Apparatus and display methods relating to intravascular placement of a catheter

Abstract
An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to introduction of the catheter. ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart. Various aspects for visualizing and manipulating display of the ECG signal data acquired via the present system, together with aspects of various ECG sensor configurations, are also disclosed.
Description
BRIEF SUMMARY

Briefly summarized, embodiments of the present invention are directed to an integrated catheter placement system configured for accurately placing a catheter within the vasculature of a patient. The integrated system employs at least two modalities for improving catheter placement accuracy: 1) ultrasound-assisted guidance for introducing the catheter into the patient's vasculature; and 2) a tip location system (“TLS”), or magnetically-based (e.g., via permanent magnet(s) or electromagnet(s)) tracking of the catheter tip during its advancement through the vasculature to detect and facilitate correction of any tip malposition during such advancement.


In one embodiment, the integrated system comprises a system console including a control processor, a tip location sensor for temporary placement on a portion of a body of the patient, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to introduction of the catheter into the vasculature. In addition, the ultrasound probe includes user input controls for controlling use of the ultrasound probe in an ultrasound mode and use of the tip location sensor in a tip location mode.


In another embodiment, a third modality, i.e., ECG signal-based catheter tip guidance, is included in the system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart from which the ECG signals originate. Various means for establishing a conductive pathway between a sterile field of the patient and a non-sterile field to enable passage of ECG signals from the catheter to the tip location sensor are also disclosed. Such means include, for example, connector schemes that establish the conductive pathway through a perforation defined in a sterile barrier, such as a surgical drape, wherein the perforation is isolated by the connector scheme so as to prevent contamination or compromise of the sterile field of the patient.


In further embodiments, various aspects for visualizing and manipulating display of the ECG signal data acquired via the present catheter placement system are disclosed. These display aspects enable a clinician placing the catheter or other invasive medical device to ascertain information relating to the proximity of the device relative to the ECG signal-emitting node. In yet other embodiments, aspects of various ECG sensor configurations are also disclosed.


These and other features of embodiments of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of embodiments of the invention as set forth hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS

A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 is a block diagram depicting various elements of an integrated system for intravascular placement of a catheter, according to one example embodiment of the present invention;



FIG. 2 is a simplified view of a patient and a catheter being inserted therein with assistance of the integrated system of FIG. 1;



FIGS. 3A and 3B are views of a probe of the integrated system of FIG. 1;



FIG. 4 is a screenshot of an ultrasound image as depicted on a display of the integrated system of FIG. 1;



FIG. 5 is a perspective view of a stylet employed in connection with the system of FIG. 1 in placing a catheter within a patient vasculature;



FIG. 6 is an icon as depicted on a display of the integrated system of FIG. 1, indicating a position of a distal end of the stylet of FIG. 5 during catheter tip placement procedures;



FIGS. 7A-7E depict various example icons that can be depicted on the display of the integrated system of FIG. 1 during catheter tip placement procedures;



FIGS. 8A-8C are screenshots of images depicted on a display of the integrated system of FIG. 1 during catheter tip placement procedures;



FIG. 9 is a block diagram depicting various elements of an integrated system for intravascular placement of a catheter, according to another example embodiment of the present invention;



FIG. 10 is a simplified view of a patient and a catheter being inserted therein with assistance of the integrated system of FIG. 9;



FIG. 11 is a perspective view of a stylet employed in connection with the integrated system of FIG. 9 in placing a catheter within a patient vasculature;



FIGS. 12A-12E are various views of portions of the stylet of FIG. 11;



FIGS. 13A-13D are various views of a fin connector assembly for use with the integrated system of FIG. 9;



FIGS. 13E-13F are various views of a tether connector for use with the fin connector assembly shown in FIGS. 13A-13D;



FIGS. 14A-14C are views showing the connection of a stylet tether and fin connector to a sensor of the integrated system of FIG. 9;



FIG. 15 is a cross sectional view of the connection of the stylet tether, fin connector, and sensor shown in FIG. 14C;



FIG. 16 is simplified view of an ECG trace of a patient;



FIG. 17 is a screenshot of an image depicted on a display of the integrated system of FIG. 9 during catheter tip placement procedures;



FIG. 18 is a cross sectional view of a fin connector including electrical contacts configured in accordance with one embodiment;



FIGS. 19A and 19B are simplified views of an electrical contact retention system for engagement of a tether connector with a fin connector, in accordance with one embodiment;



FIGS. 20A-20C are various views of one embodiment of a fin connector and a tether connector for establishing a signal pathway through a sterile barrier in connection with use of the integrated system described herein;



FIGS. 21A and 21B are various views of a connector for electrically connecting ECG electrodes to a sensor of the integrated system, according to one embodiment;



FIGS. 22A-22C are various views of one embodiment of a fin connector and a tether connector for establishing a signal pathway through a sterile barrier;



FIGS. 23A and 23B are cross sectional views of a connector system for establishing a signal pathway through a sterile barrier, according to one embodiment;



FIG. 24 is a simplified side view of a connector system for establishing a signal pathway through a sterile barrier, according to one embodiment;



FIGS. 25A and 25B are simplified side views of a connector system for establishing a signal pathway through a sterile barrier, according to one embodiment;



FIGS. 26A and 26B are cross sectional views of a connector system for establishing a signal pathway through a sterile barrier, according to one embodiment;



FIG. 27 is a simplified view of a connector system for establishing a signal pathway through a sterile barrier, according to one embodiment;



FIG. 28 is a perspective view of stylet including a sterile shield for use with the connector system shown in FIG. 28, according to one embodiment;



FIGS. 29A and 29B are simplified views of the ECG module of FIG. 27, including a connector system for establishing a signal pathway through a sterile barrier, according to one embodiment;



FIG. 30 is a simplified view of a connector system for establishing a signal pathway through a sterile barrier, according to one embodiment;



FIG. 31 is a simplified view of a connector system for establishing a signal pathway through a sterile barrier, according to one embodiment;



FIG. 32 is a simplified view of elements of a connector system for establishing a signal pathway through a sterile barrier, according to one embodiment;



FIG. 33 is a view of a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment;



FIG. 34 is a view of another means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment;



FIGS. 35A-C depict exemplary P-wave waveforms;



FIG. 36 is a view of a sensor retro-fitted with a wireless module, according to one embodiment;



FIG. 37 is a view of a retention feature for a connector, according to one embodiment;



FIG. 38 is a perspective view of a catheter including an ECG sensor according to one embodiment;



FIG. 39 is a perspective view of a sensor assembly including multiple electrodes disposed on a catheter;



FIGS. 40A-40C depict operation of the catheter of FIG. 39;



FIGS. 41A-41D are various views of an electrode connection integrity indicator and system in accordance with one embodiment;



FIG. 42 is a perspective view of an electrode connection integrity system according to one embodiment;



FIGS. 43A and 43B are cross sectional views of a stylet including a conductive wire loop for detecting severing of the stylet according to one embodiment;



FIG. 44 is a partial cross sectional view the stylet of FIG. 43A, including a conductive wire loop with a planar wire in accordance with one embodiment;



FIG. 45 is a cross sectional view of a catheter including a stylet with a distal interference feature according to one embodiment;



FIG. 46 is a cross sectional view of a catheter including a stylet with a distal interference feature according to another embodiment;



FIGS. 47A and 47B are cross sectional views of distal portions of a catheter and stylet configured to maintain alignment of the distal ends of the catheter and stylet according to one embodiment.



FIG. 48 is a perspective view of an external dual-ECG electrode assembly in accordance with one embodiment;



FIG. 49 is a perspective view of an external ECG electrode assembly including graphics in accordance with one embodiment;



FIG. 50 is an ECG trace showing P-wave characteristics according to one embodiment;



FIG. 51 is a flow chart describing one method according to one embodiment;



FIGS. 52-55 are ECG traces showing additional P-wave characteristics according to embodiments of the present disclosure;



FIGS. 56A-57B are ECG traces showing details regarding ECG waveform scaling according to one embodiment;



FIG. 58 is a flow chart describing one method according to one embodiment;



FIG. 59 is a display window including aspects of a single ECG waveform according to one embodiment;



FIG. 60 is a flow chart describing one method according to one embodiment;



FIG. 61 is a catheter placement record configured according to one embodiment; and



FIG. 62 is another catheter placement record configured according to one embodiment.





DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the present invention, and are neither limiting nor necessarily drawn to scale.



FIGS. 1-62 depict various features of embodiments of the present invention, which is generally directed to a catheter placement system configured for accurately placing a catheter within the vasculature of a patient. In one embodiment, the catheter placement system employs at least two modalities for improving catheter placement accuracy: 1) ultrasound-assisted guidance for introducing the catheter into the patient's vasculature; and 2) a tip location/navigation system (“TLS”), or magnetically-based tracking of the catheter tip during its advancement through the tortuous vasculature path to detect and facilitate correction of any tip malposition during such advancement. The ultrasound guidance and tip location features of the present system according to one embodiment are integrated into a single device for use by a clinician placing the catheter. Integration of these two modalities into a single device simplifies the catheter placement process and results in relatively faster catheter placements. For instance, the integrated catheter placement system enables ultrasound and TLS activities to be viewed from a single display of the integrated system. Also, controls located on an ultrasound probe of the integrated device, which probe is maintained within the sterile field of the patient during catheter placement, can be used to control functionality of the system, thus precluding the need for a clinician to reach out of the sterile field in order to control the system.


In another embodiment, a third modality, i.e., ECG signal-based catheter tip guidance, is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart from which the ECG signals originate. Such ECG-based positional assistance is also referred to herein as “tip confirmation.”


Combination of the three modalities above according to one embodiment enables the catheter placement system to facilitate catheter placement within the patient's vasculature with a relatively high level of accuracy, i.e., placement of the distal tip of the catheter in a predetermined and desired position. Moreover, because of the ECG-based guidance of the catheter tip, correct tip placement may be confirmed without the need for a confirmatory X-ray. This, in turn, reduces the patient's exposure to potentially harmful x-rays, the cost and time involved in transporting the patient to and from the x-ray department, costly and inconvenient catheter repositioning procedures, etc.


As the ECG signal-based modality includes a need for passing ECG signals from a catheter assembly disposed in a sterile field of a patient to a data-receiving component of the system disposed in a non-sterile field, embodiments of the present invention are further concerned with various connector systems for establishing a conductive pathway through a sterile barrier separating the sterile and non-sterile fields. Various aspects for visualizing and manipulating display of the ECG signal data acquired via the present system, together with aspects of various ECG sensor configurations, are also disclosed.


For clarity it is to be understood that the word “proximal” as used herein refers to a direction relatively closer to a clinician, while the word “distal” refers to a direction relatively further from the clinician. For example, the end of a catheter placed within the body of a patient is considered a distal end of the catheter, while the catheter end remaining outside the body is a proximal end of the catheter. Also, the words “including,” “has,” and “having,” as used herein, including the claims, shall have the same meaning as the word “comprising.”


Reference is first made to FIGS. 1 and 2 which depict various components of a catheter placement system (“system”), generally designated at 10, configured in accordance with one example embodiment of the present invention. As shown, the system 10 generally includes a console 20, display 30, probe 40, and sensor 50, each of which is described in further detail below.



FIG. 2 shows the general relation of these components to a patient 70 during a procedure to place a catheter 72 into the patient vasculature through a skin insertion site 73. FIG. 2 shows that the catheter 72 generally includes a proximal portion 74 that remains exterior to the patient and a distal potion 76 that resides within the patient vasculature after placement is complete. The system 10 is employed to ultimately position a distal tip 76A of the catheter 72 in a desired position within the patient vasculature. In one embodiment, the desired position for the catheter distal tip 76A is proximate the patient's heart, such as in the lower one-third (⅓rd) portion of the Superior Vena Cava (“SVC”). Of course, the system 10 can be employed to place the catheter distal tip in other locations. The catheter proximal portion 74 further includes a hub 74A that provides fluid communication between the one or more lumens of the catheter 72 and one or more extension legs 74B extending proximally from the hub.


An example implementation of the console 20 is shown in FIG. 8C, though it is appreciated that the console can take one of a variety of forms. A processor 22, including non-volatile memory such as EEPROM for instance, is included in the console 20 for controlling system function during operation of the system 10, thus acting as a control processor. A digital controller/analog interface 24 is also included with the console 20 and is in communication with both the processor 22 and other system components to govern interfacing between the probe 40, sensor 50, and other system components.


The system 10 further includes ports 52 for connection with the sensor 50 and optional components 54 including a printer, storage media, keyboard, etc. The ports in one embodiment are USB ports, though other port types or a combination of port types can be used for this and the other interfaces connections described herein. A power connection 56 is included with the console 20 to enable operable connection to an external power supply 58. An internal battery 60 can also be employed, either with or exclusive of an external power supply. Power management circuitry 59 is included with the digital controller/analog interface 24 of the console to regulate power use and distribution.


The display 30 in the present embodiment is integrated into the console 20 and is used to display information to the clinician during the catheter placement procedure. In another embodiment, the display may be separate from the console. As will be seen, the content depicted by the display 30 changes according to which mode the catheter placement system is in: US, TLS, or in other embodiments, ECG tip confirmation. In one embodiment, a console button interface 32 (see FIGS. 1, 8C) and buttons included on the probe 40 can be used to immediately call up a desired mode to the display 30 by the clinician to assist in the placement procedure. In one embodiment, information from multiple modes, such as TLS and ECG, may be displayed simultaneously, such as in FIG. 17. Thus, the single display 30 of the system console 20 can be employed for ultrasound guidance in accessing a patient's vasculature, TLS guidance during catheter advancement through the vasculature, and (as in later embodiments) ECG-based confirmation of catheter distal tip placement with respect to a node of the patient's heart. In one embodiment, the display 30 is an LCD device.



FIGS. 3A and 3B depict features of the probe 40 according to one embodiment. The probe 40 is employed in connection with the first modality mentioned above, i.e., ultrasound (“US”)-based visualization of a vessel, such as a vein, in preparation for insertion of the catheter 72 into the vasculature. Such visualization gives real time ultrasound guidance for introducing the catheter into the vasculature of the patient and assists in reducing complications typically associated with such introduction, including inadvertent arterial puncture, hematoma, pneumothorax, etc.


The handheld probe 40 includes a head 80 that houses a piezoelectric array for producing ultrasonic pulses and for receiving echoes thereof after reflection by the patient's body when the head is placed against the patient's skin proximate the prospective insertion site 73 (FIG. 2). The probe 40 further includes a plurality of control buttons 84, which can be included on a button pad 82. In the present embodiment, the modality of the system 10 can be controlled by the control buttons 84, thus eliminating the need for the clinician to reach out of the sterile field, which is established about the patient insertion site prior to catheter placement, to change modes via use of the console button interface 32.


As such, in one embodiment a clinician employs the first (US) modality to determine a suitable insertion site and establish vascular access, such as with a needle or introducer, then with the catheter. The clinician can then seamlessly switch, via button pushes on the probe button pad 82, to the second (TLS) modality without having to reach out of the sterile field. The TLS mode can then be used to assist in advancement of the catheter 72 through the vasculature toward an intended destination.



FIG. 1 shows that the probe 40 further includes button and memory controller 42 for governing button and probe operation. The button and memory controller 42 can include non-volatile memory, such as EEPROM, in one embodiment. The button and memory controller 42 is in operable communication with a probe interface 44 of the console 20, which includes a piezo input/output component 44A for interfacing with the probe piezoelectric array and a button and memory input/output component 44B for interfacing with the button and memory controller 42.



FIG. 4 shows an example screenshot 88 as depicted on the display 30 while the system 10 is in its first ultrasound modality. An image 90 of a subcutaneous region of the patient 70 is shown, depicting a cross section of a vein 92. The image 90 is produced by operation of the piezoelectric array of the probe 40. also included on the display screenshot 88 is a depth scale indicator 94, providing information regarding the depth of the image 90 below the patient's skin, a lumen size scale 96 that provides information as to the size of the vein 92 relative to standard catheter lumen sizes, and other indicia 98 that provide information regarding status of the system 10 or possible actions to be taken, e.g., freeze frame, image templates, data save, image print, power status, image brightness, etc.


Note that while a vein is depicted in the image 90, other body lumens or portions can be imaged in other embodiments. Note that the US mode shown in FIG. 4 can be simultaneously depicted on the display 30 with other modes, such as the TLS mode, if desired. In addition to the visual display 30, aural information, such as beeps, tones, etc., can also be employed by the system 10 to assist the clinician during catheter placement. Moreover, the buttons included on the probe 40 and the console button interface 32 can be configured in a variety of ways, including the use of user input controls in addition to buttons, such as slide switches, toggle switches, electronic or touch-sensitive pads, etc. Additionally, both US and TLS activities can occur simultaneously or exclusively during use of the system 10.


As just described, the handheld ultrasound probe 40 is employed as part of the integrated catheter placement system 10 to enable US visualization of the peripheral vasculature of a patient in preparation for transcutaneous introduction of the catheter. In the present example embodiment, however, the probe is also employed to control functionality of the TLS portion, or second modality, of the system 10 when navigating the catheter toward its desired destination within the vasculature as described below. Again, as the probe 40 is used within the sterile field of the patient, this feature enables TLS functionality to be controlled entirely from within the sterile field. Thus the probe 40 is a dual-purpose device, enabling convenient control of both US and TLS functionality of the system 10 from the sterile field. In one embodiment, the probe can also be employed to control some or all ECG-related functionality, or third modality, of the catheter placement system 10, as described further below.


The catheter placement system 10 further includes the second modality mentioned above, i.e., the magnetically-based catheter TLS, or tip location system. The TLS enables the clinician to quickly locate and confirm the position and/or orientation of the catheter 72, such as a peripherally-inserted central catheter (“PICC”), central venous catheter (“CVC”), or other suitable catheter, during initial placement into and advancement through the vasculature of the patient 70. Specifically, the TLS modality detects a magnetic field generated by a magnetic element-equipped tip location stylet, which is pre-loaded in one embodiment into a longitudinally defined lumen of the catheter 72, thus enabling the clinician to ascertain the general location and orientation of the catheter tip within the patient body. In one embodiment, the magnetic assembly can be tracked using the teachings of one or more of the following U.S. Pat. Nos. 5,775,322; 5,879,297; 6,129,668; 6,216,028; and 6,263,230. The contents of the afore-mentioned U.S. patents are incorporated herein by reference in their entireties. The TLS also displays the direction in which the catheter tip is pointing, thus further assisting accurate catheter placement. The TLS further assists the clinician in determining when a malposition of the catheter tip has occurred, such as in the case where the tip has deviated from a desired venous path into another vein.


As mentioned, the TLS utilizes a stylet to enable the distal end of the catheter 72 to be tracked during its advancement through the vasculature. FIG. 5 gives an example of such a stylet 100, which includes a proximal end 100A and a distal end 100B. A handle is included at the stylet proximal end 100A, with a core wire 104 extending distally therefrom. A magnetic assembly is disposed distally of the core wire 104. The magnetic assembly includes one or more magnetic elements 106 disposed adjacent one another proximate the stylet distal end 100B and encapsulated by tubing 108. In the present embodiment, a plurality of magnetic elements 106 is included, each element including a solid, cylindrically shaped ferromagnetic stacked end-to-end with the other magnetic elements. An adhesive tip 110 can fill the distal tip of the tubing 108, distally to the magnetic elements 106.


Note that in other embodiments, the magnetic elements may vary from the design in not only shape, but also composition, number, size, magnetic type, and position in the stylet distal segment. For example, in one embodiment, the plurality of ferromagnetic magnetic elements is replaced with an electromagnetic assembly, such as an electromagnetic coil, which produces a magnetic field for detection by the sensor. Another example of an assembly usable here can be found in U.S. Pat. No. 5,099,845 entitled “Medical Instrument Location Means,” which is incorporated herein by reference in its entirety. Yet other examples of stylets including magnetic elements that can be employed with the TLS modality can be found in U.S. Pat. No. 8,784,336, entitled “Stylet Apparatuses and Methods of Manufacture,” which is incorporated herein by reference in its entirety. These and other variations are therefore contemplated by embodiments of the present invention. It should appreciated herein that “stylet” as used herein can include any one of a variety of devices configured for removable placement within a lumen of the catheter to assist in placing a distal end of the catheter in a desired location within the patient's vasculature.



FIG. 2 shows disposal of the stylet 100 substantially within a lumen in the catheter 72 such that the proximal portion thereof extends proximally from the catheter lumen, through the hub 74A and out through a selected one of the extension legs 74B. So disposed within a lumen of the catheter, the distal end 100B of the stylet 100 is substantially co-terminal with the distal catheter end 76A such that detection by the TLS of the stylet distal end correspondingly indicates the location of the catheter distal end.


The TLS sensor 50 is employed by the system 10 during TLS operation to detect a magnetic field produced by the magnetic elements 106 of the stylet 100. As seen in FIG. 2, the TLS sensor 50 is placed on the chest of the patient during catheter insertion. The TLS sensor 50 is placed on the chest of the patient in a predetermined location, such as through the use of external body landmarks, to enable the magnetic field of the stylet magnetic elements 106, disposed in the catheter 72 as described above, to be detected during catheter transit through the patient vasculature. Again, as the magnetic elements 106 of the stylet magnetic assembly are co-terminal with the distal end 76A of the catheter 72 (FIG. 2), detection by the TLS sensor 50 of the magnetic field of the magnetic elements provides information to the clinician as to the position and orientation of the catheter distal end during its transit.


In greater detail, the TLS sensor 50 is operably connected to the console 20 of the system 10 via one or more of the ports 52, as shown in FIG. 1. Note that other connection schemes between the TLS sensor and the system console can also be used without limitation. As just described, the magnetic elements 106 are employed in the stylet 100 to enable the position of the catheter distal end 76A (FIG. 2) to be observable relative to the TLS sensor 50 placed on the patient's chest. Detection by the TLS sensor 50 of the stylet magnetic elements 106 is graphically displayed on the display 30 of the console 20 during TLS mode. In this way, a clinician placing the catheter is able to generally determine the location of the catheter distal end 76A within the patient vasculature relative o the TLS sensor 50 and detect when catheter malposition, such as advancement of the catheter along an undesired vein, is occurring.



FIGS. 6 and 7A-7E show examples of icons that can be used by the console display 30 to depict detection of the stylet magnetic elements 106 by the TLS sensor 50. In particular, FIG. 6 shows an icon 114 that depicts the distal portion of the stylet 100, including the magnetic elements 106 as detected by the TLS sensor 50 when the magnetic elements are positioned under the TLS sensor. As the stylet distal end 100B is substantially co-terminal with the distal end 76A of the catheter 72, the icon indicates the position and orientation of the catheter distal end. FIGS. 7A-7E show various icons that can be depicted on the on the console display 30 when the magnetic elements 106 of the stylet 100 are not positioned directly under a portion of the TLS sensor 50, but are nonetheless detected nearby. The icons can include half-icons 114A and quarter-icons 114B that are displayed according to the position of the stylet magnetic assembly, i.e., the magnetic elements 106 in the present embodiment, relative to the TLS sensor 50.



FIGS. 8A-8C depict screenshots taken from the display 30 of the system 10 while in TLS mode, showing how the magnetic assembly of the stylet 100 is depicted. The screenshot 118 of FIG. 8A shows a representative image 120 of the TLS sensor 50. Other information is provided on the display screenshot 118, including a depth scale indicator 124, status/action indicia 126, and icons 128 corresponding to the button interface 32 included on the console 20 (FIG. 8C). Though the icons 128 in the present embodiment are simply indicators to guide the user in identifying the purpose of the corresponding buttons of the button interface 32, in another embodiment the display can be made touch-sensitive so that the icons themselves can function as button interfaces and can change according to the mode the system is in.


During initial stages of catheter advancement through the patient's vasculature after insertion therein, the distal end 76A of the catheter 72, having the stylet distal end 100B substantially co-terminal therewith, is relatively distant from the TLS sensor 50. As such, the display screenshot will indicate “no signal,” indicating that the magnetic field from the stylet magnetic assembly has not been detected. In FIG. 8B, the magnetic assembly proximate the stylet distal end 100B has advanced sufficiently close to the TLS sensor 50 to be detected thereby, though it is not yet under the sensor. This is indicated by the half-icon 114A shown to the left of the sensor image 120, representing the stylet magnetic assembly being positioned to the right of the TLS sensor 50 from the perspective of the patient.


In FIG. 8C, the magnetic assembly proximate the stylet distal end 100B has advanced under the TLS sensor 50 such that its position and orientation relative thereto is detected by the TLS sensor. This is indicated by the icon 114 on the sensor image 120. Note that the button icons 128 provide indications of the actions that can be performed by pressing the corresponding buttons of the console button interface 32. As such, the button icons 128 can change according to which modality the system 10 is in, thus providing flexibility of use for the button interface 32. Note further that, as the button pad 82 of the probe 40 (FIG. 3A, 3B) includes buttons 84 that mimic several of the buttons of the button interface 32, the button icons 128 on the display 30 provide a guide to the clinician for controlling the system 10 with the probe buttons 84 while remaining in the sterile field. For instance, if the clinician has need to leave TLS mode and return to US (ultrasound) mode, the appropriate control button 84 on the probe button pad 82 can be depressed, and the US mode can be immediately called up, with the display 30 refreshing to accommodate the visual information needed for US functionality, such as that shown in FIG. 4. This is accomplished without a need for the clinician to reach out of the sterile field.


Reference is now made to FIGS. 9 and 10 in describing the integrated catheter placement system 10 according to another example embodiment. As before, the integrated system 10 includes the console 20, display 30, probe 40 for US functionality, and the TLS sensor 50 for tip location functionality as described above. Note that the system 10 depicted in FIGS. 9 and 10 is similar in many respects to the system shown in FIGS. 1 and 2. As such, only selected differences will be discussed below. The system 10 of FIGS. 9 and 10 includes additional functionality wherein determination of the proximity of the catheter distal tip 76A relative to a sino-atrial (“SA”) or other electrical impulse-emitting node of the heart of the patient 70 can be determined, thus providing enhanced ability to accurately place the catheter distal tip in a desired location proximate the node. Also referred to herein as “ECG” or “ECG-based tip confirmation,” this third modality of the system 10 enables detection of ECG signals from the SA node in order to place the catheter distal tip in a desired location within the patient vasculature. Note that the US, TLS, and ECG modalities are seamlessly combined in the present system 10, but can be employed in concert or individually to assist in catheter placement. In one embodiment, it is understood that the ECG modality as described herein can be included in a stand-alone system without the inclusion of the US and TLS modalities. Thus, the environments in which the embodiments herein are described are understood as merely example environments and are not considered limiting of the present disclosure.



FIGS. 9 and 10 show the addition to the system 10 of a stylet 130 configured in accordance with the present embodiment. As an overview, the catheter stylet 130 is removably predisposed within the lumen of the catheter 72 being inserted into the patient 70 via the insertion site 73. The stylet 130, in addition to including a magnetic assembly for the magnetically-based TLS modality, includes a sensing component, i.e., an ECG sensor assembly, proximate its distal end and including a portion that is co-terminal with the distal end of the catheter tip for sensing ECG signals produced by the SA node. In contrast to the previous embodiment, the stylet 130 includes a tether 134 extending from its proximal end that operably connects to the TLS sensor 50. As will be described in further detail, the stylet tether 134 permits ECG signals detected by the ECG sensor assembly included on a distal portion of the stylet 130 to be conveyed to the TLS sensor 50 during confirmation of the catheter tip location as part of the ECG signal-based tip confirmation modality. Reference and ground ECG lead/electrode pairs 158 attach to the body of the body of the patient 70 and are operably attached to the TLS sensor 50 to enable the system to filter out high level electrical activity unrelated to the electrical activity of the SA node of the heart, thus enabling the ECG-based tip confirmation functionality. Together with the reference and ground signals received from the ECG lead/electrode pairs 158 placed on the patient's skin, the ECG signals sensed by the stylet ECG sensor assembly are received by the TLS sensor 50 positioned on the patient's chest (FIG. 10) or other designated component of the system 10. The TLS sensor 50 and/or console processor 22 can process the ECG signal data to produce an electrocardiogram waveform on the display 30, as will be described. In the case where the TLS sensor 50 processes the ECG signal data, a processor is included therein to perform the intended functionality. If the console 20 processes the ECG signal data, the processor 22, controller 24, or other processor can be utilized in the console to process the data.


Thus, as it is advanced through the patient vasculature, the catheter 72 equipped with the stylet 130 as described above can advance under the TLS sensor 50, which is positioned on the chest of the patient as shown in FIG. 10. This enables the TLS sensor 50 to detect the position of the magnetic assembly of the stylet 130, which is substantially co-terminal with the distal tip 76A of the catheter as located within the patient's vasculature. The detection by the TLS sensor 50 of the stylet magnetic assembly is depicted on the display 30 during ECG mode. The display 30 further depicts during ECG mode an ECG electrocardiogram waveform produced as a result of patient heart's electrical activity as detected by the ECG sensor assembly of the stylet 130. In greater detail, the ECG electrical activity of the SA node, including the P-wave of the waveform, is detected by the ECG sensor assembly of the stylet (described below) and forwarded to the TLS sensor 50 and console 20. The ECG electrical activity is then processed for depiction on the display 30. A clinician placing the catheter can then observe the ECG data to determine optimum placement of the distal tip 76A of the catheter 72, such as proximate the SA node in one embodiment. In one embodiment, the console 20 includes the electronic components, such as the processor 22 (FIG. 9), necessary to receive and process the signals detected by the stylet ECG sensor assembly. In another embodiment, the TLS sensor 50 can include the necessary electronic components processing the ECG signals.


As already discussed, the display 30 is used to display information to the clinician during the catheter placement procedure. The content of the display 30 changes according to which mode the catheter placement system is in: US, TLS, or ECG. Any of the three modes can be immediately called up to the display 30 by the clinician, and in some cases information from multiple modes, such as TLS and ECG, may be displayed simultaneously. In one embodiment, as before, the mode the system is in may be controlled by the control buttons 84 included on the handheld probe 40, thus eliminating the need for the clinician to reach out of the sterile field (such as touching the button interface 32 of the console 20) to change modes. Thus, in the present embodiment the probe 40 is employed to also control some or all ECG-related functionality of the system 10. Note that the button interface 32 or other input configurations can also be used to control system functionality. Also, in addition to the visual display 30, aural information, such as beeps, tones, etc., can also be employed by the system to assist the clinician during catheter placement.


Reference is now made to FIGS. 11-12E in describing various details of one embodiment of the stylet 130 that is removably loaded into the catheter 72 and employed during insertion to position the distal tip 76A of the catheter in a desired location within the patient vasculature. As shown, the stylet 130 as removed from the catheter defines a proximal end 130A and a distal end 130B. A connector 132 is included at the proximal stylet end 130A, and a tether 134 extends distally from the connector and attaches to a handle 136. A core wire 138 extends distally from the handle 136. The stylet 130 is pre-loaded within a lumen of the catheter 72 in one embodiment such that the distal end 130B is substantially flush, or co-terminal, with the catheter opening at the distal end 76A thereof (FIG. 10), and such that a proximal portion of the core wire 138, the handle 136, and the tether 134 extend proximally from a selected one of the extension tubes 74B. Note that, though described herein as a stylet, in other embodiments a guidewire or other catheter guiding apparatus could include the principles of the embodiment described herein.


