An apparatus and method for dispensing fluid is described and, more particularly, an apparatus and method for dispensing fluid on the skin.
Conventional hand held and manipulated fluid applicators for dispensing a lotion on the skin are numerous. In some applicators, a lotion supply mechanism is provided to deliver the lotion from a fluid storage container to the applicator that makes contact with the skin. In one embodiment, applicators have a squeezable fluid storage container connected to a roller-mounting applicator head which meters fluid from the container to a fluid absorbent dispensing roller or pad made of felt or other porous resilient material. This configuration is limited, however, to use with less viscous fluids, which are capable of passing through a porous member and are believed to be less well suited for applying more viscous fluids, such as sunscreen. Also, many applicators require the consumer to squeeze the entire volume of the container each time a small amount of fluid is desired while others require a repetitive and uncomfortable pumping to transfer fluid making such mechanisms tedious and uncomfortable to operate. Further, these applicators cannot be operated in an inverted position due to the need to maintain contact between the fluid and the supply mechanism. This inversion makes the applicator awkward and difficult in reaching certain areas of the body. In the case of conventional bottled lotion containers, these generally require the consumer to first pour fluid onto their palms and then spread the fluid onto their skin, a process that can be both tedious and messy and make it difficult to apply uniform layers of lotion. Finally, aerosol spray devices are used to deliver some lotions but these add cost and disposable waste while introducing the mess of overspray, the flammability danger of alcohol-based propellants, the inhalation risk of aerosolized micro particles and the inability to deliver more viscous skin protecting emollients.
For the foregoing reasons, there is a need for a new apparatus and method for dispensing a fluid. The new apparatus and method should provide fluid application to the skin in a faster, less messy, and more effective manner than conventional fluid delivery applicators.
An apparatus for dispensing a fluid is described. The fluid dispensing apparatus comprises a housing defining an interior and a resilient liner adapted to hold the fluid, the liner configured to be at least partially disposed in the interior of the housing. An applicator assembly is provided for dispensing the fluid on a surface, the applicator assembly mounted on the housing. The applicator assembly includes an actuator movable relative to the housing in a first direction and a second direction, and a fluid delivery element which is held in contact against the surface for applying the fluid onto the surface. The fluid delivery element is supported on the actuator to be movable together with the actuator by varying contact pressure with the surface. A pump assembly is at least partially disposed in the housing. The pump assembly comprises a pump chamber having an inner surface defining an interior cavity for accommodating fluid. The pump chamber is configured to be in fluid communication with the liner and have at least one inlet opening for receiving the fluid. A bellows member defining an opening therethrough is in fluid communication with the applicator assembly. The bellows member operatively engages the actuator of the applicator assembly and is disposed in the pump chamber for extension in the first direction and contraction in the second direction. The bellows member seals against the inner surface of the pump chamber during extension and contraction for defining a variable volume chamber with the pump chamber. A valve is at an outlet end of the opening through the bellows member. Each movement of the actuator in the first direction reduces the volume of the variable volume chamber for generating positive pressure in the pump chamber and forcing fluid through the valve and to the applicator assembly for dispensing the fluid. Each movement of the actuator in the second direction increases the volume of the variable volume chamber and generates negative pressure within the pump chamber for drawing fluid through the at least one inlet opening in the pump chamber.
A fluid transfer assembly for use with an apparatus for dispensing a fluid is also described. The fluid dispensing apparatus includes a source of fluid and a reciprocating applicator assembly for dispensing the fluid on a surface. The fluid transfer assembly comprises a housing having an inner surface defining an interior cavity for accommodating the fluid. The housing is adapted to be in fluid communication with the source of fluid and have at least one opening for receiving the fluid. A bellows member defines an opening therethrough adapted to be in fluid communication with the applicator assembly. The bellows member is adapted to operatively engage the applicator assembly and is disposed in the housing for extension in a first direction and contraction in a second direction. The bellows member seals against the inner surface of the housing during extension and contraction for defining a variable volume chamber with the housing. A valve is at an outlet end of the opening through the bellows member. Expansion of the bellows member in the first direction reduces the volume of the variable volume chamber for generating positive pressure in the housing and forcing fluid through the valve and to the applicator assembly. Contraction of the bellows member in the second direction increases the volume of the variable volume chamber for generating negative pressure within the housing for drawing fluid into the chamber through the at least one opening in the housing.
