparation of EDTA compositions of the present invention, provided that the pH of the composition is adjusted to the desired pH range prior to use. In one embodiment, antiseptic compositions consisting of a mixture of primarily tri- and tetra-sodium EDTA is provided by dissolving di-sodium EDTA in an aqueous solution, 3%-5% on a weight/volume basis, and adding sodium hydroxide in a volume and/or concentration sufficient to provide the desired pH of >8.5 and <12.0.
Antibacterial Enzyme Containing Antiseptic Solutions
“Antibacterial enzyme” refers to any proteolytic, pore-forming, degradative or inhibitory enzyme that kills or damages a bacterial species or particular strain thereof. The result may be achieved by damaging the cell wall of the bacteria, disrupting cell membranes associated with the cell wall or within the bacteria, inhibiting protein synthesis within the bacteria, disrupting the sugar backbone, or by any other mechanism attributed to a peptide or protein considered by those skilled in the art to be an antibacterial enzyme. The enzyme may be a natural, wild-type enzyme, modified by conventional techniques, conjugated to other molecules, recombinantly expressed, or synthetically constructed.
One example of an antibacterial enzyme is lysostaphin. Lysostaphin is important because it is effective in the treatment of staphylococci and biofilms formed therefrom. “Lysostaphin,” and “lysostaphin analogues” are defined as including lysostaphin (wild type), any lysostaphin mutant or variant, any recombinant, or related enzyme (analogue) or any synthetic version or fragment of lysostaphin (whether synthetic or otherwise) that retains the proteolytic ability, in vivo and in vitro, to cleave the cross-linked polyglycine bridges in the cell wall peptidoglycan of staphylococci. The enzymes may be generated by post-translational processing of the protein (either by enzymes present in a producer strain or by means of enzymes or reagents introduced at any stage of the process) or by mutation of the structural gene. Mutations may include site deletion, insertion, domain removal and replacement mutations.
The lysostaphin may be synthetically constructed, expressed in mammalian cells, insects, bacteria, yeast, reptiles or fungi, recombinantly expressed from a cell culture or higher recombinant species such as a mouse, or otherwise. This would include the activity-retaining synthetic construction including synthetic peptides and polypeptides or recombinant expression of portions of the lysostaphin enzyme responsible for its activity against staphylococci as part of a larger protein or peptide, include chimeric proteins, containing the active sites of one or more other antibacterial enzymes that are effective either against staphylococci or other biofilmforming bacteria species.
The antibacterial enzymes may also be coated on the surface of the devices described herein by immersion of the device in a solution of the enzyme for a length of time sufficient to form a biofilm-formation inhibiting coating of the enzyme on the susceptible surface. Even the most minimal concentration of enzyme will confer some protection. Typically, a concentration of from about 10 μg/ml to about 100 mg/ml can be used. With device surfaces, the coatings may also be formed by covalent attachment of the enzyme thereto.
Antiseptic Coatings
It is contemplated that the devices described herein can be coated with an antiseptic coating by any suitable technique such as immersion of the part into an antiseptic solution, by spray coating the part with the antiseptic solution, by blending the antiseptic solution or material into the polymeric material used to fabricate the device.
In one preferred form of the invention, a quantity of physiological, antimicrobial metal compound is added to the resin for direct molding of an article. Physiological, antimicrobial metals are meant to include the precious metals, such as silver, gold and platinum, and copper and zinc. Physiological, antimicrobial metal compounds used herein include oxides and salts of preferably silver and also gold, for example: silver acetate, silver benzoate, silver carbonate, silver citrate, silver chloride, silver iodide, silver nitrate, silver oxide, silver sulfa diazine, silver sulfate, gold chloride and gold oxide. Platinum compounds such as chloroplatinic acid or its salts (e.g., sodium and calcium chloroplatinate) may also be used. Also, compounds of copper and zinc may be used, for example: oxides and salts of copper and zinc such as those indicated above for silver. Single physiological, antimicrobial metal compounds or combinations of physiological, antimicrobial metal compounds may be used.
Preferred physiological, antimicrobial metal compounds used in this invention are silver acetate, silver oxide, silver sulfate, gold chloride and a combination of silver oxide and gold chloride. The particles of the silver compounds are sufficiently able to be extracted to form a zone of inhibition to prevent and kill bacteria growth.
In another preferred form of the invention the devices herein are impregnated with triclosan and silver compounds or triclosan and chlorhexidine.
