The present invention relates to a device and a method for cleaning internal cavities within an airfoil portion of an engine component.
Current processes for internally cleaning engine components having internal passageways involves the use of an autoclave process and a high pressure wash. The high pressure wash uses a manifold with probes introduced into a corresponding number of root openings of the internal passageways being cleaned. High pressure water is then pumped through the manifold and the probes. Depending on the configuration of the internal passageways, as shown in
Accordingly, it is an object of the present invention to provide an improved method for cleaning the internal passageways of a component.
It is a further object of the present invention to provide an improved device for cleaning the internal passageways of a component.
The foregoing objects are attained by the method and the device of the present invention.
In accordance with the present invention, a method for cleaning the internal passageways of a component, such as an engine component, is provided. The method broadly comprises the steps of providing a device having a first means for dispensing a cleaning fluid, which device has a longitudinal axis and at least one nozzle oriented perpendicular to the longitudinal axis, inserting the first dispensing means into a first internal passageway, and dispensing a cleaning fluid through the at least one nozzle at a pressure sufficient to clean surfaces of the first internal passageway.
A device for cleaning the internal passageways of a component is also provided. The device broadly comprises a first means for dispensing a cleaning fluid which extends into a first passageway. The first cleaning fluid dispensing means has a longitudinal axis and at least one nozzle through which said cleaning fluid is dispensed. The at least one nozzle is oriented perpendicular to the longitudinal axis.
Other details of the apparatus and the method for cleaning airfoil internal cavities, as well as other objects and advantages attendant thereto, are set forth in the following detailed description and the accompanying drawings wherein like reference numerals depict like elements.
Referring now to the drawings,
As shown in
Referring now to
While not shown in the drawings, the manifold 26 has internal passageways which communicate with the internal passageways 56 and 58 of probes 22 and 24 respectively. The manifold 26 also has a fluid inlet 60 through which the manifold 26 can be connected to a source of cleaning fluid (not shown). The cleaning fluid may be water or water mixed with a cleaning agent.
Referring now to
It has been found that the method of the present invention substantially avoids the creation of unwanted turbulence in the passageways 40 and 50 which turbulence interferes with the cleaning operation. Further, it has been found that the fluid dispensed through the nozzles 34 and/or 34′ flows into all areas of the passageway 40. As a result, there are no “dead zones”. This is because the fluid exiting the nozzles 34 and/or 34′ fans out within the internal passageway 40.
While cleaning may be performed using only the high pressure wash method described above, for certain components, it may be desirable to subject the component to an ultrasonic cleaning cycle prior to insertion of the probes 22 and 24. The ultrasonic cleaning cycle may be formed in any suitable manner known in the art using any suitable cleaning solution known in the art, such as an alkaline rust remover solution or an aqueous degreaser solution. Preferably, the ultrasonic cleaning cycle is performed for a time period in the range of 1.0 hour to 2.0 hours at a frequency in the range of 20 KHz to 104 KHz.
It is apparent that there has been provided in accordance with the present invention a method and apparatus for cleaning airfoil internal cavities which fully satisfies the objects, means, and advantages set forth hereinbefore. While the present invention has been described in the context of specific embodiments thereof, other alternatives, modifications, and variations will become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations which fall within the broad scope of the appended claims.
This application is a continuation application of U.S. patent application Ser. No. 10/271,681, filed Oct. 15, 2002, entitled APPARATUS AND METHOD FOR CLEANING AIRFOIL INTERNAL CAVITIES, By Ramon M. Velez, Jr. et al, now U.S. Pat. No. 6,805,140, issued Oct. 19, 2004.
Number | Name | Date | Kind |
---|---|---|---|
2737192 | Bieler | Mar 1956 | A |
6805140 | Velez et al. | Oct 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050000547 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10271681 | Oct 2002 | US |
Child | 10893833 | US |