1. Field of the Invention
This invention is generally relative to methods and apparatuses for image processing. More specifically, this invention relates to methods and apparatuses for adjusting an image on the basis of the characteristics of a display system.
2. Description of the Prior Art
A plasma display panel (PDP) consists of millions of lighting cells regularly arranged as a matrix. Typically, the lighting cells disposed on the same horizontal line are serially connected to and jointly share a horizontal electrode set consists of a scan electrode and a sustain electrode. Each of the lighting cells is selectively corresponding to one color among red, green, and blue. With the power provided by the horizontal electrode set, gas in the lighting cells discharges electricity and accordingly generates ultraviolet. The fluorescent powder in the lighting cells is then excited by the ultraviolet to selectively generate visible red light, green light, or blue light. Furthermore, by controlling an address electrode for each of the lighting cells, the brightness of one lighting cell can be independently adjusted. That is to say, by controlling the horizontal electrode set and the address electrode, the brightness of one lighting cell can be adjusted.
As described above, all the power of the lighting cells disposed on the same horizontal line is provided by one horizontal electrode set. The power loading for the horizontal electrode set varies with the number of lighting cells being turned on. Through measurements, it can be found that when all the lighting cells on the same horizontal line are turned on, the loading for the corresponding horizontal electrode set is highest. If the power provided from one horizontal electrode set to the lighting cells is fixed, the power provided to one lighting cell is less when the number of lighting cells being turned on is larger. Hence, when more lighting cells on the same horizontal line are turned on, the brightness of the lighting cells is lower. If the loadings of two adjacent horizontal electrode sets are different, the brightness of the two corresponding horizontal lines is also different even all the gray levels of the pixels on the two horizontal lines are the same. Besides, variances in brightness due to loading variations for red lighting cell, green lighting cell, and blue lighting cell are different. Thus, the colors of the two adjacent horizontal lines are different, too. When the loadings of two adjacent horizontal electrode sets are more different, the brightness and colors of the two corresponding horizontal lines differ more from each other. This phenomenon is called loading effect of PDPs. If the loading effect is serious, people can see an obvious horizontal boundary on a PDP screen, hence the quality of an image displayed on the PDP screen is lowered.
Various techniques have been developed for lessening the loading effect of PDPs. For example, changing the structure of a PDP to reducing current and using electrodes with lower resistances to decreasing voltage drops both can lessen the loading effect of the PDPs. Another technique also useful for lessening the loading effect is increasing the driving ability of horizontal electrode sets or changing relative driving waveforms. However, these prior arts are all difficult from the viewpoints of implementation and cost.
To solve the aforementioned problems, this invention provides methods and apparatuses for adjusting an image on the basis of the characteristics of a display system. The methods and apparatuses according to this invention previously measures the brightness of the lighting cells connected to the same horizontal electrode set under various loading conditions. That is to say, this invention previously finds out the relationship between loading and brightness. Next, based on the measurement results, this invention establishes a look-up table of loading and brightness compensation. When an image is inputted into the display system, the methods and apparatuses according to this invention first estimates the loading to be formed for every horizontal electrode set. Subsequently, one brightness gain corresponding to the loading can be selected from the look-up table. By respectively multiplying the gray levels of the pixels in every horizontal line one corresponding brightness gain, the image is adjusted and the loading effects of PDP can be lessened.
In this invention, an input image is assumed to include M horizontal lines, and each horizontal line respectively includes N pixels. M and N are both positive integers. More over, each pixel in the input image has an original gray level.
One preferred embodiment according to this invention is an adjusting method. In this embodiment, a plurality of compensation coefficients relative to the characteristics of a display system are previously measured and stored in a first look-up table. The adjusting method sequentially or simultaneously processes the M horizontal lines. i is an integer index ranging from 1 to M. The adjusting method first calculates an ith loading according to the N original gray levels of the N pixels in the ith horizontal line. Then, based on the ith loading, the adjusting method selects an ith compensation coefficient corresponding to the ith loading from the plurality of compensation coefficients in the first look-up table. Subsequently, the adjusting method respectively multiplies the N original gray levels of the N pixels in the ith horizontal line by the ith compensation coefficient to generate N compensated gray levels for the N pixels in the ith horizontal line.
The other preferred embodiment according to this invention is an adjusting apparatus including a first look-up table and a compensating module. The first look-up table stores a plurality of conversion coefficients related to the characteristics of a display system. The compensating module further includes a loading calculating module, a first selecting module, and a first multiplying module. The compensating module is used for processing the ith horizontal line among the M horizontal lines, wherein i is an integer index ranging from 1 to M. The loading calculating unit calculates an ith loading corresponding to the ith horizontal line according to the N original gray levels of the N pixels in the ith horizontal line. The first selecting unit selects an ith compensation coefficient corresponding to the ith loading from the plurality of compensation coefficients in the first look-up table. The first multiplying unit respectively multiplies the N original gray levels of the N pixels in the ith horizontal line by the ith compensation coefficient to generate N compensated gray levels for the N pixels in the ith horizontal line.
The advantage and spirit of the invention may be understood by the following recitations together with the appended drawings.
This invention provides methods and apparatuses for adjusting an image on the basis of the characteristics of a display system.
Take a plasma display panel (PDP) including M horizontal electrode sets as an example. Each of the horizontal electrode sets is connected to N lighting cells. M and N are positive integers. Furthermore, this invention assumes that an input image includes M horizontal lines and each of the horizontal lines includes N pixels. Each pixel in the input image has an original gray level. The loading for every horizontal electrode set can be defined as the sum of the N original gray levels of the N pixels corresponding to the N lighting cells connected to the horizontal electrode set.