Further, a method for dispensing a fluid comprises step providing a fluid dispensing apparatus, including a housing defining an interior and a resilient liner adapted to hold the fluid, the liner configured to be at least partially disposed in the interior of the housing. An applicator assembly is provided for dispensing the fluid on a surface, the applicator assembly mounted on the housing. The applicator assembly includes an actuator movable relative to the housing in a first direction and a second direction, and a fluid delivery element which is held in contact against the surface for applying the fluid onto the surface. The fluid delivery element is supported on the actuator to be movable together with the actuator by varying contact pressure with the surface. A pump assembly is at least partially disposed in the housing. The pump assembly comprises a pump chamber having an inner surface defining an interior cavity for accommodating fluid. The pump chamber is configured to be in fluid communication with the liner and have at least one inlet opening for receiving the fluid. A bellows member defining an opening therethrough is in fluid communication with the applicator assembly. The bellows member operatively engages the actuator of the applicator assembly and is disposed in the pump chamber for extension in the first direction and contraction in the second direction. The bellows member seals against the inner surface of the pump chamber during extension and contraction for defining a variable volume chamber with the pump chamber. A valve is at an outlet end of the opening through the bellows member. The method further comprises the steps of contacting the surface with the fluid delivery element, pressing the fluid delivery element against the surface for moving the actuator in the first direction and reducing the volume of the variable volume chamber for generating positive pressure in the pump chamber and forcing fluid through the valve and to the applicator assembly for dispensing the fluid, and releasing pressure of the fluid delivery element from the surface for allowing the actuator to move in the second direction for increasing the volume of the variable volume chamber and generating negative pressure within the pump chamber for drawing fluid through the at least one inlet opening in the pump chamber.
For a more complete understanding of the present invention, reference should now be had to the embodiments shown in the accompanying drawings and described below. In the drawings:
Certain terminology is used herein for convenience only and is not to be taken as a limiting. For example, words such as “upper,” “lower,” “left,” “right,” “horizontal,” “vertical,” “upward,” “downward,” “top” and “bottom” merely describe the configurations shown in the FIGs. Indeed, the components may be oriented in any direction and the terminology, therefore, should be understood as encompassing such variations unless specified otherwise. The words “interior” and “exterior” refer to directions toward and away from, respectively, the geometric center of the core and designated parts thereof. The terminology includes the words specifically mentioned above, derivatives thereof and words of similar import.
Referring now to the drawings, wherein like reference numerals designate corresponding or similar elements throughout the several views, an apparatus for dispensing a fluid is shown in
The reservoir assembly 52 comprises a housing 58 and a liner 60 for the housing. The housing 58 is a substantially hollow member defining an interior cavity 62 having an open outer end 64. As shown in
The dimensions of the housing 58 may vary depending on desired fluid volume to be contained within the housing, as well as certain desired performance attributes. For example, a larger, longer housing 58 may extend the reach of a user during use, whereas a smaller housing will reduce the contained fluid volume, but enable easy storage, such as in a pocket.
The housing 58 may be formed from rigid or semi-rigid polymers, including, but not limited to, delrin, Noryl™ (a blend of polyphenylene oxide (PPO) and polystyrene developed by General Electric Plastics, now SABIC Innovative Plastics), acrylonitrile butadiene styrene (ABS), acetal, polypropylene, high impact polystyrene, or any combinations thereof. In some embodiments, the housing 58 may comprise metal, such as die cast metal, or have metal inserts to increase the strength of the housing. The preferred thickness of the material of the housing 58 should be sufficient to withstand impact on a hard surface when dropped and will depend on the material itself. It is understood that the housing 58 is not intended to be limited by the materials listed here, but may be carried out using any suitable synthetic or natural material which allows the construction and use of the apparatus described herein and sufficient to meet strength, weight, and other desired characteristics.
The exterior surface of the housing 58 may be designed to enhance appearance and performance. For example, a textured exterior surface can aid the user in gripping the housing 58, especially if fluid is on the exterior surface or the hand. Further, the exterior surface may be designed to enhance gripping during the operation of not only squeezing but also pressing the container's applicator assembly against the surface on which the liquid is to be applied. Accordingly, the exterior surface of the housing 58 may have features to enhance grip and to aid in control of the housing during fluid application, including, but not limited to, dimples, indentations, finger grips, slots, channels, protrusions, ridges, bumps, and the like, or any combination thereof. The features of the exterior surface of the housing 58 may be formed of materials desirable to the intended use, including requirements of durability, washability, UV resistance, water and heat resistance and impact resistance. Still further exterior features include camouflage for military and hunting applications or the addition of an elastomer or rubber to enhance the gripping capability. As shown in
In another embodiment, the housing 58 may be a disposable container made in a known manner of a pliant injection molded plastic material such that fluid may be dispensed by manually squeezing, and thus compressing, the side walls of housing. In still another embodiment, the housing 58 may be made of a clear or partially transparent material that will provide the means to visually ascertain the level of fluid remaining in the liner 60.