The core wire 138 defines an elongate shape and is composed of a suitable stylet material including stainless steel or a memory material such as, in one embodiment, a nickel and titanium-containing alloy commonly known by the acronym “nitinol.” Though not shown here, manufacture of the core wire 138 from nitinol in one embodiment enables the portion of the core wire corresponding to a distal segment of the stylet to have a pre-shaped bent configuration so as to urge the distal portion of the catheter 72 into a similar bent configuration. In other embodiments, the core wire includes no pre-shaping. Further, the nitinol construction lends torqueability to the core wire 138 to enable a distal segment of the stylet 130 to be manipulated while disposed within the lumen of the catheter 72, which in turn enables the distal portion of the catheter to be navigated through the vasculature during catheter insertion.


The handle 136 is provided to enable insertion/removal of the stylet from the catheter 72. In embodiments where the stylet core wire 138 is torqueable, the handle 136 further enables the core wire to be rotated within the lumen of the catheter 72, to assist in navigating the catheter distal portion through the vasculature of the patient 70.


The handle 136 attaches to a distal end of the tether 134. In the present embodiment, the tether 134 is a flexible, shielded cable housing one or more conductive wires electrically connected both to the core wire 138, which acts as the ECG sensor assembly referred to above, and the tether connector 132. As such, the tether 134 provides a conductive pathway from the distal portion of the core wire 138 through to the tether connector 132 at proximal end 130A of the stylet 130. As will be explained, the tether connector 132 is configured for operable connection to the TLS sensor 50 on the patient's chest for assisting in navigation of the catheter distal tip 76A to a desired location within the patient vasculature.


As seen in FIGS. 12B-12D, a distal portion of the core wire 138 is gradually tapered, or reduced in diameter, distally from a junction point 142. A sleeve 140 is slid over the reduced-diameter core wire portion. Though of relatively greater diameter here, the sleeve in another embodiment can be sized to substantially match the diameter of the proximal portion of the stylet core wire. The stylet 130 further includes a magnetic assembly disposed proximate the distal end 130B thereof for use during TLS mode. The magnetic assembly in the illustrated embodiment includes a plurality of magnetic elements 144 interposed between an outer surface of the reduced-diameter core wire 138 and an inner surface of the sleeve 140 proximate the stylet distal end 130B. In the present embodiment, the magnetic elements 144 include 20 ferromagnetic magnets of a solid cylindrical shape stacked end-to-end in a manner similar to the stylet 100 of FIG. 2. In other embodiments, however, the magnetic element(s) may vary from this design in not only shape, but also composition, number, size, magnetic type, and position in the stylet. For example, in one embodiment the plurality of magnets of the magnetic assembly is replaced with an electromagnetic coil that produces a magnetic field for detection by the TLS sensor. These and other variations are therefore contemplated by embodiments of the present invention.


The magnetic elements 144 are employed in the stylet 130 distal portion to enable the position of the stylet distal end 130B to be observable relative to the TLS sensor 50 placed on the patient's chest. As has been mentioned, the TLS sensor 50 is configured to detect the magnetic field of the magnetic elements 144 as the stylet advances with the catheter 72 through the patient vasculature. In this way, a clinician placing the catheter 72 is able to generally determine the location of the catheter distal end 76A within the patient vasculature and detect when catheter malposition is occurring, such as advancement of the catheter along an undesired vein, for instance.


The stylet 130 further includes the afore-mentioned ECG sensor assembly, according to one embodiment. The ECG sensor assembly enables the stylet 130, disposed in a lumen of the catheter 72 during insertion, to be employed in detecting an intra-atrial ECG signal produced by an SA or other node of the patient's heart, thereby allowing for navigation of the distal tip 76A of the catheter 72 to a predetermined location within the vasculature proximate the patient's heart. Thus, the ECG sensor assembly serves as an aide in confirming proper placement of the catheter distal tip 76A.


In the embodiment illustrated in FIGS. 11-12E, the ECG sensor assembly includes a distal portion of the core wire 138 disposed proximate the stylet distal end 130B. The core wire 138, being electrically conductive, enables ECG signals to be detected by the distal end thereof and transmitted proximally along the core wire. A conductive material 146, such as a conductive epoxy, fills a distal portion of the sleeve 140 adjacent the distal termination of the core wire 138 so as to be in conductive communication with the distal end of the core wire. This in turn increases the conductive surface of the distal end 130B of the stylet 130 so as to improve its ability to detect ECG signals.


Before catheter placement, the stylet 130 is loaded into a lumen of the catheter 72. Note that the stylet 130 can come preloaded in the catheter lumen from the manufacturer, or loaded into the catheter by the clinician prior to catheter insertion. The stylet 130 is disposed within the catheter lumen such that the distal end 130B of the stylet 130 is substantially co-terminal with the distal tip 76A of the catheter 72, thus placing the distal tips of both the stylet and the catheter in substantial alignment with one another. The co-terminality of the catheter 72 and stylet 130 enables the magnetic assembly to function with the TLS sensor 50 in TLS mode to track the position of the catheter distal tip 76A as it advances within the patient vasculature, as has been described. Note, however, that for the tip confirmation functionality of the system 10, the distal end 130B of the stylet 130 need not be co-terminal with the catheter distal end 76A. Rather, all that is required is that a conductive path between the vasculature and the ECG sensor assembly, in this case the core wire 138, be established such that electrical impulses of the SA node or other node of the patient's heart can be detected. This conductive path in one embodiment can include various components including saline solution, blood, etc.


In one embodiment, once the catheter 72 has been introduced into the patient vasculature via the insertion site 73 (FIG. 10) the TLS mode of the system 10 can be employed as already described to advance the catheter distal tip 76A toward its intended destination proximate the SA node. Upon approaching the region of the heart, the system 10 can be switched to ECG mode to enable ECG signals emitted by the SA node to be detected. As the stylet-loaded catheter is advanced toward the patient's heart, the electrically conductive ECG sensor assembly, including the distal end of the core wire 138 and the conductive material 146, begins to detect the electrical impulses produced by the SA node. As such, the ECG sensor assembly serves as an electrode for detecting the ECG signals. The elongate core wire 138 proximal to the core wire distal end serves as a conductive pathway to convey the electrical impulses produced by the SA node and received by the ECG sensor assembly to the tether 134.


The tether 134 conveys the ECG signals to the TLS sensor 50 temporarily placed on the patient's chest. The tether 134 is operably connected to the TLS sensor 50 via the tether connector 132 or other suitable direct or indirect connective configuration. As described, the ECG signal can then be processed and depicted on the system display 30 (FIG. 9, 10). Monitoring of the ECG signal received by the TLS sensor 50 and displayed by the display 30 enables a clinician to observe and analyze changes in the signal as the catheter distal tip 76A advances toward the SA node. When the received ECG signal matches a desired profile, the clinician can determine that the catheter distal tip 76A has reached a desired position with respect to the SA node. As mentioned, in one embodiment this desired position lies within the lower one-third (⅓rd) portion of the SVC.


The ECG sensor assembly and magnetic assembly can work in concert in assisting a clinician in placing a catheter within the vasculature. Generally, the magnetic assembly of the stylet 130 assists the clinician in generally navigating the vasculature from initial catheter insertion so as to place the distal end 76A of the catheter 72 in the general region of the patient's heart. The ECG sensor assembly can then be employed to guide the catheter distal end 76A to the desired location within the SVC by enabling the clinician to observe changes in the ECG signals produced by the heart as the stylet ECG sensor assembly approaches the SA node. Again, once a suitable ECG signal profile is observed, the clinician can determine that the distal ends of both the stylet 130 and the catheter 72 have arrived at the desired location with respect to the patient's heart. Once it has been positioned as desired, the catheter 72 may be secured in place and the stylet 130 removed from the catheter lumen. It is noted here that the stylet may include one of a variety of configurations in addition to what is explicitly described herein. In one embodiment, the stylet can attach directly to the console instead of an indirect attachment via the TLS sensor. In another embodiment, the structure of the stylet 130 that enables its TLS and ECG-related functionalities can be integrated into the catheter structure itself. For instance, the magnetic assembly and/or ECG sensor assembly can, in one embodiment, be incorporated into the wall of the catheter.



FIGS. 13A-15 describe various details relating to the passage of ECG signal data from the stylet tether 134 to the TLS sensor 50 positioned on the patient's chest, according the present embodiment. In particular, this embodiment is concerned with passage of ECG signal data from a sterile field surrounding the catheter 72 and insertion site 73, which includes the stylet 130 and tether 134, and a non-sterile field, such as the patient's chest on which the TLS sensor is positioned. Such passage should not disrupt the sterile field so that the sterility thereof is compromised. A sterile drape that is positioned over the patient 70 during the catheter insertion procedure defines the majority of the sterile field: areas above the drape are sterile, while areas below (excluding the insertion site and immediately surrounding region) are non-sterile. As will be seen, the discussion below includes at least a first communication node associated with the stylet 130, and a second communication node associated with the TLS sensor 50 that operably connect with one another to enable ECG signal data transfer therebetween.


One embodiment addressing the passage of ECG signal data from the sterile field to the non-sterile field without compromising the sterility of the former is depicted in FIGS. 13A-15, which depict a “through-drape” implementation also referred to as a “shark fin” implementation. In particular, FIG. 14A shows the TLS sensor 50 as described above for placement on the chest of the patient during a catheter insertion procedure. The TLS sensor 50 includes on a top surface thereof a connector base 152 defining a channel 152A in which are disposed three electrical base contacts 154. A fin connector 156, also shown in FIGS. 13A-13D, is sized to be slidingly received by the channel 152A of the connector base 152, as shown in FIGS. 14B and 15. Two ECG lead/electrode pairs 158 extend from the fin connector 156 for placement on the shoulder and torso or other suitable external locations on the patient body. The drape-piercing tether connector 132 is configured to slidingly mate with a portion of the fin connector 156, as will be described further below, to complete a conductive pathway from the stylet 120, through the sterile field to the TLS sensor 50.



FIGS. 13A-13D show further aspects of the fin connector 156. In particular, the fin connector 156 defines a lower barrel portion 160 that is sized to be received in the channel 152A of the connector base 152 (FIGS. 14B, 15). A hole 162 surrounded by a centering cone 164 is included on a back end of an upper barrel portion 166. The upper barrel portion 166 is sized to receive the tether connector 132 of the stylet 130 (FIGS. 14C, 15) such that a pin contact 170 extending into a channel 172 of the tether connector 132 (FIG. 15) is guided by the centering hole until it seats within the hole 162 of the fin connector 156, thus interconnecting the tether connector with the fin connector. An engagement feature, such as the engagement feature 169 shown in FIGS. 13C and 13D, can be included on either side of the fin connector 156 to engage with corresponding detents 173 (FIG. 13F) on the tether connector 132 to assist with maintaining a mating between the two components. If disengagement between the two components is desired, a sufficient reverse pull force is applied to the tether connector 132 while holding or securing the fin connector 156 to prevent its removal from the channel 152A of the connector base 152.



FIG. 13D shows that the fin connector 156 includes a plurality of electrical contacts 168. In the present embodiment, three contacts 168 are included: the two forward-most contact each electrically connecting with a terminal end of one of the ECG leads 158, and the rear contact extending into axial proximity of the hole 162 so as to electrically connect with the pin contact 170 of the tether connector 132 when the latter is mated with the fin connector 156 (FIG. 15). A bottom portion of each contact 168 of the fin connector 156 is positioned to electrically connect with a corresponding one of the base contacts 154 of the TLS sensor connector base 152. In one embodiment, the bottom portion of each contact 168 includes a retention feature, such as an indentation 168A. So configured, each contact 168 can resiliently engage a respective one of the base contacts 154 when the fin connector 156 is received by the TLS sensor connector base 152 such that a tip of each base contact is received in the respective indentation 168A. This configuration provides an additional securement (FIG. 15) to assist in preventing premature separation of the fin connector 156 from the connector base 152. Note that many different retention features between the base contacts 154 and the fin contacts 168 can be included in addition to what is shown and described herein.



FIGS. 13E and 13F depict various details of the tether connector 132 according to one embodiment, including the tether connector channel 172, the pin contact 170 disposed in the channel, and detents 173 for removably engaging the engagement features 169 of the fin connector 156 (FIGS. 13A-13D), as described above. FIG. 13E further shows a plurality of gripping features 171 as an example of structure that can be included to assist the clinician in grasping the tether connector 132.



FIG. 14B shows a first connection stage for interconnecting the above described components, wherein the fin connector 156 is removably mated with the TLS sensor connector base 152 by the sliding engagement of the lower barrel portion 160 of the fin connector with the connector base channel 152A. This engagement electrically connects the connector base contacts 154 with the corresponding fin contacts 168 (FIG. 15).



FIG. 14C shows a second connection stage, wherein the tether connector 132 is removably mated with the fin connector 156 by the sliding engagement of the tether connector channel 172 with the upper barrel portion 166 of the fin connector. This engagement electrically connects the tether connector pin contact 170 with the back contact 168 of the fin connector 156, as best seen in FIG. 15. In the present embodiment, the horizontal sliding movement of the tether connector 132 with respect to the fin connector 156 is in the same engagement direction as when the fin connector is slidably mated to the sensor connector base channel 152A (FIG. 14B). In one embodiment, one or both of the stylet 130/tether connector 132 and the fin connector 156 are disposable. Also, the tether connector in one embodiment can be mated to the fin connector after the fin connector has been mated to the TLS sensor, while in another embodiment the tether connector can be first mated to the fin connector through the surgical drape before the fin connector is mated to the TLS sensor.


In the connection scheme shown in FIG. 14C, the stylet 130 is operably connected to the TLS sensor 50 via the tether connector 132, thus enabling the ECG sensor assembly of the stylet to communicate ECG signals to the TLS sensor. In addition, the ECG lead/electrode pairs 158 are operably connected to the TLS sensor 50. In one embodiment, therefore, the tether connector 132 is referred to as a first communication node for the stylet 130, while the fin connector 156 is referred to as a second communication node for the TLS sensor 50. As will be seen, various other first and second communication nodes can be employed to enable the establishment of a conductive pathway between the ECG sensor assembly and the TLS sensor or other system component.


Note that various other connective schemes and structures can be employed to establish operable communication between the stylet and the TLS sensor. For instance, the tether connector can use a slicing contact instead of a pin contact to pierce the drape. Or, the fin connector can be integrally formed with the TLS sensor. These and other configurations are therefore embraced within the scope of embodiments of the present disclosure.


As mentioned, a drape 174 is often placed over the patient 70 and employed as a barrier to separate a sterile field of the patient, e.g., areas and components above the drape and proximate to the insertion site 73 (including the catheter 72, the stylet 130, and tether 134 (FIG. 10)) from non-sterile areas outside of the sterile field, e.g., areas and components below the drape, including the patient's chest, the sensor 50 (FIG. 10) placed on the chest, and regions immediately surrounding the patient 70, also referred to herein as a non-sterile field. As seen in FIG. 15, the sterile drape 174 used during catheter placement to establish the sterile field is interposed between the interconnection of the tether connector 132 with the fin connector 156. As just described, the tether connector 132 includes the pin contact 170 that is configured to pierce the drape 174 when the two components are mated. This piercing forms a small hole, or perforation 175, in the sterile drape 174 that is occupied by the pin contact 170, thus minimizing the size of the drape perforation by the pin contact. Moreover, the fit between the tether connector 132 and the fin connector 156 is such that the perforation in sterile drape made by piercing of the pin contact 170 is enclosed by the tether connector channel 172, thus preserving the sterility of the drape and preventing a breach in the drape that could compromise the sterile barrier established thereby. The tether connector channel 172 is shaped and configured so as to fold the sterile drape 174 down prior to piercing by the pin contact 170 such that the pin contact does not pierce the drape until it is disposed proximate the hole 162 of the fin connector 156 and such that the drape does not bunch up within the channel. It is noted here that the tether connector 132 and fin connector 156 are configured so as to facilitate alignment therebetween blindly through the opaque sterile drape 174, i.e., via palpation absent visualization by the clinician of both components.


As already mentioned, note further that the fin contacts 168 of the fin connector 156 as shown in FIG. 15 include the indentations 168A, which are configured to mate with the sensor base contacts 154 in such a way as to assist in retaining the fin connector in engagement with the sensor base channel 152A. This in turn reduces the need for additional apparatus to secure the fin connector 156 to the TLS sensor 50. In other embodiments, retention features that are separate from the electrical contacts can be employed to assist in retaining the fin connector in engagement with the sensor base channel. In one embodiment, the base contacts 154 can be configured as pogo pins such that they are vertically displaceable to assist in retaining the fin connector 156.



FIG. 16 shows a typical ECG waveform 176 of a patient, including a P-wave and a QRS complex. Generally, and with respect to the present system 10, the amplitude of the P-wave varies as a function of distance of the ECG sensor assembly from the SA node, which produces the P-wave of the waveform 176. A clinician can use this relationship in determining when the catheter tip is properly positioned proximate the heart. For instance, in one implementation the catheter tip is desirably placed within the lower one-third (⅓rd) of the superior vena cava, as has been discussed. The ECG data detected by the ECG sensor assembly of the stylet 130 is used to reproduce waveforms such as the waveform 176, for depiction on the display 30 of the system 10 during ECG mode.


Reference is now made to FIG. 17 in describing display aspects of ECG signal data on the display 30 when the system 10 is in ECG mode, the third modality described further above, according to one embodiment. The screenshot 178 of the display 30 includes elements of the TLS modality, including a representative image 120 of the TLS sensor 50, with the icon 114 corresponding to the position of the distal end of the stylet 130 during transit through the patient vasculature. The screenshot 178 further includes a window 180 in which the current ECG waveform captured by the ECG sensor assembly of the stylet 130 and processed by the system 10 is displayed. The window 180 is continually refreshed as new waveforms are detected.


Window 182 includes a successive depiction of the most recent detected ECG waveforms, and includes a refresh bar 182A, which moves laterally to refresh the waveforms as they are detected. Window 184A is used to display a baseline ECG waveform, captured before the ECG sensor assembly is brought into proximity with the SA node, for comparison purposes to assist the clinician in determining when the desired catheter tip location has been achieved. Windows 184B and 184C can be filled by user-selected detected ECG waveforms when the user pushes a predetermined button on the probe 40 or the console button interface 32. The waveforms in the windows 184B and 184C remain until overwritten by new waveforms as a result of user selection via button pushes or other input. As in previous modes, the depth scale 124, status/action indicia 126, and button icons 128 are included on the display 30. An integrity indicator 186 is also included on the display 30 to give an indication of whether the ECG lead/electrode pairs 158 are operably connected to the TLS sensor 50 and the patient 70.


As seen above, therefore, the display 30 depicts in one embodiment elements of both the TLS and ECG modalities simultaneously on a single screen, thus offering the clinician ample data to assist in placing the catheter distal tip in a desired position. Note further that in one embodiment a printout of the screenshot or selected ECG or TLS data can be saved, printed, or otherwise preserved by the system 10 to enable documentation of proper catheter placement.


Although the embodiments described herein relate to a particular configuration of a catheter, such as a PICC or CVC, such embodiments are merely exemplary. Accordingly, the principles of the present invention can be extended to catheters of many different configurations and designs.



FIGS. 18-19B depict examples of contact engagement configurations for the tether connector 132 and fin connector 156. Specifically, FIG. 18 depicts the fin contacts 168 of the fin connector 156 according to one embodiment, wherein the rear contact includes a spring clip configuration 168B for receiving the pin contact 170 (FIG. 15) of the tether connector 132 via the centering cone 164 or other aperture defined in the fin connector. FIGS. 19A and 19B depict an engagement scheme according to another embodiment, wherein the pin contact 170 of the tether connector 132 includes a barbed feature 170A that, when inserted into the centering cone 164 or other aperture of the fin connector 156, engages a shoulder 168C defined on the rear fin contact 168 of the fin connector so as to help prevent premature removal of the pin contact from the fin connector. These embodiments thus serve as non-limiting examples of a variety of contact configurations that can be included with the fin connector 156, the sensor connector base 152, and the tether connector 132. Note that unless referred to as otherwise, the contacts described herein are understood to include electrical contacts used in establishing a conductive pathway.


The embodiments to be described below in connection with FIGS. 20A-32 each depict an example connection scheme as a means for establishing a conductive or other communication pathway between a patient's sterile field and a non-sterile field, i.e., areas outside of the sterile field. Thus, the embodiments described herein serve as examples of structure, material, and/or compositions corresponding to the means for establishing a conductive or other communication pathway. In particular, various embodiments described herein disclose examples for breaching or otherwise circumventing a sterile barrier separating the sterile field from the non-sterile field so as to provide at least a portion of the conductive pathway for the passage of ECG signals from a sensing component such as the ECG sensor assembly of the stylet 130 to the sensor 50, also referred to herein as a TLS sensor or chest sensor, or other suitable data-receiving component of the system 10. Note that these embodiments are merely examples of a variety of means for establishing such a conductive or other communication pathway, and are not to be considered limiting of the scope of the present disclosure. It is therefore appreciated that the means for establishing a conductive or other communication pathway can be employed for transferring ECG signals or other information, electrical signals, optical signals, etc.


As will be seen, many of the embodiments to be described include a tether connector, also referred to herein as a first communication node, which is operably connected to the stylet 130 and included in the sterile field, the tether connector is configured to operably attach to a connector included on the sensor 50 or other suitable component of the system 10, also referred to herein as a second communications node, which is disposed outside of the sterile field. Note, however, that the first communication node and second communication node are contemplated as generally referring to various connector interfaces that provide a conductive pathway from the sterile field to the non-sterile field to enable the passage of ECG signals as described above. It is appreciated that the conductive pathway is a communication pathway and includes an electrical pathway, an optical pathway, etc. Further, the communication node connection schemes described and contemplated herein can be employed with systems involving the use of modalities exclusive of ECG signals for navigation or placement of a catheter or other medical device.


Note further that the embodiments to follow that describe configurations for breaching a drape or other non-transparent sterile barrier are configured such that location of a communication node disposed out-of-sight under the drape/barrier is facilitated by palpation of the clinician, thus easing location and connection of the first and second communication nodes. Also, many of the connector configurations described herein can be configured as one-use, disposable components so as to minimize concerns with infection.


Reference is now made to FIGS. 20A-20C, which depict a connection scheme as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. In particular, FIGS. 20A-20C depict a tether connector 232 that includes an outer housing 234 and a blade holder 236 that attaches to the outer housing. A blade contact 238 is secured by the blade holder 236 such that the blade contact extends into a channel 240 of the tether connector. The blade contact 238 serves to create a slice perforation in a drape that is interposed between the tether connector and the fin connector 256 when the tether connector 232 is slid on to engage the fin connector in the manner described in previous embodiments. As before, the outer housing 234 of the tether connector envelops and protects the perforation so as to prevent contamination and compromise of the sterile field.



FIG. 20C shows that a fin connector 256 includes a fin contact 268 that is configured to physically interconnect with the blade contact 238 when the tether connector is slid on to the fin connector 256, thus establishing a conductive pathway through the sheath so as to enable ECG signals from an ECG sensing component, i.e., the ECG sensor assembly described above for instance, to pass to the sensor 50 via the blade contact 238/fin contact 268 engagement. Note that the particular configuration of the blade and fin contacts can be varied from what is described herein. For instance, the tether connector can include two or more blades or contacts for engagement with corresponding fin contacts to enable multiple conductive pathways to be established, if desired. The engagement surfaces of the tether connector and the fin connector can also vary from what is shown and described. In one embodiment, a light source can be included with the fin connector or other connectors as described herein so as to provide illumination through the drape 174 and provide visual assistance in locating the fin connector for interconnection with the tether connector.


As seen in FIGS. 14A and 14B, in one embodiment the ECG leads 158 are permanently connected to the fin connector 156. FIG. 21A depicts another possible embodiment, wherein the ECG leads are removably attached to the fin connector 156 via a connector, such as a horseshoe connector 270, best seen in FIG. 21B. FIG. 21A further shows that the fin connector 156 is permanently attached to the sensor 50. These and other variations in the connective schemes of the various components of the system 10 are therefore contemplated as falling within the scope of the present disclosure. In another embodiment, the electrode of each lead is removably attachable from the lead, such as via a snap connection, for instance.


Reference is now made to FIGS. 22A-22C, which depict a connection scheme as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. In particular, FIGS. 22A-22C depict a tether connector 332 that includes a channel 372 for slidably engaging an upper barrel 166 of a fin connector 356 disposed on the sensor 50, in a manner similar to previous embodiments. The tether connector 332 includes a bi-positional top cap 374 to which is attached a pin contact 370 or other piercing contact.


The top cap 374 is positioned in an un-actuated first position, shown in phantom in FIG. 22B, when the tether connector 332 is first slid on to the fin connector 356. The drape, removed for clarity, is interposed between the upper barrel 166 of the fin connector 356 and the tether connector channel 372, similar to earlier embodiments. After the tether connector 332 is positioned on the fin connector 356, the top cap 374 can then be depressed by the clinician into an actuated second position shown in FIG. 22B, wherein the pin contact 370 is pressed downward through the drape and into operable engagement with a corresponding contact disposed in the fin connector 356. The tether connector 332 is thus positioned as shown in FIG. 22C. In addition to establishing a conductive path through the drape 174, this engagement of the pin contact 370 locks the tether connector 332 on to the fin connector 356 so as to prevent premature separation of the components.


Reference is now made to FIGS. 23A and 23B, which depict a connection scheme as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. In particular, FIG. 23A depicts a tether connector 432 including a pin contact 440 or other suitable contact attached to an actuation assembly 442. The actuation assembly 442 includes lever arms for selectively lowering the pin contact 440 through an opening defined by a male end 448 of a housing 446 in which the actuation assembly is disposed. The male end 448 of the housing is configured to be received by a sensor connector receptacle 450 disposed on the sensor 50 or other suitable component of the system, such as a remote module operably connected to the sensor, for instance.


To interconnect the tether connector 432 to the sensor connector receptacle 450, the male end 448 of the tether connector 432 is brought, above the drape 174, into proximity with the receptacle 450. The actuation assembly 442 is then actuated by raising the lever arms 444, as shown in FIG. 23B. The pin contact 440 is forced downward through the drape 174, thus defining a perforation therein. The male end 448 can then be fully received into the sensor receptacle 450, wherein the pin contact 440 operably connects with a suitable contact of the sensor connector receptacle. The connector scheme shown in FIGS. 23A and 23B is useful for imposing a minimal downward force on the body of the patient during connector interconnection. Further, the actuation assembly 442 provides a predetermined force in connecting the first communication node (the tether connector 432) with the second communication node (the sensor connector receptacle 450), and thus does not rely on a clinician's estimation of force to establish the node connection. In another embodiment, the housing 446 and the sensor receptacle 450 can be aligned and mated before the actuation assembly 442 is actuated to pierce the contact 440 through the drape.


Reference is now made to FIG. 24, which depicts a connection scheme as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. As in the embodiment shown in FIGS. 23A and 23B, the present interconnection scheme minimizes downward pressure on the body of the patient during interconnection of the nodes. As shown, a tether connector 532 includes a pin contact 540 or other suitable contact included with a threaded cap 542, which defines threads on an inside surface thereof. The threaded cap 542 is configured to threadingly receive a threaded base 544 disposed on the sensor 50 or other suitable component of the system, such as a remote module operably connected to the sensor, for instance. As before, the drape 174 is interposed therebetween.


To interconnect the tether connector 532 to the sensor 50, the threaded cap 542 of the tether connector is brought, above the drape 174, into proximity with the threaded base 544 and threaded on to the base. This causes the pin contact 540 to penetrate the drape 174, thus defining a perforation therein. Further threading of the cap 542 on to the base 544 causes the pin contact 540 to engage a contact receptacle 546 included in the base 544, thus operably interconnecting the two nodes. In one embodiment, the tether 134 is rotatably attached to the threaded cap 542 so as to prevent twisting of the tether during threading. The connector scheme shown in FIG. 24 is useful for imposing a minimal downward force on the body of the patient during connector interconnection as the force to join the two connectors is directed laterally with respect to the patient via the threading operation. Note further that a variety of thread configurations and locations, as well as different cap and base configurations, are contemplated by the present disclosure.


Reference is now made to FIGS. 25A and 25B, which depict a connection scheme as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. As in the previous embodiment, the present interconnection scheme minimizes downward pressure on the body of the patient during interconnection of the nodes. As depicted in FIGS. 25A and 25B, a tether connector 632 includes one or more piercing contacts, such as pin contacts 640A and 640B that are respectively included on slide arms 642A and 642B. One or more contact receptacles, such as contact receptacles 644A and 644B, are included on a portion of the sensor 50, such as a sensor fin 646, or other suitable system component. As before, the drape 174 is interposed between the tether connector 632 and the sensor fin 646 to serve as a sterile barrier.


To interconnect the tether connector 632 to the sensor fin 646, the tether connector is brought, above the drape 174, into proximity with the sensor fin such that the slide arms 642A and 642B straddle the sensor fin and such that the pin contacts 640A and 640B are aligned with corresponding contact receptacles 644A and 644B, as shown in FIG. 25A. The slide arms 642A and 642B are then slid toward one another such that the pin contacts 640A and 640B penetrate the drape 174, each defining a perforation therein. The slide arms 642A and 642B are slid inward until the pin contacts 640A and 640B seat within and operably connect with the corresponding contact receptacles 644A and 644B, as seen in FIG. 25B, thus interconnecting the two nodes. The connector scheme shown in FIGS. 25A and 25B is useful for imposing a minimal downward force on the body of the patient during connector interconnection as the force to join the two connectors is directed laterally with respect to the patient. Note that the particular configuration of the tether connector, the sensor fin, and the contacts can vary from what is explicitly described herein. For instance, in one embodiment the slide arms can be configured as bi-positional rocker arms that are connected in a see-saw configuration with respect to one another. Also, one, two, or more contacts can be included on the slide arms.


Reference is now made to FIGS. 26A and 26B, which depict a connection scheme as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. As shown, an integrated connector 730 is incorporated into the drape 174 so as to enable operable interconnection therethrough. In the illustrated embodiment, the integrated connector 730 includes a conductive base portion 734 from which extend mechanical connectors, such as snap balls 736A and 736B.


As shown in FIG. 26B, the integrated connector 730 is positioned in the drape 174 as to be connectable with both a suitable receptacle 738 of a tether connector 732 and a suitable receptacle 740 of the sensor 50 or other suitable component of the system 10. In particular, the tether connector 732 can be snap-attached to the integrated connector 730, after which the integrated connector can be attached to the sensor 50, thus providing a suitable pathway for signals from the ECG sensor assembly in the sterile field to be transmitted through the sterile barrier of the drape 174 to the sensor in the non-sterile field. It is appreciated that, in other embodiments, the integrated connector can include other configurations, such as different mechanical connectors, e.g., friction connectors, male/female connectors, etc., and as such the receptacles on the tether connector and sensor can likewise be modified to accommodate the different mechanical connectors. Also, the connective scheme described above can be reversed such that the receptacles are included on the integrated connector and the snap balls on the respective tether connector and sensor. Further, though presently depicted as a unitary component, the integrated connector in other embodiments can include two or more pieces that are attached to each other through a previously defined hole in the drape during manufacture thereof. These and other variations are therefore contemplated.


Reference is now made to FIG. 27, which depicts a connection scheme as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. In detail, FIG. 27 depicts an intermediate module, i.e., ECG module 750, disposed outside of the sterile field of the patient, which is operably connected to the sensor 50 of the system 10 via a sensor cable 752. The ECG module 750 is also operably connected to the ECG leads 158. In one embodiment, the ECG module 750 includes the circuitry and other components necessary for receipt and analysis of the ECG signal detected by the ECG sensor assembly of the stylet 130. As such, a conductive pathway is established between the stylet 130 and the ECG module 750 by traversing the sterile field of the patient. In the present embodiment, this is accomplished by a tether connector 762 of the tether 134.


