The accompanying drawings illustrate embodiments of the present invention and are a part of the specification. Together with the following description, the drawings demonstrate and explain principles of the present invention.
Illustrative embodiments and aspects of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in the specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, that will vary from one implementation to another. Moreover, it will be appreciated that such development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having benefit of the disclosure herein.
Referring now to the drawings and particularly to
In
X-ray tubes produce x-rays by accelerating electrons into a target via a high positive voltage difference between the target and electron source. The target is sufficiently thick to stop all the incident electrons. In the energy range of interest, the two mechanisms that contribute to the production of x-ray photons in the process of stopping the electrons are X-ray fluorescence and Bremsstrahlung radiation.
X-ray fluorescence radiation is the characteristic x-ray spectrum produced following the ejection of an electron from an atom. Incident electrons with kinetic energies greater than the binding energy of electrons in a target atom can transfer some (Compton Effect) or all (Photoelectric Effect) of the incident kinetic energy to one or more of the bound electrons in the target atoms thereby ejecting the electron from the atom.
If an electron is ejected from the innermost atomic shell (K-Shell), then characteristic K, L, M and other x-rays are produced. K x-rays are given off when an electron is inserted from a higher level shell into the K-Shell and are the most energetic fluorescence radiation given off by an atom. If an electron is ejected from an outer shell (L, M, etc.) then that type of x-ray is generated. In most cases, the L and M x-rays are so low in energy that they cannot penetrate the window of the x-ray tube. In order to eject these K-Shell electrons, an input of more than 80 kV is required in the case of a gold (Au) target due to their binding energy.
Another type of radiation is Bremsstrahlung radiation. This is produced during the deceleration of an electron in a strong electric field. An energetic electron entering a solid target encounters strong electric fields due to the other electrons present in the target. The incident electron is decelerated until it has lost all of its kinetic energy. A continuous photon energy spectrum is produced when summed over many decelerated electrons. The maximum photon energy is equal to the total kinetic energy of the energetic electron. The minimum photon energy in the observed Bremsstrahlung spectrum is that of photons just able to penetrate the window material of the x-ray tube.
The efficiency of converting the kinetic energy of the accelerated electrons into the production of photons is a function of the accelerating voltage. The mean energy per x-ray photon increases as the electron accelerating voltage increases.
The Bremsstrahlung spectrum from an x-ray tube operating at a fixed high voltage can be filtered to give predominantly a one peak spectrum. Specifically, a low pass filter will remove the higher energy portions of the radiation. Alternatively, a high pass filter will do the opposite, filtering out the lower end radiation. This is one feature relevant to the function of the invention as high and low energy measurements are required.
A Bremsstrahlung spectrum can be altered by changing (1) the composition of the filter, (2) the thickness of the filter, and (3) the operating voltage of the x-ray tube. The embodiments described herein utilize a dual filter mode to create low and high energy peaks from the same Bremsstrahlung spectrum using two different filters.
The density of a material can be determined by analyzing the attenuation of x-rays passed through the material. The initial measurement to be found is not the mass density, ρ, that will be the eventual product, but the electron density index, ρe, of the material. The electron density index is related to the mass density by the definition
The attenuation of a beam of x-rays of energy E, intensity Io(E), passing through a thickness d of material with a electron density index ρe can be written
where any interaction of the photons traversing the material attenuates the beam. Here, μm(E) is the mass coefficient of the material. I(E) in the previous equation does not include the detection of photons created following photoelectric absorption or multiple scattered photons.
Generating radiation using an x-ray generator to perform density measurement is desirable for a number of reasons. The radiation flux available and the need for photons with a quite low energy (<100 keV) make this type of radiation source well suited for the application. Measurement of the attenuation level is performed at two different mean energy levels: a high energy level (approximately 65 keV) where the photon attenuation occurs predominantly from Compton Scattering with some Photoelectric absorption and a low energy level (approximately 40 keV) where photon attenuation occurs from Compton Scattering and the Photoelectric Effect, where the absorption by the Photoelectric Effect is stronger than in the case of the high energy. Compton Scattering occurs when a photon “hits” an electron with some of the photon energy being transferred to the charged particle. The Photoelectric Effect is the emission of electrons from a material upon the absorption of electromagnetic radiation such as x-rays. In addition to the two energy levels, in order to have a robust measurement system, it is necessary to have a detection of radiation passing through a substance that will cause attenuation as well as a detection of radiation passing through air. The first of these is found by a measurement radiation detector and the second is found by a reference radiation detector.