The liner 60 is a flexible, resilient pouch for holding the fluid to be dispensed. The liner 60 has a top wall 66 defining a circular opening 68 into the interior of the pouch. The liner 60 is adapted to be received within the cavity 62 of the housing 58 such that the liner is at least partially disposed within the housing. As seen in
A particular performance attribute of the liner 60 is that it collapses as it is depleted of fluid, without permitting air to fill the void created by the depleted fluid. This attribute enables the fluid in the liner to remain in constant contact with the pressurization chamber, irrespective of the relative position of the applicator during use. Accordingly, the applicator will operate at any angle of use, a particularly useful feature for applying sunscreen or other fluids to surfaces that are above the level of the user's hand as the user holds the applicator during use.
Still another attribute of the liner 60 is that it enables the transfer of fluid by responding to a relative vacuum generated by the pump assembly 54. Accordingly, the liner 60 does not need to be under positive pressure and has neutral pressure while not in use, reducing the risk of fluid leakage at seams, holes or other opening that are in contact with the liner, such as the point of connection between the housing 58 and the applicator assembly 56.
In one embodiment, the liner 60 is sized and shaped to fit snugly within the housing 58. The interior of the housing 58 is shaped to retain the liner 60 and limit slippage and bunching of the liner, which may include beveled corners and other irregular forms that can better hold the liner in position during use and refilling. The flexibility and resiliency of the material of the liner 60 allows the liner to conform to the interior of the housing 58 to maximize the amount of fluid that can be stored within the housing. The interior of the housing 58 may further comprise a textured surface or added lubrication to assist in the placement and removal of the liner 60, or to allow the liner to change shape in reaction to the addition or removal of fluid.
In another embodiment, the liner 60 may have the additional feature of a second opening that permits the liner to be refilled through a separate portal passing through the exterior housing and without having to remove the applicator assembly 56. This additional portal may be formed with a threaded plug, or other sealable closure elements, that permits for the portal to be readily opened and closed from the exterior of the housing 58.
In another embodiment, the liner 60 may have lateral creases or accordion folds (not shown) that enable the liner to collapse beginning at one end of the liner, preferably the end distal to the pump assembly 54, until it is fully depleted. This operation will provide a visual indication to the user as to the degree to which the liner 60 is depleted and thus the amount of fluid remaining.
The material of the liner 60 may be clear or translucent, which will enable the user to determine the amount of fluid in the liner during use or filling. It is understood that in this embodiment, the housing 58 may also be formed from transparent or translucent material. In another embodiment, the material of the liner 60 may be opaque or of a composition that shields the contents from UV light for use, for example, with photosensitive fluids such as, for example, sunscreen. The liner color, along with symbols, logos, and other markings (not shown), will also enable the user to readily identify the specific contents of a given liner 60 without foreknowledge of its contents and without removing the liner from the applicator
The liner 60 is removable for cleaning, refilling or replacement. The user can also fill the liner 60 while the liner is in the housing 58. In this method, the housing 58 provides rigidity and stability to the liner 60 during filling. An indicator (not shown) may be provided on the liner 60 to identify a maximum fill level to reduce spills during filling.
In another embodiment, prefilled liners may also be provided for replacement of a spent liner 60. A prefilled liner would permit branding and labeling of the fluid such that the user would know the content of the liner. Prefilled liners could then be sold separately as a disposable item. A prefilled liner would incorporate a sealing method that allows the user to quickly peel off a seal before replacing the liner, or the liner 60 may incorporate a membrane seal that is punctured during insertion, thereby accessing the fluid for use. Prefilled liners 60 would have features that secure the liner, align it within the housing 58 and allow it to form a seal.
The pump assembly 54 provides a means for drawing fluid from the reservoir assembly 52 and delivering the fluid to the applicator assembly 56 for dispensing the fluid. The pump assembly 54 comprises a pressurization chamber 74 for temporarily storing fluid received from the reservoir assembly 52, a piston member 76, an inlet valve 78 for permitting fluid to be drawn into the pressurization chamber 74 from the reservoir assembly 52, and an outlet valve 80 permitting the fluid to be delivered from the pressurization chamber 74 to the applicator assembly 56. As described herein below, the pump assembly 54 is actuated for drawing fluid from the reservoir assembly 52, pressurizing the fluid within the pressurization chamber 74, and delivering the fluid to the applicator assembly 56.