As depicted in FIG. 27, the tether connector 762 operably attaches to a receptacle 764 of the ECG module 750. As shown, the tether connector 762 can include a sufficiently long handle that enables the clinician to attach the sterile tether connector to the receptacle 764 of the non-sterile ECG module 750 without touching the ECG module itself, thus preventing any compromise of the sterile field. In one embodiment, the handle of the tether connector 762 can include an extendable J-hook contact, for instance, that can operably connect to a suitable contact of the ECG module.



FIG. 27 further depicts a footswitch 1116, usable with any of the embodiments described herein, which may be placed on the ground near the feet of the clinician and employed to control selected aspects of system functionality during catheter placement procedures. For instance, in one embodiment, the footswitch 1116 can be used to freeze ECG waveform images on the system display 30, or to create a printout of the display during the procedure, or even after the procedure is complete so as to provide a record of final catheter placement. Of course, the design and functionality of the footswitch can be modified in many ways from what is explicitly shown and described herein.



FIG. 28 shows another example of a tether connector that can be employed with the ECG module 750 of FIG. 27 or other suitable component of the system 10 as part of a connection scheme as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. In particular, FIG. 28 depicts a tether connector 832, which includes a handle and a barbed contact 836 or other suitable contact at a proximal end thereof. A sterile shield 838 is interposed between the handle 834 and the contact 836. The sterile shield 838 assists in protecting the hand of the clinician while inserting the contact 836 into the receptacle 764 of the ECG module 750 in a manner similar to what is shown in FIG. 27. Thus, the sterile shield 838 serves as an additional barrier to prevent inadvertent contact by the clinician with a component outside of the sterile field, such as the ECG module 750. Note that the size, shape, and particular configuration of the sterile shield and/or tether connector can vary from what is explicitly described in the present embodiment.



FIGS. 29A and 29B show yet another example of a connection scheme that can be employed with the ECG module 750 of FIG. 27 or other suitable component of the system 10 as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. In particular, FIG. 29A shows that the ECG module 750 can be enveloped by a sterile bag 850. A connector, such as the integrated connector 730 described above in connection with FIGS. 26A and 26B, can be incorporated into the bag. As shown in FIG. 29B, an inner snap ball or other mechanical connector of the integrated connector 730 can be received by the suitably corresponding receptacle 764 of the ECG module 750. The tether connector of the system 10 can then be operably connected with the outer snap ball or other connector of the integrated connector 730, thus establishing a conductive pathway between the sterile field and the non-sterile field without compromising sterility. Note that the sterile bag 850 can include any one or more of a variety of suitable materials, including plastic. Note also that the integrated connector can include other connector configurations in addition to what is explicitly described herein. In one embodiment, the sterile bag includes no integrated connector, but rather is pierced by a pin contact of the tether connector, such as the barbed contact 836 included on the tether connector 832 of FIG. 28.


Reference is now made to FIG. 30, which depicts a connection scheme as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. Specifically, the stylet 130 includes a tether connector 862 as a first communication node, as in previous embodiments. A remote sensor connector 864 is also included as a second communications node, and is operably connected to the sensor 50 of the system 10 via a remote sensor connector cable 866. The tether connector 862 and remote sensor connector 864 operably connect to one another along a connection interface 868. The drape 174 that serves as a sterile barrier is interposed between the tether connector 862 and remote sensor connector 864 at the connection interface 868, and a suitable drape piercing configuration is included with the tether connector and the remote sensor connector to establish a conductive pathway through the drape. The present embodiment thus discloses one embodiment wherein the second communication node is located remotely with respect to the sensor 50.


Reference is now made to FIG. 31, which depicts a connection scheme as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. Specifically, the present embodiment includes the tether connector 862 and the remote sensor connector 864 that operably connect to one another along the connection interface 868, as described in connection with FIG. 30, above. The remote sensor connector 864 in the present embodiment is placed proximate the catheter insertion site 73 in a region over which a fenestration 880 defined in the drape 174 (portions of the drape omitted for clarity) is positioned to enable clinician access to the insertion site during catheter placement. The remote sensor connector 864 is adhered to the patient's skin proximate the catheter insertion site 73 with the use of an adhesive, tape, etc., before the region surrounding the insertion site is sterilized in preparation for catheter insertion. Thus, when the insertion site is sterilized, the remote sensor connector 864 is also sterilized. Later, when connection of the tether connector 862 to the remote sensor connector 864 is made, the clinician can handle the latter component without compromising the sterile field of the patient. It is appreciated that the particular configurations of the tether connector and the remote sensor connector can vary while still residing within the scope of the present embodiment.


Reference is now made to FIG. 32, which depicts a connection scheme as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. Specifically, FIG. 32 shows the probe 40 employed by the system 10 for US functionality, as described above in connection with FIGS. 3A and 3B. A sterile sheath 900 is placed over the probe 40 so as to bring the probe into the sterile field of the patient. A connection interface, such as a receptacle 910, is included on the probe 900 and is configured so as to be operable connectable with a tether connector 920. In one embodiment, for example, the tether connector 920 includes a pin contact that penetrates the sterile sheath 900 to mate with the receptacle 910 in such a way as to prevent contamination of the sterile field. In this way, the tether connector 920, as a first communication node, operably connects with the probe 40, as a second communications node. In turn, the probe 40 is operably connected to the system console 20, as seen in FIG. 31 for example, so as to enable ECG signals received by the ECG sensor assembly of the stylet 130 via the tether connector 920 to be forwarded to the console, the sensor 50, or other system component for processing, as described above. In another embodiment, the receptacle 910 or other suitable connection interface can be included on the cable connecting the probe 40 to the system console 20. The particular contact configuration of the receptacle 910 and tether connector 920 can be varied according to the understanding of one skilled in the art. For instance, an integrated connector such as that shown in FIGS. 26A and 26B can be incorporated into the sterile sheath in one embodiment. Note further that, though including plastic in the present embodiment, the sterile sheath as described herein can include other suitable materials for providing sterility.


Reference is now made to FIG. 33 in describing means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. As shown, the tether 134 includes a wireless module 950, included within the sterile field, which serves as a first communication node for wirelessly transmitting (via RF or other suitable frequency or frequency range) ECG data received from the ECG sensor assembly of the stylet 130 to a data-receiving component as a second communication node, such as the sensor 50 or other suitable component of the system 10. A wireless module ground electrode 952 is operably connected with the wireless module 950 for placement in the sterile field proximate the catheter insertion site 73. A system ground electrode 158A extends from the sensor 50 for placement outside of the sterile field but proximate both the catheter insertion site 73 and the location of the wireless module ground electrode 952. One possible placement location for the system ground electrode 158A is beneath the patient arm, as depicted in FIG. 33. The system reference electrode 158B is placed on the lower torso of the patient 70 or other suitable location, as in previous embodiments. Note that the wireless module and system console as discussed herein can be configured in one or more of a variety of ways and include components for wireless signal transmission and reception not specifically detailed herein, such as patch or other antennas, signal transducers, etc.


With the system configured as shown in FIG. 33, the system ground electrode 158A can be electrically driven such that it produces a voltage that is sensed by the passive wireless module ground electrode 952, given its proximate location with respect to the system ground electrode. This enables both ground electrodes to be at substantially equal electric potentials, thus enabling the wireless module 950 to utilize the wireless module ground electrode 952 and the ECG signals from the ECG sensor assembly of the stylet 130, e.g., the core wire 138 (FIGS. 12C-12E) in one embodiment, to detect and wirelessly transmit the ECG data to the sensor 50 for comparison with the data sensed by the system reference electrode 158B in order to obtain the desired P-wave waveform (e.g., FIG. 16). The data comparison in one embodiment is a differential comparison between the ECG data as obtained by the ECG sensor assembly of the stylet 130, the wireless module ground electrode 952, and the system reference electrode 158B. In one embodiment, the system ground electrode 158A, like the wireless module ground electrode 952, can be passive and not electrically driven. Note also that the analog ECG data can be digitized or otherwise processed by the wireless module 950 before transmission to the sensor 50 or other system component, such as the console 20.



FIG. 34 describes yet another wireless configuration as a means for establishing a conductive pathway between sterile and non-sterile fields, according to one embodiment. As shown, a positive electrode 954A at a location A and a negative electrode 954B at a location B are included with the sensor 50 and positioned on the torso of the patient 70, while a positive wireless module electrode 956 is included with the wireless node 950, as indicated at location C, positioned on or in the patient proximate the catheter insertion site 73. The ECG sensor assembly of the stylet 130, e.g., the core wire 138 in one embodiment, serves as a negative electrode for the wireless portion of the depicted configuration, indicated at D in FIG. 34 at its final position. Note that in one embodiment the locations A and B of the electrodes 954A and 954B, respectively, can be altered on the patient body to tune the system 10 for best ECG signal reception.


In the present embodiment, the electrodes 954A and 954B serve as a first independent source for sampling bipolar ECG signals. The ECG data from these electrodes are digitized and forwarded to the console 20 or other suitable system component via the cable interconnecting the sensor 50 and the console (path 1) outside of the sterile field. The wireless module electrode 956 and the ECG sensor assembly serve as a second independent source for sampling bipolar ECG signals. The ECG data from these electrodes are digitized and forwarded wirelessly to the console 20 via the wireless module 950 (path 2) within the sterile field. Thus, in the present embodiment the wireless module 950 serves as a first communication node, and a wireless receiver of the console 20 as a second communication node for the transfer of ECG signals between the two nodes. Note that the polarities of the afore-mentioned electrodes can be reversed in other embodiments.


The ECG signals received along both paths 1 and 2 are baseline corrected by appropriate circuitry of the console 20 to adjust for DC offset and drift. After such correction, a non-changing reference, or baseline, P-wave waveform 176A from path 1 can be produced, as seen in FIG. 35A, for example. Similarly, a P-wave waveform 176B as seen in FIG. 35B is produced from path 2, which waveform changes as the stylet 130 within the catheter 72 is advanced toward the heart of the patient. During such advancement, the waveform 176B from path 2 is subtracted from the P-wave waveform 176A from path 1, employing a digital differential amplifier, for instance. This subtraction removes all common components of the waveforms represented by each of the signals, and enables the console 20 to depict via its display 30 only the differences in the two signals, as seen for example by the waveform 176C shown in FIG. 35C. The change in P-wave of the waveform from path 2 can then be easily observed during catheter advancement. Thus the present embodiment enables an easily observable digital display of ECG data to be represented while preventing a physical breaching of a sterile barrier, such as a surgical drape, for the passage of such data.


Note that in other embodiments the wireless module electrode 956 can include other configurations, including a conductive element imbedded into an introducer sheath, in contact with the bloodstream of the patient, which is commonly disposed through the insertion site 73 during catheter placement. The introducer can include a connector on a proximal portion thereof to enable a connection with the wireless node 950 to be made, in one embodiment.


Note further that one or more of a variety of wireless protocols can be employed in transmitting wireless signals in accordance with the embodiments described herein, including one or more of the IEEE 802.11 family of specifications, etc. Also note that in one embodiment the wireless module can be included in a sterile sheath, as described in previous embodiments, to bring the module within the sterile field, together with connectors for operably connecting the wireless module electrode through the sheath or included in the sheath itself. Of course, other methods for maintaining the wireless module within the sterile field can also be employed. In one embodiment, the wireless module can include buttons that further enable control of the system 10 from within the sterile field.



FIG. 36 shows that in one embodiment the sensor 50 can be retro-fitted with a wireless module 960 to enable signals received by the sensor to be wirelessly transmitted to the console 20 or other suitable component of the system 10. For instance, ECG data received by the ground and reference electrodes 158A, 158B (FIG. 34) can be received by the sensor 50 then wirelessly transmitted to the system console via the wireless module 960. The wireless module 960 can include an antenna or other transmitting component and can operably connect to the sensor 50 via a sensor cable 962 or other suitable interface. Note that the wireless module 960 can be employed in connection with other embodiments described herein, including those depicted in FIGS. 10 and 33, for instance.



FIG. 37 shows a retention feature for preventing inadvertent separation of the fin connector 156 from the sensor connector base 152 or other receptacle with which the fin connector operably connects, according to one embodiment. As shown, the fin connector 156 includes a retention arm 970 that is resiliently attached to the fin connector body. The retention arm 970 includes a tab 972 that slides over and engages a lip 974 included with the connector base 152 of the sensor 50 when the fin connector 156 is slidably received in the sensor channel 152A (FIG. 14A). The engagement of the tab 972 with the lip 974 prevents inadvertent removal of the fin connector 156 during use. When removal of the fin connector 156 from the sensor connector base 152 is desired, the retention arm 970 is lifted so as to disengage the tab 972 from the lip 974, after which the fin connector can be slid our of engagement with the sensor channel 152A. This configuration can be employed either with or independent of other retention features, such as the indentations 168A (FIG. 13D). Note that in other embodiments a variety of modifications and configurations can be employed in assisting to maintain engagement between the fin connector and the connector. For instance, the retention arm in one embodiment can be operably attached to one or more of the fin contacts 168 (FIG. 13D) such that displacement, e.g., lifting laterally moving, pinching, etc., of the retention arm or other suitable fin connector component disengages the fin contact(s) from the base contacts (FIG. 15), thus reducing the overall retention force provided by the engagement of the fin contacts with the base contacts. Note further that these principles can be applied to the other connector schemes disclosed or contemplated in addition to the fin connector described here.


In addition to the above embodiments depicting various connection schemes as means for establishing a conductive pathway between sterile and non-sterile fields, other configurations can be employed, as appreciated by one skilled in the art, for performing the same functionality. Such other configurations can include, for example, wireless transmission of ECG signals from the stylet to the sensor or the system component, the inclusion of electrically conductive thread in the drape, the inclusion of an electrically conductive window (e.g., composed of an electrically conductive plastic or foil) in the sterile drape, etc. In yet another embodiment, a proximal end of the stylet/guidewire itself can be used to pierce the drape for receipt into a connector on the sensor. In this case, no tether is included on the proximal end of the stylet, and the stylet itself serves as the conductive pathway for transmitting ECG signals from the stylet sensor assembly to the sensor on the patient's chest. Such a configuration can allow for over-the-wire placement of the catheter using a stylet/guidewire as described here. As such, the above embodiments should not be construed as being limiting of the present invention in any way.



FIG. 38 shows a catheter 982 as one example of a catheter that can be employed with the catheter placement system 10 described in the embodiments disclosed herein. The catheter 982 includes a conductive annular band 984, positioned proximate the distal end 982B (though other locations along the catheter are also possible), which serves as an ECG sensor, or electrode, for detecting ECG signals from an emitting heart node of the patient 70 when the catheter is at least partially inserted within the patient vasculature. A conductive wire 986 extends along the length of the catheter 982 and in one embodiment is embedded in the catheter wall, such as by co-extrusion for instance, for connection with external ECG signal receiving components external to the patient. Note that this is but one example embodiment of a catheter and ECG sensor electrode configuration, in addition to those described above and appreciated by one skilled in the art. Yet other possible configurations are disclosed in U.S. Patent Publication No. 2010/0222664, entitled “Catheter Assembly Including ECG Sensor and Magnetic Assemblies,” which is incorporated herein by reference in its entirety.



FIG. 39 shows the catheter 982 for use with the system 10 including an ECG sensor assembly 990 according to one embodiment, wherein the catheter includes a plurality of ECG sensors, or electrodes 994A, 994B, and 994C. The electrode 994C is positioned proximate the catheter distal end 982B, while the remaining electrodes 994A and 994B are positioned on the catheter proximal thereto. Each electrode is operably connected to a respective conductive pathway, such as a conductive wire proximally extending from the electrode along the length of the catheter so as to enable detected ECG signals to be forwarded to the external TLS sensor 50 or other suitable system component. The electrodes 994A-994C can be configured in one or more of a variety of configurations suitable to act as sensors for detecting an ECG signal of the patient's heart. Also, though shown as close-ended, the catheter 982 can be open-ended in one embodiment.


As shown in FIGS. 40A-40C, the ECG sensor assembly 990 can be employed in determining the proximity of the catheter distal end 982B to the SA node, wherein the sensor assembly of the catheter 982 includes in the illustrated embodiment two electrodes 994A and 994B. In FIG. 40A, as the catheter distal end 982B approaches the SA node, the P-waves 996A and 996B of the ECG waveforms detected by the catheter electrodes 994A and 994B, respectively, both show an increase in P-wave amplitude. Because of its relatively more proximate position to the SA node, however, the electrode 994B shows a P-wave with a relatively larger amplitude. A superposition of the P-waves 996A and 996B as detected by the system 10, for instance, is shown at 998. Observation of this relationship on the system display, for instance, can give needed information to a clinician during placement of the catheter so as to aid in advancement of the catheter distal end 982B toward the SA node.



FIG. 40B shows that when the two electrodes 994A and 994B are equidistant with respect to the SA node, the amplitudes of the P-waves 996A and 996B are approximately equal, which fact is further shown by the superposition 998 of the P-waves. In FIG. 40C, the distal electrode 994B is relatively farther from the SA node than the electrode 994A, and as such its corresponding P-wave 996B is smaller relative to the P-wave 996A. Note that the type and number of electrodes can be varied from what is shown here.


In another embodiment, a filtering process can be employed in connection with use of the ECG electrodes 994A, 994B of the catheter 982 described here, wherein portions of the ECG waveforms detected by the electrodes other than the P-wave portion are cancelled out, leaving only the differences in the detected P-waves between the two electrodes to be depicted. This process is similar to that employed in connection with FIGS. 34-35C, as described above.



FIGS. 41A-41C depict various possible states for the ECG electrode integrity indicator 186, also shown as displayed on the screenshot 178 of the system display 30 in FIG. 17. The integrity indicator 186 is an icon that is displayed on the system display 30 and is part of a connection integrity component to verify the status of the connections of the various ECG signal paths with the external sensor 50, i.e., whether the connections are closed and ready for use during catheter placement procedures. Such lead verification is helpful to avoid having to remove the sterile drape and reinitiate the placement procedure if the various ECG electrodes were not properly connected before placement of the sterile drape and establishment of the sterile field about the patient.


In FIG. 41A, the integrity indicator 186 shows that no connections to the external sensor 50 are currently closed. In contrast, FIG. 41B shows that the connection between the sensor 50 and the ECG electrodes 158 (FIG. 14B) is closed, indicated by the shaded connection symbol 1004. FIG. 41C shows in addition that the connection between the sensor 50 and the ECG sensor of the stylet 130 (e.g., the core wire 138 in FIGS. 12C and 12D via the tether 134 and tether connector 132) is closed, as indicated by the shaded connection symbol 1006. Thus, the integrity indicator view in FIG. 41A represents the connection status shown in FIG. 14A, the indicator view in FIG. 41B represents the connection status shown in FIG. 14B, and the indicator view in FIG. 41C represents the connection status shown in FIG. 14C.


The system 10 can confirm the status of the above connections in one or more of a variety of ways using connection integrity components, including capacitive or inductive sensing circuits included with the sensor 50 and/or console 20 for instance, impedance-based methods, time or frequency reflectometry techniques, etc. One possible voltage balance-based connection integrity component system is shown at 1120 in FIG. 41D. In particular, the circuitry of the system 1120 includes a first resistor pair 1122 and an amplifier 1124, such as an instrumentation amplifier, operably connected via communication lines 1126, as are the other components of the present system, as shown in FIG. 41D. A second resistor pair 1128, amplifiers 1130 and 1132, an analog-to-digital converter (“ADC”) 1134, and processor 1136 are also included in the system and interconnected as shown in FIG. 41D. The processor 1136 is included in the external TLS sensor 50 in one embodiment, but can be incorporated into other system processors or included in other components, such as the console 20 in one embodiment. The various ECG electrodes of the system 10 are shown attached to the body of the patient 70, i.e., the internal ECG sensor (E1 in FIG. 41D) such as the stylet core wire 138 in the configuration shown in FIGS. 12A-12E, and both the external reference external ECG electrode 158 (E2) and second external electrode (E3) shown in FIGS. 14A-14C.


In preparation for use of the system 10, the integrity check system 1120 can be used to ensure that the external ECG electrodes are properly connected both to the body of the patient 70 and to the external TLS sensor 50 of the system 10 in one embodiment. Reference voltage Vref, shown at 1140, is driven, such as by a voltage regulator, to a predetermined value, such as 4 volts, for instance, while the voltage at the external electrode E3 is maintained at a relatively lower value, such as 2 volts for instance. The values of the voltages V1 and V2 from the electrodes 1 and 2, respectively, in FIG. 41D are averaged to generate a common mode voltage, Vcm, indicated at 1142. In one embodiment, the processor 1136 monitors Vcm, as sampled via the ADC 1134. When the external ECG electrodes E2 and E3 are properly connected to the patient body and TLS sensor 50, Vcm will be pulled lower in value, in one embodiment approaching about 2 volts, though other values are possible. If one or both of the external electrodes E2 and E3 are not properly connected, however, Vcm will be pulled higher toward the value of Vref, or about 4 volts in the present embodiment. As such, monitoring of Vcm by the processor 1136 can determine the connectivity of the external ECG electrodes. These data relating to the connectivity status of the external ECG electrodes can be forwarded to the display 30 by the processor 1136 for depiction by the indicator 186 on the display 30 shown in FIGS. 41A-41C.



FIG. 42 shows yet another possible connection integrity component configuration according to one embodiment, wherein a passive lead continuity check system is employed, eliminating any need for injecting current into the leads that extend from the various ECG electrodes of the system 10. As shown, a radiating element 1010 is included relatively near the ECG electrode leads, such as on the sensor 50. The radiating element 1010 is configured to emit a signal of a known frequency. The ECG lead wires, such as the wires of the external ECG electrodes 158 and the tether 134, act as antennae to passively detect the signal radiated by the radiating element 1010. When the ECG leads are properly attached to the sensor 50, the antenna effect of the ECG lead wires is minimized, such that the radiating signal present on the ECG lead wires is suppressed. Sensor and/or console circuitry is configured so as to detect the radiating signal present on the ECG leads and compare it to a threshold signal level. If the detected radiating signal is above the threshold, the system reports that the ECG leads are not properly connected. When the detected signal is below the threshold, the system reports that the leads are properly connected. The present configuration is passive and does not necessitate the passing of current down the ECG leads in order to check connection integrity for the connective path check.


In one embodiment, the connection check scheme of FIG. 42 can be configured such that different graduated levels of signal present on the leads will indicate whether sub-connections upstream from the ECG electrode are closed. In another embodiment, natural signal line noise in the natural 60 Hz, 120 Hz or 180 Hz frequencies, naturally present on the lead wires, can be used for detection, thus eliminating the need for the radiating element 1010.


It is appreciated that other icons and designs can be used to implement the functionality described in connection with FIGS. 41A-41C, and that connection status checking can be varied according to modifications made to the catheter placement system. Of course, other visual or aural indications can be used to convey electrode connection status.



FIGS. 43A-43B depicts details of a stylet configuration including a mode for checking whether the stylet 130 has been inadvertently cut, such as when the stylet is undesirably left in the catheter lumen when the catheter 72 is trimmed before being inserted into the patient 70. As shown, in one embodiment, the stylet 130 can include a core wire 1014 and a plurality of magnetic elements 1016 covered by a tubing sleeve 1018, together with a conductive epoxy 1020 included at the stylet distal end. A conductive wire loop 1024 is included in the stylet and loops at the distal end 130B of the stylet 130 so as to form a circuit when suitably connected with the system 10. The conductive wire loop 1024 thus defines a continuity circuit that checks the continuity of the distal portion of the stylet. If the stylet has been inadvertently cut, such as by improper catheter trimming as shown in FIG. 43B, the loop is opened and the continuity check fails, indicating the catheter tip has been compromised. The continuity check can be performed before the catheter 72 is inserted into the patient vasculature so as to prevent catheter guidance problems after insertion. In another embodiment, the conductive wire loop 1024 could be configured so as to be exposed to the patient bloodstream and additionally serve as an ECG electrode.



FIG. 44 shows one of many possible variations to the previous embodiment, wherein the conductive wire loop 1024 is implemented as a planar wire, which has a bias toward bending within the plane of least thickness. Such a planar wire can be used in stylets that have a pre-curved configuration, such as that shown in FIG. 44. In addition, in one embodiment such a wire enables the direction of stylet bending to be controlled along one axis, if desired. Indeed, in one embodiment, tension can be imparted to the planar wire in order to cause the distal portion of the stylet 130 to selectively deflect from a straight to a curved configuration as shown in FIG. 44, for example. It should be noted that the embodiments just described can be implemented in stylets having one of a variety of configurations in terms of structure, size, etc. In other embodiments, Note that in other embodiments, other techniques can be employed to ensure the stylet has not been cut or otherwise compromised, including stylet checks using time or frequency domain reflectometry, for instance.



FIGS. 45 and 46 depict a mechanical solution for preventing unintended proximal advancement of the stylet 130 within the catheter 72. In particular, FIG. 45 shows a bulbous mechanical interference feature 1028 included on the stylet distal end 130B so as to impede retraction of the stylet into the catheter lumen. FIG. 46 shows another example, wherein the stylet distal end 130B includes a deflected extended portion interference feature 1028. Of course, mechanical interference features of many different sizes and shapes can be employed, including arrow-shaped, spherical, etc.



FIGS. 47A and 47B depict an electrical solution to assist in preventing misalignment of the distal ends of the catheter 72 and the stylet 130. As shown, a conduction band 1032 is embedded within the catheter so as to be in electrical communication with two conductive portions 1036 of the stylet 130 between which is interposed a nonconductive stylet portion 1034. When the stylet distal end 130B is properly aligned with the distal end 72B of the catheter 72, the more distal stylet conductive portion 1036 is conductively connected to the more proximal stylet conductive portion 1036 via the catheter-embedded conduction band 1032. Should the stylet and catheter distal ends 130B, 72B be misaligned, however, no such conductive path is established, and the absence of this path can be detected by the sensor 50, console 20, or other suitable component of the system 10 so as to enable its rectification.



FIG. 48 depicts one possible implementation of a dual ECG electrode assembly 1040 for placement on the skin of the patient 70 during catheter placement procedures. As shown, the assembly 1040 includes dual electrodes 1042A, 1042 B a single pad, for simplifying the ECG lead placement. Corresponding leads 1044 are also included. In other embodiments, the ECG electrode assembly can include more than two electrodes, if desired.



FIG. 49 shows one example of an external ECG external electrode assembly for placement on the skin of the patient 70, including the previously-described fin connector 156, and external ECG electrodes 158. Graphics 1048 are positioned on a surface of each electrode 158 including illustrations to assist the clinician in placing the ECG electrodes in the proper location on the patient's body. This assists clinicians who may not be familiar with the proper placement locations for the electrodes on the patient's body 70. The illustrations and particular electrode configuration can vary according to system design.



FIGS. 50-61 depict various possible implementations for displaying ECG data on a display of a catheter placement system, such as the display 30 of the system 10 of FIG. 10 for instance, for assisting a clinician in placing a catheter into the vasculature of the patient 70. In many of the implementations to follow, standard methods of presenting and displaying ECG data are improved to aid in catheter placement and confirmation of tip location. As such, the following display and computing techniques may be useful in presenting data to a clinician.



FIG. 50 shows that audible or other suitable feedback can be employed in connection with displaying an ECG trace, such as an ECG trace 1050 shown here, which is similar to the trace history window 182 depicted on the display screenshot 178 in FIG. 17. In particular, in one embodiment a sound or other indicia can be correlated to an aspect of an ECG waveform of an ECG signal. In the present embodiment, an audible cue is associated with the amplitude of a P-wave 1052 of each waveform 176 in the ECG trace 1050. As the P-wave amplitude changes as shown in FIG. 50, the audible cue can correspondingly change. The audible cue can be modulated in frequency, volume, continuity (e.g., discrete click vs. a continuous tone), etc.



FIG. 51 shows a flow chart depicting one embodiment of a method for correlating and producing audible or other feedback with respect to an aspect of the ECG waveform 176, such as the amplitude of the P-wave 1052. This method in whole or in part can be performed and/or controlled by suitable components of the system 10, e.g., circuitry included in the external sensor 50 or console 20, or other suitable catheter or medical device placement system. In stage 1056, ECG signal data is sampled in a manner such as has been described above in connection with use of the system 10 during catheter placement procedures. In stage 1058, an ECG waveform is identified from the sampled ECG signal data. In stage 1060, a P-wave portion of the ECG waveform is identified. This can be accomplished, for instance, by comparing portions of the waveform with a standard, pre-loaded P-wave template to determine the existence and location of the P-wave 1052. The amplitude peak of the P-wave is then determined in stage 1062. In stage 1064, the P-wave amplitude peak is correlated to a corresponding audible or other suitable feedback output. This stage can be predetermined and stored by the system 10, or can be dynamically controlled automatically or by user input, in one embodiment. The output is then produced in stage 1066. Note that in other embodiments the output can be other than audible as has been described, including for instance visual, light/sound combinations, mechanical movement (vibratory), and/or other sensory cues, or combinations of the foregoing.



FIGS. 52-55 give further examples of visual output that can be correlated with aspects of ECG signal data, such as P-wave amplitude of each detected ECG waveform, using the method depicted in FIG. 51. For instance, FIG. 52 shows one display implementation wherein the P-wave 1052 of each ECG waveform 176 is identified and highlighted with a color to differentiate the P-wave from other portions of the waveform. In one embodiment, the color can change according to changes in P-wave amplitude.


In FIG. 53, the peak amplitude of the P-wave 1052 in each waveform 176 is traced as a colored or shaded shadowing 1070 on the ECG trace 1050 as a function of time. In particular, during catheter insertion the P-waves 1052 of successive ECG waveforms 176 often vary in magnitude as the ECG sensor assembly of the catheter assembly (e.g., the catheter and/or stylet) approaches the SA node or other node of the heart. It is often useful to display the magnitude of the P-waves 1052 on the system display 30 as such changes take place. A line or colored bar can be used to trace out the magnitude of past peaks. In this way, a comparison between current and former peak magnitudes can be conveniently made. This display mode can be employed whether the trace move across the display or if the traces remain stationary and are refreshed by a moving bar that sweeps across the display.



FIG. 54 shows that once the P-wave 1052 falls below a previous level, another color or shade of shadowing 1070 can be used, as seen in the left-most portion of the ECG trace 1050 of FIG. 54, to illustrate the difference between the most recent peaks and previous peaks. Optionally, a horizontal line 1054 can be used to trace out the peak of each P-wave 1052, as in FIG. 55. The line 1054 can be used either with or without the shadowing 1070. Of course, many other such tracing implementations and visual indicia can be devised in accordance with these principles.


Reference is made to FIGS. 56A-57B in describing aspects of scaling control of the ECG trace 150 as displayed in the trace history window 182 of the system display 30, for instance. In typical ECG devices, the rate of ECG waveform display is constant. However, human heart rates are not constant and ECG waveform formation and spacing vary from person to person. It may be beneficial to the observer to be able to change the number of waveforms and/or amount of time waveforms are displayed on the system display 30 or other suitable device. This allows more or fewer ECG waveforms to be displayed. In one embodiment, the clinician can adjust display settings to determine how many ECG waveforms 176 are displayed or how much time the waveforms are to be displayed. In one embodiment, the user can select from a series of pre-determined, discrete display time or waveform options, or the settings can be user-defined. In another embodiment, the control over the display settings of the ECG trace 1050 can be dynamically or statically controlled autonomously by the system 10.


