Apparatus and method for low coherence ranging

Information

  • Patent Grant
  • 7310150
  • Patent Number
    7,310,150
  • Date Filed
    Friday, January 10, 2003
    22 years ago
  • Date Issued
    Tuesday, December 18, 2007
    17 years ago
Abstract
A system, apparatus and method for performing low coherence ranging of a sample with high transverse resolution and large depth of focus can be provided. For example, an optical ranging system including a light source can be used. Certain exemplary arrangement can be provided, e.g., a first arrangement for directing light from the light source to the sample, a second arrangement for directing reflected light from the sample to a detector, at least one detector, and a third arrangement for processing light data received by the detector and which generates an image can be utilized. Further, for example, an optical element can be provided which can have a transverse resolution defined as .Δris less than or equal to about μ5 m, and a depth of focus Δz of at least about 50 μm.
Description
FIELD OF THE INVENTION

The present invention relates to apparatus for imaging tissue samples using optical coherence tomography and incorporating an optical element to improve transverse resolution and depth of focus.


BACKGROUND OF THE INVENTION

Currently, the use of optical coherence tomography (OCT) is limited to the visualization of architectural morphological structures within biological tissues. The imaging of sub-cellular features with OCT has not been well demonstrated because of the relatively poor transverse resolution required to preserve depth of focus. The capability to perform high transverse resolution, large depth of field cross-sectional OCT imaging would permit application to early diagnosis of epithelial cancers and other biomedical imaging diagnostics that require sub-cellular level resolution.


To date, there are no known optical coherence tomography configurations that can perform high transverse resolution imaging over a large depth of field. It would be desirable to have a simple device for performing high transverse resolution, large depth of field optical coherence tomography. In addition, by allowing light delivery through a single optical fiber, this device would be also be easily incorporated into catheters or endoscopes. These properties would make this device an enabling technology for performing optical coherence tomography in applications requiring sub-cellular resolution imaging at remote sites within biological systems.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated in the drawings in which like reference characters designate the same or similar parts throughout the figures of which:



FIG. 1 is a schematic view describing focusing using a refractive axicon. A collimated beam, incident from the left, is focused to an axial line with a narrow width and large depth.



FIG. 2 is a schematic view of an OCT system with axicon optic in sample arm.



FIG. 3 is a schematic view of the relationship between axial location and annulus of illumination.



FIG. 4A is a schematic view of the image formation.



FIG. 4B is a schematic view of the translation of the entire optical assembly in the y-direction.



FIG. 4C is a schematic view of the rotation of the entire optical assembly.



FIG. 4D is a schematic view of the angular deflection of the axial line focus in the x-y plane.



FIG. 5 is a schematic view of a system used to perform high transverse resolution ranging with a high depth of field.



FIG. 6 is a schematic view of an offset fiber array.



FIG. 7 is a schematic of a fiber array, microlens array and diffraction grating.



FIG. 8 is a schematic view of an embodiment of an apodized pupil plane filter.



FIG. 9 is a schematic view of the use of an apodizer in front of an imaging lens.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Definitions


“Axicon” shall mean any optic element (or combination thereof) capable of generating an axial line focus. Refractive, diffractive, and reflective axicons have been demonstrated. See, J. H. McLeod, J. Opt. Soc. Am 44, 592 (1954); J. H. McLeod, J. Opt. Soc. Am 50, 166 (1960); and J. R. Rayces, J. Opt. Soc. Am. 48, 576 (1958).


“Depth of focus” shall mean the longitudinal distance over which the beam diameter increases by a factor ζ (typically ζ=sqrt(2) or 2). For a Gaussian beam, the sqrt(2) depth of focus is







2


z
R


=



2



π


(

d
2

)


2


λ

.





For a typical Gaussian spot size (1/e2 diameter) of d=5 μm, and a wavelength of 830 nm, the depth of focus is approximately 48 μm. The depth of focus for a uniform beam (3 dB full-width-half-maximum intensity response for a planar reflector moved through the longitudinal plane) may be defined as







z
u





.9

λ


NA
2


.