The pressurization chamber 74 is a hollow, cylindrical tube defining an interior chamber 82 closed at an inner end 84. As seen in
The piston member 76 is an elongated rod having an inner portion 89 and a hollow outer portion 90 open at an outer end 91. The piston member 76 has at least one port 94 opening into the interior of the outer portion 90. A circular piston head 96 extends normally from the perimeter of the piston member 76 intermediate its length. The diameter of the piston head 96 corresponds to the diameter of the interior of the pressurization chamber 74. The piston head 96 may have a circumferential groove 98 for receiving an o-ring 100 for sealing engagement of the piston head against the wall of the pressurization chamber 74. Alternatively, the piston head 96 may be of sufficiently accurate tolerance to form a seal to the inner wall of the pressurization chamber 74
The piston head 96 may have a flat surface or may have a concave or convex surface. The piston member 76 is at least partially disposed in the pressurization chamber 74. In a home position of the piston member 76, the inner portion 89 extends at least partially into the central axial opening 86 in the inner end 84 of the pressurization chamber 74. A circular stop valve 78 is disposed at the inner end of the pressurization chamber 74 and defines a central opening for passing the inner portion 89 of the piston member 76. The diameter of the stop valve 78 is the same as the interior diameter of the pressurization chamber 74. The stop valve 78 is in sealing contact with the bottom wall of the pressurization chamber 74 such that a fluid path from the liner 60 via the intake ports 88 is normally closed by the stop valve 78. The piston member 76 is biased outwardly toward the home position by means of a coil spring 102 interposed between the piston head 96 and the bottom wall of the pressurization chamber 74. The spring 102 also serves to hold the stop valve 78 in place. It is understood that other loading springs may be suitable for the fluid dispensing apparatus 50, such as leaf, volute, or torsion springs. The inner portion 89 of the piston member 76 is sized so that the piston member can reciprocate axially relative to the pressurization chamber 74 and the stop valve 78 when the pump assembly 54 is actuated. Axial movement of the piston member 76 is guided by confined movement of the inner portion 89 in the central axial opening 86. This arrangement increases the stability of the mechanism of the pump assembly 54 during use.
A one-way valve 80 is provided at the outer end 91 of piston member 76. In the embodiment shown in
The applicator assembly 56 comprises various components that are integrated to enhance the rapid delivery of large liquid volumes. In this regard, the applicator assembly 56 receives fluid, distributes it into position for uptake on the applicator head, minimizes excessive fluid flow that may lead to leaks and spills, applies a uniform coating of liquid while at the same time enables the transfer of pressure that enables the operation of the pressurization chamber. In particular, the applicator assembly 56 performs these operations while enabling the user to regulate variably the rate at which fluid is delivered to the application surface by varying the amount of pressure applied to the applicator on the delivery surface. Notably, the user may choose to apply little pressure so as to stop the flow of liquid, as may be desirable in instances where the user wishes to operate the applicator on the application surface to manage the liquid that is already applied, without delivering additional fluid at that moment.
The applicator assembly 56 comprises a top plate 104, a fluid upload tray 106 and a roller head assembly 108, including a roller 110. The applicator assembly 56 receives and transmits fluid from the pump assembly 54 to the roller 110. Referring to
The inner surface of the base member 112 of the top plate 104 defines a central axial bore 126 (
The upload tray 106 comprises an inner support member 128 and an outer tray member 130 (
Referring to
In another embodiment (not shown), a plurality of fluid dispensing ports may be provided in the upload tray 106 in a predetermined spacing, locations and sizes to deliver fluid to the roller 110. The dispensing ports may be in a generally linear array between the end walls 144 with an internal manifold passage supplying each of the ports with fluid at a generally equal pressure. The size of the ports is selected to render the fluid dispensing apparatus 50 suitable for dispensing viscous fluids, such as sunscreen and bodily lotions.
The components of the applicator assembly 56 may be injection molded from a semi-rigid polymeric material, such as high impact polystyrene. It is understood that suitable components may be molded from other semi-rigid polymers or a resilient polymeric material.
The applicator assembly may be molded from a thermoplastic elastomer, such as TPE (thermoplastic elastomers). However, other resilient materials may be used including, but not limited to silicone, natural rubber, latex rubber, butyl rubber, nitrile rubber, or metal. It is understood that the scope of the fluid dispensing apparatus is not intended to be limited by the materials listed here, but may be carried out using any material which allows the construction and operation of the fluid dispensing apparatus described herein.
As shown in
The upload tray assembly 106 and the roller 110 are movable together relative to the housing 58 so as to be capable of being depressed inwardly against the bias of the spring 102 of the pump assembly 54 as a consequence of the user pressing the roller 110 inward, for example, against the skin. This actuates the pump assembly 54 for supplying fluid with the roller 110 in rolling contact with the skin for dispensing fluid onto the skin. With this arrangement, the user is only required to bring the roller 110 in contact with the skin and apply pressure to actuate the pump assembly 54 for transferring the fluid to the upload tray 106 each time the applicator assembly 56 is depressed. The applicator assembly 56 performs the dual function of both actuating the pump assembly 54 while also dispersing the fluid in a controlled manner necessary to achieve the uniform coverage desirable in some applications.