As examples of the above ECG trace time window variability, FIG. 56A shows the ECG waveforms 176 displayed as part of the ECG trace 1050 at a standard rate of four waveforms in the window, while FIG. 56B shows an increased ECG trace window including eight waveforms. Similarly, FIG. 57A shows ECG waveform data being displayed at a standard trace rate of five seconds, i.e., each waveform 176 remains displayed for approximately five seconds; while FIG. 57B shows the ECG waveforms displayed at a relatively longer rate of approximately 10 seconds, i.e., double the standard trace rate, such that the peaks appear relatively closer together. As shown in FIGS. 56A-57B, the physical width of the ECG trace window stays the same, with only the amount of waveforms displayed therein being modified.



FIG. 58 shows a flow chart depicting one embodiment of a method for displaying ECG signal data in the manner described above in connection with FIGS. 56A-57B. Note that this method in whole or in part can be performed and/or controlled by suitable components of the system 10, e.g., circuitry included in the external sensor 50 or console 20, or other suitable catheter or medical device placement system. In stage 1080, ECG signal data is sampled in a manner such as has been described above in connection with use of the system 10 during catheter placement procedures. In stage 1082, an ECG waveform, such as the waveform 176 in FIGS. 56A-57B, is identified from the sampled ECG signal data. In stage 1084, parameters of a display window, such as the trace history window 182 shown in FIG. 17 for displaying the ECG trace 1050 of FIGS. 56A-57B, are defined. These parameters may be, for instance, the number of ECG waveforms to be included in the window, or the amount of time each waveform remains on screen. As stage 1088 shows, the parameters can be user-defined or autonomously defined and controlled in a static (e.g., pre-set at factory) or dynamic (e.g., automatically adjusted by the system according to feedback) manner. It is appreciated that the parameters can concern other display aspects of the ECG trace or waveforms, including for example waveform height, line width, etc. Further the parameters can be defined such that zero, one, two, or more ECG waveforms are displayed in the trace window before being refreshed, for instance.


In stage 1085, the ECG waveform is displayed according to the defined display window parameters. As shown, in one embodiment stage 1085 can include stages 1086 and 1090. In stage 1086 the ECG waveform is combined with previous waveforms if permitted by the parameters defined in stage 1084. In stage 1090, the ECG waveform is displayed together with any previous waveforms as permitted by the parameters defined in stage 1084.



FIG. 59 shows an individual trace window wherein a single ECG waveform 176 is displayed and is periodically refreshed as new waveforms are identified by the system 10 during catheter placement procedures, as has been described. Such a trace window is used, for example, for the current ECG waveform window 180 and windows 184A, 184B, and 184 C of the system display 30, as reflected by the display screenshot 178 shown in FIG. 17. As has been described, the ECG waveform 176 includes the P-wave 1052, and a QRS complex 1096. A ratio between the magnitude of the peak of the P-wave 1052 and the magnitude of the QRS complex 1096 can be displayed in the trace window as a numeric (as shown in FIG. 59) or other suitable format to assist the clinician in determining the change of the ECG waveform as the catheter 72 is advanced through the vasculature of the patient 70. The ratio is updated as each new ECG waveform is depicted in the individual trace window.



FIG. 60 shows a flow chart depicting one embodiment of a method for displaying an ECG waveform in the manner described above in connection with FIG. 59. Note that this method in whole or in part can be performed and/or controlled by suitable components of the system 10, e.g., circuitry included in the external sensor 50 or console 20, or other suitable catheter or medical device placement system. In stage 1100, ECG signal data is sampled in a manner such as has been described above in connection with use of the system 10 during catheter placement procedures. In stage 1102, an ECG waveform, such as the waveform 176 in FIG. 59, is identified from the sampled ECG signal data. In stage 1104, a P-wave portion of the ECG waveform 176 is identified. This can be accomplished, for instance, by comparing portions of the waveform with a standard, pre-loaded P-wave template to determine the existence and location of the P-wave 1052.


In stage 1106, a ratio between the magnitude of the P-wave amplitude and a magnitude of the QRS complex amplitude 1096 is determined. In one embodiment, this stage may include determining the amplitude peak of the P-wave, identifying the QRS complex 1096 from the ECG waveform 176 and determining the magnitude of the QRS complex magnitude. In stage 1108, the ECG waveform 176 is displayed, such as in the current ECG waveform window 180 or one of the windows 184A, 184B, and 184 C of the system display 30 (FIG. 17). The waveform 176 can be displayed with the P-wave/QRS complex ratio data acquired via stage 1106, if desired. As shown in FIG. 60, the process flow can be looped so as to acquire and display new ECG waveforms as they are produced and detected.


Stage 1110 includes a freeze image input option, wherein a user can select the displayed ECG waveform 176 and freeze it in the display, thus interrupting the looping of the process flow, or optionally preventing newly-acquired waveforms from being displayed. Also, during the process flow stage 1112 can be executed, wherein data relating to the identified ECG waveform is sent to a storage location or device. The stored image can then be displayed if desired, such as in one of the windows 184A, 184B, and 184 C of the system display 30 (FIG. 17).



FIG. 61 shows one example of a catheter placement record 1114 that can be printed and used for record keeping/documentation purposes to verify proper placement of the catheter 72 within the vasculature of the patient 70. The record 1114 can include, in one embodiment, a beginning ECG waveform 176A representing the ECG waveform when the catheter 72 is first introduced into the patient vasculature, and a final ECG waveform 176B representing the ECG waveform when the distal end of the catheter is positioned in its desired location proximate the patient's heart or other suitable location. An image representation 120 of the sensor 50 can be included with a stylet distal end icon 114 depicted on the sensor image to represent final placement of the stylet, and thus catheter as well. Date, time, patient ID, etc. can also be included in the record 1114. In one embodiment, a location for the clinician or responsible party to sign can also be included. The record 1114 can be user-modifiable via the system 10 in one embodiment so as to allow for customization for various hospital and clinic procedures and requirements. Printout of the record 1114 can be performed via an appropriate button included on the US probe 40, system console 20, etc. In another embodiment, the footswitch 1116 shown in FIG. 27 or other suitable interface can be used to capture and print the record 1114, if desired.



FIG. 62 shows yet another example of the catheter placement record 1114 that can be printed and used for record keeping/documentation purposes to verify proper placement of the catheter 72. The record 1114 can include, in one embodiment, three windows, with each window depicting the sensor image 120 and selected tip location and ECG waveform data. For instance, the record 1114 in FIG. 62 shows a left window including the beginning ECG waveform 176A and the corresponding ECG trace 1050 when the catheter 72 is first introduced to the vasculature, a middle window including the revised ECG trace 1050 and an intermediate ECG waveform 176C representing the ECG waveform when the catheter is positioned as indicated by the stylet distal end icon 114, and a right window including the updated ECG trace 1050 and final position ECG waveform 176B representing the ECG waveform when the catheter is finally positioned as indicated by the stylet distal end icon 114. Of course, other configurations/information can be included in the record.


The various data acquired via use of the system 10 as described herein can be stored and/or evaluated for current or later use. In particular, in one embodiment both the TLS magnetic element tracking data and ECG signal detection data acquired via use of the system 10 can be stored for use as appreciated by those skilled in the art. In one embodiment, the TLS magnetic element tracking data for the catheter 72 and the ECG signal detection data can be associated with catheter position within the vasculature as a function of time so that a record of the catheter placement can be constructed in real time or at a later time via storage of the data. Such data can be stored in real time during the catheter placement procedure to operate as a fail-safe mode should the system temporarily and unexpectedly shut down during placement. Further, the data can be useful to pinpoint stylet position relative to the peak P-wave amplitude of the ECG signal by calculating the distance between the current stylet distal tip position and the position where P-wave amplitude is maximized. The data can also be employed to provide three dimensional information regarding the path along which the catheter is advanced within the patient vasculature.


Embodiments of the present invention may comprise a special purpose or general-purpose computer including computer hardware. Embodiments within the scope of the present disclosure also include computer-readable media for carrying or having computer-executable instructions or data structures stored thereon. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, computer-readable media can include physical (or recordable-type) computer-readable storage media, such as, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, non-volatile and flash memory, or any other medium which can be used to store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer.


In this description and in the following claims, a “network” is defined as one or more data links that enable the transport of electronic data between computer systems and/or modules. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a computer, the computer properly views the connection as a computer-readable medium. Thus, by way of example, and not limitation, computer-readable media can also include a network or data links which can be used to carry or store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer.


Computer-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, or even source code. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the described features or acts described above. Rather, the described features and acts are disclosed as example forms of implementing the claims.


Those skilled in the art will appreciate that the embodiments of the present invention may be practiced in computing environments with one or more types of computer system configurations, including, personal computers, desktop computers, laptop computers, message processors, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, mobile telephones, PDAs, pagers, and the like. Embodiments may also be practiced in distributed system environments where local and remote computer systems, which are linked (either by hardwired data links, wireless data links, or by a combination of hardwired and wireless data links) through a network, both perform tasks. In a distributed system environment, program modules may be located in both local and remote memory storage devices.


Embodiments of the invention may be embodied in other specific forms without departing from the spirit of the present disclosure. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the embodiments is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A method for displaying ECG signal data of a node of a patient, comprising: detecting the ECG signal data with an ECG sensor component at least partially disposed in the patient, the ECG sensor component having a processor and being included in a catheter placement system;sampling the ECG signal data;identifying a first ECG waveform and a second ECG waveform from the sampled ECG signal data by the processor of the ECG sensor component;defining at least one parameter of a display window of the catheter placement system; anddisplaying the first ECG waveform and the second ECG waveform in the display window according to the at least one parameter of the display window, wherein displaying the first ECG waveform and the second ECG waveform includes: displaying (i) a first horizontal line that traces a peak of a P-wave portion of the first ECG waveform having a first amplitude; and (ii) a second horizontal line that traces a peak of a P-wave portion of the second ECG waveform having a second amplitude, the second amplitude being different than the first amplitude.
  • 2. The method for displaying according to claim 1, wherein displaying the first ECG waveform further comprises: combining, by the processor, the first ECG waveform with at least one previous ECG waveform when permitted by the at least one parameter of the display window; anddisplaying the first ECG waveform with the at least one previous ECG waveform in the display window when permitted by the at least one parameter of the display window.
  • 3. The method for displaying according to claim 1, wherein defining the at least one parameter further comprises defining the at least one parameter of the display window according to at least one of a user-defined control and an autonomous control.
  • 4. The method for displaying according to claim 1, wherein the display window is included on a visual display of a console of the catheter placement system.
  • 5. The method for displaying according to claim 1, wherein defining the at least one parameter further comprises defining a number of ECG waveforms to be included in the display window.
  • 6. The method for displaying according to claim 1, wherein defining the at least one parameter further comprises defining an amount of time each ECG waveform is to be shown in the display window.
  • 7. A method for displaying an ECG waveform of a node of a patient, comprising: detecting ECG signal data with an ECG sensor component at least partially disposed in the patient, the ECG sensor component having a processor and being included in a catheter placement system;sampling the ECG signal data;identifying a first ECG waveform and a second ECG waveform from the sampled ECG signal data by the processor of the ECG sensor component;identifying a characteristic of the first ECG waveform and a characteristic of the second ECG waveform by the processor of the ECG sensor component; anddisplaying the first ECG waveform and the second ECG waveform in a display window of the catheter placement system, wherein displaying the first ECG waveform and the second ECG waveform includes: displaying (i) a first horizontal line that traces a peak of the characteristic of the first ECG waveform having a first amplitude and; (ii) a second horizontal line that traces a peak of the characteristic of the second ECG waveform having a second amplitude, the second amplitude being different than the first amplitude.
  • 8. The method for displaying according to claim 7, wherein identifying the P-wave portion of the first ECG waveform and the P-wave portion of the second ECG waveform includes comparing a portion of the first ECG waveform and a portion of the second ECG waveform with a known P-wave template.
  • 9. The method for displaying according to claim 7, further comprising: identifying a QRS complex of the first ECG waveform with the catheter placement system;determining a ratio between a magnitude of the P-wave portion of the first ECG waveform and a magnitude of the QRS complex of the first ECG waveform; anddisplaying the first ECG waveform with data relating to the ratio.
  • 10. The method for displaying according to claim 7, further comprising freezing the ECG waveform on the display window of the catheter placement system in response to user input.
  • 11. The method for displaying according to claim 7, further comprising storing data relating to the first ECG waveform in a storage location.
  • 12. The method for displaying according to claim 7, wherein the method is looped to display successive ECG waveforms.
  • 13. The method for displaying according to claim 7, further comprising producing audible or visual output in response to a characteristic of the first ECG waveform.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. patent application Ser. No. 12/557,401, filed Sep. 10, 2009, now U.S. Pat. No. 8,849,382, which claims the benefit of U.S. Provisional Patent Application No. 61/095,921, filed Sep. 10, 2008, and entitled “System and Method for Placing a Catheter Within a Vasculature of a Patient,” and which is a continuation-in-part of U.S. application Ser. No. 12/426,175, filed Apr. 17, 2009, and entitled “Systems and Methods for Breaching a Sterile Field for Intravascular Placement of a Catheter,” which is a continuation-in-part of U.S. application Ser. No. 12/323,273, filed Nov. 25, 2008, now U.S. Pat. No. 8,388,541, and entitled “Integrated System for Intravascular Placement of a Catheter,” which claims the benefit of the following U.S. Provisional Patent Applications: Application No. 60/990,242, filed Nov. 26, 2007, and entitled “Integrated Ultrasound and Tip Location System for Intravascular Placement of a Catheter;” Application No. 61/095,921, filed Sep. 10, 2008, and entitled “System and Method for Placing a Catheter Within a Vasculature of a Patient;” Application No. 61/091,233, filed Aug. 22, 2008, and entitled “Catheter Including Preloaded Steerable Stylet;” Application No. 61/095,451, filed Sep. 9, 2008, and entitled “Catheter Assembly Including ECG and Magnetic-Based Sensor Stylet;” and Application No. 61/045,944, filed Apr. 17, 2008, and entitled “Drape-Breaching Electrical Connector.” Each of the afore-referenced applications is incorporated herein by reference in its entirety.