For a NA=0.2, which produces a spot size of 5 μm, the depth of focus for a uniform beam is approximately 17 μm at 830 nm.


“Longitudinal” shall mean substantially parallel to the optical axis.


“Longitudinal resolution” shall mean the minimum distance, Δz, in the longitudinal direction that two points may be separated while still being differentiated by an optical detection means.


“Spot size” shall mean the transverse diameter of a focused spot. For a Gaussian beam, the spot size is defined as transverse width of the spot where the intensity at the focus has decreased by a factor of 1/e2. For a collimated Gaussian beam, the spot size, d, is defined as







d
=


4

λ





f


π





D



,





where D is the beam diameter at the lens, ƒ is the focal length of the lens and λ is the wavelength. For a flat top or uniform beam, the spot radius is defined as the transverse position of the first zero of the Airy disk,










w
=




1.22

λ

NA


,





where






NA
=



n






sin


(


tan

-
1




(

D

2

f


)


)




,








and n is the refractive index of the immersion medium.


“Transverse” shall mean substantially perpendicular to the optical axis.


“Transverse resolution” shall mean the minimum distance, Δr, in the transverse direction that two points may be separated while still being differentiated by an optical detection means. One commonly used approximation is Δr=d (for a Gaussian beam) or Δr=w (for a uniform beam).


Basic Principle


An axial line focus, with a narrow transverse beam diameter and over a large length (or depth of focus), is generated. Used in conjunction with OCT, the diameter of the line focus determines the transverse resolution and the length determines the depth of field. As in standard OCT, the detection of light backreflected from sites along the axial focus is performed using a Michelson interferometer. When the light source has a finite spectral width, this configuration can be used to determine the axial location of the backreflection site. The axial resolution is determined by the coherence length of the light source.


Those of ordinary skill in the art will appreciate that there are a variety of known devices for generating a line focus. An axicon (reflective, transmissive, or diffractive optical element (“DOE”)) is an acceptable model known to those skilled in the art for this and will be the method that is used in the present invention to demonstrate use of OCT with an axial line focus to achieve high resolution imaging over large depths of field. It is to be understood that this method is illustrative and not intended to be the exclusive model. Other known models include, but are not limited to, multi-focal lenses, such as the Rayleigh-Wood lens (Optical Processing and Computing, H. H Arsenault, T. Szoplik, and B. Macukow eds., Academic Press Inc., San Diego, Calif., 1989), the use of chromatic aberration to produce an array of wavelength dependent foci along the longitudinal axis, and the like.


Resolution


The following section discusses the physical principles of a representative axicon that uses refraction, as shown in FIG. 1. The intensity distribution of light transmitted through a refractive axicon lens (see R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, Appl. Opt. 31, 6653 (1992)) is given by Equation (1):











I


(

r
,
z

)


=



4


π
2




E
2



(
R
)



λ




R






Sin


(
β
)





Cos
2



(
β
)






J
0
2



(


2

π





r






Sin


(
β
)



λ

)




,




(
1
)








where E2(R) is the intensity of the light incident on the axicon as a function of the radius R, λ is the wavelength of the light, and β is the half angle of the light transmitted through the axicon. The cone angle α is related to β and the depth of focus, zD, by Equations (2a) and (2b):

n Sin(α)=Sin(α+β),  (2a)
zD=R(Cot(β)−Tan(α)),  (2b)

where n is the refractive index of the axicon. The above equations can be used to determine the diameter of the axial line focus. For plane wave illumination the focus diameter is given by Equation (3):










d
0

=

0.766







λ
β

.






(
3
)







In the case of reflective or diffractive axicons, Equation (1) is modified, but in all cases it is the diameter of the axial focus that determines the transverse resolution of the imaging system. A theme of the present invention is that the poor transverse resolution typical of current OCT systems can be improved by changing from a standard focusing geometry in which the focal volume (power distribution) is limited in both the transverse and the axial dimensions to one in which the focal volume is limited only in the transverse direction.