In one embodiment, the roller 110 may have a textured surface. The textured surface may be provided by grooves or projections of different sizes, shapes and geometries. The grooves or projections may also have different patterns or may be oriented at different angles with respect to the longitudinal axis of the roller, such as in a zigzag, chevron, herringbone, hex, dot, or checkerboard patterns. In particular, the grooves may have a depth of about 0.005″ to 0.05″ for hard surface rollers and 0.005″ to 0.25″ for pliable surfaces. The projections may represent raised areas spaced apart or interconnected to define one or more open channels. The projections can be in the form of nubs or fin segments that are arranged in rows oriented generally parallel to the blades or spaced fin segments that are arranged both parallel to and perpendicular to the blades. Whether using grooves or projections, and without being bound by theory, it is believed the textured roller 110 will pick up a volume of fluid from the tray member 130. The textured surface also provides traction on the skin to allow the roller 110 to roll and not slide on the skin. The latter causes smearing of fluid, whereas rolling application spreads fluid evenly.
A non-porous, rigid roller 110 surface is preferred. In another embodiment, the roller 110 may be made of a synthetic or natural material suitable for absorbing fluid and dispensing the fluid upon surfaces against which the roller is rolled. A non-porous roller with a firm surface is preferred as it minimizes wear, clogging, smearing or slipping. Further, it is understood that the roller 110 as a fluid application member can be any rotatable element, such as a generally toroidal element. For example, a rotary ball applicator may be used to dispense fluid. The rotary ball is normally biased against a spring member via an elongated biasing element to prevent dispensing of the fluid.
In an alternate embodiment, a flexible sleeve can be mounted on a solid roller core (not shown). Such a configuration provides a pliable surface of the flexible sleeve to make contact with skin while retaining the rigid core foundation to enable the actuation of the pump assembly 54. The flexible sleeve can have any particular surface texture as demanded by the particular liquid application demand. A cupped surface is preferred since it can effectively collect fluid from the upload tray 106 while effectively delivering the fluid as the flexible surface comes into contact with the skin, deforms at its surface and releases the fluid as desired on the skin contact point. It is anticipated that instead of an attachable flexible sleeve, a similar result can be achieved by affixing a flexible material onto the exterior of the rigid core. This over molded surface can incorporate a range of surface textures including a cupped, ridged, channeled surface, or combination of these patterns.
In yet another embodiment, a fluid application member may comprise a rigid blade member (not shown). The blade member has at least one aperture that is in fluid communication with the pressurization chamber 74 for dispensing fluid on the skin. The body of the blade member tapers to an edge laterally along its length, providing a beveled surface amenable to spreading fluid as the blade is rapidly passed along the skin surface. In this embodiment, the blade member constitutes the actuator that is supported on the upload tray 106 to be movable relative to the reservoir assembly 52 for actuating the pump assembly 54 each time the blade member is pressed against and released from the skin for delivering fluid.
Another embodiment of the applicator assembly 56 is shown in
A cap 154 may be provided for covering the applicator assembly 56, including the top plate 104, when the fluid dispensing apparatus 50 is not in use. Features may be provided to enable the cap 154 to be attached, such as clips, flange edge, grooves, anchor points for latches, tabs, clips, magnets or other attachment means. The benefit of the attachment means is to minimize the risk of losing the cap 154 when not covering the applicator assembly 56. The cap 154 may also have indentations, bumps, ridges, or other surface shapes or textures to provide grip points for fingers in the process of cap removal and replacement and also aid in gripping when attached temporarily to the housing 58 during use. Such features may also include a flat surface that supports the housing 58 during the process of refilling.
Referring to
In use, and referring to
The upload tray 106 retains unused fluid in an area above the tray member 130 and beneath the roller 110 to reduce leakage that may otherwise result from excess fluid accumulating on the exposed surface of the applicator assembly 56. Such unused fluid is held in the tray member 130 awaiting transfer to the roller 110 during rotation. As shown in
When substantial pressure is released from the roller 110, though the roller 110 is not necessarily out of contact with the skin, the spring 102 returns the piston member 76 to the home position (
Thus, in response to roller 110 pressure against the skin, the pump assembly 54 is actuated for changing a volume of the chamber drawing fluid from the reservoir assembly 52 and dispensing the fluid onto the skin. The pressurization chamber 74 functions to draw fluid in increments from the liner 60 in quantities that vary based on user input. At the same time, the fluid is delivered to the skin as a consequence of the reciprocation of the applicator assembly 56 relative to the reservoir assembly 52 and rotation of the roller 110 in contact with the skin. A particular advantage of the pump assembly 54 is that piston operation in a rigid chamber can generate significant pressure based upon the input pressure received from the applicator assembly 56 being pressed onto a surface. This performance attribute is favorable in certain applications in which greater pumping pressures are demanded, such as for rapid delivery, or to deliver more viscous fluids. Another advantage of the pump assembly 54 is the piston reacts immediately to changes in input pressure from the applicator assembly 56 as contact is made with the surface. This attribute allows the user to closely regulate the amount of fluid flow at any time by changing the amount of input pressure. Still another advantage to the pump assembly 54 is that the pump assembly, inclusive of valves, ports, piston components and the spring, is contained within a single compact element. This minimizes the amount of space for the pumping operation, thereby increasing the amount of space available for fluid storage and for other components of the fluid dispensing apparatus 50.