US Referenced Citations (1498)
Number Name Date Kind
3133244 Wojtulewicz May 1964 A
3297020 Mathiesen Jan 1967 A
3625200 Muller Dec 1971 A
3674014 Tillander et al. Jul 1972 A
3817241 Grausz Jun 1974 A
3847157 Caillouette et al. Nov 1974 A
3868565 Kuipers Feb 1975 A
3896373 Zelby Jul 1975 A
3902501 Citron et al. Sep 1975 A
3986373 Goodlaxson Oct 1976 A
3995623 Blake et al. Dec 1976 A
4003369 Heilman et al. Jan 1977 A
4063561 McKenna Dec 1977 A
4072146 Howes Feb 1978 A
4114601 Abels Sep 1978 A
4149535 Volder et al. Apr 1979 A
4173228 Steenwyk et al. Nov 1979 A
4175566 Millar Nov 1979 A
4181120 Kunii et al. Jan 1980 A
4224949 Scott et al. Sep 1980 A
4244362 Anderson Jan 1981 A
4289139 Enjoji et al. Sep 1981 A
4317078 Weed et al. Feb 1982 A
4327722 Groshong et al. May 1982 A
4327723 Frankhouser May 1982 A
4362166 Furler et al. Dec 1982 A
4365639 Goldreyer Dec 1982 A
4380237 Newbower Apr 1983 A
4407294 Vilkomerson Oct 1983 A
4417886 Frankhouser et al. Nov 1983 A
4429693 Blake et al. Feb 1984 A
4431005 McCormick Feb 1984 A
4431214 Buffington Feb 1984 A
4445501 Bresler May 1984 A
4459854 Richardson et al. Jul 1984 A
4469106 Harui Sep 1984 A
4483343 Beyer et al. Nov 1984 A
4491137 Jingu Jan 1985 A
4565201 Lass Jan 1986 A
4572198 Codrington Feb 1986 A
4577634 Gessman Mar 1986 A
4582067 Silverstein et al. Apr 1986 A
4587975 Salo et al. May 1986 A
4588394 Schulte et al. May 1986 A
4593687 Gray Jun 1986 A
4595012 Webler et al. Jun 1986 A
4601706 Aillon Jul 1986 A
4608989 Drue Sep 1986 A
4608992 Hakim et al. Sep 1986 A
4619247 Inoue et al. Oct 1986 A
4622644 Hansen Nov 1986 A
4644960 Johans Feb 1987 A
4652820 Maresca Mar 1987 A
4660571 Hess et al. Apr 1987 A
4665925 Millar May 1987 A
4667230 Arakawa et al. May 1987 A
4674518 Salo Jun 1987 A
4676249 Arenas et al. Jun 1987 A
4681106 Kensey et al. Jul 1987 A
4681117 Brodman et al. Jul 1987 A
4688578 Takano et al. Aug 1987 A
4692148 Kantrowitz et al. Sep 1987 A
4697595 Breyer et al. Oct 1987 A
4700997 Strand Oct 1987 A
4706681 Breyer et al. Nov 1987 A
4710708 Rorden et al. Dec 1987 A
4733669 Segal Mar 1988 A
4737794 Jones Apr 1988 A
4741356 Letzo et al. May 1988 A
4742356 Kuipers May 1988 A
4753247 Kirsner et al. Jun 1988 A
4770185 Silverstein et al. Sep 1988 A
4771788 Millar Sep 1988 A
4781685 Lehmann et al. Nov 1988 A
4784646 Feingold Nov 1988 A
4787070 Suzuki et al. Nov 1988 A
4787396 Pidorenko Nov 1988 A
4790809 Kuntz Dec 1988 A
4793361 DuFault Dec 1988 A
4794930 Machida et al. Jan 1989 A
4796632 Boyd et al. Jan 1989 A
4798588 Aillon Jan 1989 A
4798598 Bonello et al. Jan 1989 A
4809681 Kantrowitz et al. Mar 1989 A
4809713 Grayzel Mar 1989 A
4813729 Speckhart Mar 1989 A
4821731 Martinelli et al. Apr 1989 A
4836214 Sramek Jun 1989 A
4840182 Carlson Jun 1989 A
4840622 Hardy Jun 1989 A
4841977 Griffith et al. Jun 1989 A
4849692 Blood Jul 1989 A
4850358 Millar Jul 1989 A
4852580 Wood Aug 1989 A
4856317 Pidorenko et al. Aug 1989 A
4856529 Segal Aug 1989 A
4860757 Lynch et al. Aug 1989 A
4867169 Machida et al. Sep 1989 A
4869263 Segal et al. Sep 1989 A
4869718 Brader Sep 1989 A
4873987 Djordjevich et al. Oct 1989 A
4887606 Yock et al. Dec 1989 A
4887615 Taylor Dec 1989 A
4889128 Millar Dec 1989 A
4899756 Sonek Feb 1990 A
4901725 Nappholz et al. Feb 1990 A
4905698 Strohl, Jr. et al. Mar 1990 A
4911173 Terwilliger Mar 1990 A
4911174 Pederson et al. Mar 1990 A
4917669 Bonaldo Apr 1990 A
4924870 Wlodarczyk et al. May 1990 A
4943770 Ashley-Rollman et al. Jul 1990 A
4945305 Blood Jul 1990 A
4947852 Nassi et al. Aug 1990 A
4957110 Vogel et al. Sep 1990 A
4957111 Millar Sep 1990 A
4961433 Christian Oct 1990 A
4966148 Millar Oct 1990 A
4967753 Haase et al. Nov 1990 A
4977886 Takehana et al. Dec 1990 A
4989608 Ratner Feb 1991 A
4989610 Patton Feb 1991 A
4995396 Inaba et al. Feb 1991 A
4998916 Hammerslag et al. Mar 1991 A
5004456 Botterbusch et al. Apr 1991 A
5005592 Cartmell Apr 1991 A
5016173 Kenet et al. May 1991 A
5025799 Wilson Jun 1991 A
5029585 Lieber et al. Jul 1991 A
5040548 Yock Aug 1991 A
5042486 Pfeiler et al. Aug 1991 A
5045071 McCormick et al. Sep 1991 A
5046497 Millar Sep 1991 A
5050607 Bradley et al. Sep 1991 A
5057095 Fabian Oct 1991 A
5058583 Geddes et al. Oct 1991 A
5058595 Kern Oct 1991 A
5067489 Lind Nov 1991 A
5076278 Vilkomerson et al. Dec 1991 A
5078140 Kwoh Jan 1992 A
5078148 Nassi et al. Jan 1992 A
5078149 Katsumata et al. Jan 1992 A
5078678 Katims Jan 1992 A
5078714 Katims Jan 1992 A
5084022 Claude Jan 1992 A
5092341 Kelen Mar 1992 A
5099845 Besz et al. Mar 1992 A
5099850 Matsui et al. Mar 1992 A
5100387 Ng Mar 1992 A
5105829 Fabian et al. Apr 1992 A
5109862 Kelen et al. May 1992 A
5114401 Stuart et al. May 1992 A
5121750 Katims Jun 1992 A
5125410 Misono et al. Jun 1992 A
5134370 Jefferts et al. Jul 1992 A
5144955 O'Hara Sep 1992 A
5156151 Imran Oct 1992 A
5158086 Brown et al. Oct 1992 A
5160342 Reger et al. Nov 1992 A
5161536 Vilkomerson et al. Nov 1992 A
5174295 Christian et al. Dec 1992 A
5174299 Nelson Dec 1992 A
5184601 Putman Feb 1993 A
5190045 Frazin Mar 1993 A
5202985 Goyal Apr 1993 A
5205830 Dassa et al. Apr 1993 A
5211165 Dumoulin et al. May 1993 A
5211636 Mische May 1993 A
5212988 White et al. May 1993 A
5214615 Bauer et al. May 1993 A
5217026 Stoy et al. Jun 1993 A
5220924 Frazin Jun 1993 A
5233994 Shmulewitz Aug 1993 A
5235987 Wolfe Aug 1993 A
5239464 Blair et al. Aug 1993 A
5240004 Walinsky et al. Aug 1993 A
5243995 Maier Sep 1993 A
5246007 Frisbie et al. Sep 1993 A
5246426 Lewis et al. Sep 1993 A
5247171 Wlodarczyk et al. Sep 1993 A
5251635 Dumoulin et al. Oct 1993 A
5255680 Darrow et al. Oct 1993 A
5257636 White Nov 1993 A
5257979 Jagpal Nov 1993 A
5261409 Dardel Nov 1993 A
5265610 Darrow et al. Nov 1993 A
5265614 Hayakawa et al. Nov 1993 A
5267569 Lienhard Dec 1993 A
5270810 Nishimura Dec 1993 A
5271404 Corl et al. Dec 1993 A
5273025 Sakiyama et al. Dec 1993 A
5273042 Lynch et al. Dec 1993 A
5274551 Corby, Jr. Dec 1993 A
5275053 Wlodarczyk et al. Jan 1994 A
5279129 Ito Jan 1994 A
5279607 Schentag et al. Jan 1994 A
5280786 Wlodarczyk et al. Jan 1994 A
5287331 Schindel et al. Feb 1994 A
5289373 Zarge et al. Feb 1994 A
5292342 Nelson et al. Mar 1994 A
5307072 Jones, Jr. Apr 1994 A
5311871 Yock May 1994 A
5313949 Yock May 1994 A
5318025 Dumoulin et al. Jun 1994 A
5325860 Seward et al. Jul 1994 A
5325873 Hirschi et al. Jul 1994 A
5330496 Alferness Jul 1994 A
5331966 Bennett et al. Jul 1994 A
5333614 Feiring Aug 1994 A
5337678 Grout et al. Aug 1994 A
5341807 Nardella Aug 1994 A
5343865 Gardineer et al. Sep 1994 A
5345940 Seward et al. Sep 1994 A
5348020 Hutson Sep 1994 A
5350352 Buchholtz et al. Sep 1994 A
5357961 Fields et al. Oct 1994 A
5365935 Righter et al. Nov 1994 A
5366443 Eggers et al. Nov 1994 A
5368048 Stoy et al. Nov 1994 A
5375596 Twiss et al. Dec 1994 A
5376083 Mische Dec 1994 A
5377678 Dumoulin et al. Jan 1995 A
5385053 Wlodarczyk et al. Jan 1995 A
5385146 Goldreyer Jan 1995 A
5391199 Ben-Haim Feb 1995 A
5394876 Ma Mar 1995 A
5394877 Orr et al. Mar 1995 A
5395366 D'Andrea et al. Mar 1995 A
5398683 Edwards et al. Mar 1995 A
5398691 Martin et al. Mar 1995 A
5411485 Tennican et al. May 1995 A
5413107 Oakley et al. May 1995 A
5417208 Winkler May 1995 A
5422478 Wlodarczyk et al. Jun 1995 A
5423334 Jordan Jun 1995 A
5423877 Mackey Jun 1995 A
5425367 Shapiro et al. Jun 1995 A
5425370 Vilkomerson Jun 1995 A
5425382 Golden et al. Jun 1995 A
5427114 Colliver et al. Jun 1995 A
5429132 Guy et al. Jul 1995 A
5429617 Hammersmark et al. Jul 1995 A
5431641 Grozinger et al. Jul 1995 A
5433729 Adams et al. Jul 1995 A
5437276 Takada et al. Aug 1995 A
5437277 Dumoulin et al. Aug 1995 A
5438873 Wlodarczyk et al. Aug 1995 A
5443066 Dumoulin et al. Aug 1995 A
5443489 Ben-Haim Aug 1995 A
5445150 Dumoulin et al. Aug 1995 A
5445166 Taylor Aug 1995 A
5450846 Goldreyer Sep 1995 A
5453575 O'Donnell et al. Sep 1995 A
5453576 Krivitski Sep 1995 A
5456256 Schneider Oct 1995 A
5456718 Szymaitis Oct 1995 A
5464016 Nicholas et al. Nov 1995 A
5474065 Meathrel et al. Dec 1995 A
5476090 Kishi Dec 1995 A
5480422 Ben-Haim Jan 1996 A
5487729 Avellanet et al. Jan 1996 A
5490522 Dardel Feb 1996 A
5492538 Johlin, Jr. Feb 1996 A
5494038 Wang et al. Feb 1996 A
5500011 Desai Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5505205 Solomon et al. Apr 1996 A
5509822 Negus et al. Apr 1996 A
5513637 Twiss et al. May 1996 A
5515160 Schulz et al. May 1996 A
5515853 Smith et al. May 1996 A
5517989 Frisbie et al. May 1996 A
5522878 Montecalvo et al. Jun 1996 A
5522880 Barone et al. Jun 1996 A
5526812 Dumoulin et al. Jun 1996 A
5531664 Adachi et al. Jul 1996 A
5536248 Weaver et al. Jul 1996 A
5540230 Vilkomerson Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542938 Avellanet et al. Aug 1996 A
5546949 Frazin et al. Aug 1996 A
5546951 Ben-Haim Aug 1996 A
5555618 Winkler Sep 1996 A
5558091 Acker et al. Sep 1996 A
5568809 Ben-haim Oct 1996 A
D375450 Bidwell et al. Nov 1996 S
5570671 Hickey Nov 1996 A
5575291 Hayakawa et al. Nov 1996 A
5588442 Scovil et al. Dec 1996 A
5592939 Martinelli Jan 1997 A
5598846 Peszynski Feb 1997 A
5599299 Weaver et al. Feb 1997 A
5600330 Blood Feb 1997 A
5603333 Konings Feb 1997 A
5610967 Moorman et al. Mar 1997 A
5617866 Marian, Jr. Apr 1997 A
5622169 Golden et al. Apr 1997 A
5622170 Schulz Apr 1997 A
5622184 Ashby et al. Apr 1997 A
5623931 Wung et al. Apr 1997 A
5624430 Eton et al. Apr 1997 A
5626554 Ryaby et al. May 1997 A
5626870 Monshipouri et al. May 1997 A
5630419 Ranalletta May 1997 A
5638819 Manwaring et al. Jun 1997 A
5644612 Moorman et al. Jul 1997 A
5645065 Shapiro et al. Jul 1997 A
5651047 Moorman et al. Jul 1997 A
5654864 Ritter et al. Aug 1997 A
D383968 Bidwell et al. Sep 1997 S
5662115 Torp et al. Sep 1997 A
5665103 Lafontaine et al. Sep 1997 A
5665477 Meathrel et al. Sep 1997 A
5666473 Wallace Sep 1997 A
5666958 Rothenberg et al. Sep 1997 A
5669383 Johnson Sep 1997 A
5669388 Vilkomerson Sep 1997 A
5676159 Navis Oct 1997 A
5676673 Ferre et al. Oct 1997 A
5682890 Kormos et al. Nov 1997 A
5691898 Rosenberg et al. Nov 1997 A
5694945 Ben-Haim Dec 1997 A
5695479 Jagpal Dec 1997 A
5697377 Wittkampf Dec 1997 A
5699801 Atalar et al. Dec 1997 A
5700889 Blair Dec 1997 A
5701898 Adam et al. Dec 1997 A
5702433 Taylor et al. Dec 1997 A
5711299 Manwaring et al. Jan 1998 A
5713362 Vilkomerson Feb 1998 A
5713363 Seward et al. Feb 1998 A
5713858 Heruth et al. Feb 1998 A
5713946 Ben-Haim Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716389 Walinsky et al. Feb 1998 A
5718241 Ben-Haim et al. Feb 1998 A
D391838 Bidwell et al. Mar 1998 S
5722412 Pflugrath et al. Mar 1998 A
5727550 Montecalvo Mar 1998 A
5727552 Ryan Mar 1998 A
5727553 Saad Mar 1998 A
5729055 Manning Mar 1998 A
5729129 Acker Mar 1998 A
5729584 Moorman et al. Mar 1998 A
5730129 Darrow et al. Mar 1998 A
5731996 Gilbert Mar 1998 A
5733323 Buck et al. Mar 1998 A
5738096 Ben-Haim Apr 1998 A
5740808 Panescu et al. Apr 1998 A
5742394 Hansen Apr 1998 A
5744953 Hansen Apr 1998 A
5748767 Raab May 1998 A
5749835 Glantz May 1998 A
5749938 Coombs May 1998 A
5751785 Moorman et al. May 1998 A
5752513 Acker et al. May 1998 A
5758650 Miller et al. Jun 1998 A
5762064 Polvani Jun 1998 A
5767669 Hansen et al. Jun 1998 A
5767960 Orman et al. Jun 1998 A
5769786 Wiegel Jun 1998 A
5769843 Abela et al. Jun 1998 A
5769881 Schroeppel et al. Jun 1998 A
5771896 Sliwa, Jr. et al. Jun 1998 A
5775322 Silverstein et al. Jul 1998 A
5775332 Goldman Jul 1998 A
5776064 Kalfas et al. Jul 1998 A
5776080 Thome et al. Jul 1998 A
5779638 Vesely et al. Jul 1998 A
5782767 Pretlow, III Jul 1998 A
5782773 Kuo Jul 1998 A
5785657 Breyer et al. Jul 1998 A
5792055 McKinnon et al. Aug 1998 A
5795297 Daigle Aug 1998 A
5795298 Vesely et al. Aug 1998 A
5795632 Buchalter Aug 1998 A
5797849 Vesely et al. Aug 1998 A
5800352 Ferre et al. Sep 1998 A
5800410 Gawreluk Sep 1998 A
5800497 Bakels et al. Sep 1998 A
5803089 Ferre et al. Sep 1998 A
5810733 Van Creveld et al. Sep 1998 A
RE35924 Winkler Oct 1998 E
5817022 Vesely Oct 1998 A
5817024 Ogle et al. Oct 1998 A
5820549 Marian, Jr. Oct 1998 A
5824031 Cookston et al. Oct 1998 A
5827192 Gopakumaran et al. Oct 1998 A
5829444 Ferre et al. Nov 1998 A
5830145 Tenhoff Nov 1998 A
5831260 Hansen Nov 1998 A
5833608 Acker Nov 1998 A
5833622 Meathrel et al. Nov 1998 A
5835561 Moorman et al. Nov 1998 A
5836882 Frazin Nov 1998 A
5836990 Li Nov 1998 A
5840024 Taniguchi et al. Nov 1998 A
5840025 Ben-Haim Nov 1998 A
5840030 Ferek-Petric et al. Nov 1998 A
5840031 Crowley Nov 1998 A
5842986 Avrin et al. Dec 1998 A
5842998 Gopakumaran et al. Dec 1998 A
5843076 Webster, Jr. et al. Dec 1998 A
5843153 Johnston et al. Dec 1998 A
5844140 Seale Dec 1998 A
5846198 Killmann Dec 1998 A
5855553 Tajima et al. Jan 1999 A
5859893 Moorman et al. Jan 1999 A
5865748 Co et al. Feb 1999 A
5868673 Vesely Feb 1999 A
5873822 Ferre et al. Feb 1999 A
5876328 Fox et al. Mar 1999 A
5879297 Haynor et al. Mar 1999 A
5893363 Little et al. Apr 1999 A
5897495 Aida et al. Apr 1999 A
5899860 Pfeiffer et al. May 1999 A
5902238 Golden et al. May 1999 A
5907487 Rosenberg et al. May 1999 A
5908385 Chechelski et al. Jun 1999 A
5910113 Pruter Jun 1999 A
5910120 Kim et al. Jun 1999 A
5913820 Bladen et al. Jun 1999 A
5913830 Miles Jun 1999 A
5919141 Money et al. Jul 1999 A
5919170 Woessner Jul 1999 A
5928145 Ocali et al. Jul 1999 A
5929607 Rosenberg et al. Jul 1999 A
5931788 Keen et al. Aug 1999 A
5931818 Werp et al. Aug 1999 A
5931863 Griffin, III et al. Aug 1999 A
5941858 Johnson Aug 1999 A
5941889 Cermak Aug 1999 A
5941904 Johnston et al. Aug 1999 A
5944022 Nardella et al. Aug 1999 A
5944023 Johnson et al. Aug 1999 A
5951598 Bishay et al. Sep 1999 A
5953683 Hansen et al. Sep 1999 A
5957857 Hartley Sep 1999 A
5961923 Nova et al. Oct 1999 A
5967978 Littmann et al. Oct 1999 A
5967980 Ferre et al. Oct 1999 A
5967991 Gardineer et al. Oct 1999 A
5969722 Palm Oct 1999 A
5971933 Gopakumaran et al. Oct 1999 A
5978705 KenKnight et al. Nov 1999 A
5983126 Wittkampf Nov 1999 A
5984908 Davis et al. Nov 1999 A
5991693 Zalewski Nov 1999 A
5997473 Taniguchi et al. Dec 1999 A
5997481 Adams et al. Dec 1999 A
6006123 Nguyen et al. Dec 1999 A
6011988 Lynch et al. Jan 2000 A
6014473 Hossack et al. Jan 2000 A
6014580 Blume et al. Jan 2000 A
6015414 Werp et al. Jan 2000 A
6017496 Nova et al. Jan 2000 A
6019724 Gronningsaeter et al. Feb 2000 A
6019725 Vesely et al. Feb 2000 A
6022342 Mukherjee Feb 2000 A
6023638 Swanson Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6031765 Lee et al. Feb 2000 A
6032070 Flock et al. Feb 2000 A
6039694 Larson et al. Mar 2000 A
6050718 Schena et al. Apr 2000 A
6052610 Koch Apr 2000 A
6052618 Dahlke et al. Apr 2000 A
D424693 Pruter May 2000 S
6059718 Taniguchi et al. May 2000 A
6064905 Webster, Jr. et al. May 2000 A
6066094 Ben-Haim May 2000 A
6068599 Saito et al. May 2000 A
6073043 Schneider Jun 2000 A
6074367 Hubbell Jun 2000 A
6075442 Welch Jun 2000 A
6076007 England et al. Jun 2000 A
6081737 Shah Jun 2000 A
6082366 Andra et al. Jul 2000 A
6083170 Ben-Haim Jul 2000 A
6099524 Lipson et al. Aug 2000 A
6100026 Nova et al. Aug 2000 A
6102044 Naidyhorski Aug 2000 A
6107699 Swanson Aug 2000 A
6112111 Glantz Aug 2000 A
6112115 Feldman et al. Aug 2000 A
6113504 Kuesters Sep 2000 A
6115624 Lewis et al. Sep 2000 A
6120445 Grunwald Sep 2000 A
6122538 Sliwa, Jr. et al. Sep 2000 A
6128174 Ritter et al. Oct 2000 A
6129668 Haynor et al. Oct 2000 A
6132378 Marino Oct 2000 A
6132379 Patacsil et al. Oct 2000 A
6135961 Pflugrath et al. Oct 2000 A
6136274 Nova et al. Oct 2000 A
6138681 Chen et al. Oct 2000 A
6139496 Chen et al. Oct 2000 A
6139502 Fredriksen Oct 2000 A
6139540 Rost et al. Oct 2000 A
6144300 Dames et al. Nov 2000 A
6148823 Hastings Nov 2000 A
6152933 Werp et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6165144 Talish et al. Dec 2000 A
6165977 Mochly-Rosen Dec 2000 A
6166496 Lys et al. Dec 2000 A
6166806 Tjin Dec 2000 A
6167765 Weitzel Jan 2001 B1
6172499 Ashe Jan 2001 B1
6173199 Gabriel Jan 2001 B1
6173715 Sinanan et al. Jan 2001 B1
6175756 Ferre et al. Jan 2001 B1
6176829 Vilkomerson Jan 2001 B1
6187744 Rooney Feb 2001 B1
6190370 Tsui Feb 2001 B1
6191136 Marban Feb 2001 B1
6193743 Brayton et al. Feb 2001 B1
6197001 Wilson et al. Mar 2001 B1
6200305 Berthiaume et al. Mar 2001 B1
6203499 Imling et al. Mar 2001 B1
6208884 Kumar et al. Mar 2001 B1
6211626 Lys et al. Apr 2001 B1
6211666 Acker Apr 2001 B1
6212426 Swanson Apr 2001 B1
6216027 Willis et al. Apr 2001 B1
6216028 Haynor et al. Apr 2001 B1
6216029 Paltieli Apr 2001 B1
6223087 Williams Apr 2001 B1
6226547 Lockhart et al. May 2001 B1
6230042 Slettenmark May 2001 B1
6230046 Crane et al. May 2001 B1
6231518 Grabek et al. May 2001 B1
6233476 Strommer et al. May 2001 B1
6233994 Roy et al. May 2001 B1
6236883 Ciaccio et al. May 2001 B1
6238344 Gamelsky et al. May 2001 B1
6241673 Williams Jun 2001 B1
6246231 Ashe Jun 2001 B1
6246898 Vesely et al. Jun 2001 B1
6248072 Murkin Jun 2001 B1
6248074 Ohno et al. Jun 2001 B1
6248075 McGee et al. Jun 2001 B1
6253770 Acker et al. Jul 2001 B1
6258035 Hoeksel et al. Jul 2001 B1
6259941 Chia et al. Jul 2001 B1
6261231 Damphousse et al. Jul 2001 B1
6263230 Haynor et al. Jul 2001 B1
6266550 Selmon et al. Jul 2001 B1
6266551 Osadchy et al. Jul 2001 B1
6266552 Slettenmark Jul 2001 B1
6266563 KenKnight et al. Jul 2001 B1
6270493 Lalonde et al. Aug 2001 B1
6271833 Rosenberg et al. Aug 2001 B1
6272371 Shlomo Aug 2001 B1
6272374 Flock et al. Aug 2001 B1
6275258 Chim Aug 2001 B1
6275724 Dickinson et al. Aug 2001 B1
6277077 Brisken et al. Aug 2001 B1
6284459 Nova et al. Sep 2001 B1
6285898 Ben-Haim Sep 2001 B1
6287260 Hascoet et al. Sep 2001 B1
6288704 Flack et al. Sep 2001 B1
6292678 Hall et al. Sep 2001 B1
6292680 Somogyi et al. Sep 2001 B1
6292901 Lys et al. Sep 2001 B1
6293955 Houser et al. Sep 2001 B1
6296604 Garibaldi et al. Oct 2001 B1
6298261 Rex Oct 2001 B1
6304768 Blume et al. Oct 2001 B1
6306097 Park et al. Oct 2001 B1
6306105 Rooney et al. Oct 2001 B1
6311082 Creighton, IV et al. Oct 2001 B1
6315709 Garibaldi et al. Nov 2001 B1
6315727 Coleman et al. Nov 2001 B1
6319668 Nova et al. Nov 2001 B1
6323769 Dames et al. Nov 2001 B1
6323770 Dames et al. Nov 2001 B1
6324416 Seibert Nov 2001 B1
6325540 Lounsberry et al. Dec 2001 B1
6325762 Tjin Dec 2001 B1
6329139 Nova et al. Dec 2001 B1
6329916 Dames et al. Dec 2001 B1
6330467 Creighton, IV et al. Dec 2001 B1
6332089 Acker et al. Dec 2001 B1
6332874 Eliasen et al. Dec 2001 B1
6340588 Nova et al. Jan 2002 B1
6340868 Lys et al. Jan 2002 B1
6341231 Ferre et al. Jan 2002 B1
6346081 Vilkomerson Feb 2002 B1
6348911 Rosenberg et al. Feb 2002 B1
6350160 Feuersanger et al. Feb 2002 B1
6352363 Munger et al. Mar 2002 B1
6354999 Dgany et al. Mar 2002 B1
6355026 Mick Mar 2002 B1
6356791 Westlund et al. Mar 2002 B1
6360123 Kimchi et al. Mar 2002 B1
6361499 Bates et al. Mar 2002 B1
6364823 Garibaldi et al. Apr 2002 B1
6364839 Little et al. Apr 2002 B1
6366804 Mejia Apr 2002 B1
6368285 Osadchy et al. Apr 2002 B1
6370411 Osadchy et al. Apr 2002 B1
6373240 Govari Apr 2002 B1
6373388 Dames et al. Apr 2002 B1
6374134 Bladen et al. Apr 2002 B1
6374670 Spelman et al. Apr 2002 B1
6375606 Garibaldi et al. Apr 2002 B1
6375639 Duplessie et al. Apr 2002 B1
6377857 Brayton et al. Apr 2002 B1
6379302 Kessman et al. Apr 2002 B1
6379303 Seitz et al. Apr 2002 B1
6379307 Filly et al. Apr 2002 B1
6381485 Hunter et al. Apr 2002 B1
6385472 Hall et al. May 2002 B1
6385476 Osadchy et al. May 2002 B1
6398736 Seward Jun 2002 B1
6398738 Millar Jun 2002 B1
6401723 Garibaldi et al. Jun 2002 B1
6406422 Landesberg Jun 2002 B1
6406442 McFann et al. Jun 2002 B1
6412978 Watanabe et al. Jul 2002 B1
6412980 Lounsberry et al. Jul 2002 B1
6417839 Odell Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6418335 Avrin et al. Jul 2002 B2
6423002 Hossack Jul 2002 B1
6423050 Twardowski Jul 2002 B1
6427079 Schneider et al. Jul 2002 B1
6428551 Hall et al. Aug 2002 B1
6430315 Makram-Ebeid Aug 2002 B1
6432069 Godo et al. Aug 2002 B1
6438411 Guttman et al. Aug 2002 B1
6442416 Schultz Aug 2002 B1
6445943 Ferre et al. Sep 2002 B1
6456874 Hafer et al. Sep 2002 B1
6459919 Lys et al. Oct 2002 B1
6463121 Milnes Oct 2002 B1
6466815 Saito et al. Oct 2002 B1
6471656 Shalman et al. Oct 2002 B1
6471658 Daniels et al. Oct 2002 B1
6471700 Burbank et al. Oct 2002 B1
6473167 Odell Oct 2002 B1
6474341 Hunter et al. Nov 2002 B1
6475152 Kelly, Jr. et al. Nov 2002 B1
6475223 Werp et al. Nov 2002 B1
6477402 Lynch et al. Nov 2002 B1
6484118 Govari et al. Nov 2002 B1
6487916 Gomm et al. Dec 2002 B1
6491671 Larson, III et al. Dec 2002 B1
6493573 Martinelli et al. Dec 2002 B1
6494832 Feldman et al. Dec 2002 B1
6496715 Lee et al. Dec 2002 B1
6498944 Ben-Haim et al. Dec 2002 B1
6500141 Irion et al. Dec 2002 B1
6505062 Ritter et al. Jan 2003 B1
6506159 Hascoet et al. Jan 2003 B2
6507751 Blume et al. Jan 2003 B2
6508802 Rosengart et al. Jan 2003 B1
6511413 Landesberg Jan 2003 B2
6512958 Swoyer et al. Jan 2003 B1
6514226 Levin et al. Feb 2003 B1
6514249 Maguire et al. Feb 2003 B1
6515657 Zanelli Feb 2003 B1
6516212 Bladen et al. Feb 2003 B1
6516231 Flammang Feb 2003 B1
6516807 Panescu et al. Feb 2003 B1
6517520 Chang et al. Feb 2003 B2
6522906 Salisbury, Jr. et al. Feb 2003 B1
6522907 Bladen et al. Feb 2003 B1
6522909 Garibaldi et al. Feb 2003 B1
6524303 Garibaldi Feb 2003 B1
6528954 Lys et al. Mar 2003 B1
6528991 Ashe Mar 2003 B2
6529761 Creighton, IV et al. Mar 2003 B2
6529766 Guendel Mar 2003 B1
6534982 Jakab Mar 2003 B1
6535625 Chang et al. Mar 2003 B1
6537192 Elliott et al. Mar 2003 B1
6537196 Creighton, IV et al. Mar 2003 B1
6538634 Chui et al. Mar 2003 B1
6540699 Smith et al. Apr 2003 B1
6542766 Hall et al. Apr 2003 B2
6544251 Crawford Apr 2003 B1
6545678 Ohazama Apr 2003 B1
6546270 Goldin et al. Apr 2003 B1
6546279 Bova et al. Apr 2003 B1
6546787 Schiller et al. Apr 2003 B1
6552841 Lasser et al. Apr 2003 B1
6556858 Zeman Apr 2003 B1
6562019 Sell May 2003 B1
6564087 Pitris et al. May 2003 B1
6569101 Quistgaard et al. May 2003 B2
6569103 Hoeksel et al. May 2003 B2
6569160 Goldin et al. May 2003 B1
6569862 Marban May 2003 B1
6571004 Florent et al. May 2003 B1
6574518 Lounsberry et al. Jun 2003 B1
6575908 Barnes et al. Jun 2003 B2
6577080 Lys et al. Jun 2003 B2
6577896 Werner et al. Jun 2003 B2
6584343 Ransbury et al. Jun 2003 B1
6593754 Steber et al. Jul 2003 B1
6593884 Gilboa et al. Jul 2003 B1
6597943 Taha et al. Jul 2003 B2
6599249 Nordgren et al. Jul 2003 B1
6607488 Jackson et al. Aug 2003 B1
6610058 Flores Aug 2003 B2
6611141 Schulz et al. Aug 2003 B1
6615071 Casscells, III et al. Sep 2003 B1
6615155 Gilboa Sep 2003 B2
6616610 Steininger et al. Sep 2003 B2
6618612 Acker et al. Sep 2003 B1
6626832 Paltieli et al. Sep 2003 B1
6626834 Dunne et al. Sep 2003 B2
6626902 Kucharczyk et al. Sep 2003 B1
6630879 Creighton, IV et al. Oct 2003 B1
6635027 Cragg et al. Oct 2003 B1
6645148 Nguyen-Dinh et al. Nov 2003 B2
6648875 Simpson et al. Nov 2003 B2
6649914 Moorman et al. Nov 2003 B1
6652505 Tsugita Nov 2003 B1
6652506 Bowe et al. Nov 2003 B2
6660024 Flaherty et al. Dec 2003 B1
6662034 Segner et al. Dec 2003 B2
6663661 Boneau Dec 2003 B2
6666828 Greco et al. Dec 2003 B2
6672308 Gaspari Jan 2004 B1
6677752 Creighton, IV et al. Jan 2004 B1
6679857 Bastia et al. Jan 2004 B1
6684176 Willins et al. Jan 2004 B2
6685644 Seo Feb 2004 B2
6687531 Ferre et al. Feb 2004 B1
6689119 Di Caprio et al. Feb 2004 B1
6690963 Ben-Haim et al. Feb 2004 B2
6690964 Bieger et al. Feb 2004 B2
6690968 Mejia Feb 2004 B2
6694167 Ferre et al. Feb 2004 B1
6695786 Wang et al. Feb 2004 B2
6701179 Martinelli et al. Mar 2004 B1
6701918 Fariss et al. Mar 2004 B2
6702804 Ritter et al. Mar 2004 B1
6704590 Haldeman Mar 2004 B2
6709390 Marie Pop Mar 2004 B1
6711429 Gilboa et al. Mar 2004 B1
6711431 Sarin et al. Mar 2004 B2
6719699 Smith Apr 2004 B2
6719724 Walker et al. Apr 2004 B1
6719756 Muntermann Apr 2004 B1
6720745 Lys et al. Apr 2004 B2
6733458 Steins et al. May 2004 B1
6733511 Hall et al. May 2004 B2
6736782 Pfeiffer et al. May 2004 B2
6738656 Ferre et al. May 2004 B1
6740103 Hall et al. May 2004 B2
6743177 Ito et al. Jun 2004 B2
6754596 Ashe Jun 2004 B2
6755789 Stringer et al. Jun 2004 B2
6755816 Ritter et al. Jun 2004 B2
6755822 Reu et al. Jun 2004 B2
6757557 Bladen et al. Jun 2004 B1
6763261 Casscells, III et al. Jul 2004 B2
6764449 Lee et al. Jul 2004 B2
6768496 Bieger et al. Jul 2004 B2
6772001 Maschke et al. Aug 2004 B2
6774624 Anderson et al. Aug 2004 B2
6783536 Vilsmeier et al. Aug 2004 B2
6784660 Ashe Aug 2004 B2
6785571 Glossop et al. Aug 2004 B2
6786219 Garibaldi et al. Sep 2004 B2
6786870 Miyaki et al. Sep 2004 B2
6788967 Ben-Haim et al. Sep 2004 B2
6794667 Noshi Sep 2004 B2
6799066 Steines et al. Sep 2004 B2
6815651 Odell Nov 2004 B2
6816266 Varshneya et al. Nov 2004 B2
6817364 Garibaldi Nov 2004 B2
6834201 Gillies et al. Dec 2004 B2
6844713 Steber et al. Jan 2005 B2
6845142 Ohishi Jan 2005 B2
6856823 Ashe Feb 2005 B2
6860422 Hull et al. Mar 2005 B2
6862467 Moore et al. Mar 2005 B2
6869390 Elliott et al. Mar 2005 B2
6875179 Ferguson et al. Apr 2005 B2
6879160 Jakab Apr 2005 B2
6887206 Hoeksel et al. May 2005 B2
6889091 Hine et al. May 2005 B2
6895268 Rahn et al. May 2005 B1
6902528 Garibaldi et al. Jun 2005 B1
6905469 Hascoet et al. Jun 2005 B2
6908433 Pruter Jun 2005 B1
6911026 Hall et al. Jun 2005 B1
6923782 O'Mahony et al. Aug 2005 B2
6926673 Roberts et al. Aug 2005 B2
6926674 Tenerz et al. Aug 2005 B2
6934575 Ferre et al. Aug 2005 B2
6936010 Fang et al. Aug 2005 B2
6939313 Saadat et al. Sep 2005 B2
6940379 Creighton Sep 2005 B2
6941166 MacAdam et al. Sep 2005 B2
6947788 Gilboa et al. Sep 2005 B2
6950689 Willis et al. Sep 2005 B1
6953754 Machida et al. Oct 2005 B2
6958677 Carter Oct 2005 B1
6959214 Pape et al. Oct 2005 B2
6962566 Quistgaard et al. Nov 2005 B2
6968846 Viswanathan Nov 2005 B2
6975197 Creighton, IV Dec 2005 B2
6976962 Bullis Dec 2005 B2
6976987 Flores Dec 2005 B2
6980843 Eng et al. Dec 2005 B2
6980852 Jersey-Willuhn et al. Dec 2005 B2
6980921 Anderson et al. Dec 2005 B2
6986739 Warren et al. Jan 2006 B2
6986744 Krivitski Jan 2006 B1
6999821 Jenney et al. Feb 2006 B2
7001355 Nunomura et al. Feb 2006 B2
7008418 Hall et al. Mar 2006 B2
7010338 Ritter et al. Mar 2006 B2
7015393 Weiner et al. Mar 2006 B2
7017584 Garibaldi et al. Mar 2006 B2
7019610 Creighton, IV et al. Mar 2006 B2
7020512 Ritter et al. Mar 2006 B2
D518574 Chaggares Apr 2006 S
7022075 Grunwald et al. Apr 2006 B2
7022082 Sonek Apr 2006 B2
7026927 Wright et al. Apr 2006 B2
7027634 Odell Apr 2006 B2
7028387 Huynh et al. Apr 2006 B1
7029446 Wendelken et al. Apr 2006 B2
7033603 Nelson et al. Apr 2006 B2
D520139 Chaggares May 2006 S
D520140 Chaggares May 2006 S
7038398 Lys et al. May 2006 B1
7038657 Rosenberg et al. May 2006 B2
7043293 Baura May 2006 B1
7048733 Hartley et al. May 2006 B2
7054228 Hickling May 2006 B1
7065403 Mouchawar et al. Jun 2006 B1
7066914 Andersen Jun 2006 B2
7066924 Garibaldi et al. Jun 2006 B1
7069072 Jansen et al. Jun 2006 B2
D525363 Chaggares Jul 2006 S
7070565 Vaezy et al. Jul 2006 B2
7072704 Bucholz Jul 2006 B2
7082325 Hashimshony et al. Jul 2006 B2
7090639 Govari Aug 2006 B2
7096059 Geddes et al. Aug 2006 B2
7096148 Anderson et al. Aug 2006 B2
7096870 Lamprich et al. Aug 2006 B2
7098907 Houston et al. Aug 2006 B2
7103205 Wang et al. Sep 2006 B2
7104980 Laherty et al. Sep 2006 B1
7106043 Da Silva et al. Sep 2006 B1
7106431 Odell Sep 2006 B2
7106479 Roy et al. Sep 2006 B2
7107105 Bjorklund et al. Sep 2006 B2
7112197 Hartley et al. Sep 2006 B2