Referring to
As can be seen in
Referring to
The distal chamber 642 is sized and configured to receive an antiseptic cap 82. The distal chamber 642 could have a base wall 646. As with the plunger equipped antiseptic cap previously described, the antiseptic cap 82 could have one or more ribs 643 as shown in
In use, a syringe with an antiseptic cap 82 is provided with a fluid or medicament for delivery to a patient through an access point. The tip cap 620 is removed from the syringe 612 and the syringe 612 is connected to the access point and actuated to deliver the fluid or medicament. The syringe 612 is then disconnected from the access point, the tip cap 620 is accessed, and the pull tab 652 is used to remove the cover 650 to provide access to the antiseptic cap 82. Then, gripping the tip cap 620, one places the antiseptic cap 82 on the access point and pushes and/or twists the antiseptic cap 82 onto the access point. Once the antiseptic cap 82 is attached to the access point, the tip cap 620 can be removed such that the antiseptic cap 82 is withdrawn from the distal chamber 642 and remains attached to the access point where it disinfects and protects the access point until the next time the access point is accessed.
Referring to
Referring to
The distal locking chamber 1142 comprises a circular chamber having an oblong or oval entrance 1154. The locking flange 1164 on the locking protrusion 1160 of the cap holder assembly 1180 has an oblong or oval shape configured to match the shape of the entrance 1154 of the distal locking chamber 1142. The stem 1162 preferably has a wall thickness that matches the distal end wall 1149 of the tip cap 1120. This configuration allows the locking flange 1164 to be inserted into the distal locking chamber 1142. After the locking flange 1164 is inserted into the distal locking chamber 1142, the cap holder assembly 1180 can be rotated, such as by 90 degrees, such that the locking flange 1164 rotates in the circular distal locking chamber 1142, to retain the locking flange 1164 in the chamber 1142 such that the locking flange 1164 cannot be pulled therefrom because of the oblong or oval entrance 1154. In such an arrangement, the cap holder assembly 1180 is locked to the tip cap 1120 until it is rotated an additional 90 degrees. Importantly, other locking flange 1164 and entrance or cut out 1154 geometries are contemplated, and they are not limited to solely oblong or oval geometries. Instead, the locking flange 1164 and the entrance or cut out 1154 may be matching asymmetrical designs, rectangular, triangular, or any other geometric arrangement. In use, the antiseptic cap 1182 could be applied while the antiseptic cap holder assembly 1180 is attached to the tip cap 1120 or the antiseptic cap holder assembly 1180 can be removed from the tip cap 1120 and used separately.
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover by the appended claims all such modifications as fall within the scope of the claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 12/214,526, filed on Jun. 19, 2008, which is a continuation-in-part of U.S. application Ser. No. 11/821,190 filed on Jun. 22, 2007 now U.S. Pat. No. 8,167,847, which claims the benefit of U.S. Provisional Application Ser. No. 60/815,806 filed on Jun. 22, 2006, and this application is a continuation-in-part of U.S. application Ser. No. 11/821,190 filed on Jun. 22, 2007 now U.S. Pat. No. 8,167,847, which claims the benefit of U.S. Provisional Application Ser. No. 60/815,806 filed on Jun. 22, 2006, the entire disclosures of which are all expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
877946 | Overton | Feb 1908 | A |
1793068 | Dickinson | Feb 1931 | A |
2098340 | Henahan | Nov 1937 | A |
3270743 | Gingras | Sep 1966 | A |
3301392 | Eddingfield | Jan 1967 | A |
3882858 | Klemm | May 1975 | A |
3977401 | Pike | Aug 1976 | A |
3987930 | Fuson | Oct 1976 | A |
4041934 | Genese | Aug 1977 | A |
4095810 | Kulle | Jun 1978 | A |