By combining the high transverse localization (and weak axial localization) of an axicon with OCT (see FIG. 2), an imaging system that provides high three-dimensional localization over large field sizes can be realized. Axial resolution for this imaging technique is determined solely by the coherence length of the light source (E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, Opt. Lett. 17, 151 (1992)) and is given by Equation (4):











Δ





z

=



2






Ln


(
2
)



π




λ
2

Δλ



,




(
4
)








where Δλ is the spectral width (full-width half maximum (“FWHM”))of the light source.


In a preferred embodiment, the optical element has a transverse resolution defined as Δr=d0 being in the range of about 0.5 μm to about 10 μm, more preferably less than or equal to about 5 μm. The optical element preferably has a Δz=zD of at least about 50 μm.


Image Formation



FIG. 4A illustrates the entire OCT/axicon system of one embodiment of the present invention. All components, other than the axicon probe, are standard to OCT. The use of OCT to determine the backreflection as a function of distance along the axial line focus provides a one dimensional raster scan. This is typically accomplished by scanning the length of the interferometer reference arm. An axicon has the property each axial location of the focus corresponds to a unique annulus at the input aperture of the axicon (see FIG. 3). This relationship could allow the reference arm length scanning to be replaced by scanning an annulus of illumination at the axicon aperture.


Regardless of how the axial dimension is scanned, to obtain an image a scan of another axis must be performed. This second scanning dimension is usually performed at a slower rate. Methods of accomplishing this slow scanning of the secondary axis include moving the sample arm optics, including the optical fiber, collimating lens and axicon, in the y direction (see FIG. 4B), rotating the entire probe around the optical fiber axis (see FIG. 4C) or angularly deflecting the line focus in the x-y plane (see FIG. 4D). See, (G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, Opt. Lett. 21, 543 (1996)) and (S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, Opt. Lett. 22, 1618 (1997)). Both linear motion along the y or z axis and rotation are easily accomplished in a compact probe by use of piezoelectric transducers or mechanical or pneumatic actuators.



FIG. 5 is a schematic of an alternative apparatus used to perform high transverse resolution ranging with a high depth of field. The system comprises a light source, beam redirecting element, detector, and an optical element. The optical element provides line focus and an array of focused spots on the sample.



FIG. 6 shows an offset fiber array are directed by the mirror through the objective and used to displace focused (imaged) spots in the longitudinal and transverse dimensions on the sample. The spots are scanned (scan direction being indicated by the horizontal line and arrows) to create a multidimensional image.



FIG. 7 is a schematic of a fiber array, microlens array and diffraction grating (array of mirrors) used to displace focused (imaged) spots in the longitudinal and transverse dimensions on the sample. Light from the light source (not shown) passes through the fibers in the array, and through the microlens array to the diffraction grating. Light directed by the grating passes through the objective lens and focused on the sample. The spots are scanned (scan direction being indicated by the horizontal line and arrows) to create a multidimensional image.


An alternative means for providing a high transverse resolution over a large depth of focus is the use of a filter in the back plane of the imaging lens. This technique, commonly termed apodization, allows the production of either a line focus as in the axicon or a multitude of focused spots positioned along the longitudinal dimension. The use of annular apodization to shape a beam focus has been previously described in the literature (M. Martinez-Corral, P. Andres, J. Ojeda-Castaneda, G. Saavedra, Opt. Comm. 119, 491 (1995)). However, use of apodization to create high transverse resolution over a large focal distance, where the longitudinal data is further resolved by OCT has not been previously described.



FIG. 8 shows an embodiment of an apodized pupil plane filter.



FIG. 9 shows a schematic of the use of an apodizer in front of an imaging lens the output of which is focused in the axial line.