It is preferred the applicator assembly 56 may make light contact with the skin without activating the flow of fluid. This operating feature is desirable to provide the user with the ability to use the applicator surface to spread fluid that has already been discharged onto the skin. Accordingly, the spring 102 is sufficiently resilient to resist light inward force of the applicator assembly 56 without actuating the flow of fluid.
Once the reservoir assembly 52 is empty, the liner 60 may be refilled. As described herein, the applicator assembly 56 and associated pump assembly 54 are integrated and detachable from the housing 58, which renders the reservoir assembly 52 easy to refill, clean, or replace. The liner 60 can remain in the housing 58 or be removed for refilling or replacement. Alternatively, the reservoir assembly 52 may incorporate a sealable refilling opening on a side of the housing 58 adjacent to or opposite the applicator assembly 56. The opening would have a sealing cap that attaches by means of screwing, snapping or other means of sealable capture. The cap may incorporate a tether to prevent it from being separated from the unit or a living hinge to allow pivotal attachment. The liner may also be replaced as a disposable element of the apparatus.
The fluid dispensing apparatus 50 may be used to apply, for example, sun screen or other body lotions. Other suitable fluids may include skin care compositions suitable for topical application, including, for example, shaving gels, lubricants, shaving foams, shaving lotions, shave oils, skin treatment compositions and creams, astringents, exfoliant scrubs, sun screens, cleansers, skin conditioning aids, ointments, imaging agents applied to the skin surface, depilatories, balms, lotions, moisturizers, fragrances, anesthetic lotions, and combinations thereof. Other fluids unrelated to personal care to be dispensed may include paints, adhesives, solvents, and other materials of a viscosity similar to that of commonly-used sun screens presently available. Further, other fluids with viscosities dissimilar to commonly-used sun screens may be delivered with the apparatus. This is possible by making readily apparent modifications in valves, ports, spring sizes, and other dimensions and materials of the apparatus as described.
Referring to
Another embodiment of an apparatus for dispensing a fluid is shown in
In this embodiment of the fluid dispensing apparatus 200, a liner plate 206 is associated with the liner 60 of the reservoir assembly 52. Referring to
The liner plate 206 is sized and shaped to fit against the shoulder 72 along the inside edge of the outer end 64 of the housing 58. A pair of notches 216 is longitudinally spaced along one edge of the base member 208 of the liner plate 206 and configured to receive corresponding tabs 218 provided on the shoulder 72 of the housing 58. It is understood that in this arrangement the liner 60 depends from the liner plate 206 (
The pump assembly 202 provides a means for drawing fluid from the reservoir assembly 52 and delivering the fluid to the applicator assembly 204 for dispensing the fluid. As shown in
The inlet valve 221 is a circular umbrella valve disposed at the inner end 84 of the pressurization chamber 74. The umbrella valve 221 includes a central axial tab 222 extending inwardly from the body of the valve. The tab 222 is sized to pass through the central axial opening 86 in the inner end 84 of the pressurization chamber 74 for retaining the umbrella valve 221 in position. The diameter of the umbrella valve 221 is the same as the interior diameter of the pressurization chamber 74. The umbrella valve 221 seal against the bottom wall of the pressurization chamber 74 such that a fluid path from the liner 60 via the intake ports 88 is normally closed by the umbrella valve 221.
The bellows member 220 is disposed at the outer end of the pressurization chamber 74. The bellows member 220 is a flexible, elastic piece which, in a rest position, is generally cup-shaped. In this position, the bellows member 220 forms a resiliently deformable inner cylinder 226 nested within a concentric outer cylinder 227 having a larger outside diameter than the inner cylinder 226. The depth of the inner cylinder 226 and the outer cylinder 227 is substantially the same. In longitudinal cross-section (
The bellows member 220 is formed from a sufficiently flexible, elastic deformable material having a Durometer of from about 20 A to about 60 A. This range of Durometer is suitable for moving a relatively viscous fluid such as, for example, skin lotions. The bellows member 220 may be formed from a suitable material including, for example, a thermoplastic polymer, such as polypropylene, thermoplastic polyurethane (TPU), thermoplastic elastomer (TPE), an elastomer such as natural or synthetic rubber, silicone, or other material which will return to its original shape after a force causing deformation is removed. The relative thickness of the bellows member 220 is such that desired strength and elasticity are obtained. For example, suitable thickness for the inner and outer walls 224, 225 of the bellows member 220 may be from less than about 1 mm to over about 10 mm. In one embodiment, a thickness for the walls 224, 225 of the bellows member 220 may be from about 1 mm to about 3 mm for moving a relatively viscous fluid, such as skin lotions. It is understood that other materials for the bellows member 220 may be substituted or interchanged to provide a bellows member 220 having different material characteristics, which may vary depending on the chemistry of the fluid, the fluid viscosity and desired flow rate. The shape, size, dimensions and other specifications of the bellows member 220 may also be altered or modified to generate a desired volume, shape or size in combination with the pressurization chamber 74.