4243035 | Barrett | Jan 1981 | A |
4280632 | Yuhara | Jul 1981 | A |
4294370 | Toeppen | Oct 1981 | A |
4317446 | Ambrosio et al. | Mar 1982 | A |
4335756 | Sharp et al. | Jun 1982 | A |
4384589 | Morris | May 1983 | A |
4402691 | Rosenthal et al. | Sep 1983 | A |
4417890 | Dennehey et al. | Nov 1983 | A |
4427126 | Ostrowsky | Jan 1984 | A |
4432764 | Lopez | Feb 1984 | A |
4432766 | Bellotti et al. | Feb 1984 | A |
4439184 | Wheeler | Mar 1984 | A |
4440207 | Genatempo et al. | Apr 1984 | A |
4444310 | Odell | Apr 1984 | A |
4461368 | Plourde | Jul 1984 | A |
4480940 | Woodruff | Nov 1984 | A |
4507111 | Gordon et al. | Mar 1985 | A |
4624664 | Peluso et al. | Nov 1986 | A |
4666057 | Come et al. | May 1987 | A |
4666427 | Larsson et al. | May 1987 | A |
4671306 | Spector | Jun 1987 | A |
4703762 | Rathbone et al. | Nov 1987 | A |
4728321 | Chen | Mar 1988 | A |
4747502 | Luenser | May 1988 | A |
4752983 | Grieshaber | Jun 1988 | A |
4778447 | Velde et al. | Oct 1988 | A |
4799926 | Haber | Jan 1989 | A |
4811847 | Reif et al. | Mar 1989 | A |
4927019 | Haber et al. | May 1990 | A |
4957637 | Cornell | Sep 1990 | A |
4983161 | Dadson et al. | Jan 1991 | A |
4989733 | Patry | Feb 1991 | A |
4991629 | Ernesto et al. | Feb 1991 | A |
5143104 | Iba et al. | Sep 1992 | A |
5190534 | Kendell | Mar 1993 | A |
5205821 | Kruger et al. | Apr 1993 | A |
5242425 | White et al. | Sep 1993 | A |
5246011 | Caillouette | Sep 1993 | A |
D342134 | Mongeon | Dec 1993 | S |
5352410 | Hansen et al. | Oct 1994 | A |
5471706 | Wallock et al. | Dec 1995 | A |
5536258 | Folden | Jul 1996 | A |
5552115 | Malchesky | Sep 1996 | A |
5554135 | Menyhay | Sep 1996 | A |
5580530 | Kowatsch et al. | Dec 1996 | A |
5620088 | Martin et al. | Apr 1997 | A |
5624402 | Imbert | Apr 1997 | A |
5694978 | Heilmann et al. | Dec 1997 | A |
5702017 | Goncalves | Dec 1997 | A |
5722537 | Sigler | Mar 1998 | A |
5792120 | Menyhay | Aug 1998 | A |
5810792 | Fangrow, Jr. et al. | Sep 1998 | A |
5820604 | Fox et al. | Oct 1998 | A |
5827244 | Boettger | Oct 1998 | A |
5941857 | Nguyen et al. | Aug 1999 | A |
5954957 | Chin-Loy et al. | Sep 1999 | A |
5971972 | Rosenbaum | Oct 1999 | A |
D416086 | Parris et al. | Nov 1999 | S |
5989229 | Chiappetta | Nov 1999 | A |
6045539 | Menyhay | Apr 2000 | A |
6116468 | Nilson | Sep 2000 | A |
6117114 | Paradis | Sep 2000 | A |
6126640 | Tucker et al. | Oct 2000 | A |
6179141 | Nakamura | Jan 2001 | B1 |
6202870 | Pearce | Mar 2001 | B1 |
6206134 | Stark et al. | Mar 2001 | B1 |
6227391 | King | May 2001 | B1 |
6250315 | Ernster | Jun 2001 | B1 |
6315761 | Shcherbina et al. | Nov 2001 | B1 |
6394983 | Mayoral et al. | May 2002 | B1 |
6550493 | Williamson et al. | Apr 2003 | B2 |
6555504 | Ayai et al. | Apr 2003 | B1 |
6585691 | Vitello | Jul 2003 | B1 |
6679395 | Pfefferkorn et al. | Jan 2004 | B1 |
6679870 | Finch et al. | Jan 2004 | B1 |
6685694 | Finch et al. | Feb 2004 | B2 |
6716396 | Anderson | Apr 2004 | B1 |
6827766 | Carnes et al. | Dec 2004 | B2 |
6911025 | Miyahar | Jun 2005 | B2 |
6943035 | Davies et al. | Sep 2005 | B1 |
7056308 | Utterberg | Jun 2006 | B2 |
7083605 | Miyahara | Aug 2006 | B2 |
7198611 | Connell et al. | Apr 2007 | B2 |
7282186 | Lake, Jr. et al. | Oct 2007 | B2 |
7431712 | Kim | Oct 2008 | B2 |
7452349 | Miyahara | Nov 2008 | B2 |
7516846 | Hansen | Apr 2009 | B2 |
7635344 | Tennican et al. | Dec 2009 | B2 |
D607325 | Rogers et al. | Jan 2010 | S |
7731678 | Tennican et al. | Jun 2010 | B2 |
7731679 | Tennican et al. | Jun 2010 | B2 |
7749189 | Tennican et al. | Jul 2010 | B2 |
7753891 | Tennican et al. | Jul 2010 | B2 |
7763006 | Tennican | Jul 2010 | B2 |
7766182 | Trent et al. | Aug 2010 | B2 |
7776011 | Tennican et al. | Aug 2010 | B2 |
7780794 | Rogers et al. | Aug 2010 | B2 |
7794675 | Lynn | Sep 2010 | B2 |
7799010 | Tennican | Sep 2010 | B2 |
7857793 | Raulerson et al. | Dec 2010 | B2 |
7922701 | Buchman | Apr 2011 | B2 |
7959026 | Bertani | Jun 2011 | B2 |
7985302 | Rogers et al. | Jul 2011 | B2 |