Method of Imaging


The present invention also provides a method of obtaining a high resolution and high depth of focus image of a sample, comprising:

    • a. providing a light source;
    • b. directing light from said light source through an optical element to a sample by a light directing means, the optical element having a transverse resolution of less than about 5 μm and a depth of focus of greater than about 50 μm;
    • c. receiving reflected light from the sample back through said optical element;
    • d. directing said reflected light to a detector; and,
    • e. processing the data from the detector to produce an image


An advantage of the present invention is that the OCT imaging apparatus is capable of enabling sub-cellular resolution imaging along transverse and longitudinal dimensions of the sample in a compact, optical fiber-based package. Other advantages include the potential compact size and low cost of axial line focus optical elements such as the apodizer-lens combination or axicon.


Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims. It should further be noted that any patents, applications and publications referred to herein are incorporated by reference in their entirety.

Claims
  • 1. An apparatus for imaging at least a portion of a sample, comprising: a first interferometric arrangement providing an electro-magnetic radiation; anda second arrangement configured to receive the electro-magnetic radiation, and configured to generate a resultant electro-magnetic intensity distribution,wherein, along a particular direction, the intensity distribution is approximately constant for at least a predetermined distance, and wherein a wavelength of the electro-magnetic radiation remains approximately the same for at least the predetermined distance at which the intensity distribution is approximately constant.
  • 2. The apparatus according to claim 1, wherein the second arrangement is an optical arrangement which is configured to optically image the sample.
  • 3. The apparatus according to claim 1, wherein the second arrangement is an axicon lens.
  • 4. The apparatus according to claim 1, wherein the second arrangement is a defractive optical element.
  • 5. The apparatus according to claim 1, wherein the second arrangement is an annulus.
  • 6. The apparatus according to claim 1, wherein the second arrangement includes a combination of a diffractive element and a lens.
  • 7. The apparatus according to claim 1, wherein the second arrangement includes at least one of an apodized lens or a diffractive element.
  • 8. The apparatus according to claim 1, wherein the intensity distribution is a Bessel beam.
  • 9. The apparatus according to claim 1, further comprising a third arrangement adapted to cooperate with the second arrangement so as to translate at least one of the intensity distribution and the sample.
  • 10. The apparatus according to claim 9, wherein the translation of the at least one of the intensity distribution and the sample produces an image which has 2 or more dimensions.
  • 11. The apparatus according to claim 1, wherein the intensity distribution having a transverse resolution of a full width at half maximum is less than 10 μm.
  • 12. The apparatus according to claim 1, wherein the predetermined distance is at least 50 μm.
  • 13. The apparatus according to claim 1, wherein at least a portion of the intensity distribution includes a non-Gaussian distribution.
  • 14. The apparatus according to claim 1, further comprising a fourth arrangement configured to received information that is associated with the intensity distribution, and display an image based on the received information.