Turning to
The radiation output from x-ray generator 302 is passed to sample cell 310. Radiation is then passed to the two radiation detectors 306 and 307. Channel 309 is a reference channel and passes radiation directly from the x-ray generator output (after filtering) to radiation detector 306, this will be the reference detector. The output of this reference radiation detector allows for normalization and a more accurate result. Channel 308 is a measurement channel. Formation fluid is pumped through this channel and the radiation passing through the channel also passes through the sample fluid. The radiation signal is attenuated by the fluid and this output radiation of the measurement channel 308 is passed to radiation detector 307. This radiation detector is referred to as the measurement detector. The measurement radiation detector and the reference radiation detector are placed symmetrically with respect to the x-ray generator 302. This ensures that a change in flux of the x-ray generator will be detected identically by radiation detectors 306 and 307. Data from the measurement radiation detector and the reference radiation detector may be passed to an analysis unit 312 for processing as described hereinafter.
Once the radiation measurements are obtained, it is necessary to account for the Z-effect before calculating the electron density index and ultimately the bulk density. This Z-effect is due to the Photoelectric Effect in attenuation of the radiation and is encountered because the energy of the x-rays used is relatively low. Because there is proportionally more Z-effect in the low energy than the high energy measurement, an estimate of the error due to the Z-effect in the high energy measurement can be determined by looking at the difference between the pair of attenuation measurements.
To do this, the previous equation is solved for the electron density index
Where S1 is equal to
I(E) corresponds to the output of the measurement radiation detector and this will be taken with a high pass filter (MHE) and a low pass filter (MLE). Io(E) is the output of the reference radiation detector. Again, this will be taken with a high pass filter (RHE) and a low pass filter (RLE). When taken, the ratios, MHE/RHE, MLE/RLE will also be normalized by dividing them by the ratio found at the corresponding energy when just air is disposed between the x-ray generator and both radiation detectors.
The next step in the process of finding ρe is to calibrate the system by inserting an attenuating material between the x-ray generator and the measurement radiation detector that has a known value of ρe. A hydrocarbon such as hexane is used so that the system will be calibrated to find a Z-effect value of pure hydrocarbons as zero so when measuring pure hydrocarbons, there will be no correction when determining ρe. Turning to
The next step in the process is to correlate the difference between ρe,app,low and ρe,app,high, or Δρe,app for a set of known materials and the difference between those materials' ρe,app,high and their actual electron density index ρe,actual. Obviously, finding their ρe,actual from this information is simple arithmetic. Turning to
ρe,app,high−ρe,actual=0.306(Δρe,app)2+0.7369(Δρe,app).
The high pass filter used in one embodiment is a silver (Ag) filter. This provides an output x-ray with a mean energy of approximately 65 keV. The low pass filter in one embodiment is gadolinium (Gd) which provides a signal with a mean energy of around 42 keV. The spectra output by these filters is shown in
The x-ray tube in one embodiment is operated at 80 kV because this is sufficiently high to make the two attenuation measurements at the different mean energies enabling the Z-effect correction described above while not requiring an excessively long x-ray tube. Filters could be chosen to provide a spectrum with a lower mean energy than 42 keV (as when using gadolinium) but lower energy spectra lead to problems in detecting certain elements. Specifically, the mean energy of the low energy filter output must be above the K-edge of barium. If not, the Z-effect correction detailed above will not work for barium, small quantities of which could exist in the mud filtrate during the initial formation fluid clean-up phase. For x-ray energies just below the K-edge of a particular element, that element causes much less attenuation. If the mean energy of the low energy beam were around 32 keV, the attenuation for barium for the low energy signal would be about the same as for the high energy signal, so the correction would be inaccurate.