7993309 | Schweikert | Aug 2011 | B2 |
8069523 | Vaillancourt et al. | Dec 2011 | B2 |
8113837 | Zegarelli | Feb 2012 | B2 |
8162899 | Tennican | Apr 2012 | B2 |
8167847 | Anderson et al. | May 2012 | B2 |
8206514 | Rogers et al. | Jun 2012 | B2 |
8231587 | Solomon et al. | Jul 2012 | B2 |
8231602 | Anderson et al. | Jul 2012 | B2 |
8273303 | Ferlic et al. | Sep 2012 | B2 |
8328767 | Solomon et al. | Dec 2012 | B2 |
8336152 | Kerr et al. | Dec 2012 | B2 |
8343112 | Solomon et al. | Jan 2013 | B2 |
8361408 | Lynn | Jan 2013 | B2 |
8372045 | Needle et al. | Feb 2013 | B2 |
8419713 | Solomon et al. | Apr 2013 | B1 |
8480968 | Lynn | Jul 2013 | B2 |
8523830 | Solomon et al. | Sep 2013 | B2 |
8523831 | Solomon et al. | Sep 2013 | B2 |
8545479 | Kitani et al. | Oct 2013 | B2 |
8641681 | Solomon et al. | Feb 2014 | B2 |
8647308 | Solomon et al. | Feb 2014 | B2 |
8647326 | Solomon et al. | Feb 2014 | B2 |
8671496 | Kerr et al. | Mar 2014 | B2 |
8777504 | Shaw et al. | Jul 2014 | B2 |
8845593 | Anderson et al. | Sep 2014 | B2 |
8968268 | Anderson et al. | Mar 2015 | B2 |
9072296 | Mills et al. | Jul 2015 | B2 |
9078992 | Ziebol et al. | Jul 2015 | B2 |
9095500 | Brandenburger et al. | Aug 2015 | B2 |
9114915 | Solomon et al. | Aug 2015 | B2 |
9125600 | Steube et al. | Sep 2015 | B2 |
9149624 | Lewis | Oct 2015 | B2 |
9192449 | Kerr et al. | Nov 2015 | B2 |
9242084 | Solomon et al. | Jan 2016 | B2 |
9259535 | Anderson et al. | Feb 2016 | B2 |
9283367 | Hoang et al. | Mar 2016 | B2 |
9283368 | Hoang et al. | Mar 2016 | B2 |
9302049 | Tekeste | Apr 2016 | B2 |
9352140 | Kerr et al. | May 2016 | B2 |
9352141 | Wong | May 2016 | B2 |
9399125 | Burkholz | Jul 2016 | B2 |
9408971 | Carlyon | Aug 2016 | B2 |
20020010438 | Finch et al. | Jan 2002 | A1 |
20020193752 | Lynn | Dec 2002 | A1 |
20030153865 | Connell et al. | Aug 2003 | A1 |
20040034042 | Tsuji et al. | Feb 2004 | A1 |
20040048542 | Thomaschefsky et al. | Mar 2004 | A1 |
20040215148 | Hwang et al. | Oct 2004 | A1 |
20040258560 | Lake, Jr. et al. | Dec 2004 | A1 |
20050013836 | Raad | Jan 2005 | A1 |
20050065479 | Schiller et al. | Mar 2005 | A1 |
20050124970 | Kunin et al. | Jun 2005 | A1 |
20050147524 | Bousquet | Jul 2005 | A1 |
20050203460 | Kim | Sep 2005 | A1 |
20050214185 | Castaneda | Sep 2005 | A1 |
20060030827 | Raulerson et al. | Feb 2006 | A1 |
20070112333 | Hoang et al. | May 2007 | A1 |
20070167910 | Tennican et al. | Jul 2007 | A1 |
20070187353 | Fox et al. | Aug 2007 | A1 |
20070249996 | Tennican et al. | Oct 2007 | A1 |
20070265578 | Tennican et al. | Nov 2007 | A1 |
20070282280 | Tennican | Dec 2007 | A1 |
20070287989 | Crawford et al. | Dec 2007 | A1 |
20080019889 | Rogers et al. | Jan 2008 | A1 |
20080027399 | Harding et al. | Jan 2008 | A1 |
20080039803 | Lynn | Feb 2008 | A1 |
20080058733 | Vogt et al. | Mar 2008 | A1 |
20080086091 | Anderson et al. | Apr 2008 | A1 |
20080093245 | Periasamy et al. | Apr 2008 | A1 |
20080095680 | Steffens et al. | Apr 2008 | A1 |
20080132880 | Buchman | Jun 2008 | A1 |
20080147047 | Davis et al. | Jun 2008 | A1 |
20080177250 | Howlett et al. | Jul 2008 | A1 |
20080235888 | Vaillancourt et al. | Oct 2008 | A1 |
20090008393 | Howlett et al. | Jan 2009 | A1 |
20090012426 | Tennican | Jan 2009 | A1 |
20090062766 | Howlett et al. | Mar 2009 | A1 |
20090093757 | Tennican | Apr 2009 | A1 |
20090099529 | Anderson et al. | Apr 2009 | A1 |
20090137969 | Colantonio et al. | May 2009 | A1 |
20090205151 | Fisher et al. | Aug 2009 | A1 |
20090259194 | Pinedjian et al. | Oct 2009 | A1 |
20100003067 | Shaw et al. | Jan 2010 | A1 |
20100047123 | Solomon | Feb 2010 | A1 |
20100049170 | Solomon et al. | Feb 2010 | A1 |
20100050351 | Colantonio et al. | Mar 2010 | A1 |
20100059474 | Brandenburger et al. | Mar 2010 | A1 |
20100064456 | Ferlic | Mar 2010 | A1 |
20100160894 | Julian et al. | Jun 2010 | A1 |
20100172794 | Ferlic et al. | Jul 2010 | A1 |
20100242993 | Hoang et al. | Sep 2010 | A1 |
20100306938 | Rogers et al. | Dec 2010 | A1 |