  • 15. An apparatus for imaging at least a portion of a sample, comprising: a first interferometric arrangement providing an electro-magnetic radiation; anda second arrangement configured to receive the electro-magnetic radiation, and configured to generate a resultant electro-magnetic intensity distribution,wherein, along a particular direction, widths of at least two sections of the intensity distribution are approximately the same, and wherein a wavelength of the electro-magnetic radiation remains approximately the same for at least the at least two sections of the intensity distribution.
  • 16. The apparatus according to claim 15, wherein the particular direction is approximately a vertical direction.
  • 17. The apparatus according to claim 15, wherein the second arrangement includes a plurality of lenses.
  • 18. The apparatus according to claim 15, wherein one of the sections is at least partially above another one of the sections.
  • 19. The apparatus according to claim 15, wherein the intensity distribution having a transverse resolution of a full width at half maximum is less than 10 μm.
  • 20. The apparatus according to claim 15, wherein at least a portion of the intensity distribution includes a non-Gaussian distribution.
  • 21. The apparatus according to claim 20, wherein a translation of the at least one of the intensity distribution or the sample produces an image which has 2 or more dimensions.
  • 22. The apparatus according to claim 15, further comprising a third arrangement adapted to cooperate with the second arrangement so as to translate at least one of the intensity distribution and the sample.
  • 23. A method for imaging at least a portion of a sample, comprising: a) providing an electro-magnetic radiation using an interferometric arrangement;b) receiving the electro-magnetic radiation and generating a resultant electro-magnetic intensity distribution, wherein, along a particular direction, the intensity distribution is approximately constant for at least a predetermined distance, and wherein a wavelength of the electro-magnetic radiation remains approximately the same for at least the predetermined distance at which the intensity distribution is approximately constant.
  • 24. The method according to claim 23, wherein step (b) is performed using an optical arrangement which is configured to optically image the sample.
  • 25. The method according to claim 23, wherein step (b) is performed using an axicon lens.
  • 26. The method according to claim 23, wherein step (b) is performed using a defractive optical element.
  • 27. The method according to claim 23, wherein step (b) is performed using an annulus.
  • 28. The method according to claim 23, wherein step (b) is performed using a combination of a diffractive element and a lens.
  • 29. The method according to claim 23, wherein step (b) is performed using at least one of an apodized lens or a diffractive element.
  • 30. The method according to claim 23, wherein the intensity distribution is a Bessel beam.
  • 31. The method according to claim 23, further comprising translating at least one of the intensity distribution and the sample.
  • 32. The method according to claim 31, wherein the translation of the at least one of the intensity distribution and the sample produces an image which has 2 or more dimensions.
  • 33. The method according to claim 23, wherein the intensity distribution having a transverse resolution of a full width at half maximum is less than 10 μm.
  • 34. The method according to claim 23, wherein the predetermined distance is at least 50 μm.
  • 35. The method according to claim 23, wherein at least a portion of the intensity distribution includes a non-Gaussian distribution.
  • 36. The method according to claim 23, further comprising the steps of receiving information that is associated with the intensity distribution; and displaying an image based on the received information.