The one-way valve 80 is integral with the tubular projection 228 of the bellows member 220 and, in one embodiment, may be a duckbill valve. The duckbill valve 80 is configured to open in response to positive pressure in the pressurization chamber 74 allowing fluid to pass from the pressurization chamber to the applicator assembly 204. Positive pressure is generated when the bellows member 220 is extended into the pressurization chamber 74 during actuation of the applicator assembly 204 causing the bellows member 220 displaces a volume of fluid through the duckbill valve 80. When pressure is removed, or there is negative pressure in the pressurization chamber 74, the duckbill valve 80 closes preventing fluid backflow, including air, from entering the pressurization chamber 74. It is understood that other one-way valves may be suitable for use in the fluid dispensing apparatus 200, including, but not limited to, ball check valves, swing check valves or tilting disc check valves, stop-check valves, lift-check valves and the like.
The applicator assembly 204 (
The central axial bore 250 of the base member 238 of the top plate 230 is configured to receive the outer end of the pressurization chamber 74. A portion of the outer end of the pressurization chamber 74 is externally threaded 75 and the bore 250 is internally threaded for removable attachment of the pressurization chamber 74 within the bore 250. As seen in
Referring to
The legs 256 and the outer surface 266 of the upload tray 232 interconnecting the legs 256 together define a recess for receiving the roller assembly 234. The outer surface 266 of the base member 254 defines a “bow-tie” shaped longitudinal groove 268. The central opening 262 in the base member 254 of the upload tray 232 opens into the midpoint of the groove 268. The shape of the groove 268 facilitates the distribution of fluid along the outer surface 266 of the base member 254 for optimizing uptake onto the roller 280 by presenting a uniform coating of fluid to the roller surface, minimizing uneven distribution of fluid on the roller.
As shown in
Referring to
In this arrangement, the upload tray 232 is in fluid communication with fluid in the liner 60 via the bellows pump 220. The bellows member is selectively actuated in order to discharge fluid contents from the liner, through the pressurization chamber, and out of the bellows via the duckbill valve, thereby delivering the fluid to the upload tray 232. Actuation of the bellows member 220 extends the bellows member 220 longitudinally into the pressurization chamber 74 and expels fluid via the duckbill valve 80. Releasing the bellows member 220 to return to the original position draws fluid into the pump chamber. The upload tray 232 is biased outwardly toward a home position by means of coil springs 268 disposed in the posts 248 of the top plate 230 and receiving the posts 264 of the upload tray 232. It is understood that other loading springs may be suitable for the fluid dispensing apparatus 200, such as a leaf spring, volute springs, or torsion springs.
As shown in
The roller 280 includes hubs 286 at each end of the roller core 282. The hubs 286 include central projections 287 received in corresponding opposed apertures in the end walls 256 of the upload tray 232. This arrangement allows for rotatable attachment of the roller 280 in the recess of the upload tray 232. The end walls 256 of the upload tray 232 or the roller 280 may be sufficiently resilient to allow deformation so that the axle projections 287 engage or disengage with the upload tray 232.
The upload tray 232 and the roller 280 are movable together relative to the housing 58 so as to be capable of being depressed inwardly against the bias of the springs 268 as a consequence of the user pressing the roller 280 inward, for example, against the skin. This actuates the pump assembly 202 for supplying fluid with the roller 280 in rolling contact with the skin for dispensing fluid onto the skin. With this arrangement, the user is only required to bring the roller 280 into contact with the skin and apply pressure to actuate the pump assembly 202 for transferring the fluid to the upload tray 232 each time the applicator assembly 204 is depressed. The applicator assembly 204 performs the dual function of both actuating the pump assembly 202 while also dispersing the fluid in a controlled manner necessary to achieve the uniform coverage desirable in some applications.