20110030726 | Vaillancourt et al. | Feb 2011 | A1 |
20110044850 | Solomon et al. | Feb 2011 | A1 |
20110064512 | Shaw et al. | Mar 2011 | A1 |
20110217212 | Solomon et al. | Sep 2011 | A1 |
20110232020 | Rogers et al. | Sep 2011 | A1 |
20110265825 | Rogers et al. | Nov 2011 | A1 |
20110277788 | Rogers et al. | Nov 2011 | A1 |
20110290799 | Anderson et al. | Dec 2011 | A1 |
20110311602 | Mills et al. | Dec 2011 | A1 |
20120031904 | Kuhn et al. | Feb 2012 | A1 |
20120039764 | Solomon et al. | Feb 2012 | A1 |
20120157965 | Wotton et al. | Jun 2012 | A1 |
20120195807 | Ferlic | Aug 2012 | A1 |
20120216359 | Rogers et al. | Aug 2012 | A1 |
20120216360 | Rogers et al. | Aug 2012 | A1 |
20120283693 | Anderson et al. | Nov 2012 | A1 |
20120296284 | Anderson et al. | Nov 2012 | A1 |
20120302970 | Tennican | Nov 2012 | A1 |
20120302997 | Gardner et al. | Nov 2012 | A1 |
20130030414 | Gardner et al. | Jan 2013 | A1 |
20130035667 | Anderson et al. | Feb 2013 | A1 |
20130053751 | Holtham | Feb 2013 | A1 |
20130072908 | Solomon et al. | Mar 2013 | A1 |
20130098398 | Kerr et al. | Apr 2013 | A1 |
20130123754 | Solomon et al. | May 2013 | A1 |
20130171030 | Ferlic et al. | Jul 2013 | A1 |
20130183635 | Wilhoit | Jul 2013 | A1 |
20130274686 | Ziebol et al. | Oct 2013 | A1 |
20140034540 | Solomon et al. | Feb 2014 | A1 |
20140052074 | Tekeste | Feb 2014 | A1 |
20140101876 | Rogers et al. | Apr 2014 | A1 |
20140228809 | Wong | Aug 2014 | A1 |
20150018774 | Anderson et al. | Jan 2015 | A1 |
20150217106 | Banik et al. | Aug 2015 | A1 |
20150237854 | Mills et al. | Aug 2015 | A1 |
20150314119 | Anderson et al. | Nov 2015 | A1 |
20150314120 | Gardner et al. | Nov 2015 | A1 |
20150374968 | Solomon et al. | Dec 2015 | A1 |
20160001058 | Ziebol et al. | Jan 2016 | A1 |
20160045629 | Gardner et al. | Feb 2016 | A1 |
20160088995 | Ueda et al. | Mar 2016 | A1 |
20160089530 | Sathe | Mar 2016 | A1 |
20160101276 | Tekeste | Apr 2016 | A1 |
20160106969 | Neftel | Apr 2016 | A1 |
20160121097 | Steele | May 2016 | A1 |
20160144118 | Solomon et al. | May 2016 | A1 |
20160158521 | Hoang et al. | Jun 2016 | A1 |
20160158522 | Hoang et al. | Jun 2016 | A1 |
20160213912 | Daneluzzi | Jul 2016 | A1 |
20160250420 | Maritan et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2148847 | Dec 1995 | CA |
2169689 | Aug 1996 | CA |
2 583 601 | Apr 2006 | CA |
2 626 864 | May 2007 | CA |
2 651 192 | Nov 2007 | CA |
2615146 | Jun 2008 | CA |
2402327 | Oct 2000 | CN |
2815392 | Sep 2006 | CN |
201150420 | Nov 2008 | CN |
201519335 | Jul 2010 | CN |
29617133 | Jan 1997 | DE |
0108785 | May 1984 | EP |
0227219 | Jul 1987 | EP |
0245872 | Nov 1987 | EP |
0769265 | Apr 1997 | EP |
1061000 | Dec 2000 | EP |
1331020 | Jul 2003 | EP |
1977714 | Oct 2008 | EP |
2 444 117 | Apr 2012 | EP |
2493149 | May 1982 | FR |
2782910 | Mar 2000 | FR |
123221 | Feb 1919 | GB |
2296182 | Jun 1996 | GB |
2333097 | Jul 1999 | GB |
2387772 | Oct 2003 | GB |
H04-99950 | Feb 1992 | JP |
2002-291906 | Oct 2002 | JP |
2006-182663 | Jul 2006 | JP |
2246321 | Feb 2005 | RU |
WO 8303975 | Nov 1983 | WO |
WO 9812125 | Mar 1998 | WO |
WO 2004035129 | Apr 2004 | WO |
WO 2004112846 | Dec 2004 | WO |
WO 2006007690 | Jan 2006 | WO |
WO 2006044236 | Apr 2006 | WO |
WO 2007056773 | May 2007 | WO |
WO 2007137056 | Nov 2007 | WO |
WO 2008086631 | Jul 2008 | WO |
WO 2008089196 | Jul 2008 | WO |
WO 2008100950 | Aug 2008 | WO |
WO 2008140807 | Nov 2008 | WO |
WO 2009002474 | Dec 2008 | WO |
WO 2009117135 | Sep 2009 | WO |
WO 2009123709 | Oct 2009 | WO |
WO 2009136957 | Nov 2009 | WO |
WO 2009153224 | Dec 2009 | WO |
WO 2010002757 | Jan 2010 | WO |
WO 2010002808 | Jan 2010 | WO |
WO 2010039171 | Apr 2010 | WO |
WO 2011028722 | Mar 2011 | WO |
WO 2011119021 | Sep 2011 | WO |
WO 2012162006 | Nov 2012 | WO |
Entry |
---|
Examination Report dated Jun. 6, 2011, issued by the Canadian Intellectual Property Office in connection with Canadian Patent Application No. 2,692,157 (2 pages). |