  • 37. A method for imaging at least a portion of a sample, comprising: providing an electro-magnetic radiation using an interferometric arrangement; andreceiving the electro-magnetic radiation, and generating a resultant electro-magnetic intensity distribution, wherein, along a particular direction, widths of at least two sections of the intensity distribution are approximately the same, and wherein a wavelength of the electro-macinetic radiation remains approximately the same for at least the at least two sections of the intensity distribution.
  • 38. The method according to claim 37, wherein step (b) is performed using an optical arrangement which is configured to optically image the sample.
  • 39. The method according to claim 37, wherein step (b) is performed using an axicon lens.
  • 40. The method according to claim 37, wherein step (b) is performed using a defractive optical element.
  • 41. The method according to claim 37, wherein step (b) is performed using an annulus.
  • 42. The method according to claim 37, wherein step (b) is performed using a combination of a diffractive element and a lens.
  • 43. The method according to claim 37, wherein step (b) is performed using at least one of an apodized lens or a diffractive element.
  • 44. The method according to claim 37, wherein the intensity distribution is a Bessel beam.
  • 45. The method according to claim 37, further comprising translating at least one of the intensity distribution and the sample.
  • 46. The method according to claim 37, wherein the translation of the at least one of the intensity distribution and the sample produces an image which has 2 or more dimensions.
  • 47. The method according to claim 37, wherein the intensity distribution having a transverse resolution of a full width at half maximum is less than 10 μm.
  • 48. The method according to claim 37, wherein the predetermined distance is at least 50 μm.
  • 49. The method according to claim 37, wherein at least a portion of the intensity distribution includes a non-Gaussian distribution.
  • 50. The method according to claim 37, further comprising the steps of receiving information that is associated with the intensity distribution; and displaying an image based on the received information.
  • 51. An apparatus for imaging at least a portion of a sample, comprising: a first interferometric arrangement providing an electro-magnetic radiation; anda second arrangement provided within the first interferometric arrangement and configured to receive the electro-magnetic radiation, and configured to generate a resultant electro-magnetic intensity distribution,wherein the second arrangement including a third arrangement which is configured to at least partially block at least one first portion of the electro-magnetic radiation, the third arrangement allowing at least one second portion of the electro-magnetic radiation to be provided in a center of the electro-magnetic radiation to pass there through.
  • 52. The apparatus according to claim 51, wherein the third arrangement is a masking arrangement which includes a section in a center thereof which allows the at least one second portion to pass there through.
  • 53. An apparatus for imaging at least a portion of a sample, comprising: a first interferometric arrangement providing an electro-magnetic radiation; anda second arrangement configured to receive the electro-magnetic radiation, and configured to generate a resultant electro-magnetic intensity distribution,wherein, along a particular direction, a plurality of focal points of the intensity distribution are generated, andwherein a wavelength of the electro-magnetic radiation remains approximately the same along the particular direction for the focal points.
  • 54. The apparatus according to claim 53, wherein, along a particular direction, the intensity distribution is approximately constant for at least a predetermined distance.
  • 55. The apparatus according to claim 53, wherein the second arrangement includes a plurality of transceiver channels.
  • 56. The apparatus according to claim 55, wherein each of the channels is situated in an individual waveguide.
