This invention relates to the transmission of digitally encoded voice, and in particular, to the transmission of digitally encoded voice so as to maintain speech quality.
Because of the popularity of the Internet, a growing need for remote access, and the increase in data traffic volume that has exceeded the voice traffic volume through the voice and data communication networks, the transmission of voice as data rather than circuit switched voice is becoming more important. The problem that exists when voice is transmitted as data such as voice-over-packet technology or voice-over-the-Internet is to guarantee the quality of service. To reduce the bandwidth required to carry voice, voice-over-packet systems employ a voice activity detection to suppress the packetization of voice signals between individual speech utterances such as the silent periods in a voice conversation. Such techniques adapt to varying levels of noise and converge on appropriate thresholds for a given voice conversation. Use of voice activity detection reduces the required bandwidth of an aggregation of channels 50% to 60% for conversations that are essentially half-duplex, only one person speaks at a time in a half-duplex conversation.
When silence suppression is being used, a noise generator at the receiving end compliments the suppression of silence at the transmitting end by generating a local noise signal during the silent periods rather than muting the channel or playing nothing. Muting the channel gives the listener the unpleasant impression of a dead line. The match between the generated noise and the true background noise determines the quality of the noise generator.
Within the prior art, it is welt known that voice activity detection to determine silence and the removal of those silent periods can cause speech utterances to sound choppy and unconnected when cutting in or out of the speech. Two terms are utilized to express this problem. First, front-end clipping refers to clipping the beginning of an utterance. Second, holdover time refers to the time the activity detector continues to packetize speech after the voice signal level falls below the speech threshold. The holdover time is normally set to the period between words as has been determined for a particular conversation so as to avoid front-end clipping at the beginning of each word. However, excessive holdover times reduce network efficiency and too little causes speech to sound choppy.
This invention is directed to solving these and other problems and disadvantages of the prior art. In an embodiment of the invention, the problems of front-end clipping and excessively long holdover times is resolved by the introduction of a history queue at the transmitting end of the digital conversation.
Problems of front-end clipping and long holdover times are resolved by the introduction of a history at the transmitting end. The history queue is equal in length to the normal front-end clipping time. That is to say that there are sufficient samples in the history queue to equal the normal time that would be devoted to front-end clipping. When the speech threshold is reached indicating silence, the transmitter no longer transmits packets to the receiving end of the conversation. However, the speech samples being generated indicating silence or voice are continuously stored in the history queue. However, it should be realized that only the last period of time of the speech is stored in the history queue during this period of operation. When the speech threshold is reached indicating the transition from silence to voice, the transmitter begins once again to remove samples from the history queue and transmit packets to the receiving end of the voice conversation. Since the history queue includes the normal front-end clipping time of samples prior to the detection of voice, the transition from silence to speech appears to the listener to be excellent since this transition includes the normal front-end clipped speech. Advantageously, not only is the front-end clipping problem resolved, but the holdover time that is allowed for the determination of silence can be reduced. Advantageously, this method and apparatus greatly increases the efficiency of the transmission of voice through a packetized system.
Interface 101 is also transmitting a steady synchronous stream of voice samples to history queue 108 and low energy detector 109. However, voice coder 106 is packetizing voice samples for transmission to the receiving end of the voice conversation via IP switched network 107. The number of samples stored in history queue 108 is equal to the holdover time between utterances that has been determined for the user of the system that is speaking into a microphone not shown that eventually communicates voice samples to interface 101. The length of the queue of history queue 108 would adapt to the speaking characteristics of different users, resulting in the number of samples being processed by history queue 108 varying for individual users and during the conversation for the same user. Low energy detector 109 determines the thresholds that specify the presence of silence or voice activity in the speech samples being received from interface 101. History queue 108 is continuously accepting samples from interface 101 and attempting to transmit these samples to control circuit 111. Control circuit 111 is responsive to a signal from low energy detector 109 indicating that voice activity has been detected in the samples being transmitted from interface 101 to begin to transmit voice samples from history queue 108 to voice coder 106. Voice coder 106 is responsive to the samples being received from control circuit 111 to packetize these samples and transmit them via IP switched network 107. When low energy detector 1095 determines that the silence has been present in the speech samples for a first predefined amount of time, low energy detector 109 removes the signal being transmitted to control circuit 111 which ceases to transmit samples to voice coder 106. Note, that the first predefined time utilized by low energy detector 109 is now the holdover time that is utilized by the system illustrated in
One skilled in the art would readily realize that the analysis for speech and the recalculation of the silence interval and the adjustment of the queue size could be performed in a different order in
Once control is received from block 506 or decision block 503 of
Of course, various changes and modifications to the illustrative embodiment described above will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the invention and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the following claims except in so far as limited by the prior art.
Number | Name | Date | Kind |
---|---|---|---|
3909532 | Rabiner et al. | Sep 1975 | A |
4053712 | Reindl | Oct 1977 | A |
4110560 | Leary et al. | Aug 1978 | A |
4376874 | Karban et al. | Mar 1983 | A |
4449190 | Flanagan et al. | May 1984 | A |
4696039 | Doddington | Sep 1987 | A |
5579431 | Reaves | Nov 1996 | A |
5790538 | Sugar | Aug 1998 | A |
5890109 | Walker et al. | Mar 1999 | A |
6157653 | Kline et al. | Dec 2000 | A |
6161087 | Wightman et al. | Dec 2000 | A |
6256606 | Thyssen et al. | Jul 2001 | B1 |
6259677 | Jain | Jul 2001 | B1 |
6490556 | Graumann et al. | Dec 2002 | B1 |
6535844 | Wood et al. | Mar 2003 | B1 |
6711536 | Rees | Mar 2004 | B1 |
6725191 | Mecayten | Apr 2004 | B1 |
20030223443 | Petty | Dec 2003 | A1 |
20030225573 | Petty | Dec 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20030212548 A1 | Nov 2003 | US |