Examination Report dated Jun. 13, 2011, issued by the Intellectual Property Office of New Zealand in connection with New Zealand Patent Application No. 582395 (2 pages). |
Interview Summary dated Nov. 18, 2010, from pending U.S. Appl. No. 11/821,190 (5 pages). |
Office Action dated Dec. 17, 2009 from U.S. Appl. No. 11/821,190 (10 pages). |
Office Action dated Aug. 2, 2010 from U.S. Appl. No. 11/821,190 (14 pages). |
Office Action dated Mar. 7, 2011 from U.S. Appl. No. 11/821,190 (16 pages). |
Notice of Allowance dated Apr. 26, 2011 from U.S. Appl. No. 11/821,190 (9 pages). |
International Search Report of the International Searching Authority mailed Sep. 11, 2008, issued in connection with International Patent Appln. No. PCT/US08/07797 (2 pages). |
Written Opinion of the International Searching Authority mailed Sep. 11, 2008, issued in connection with International Patent Appln. No. PCT/US08/07797 (3 pages). |
Office Action mailed Jun. 9, 2011 from U.S. Appl. No. 12/214,526 (8 pages). |
Redacted version of letter from David A. Divine, Esq. Of Lee & Hayes, dated May 27, 2011 (3 pages). |
Redacted version of letter from David A. Divine, Esq. of Lee & Hayes, dated May 16, 2011 (3 pages). |
Notice of Allowance dated Jul. 29, 2011, from U.S. Appl. No. 11/821,190 (6 pages). |
Notification of First Office Action dated Aug. 3, 2011, issued by the State Intellectual Property Office of the People's Republic of China in connection with Chinese Patent Application No. 200880103854.5 (5 pages). |
Office Action mailed Oct. 31, 2011 from U.S. Appl. No. 12/214,526 (9 pages). |
Photographs of the Baxter Minicap (4 pages) (product sold at least one year prior to the earliest filed). |
Office Action mailed Dec. 21, 2011 from U.S. Appl. No. 13/095,516 (7 pages). |
Examiner's Report dated Mar. 29, 2012, issued by the Canadian Intellectual Property Office in connection with Canadian Patent Application No. 2,692,157 (3 pages). |
Second Office Action dated Mar. 29, 2012, along with English translation, issued by the State Intellectual Property Office of the People's Republic of China in connection with Chinese Patent Application No. 200880103854.5 (7 pages). |
Examination Report dated Apr. 27, 2011, issued by the Canadian Intellectual Property Office in connection with Canadian Patent Application No. 2,692,157 (2 pages). |
Examination Report dated Jan. 23, 2013, issued by the Canadian Intellectual Property Office in connection with Canadian Patent Application No. 2,692,157 (4 pages). |
Notice of Allowance dated Oct. 2, 2013, issued by the Canadian Intellectual Property Office in connection with Canadian Patent Application No. 2,692,157 (1 page). |
Office Action dated Oct. 2012, issued by the Intellectual Property Office of Colombia in connection with Colombian Patent Application No. 10.000.937 (9 pages). |
Examination Report dated Nov. 8, 2012, issued by the Intellectual Property Office of New Zealand in connection with New Zealand Patent Application No. 582395 (2 pages). |
Examination Report and Notice of Acceptance of Complete Specification dated Dec. 5, 2012, issued by the Intellectual Property Office of New Zealand in connection with New Zealand Patent Application No. 582395 (1 page). |
Interview Summary dated Mar. 23, 2012 from U.S. Appl. No. 12/214,526 (3 pages). |
Notification of Second Office Action dated Apr. 16, 2012, issued by the State Intellectual Property Office of the People's Republic of China in connection with Chinese Patent Application No. 200880103854.5 (4 pages). |
Notification of Third Office Action dated Nov. 1, 2012, issued by the State Intellectual Property Office of the People's Republic of China in connection with Chinese Patent Application No. 200880103854.5 (4 pages). |
International Preliminary Report on Patentability dated Dec. 22, 2009, in connection with International Patent Application No. PCT/US08/07797 (4 pages). |
Non-final office action dated Dec. 3, 2013 from U.S. Appl. No. 13/113,777 (13 pages). |
Notice of Allowance dated May 16, 2012 from U.S. Appl. No. 13/095,516 (18 pages). |