  • 57. The apparatus according to claim 56, wherein at least one of the waveguides is a optical fiber.
  • 58. The apparatus according to claim 56, wherein the second arrangement includes a plurality of lens, each of the lens being in an optical communication with a separate one of the waveguides.
  • 59. A method for imaging at least a portion of a sample, comprising: a) providing an electro-magnetic radiation using an interferometric arrangement;b) at a further arrangement that is provided within the first interferometric arrangement, receiving the electro-magnetic radiation and generating a resultant electro-magnetic intensity distribution, wherein at least one first portion of the electro-magnetic radiation is at least partially blocked by a particular arrangement, and wherein at least one second portion of the electro-magnetic radiation provided in a center of the electro-magnetic radiation is allowed to pass through the particular arrangement.
  • 60. A method for imaging at least a portion of a sample, comprising: providing an electro-magnetic radiation using an interferometric arrangement; andreceiving the electro-magnetic radiation, and generating a resultant electro-magnetic intensity distribution, wherein, along a particular direction, a plurality of focal points of the intensity distribution are generated, and wherein a wavelength of the electro-magnetic radiation remains approximately the same along the particular direction for the focal points.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the priority benefit of co-pending U.S. Provisional Application No. 60/347,528 filed Jan. 11, 2002, which is hereby incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US03/00699 1/10/2003 WO 00 7/9/2004
Publishing Document Publishing Date Country Kind
WO03/060423 7/24/2003 WO A
US Referenced Citations (161)
Number Name Date Kind
2339754 Brace Jan 1944 A
4295738 Meltz et al. Oct 1981 A
4300816 Snitzer et al. Nov 1981 A
4585349 Gross et al. Apr 1986 A
4601036 Faxvog et al. Jul 1986 A
4631498 Cutler Dec 1986 A
4770492 Levin et al. Sep 1988 A
4868834 Fox et al. Sep 1989 A
4925302 Cutler May 1990 A
4928005 Lefèvre et al. May 1990 A
4965441 Picard Oct 1990 A
4993834 Carlhoff et al. Feb 1991 A
5039193 Snow et al. Aug 1991 A
5040889 Keane Aug 1991 A
5045936 Lobb et al. Sep 1991 A
5046501 Crilly Sep 1991 A
5065331 Vachon et al. Nov 1991 A
5120953 Harris Jun 1992 A
5127730 Brelje et al. Jul 1992 A
5197470 Helfer et al. Mar 1993 A
5202745 Sorin et al. Apr 1993 A
5248876 Kerstens et al. Sep 1993 A
5262644 Maguire Nov 1993 A
5291885 Taniji et al. Mar 1994 A
5293872 Alfano et al. Mar 1994 A
5293873 Fang Mar 1994 A
5304810 Amos Apr 1994 A
5305759 Kaneko et al. Apr 1994 A
5317389 Hochberg et al. May 1994 A
5321501 Swanson et al. Jun 1994 A
5353790 Jacques et al. Oct 1994 A
5383467 Auer et al. Jan 1995 A
5419323 Kittrell et al. May 1995 A
5439000 Gunderson et al. Aug 1995 A
5441053 Lodder et al. Aug 1995 A
5450203 Penkethman Sep 1995 A
5459325 Hueton et al. Oct 1995 A
5459570 Swanson et al. Oct 1995 A
5465147 Swanson Nov 1995 A
5486701 Norton et al. Jan 1996 A
5491524 Hellmuth et al. Feb 1996 A
5491552 Knuttel Feb 1996 A
5526338 Hasman et al. Jun 1996 A
5562100 Kittrell et al. Oct 1996 A
5565986 Knuttel Oct 1996 A
5583342 Ichie Dec 1996 A
5590660 MacAulay et al. Jan 1997 A
5600486 Gal et al. Feb 1997 A
5601087 Richards-Kortum et al. Feb 1997 A
5623336 Raab et al. Apr 1997 A
5697373 Gunderson et al. Dec 1997 A
5698397 Zarling et al. Dec 1997 A
5710630 Essenpreis et al. Jan 1998 A
5719399 Alfano et al. Feb 1998 A
5735276 Lemelson Apr 1998 A
5748598 Swanson et al. May 1998 A
5784352 Swanson et al. Jul 1998 A
5785651 Kuhn et al. Jul 1998 A
5795295 Hellmuth et al. Aug 1998 A
5803082 Stapleton et al. Sep 1998 A
5807261 Benaron et al. Sep 1998 A
5817144 Gregory Oct 1998 A
5840023 Oraevsky et al. Nov 1998 A
5842995 Mahadevan-Jansen et al. Dec 1998 A
5843000 Nishioka et al. Dec 1998 A
