The present invention relates to apparatus for imaging tissue samples using optical coherence tomography and incorporating an optical element to improve transverse resolution and depth of focus.
Currently, the use of optical coherence tomography (OCT) is limited to the visualization of architectural morphological structures within biological tissues. The imaging of sub-cellular features with OCT has not been well demonstrated because of the relatively poor transverse resolution required to preserve depth of focus. The capability to perform high transverse resolution, large depth of field cross-sectional OCT imaging would permit application to early diagnosis of epithelial cancers and other biomedical imaging diagnostics that require sub-cellular level resolution.
To date, there are no known optical coherence tomography configurations that can perform high transverse resolution imaging over a large depth of field. It would be desirable to have a simple device for performing high transverse resolution, large depth of field optical coherence tomography. In addition, by allowing light delivery through a single optical fiber, this device would be also be easily incorporated into catheters or endoscopes. These properties would make this device an enabling technology for performing optical coherence tomography in applications requiring sub-cellular resolution imaging at remote sites within biological systems.
The invention is illustrated in the drawings in which like reference characters designate the same or similar parts throughout the figures of which:
Definitions
“Axicon” shall mean any optic element (or combination thereof) capable of generating an axial line focus. Refractive, diffractive, and reflective axicons have been demonstrated. See, J. H. McLeod, J. Opt. Soc. Am 44, 592 (1954); J. H. McLeod, J. Opt. Soc. Am 50, 166 (1960); and J. R. Rayces, J. Opt. Soc. Am. 48, 576 (1958).
“Depth of focus” shall mean the longitudinal distance over which the beam diameter increases by a factor ζ (typically ζ=sqrt(2) or 2). For a Gaussian beam, the sqrt(2) depth of focus is
For a typical Gaussian spot size (1/e2 diameter) of d=5 μm, and a wavelength of 830 nm, the depth of focus is approximately 48 μm. The depth of focus for a uniform beam (3 dB full-width-half-maximum intensity response for a planar reflector moved through the longitudinal plane) may be defined as
For a NA=0.2, which produces a spot size of 5 μm, the depth of focus for a uniform beam is approximately 17 μm at 830 nm.
“Longitudinal” shall mean substantially parallel to the optical axis.
“Longitudinal resolution” shall mean the minimum distance, Δz, in the longitudinal direction that two points may be separated while still being differentiated by an optical detection means.
“Spot size” shall mean the transverse diameter of a focused spot. For a Gaussian beam, the spot size is defined as transverse width of the spot where the intensity at the focus has decreased by a factor of 1/e2. For a collimated Gaussian beam, the spot size, d, is defined as
where D is the beam diameter at the lens, ƒ is the focal length of the lens and λ is the wavelength. For a flat top or uniform beam, the spot radius is defined as the transverse position of the first zero of the Airy disk,
and n is the refractive index of the immersion medium.
“Transverse” shall mean substantially perpendicular to the optical axis.
“Transverse resolution” shall mean the minimum distance, Δr, in the transverse direction that two points may be separated while still being differentiated by an optical detection means. One commonly used approximation is Δr=d (for a Gaussian beam) or Δr=w (for a uniform beam).
Basic Principle
An axial line focus, with a narrow transverse beam diameter and over a large length (or depth of focus), is generated. Used in conjunction with OCT, the diameter of the line focus determines the transverse resolution and the length determines the depth of field. As in standard OCT, the detection of light backreflected from sites along the axial focus is performed using a Michelson interferometer. When the light source has a finite spectral width, this configuration can be used to determine the axial location of the backreflection site. The axial resolution is determined by the coherence length of the light source.
Those of ordinary skill in the art will appreciate that there are a variety of known devices for generating a line focus. An axicon (reflective, transmissive, or diffractive optical element (“DOE”)) is an acceptable model known to those skilled in the art for this and will be the method that is used in the present invention to demonstrate use of OCT with an axial line focus to achieve high resolution imaging over large depths of field. It is to be understood that this method is illustrative and not intended to be the exclusive model. Other known models include, but are not limited to, multi-focal lenses, such as the Rayleigh-Wood lens (Optical Processing and Computing, H. H Arsenault, T. Szoplik, and B. Macukow eds., Academic Press Inc., San Diego, Calif., 1989), the use of chromatic aberration to produce an array of wavelength dependent foci along the longitudinal axis, and the like.
Resolution
The following section discusses the physical principles of a representative axicon that uses refraction, as shown in
where E2(R) is the intensity of the light incident on the axicon as a function of the radius R, λ is the wavelength of the light, and β is the half angle of the light transmitted through the axicon. The cone angle α is related to β and the depth of focus, zD, by Equations (2a) and (2b):
n Sin(α)=Sin(α+β), (2a)
zD=R(Cot(β)−Tan(α)), (2b)
where n is the refractive index of the axicon. The above equations can be used to determine the diameter of the axial line focus. For plane wave illumination the focus diameter is given by Equation (3):
In the case of reflective or diffractive axicons, Equation (1) is modified, but in all cases it is the diameter of the axial focus that determines the transverse resolution of the imaging system. A theme of the present invention is that the poor transverse resolution typical of current OCT systems can be improved by changing from a standard focusing geometry in which the focal volume (power distribution) is limited in both the transverse and the axial dimensions to one in which the focal volume is limited only in the transverse direction.