The methods and apparatuses according to this invention previously measures the brightness of the lighting cells connected to one horizontal electrode set under various loading conditions. That is to say, this invention previously finds out the relationship between loading and brightness. Next, based on the measurement results, this invention establishes a look-up table of loading and brightness compensation. Please refer to Table 1, which illustrates an example of the look-up table. In this example, the loading of one horizontal electrode set is set as 100% when all the lighting cells connected to the horizontal electrode set are turned on to a maximum brightness. As shown in Table 1, when the loading of the horizontal electrode set is higher, the actual brightness of the lighting cells is lower. Accordingly, the horizontal electrode set needs a larger brightness gain when its loading is higher.
If the display system is a P-bits display system capable of displaying 2P gray levels, one horizontal electrode set may have (2P*N) kinds of loadings, wherein P is a positive integer. Correspondingly, the plural compensation coefficients can then include (2P*N) different compensation coefficients. Table 1 is just an example and does not show all possible loadings and brightness gains.
The first preferred embodiment of this invention is an image adjusting method. In this embodiment, a plurality of compensation coefficients related to the characteristics of the display system is previously stored in a first look-up table. The compensation coefficients are equivalent to the brightness gains in Table 1. Please refer to
In actual application, each of the lighting cells in the display system is selectively corresponding to one color among red, green, and blue. Accordingly, each pixel in the input image is selectively a red pixel, a green pixel, or a blue pixel.
Besides to show images, a display system also has to present correct colors. Hence, lots of image processing methods and apparatuses usually have the function of white balance. White balance is adjusting the brightness of every color with the same gray scale, so as to make the brightness ratio of all the colors conform to a specific specification. In this way, the color temperatures and color deviations of the white colors with various gray levels are kept in a particular range.
The image adjusting method can also further include a step of white balance. The second preferred embodiment of this invention is an image adjusting method with white balance. In this embodiment, a second look-up table is used for storing a plurality of sets of balancing coefficients related to the characteristics of the display system. Each set of the balancing coefficients includes a red balancing coefficient, a green balancing coefficient, and a blue balancing coefficient. Please refer to
In actual applications, the sequence for performing the steps in
For example, assume the compensation coefficient corresponding to a first loading in the first look-up table is equal to 0.998. Furthermore, the red balancing coefficient, green balancing coefficient, and blue balancing coefficient corresponding to the first loading in the second look-up table are X, Y, and Z, respectively. According to this invention, in the third look-up table, the red compensation coefficient corresponding to the first loading is 0.998*X, the green compensation coefficient corresponding to the first loading is 0.998*Y, and the blue compensation coefficient corresponding to the first loading is 0.998*Z. By combining brightness compensation and white balance, the method according to this invention can diminish one multiplication step.
Typically, the brightness and gray levels of video signals transferred from TV stations or DVD players have a Gamma 0.45 relation. In actual applications, before compensating the brightness of the original gray levels of an input image, a reverse Gamma conversion must be performed on the original gray levels. This conversion is also called Gamma 2.2 conversion. With the reverse Gamma conversion, the original gray level and the brightness of each pixel can have a respective linear relation. This linear relation facilitates subsequent calculations and hardware implementations.
Oppositely, if the input signal was performed the reverse Gamma conversion, after the brightness compensating process according to this invention, a brightness linearity Gamma conversion must be performed on the compensated gray level of each pixel in the input image, such that the compensated gray level and the brightness of each pixel has a respective linear relation.
The reason for setting all the brightness gains smaller than or equal to 1 in Table 1 is to prevent the compensated gray levels from overflow. Overflow means a gray level is larger than the maximum gray level can be displayed by the display system. Once an overflow occurs, the brightness performance of the image is reduced. However, setting the brightness gains smaller than or equal to 1 decreases the whole brightness of the image. To solve this problem, this invention can further include a contrast extending step. The contrast extending step is selecting a maximum compensation coefficient from the M compensation coefficients corresponding to the M horizontal lines, and respectively dividing each compensated gray level of the pixels in the input image by the maximum compensation coefficient. In this way, the compensated gray levels will not be amplified to a saturation value and the whole brightness of the image is not reduced.
In some display systems, input images are amplified to show more accurate and detailed gray levels. For example, a 8-bits image can be amplified to a 12-bits image when a reverse Gamma conversion is performed. If an image is amplified when inputting into the display system, after the brightness compensating process according to this invention is performed, the image must be recovered to a smaller one by an error diffusion process.
The fourth preferred embodiment according to this invention will be described with reference to a block diagram shown in
Please refer to
Please refer to
Please refer to
Referring to
As explained above, by adjusting the gray levels of the pixels in an image, this invention can effectively reduce the problems induced by PDP loading effects. This embodiment can also combine the steps of brightness compensating, white balance, Gamma converting, contrast extending, error diffusion, and linearity converting, so as to provide a complete image processing process.
With the above example and explanation, the features and spirits of the invention will be hopefully well described. Those skilled in the art will readily observe that numerous modifications and alterations of the device may be made while retaining the teaching of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
94143067 A | Dec 2005 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
20010035850 | Okamoto et al. | Nov 2001 | A1 |
20050068265 | Joo et al. | Mar 2005 | A1 |
20050231446 | Lee et al. | Oct 2005 | A1 |
20060038748 | Chiu et al. | Feb 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070126661 A1 | Jun 2007 | US |