Non-final Office Action dated Dec. 14, 2012 from U.S. Appl. No. 13/456,853 (16 pages). |
Final Office Action dated Aug. 27, 2013 from U.S. Appl. No. 13/456,853 (18 pages). |
Non-final Office Action dated Mar. 27, 2014 from U.S. Appl. No. 13/456,853 (14 pages). |
Non-final Office Action dated Feb. 8, 2013 from U.S. Appl. No. 13/473,057 (20 pages). |
Final Office Action dated Dec. 3, 2013 from U.S. Appl. No. 13/473,057 (19 pages). |
Non-final Office Action dated May 3, 2013 from U.S. Appl. No. 13/649,569 (15 pages). |
Final Office Action dated Aug. 23, 2013 from U.S. Appl. No. 13/649,569 (19 pages). |
International Search Report of the International Searching Authority mailed Oct. 26, 2012, issued in connection with International Patent Application No. PCT/US2012/037772 (5 pages). |
Written Opinion of the International Searching Authority dated Oct. 26, 2012, issued in connection with International Patent Appln. No. PCT/US2012/037772 (7 pages). |
International Preliminary Report on Patentability dated Nov. 26, 2013, issued in connection with International Patent Application No. PCT/US2012/037772 (1 page). |
International Search Report of the International Searching Authority dated Nov. 19, 2012, issued in connection with International Patent Application No. PCT/US2012/038880 (5 pages). |
Written Opinion of the International Searching Authority dated Nov. 19, 2012, issued in connection with International Patent Appln. No. PCT/US2012/038880 (8 pages). |
International Preliminary Report on Patentability dated Nov. 20, 2013, issued in connection with International Patent Application No. PCT/US2012/038880 (1 page). |
Memo concerning Official Action (known of at least as early as Feb. 25, 2013), issued in connection with Mexican Application No. MX/a/2010/000171 (2 pages). |
Second Memo concerning Official Action (known of at least as early as Oct. 22, 2013), issued in connection with Mexican Application No. MX/a/2010/000171 (1 page). |
Examination Report dated Nov. 8, 2012, issued by the Intellectual Property Office of New Zealand in connection with New Zealand Patent Application No. 603404 (2 pages). |
Patent Examination Report dated Apr. 18, 2013, issued by the Intellectual Property Office of Australia in connection with Australian Patent Application No. 2012258435 (4 pages). |
Innovation Patent Examination Report No. 1 dated Apr. 18, 2013, issued by the Intellectual Property Office of Australia in connection with Australian Patent Application No. 2013109345 (3 pages). |
Menyhay, et al., “Disinfection of Needleless Catheter Connectors and Access Ports with Alcohol May Not Prevent Microbial Entry: The Promise of a Novel Antiseptic-Barrier Cap” Infection Control Hospital and Epidemiology vol. 27, No. 1 (Jan. 2006) (5 pages). |
International Standard, “Conical fittings with 6% (Luer) Taper for Syringes, Needles and Certain Other Medical Equipment—Part 2: Lock Fittings” Ref. No. ISO 594-2: 1998. International Organization for Standardization (Sep. 1, 1998) 2nd ed. (16 pages). |
Patent Examination Report No. 1 dated Aug. 27, 2012, issued by the Intellectual Property Office of Australia in connection with Australian Patent Application No. 2008269133 (4 pages). |
Patent Examination Report No. 2 dated Jan. 9, 2013, issued by the Intellectual Property Office of Australia in connection with Australian Patent Application No. 2008269133 (3 pages). |
Patent Examination Report No. 3 dated May 1, 2013, issued by the Intellectual Property Office of Australia in connection with Australian Patent Application No. 2008269133 (3 pages). |
Notice of Acceptance dated Nov. 14, 2013, issued by the Intellectual Property Office of Australia in connection with Australian Patent Application No. 2008269133 (2 pages). |
Non-final Office Action dated Apr. 14, 2014 from U.S. Appl. No. 13/649,569 (27 pages). |
International Search Report of the International Searching Authority mailed Feb. 14, 2013, issued in connection with International Patent Application No. PCT/US2012/062078 (3 pages). |