7128734 Wilson et al. Oct 2006 B1
7132804 Lys et al. Nov 2006 B2
7137976 Ritter et al. Nov 2006 B2
7141019 Pearlman Nov 2006 B2
7141812 Appleby et al. Nov 2006 B2
7142905 Slayton et al. Nov 2006 B2
7148970 de Boer Dec 2006 B2
7153291 Bierman Dec 2006 B2
7161453 Creighton, IV Jan 2007 B2
7162291 Nachaliel Jan 2007 B1
7167738 Schweikard et al. Jan 2007 B2
7169107 Jersey-Willuhn et al. Jan 2007 B2
7169109 Jansen et al. Jan 2007 B2
7174201 Govari et al. Feb 2007 B2
7175646 Brenneman et al. Feb 2007 B2
7180252 Lys et al. Feb 2007 B2
7184820 Jersey-Willuhn et al. Feb 2007 B2
7189198 Harburn et al. Mar 2007 B2
7189205 McMorrow et al. Mar 2007 B2
7189208 Beatty et al. Mar 2007 B1
7190819 Viswanathan Mar 2007 B2
7194295 Vilsmeier Mar 2007 B2
7204798 Zdeblick et al. Apr 2007 B2
7206064 Rogers et al. Apr 2007 B2
7207941 Sharf Apr 2007 B2
7211082 Hall et al May 2007 B2
7214191 Stringer et al. May 2007 B2
7215326 Rosenberg May 2007 B2
7221104 Lys et al. May 2007 B2
7223256 Bierman May 2007 B2
7229400 Elliott et al. Jun 2007 B2
7231243 Tearney et al. Jun 2007 B2
7236157 Schena et al. Jun 2007 B2
7236816 Kumar et al. Jun 2007 B2
7236820 Mabary et al. Jun 2007 B2
7237313 Skujins et al. Jul 2007 B2
7241267 Furia Jul 2007 B2
7244234 Ridley et al. Jul 2007 B2
7248032 Hular et al. Jul 2007 B1
7248914 Hastings et al. Jul 2007 B2
7252633 Obata et al. Aug 2007 B2
7264584 Ritter et al. Sep 2007 B2
7270662 Visram et al. Sep 2007 B2
7276044 Ferry et al. Oct 2007 B2
7286034 Creighton Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7297140 Orlu et al. Nov 2007 B2
7300430 Wilson et al. Nov 2007 B2
7302288 Schellenberg Nov 2007 B1
7308296 Lys et al. Dec 2007 B2
7310150 Guillermo et al. Dec 2007 B2
7311702 Tallarida et al. Dec 2007 B2
7321228 Govari Jan 2008 B2
7326241 Jang Feb 2008 B2
7327872 Vaillant et al. Feb 2008 B2
7342058 Peppmoller et al. Mar 2008 B2
7349732 Kil Mar 2008 B1
7355716 de Boer et al. Apr 2008 B2
7360427 Drinkwater et al. Apr 2008 B2
7366376 Shishkov et al. Apr 2008 B2
7366562 Dukesherer et al. Apr 2008 B2
7366563 Kleen et al. Apr 2008 B2
7373271 Schneider May 2008 B1
7381204 Wilson et al. Jun 2008 B2
7382949 Bouma et al. Jun 2008 B2
7384407 Rodriguez et al. Jun 2008 B2
7418169 Tearney et al. Aug 2008 B2
7447408 Bouma et al. Nov 2008 B2
7452331 Pruter Nov 2008 B1
7452358 Stern et al. Nov 2008 B2
7454244 Kassab et al. Nov 2008 B2
D585556 Kosaku Jan 2009 S
7479141 Kleen et al. Jan 2009 B2
7519424 Dennis et al. Apr 2009 B2
7529584 Laske et al. May 2009 B2
7534223 Boutilette et al. May 2009 B2
7538859 Tearney et al. May 2009 B2
7543239 Viswanathan et al. Jun 2009 B2
7546158 Allison et al. Jun 2009 B2
7547282 Lo et al. Jun 2009 B2
7551293 Yelin et al. Jun 2009 B2
D603050 Chen Oct 2009 S
7599730 Hunter et al. Oct 2009 B2
7606615 Makower et al. Oct 2009 B2
7616992 Dennis et al. Nov 2009 B2
7627376 Dennis et al. Dec 2009 B2
7635336 Pruter Dec 2009 B1
7637163 Fetzer et al. Dec 2009 B2
7640053 Verin Dec 2009 B2
7651469 Osborne et al. Jan 2010 B2
7652080 Peppmoller et al. Jan 2010 B2
7660623 Hunter et al. Feb 2010 B2
7665893 Buchalter Feb 2010 B2
7668583 Fegert et al. Feb 2010 B2
7697972 Verard et al. Apr 2010 B2
7699782 Angelsen et al. Apr 2010 B2
7699829 Harris et al. Apr 2010 B2
7715925 Hafer et al. May 2010 B2
7727192 Tokumoto et al. Jun 2010 B2
7729743 Sabczynski et al. Jun 2010 B2
7751865 Jascob et al. Jul 2010 B2
7766839 Rogers et al. Aug 2010 B2
7771437 Hogg et al. Aug 2010 B2
7774051 Voth Aug 2010 B2
7774055 Min Aug 2010 B1
7794407 Rothenberg Sep 2010 B2
7798970 Lo et al. Sep 2010 B2
7819810 Stringer et al. Oct 2010 B2
7828528 Estes et al. Nov 2010 B2
7831294 Viswanathan Nov 2010 B2
7833168 Taylor et al. Nov 2010 B2
7833214 Wilson et al. Nov 2010 B2
D629526 Ladwig et al. Dec 2010 S
D629527 Crunkilton Dec 2010 S
7846157 Kozel Dec 2010 B2
7850613 Stribling Dec 2010 B2
D630756 Kitayama Jan 2011 S
D630757 Kitayama Jan 2011 S
7869854 Shachar et al. Jan 2011 B2
7873402 Shachar Jan 2011 B2
7909815 Whitmore, III et al. Mar 2011 B2
7931596 Rachlin et al. Apr 2011 B2
7947040 Davies et al. May 2011 B2
7976469 Bonde et al. Jul 2011 B2
7976518 Shaughnessy et al. Jul 2011 B2
7981038 Kanade et al. Jul 2011 B2
7988633 Hossack et al. Aug 2011 B2
8016814 Blakstvedt et al. Sep 2011 B2
8046052 Verard et al. Oct 2011 B2
8057394 Dala-Krishna Nov 2011 B2
8060185 Hunter et al. Nov 2011 B2
8078274 Kassab Dec 2011 B2
8078279 Dennis et al. Dec 2011 B2
8082032 Kassab et al. Dec 2011 B2
8088072 Munrow et al. Jan 2012 B2
8090430 Makower et al. Jan 2012 B2
8099161 Kassab Jan 2012 B2
8114143 Kassab et al. Feb 2012 B2
8118743 Park et al. Feb 2012 B2
8123691 Mine et al. Feb 2012 B2
8133698 Silver Mar 2012 B2
8142417 Pajunk et al. Mar 2012 B2
8150522 Echauz et al. Apr 2012 B2
8152724 Ridley et al. Apr 2012 B2
8204582 Zantos et al. Jun 2012 B2
8214018 Markowitz et al. Jul 2012 B2
8221402 Francischelli et al. Jul 2012 B2
8240211 Zeitner et al. Aug 2012 B2
8241274 Keogh et al. Aug 2012 B2
8244339 Shen et al. Aug 2012 B2
8255035 Cao et al. Aug 2012 B2
8260395 Markowitz et al. Sep 2012 B2
8262577 Munrow et al. Sep 2012 B2
8298149 Hastings et al. Oct 2012 B2
8303502 Washburn et al. Nov 2012 B2
8303505 Webler et al. Nov 2012 B2
8326419 Rosenberg et al. Dec 2012 B2
8340751 Markowitz et al. Dec 2012 B2
8369922 Paul et al. Feb 2013 B2
8388541 Messerly et al. Mar 2013 B2
8388546 Rothenberg Mar 2013 B2
8391956 Zellers et al. Mar 2013 B2
8401616 Verard et al. Mar 2013 B2
8409103 Grunwald et al. Apr 2013 B2
8425425 Hagy et al. Apr 2013 B2
8437833 Silverstein May 2013 B2
8439873 Donovan May 2013 B1
8442621 Gorek et al. May 2013 B2
8447384 Xu et al. May 2013 B2
D684265 Cadera Jun 2013 S
8456182 Bar-Tal et al. Jun 2013 B2
8478382 Burnside et al. Jul 2013 B2
8485980 Sinderby et al. Jul 2013 B2
8494608 Markowitz et al. Jul 2013 B2
8496592 Ridley et al. Jul 2013 B2
8504139 Jacobsen et al. Aug 2013 B2
8512256 Rothenberg Aug 2013 B2
8527036 Jalde et al. Sep 2013 B2
8538509 Harlev et al. Sep 2013 B2
8644907 Hartmann et al. Feb 2014 B2
8734440 Wu May 2014 B2
8774907 Rothenberg Jul 2014 B2
8781555 Burnside et al. Jul 2014 B2
8784336 Bown et al. Jul 2014 B2
8801693 He et al. Aug 2014 B2
8849382 Cox et al. Sep 2014 B2
8858455 Rothenberg Oct 2014 B2
8934961 Lakin et al. Jan 2015 B2
8971994 Burnside et al. Mar 2015 B2
9125578 Grunwald Sep 2015 B2
9339206 Grunwald May 2016 B2
9456766 Cox et al. Oct 2016 B2
9492097 Wilkes et al. Nov 2016 B2
20020010392 Desai Jan 2002 A1
20020019447 Renn et al. Feb 2002 A1
20020022777 Crieghton et al. Feb 2002 A1
20020032391 McFann et al. Mar 2002 A1
20020049488 Boneau Apr 2002 A1
20020055680 Miele et al. May 2002 A1
20020082559 Chang et al. Jun 2002 A1
20020113555 Lys et al. Aug 2002 A1
20020123679 Dominguez Sep 2002 A1
20020128554 Seward Sep 2002 A1
20020129952 Matsudate et al. Sep 2002 A1
20020133079 Sandhu Sep 2002 A1
20020156363 Hunter et al. Oct 2002 A1
20020156376 Wang et al. Oct 2002 A1
20020165448 Ben-Haim et al. Nov 2002 A1
20020165534 Hayzelden et al. Nov 2002 A1
20020165537 Kelley et al. Nov 2002 A1
20020198568 Hafer et al. Dec 2002 A1
20030009132 Schwartz et al. Jan 2003 A1
20030011359 Ashe Jan 2003 A1
20030013966 Barnes et al. Jan 2003 A1
20030013986 Saadat Jan 2003 A1
20030036696 Willis et al. Feb 2003 A1
20030040671 Somogyi et al. Feb 2003 A1
20030040743 Cosman et al. Feb 2003 A1
20030072805 Miyazawa et al. Apr 2003 A1
20030073901 Simon et al. Apr 2003 A1
20030076281 Morgan et al. Apr 2003 A1
20030083698 Whitehurst et al. May 2003 A1
20030088195 Vardi et al. May 2003 A1
20030100849 Jang May 2003 A1
20030114742 Lewkowicz et al. Jun 2003 A1
20030114777 Griffin et al. Jun 2003 A1
20030120150 Govari Jun 2003 A1
20030120154 Sauer et al. Jun 2003 A1
20030139661 Kimchy et al. Jul 2003 A1
20030149328 Elliott et al. Aug 2003 A1
20030149368 Hennemann et al. Aug 2003 A1
20030152290 Odell Aug 2003 A1
20030160721 Gilboa et al. Aug 2003 A1
20030163037 Bladen et al. Aug 2003 A1
20030163142 Paltieli et al. Aug 2003 A1
20030171691 Casscells et al. Sep 2003 A1
20030173953 Ashe Sep 2003 A1
20030181892 Pajunk et al. Sep 2003 A1
20030184544 Prudent Oct 2003 A1
20030191392 Haldeman Oct 2003 A1
20030191460 Hobbs et al. Oct 2003 A1
20030195420 Mendlein et al. Oct 2003 A1
20030199746 Fuimaono et al. Oct 2003 A1
20030208142 Boudewijn et al. Nov 2003 A1
20030216639 Gilboa et al. Nov 2003 A1
20030220557 Cleary et al. Nov 2003 A1
20030220578 Ho et al. Nov 2003 A1
20030229298 Iwami et al. Dec 2003 A1
20030233042 Ashe Dec 2003 A1
20030236445 Couvillon Dec 2003 A1
20040010189 van Sloun et al. Jan 2004 A1
20040015070 Liang et al. Jan 2004 A1
20040024301 Hockett et al. Feb 2004 A1
20040030319 Korkor et al. Feb 2004 A1
20040054278 Kimchy et al. Mar 2004 A1
20040059237 Narayan et al. Mar 2004 A1
20040082916 Jenkins Apr 2004 A1
20040087877 Besz et al. May 2004 A1
20040088136 Ashe May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040097803 Panescu May 2004 A1
20040097804 Sobe May 2004 A1
20040097805 Verard et al. May 2004 A1
20040097806 Hunter et al. May 2004 A1
20040116809 Chow et al. Jun 2004 A1
20040127805 MacAdam et al. Jul 2004 A1
20040131998 Marom et al. Jul 2004 A1
20040133111 Szczech et al. Jul 2004 A1
20040133130 Ferry et al. Jul 2004 A1
20040135069 Odell Jul 2004 A1
20040138557 Le et al. Jul 2004 A1
20040138564 Hwang et al. Jul 2004 A1
20040138570 Nita et al. Jul 2004 A1
20040147837 Macaulay et al. Jul 2004 A1
20040150963 Holmberg et al. Aug 2004 A1
20040152972 Hunter Aug 2004 A1
20040155609 Lys et al. Aug 2004 A1
20040158140 Fuimaono et al. Aug 2004 A1
20040171924 Mire et al. Sep 2004 A1
20040176688 Haldeman Sep 2004 A1
20040186461 DiMatteo Sep 2004 A1
20040199069 Connelly et al. Oct 2004 A1
20040210289 Wang et al. Oct 2004 A1
20040225233 Frankowski et al. Nov 2004 A1
20040230131 Kassab et al. Nov 2004 A1
20040230271 Wang et al. Nov 2004 A1
20040234453 Smith Nov 2004 A1
20040243018 Organ et al. Dec 2004 A1
20040243116 Joye et al. Dec 2004 A1
20040243118 Ayers et al. Dec 2004 A1
20040253365 Warren et al. Dec 2004 A1
20040254470 Drinkwater et al. Dec 2004 A1
20040254495 Mabary et al. Dec 2004 A1
20040260174 Keene Dec 2004 A1
20040267086 Anstadt et al. Dec 2004 A1
20050004450 Ben-Haim et al. Jan 2005 A1
20050021019 Hashimshony et al. Jan 2005 A1
20050033150 Takahashi et al. Feb 2005 A1
20050038355 Gellman et al. Feb 2005 A1
20050043640 Chang Feb 2005 A1
20050049486 Urquhart et al. Mar 2005 A1
20050049510 Haldeman et al. Mar 2005 A1
20050063194 Lys et al. Mar 2005 A1
20050070788 Wilson et al. Mar 2005 A1
20050075561 Golden Apr 2005 A1
20050085716 Hamm et al. Apr 2005 A1
20050085718 Shahidi Apr 2005 A1
20050085720 Jascob et al. Apr 2005 A1
20050090746 Ohtake Apr 2005 A1
20050101868 Ridley et al. May 2005 A1
20050101869 Burba et al. May 2005 A1
20050105081 Odell May 2005 A1
20050105101 Duling et al. May 2005 A1
20050112135 Cormier et al. May 2005 A1
20050113669 Helfer et al. May 2005 A1
20050113676 Weiner et al. May 2005 A1
20050113700 Yanagihara et al. May 2005 A1
20050113873 Weiner et al. May 2005 A1
20050113874 Connelly et al. May 2005 A1
20050113876 Weiner et al. May 2005 A1
20050148836 Kleen et al. Jul 2005 A1
20050148902 Minar et al. Jul 2005 A1
20050149002 Wang et al. Jul 2005 A1
20050151489 Lys et al. Jul 2005 A1
20050154308 Quistgaard et al. Jul 2005 A1
20050159644 Takano Jul 2005 A1
20050159790 Shalev Jul 2005 A1
20050165301 Smith et al. Jul 2005 A1
20050165313 Byron et al. Jul 2005 A1
20050175665 Hunter et al. Aug 2005 A1
20050175703 Hunter et al. Aug 2005 A1
20050178395 Hunter et al. Aug 2005 A1
20050178396 Hunter et al. Aug 2005 A1
20050182295 Soper et al. Aug 2005 A1
20050197674 McCabe et al. Sep 2005 A1
20050203368 Verin Sep 2005 A1
20050203396 Angelsen et al. Sep 2005 A1
20050205081 Barker et al. Sep 2005 A1
20050215901 Anderson et al. Sep 2005 A1
20050215945 Harris et al. Sep 2005 A1
20050222532 Bertolero et al. Oct 2005 A1
20050240102 Rachlin et al. Oct 2005 A1
20050245811 Scheffler Nov 2005 A1
20050256398 Hastings et al. Nov 2005 A1
20050256451 Adams et al. Nov 2005 A1
20050256521 Kozel Nov 2005 A1
20050256541 Stypulkowski Nov 2005 A1
20050283210 Blischak et al. Dec 2005 A1
20050283216 Pyles Dec 2005 A1
20050288586 Ferek-Petric Dec 2005 A1
20060009759 Chrisitian et al. Jan 2006 A1
20060015003 Moaddes et al. Jan 2006 A1
20060025677 Verard et al. Feb 2006 A1
20060025697 Kurzweil Feb 2006 A1
20060058633 Hoshino et al. Mar 2006 A1
20060068074 Stefandl Mar 2006 A1
20060084867 Tremblay et al. Apr 2006 A1
20060106306 Essner et al. May 2006 A1
20060116571 Maschke et al. Jun 2006 A1
20060116576 McGee et al. Jun 2006 A1
20060116578 Grunwald et al. Jun 2006 A1
20060122514 Byrd et al. Jun 2006 A1
20060142656 Malackowski et al. Jun 2006 A1
20060149134 Soper et al. Jul 2006 A1
20060173251 Govari et al. Aug 2006 A1
20060173329 Irioka et al. Aug 2006 A1
20060173407 Shaughnessy et al. Aug 2006 A1
20060176242 Jaramaz et al. Aug 2006 A1
20060184074 Vaezy et al. Aug 2006 A1
20060206037 Braxton Sep 2006 A1
20060211944 Mauge et al. Sep 2006 A1
20060217655 Vitullo et al. Sep 2006 A1
20060224188 Libbus et al. Oct 2006 A1
20060247746 Danek et al. Nov 2006 A1
20060258895 Maschke Nov 2006 A1
20060276867 Viswanathan Dec 2006 A1
20070010753 MacAdam Jan 2007 A1
20070016007 Govari et al. Jan 2007 A1
20070016013 Camus Jan 2007 A1
20070016068 Grunwald et al. Jan 2007 A1
20070016069 Grunwald et al. Jan 2007 A1
20070016070 Grunwald et al. Jan 2007 A1
20070016072 Grunwald et al. Jan 2007 A1
20070032746 Sell Feb 2007 A1
20070038113 Oonuki et al. Feb 2007 A1
20070049822 Bunce et al. Mar 2007 A1
20070049846 Bown et al. Mar 2007 A1
20070055141 Kruger et al. Mar 2007 A1
20070055142 Webler Mar 2007 A1
20070060992 Pappone Mar 2007 A1
20070062544 Rauk Bergstrom et al. Mar 2007 A1
20070066888 Maschke Mar 2007 A1
20070073155 Park et al. Mar 2007 A1
20070087038 Richardson et al. Apr 2007 A1
20070093710 Maschke Apr 2007 A1
20070100236 McMorrow et al. May 2007 A1
20070100285 Griffin et al. May 2007 A1
20070112282 Skujins et al. May 2007 A1
20070123805 Shireman et al. May 2007 A1
20070129770 Younis Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070135886 Maschke Jun 2007 A1
20070156205 Larson et al. Jul 2007 A1
20070161853 Yagi et al. Jul 2007 A1
20070161914 Zdeblick et al. Jul 2007 A1
20070161915 Desai Jul 2007 A1
20070167738 Timinger et al. Jul 2007 A1
20070167762 Kim et al. Jul 2007 A1
20070167769 Ikuma et al. Jul 2007 A1
20070167801 Webler et al. Jul 2007 A1
20070167997 Forsberg et al. Jul 2007 A1
20070197891 Shachar Aug 2007 A1
20070197905 Timinger et al. Aug 2007 A1
20070208255 Ridley et al. Sep 2007 A1
20070219453 Kremliovsky et al. Sep 2007 A1
20070225589 Viswanathan Sep 2007 A1
20070225610 Mickley et al. Sep 2007 A1
20070232882 Glossop et al. Oct 2007 A1
20070232896 Gilboa et al. Oct 2007 A1
20070238984 Maschke et al. Oct 2007 A1
20070239018 Fetzer et al. Oct 2007 A1
20070244413 Biggins Oct 2007 A1
20070247454 Rahn et al. Oct 2007 A1
20070249911 Simon Oct 2007 A1
20070255270 Carney Nov 2007 A1
20070265526 Govari et al. Nov 2007 A1
20070280974 Son et al. Dec 2007 A1
20070282196 Birk et al. Dec 2007 A1
20070282197 Bill et al. Dec 2007 A1
20070299352 Harlev et al. Dec 2007 A1
20070299353 Harlev et al. Dec 2007 A1
20080004652 Abboud et al. Jan 2008 A1
20080008745 Stinchcomb et al. Jan 2008 A1
20080009720 Schefelker et al. Jan 2008 A1
20080015442 Watson et al. Jan 2008 A1
20080027320 Bolorforosh et al. Jan 2008 A1
20080033283 Dellaca et al. Feb 2008 A1
20080033316 Kassab et al. Feb 2008 A1
20080033350 Wilson et al. Feb 2008 A1
20080045908 Gould et al. Feb 2008 A1
20080051626 Sato et al. Feb 2008 A1
20080077158 Haider et al. Mar 2008 A1
20080081958 Denison et al. Apr 2008 A1
20080082136 Gaudiani Apr 2008 A1
20080097232 Rothenberg Apr 2008 A1
20080108949 Beasley et al. May 2008 A1
20080114095 Peppmoller et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080139944 Weymer et al. Jun 2008 A1
20080146939 McMorrow et al. Jun 2008 A1
20080146940 Jenkins et al. Jun 2008 A1
20080146942 Dala-Krishna Jun 2008 A1
20080154100 Thalmeier et al. Jun 2008 A1
20080166453 Steele et al. Jul 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080183075 Govari et al. Jul 2008 A1
20080188830 Rosenblatt et al. Aug 2008 A1
20080190438 Harlev et al. Aug 2008 A1
20080195169 Pinter et al. Aug 2008 A1
20080200754 Buchalter Aug 2008 A1
20080228082 Scheirer et al. Sep 2008 A1
20080236598 Gobel Oct 2008 A1
20080255404 Nogawa et al. Oct 2008 A1
20080255475 Kondrosky et al. Oct 2008 A1
20080269581 Wood et al. Oct 2008 A1
20080269611 Pedrizzetti et al. Oct 2008 A1
20080275465 Paul et al. Nov 2008 A1
20080275765 Kuchar Nov 2008 A1
20080288038 Paul et al. Nov 2008 A1
20080294041 Kassab Nov 2008 A1
20080319350 Wallace et al. Dec 2008 A1
20090005674 Saadat et al. Jan 2009 A1
20090005675 Grunwald et al. Jan 2009 A1
20090018497 Birchard et al. Jan 2009 A1
20090024018 Boyden et al. Jan 2009 A1
20090030380 Binmoeller Jan 2009 A1
20090043205 Pelissier et al. Feb 2009 A1
20090062684 Gregersen et al. Mar 2009 A1
20090082661 Saladin et al. Mar 2009 A1
20090084382 Jalde et al. Apr 2009 A1
20090101577 Fulkerson et al. Apr 2009 A1
20090118612 Grunwald et al. May 2009 A1
20090118637 Kassab et al. May 2009 A1
20090118706 Schweikert et al. May 2009 A1
20090124901 Fink et al. May 2009 A1
20090143736 Mittermeyer et al. Jun 2009 A1
20090156926 Messerly et al. Jun 2009 A1
20090163810 Kanade et al. Jun 2009 A1
20090171217 Kim et al. Jul 2009 A1
20090177083 Matsumura Jul 2009 A1
20090177090 Grunwald et al. Jul 2009 A1
20090203989 Burnside et al. Aug 2009 A1
20090204113 MacAdam et al. Aug 2009 A1
20090209872 Pop Aug 2009 A1
20090209950 Starksen Aug 2009 A1
20090221908 Glossop Sep 2009 A1
20090227952 Blakstvedt et al. Sep 2009 A1
20090234328 Cox et al. Sep 2009 A1
20090253976 Harlev et al. Oct 2009 A1
20090258171 Uang Oct 2009 A1
20090259124 Rothenberg Oct 2009 A1
20090262982 Markowitz et al. Oct 2009 A1
20090270729 Corbucci et al. Oct 2009 A1
20090270746 Min Oct 2009 A1
20090275828 Shachar et al. Nov 2009 A1
20090297441 Canham et al. Dec 2009 A1
20100004543 Ahlund et al. Jan 2010 A1
20100004547 Scholz et al. Jan 2010 A1
20100010355 Kassab Jan 2010 A1
20100010444 Bettuchi Jan 2010 A1
20100010612 Gelbart et al. Jan 2010 A1
20100016726 Meier Jan 2010 A1
20100036227 Cox et al. Feb 2010 A1
20100036284 Laynes et al. Feb 2010 A1
20100041973 Vu et al. Feb 2010 A1
20100041984 Shapland et al. Feb 2010 A1
20100049062 Ziv Feb 2010 A1
20100055153 Majmudar Mar 2010 A1
20100055184 Zeitels et al. Mar 2010 A1
20100057157 Govari et al. Mar 2010 A1
20100060472 Kimura et al. Mar 2010 A1
20100063401 Nishina et al. Mar 2010 A1
20100076305 Maier-Hein et al. Mar 2010 A1
20100076328 Matsumura et al. Mar 2010 A1
20100081934 Soltani et al. Apr 2010 A1
20100083719 Peppmoller et al. Apr 2010 A1
20100094116 Silverstein Apr 2010 A1
20100106011 Byrd et al. Apr 2010 A1
20100114573 Huang et al. May 2010 A1
20100117659 Osadchy et al. May 2010 A1
20100143119 Kooijman et al. Jun 2010 A1
20100152596 Griffiths et al. Jun 2010 A1
20100168557 Deno et al. Jul 2010 A1
20100185097 Hall Jul 2010 A1
20100198048 Togawa Aug 2010 A1
20100198346 Keogh et al. Aug 2010 A1
20100204569 Burnside et al. Aug 2010 A1
20100204614 Lindquist et al. Aug 2010 A1
20100210938 Verard et al. Aug 2010 A1
20100210950 Dunbar et al. Aug 2010 A1
20100217116 Eck et al. Aug 2010 A1
20100222664 Lemon et al. Sep 2010 A1
20100222786 Kassab Sep 2010 A1
20100234724 Jacobsen et al. Sep 2010 A1
20100234733 Wahlheim Sep 2010 A1
20100249598 Smith et al. Sep 2010 A1
20100258033 Yang et al. Oct 2010 A1
20100268059 Ryu et al. Oct 2010 A1
20100273895 Stinchcomb et al. Oct 2010 A1
20100291521 Simon Nov 2010 A1
20100298702 Rogers et al. Nov 2010 A1
20100298704 Pelissier et al. Nov 2010 A1
20100298705 Pelissier et al. Nov 2010 A1
20100298712 Pelissier et al. Nov 2010 A1
20100312086 Beatty et al. Dec 2010 A9
20100317981 Grunwald Dec 2010 A1
20100318026 Grunwald Dec 2010 A1
20100331712 Rothenberg Dec 2010 A1
20110015527 Heasty et al. Jan 2011 A1
20110015533 Cox et al. Jan 2011 A1
20110034823 Gelbart et al. Feb 2011 A1
20110034940 Payner Feb 2011 A1
20110040212 Dietz et al. Feb 2011 A1
20110052694 Stinchcomb et al. Mar 2011 A1
20110087105 Ridley et al. Apr 2011 A1
20110087106 Ridley et al. Apr 2011 A1
20110087107 Lindekugel et al. Apr 2011 A1
20110112396 Shachar et al. May 2011 A1
20110136242 Marx et al. Jun 2011 A1
20110137156 Razzaque et al. Jun 2011 A1
20110196235 Dunbar et al. Aug 2011 A1
20110196248 Grunwald Aug 2011 A1
20110196255 Kassab Aug 2011 A1
20110237935 Kalpin et al. Sep 2011 A1
20110245659 Ma et al. Oct 2011 A1
20110282187 Harlev et al. Nov 2011 A1
20110282188 Burnside et al. Nov 2011 A1
20110295108 Cox et al. Dec 2011 A1
20110306867 Gopinathan et al. Dec 2011 A1
20110313293 Lindekugel et al. Dec 2011 A1
20120004564 Dobak, III Jan 2012 A1
20120035460 Stangenes et al. Feb 2012 A1
20120046562 Powers et al. Feb 2012 A1
20120059249 Verard et al. Mar 2012 A1
20120059270 Grunwald Mar 2012 A1
20120071751 Sra et al. Mar 2012 A1
20120071759 Hagy et al. Mar 2012 A1
20120071782 Patil et al. Mar 2012 A1
20120078342 Vollkron et al. Mar 2012 A1
20120095319 Kondrosky et al. Apr 2012 A1
20120108950 He et al. May 2012 A1
20120143029 Silverstein et al. Jun 2012 A1
20120143078 Kassab et al. Jun 2012 A1
20120172727 Hastings et al. Jul 2012 A1
20120220854 Messerly et al. Aug 2012 A1
20120283582 Mahapatra et al. Nov 2012 A1
20120296200 Shachar et al. Nov 2012 A1
20120310052 Mahapatra et al. Dec 2012 A1
20120310066 Shachar et al. Dec 2012 A1
20120316440 Munrow et al. Dec 2012 A1
20130006102 Wilkes et al. Jan 2013 A1
20130018248 Hurezan Jan 2013 A1
20130035590 Ma et al. Feb 2013 A1
20130041269 Stahmann et al. Feb 2013 A1
20130060116 Messerly et al. Mar 2013 A1
20130085416 Mest Apr 2013 A1
20130102890 Dib Apr 2013 A1
20130123597 Rothenberg May 2013 A1
20130169272 Eichler et al. Jul 2013 A1
20130217999 Burnside et al. Aug 2013 A1
20130245434 Messerly et al. Sep 2013 A1
20130296691 Ashe Nov 2013 A1
20130303896 Kalpin et al. Nov 2013 A1
20130317338 Silverstein Nov 2013 A1
20130324841 Kamen et al. Dec 2013 A1
20130338503 Cohen et al. Dec 2013 A1
20130338517 Rothenberg Dec 2013 A1
20130345555 Kanade et al. Dec 2013 A1
20140031674 Newman et al. Jan 2014 A1
20140046261 Newman et al. Feb 2014 A1
20140094694 Moctezuma de la Barrera Apr 2014 A1
20140094768 Stangenes et al. Apr 2014 A1
20140107475 Cox et al. Apr 2014 A1
20140163356 Burnside et al. Jun 2014 A2
20140180074 Green et al. Jun 2014 A1
20140187990 Banet et al. Jul 2014 A1
20140188133 Misener Jul 2014 A1
20140228689 Ishikawa et al. Aug 2014 A1
20140243659 Rothenberg Aug 2014 A1
20140257080 Dunbar et al. Sep 2014 A1
20140275957 Lupotti Sep 2014 A1
20140275990 Hagy et al. Sep 2014 A1
20140303492 Burnside et al. Oct 2014 A1
20140309624 Bown et al. Oct 2014 A1
20140343398 He et al. Nov 2014 A1
20150005621 Liu Jan 2015 A1
20150025402 Rothenberg Jan 2015 A1
20150051489 Caluser et al. Feb 2015 A1
20150080716 Powers et al. Mar 2015 A1
20150297114 Cox et al. Oct 2015 A1
Foreign Referenced Citations (191)
Number Date Country
642647 Nov 1990 AU
1860597 Jun 1999 AU
20009592 Sep 2000 AU
20015250 Jun 2001 AU
768362 Dec 2003 AU
2001229024 Sep 2005 AU
2001283703 May 2006 AU
2006202149 Jun 2006 AU
2006904933 Sep 2006 AU
2006283022 Feb 2012 AU
2420676 Feb 2002 CA
2619909 Jan 2014 CA
2031655 Feb 1989 CN
1672649 Sep 2005 CN
102209490 Oct 2011 CN
102802514 Nov 2012 CN
102821679 Dec 2012 CN
103037761 Apr 2013 CN
103037762 Apr 2013 CN
103118591 May 2013 CN
103189009 Jul 2013 CN
4319033 Jun 1994 DE
0359697 Mar 1990 EP
0362821 Apr 1990 EP
0399536 Nov 1990 EP
0823261 Feb 1998 EP
0928976 Jul 1999 EP
1025805 Aug 2000 EP
1311226 May 2003 EP
1504713 Feb 2005 EP
1932477 Jun 2008 EP
2313143 Apr 2011 EP
2337491 Jun 2011 EP
2440122 Apr 2012 EP
2464407 Jun 2012 EP
2482719 Aug 2012 EP
2575610 Apr 2013 EP
2575611 Apr 2013 EP
2603145 Jun 2013 EP
2605699 Jun 2013 EP
2632360 Sep 2013 EP
2219526 Mar 2014 EP
2712547 Apr 2014 EP
2545349 Nov 1984 FR
01097440 Apr 1989 JP
03173542 Jul 1991 JP
4090741 Aug 1992 JP
9-503054 Mar 1997 JP
09-094298 Apr 1997 JP
10043310 Feb 1998 JP
10290839 Nov 1998 JP
11128237 May 1999 JP
2001161683 Jun 2001 JP
2001-514533 Sep 2001 JP
2001-524339 Dec 2001 JP
2001340334 Dec 2001 JP
2002-529133 Sep 2002 JP
2002-541947 Dec 2002 JP
2003-010138 Jan 2003 JP
2003501127 Jan 2003 JP
2003061752 Mar 2003 JP
2003299654 Oct 2003 JP
2003334191 Nov 2003 JP
2002520893 Feb 2004 JP
2004505748 Feb 2004 JP
2004515298 May 2004 JP
2006508744 Mar 2006 JP
2006-338526 Dec 2006 JP
2007-000226 Jan 2007 JP
2007-068989 Mar 2007 JP
2009271123 Nov 2009 JP
5010604 Jun 2012 JP
2012-529929 Nov 2012 JP
2013-518676 May 2013 JP
2013-526959 Jun 2013 JP
2013-526961 Jun 2013 JP
8002376 Nov 1980 WO
9112836 Sep 1991 WO
9203090 Mar 1992 WO
9403159 Feb 1994 WO
9404938 Mar 1994 WO
9605768 Feb 1996 WO
9607352 Mar 1996 WO
9641119 Dec 1996 WO
9729683 Aug 1997 WO
9743989 Nov 1997 WO
9825159 Jun 1998 WO
9829032 Jul 1998 WO
9835611 Aug 1998 WO
9916495 Apr 1999 WO
9927837 Jun 1999 WO
9949407 Sep 1999 WO
0019906 Apr 2000 WO
0027281 May 2000 WO
0040155 Jul 2000 WO
0063658 Oct 2000 WO
0074775 Dec 2000 WO
0113792 Mar 2001 WO
0139683 Jun 2001 WO
0176479 Oct 2001 WO
0215973 Feb 2002 WO
0219905 Mar 2002 WO
0225277 Mar 2002 WO
02085442 Oct 2002 WO
03061752 Jul 2003 WO
03077759 Sep 2003 WO
03088833 Oct 2003 WO
03091495 Nov 2003 WO
2004002303 Jan 2004 WO
2004049970 Jun 2004 WO
2005033524 Apr 2005 WO
2005033574 Apr 2005 WO
2005117690 Dec 2005 WO
2005117733 Dec 2005 WO
2006074509 Jul 2006 WO
2006074510 Jul 2006 WO
2006078677 Jul 2006 WO
2006103661 Oct 2006 WO
2006111056 Oct 2006 WO
2007002541 Jan 2007 WO
2007005976 Jan 2007 WO
2007014447 Feb 2007 WO
2007034196 Mar 2007 WO
2007067324 Jun 2007 WO
2007069168 Jun 2007 WO
2007109123 Sep 2007 WO
2007126536 Nov 2007 WO
2007144894 Dec 2007 WO
2008005480 Jan 2008 WO
2008024596 Feb 2008 WO
2008028253 Mar 2008 WO
2008083111 Jul 2008 WO
2008097767 Aug 2008 WO
2008118992 Oct 2008 WO
2008126074 Oct 2008 WO
2008129326 Oct 2008 WO
2008131017 Oct 2008 WO
2008136008 Nov 2008 WO
2009000439 Dec 2008 WO
2009002514 Dec 2008 WO
2009003138 Dec 2008 WO
2009009064 Jan 2009 WO
2009057774 May 2009 WO
2009063166 May 2009 WO
2009067654 May 2009 WO
2009070616 Jun 2009 WO
2009100158 Aug 2009 WO
2009123819 Oct 2009 WO
2009126340 Oct 2009 WO
2009129475 Oct 2009 WO
2009129477 Oct 2009 WO
2009134605 Nov 2009 WO
2009137262 Nov 2009 WO
2010002313 Jan 2010 WO
2010018500 Feb 2010 WO
2010022370 Feb 2010 WO
2010027349 Mar 2010 WO
2010027471 Mar 2010 WO
2010029906 Mar 2010 WO
2010030820 Mar 2010 WO
2010132857 Nov 2010 WO
2010132985 Nov 2010 WO
2010143196 Dec 2010 WO
2010144922 Dec 2010 WO
2011019760 Feb 2011 WO
2011041450 Apr 2011 WO
2011044421 Apr 2011 WO
2011057289 May 2011 WO
2011064209 Jun 2011 WO
2011084593 Jul 2011 WO
2011097312 Aug 2011 WO
2011128052 Oct 2011 WO
2011150358 Dec 2011 WO
2011150376 Dec 2011 WO
2012021542 Feb 2012 WO
2012024577 Feb 2012 WO
2012039866 Mar 2012 WO
2012040487 Mar 2012 WO
2012058461 May 2012 WO
2012083245 Jun 2012 WO
2012088535 Jun 2012 WO
2012110955 Aug 2012 WO
2012173697 Dec 2012 WO
2013006713 Jan 2013 WO
2013006817 Jan 2013 WO
2013034175 Mar 2013 WO
2014052894 Apr 2014 WO
2014062728 Apr 2014 WO
2014138652 Sep 2014 WO
2014138918 Sep 2014 WO
2015120256 Aug 2015 WO
Non-Patent Literature Citations (486)
Entry
U.S. Appl. No. 13/118,138, filed May 27, 2011 Non-Final Office Action dated Oct. 3, 2012.