In use, referring to
As the bellows member 220 extends inwardly toward the inner wall of the pressurization chamber 74, the bellows member 220 expands lengthwise forcing the outer wall 225 of the bellows member 220 to bulge radially for continuously resiliently engaging the inner surface of the pressurization chamber 74 providing an annular seal. During eversion of the bellows member 220, the inner flange 258 and the outer flange 260 of the upload tray 232 support the tubular projection 228 and the inner cylinder 226 as the bellows member 220 lengthens. The depth of the inner cylinder 226 is reduced and the depth of the outer cylinder 227 is increased such that the volume of the variable volume chamber 82 is reduced, generating positive pressure within the chamber 82. The increased pressure urges the umbrella valve 221 against the bottom wall of the pressurization chamber 74 to prevent fluid in the chamber from being forced back into the liner 60 via the holes 88. At a predetermined threshold, the pressure in the chamber 82 is sufficient to open the duckbill valve 80 at the outer end of the bellows member 220. The fluid within the chamber is forced up through the tubular projection and out the duckbill valve 80 passing through the opening 262 in the top plate 230 and onto the outer surface 266 of the upload tray 232. The configuration of the bellows member maximizes the area of the fluid flow path exiting the chamber. The fluid is distributed laterally from the opening 262 along the channel in the upload tray 232 between the outer surface 266 of the upload tray 232 and the roller 280. When the user moves the roller 280 along the skin, the roller rotates. The rotating roller 280 picks up the fluid and draws the fluid past the edge of the side walls of the upload tray 232 where the fluid is screened to a uniform layer on the roller 280 that is then delivered to the skin as the roller 280 continues to rotate further until breaking contact with the skin. The roller 280 provides rapid uniform delivery of fluid over the skin.
The upload tray 232 retains unused fluid beneath the roller 280 to reduce leakage that may otherwise result from excess fluid accumulating on the exposed surface of the applicator assembly 204. Unused fluid is held in the upload tray 232 awaiting transfer to the roller 280 during rotation. As shown in
When sufficient pressure on the roller 280 is released, though the roller 280 is not necessarily out of contact with the skin, the springs 268 return the upload tray 232 to the home position (
Outward movement of the bellows member 220 increases the volume of the chamber 82 and generates a vacuum or negative pressure within the pressurization chamber 74. Due to the vacuum or negative pressure, the duckbill valve 80 closes stopping outward fluid flow and preventing fluid and air from flowing back through the bellows member 220. The vacuum or negative pressure further causes the umbrella valve 221 to deform or at least partially deflect inwardly along its circumference away from contact with the bottom wall. The vacuum or negative pressure draws fluid from the liner 60 into the chamber 82 through the intake ports 88 in the bottom wall of the pressurization chamber 74. In this manner, the chamber is primed or at least partially refilled with fluid to be dispensed during the next stroke. The flexible liner 60 is deformable, and the liner contracts as fluid is drawn into the pressurization chamber 74. Air does not enter the liner 60, which enables inverted operation and eliminates the need to shake fluid into position to be taken up into the pressurization chamber 74 via the intake ports 88. One or more vent holes may be provided in the housing 58 to enable the liner 60 to more easily contract. When the upload tray reaches the home position and the bellows member 220 has returned to its original shape and position, or when the vacuum force is insufficient to deflect the umbrella valve 221, the umbrella valve again contacts the bottom wall of the pressurization chamber. This contact stops the flow of fluid through the inlet holes 88 into the chamber 82.
While various embodiments of the fluid dispensing apparatus have been described with respect to pump and applicator assemblies for fluid delivery to the skin, such as for use in the personal and beauty care products, it is understood that the pump and applicator assemblies of the various embodiments may be used in other fields or markets. Such pump and applicator assemblies may be scaled up or down as desired to meet desired specifications for fluid delivery to other surfaces. The pump and applicator assemblies may be used to deliver product from a container to the surface. In some instances, the container is a bottle and in other instances, the container may be a bag, a pouch, or a tube. Further, the pump assemblies of the various embodiments are in communication with the container and evacuate fluid from the container for delivery to the applicator assembly. It is understood that a container may include any receptacle which may be used to hold a product, including, but not limited to, bottles, bags, pouches, sachets, airless systems, tubes and other devices.
Although the present invention has been shown and described in considerable detail with respect to only a few exemplary embodiments thereof, it should be understood by those skilled in the art that we do not intend to limit the invention to the embodiments since various modifications, omissions and additions may be made to the disclosed embodiments without materially departing from the novel teachings and advantages of the invention, particularly in light of the foregoing teachings. For example, an extension arm can be added as a fixed or detachable element to enable a longer reach of the fluid dispensing apparatus to desired application targets, such as the back. Moreover, the fluid dispensing apparatus can be made to dispense any fluid, such as paints, oils, and the like. Accordingly, we intend to cover all such modifications, omissions, additions and equivalents as may be included within the spirit and scope of the invention as defined by the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures.
This application is a continuation application of U.S. patent application Ser. No. 15/295,315, filed Oct. 17, 2016, which is a continuation of U.S. patent application Ser. No. 14/257,507, filed Apr. 21, 2014, now U.S. Pat. No. 9,468,279, the contents of all are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15295315 | Oct 2016 | US |
Child | 16572146 | US | |
Parent | 14257507 | Apr 2014 | US |
Child | 15295315 | US |