For this reason, a Gd filter is chosen as the low pass filter in one embodiment. However, any filter can be used that provides a mean energy of approximately 40-50 keV. The K-edge of Gd is 47 keV creating a low energy peak with a mean energy of 42 keV, just above the K-edge of barium. This ensures that the low energy beam will be more attenuated by barium than the high energy beam and the correction for Z will be accurate in determining the electron density with up to 1% by weight of barium in the fluid.
The Ag filter was selected as the high pass filter in one embodiment, but any filter providing a mean energy of approximately 60-70 keV would be suitable. The K-edge of Ag (26 keV) is not used to modify the x-ray spectrum. The silver filter attenuates all the low energy x-rays below about 60 keV which effectively raises the mean energy of the transmitted signal to about 65 keV. The K-edge of the Ag filter does not cause any problems because there are no x-rays below 26 keV in the initial x-ray spectrum leaving the generator because of a 0.25 mm thick iron foil that is used to seal the x-ray generator housing.
An example of an x-ray tube that may be used as an x-ray generator 302 is shown in
Turning to
Due to these phenomena, a system that counts all the detector output pulses is nearly immune to temperature changes. This mode of operation is used here and is referred to as a plateau mode. In plateau mode, all the detector pulses of an energy level higher than a threshold are counted. The threshold is significantly higher than the thermionic noise of the system and significantly lower than the signal generated by the lowest energy x-ray that reaches the detector. In one embodiment, the threshold is the one shown in
The ratio between the measurements of the measurement detector and the reference detector provides the normalized flux needed in calculation of electron density index. The output of each of the detectors is counted for a fixed time (1-30 seconds generally) with the filter 304a positioned at the output of the x-ray generator 302 and then with the filter 304b in position (note
The determination of density from the information gathered proceeds as detailed in the equations and derivation above to determine an electron density index of the fluid sample. Once this is found, it is necessary to convert from an electron density index to a mass density to provide information that is of interest to the end customer or user.
There is a known correlation between electron density index and mass density
Where Z is the effective atomic number of the absorbing substance, A is its effective atomic weight, ρe is the actual electron density index found in the description above, and ρ is the mass density that is desired.
The
portion of the equation is approximately equal to 1 for most elements with the notable exception of hydrogen where it is equal to 2. Since materials are being measured with varying weight fractions of hydrogen, it might appear, at first glance, that the weight fraction of hydrogen must be known for reliable measurements of the bulk density. In most cases, this weight fraction will not be available.
In order to find the correct mass density of the materials, a graph is made plotting the ρe of several known materials against their mass density. This plot reveals a nearly linear relationship that yields a correlation between electron density index and mass density as follows
ρ=0.1192ρe2+0.77ρe.
This equation fits nearly all data points with a high accuracy. This alleviates the need to know the weight fraction of hydrogen in all but the heaviest hydrocarbons. For all practical conditions in the field, this will provide a reliable determination of the mass density.
As noted above, the density detection device described herein is operable in the extreme conditions experienced downhole where the ambient temperature may reach 200° C. In addition to this high temperature tolerance, the device fits into a highly restricted space. As part of the exemplary modular tool shown in
X-ray generator section 904 in this embodiment is 12″ long. The space 908 between the x-ray generator 902 and the sample cell is 3.5″. The sample cell section 912 is 5″ long and the detector section 916 is 4″ in length. The width 920 of the device is 3″. The full dimensions of the device in this embodiment are 24.5″ long and 3″ wide. This is suitable for use in a modular tool in the downhole environment.
The x-ray density measurement can be taken in the borehole in a number of ways. In a borehole that has previously been drilled, the device can operate downhole on a wireline device such as the one shown in
The preceding description has been presented only to illustrate and describe the invention and some examples of its implementation. It is not intended to be exhaustive or to limit the invention to any precise form disclosed. Many modifications and variations are possible and would be envisioned by one of ordinary skill in the art in light of the above teaching. One such modification obvious to those skilled in the art is to use the Z effect measurement described in the above to provide information about the average Z of the sample material or the size of the contribution from the Photoelectric Effect.
The various aspects were chosen and described in order to best explain principles of the invention and its practical applications. The preceding description is intended to enable others skilled in the art to best utilize the invention in various embodiments and aspects and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims; however, it is not intended that any order be presumed by the sequence of steps recited in the method claims unless a specific order is directly recited.