U.S. Appl. No. 13/213,622, filed Aug. 19, 2011 Final Office Action dated Feb. 19, 2013.
U.S. Appl. No. 13/213,622, filed Aug. 19, 2011 Non-Final Office Action dated Jul. 31, 2012.
U.S. Appl. No. 13/213,622, filed Aug. 19, 2011 Non-Final Office Action dated May 22, 2014.
U.S. Appl. No. 13/283,395, filed Oct. 27, 2011 Non-Final Office Action dated Apr. 23, 2013.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Advisory Action dated May 23, 2013.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Final Office Action dated Mar. 1, 2013.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Non-Final Office Action dated Dec. 27, 2013.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Non-Final Office Action dated Oct. 16, 2012.
U.S. Appl. No. 13/337,987, filed Dec. 27, 2011 Non-Final Office Action dated Mar. 15, 2013.
U.S. Appl. No. 13/469,932, filed May 11, 2012 Non-Final Office Action dated Jan. 3, 2014.
U.S. Appl. No. 13/469,932, filed May 11, 2012 Non-Final Office Action dated Jul. 31, 2014.
U.S. Appl. No. 13/665,420, filed Oct. 31, 2012 Non-Final Office Action dated Jan. 6, 2014.
U.S. Appl. No. 13/737,806, filed Jan. 9, 2013 Notice of Allowance dated Oct. 31, 2013.
U.S. Appl. No. 13/887,166, filed May 3, 2013 Advisory Action dated Aug. 27, 2014.
U.S. Appl. No. 13/887,166, filed May 3, 2013 Final Office Action dated Jun. 23, 2014.
U.S. Appl. No. 13/887,166, filed May 3, 2013 Non-Final Office Action dated Jan. 7, 2014.
U.S. Appl. No. 13/890,158, filed May 8, 2013 Non-Final Office Action dated Aug. 15, 2014.
U.S. Appl. No. 13/969,265, filed Aug. 16, 2013 Non-Final Office Action dated Dec. 19, 2013.
U.S. Appl. No. 13/969,265, filed Aug. 16, 2013 Notice of Allowance dated Jun. 23, 2014.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Non-Final Office Action dated Jun. 20, 2014.
U.S. Appl. No. 14/317,501, filed Jun. 27, 2014 Non-Final Office Action dated Sep. 12, 2014.
U.S. Appl. No. 29/428,649, filed Aug. 1, 2012 Notice of Allowance dated Jul. 5, 2013.
Valdivieso, J.R. Perez, et al., Evaluation of a formula for optimal positioning of a central venous catheter inserted through the right internal jugular vein, Rev. Esp. Anestesiol. Reanim. 2003; 50: 77-79.
VasoNova Inc, Vascular navigation system for accurate placement of PICCs, Start-Up Emerging Medical Ventures, pp. 44-45, vol. 14 No. 7, Jul.-Aug. 2009.
Vesely, Thomas M. et al., Central Venous Catheter Tip Position: A Continuing Controversy, J Vasc Intery Radiol 2003; 14:527-534.
VIASYS Health Care Inc. Cortrak © Fact Sheet, 2005.
VIASYS Healthcare MedSystems, Navigator® Benefits, 2008.
VIASYS Healthcare MedSystems, Navigator® Research in Cost Justification, 2008.
VIASYS MedSystems, Cortrak™ Systems Brochure, 2005.
Volcano ComboMap Features and Benefits/Technical Specifications, 2 pages, 2011.
Watters, et al. “Use of Electrocardiogram to Position Right Atrial Catheters During Surgery.” Annals of Surgery, vol. 225, No. 2, pp. 165-171, 1997.
Welch Allyn Cardioperfect® PC-Based Resting ECG, 2003.
Wilson, R. G. et al, Right Atrial Electrocardiography in Placement of Central Venous Catheters, The Lancet, pp. 462-463, Feb. 27, 1988.
Wong, Jeffrey J. et al., Azygos Tip Placement for Hemodialysis Catheters in Patients with Superior Vena Cava Occlusion, Cardiovasc Intervent Radiol (2006) 29:143-146.
Worley, Seth J. “Use of a Real-Time Three-Dimensional Magenetic Navigation System for Radiofrequency Ablation of Accessory Pathways.” PACE, vol. 21 pp. 1636-1643, Aug. 1998.
Yilmazlar A et al, Complications of 1303 Central Venous Cannulations, J R Soc Med, pp. 319-321, vol. 90 No. 6, Jun. 1997 (Abstract only).
Yoon, SZ et al, Usefulness of the Carina as a Radiographic Landmark for Central Venous Catheter Placement in Paediatric Patients, Br J Anaesth, Jul. 2005.
Yoshida, Teruhisa et al, Detection of Concealed Left Sided Accessory Atrioventricular Pathway by P Wave Signal Averaged Electrocardiogram, J Am Coll Cardiol, pp. 55-62, 1999.
Zaaroor, et al. “Novel Magnetic Technology for Intraoperative Intracranial Frameless Navigation: In Vivo and in Vitro Results.” Neurosurgery, vol. 48, No. 5. pp. 1100-1107, May 2001.
Zachariou, Zacharias et al., Intra-atrial ECG recording: a new and safe method for implantation of Broviac catheters in children, Pediatr Surg Int (1994) 9: 457-458.
Zaidi, Naveed A., et al. “Room temperature magnetic order in an organic magnet derived from polyaniline.” 2004, Polymer, vol. 45, pp. 5683-5689.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Final Office Action dated Jan. 30, 2009.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Final Office Action dated Oct. 28, 2013.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Non-Final Office Action dated Mar. 28, 2013.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Non-Final Office Action dated Sep. 25, 2009.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Notice of Allowance dated Dec. 3, 2012.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Notice of Allowance dated Mar. 14, 2014.
U.S. Appl. No. 11/552,094, filed Oct. 23, 2006 Notice of Allowability dated Apr. 2, 2010.
U.S. Appl. No. 11/552,094, filed Oct. 23, 2006 Non-Final Office Action dated Apr. 27, 2009.
U.S. Appl. No. 11/552,094, filed Oct. 23, 2006 Notice of Allowance dated May 20, 2010.
U.S. Appl. No. 12/104,253, filed Apr. 16, 2008 Final Office Action dated Jul. 27, 2011.
U.S. Appl. No. 12/104,253, filed Apr. 16, 2008 Non-Final Office Action dated Nov. 29, 2010.
U.S. Appl. No. 12/323,273, filed Nov. 25, 2008 Non-Final Office Action dated Jun. 8, 2012.
U.S. Appl. No. 12/369,625, filed Feb. 11, 2009 Final Office Action dated Feb. 23, 2012.
U.S. Appl. No. 12/369,625, filed Feb. 11, 2009 Notice of Allowance dated Oct. 5, 2012.
U.S. Appl. No. 12/369,625, filed Feb. 11, 2009 Non-Final Office Action dated Jul. 20, 2011.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Advisory Action dated Nov. 26, 2013.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Final Office Action dated Aug. 2, 2013.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Final Office Action dated Jan. 31, 2014.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Non-Final Office Action dated Dec. 3, 2012.
U.S. Appl. No. 12/427,244, filed Apr. 21, 2009 Non-Final Office Action dated Jan. 19, 2012.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Final Office Action dated Mar. 7, 2013.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Non-Final Office Action dated Aug. 1, 2012.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Non-Final Office Action dated Dec. 13, 2013.
U.S. Appl. No. 12/557,401, filed Sep. 10, 2009 Non-Final Office Action dated Apr. 24, 2012.
U.S. Appl. No. 12/557,401, filed Sep. 10, 2009 Non-Final Office Action dated Jan. 6, 2014.
U.S. Appl. No. 12/575,456, filed Oct. 7, 2009 Non-Final Office Action dated Oct. 5, 2012.
U.S. Appl. No. 12/715,556, filed Mar. 2, 2010 Final Office Action dated Oct. 2, 2013.
U.S. Appl. No. 12/715,556, filed Mar. 2, 2010 Non-Final Office Action dated Sep. 13, 2012.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Advisory Action dated Oct. 4, 2013.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Final Office Action dated Jul. 26, 2013.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Non-Final Office Action dated Jan. 22, 2013.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Non-Final Office Action dated Jul. 2, 2014.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Advisory Action dated Sep. 8, 2014.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Final Office Action dated Aug. 15, 2013.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Final Office Action dated Jul. 1, 2014.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Non-Final Office Action dated Jan. 29, 2013.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Non-Final Office Action dated Jan. 29, 2014.
U.S. Appl. No. 12/878,915, filed Sep. 9, 2010 Final Office Action dated Sep. 26, 2012.
U.S. Appl. No. 12/878,915, filed Sep. 9, 2010 Non-Final Office Action dated Mar. 15, 2012.
U.S. Appl. No. 12/878,915, filed Sep. 9, 2010 Notice of Allowance dated Jan. 8, 2013.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Advisory Action dated Aug. 15, 2014.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Final Office Action dated Jun. 18, 2014.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Non-Final Office Action dated Dec. 24, 2013.
U.S. Appl. No. 12/900,750, filed Oct. 8, 2010 Non-Final Office Action dated Jun. 3, 2013.
U.S. Appl. No. 13/019,939, filed Feb. 2, 2011 Final Office Action dated Apr. 2, 2014.
U.S. Appl. No. 13/019,939, filed Feb. 2, 2011 Non-Final Office Action dated Oct. 11, 2013.
U.S. Appl. No. 13/118,033, filed May 27, 2011 Non-Final Office Action dated Aug. 1, 2013.
U.S. Appl. No. 13/118,033, filed May 27, 2011 Non-Final Office Action dated May 22, 2014.
U.S. Appl. No. 13/118,138, filed May 27, 2011 Final Office Action dated Apr. 3, 2013.
Claasz, Antonia et al, A Study of the Relationship of the Superior Vena Cava to the Bony Landmarks of the Sternum in the Supine Adult: Implications for Magnetic Guidance Systems, Journal, vol. 12 No. 3, JAVA, Jul. 24, 2007.
Clifford, et al. “Assessment of Hepatic Motion Secondary to Respiration for Computer Assisted Interventions.” Computer Aided Surgery, vol. 7, pp. 291-299, 2002.
CN 200880012117.4 filed Apr. 16, 2008 First Office Action dated Dec. 23, 2011.
CN 200880012117.4 filed Apr. 16, 2008 Second Office Action dated Oct. 8, 2012.
CN 200880012117.4 filed Apr. 16, 2008 Third Office Action dated Apr. 27, 2013.
CN 200880125528.4 filed Nov. 25, 2008 First Office Action dated Jun. 5, 2012.
CN 200880125528.4 filed Nov. 25, 2008 Second Office Action dated Mar. 6, 2013.
CN 200880125528.4 filed Nov. 25, 2008 Third Office Action dated Jul. 1, 2013.
CN 200980123021.X filed Dec. 17, 2010 First Office Action dated Nov. 19, 2012.
CN 200980123021.X filed Dec. 17, 2010 Second Office Action dated Aug. 13, 2013.
CN 200980123021.X filed Dec. 17, 2010 Third Office Action dated Apr. 22, 2014.
CN 200980144663.8 filed May 9, 2011 First Office Action dated Dec. 5, 2012.
CN 200980144663.8 filed May 9, 2011 Second Office Action dated Aug. 22, 2013.
CN 200980144663.8 filed May 9, 2011 Third Office Action dated May 4, 2014.
CN 201080035659.0 filed Feb. 10, 2012 First Office Action dated Jan. 26, 2014.
CN 201080053838.7 filed May 28, 2012 First Office Action dated Jan. 6, 2014.
CN 201080053838.7 filed May 28, 2012 Second Office Action dated Jun. 17, 2014.
CN 201180016462.7 filed Sep. 27, 2012 First Office Action dated Mar. 21, 2014.
Colley, Peter S et al, ECG-Guided Placement of Sorenson CVP Catheters via Arm Veins, Anesthesia and Analgesia, pp. 953-956, vol. 63, 1984.
Collier, PE et al, Cardiac Tamponade from Central Venous Catheters, Am J Surg, pp. 212-214, vol. 176 No. 2, Aug. 1998.
ComboWire® Pressure/Flow Guide Wire Ref 9500 Series, Instructions for Use, Apr. 2011.
Corsten, et al., “Central Placement Catheter Placement Using the ECG-Guided Cavafix-Certodyn SD Catheter.” Journal of Clinical Anesthesiology, vol. 6, Nov./Dec. 1994.
Cucchiara, Roy et al, Time Required and Success Rate of Percantaneous Right Atrial Catherization: Description of a Technique, Canad. Anaesth. Soc. J., pp. 572-573, vol. 27, No. 6, Nov. 1980.
Cullinane, DC et al, The Futility of Chest Roentgenograms Following Routine Central Venous Line Changes, Am J Surg, pp. 283-285, vol. 176 No. 3, Sep. 1998.
Curet, Myriam J. et al., University and Practice-based Physicians' Input on the Content of a Surgical Curriculum, The American Journal of Surgery® vol. 178 Jul. 1999, 78-84.
David, et al., “Is ECG-Guidance a Helpful Method to Correctly Position a Central Venous Catheter During Prehospital Emergency Care?” ACTA Anaesthesiologica Scandinavica, vol. 49, pp. 1010-1014, 2005.
DELTEC Cath-Finder® Tracking System Operation Manual, 1994.
Egelhof, Petra, Effects of Somatostatin on Portal Blood Flow and Portal Vein Pressure in Patients with Portal Hypertension due to Liver Cirrhosis Invasive Monitoring during TIPSS Procedures, Dissertation submitted to: Technical University of Munich, Faculty of Medicine, May 13, 2002; Date of examination: Feb. 26, 2003.
Engelhardt, W et al, ECG-Controlled Placement of Central Venous Catheters in Patients with Atrial Fibrallation, Anaesthesist, pp. 476-479, vol. 38 No. 9, Sep. 1989 (Abstract only).
EP 08855396.1 filed Jun. 15, 2010 European Search Report dated Jul. 31, 2012.
EP 08855396.1 filed Jun. 15, 2010 Intent to Grant dated Jul. 5, 2013.
EP 09707467.8 supplemental European search report dated Jun. 18, 2013.
EP 09808901.4 filed Aug. 21, 2009 European Search Report dated May 23, 2012.
EP 09808901.4 filed Aug. 21, 2009 Examination Report dated May 10, 2013.
EP 09813632.8 filed Apr. 5, 2011 European Search Report dated Jul. 4, 2012.
EP 09813632.8 filed Apr. 5, 2011 Office Action dated Apr. 30, 2013.
EP 09813632.8 filed Apr. 5, 2011 Summons to Attend Oral Proceedings dated Apr. 16, 2014.
EP 10 808 660.4 filed Feb. 15, 2012 Extended European Search Report dated Mar. 4, 2014.
EP 10786978.6 filed Dec. 19, 2011 Extended European Search Report dated Mar. 7, 2014.
EP 12177438.4 filed Jul. 23, 2012 Communication dated Jan. 13, 2014.
EP 12177438.4 filed Jul. 23, 2012 European Search Report dated Dec. 4, 2012.
EP 12177438.4 filed Jul. 23, 2012 extended European Search Report dated Mar. 25, 2013.
EP 13194818.4 filed Nov. 28, 2013 extended European search report dated Feb. 28, 2014.
EP 14151268.1 filed Jan. 15, 2014 European Search Report dated Feb. 21, 2014.
Fearon, William F et al, Evaluating Intermediate Coronary Lesions in the Cardiac Catheterization Laboratory, vol. 4, No. 1, 7 pages, Reviews in Cardiovascular Medicine, 2003.
Felleiter P et al, Use of Electrocardiographic Placement Control of Central Venous Catheters in Austria, Acta Med Austriaca, pp. 109-113, vol. 26 No. 3, 1999 (Abstract only).
Forauer, AR et al, Change in Peripherally Inserted Central Catheter Tip Location with Abduction and Adduction of the Upper Extremity, J Vasc Intery Radiol, pp. 1315-1318, vol. 11 No. 10, Nov.-Dec. 2000.
Frassinelli, P et al, Utility of Chest Radiographs after Guidewire Exchanges of Central Venous Catheters, Crit Care Med, pp. 611-615, vol. 26 No. 3, Mar. 1998.
Frazin L et al, A Doppler Guided Retrograde Catheterization System, Cathet. Cardiovasc Diagn, pp. 41-50, May 1992.
French, PJ et al, Sensors for Catheter Applications, Sensors Update, vol. 13 Issue 1 pp. 107-153, Dec. 2003.
GB Application 0800474.9 filed Aug. 24, 2006 Office Action dated Aug. 9, 2010.
GB Application 0800474.9 filed Aug. 24, 2006 Office Action dated Mar. 17, 2010.
Gebauer, B et al, Ultrasound and Fluoroscopy-guided Implantation of Peripherally Inserted Central Venous Catheters (PICCs), ROFO, pp. 386-391, vol. 176 No. 3, Mar. 2004 (Abstract only).
Gebhard, et al., “The accuracy of Electrocardiogram-Controlled Central Line Placement.” The International Anesthesia Research Society, vol. 104, No. 1 Jan. 2007.
Gjendemsjo, Anders, et al., Energy and Power, The Connexions Project, Version 1.2, Feb. 20, 2004.
Gladwin, MT et al, Cannulation of the Internal Jugular Vein: is postpocedural chest radiography always necessary?, Crit Care Med, 33 pages, Oct. 2000.
Gonzales, et al. “Peripherally Inserted Central Catheter Placement in Swine Using Magnet Detection.” Journal of Intravenous Nursing, vol. 22, No. 3, May/Jun. 1999.
Greenall, M.J. et al, Cardiac Tamponade and Central Venous Catheters, British Medical Journal, pp. 595-597, Jun. 14, 1975.
Guillory, “Basic Principles of Technologies for Catheter Localization.” C.R. Bard internal paper, Oct. 20, 2004.
Guth, AA, Routine Chest X-rays after Insertion of Implantable Long-Term Venous Catheters: Necessary or Not?, Am Surg, pp. 26-29, vol. 67 No. 1, Jan. 2001 (Abstract only).
Hill, Bradley et al, Abstract of article discussing VasaNova VPS as guide for placement of PICCs. 2009.
Hill, Bradley, Identifying the Caval-Atrial Junction Using Smart-Catheter Technology presentation, 22nd Annual Scientific Meeting of the AVA in Savannah, Georgia, Sep. 13, 2008.
Hoffman, Thomas et al, Simultaneous Measurement of Pulmonary Venous Flow by Intravascular Catheter Doppler Velocimetry and Transesophageal Doppler Echocardiography: Relation to Left Atrial Pressure and Left Atrial and Left Ventricular Function, pp. 239-249, J Am Coll Cardiol, Jul. 1995.
Hoffmann, et al. “New Procedure in Transesophageal Echocardiography: Multiplane Transesophageal Echocardiography and Transesophageal Stress Echocardiography.” Herz, vol. 18, No. 5, pp. 269-277, Oct. 1993.
Iacopino, Domenico Gerardo et al, Intraoperative Microvascular Doppler Monitoring of Blood Flow within a Spinal Dural Arteriovenous Fistula: A Precious Surgical Tool, vol. 10, 5 pages, Neurosurg. Focus, Feb. 2001.
Jeon, Yunseok et al., “Transesophageal Echocardiographic Evaluation of ECG-guided Central Venous Catheter Placement,” Canadian Journal of Anesthesia, vol. 53, No. 10, Oct. 1, 2006, pp. 978-983.
Joosting, Jean-Pierre, “Dual-interface RFID-compatible EEPROM enables remote access to electronic device parameters,” EE Times, Mar. 8, 2010.
JP 2008-528151 filed Aug. 24, 2006 Notice of Grant dated May 6, 2012.
JP 2010-504220 filed Sep. 3, 2009 Final Office Action dated Apr. 18, 2013.
JP 2010-504220 filed Sep. 3, 2009 Office Action dated May 21, 2012.
JP 2010-535117 filed May 26, 2011 First Office Action dated Aug. 5, 2013.
JP 2012-515222 filed Dec. 9, 2011 Office Action dated Mar. 24, 2014.
Kim, Ko et al, Positioning Internal Jugular Venous Catheters using the Right Third Intercostal Space in Children, Acta Anaesthesiol Scand, pp. 1284-1286, vol. 47 No. 10, Nov. 2003.
Kjelstrup T et al, Positioning of Central Venous Catheters using ECG, Tidssk nor Laegeforen, pp. 599-601, vol. 111 No. 5, Feb. 1999 (Abstract only).
Kofler, Julia, et al., Epinephrine application via an endotracheal airway and via the Combitube in esophageal position, Critical Care Medicine: May 2000, vol. 28: Issue 5, pp. 1445-1449.
Konings, MK, et al., Development of an intravascular impedance catheter for detection of fatty lesions in arteries, IEEE Trans Med Imaging Aug. 1997; 16(4):439-46.
Kowalski, CM et al, Migration of Central Venous Catheters: Implications for Initial Catheter Tip Positioning, J Vasc Interv Radiol, pp. 443-447, vol. 8 No. 3, May-Jun. 1997.
Leowenthal, MR et al, The Peripherally Inserted Central Catheter (PICC): A Prospective Study of its Natural History after Fossa Insertion, Anaesth Intensive Care, pp. 21-24; vol. 30 No. 1, Feb. 2002.
Lepage Ronan et al. ECG Segmentation and P-wave Feature Extraction: Application to Patients Prone to Atrial Fibrillation, IEEE/EMBS Proceedings, 23rd Annual Conference, Istanbul, Turkey, Oct. 25-28, 2001.
Liu , Ji-Bin et al, Catheter-Based Intralumincal Sonography, J Ultrasound Med, pp. 145-160, vol. 23, 2004.
Lucey, B et al, Routine Chest Radiographs after Central Line Insertion: Mandatory Postprocedural Evaluation or Unnecessary Waste of Resources?, Cardiovasc Intervent Radiol, pp. 381-384, vol. 22 No. 5, Sep.-Oct. 1999.
Lum, Phillip, A New Formula-Based Measurement Guide for Optimal Positioning of Central Venous Catheters, JAVA, vol. 9, No. 2, pp. 80-85, 2004.
Lynch, RE et al, A Procedure for Placing Pediatric Femoral Venous Catheter Tips near the Right Atrium, Pediatr Emerg Care, pp. 130-132, vol. 18 No. 2, Apr. 2002.
Madan, et al. “Right Atrial Electrocardiography: A Technique for the Placement of Central Venous Catheters for Chemotherapy or Intravenous Nutrition.” British Journal of Surgery, vol. B1, pp. 1604-1605, 1994.
Madias, John E, Intracardiac (Superior Vena Cava/Right Atrial) ECGs using Saline Solution as the Conductive Medium for the Proper Positioning of the Shiley Hemodialysis Catheter: Is it Not Time to Forego the Postinsertion Chest Radiograph?, pp. 2363-2367, CHEST, 2003.
Markovich, Mary B., Central Venous Catheter Tip Placement: Determination of Posterior Malposition—A Case Study, JAVA, vol. 11, No. 2, pp. 85-89, 2006.
Martin, Roy W, An Ultrasoundic Catheter for Intravascular Measurement of Blood Flow: Technical Details, IEEE Transactions on Sonics and Ultrasonics, vol. SU-27, No. 6, pp. 277-286, Nov. 1980.
McDonnall, “Intra-Atrial Electrocardiography (ECG) for Catheter Placement.” Literature review prepared for Bard Access Systems, Oct. 2007.
McGee et al., “Accurate Placement of Central Venous Catheters: A Prospective, Randomize, Multicenter Trail.” Critical Care Medicine, vol. 21 No. 8, Aug. 1993.
MedGraphics, CardioPerfect® Resting/Stress ECG System, 3 pages, 2001.
Michenfelder, John et al, Air Embolism During Neurosurgery—An Evaluation of Right-Atrial Catheters for Diagnosis and Treatment, JAMA, pp. 1353-1358, vol. 208, No. 8, May 26, 1969.
Michenfelder, John et al, Air Embolism During Neurosurgery. A New Method of Treatment, Anesthesia and Analgesia. Current Researches, pp. 390-395, vol. 45, No. 4, Jul.-Aug. 1966.
MICROBIRD™ Miniaturized DC Magnetic Sensors for Intra-body Navigation and Localization, Specifications, 2005.
MICRONIX CathRite™ Cardiac Access Device Brochure. Jun. 2004.
Micronix Pty Ltd “CathRite” Guiding Styled Core Manufacturing, Jun. 15, 2006.
Murthy, Vrudhula et al, Analysis of Power Spectral Densities of Electrocardiograms, Mathematical Biosciences, pp. 41-51, vol. 12 No. 1-2, Oct. 1971.
Nadroo, AM et al, Changes in Upper Extremity Position Cause Migration of Peripherally Inserted Central Catheters in Neonates, Pediatrics, pp. 131-136, vol. 110, Jul. 2002.
Nakatani, K et al, Accurate Placement of Central Venous Catheters—ECG-guided method vs Patient Height Method, MASUI, pp. 34-38, vol. 51 No. 1, Jan. 2002.
Nazarian, GK et al, Changes in Tunneled Catheter Tip Position when a patient is Upright, J Vasc Interv Radiol, pp. 437-441, vol. 8 No. 3, May-Jun. 1997.
Neurometer® CPT, Clinical Applications. Neurotron , Inc. website: www.neurotron.com/CLINAPS.html, last accessed Oct. 23, 2006.
NEUROMETER® CPT, Frequently Asked Questions. Neurotron , Inc. website: www.neurotron.com/CPTFAQ/html, last accessed Oct. 23, 2006.
NEUROMETER® CPT, Products Page. Neurotron , Inc. website: www.neurotron.com/products.html, last accessed Oct. 23, 2006.
NEUROMETER® Electrodiagnostic Neuroselective Sensory Nerve Evaluation: Charts, Tables, Documents & Downloads. Neurotron , Inc. website: www.neurotron.com/downloads.html, last accessed Oct. 23, 2006.
Odd, De et al, Does Radio-opaque Contrast Improve Radiographic localisation of Percutaneous Central Venous Lines?, Arch Dis Child Fetal Neonatal Ed, pp. 41-43, vol. 89 No. 1, Jan. 2004.
Palesty, JA et al, Routine Chest Radiographs Following Central Venous Recatherization over a Wire are not Justified, Am J Surg, pp. 618-621, vol. 176 No. 6, Dec. 1998.
Paliotti, Roberta P. et al, Intravascular Doppler Technique for Monitoring Renal Venous Blood Flow in Man, J Nephrol, pp. 57-62, 2003.
Parker, K.H. et al, Cardiovascular Fluid Dynamics, Department of Bioengineering, National Heart and Lung Institute, Imperial College of Science, Technology and Medicine, Cardiovascular Haemodynamics, pp. 1-28, Sep. 26, 2005.
Pawlik, et al., “Central Venous Catheter Placement: Comparison of the Intravascular Guidewire and the Fluid Column Electrocardiograms.” European Journal of Anaesthesiology, vol. 41, pp. 594-599, 2004.
PCT/US13/62409 filed Sep. 27, 2013 International Search Report and Written Opinion dated Feb. 24, 2014.
PCT/US2006/033079 filed Aug. 24, 2006 International Preliminary Report on Patentability dated Feb. 26, 2008.
PCT/US2006/033079 filed Aug. 24, 2006 Search Report dated Dec. 19, 2006.
PCT/US2006/033079 filed Aug. 24, 2006 Written Opinion dated Dec. 19, 2006.
PCT/US2008/060502 filed Apr. 16, 2008 International Search Report and Written Opinion dated Oct. 16, 2008.
PCT/US2008/084751 filed Nov. 25, 2008 International Preliminary Report on Patentability dated Jun. 1, 2010.
PCT/US2008/084751 filed Nov. 25, 2008 Search Report dated May 20, 2009.
PCT/US2008/084751 filed Nov. 25, 2008 Written Opinion dated May 20, 2009.
PCT/US2009/033116 filed Feb. 4, 2009 International Preliminary Report on Patentability dated Aug. 10, 2010.
PCT/US2009/033116 filed Feb. 4, 2009 Search Report dated Mar. 13, 2009.
PCT/US2009/033116 filed Feb. 4, 2009 Written Opinion dated Mar. 13, 2009.
PCT/US2009/041051 filed Apr. 17, 2009 International Preliminary Report on Patentability dated Apr. 8, 2014.
PCT/US2009/041051 filed Apr. 17, 2009 Search Report dated Jul. 28, 2009.
PCT/US2009/041051 filed Apr. 17, 2009 Written Opinion dated Jul. 28, 2009.
PCT/US2009/054687 filed Aug. 21, 2009 International Preliminary Report on Patentability dated Feb. 22, 2011.
PCT/US2009/054687 filed Aug. 21, 2009 Search Report dated Oct. 6, 2009.
PCT/US2009/054687 filed Aug. 21, 2009 Written Opinion dated Oct. 6, 2009.
PCT/US2009/056567 filed Sep. 10, 2009 International Preliminary Report on Patentability dated Mar. 15, 2011.
PCT/US2009/056567 filed Sep. 10, 2009 Search Report dated Nov. 6, 2009.
PCT/US2009/056567 filed Sep. 10, 2009 Written Opinion dated Nov. 6, 2009.
PCT/US2010/038555 filed Jun. 14, 2010 Search Report dated Oct. 5, 2010.
PCT/US2010/038555 filed Jun. 14, 2010 Written Opinion dated Oct. 5, 2010.
PCT/US2010/045084 filed Aug. 10, 2010 International Preliminary Report on Patentability dated Feb. 23, 2012.
PCT/US2010/045084 filed Aug. 10, 2010 Search Report dated Apr. 14, 2011.
PCT/US2010/045084 filed Aug. 10, 2010 Written Opinion dated Apr. 14, 2011.
PCT/US2010/050773 filed Sep. 29, 2010 Search Report dated Jan. 24, 2011.
PCT/US2010/050773 filed Sep. 29, 2010 Written Opinion dated Jan. 24, 2011.
PCT/US2010/051917 filed Oct. 8, 2010 Search Report dated Nov. 29, 2010.
PCT/US2010/051917 filed Oct. 8, 2010 Written Opinion dated Nov. 29, 2010.
PCT/US2011/023497 filed Feb. 2, 2011 Search Report dated Jun. 6, 2011.
PCT/US2011/023497 filed Feb. 2, 2011 Written Opinion dated Jun. 6, 2011.
PCT/US2011/038391 filed May 27, 2011 International Preliminary Report on Patentability and Written Opinion dated Dec. 4, 2012.
PCT/US2011/038391 filed May 27, 2011 International Search Report dated Sep. 21, 2011.
PCT/US2011/038415 filed May 27, 2011 International Preliminary Report on Patentability dated Dec. 13, 2012.
PCT/US2011/038415 filed May 27, 2011 International Search Report dated Sep. 28, 2011.
PCT/US2011/038415 filed May 27, 2011 Written Opinion dated Sep. 28, 2011.
PCT/US2011/047127 filed Aug. 9, 2011 International Preliminary Report on Patentability dated Apr. 18, 2013.
PCT/US2011/047127 filed Aug. 9, 2011 International Search Report dated Feb. 29, 2012.
PCT/US2011/047127 filed Aug. 9, 2011 Written Opinion dated Feb. 29, 2012.
PCT/US2011/048403 filed Aug. 19, 2011 International Preliminary Report on Patentability dated Jul. 30, 2013.
PCT/US2011/048403 filed Aug. 19, 2011 International Search Report dated Dec. 15, 2011.
PCT/US2011/048403 filed Aug. 19, 2011 Written Opinion dated Dec. 15, 2011.
CN 200980144663.8 filed May 9, 2011 Fifth Office Action dated May 26, 2015.
CN 200980144663.8 filed May 9, 2011 Fourth Office Action dated Nov. 15, 2014.
CN 201080035659.0 filed Feb. 10, 2012 Second Office Action dated Oct. 9, 2014.
CN 201080035659.0 filed Feb. 10, 2012 Third Office Action dated Mar. 19, 2015.
CN 201080053838.7 filed May 28, 2012 Fourth Office Action dated Jun. 2, 2015.
CN 201080053838.7 filed May 28, 2012 Third Office Action dated Dec. 4, 2014.