5847827 Fercher Dec 1998 A
5865754 Sevick-Muraca et al. Feb 1999 A
5871449 Brown Feb 1999 A
5877856 Fercher Mar 1999 A
5887009 Mandella et al. Mar 1999 A
5892583 Li Apr 1999 A
5920373 Bille Jul 1999 A
5920390 Farahi et al. Jul 1999 A
5921926 Rolland et al. Jul 1999 A
5949929 Hamm Sep 1999 A
5951482 Winston et al. Sep 1999 A
5956355 Swanson et al. Sep 1999 A
5968064 Selmon et al. Oct 1999 A
5983125 Alfano et al. Nov 1999 A
5987346 Benaron et al. Nov 1999 A
5991697 Nelson et al. Nov 1999 A
5994690 Kulkarni et al. Nov 1999 A
6002480 Izatt et al. Dec 1999 A
6004314 Wei et al. Dec 1999 A
6006128 Izatt et al. Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6033721 Nassuphis Mar 2000 A
6044288 Wake et al. Mar 2000 A
6048742 Weyburne et al. Apr 2000 A
6053613 Wei et al. Apr 2000 A
6069698 Ozawa et al. May 2000 A
6091496 Hill Jul 2000 A
6091984 Perelman et al. Jul 2000 A
6111645 Tearney et al. Aug 2000 A
6117128 Gregory Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6134003 Tearney et al. Oct 2000 A
6134010 Zavislan Oct 2000 A
6141577 Rolland et al. Oct 2000 A
6151522 Alfano et al. Nov 2000 A
6159445 Klaveness et al. Dec 2000 A
6160826 Swanson et al. Dec 2000 A
6161031 Hochmann et al. Dec 2000 A
6166373 Mao Dec 2000 A
6175669 Colston et al. Jan 2001 B1
6185271 Kinsinger Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6193676 Winston et al. Feb 2001 B1
6198956 Dunne Mar 2001 B1
6201989 Whitehead et al. Mar 2001 B1
6208415 De Boer et al. Mar 2001 B1
6208887 Clarke Mar 2001 B1
6249349 Lauer Jun 2001 B1
6263234 Engelhardt et al. Jul 2001 B1
6272376 Marcu et al. Aug 2001 B1
6282011 Tearney et al. Aug 2001 B1
6308092 Hoyns Oct 2001 B1
6324419 Guzelsu et al. Nov 2001 B1
6341036 Tearney et al. Jan 2002 B1
6353693 Kano et al. Mar 2002 B1
6377349 Fercher Apr 2002 B1
6384915 Everett et al. May 2002 B1
6393312 Hoyns May 2002 B1
6394964 Sievert, Jr. et al. May 2002 B1
6421164 Tearney et al. Jul 2002 B2
6445944 Ostrovsky Sep 2002 B1
6463313 Winston et al. Oct 2002 B1
6469846 Ebizuka et al. Oct 2002 B2
6485413 Boppart et al. Nov 2002 B1
6485482 Belef Nov 2002 B1
6501551 Tearney et al. Dec 2002 B1
6549804 Osorio et al. Apr 2003 B1
6552796 Magnin et al. Apr 2003 B2
6558324 Von Behren et al. May 2003 B1
6564087 Pitris et al. May 2003 B1
6564089 Izatt et al. May 2003 B2
6615071 Casscells, III et al. Sep 2003 B1
6622732 Constantz Sep 2003 B2
6680780 Fee Jan 2004 B1
6685885 Nolte et al. Feb 2004 B2
6687007 Meigs Feb 2004 B1
6687010 Horii et al. Feb 2004 B1
6806963 Wälti et al. Oct 2004 B1
6816743 Moreno et al. Nov 2004 B2
6980299 de Boer Dec 2005 B1
7006231 Ostrovsky et al. Feb 2006 B2
20010047137 Moreno et al. Nov 2001 A1
20020016533 Marchitto et al. Feb 2002 A1
20020085209 Mittleman et al. Jul 2002 A1
20020122246 Tearney et al. Sep 2002 A1
20020161357 Rox et al. Oct 2002 A1
20020163622 Magnin et al. Nov 2002 A1
20020196446 Roth et al. Dec 2002 A1
20020198457 Tearney et al. Dec 2002 A1
20030023153 Izatt et al. Jan 2003 A1
20030026735 Nolte et al. Feb 2003 A1
20030135101 Webler Jul 2003 A1
20030171691 Casscells, III et al. Sep 2003 A1
20030236443 Cespedes et al. Dec 2003 A1
20040150829 Koch et al. Aug 2004 A1
20040166593 Nolte et al. Aug 2004 A1
Foreign Referenced Citations (27)
Number Date Country
4309056 Sep 1994 DE
1 9542955 May 1997 DE
0110201 Jun 1984 EP
0251062 Jan 1988 EP
1426799 Jun 2004 EP
2209221 May 1989 GB
4135550 May 1992 JP
4135551 May 1992 JP
9219930 Nov 1992 WO
9303672 Mar 1993 WO
9533971 Dec 1995 WO
9732182 Sep 1997 WO
9814132 Apr 1998 WO
9835203 Aug 1998 WO
9848838 Nov 1998 WO
9944089 Sep 1999 WO
WO 9944089 Sep 1999 WO
9957507 Nov 1999 WO
0058766 Oct 2000 WO
0138820 May 2001 WO
0142735 Jun 2001 WO
0236015 May 2002 WO
0238040 May 2002 WO
0254027 Jul 2002 WO
03020119 Mar 2003 WO
0 3062802 Jul 2003 WO
2004105598 Dec 2004 WO
Related Publications (1)
Number Date Country
20050018200 A1 Jan 2005 US
Provisional Applications (1)
Number Date Country
60347528 Jan 2002 US