Written Opinion of the International Searching Authority mailed Feb. 14, 2013, issued in connection with International Patent Application No. PCT/US2012/062078 (3 pages). |
International Preliminary Report on Patentability mailed May 6, 2014, issued in connection with International Patent Application No. PCT/US2012/062078 (4 pages). |
First Examination Report dated Apr. 8, 2014, issued by the Intellectual Property Office of New Zealand in connection with New Zealand Patent Application No. 623139 (1 page). |
First Examination Report dated Apr. 9, 2014, issued by the Intellectual Property Office of New Zealand in connection with New Zealand Patent Application No. 623141 (1 page). |
First Office Action dated May 4, 2014, along with English translation, issued by the State Intellectual Property Office of the People's Republic of China in connection with Chinese Patent Application No. 201310087320.0 (20 pages). |
International Search Report of the International Searching Authority mailed Jul. 28, 2014, issued in connection with International Patent Application No. PCT/US14/23140 (3 pages). |
Written Opinion of the International Searching Authority mailed Jul. 28, 2014, issued in connection with International Patent Application No. PCT/US14/23140 (6 pages). |
Interview Summary dated Nov. 18, 2010, from U.S. Appl. No. 11/821,190 (5 pages). |
Final Office Action dated Aug. 25, 2014 from U.S. Appl. No. 13/113,777 (9 pages). |
Office Action dated Nov. 21, 2014, issued by the Intellectual Property Office of Japan in connection with Japanese patent Application No. 2013-162527 (2 pages). |
Notice of Allowance dated Dec. 3, 2014, from U.S. Appl. No. 13/456,853 (9 pages). |
First Examination Report dated Dec. 5, 2014, issued by the Intellectual Property Office of New Zealand in connection with New Zealand Patent Application No. 624449 (2 pages). |
Non-final Office Action dated Jan. 29, 2015 from U.S. Appl. No. 13/649,569 (14 pages). |
Non-final Office Action dated Jan. 29, 2015 from U.S. Appl. No. 13/547,650 (9 pages). |
Non-final Office Action dated Feb. 11, 2015 from U.S. Appl. No. 13/560,499 (9 pages). |
Final Office Action dated Mar. 31, 2015 from Japanese Application No. 2010-163450 (3 pages). |
Non-Final Office Action dated Apr. 3, 2015 from U.S. Appl. No. 13/113,777 (9 pages). |
Non-Final Office Action dated Jun. 24, 2015 from U.S. Appl. No. 13/476,772 (10 pages). |
Non-Final Office Action dated Jul. 13, 2015 from U.S. Appl. No. 13/803,289 (7 pages). |
Office Action dated Jul. 2015, issued by the Intellectual Property Office of Colombia in connection with Colombian Patent Application No. 14-094.083 (13 pages). |
Examination Report dated Apr. 30, 2015, issued by the Canadian Intellectual Property Office in connection with Canadian Patent Application No. 2,846,145 (3 pages). |
Patent Examination Report dated May 19, 2015, issued by the Intellectual Property Office of Australia in connection with Australian Patent Application No. 2013224680 (2 pages). |
Final Office Action dated Sep. 28, 2015 from U.S. Appl. No. 13/649,569 (17 pages). |
Baxter Minicap: Photographs of the Baxter Minicap (Sep. 1, 1998) (4 pages). |
Baxter, “Peritoneal Dialysis Patient Connectology,” Product Descriptions in 1 page, downloaded Jul. 1, 2011 [Publication Date unknown]. |
Catheter Connections, “Introducing DualCap,” Product Brochure in 1 page, Copyright 2011 [Publication Date unknown]. |
Hyprotek, “Port Protek,” Product Brochure in 1 page, downloaded Sep. 19, 2011 from http://www.hyprotek.com/products.html [Publication Date unknown]. |
Number | Date | Country | |
---|---|---|---|
20120109073 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
60815806 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12214526 | Jun 2008 | US |
Child | 13288529 | US | |
Parent | 11821190 | Jun 2007 | US |
Child | 12214526 | US | |
Parent | 13288529 | US | |
Child | 12214526 | US | |
Parent | 11821190 | Jun 2007 | US |
Child | 13288529 | US |