CN 201180016462.7 filed Sep. 27, 2012 Second Office Action dated Dec. 9, 2014.
CN 201180016462.7 filed Sep. 27, 2012 Third Office Action dated Jun. 10, 2015.
CN 201180037065.8 filed Jan. 28, 2013 First Office Action dated Jun. 2, 2015.
CN 201180037065.8 filed Jan. 28, 2013 First Office Action dated Sep. 28, 2014.
CN 201180037068.1 filed Jan. 28, 2013 First Office Action dated Apr. 20, 2015.
CN 201180037068.1 filed Jan. 28, 2013 First Office Action dated Sep. 9, 2014.
CN 201180040151.4 filed Feb. 19, 2013 First Office Action dated Oct. 28, 2014.
CN 201180040151.4 filed Feb. 19, 2013 Second Office Action dated Jun. 19, 2015.
CN 201180043512.0 filed Mar. 8, 2013 First Office Action dated Jul. 31, 2014.
CN 201180043512.0 filed Mar. 8, 2013 Second Office Action dated Apr. 14, 2015.
CN 201180052587.5 filed Apr. 28, 2013 First Office Action dated Jan. 26, 2015.
CN 201180068309.9 filed Aug. 22, 2013 First Office Action dated Oct. 16, 2014.
CN 201180068309.9 filed Aug. 22, 2013 Second Office Action dated May 6, 2015.
EP 11 818 828.3 filed Mar. 18, 2013 Extended European Search Report dated Dec. 10, 2014.
EP 11787515.3 filed Dec. 12, 2012 partial European search report dated Jun. 23, 2015.
EP 11787527.8 filed Dec. 19, 2012 partial European search report dated May 26, 2015.
EP 11837113.7 filed May 28, 2013 Extended European Search Report dated Apr. 24, 2014.
EP 12177438.4 filed Jul. 23, 2012 European Search Report dated Jun. 7, 2015.
EP 12177438.4 filed Jul. 23, 2012 Examination Report dated Dec. 5, 2014.
EP 12807886.2 filed Jan. 15, 2014 Extended European Search Report dated Feb. 6, 2015.
EP14197136.6 filed Dec. 10, 2014 Extended European Search Report dated May 26, 2015.
JP 2012-515222 filed Dec. 9, 2011 Office Action dated Feb. 23, 2015.
JP 2012-552060 filed Aug. 1, 2012 Office Action dated Nov. 12, 2014.
JP 2013-512046 filed Nov. 26, 2012 First Office Action dated Mar. 23, 2015.
JP 2013-512051 filed Nov. 26, 2012 First Office Action dated Mar. 23, 2015.
JP 2013-524999 filed Jan. 22, 2013 First Office Action dated Jun. 1, 2015.
Moureau, Nancy L. et al., “Electrocardiogram (EKG) Guided Peripherally Inserted Central Catheter Placement and Tip Position: Results of a Trial to Replace Radiological Confirmation,” Journal of the Association for Vascular Access, pp. 8-14, vol. 15, No. 1, 2010.
MX/a/2012/013858 filed Nov. 28, 2012 First Office Action dated Sep. 26, 2014.
MX/a/2012/013858 filed Nov. 28, 2012 Second Office Action dated Jun. 10, 2015.
Pittiruti, et al, “The intracavitary ECG method for positioning the tip of central venous catheters: results of an Italian multicenter study,” J Vasc Access, pp. 1-9, Nov. 21, 2011.
Pittiruti, et al. “The electrocardiographic method for positioning the tip of central venous catheters” Java, pp. 1-12, Feb. 12, 2011.
RU 2011150917 filed Dec. 15, 2011 Second Office Action dated Aug. 28, 2014.
U.S. Appl. No. 1/118,033, filed May 27, 2011 Non-Final Office Action dated Jul. 8, 2015.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Examiner's Answer dated Oct. 7, 2014.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Non-Final Office Action dated Nov. 7, 2014.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Advisory Action dated Mar. 5, 2015.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Final Office Action dated Dec. 23, 2014.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Non-Final Office Action dated Jun. 1, 2015.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Non-Final Office Action dated Mar. 16, 2015.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Final Office Action dated Jan. 15, 2015.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Non-Final Office Action dated Sep. 25, 2014.
U.S. Appl. No. 13/019,939, filed Feb. 2, 2011 Non-Final Office Action dated Feb. 9, 2015.
U.S. Appl. No. 13/118,033, filed May 27, 2011 Non-Final Office Action dated Feb. 3, 2015.
U.S. Appl. No. 13/118,138, filed May 27, 2011 Non-Final Office Action dated Jul. 15, 2015.
“Ascension to Launch New 3D Guidance™ Tracker at TCT 2006.” Press Releases from Ascension website: www.ascension-tech.com/news/press—101106.php, last accessed Dec. 1, 2006.
Acuson—The Value of Vision, AcuNav Diagnostic Ultrasound Catheter, 2000.
Advertising flyer for GAVECELT—The Italian Group for Long Term Venous Access Devices, for program on International Meeting on PICC's, Midline Catheters and Long Term Venous Access Devices in Catholic University, Rome, Italy on Dec. 3, 4, 5, 2008.
Alexander, GD et al, The Role of Nitrous Oxide in Postoperative Nausea and Vomiting, Collection of Abstracts Presented at the International Anesthesia Research Society by various speakers, 58th Congress, Mar. 12-14, 1984, Anesthesia and Analgesia, pp. 175-284, vol. 63, 1984.
Allan, P.L. et al, Role of Ultrsound in the Assessment of Chronic Venous Insufficiency, Ultrasound Quarterly, vol. 17, No. 1, pp. 3-10, 2001.
Andropoulos, et al. “A Controlled Study of the Transesophageal Echocardiography to Guide Central Venous Catheter Placement in Congetital Heart Surgery Patients.” The International Anesthesia Research Society, vol. 89, pp. 65-70, 1999.
Anonymous author, Correct Catheter Placement with a low-impact, reliable and economical method, <http://www.cvc-partner.com/index.cfm?103A955CC6844BF58ACFE3C9C1471959>, last accessed Dec. 22, 2011.
Arai, J et al, Detection of Peripherally Inserted Central Catheter Occlusion by in-line Pressure Monitoring, Paediatr Anaesth, pp. 621-624, vol. 12 No. 7, Sep. 2002.
Arrow International, Inc., The Arrow-Johans RAECG Adapter-Making Proper Central Venous Catheter Placement More Reliable (Modle No. EG-04900), Technical Report 1987, USA.
Aslamy, et al. “MRI of Central Venous Anatomy: Implications for Central Venous Catheter Insertion.” American College of Chest Physicians, Jun. 8, 2009.
AU 2006283022 filed Aug. 24, 2006 Office Action dated Dec. 22, 2010.
AU 2008329807 exam requested Aug. 13, 2012 Examination Report No. 1 dated Feb. 15, 2013.
AU 2008329807 exam requested Aug. 13, 2012 Notice of Acceptance dated Feb. 14, 2014.
AU 2010300677 filed Mar. 12, 2012 First Examination Report dated Mar. 9, 2014.
AU 2011289513 filed Jan. 21, 2013 Examiner's Report dated Jul. 5, 2013.
AU 2012202293 filed Apr. 19, 2012 Examination Report No. 1 dated Apr. 24, 2013.
AU 2013201648 filed Mar. 19, 2013 Examiner's Report dated Mar. 5, 2014.
AU 2013201648 filed Mar. 19, 2013 Examiner's Report dated Oct. 14, 2013.
AU 2013202824 filed Apr. 6, 2013 First Examiner's Report dated Mar. 10, 2014.
AU 2013204243 filed Apr. 12, 2013 Examiner's Report dated Jun. 5, 2013.
AURORA® System Technical Specifications, Oct. 2003.
B. Braun Website, “The Optimal Position of the Central Venous Catheter.” http://www.cvcpartner.com/index.cfm18F1BDEA1310466194960A39F4E90968 (2009).
B. Braun, Certofix Central Venous Catheter for Placement Using the Seldinger Technique with Simultaneous ECG Lead Option, Feb. 2010.
Bailey, SH et al, Is Immediate Chest Radiograph Necessary after Central Venous Catheter Placement in a Surgical Intensive Care Unit?, Am J Surg, pp. 517-522, vol. 180 No. 6, Dec. 2000.
Bankier, Alexander A., Azygos Arch Cannulation by Central Venous Catheters: Radiographic Detection of Malposition and Subsequent Complications, Journal of Thoracic Imaging 12:64-69 (1997).
Barber, JM et al, A Nurse led Peripherally Inserted Central Catheter Line Insertion Service is Effective with Radiological Support, Clin Radiol, pp. 352-354, vol. 57 No. 5, May 2002.
Bard Access Systems, Sherlock Tip Location System, 5 pages, 2006.
Bard Access Systems, Site Rite Vascular Acess Ultrasound System, 4 pages, 2005.
Benchimol, Alberto at al, Right Atrium and Superior Vena Cava Flow Velocity in Man Measured with the Doppler-Catheter Flowmeter-Telemetry System, The Amer Journal of Medicine, pp. 303-309, vol. 48, Mar. 1970.
Benzadon, M. N. et al: “Comparison of the Amplitude of the P-Wave from Intracardiac Electrocardiogram Obtained by Means of a Central Venous Catheter Filled With Saline Solution to That Obtained Via Esophageal Electrocardiogram”, American Journal of Cardiology, Canners Publishing Co., Newton, MA, US, vol. 98, No. 7, Oct. 1, 2006 (Oct. 1, 2006), pp. 978-981.
BioAdvance Lumen Vu, Greenhouse Fund Feb. 2004 Recipient, www.bioadvance.com <http://www.bioadvance.com>, 2005.
Borgobello, Bridget, App allows users to view electrocardiograms on smartphones dated Oct. 15, 2010; printed from http://www.gizmag.com/app-to-view-electrocardiograms-on-smartphones/16664/ on Feb. 4, 2011.
Buehrle, Douglas, PICC Placement in Humans using Electromagnetic Detection, <http://www.corpakmedsystems.com/supplement—material/supplementpages/navigator/navarticle.html>, 2008.
C.R. Bard, CathTrack™ Catheter Location System at www.bardaccess.com <http://www.bardaccess.com>, last accessed Apr. 28, 2011.
C.R. Bard, Inc., Bard Electrophysiology Product Catalogue, Bard Catheters, pp. 74-75 (2002), USA.
CA 2,619,909 filed Aug. 24, 2006 Examiner's Report dated Oct. 26, 2012.
Cadman, A et al, To Clot or Not to Clot? That is the question in Central Venous Catheters, Clinical Radiology, pp. 349-355, vol. 59 No. 4, Apr. 2004.
Calvert, N et al, The Effectiveness and Cost-effectiveness of Ultrasound Locating Devices for Central Venous Access: A Systematic Review and Economic Evaluation, Health Technology Assessment, vol. 7, No. 12, 2003.
Cardella, John F. et al., Interventinal Radiologic Placement of Peripherally Inserted Central Catheters, Journal of Vascular and Interventional Radiology 1993; 4:653-660.
Carlon, R et al, Secondary Migration of a Central Venous Catheter—A Case Report, Minerva Anestesiol, pp. 927-931, vol. 69 No. 12, Dec. 2003.
Caruso, LJ et al, A Better Landmark for Positioning a Central Venous Catheter, J Clinical Monitoring and Computing, pp. 331-334, vol. 17 No. 6, Aug. 2002.
Cavatorta, et al., “Central Venous Catheter Placement in Hemodialysis: Evaluation of Electrocardiography Using a Guidewire.” The Journal of Vascular Access, vol. 2, pp. 45-50, 2001.
Chalkiadis, GA et al, Depth of Central Venous Catheter Insertion in Adults: An Audit and Assessment of a Technique to Improve Tip Position, Anaesth Intensive Care, pp. 61-66, vol. 26 No. 1, Feb. 1998.
Chamsi-Pasha, Hassan et al, Cardiac Complications of Total Parenteral Nutrition: The Role of Two-Dimensional Echocardiography in Diagnosis, Annals of the Royal College of Surgeons of England, pp. 120-123, vol. 71, 1989.
Chang, Thomas C. et al., Are Routine Ch Ladiographs Necessary After Image-Guided Placement of Internal Jugular Central Venous Access Devices?, AJR Feb. 1998;170:335-337.
Chaturvedi et al., “Catheter Malplacement During Central Venous Cannulation Through Arm Veins in Pediatric Patients.” Journal of Neurosurgical Anesthesiology, vol. 15, No. 3 pp. 170-175, Jan. 2003.
Chen, Zhongping et al, Optical Doppler Tomography: Imaging in vivo Blood Flow Dynamics Following Pharmacological Intervention and Photodynamic Therapy, 7 pages, vol. 67, Photochemistry and Photobiology, 1998.
Cheng, KI et al, A Novel Approach of Intravenous Electrocardiograph Technique in Correct Position the Long-Term Central Venous Catheter, Kaohsiung J Med Sci, pp. 241-247, vol. 16 No. 5, May 2000 (Abstract only).
Cheung, P., et al., The Effect of a Disposable Probe Cover on Pulse Oximetry, Anaesth Intensive Care 2002; 30: 211-214.
Chu, et al., “Accurate Central Venous Port-A Catheter Placement: Intravenous Electrocardiography and Surface Landmark Techniques Compared by Using Transesophageal Echocardiography.” The International Anesthesia Research Society, vol. 98, pp. 910-914, 2004.
CA 2,721,715 filed Apr. 17, 2009 Examiner's Report dated Aug. 18, 2015.
CN 201180052587.5 filed Apr. 28, 2013 Second Office Action dated Aug. 19, 2015.
CN 201180068309.9 filed Aug. 22, 2013 Third Office Action dated Sep. 2, 2015.
EP 10821193.9 filed Mar. 27, 2012 Partial European Search Report dated Oct. 9, 2015.
EP 11787515.3 filed Dec. 12, 2012 partial European search report dated Oct. 27, 2015.
EP 11787527.8 filed Dec. 19, 2012 Extended European Search Report dated Oct. 9, 2015.
MX/a/2012/013672 filed Nov. 23, 2012 First Office Action dated Aug. 10, 2015.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Non-Final Office Action dated Sep. 11, 2015.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Final Office Action dated Aug. 21, 2015.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Non-Final Office Action dated Sep. 10, 2015.
U.S. Appl. No. 13/240,171, filed Sep. 22, 2011 Advisory Action dated Aug. 18, 2015.
U.S. Appl. No. 13/469,932, filed May 11, 2012 Non-Final Office Action dated Sep. 4, 2015.
U.S. Appl. No. 13/665,420, filed Oct. 31, 2012 Non-Final Office Action dated Jul. 9, 2015.
U.S. Appl. No. 13/890,158, filed May 8, 2013 Non-Final Office Action dated Jul. 9, 2015.
U.S. Appl. No. 14/270,241, filed May 5, 2014 Notice of Allowance dated Oct. 7, 2015.
U.S. Appl. No. 14/309,511, filed Jun. 19, 2014 Non-Final Office Action, dated Sep. 24, 2015.
U.S. Appl. No. 14/317,501, filed Jun. 27, 2014 Advisory Action dated Sep. 16, 2015.
U.S. Appl. No. 14/506,552, filed Oct. 3, 2014 Non-Final Office Action dated Oct. 1, 2015.
CN 201180037068.1 filed Jan. 28, 2013 Third Office Action dated Oct. 19, 2015.
CN 201180040151.4 filed Feb. 19, 2013 Third Office Action dated Dec. 10, 2015.
JP 2012-552060 filed Aug. 1, 2012 Second Office Action dated Nov. 6, 2015.
JP 2013-512046 filed Nov. 26, 2012 Decision of Rejection dated Dec. 8, 2015.
U.S. Appl. No. 12/815,331, filed Jun. 14, 2010 Final Office Action dated Nov. 4, 2015.
U.S. Appl. No. 13/240,171, filed Sep. 22, 2011 Non-Final Office Action dated Dec. 1, 2015.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Non-Final Office Action dated Nov. 5, 2015.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Non-Final Office Action dated Jan. 6, 2016.
U.S. Appl. No. 14/449,061, filed Jul. 31, 2014 Final Office Action dated Nov. 6, 2015.
PCT/US2011/052793 filed Sep. 22, 2011 International Preliminary Report on Patentability dated Apr. 4, 2013.
PCT/US2011/052793 filed Sep. 22, 2011 International Search Report dated Jan. 6, 2012.
PCT/US2011/052793 filed Sep. 22, 2011 Written Opinion dated Jan. 6, 2012.
PCT/US2011/058138 filed Oct. 27, 2011 International Preliminary Report on Patentability dated May 10, 2013.
PCT/US2011/058138 filed Oct. 27, 2011 International Search Report dated Feb. 7, 2012.
PCT/US2011/058138 filed Oct. 27, 2011 Written Opinion dated Feb. 7, 2012.
PCT/US2011/067268 filed Dec. 23, 2011 International Preliminary Report on Patentability dated Jul. 4, 2013.
PCT/US2011/067268 filed Dec. 23, 2011 International Search Report and Written Opinion dated Apr. 27, 2012.
PCT/US2012/045814 filed Jul. 6, 2012 International Search Report and Written Opinion dated Oct. 1, 2012.
PCT/US2013/065121 filed Oct. 15, 2013 International Search Report and Written Opinion dated Jan. 16, 2014.
PCT/US2014/022019 filed Mar. 7, 2014 International Search Report and Written Opinion dated Jun. 11, 2014.
Pennington, C.R., Right Atrial Thrombus: a Complication of Total Parenteral Nutrition, British Medical Journal, pp. 446-447, vol. 295, Aug. 15, 1987.
Petersen, J et al, Silicone Venous Access Devices Positioned with their Tip High in the Superior Vena Cava are More Likely to Malfunction, Am J Surg, pp. 38-41, vol. 178 No. 1, Jul. 1999.
Pittiruti, et al, Intracavitary EKG Monitoring: A reliable method for controlling tip position during and after PICC Insertion presentation in Catholic University, Rome, Italy in 2008.
Pittiruti, et al. “The EKG Method for Positioning the Tip of PICCs: Results from Two Preliminary Studies.” JAVA, vol. 13, No. 4, pp. 179-185, 2008.
Polos, PG et al, Tips for Monitoring the Position of a Central Venous Catheter—How Placement can go awry—even when the anatomy is normal, J Crit Illn, pp. 660-674, vol. 8 No. 6, Jun. 1993 (Abstract only).
Pop, Gheorghe A. et al., Catheter-based impedance measurements in the right atrium for continuously monitoring hematocrit and estimating blood viscosity changes; an in vivo feasibility study in swine, Biosensors and Bioelectronics 19 (2004) 1685-1693.
Popp, M. B. et al., Accuracy of implanted port placement with the use of the electromagnetic CathTrack® catheter locator system, The Journal of Vascular Access 2005; 6: 9-12.
Randolph AG et al, Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature, Critcal Care Medicine, pp. 2053-2058, vol. 24, Dec. 1996.
Reece, A et al, Posititioning Long Lines: Contrast Versus Plain Radiography, Arch Dis Child Fetal Neonatal Ed, pp. 129-130, vol. 84 No. 2, Mar. 2001.
Reynolds, N et al, Assessment of Distal Tip Position of Long Term Central Venous Feeding Catheters using Transesophageal Echocardiology, JPEN J Parenter Enteral Nutr, pp. 39-41, vol. 25 No. 1, Jan.-Feb. 2001.
RU 2011150917 filed Dec. 15, 2011 First Office Action dated Apr. 24, 2014.
Ruschulte, Heiner et al, Prevention of Central Venous Catheter related infections with chlorhex idine gluconate impregnated wound dressings: A randomized controlled trial, presented as an abstract at the Annual meeting of the European Society of Anaesthesiologists (ESA) in Madrid, Spain in Jun. 2006, 12 pages, Annals of Hematology, Jul. 14, 2008.
Rutherford, J. S. et al., Depth of Central Venous Catheterization: An Audit of Practice in a Cardiac Surgical Unit, Anaesth Intens Care 1994; 22: 267-271.
Sacolick, et al. “Electromagnetically Tracked Placement of a Peripherally Inserted Central Catheter.” SPIE Medical Imaging, 2004 Proceedings.
Salem, et al. “A New Peripherally Implanted Subcutaneous Permanent Central Venous Access Device for Patients Requiring Chemotherapy.” Journal of Clinical Oncology, vol. 11, No. 11, pp. 2181-2185, Nov. 1993.
Savary, D et al, Intra-atrial Monitoring to Add Insertion of a Central Venous Line in Pre-Hospital Emergency Care Journal Europeen des Urgences, pp. 75-78, vol. 17 No. 2, 2004.
Schafer et al. “Incorrect placement of a vena cava catheter and its prevention by intra-atrial ECG.” Anaesthesist. Jan. 1988;37(1):49-51.
Schummer, et al. “Central Venous Catheters—The inability of ‘intra-atrial ECG’ to prove adequate positioning.” British Journal of Anaesthesia, vol. 93, No. 2, pp. 193-198, 2004.
Schummer, W et al, ECG-guided Central Venous Catheter Positioning: Does it detect the Pericardial Reflection rather than the Right Atrium?, Eur J Anaesthesiol, pp. 600-605, vol. 21 No. 8, Aug. 2004 (Abstract only).
Schummer, W et al, Intra-Atrial ECG is not a Reliable Method for Positioning Left Internal Jugular Vein Catheters, Br J Anaesth, pp. 481-486, vol. 91 No. 4, Oct. 2003.
Schummer, W, Central Venous Catheter—the Inability of “Intra-Atrial ECG” to prove Adequate Positioning, Br J Anaesth, pp. 193-198, vol. 93 No. 2, Aug. 2004.
Schuster, M. et al., The carina as a landmark in central venous catheter placement, British Journal of Anaesthesia 85 (2): 192-4 (2000).
Siela, Debra, Using Chest Radiography in the Intensive Care Unit, Crit Care Nurse Aug. 1, 2002 vol. 22 No. 4, pp. 18-27.
Simon, et al., “Central Venous Catheter Placement in Children: Evaluation of Electrocardiography Using J-Wire.” Paediatric Anaesthesia vol. 9, pp. 501-504, 1999.
Smith, Brigham, et al., Intravenous electrocardiographic guidance for placement of peripherally inserted central catheters, Journal of Electrocardiology 43 (2010) 274-278.
Stark, DD et al, Radiographic Assessment of Venous Catheter Position in Children: Value of the Lateral View, Pediatric Radiology, pp. 76-80, vol. 14 No. 2, 1984.
Starkhammar et al. “Cath-Finder Catheter Tracking System: A New Device for Positioning of Central Venous Catheters. Early Experience from Implantation of Brachial portal Systems.” Acta Anaesthesiol Scandinavia, vol. 34, No. 4 pp. 296-300, May 1990.
Starkhammer, H et al, Central Venous Catheter Placement using Electromagnetic Position Sensing: A Clinical Evaluation, Biomed. Instrum Technol, vol. 30 No. 2, pp. 164-170; Mar.-Apr. 1996.
Starr, David S et al, EKG Guided Placement of Subclavian CVP Catheters Using J-Wire, pp. 673-676, Ann. Surg, Dec. 1986.
Stas, M et al, Peroperative Intravasal Electrographic Control of Catheter Tip Position in Access Ports Placed by Venous Cut-Down Technique, EJSO, pp. 316-320, vol. 27, 2001.
Stereotaxis Magetic Navigation System with Navigant™ User Interface, 2005 Brochure.
Stereotaxis, Expanding the Possibilites of Interventional Medicine: Remote Navigation and Automation, pp. 1-8, Apr. 2011.
Tepa® Health Innovation PC based ECG System Introduction and Technical Specifications, EKG Master USB, 2 pages, Nov. 2003.
The FloWire Doppler Guide Wire located <http://www.volcanocorp.com/products/flowire-doppler-guide-wire.php>, 2011.
Traxal Technologies, Tracking Technology website overview: www.traxal.com/rd/rd—classroom—trackingtechnology.htm, last accessed Dec. 1, 2006.
UAB Health Systems, Arrhythmias, retrieved from http://www.health,uab.edu/14564/ on Nov. 15, 2007, 12 pages.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Advisory Action dated Jun. 22, 2009.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Appeal Board Decision dated Sep. 17, 2012.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Final Office Action dated Apr. 8, 2010.
U.S. Appl. No. 13/118,138, filed May 27, 2011 Non-Final Office Action dated Oct. 9, 2014.
U.S. Appl. No. 13/240,171, filed Sep. 22, 2011 Final Office Action dated Jun. 10, 2015.
U.S. Appl. No. 13/240,171, filed Sep. 22, 2011 Non-Final Office Action dated Dec. 26, 2014.
U.S. Appl. No. 13/283,395, filed Oct. 27, 2011 Advisory Action dated Jan. 28, 2014.
U.S. Appl. No. 13/283,395, filed Oct. 27, 2011 Final Office Action dated Nov. 14, 2013.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Final Office Action dated Dec. 19, 2014.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Non-Final Office Action dated Jul. 9, 2015.
U.S. Appl. No. 13/665,420, filed Oct. 31, 2012 Non-Final Office Action dated Oct. 9, 2014.
U.S. Appl. No. 13/887,166, filed May 3, 2013 Examiner's Answer dated Jul. 16, 2015.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Non-Final Office Action dated Feb. 11, 2015.
U.S. Appl. No. 14/270,241, filed May 5, 2014 Non-Final Office Action dated Apr. 23, 2015.
U.S. Appl. No. 14/317,501, filed Jun. 27, 2014 Final Office Action dated Jul. 1, 2015.
U.S. Appl. No. 14/317,501, filed Jun. 27, 2014 Non-Final Office Action dated Mar. 3, 2015.
U.S. Appl. No. 14/449,061, filed Jul. 31, 2014 Non-Final Office Action dated Apr. 27, 2015.
U.S. Appl. No. 14/548,151, filed Nov. 19, 2014 Non-Final Office Action dated Jun. 5, 2015.
CN 200880012117.4 filed Apr. 16, 2008 Fourth Office Action dated Sep. 4, 2013.
CN 201180037065.8 filed Jan. 28, 2013 Third Office Action dated Nov. 24, 2015.
CN 2011800525875 filed Apr. 28, 2013 Office Action dated Feb. 24, 2016.
CN 201280033189.3 filed Jan. 3, 2014 First Office Action dated Apr. 3, 2014.
CN 201280033189.3 filed Jan. 3, 2014 Second Office Action dated Sep. 14, 2015.
CN 201410009216.4 filed Jan. 8, 2014 Second Office Action dated Sep. 25, 2015.
EP 09743249.6 filed Oct. 18, 2010 Extended European Search Report dated Jan. 13, 2016.
EP 11740309.7 filed Aug. 23, 2012 Extended European Search Report dated Aug. 3, 2015.
EP 15179061.5 filed Jul. 30, 2015 Extended European Search Report dated Jan. 14, 2016.
JP 2010-504220 filed Sep. 3, 2009 Office Action dated Apr. 1, 2014.
JP 2010-504220 filed Sep. 3, 2009 Office Action dated Apr. 18, 2013.
JP2013-530322 filed Mar. 18, 2013, First Office Action dated Jul. 31, 2015.
MX/a/2013/001317 filed Jan. 31, 2013 First Office Action dated Nov. 26, 2015.
U.S. Appl. No. 12/369,625, filed Feb. 11, 2009 Notice of Panel Decision dated Aug. 1, 2012.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Non-Final Office Action dated Feb. 16, 2016.
U.S. Appl. No. 12/854,083, filed Aug. 10, 2010 Non-Final Office Action dated Feb. 1, 2016.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Final Office Action dated Mar. 25, 2016.
U.S. Appl. No. 13/118,033, filed May 27, 2011 Final Office Action dated Apr. 1, 2016.
U.S. Appl. No. 13/118,138, filed May 27, 2011 Final Office Action dated Apr. 1, 2016.
U.S. Appl. No. 13/240,171, filed Sep. 22, 2011 Final Office Action dated May 6, 2016.
U.S. Appl. No. 13/337,987, filed Dec. 27, 2011 Examiner's Answer dated Jul. 2, 2014.
U.S. Appl. No. 13/337,987, filed Dec. 27, 2011 Final Office Action dated Sep. 19, 2013.
U.S. Appl. No. 13/469,932, filed May 11, 2012 Final Office Action dated Apr. 7, 2016.
U.S. Appl. No. 13/665,420, filed Oct. 31, 2012 Final Office Action dated Apr. 8, 2016.
U.S. Appl. No. 14/040,205, filed Sep. 27, 2013 Non-Final Office Action dated Mar. 10, 2016.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Final Office Action dated May 5, 2016.
U.S. Appl. No. 14/449,061, filed Jul. 31, 2014 Notice of Allowance dated Apr. 13, 2016.
JP 2013-512046 filed Nov. 26, 2012 Office Action dated May 16, 2016.
KR 10-2012-7000866 filed Jan. 11, 2012 First Office Action dated Jun. 16, 2016.
RU 2013158008 filed Dec. 26, 2013 First Office Action dated May 27, 2016.
U.S. Appl. No. 12/893,916, filed Sep. 29, 2010 Advisory Action dated Jun. 2, 2016.
U.S. Appl. No. 13/240,171, filed Sep. 22, 2011 Advisory Action dated Jul. 22, 2016.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Notice of Allowance dated Jul. 26, 2016.
U.S. Appl. No. 13/469,932, filed May 11, 2012 Advisory Action dated Jun. 27, 2016.
U.S. Appl. No. 13/890,158, filed May 8, 2013 Advisory Action dated Jul. 26, 2016.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Advisory Action dated Aug. 4, 2016.
U.S. Appl. No. 14/201,300, filed Mar. 7, 2014 Advisory Action dated Jul. 18, 2016.
U.S. Appl. No. 14/309,511, filed Jun. 19, 2014 Notice of Allowance, dated Jul. 26, 2016.
U.S. Appl. No. 14/317,501, filed Jun. 27, 2014 Examiner's Answer dated Jun. 30, 2016.
U.S. Appl. No. 14/548,151, filed Nov. 19, 2014 Advisory Action dated Jul. 22, 2016.
CN 201180037065.8 filed Jan. 28, 2013 Fourth Office Action dated May 5, 2016.
JP 2014-519081 filed Dec. 27, 2013 First Office Action dated Apr. 26, 2016.
JP2013-530322 filed Mar. 18, 2013, Office Action dated May 2, 2016.
U.S. Appl. No. 13/858,782, filed Apr. 8, 2013 Notice of Allowance dated Oct. 9, 2014.
U.S. Appl. No. 14/141,046, filed Dec. 26, 2013 Final Office Action dated May 11, 2016.
CN 201410009216.4 filed Jan. 8, 2014 Office Action dated Jun. 15, 2016.
AU 2012278809 filed Nov. 12, 2013 Notice of Acceptance dated Sep. 13, 2016.
CN 200980144663.8 filed May 9, 2011 Notice of Reexamination dated Aug. 5, 2016.
CN 201180037065.8 filed Jan. 28, 2013 Notice of Grant dated Aug. 30, 2016.
EP 14761249.3 Filed Sep. 3, 2015 Extended European Search Report dated Sep. 19, 2016.
U.S. Appl. No. 12/893,916 filed Sep. 29, 2010 Non-Final Office Action dated Aug. 31, 2016.
U.S. Appl. No. 14/201,300 filed Mar. 7, 2014 Non-Final Office Action dated Aug. 24, 2016.
U.S. Appl. No. 12/426,175 filed Apr. 17, 2009 Decision on Appeal dated Nov. 7, 2016.
Related Publications (1)
Number Date Country
20150018701 A1 Jan 2015 US
Provisional Applications (5)
Number Date Country
61095921 Sep 2008 US
61095451 Sep 2008 US
61091233 Aug 2008 US
61045944 Apr 2008 US
60990242 Nov 2007 US
Divisions (1)
Number Date Country
Parent 12557401 Sep 2009 US
Child 14498887 US
Continuation in Parts (2)
Number Date Country
Parent 12426175 Apr 2009 US
Child 12557401 US
Parent 12323273 Nov 2008 US
Child 12426175 US