By combining the high transverse localization (and weak axial localization) of an axicon with OCT (see
where Δλ is the spectral width (full-width half maximum (“FWHM”))of the light source.
In a preferred embodiment, the optical element has a transverse resolution defined as Δr=d0 being in the range of about 0.5 μm to about 10 μm, more preferably less than or equal to about 5 μm. The optical element preferably has a Δz=zD of at least about 50 μm.
Image Formation
Regardless of how the axial dimension is scanned, to obtain an image a scan of another axis must be performed. This second scanning dimension is usually performed at a slower rate. Methods of accomplishing this slow scanning of the secondary axis include moving the sample arm optics, including the optical fiber, collimating lens and axicon, in the y direction (see
An alternative means for providing a high transverse resolution over a large depth of focus is the use of a filter in the back plane of the imaging lens. This technique, commonly termed apodization, allows the production of either a line focus as in the axicon or a multitude of focused spots positioned along the longitudinal dimension. The use of annular apodization to shape a beam focus has been previously described in the literature (M. Martinez-Corral, P. Andres, J. Ojeda-Castaneda, G. Saavedra, Opt. Comm. 119, 491 (1995)). However, use of apodization to create high transverse resolution over a large focal distance, where the longitudinal data is further resolved by OCT has not been previously described.
Method of Imaging
The present invention also provides a method of obtaining a high resolution and high depth of focus image of a sample, comprising:
An advantage of the present invention is that the OCT imaging apparatus is capable of enabling sub-cellular resolution imaging along transverse and longitudinal dimensions of the sample in a compact, optical fiber-based package. Other advantages include the potential compact size and low cost of axial line focus optical elements such as the apodizer-lens combination or axicon.
Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims. It should further be noted that any patents, applications and publications referred to herein are incorporated by reference in their entirety.
This application claims the priority benefit of co-pending U.S. Provisional Application No. 60/347,528 filed Jan. 11, 2002, which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/00699 | 1/10/2003 | WO | 00 | 7/9/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/060423 | 7/24/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2339754 | Brace | Jan 1944 | A |
4295738 | Meltz et al. | Oct 1981 | A |
4300816 | Snitzer et al. | Nov 1981 | A |
4585349 | Gross et al. | Apr 1986 | A |
4601036 | Faxvog et al. | Jul 1986 | A |
4631498 | Cutler | Dec 1986 | A |
4770492 | Levin et al. | Sep 1988 | A |
4868834 | Fox et al. | Sep 1989 | A |
4925302 | Cutler | May 1990 | A |
4928005 | Lefèvre et al. | May 1990 | A |
4965441 | Picard | Oct 1990 | A |
4993834 | Carlhoff et al. | Feb 1991 | A |
5039193 | Snow et al. | Aug 1991 | A |
5040889 | Keane | Aug 1991 | A |
5045936 | Lobb et al. | Sep 1991 | A |
5046501 | Crilly | Sep 1991 | A |
5065331 | Vachon et al. | Nov 1991 | A |
5120953 | Harris | Jun 1992 | A |
5127730 | Brelje et al. | Jul 1992 | A |
5197470 | Helfer et al. | Mar 1993 | A |
5202745 | Sorin et al. | Apr 1993 | A |
5248876 | Kerstens et al. | Sep 1993 | A |
5262644 | Maguire | Nov 1993 | A |
5291885 | Taniji et al. | Mar 1994 | A |
5293872 | Alfano et al. | Mar 1994 | A |
5293873 | Fang | Mar 1994 | A |
5304810 | Amos | Apr 1994 | A |
5305759 | Kaneko et al. | Apr 1994 | A |
5317389 | Hochberg et al. | May 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5353790 | Jacques et al. | Oct 1994 | A |
5383467 | Auer et al. | Jan 1995 | A |
5419323 | Kittrell et al. | May 1995 | A |
5439000 | Gunderson et al. | Aug 1995 | A |
5441053 | Lodder et al. | Aug 1995 | A |
5450203 | Penkethman | Sep 1995 | A |
5459325 | Hueton et al. | Oct 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5465147 | Swanson | Nov 1995 | A |
5486701 | Norton et al. | Jan 1996 | A |
5491524 | Hellmuth et al. | Feb 1996 | A |
5491552 | Knuttel | Feb 1996 | A |
5526338 | Hasman et al. | Jun 1996 | A |
5562100 | Kittrell et al. | Oct 1996 | A |
5565986 | Knuttel | Oct 1996 | A |
5583342 | Ichie | Dec 1996 | A |
5590660 | MacAulay et al. | Jan 1997 | A |
5600486 | Gal et al. | Feb 1997 | A |
5601087 | Richards-Kortum et al. | Feb 1997 | A |
5623336 | Raab et al. | Apr 1997 | A |
5697373 | Gunderson et al. | Dec 1997 | A |
5698397 | Zarling et al. | Dec 1997 | A |
5710630 | Essenpreis et al. | Jan 1998 | A |
5719399 | Alfano et al. | Feb 1998 | A |
5735276 | Lemelson | Apr 1998 | A |
5748598 | Swanson et al. | May 1998 | A |
5784352 | Swanson et al. | Jul 1998 | A |
5785651 | Kuhn et al. | Jul 1998 | A |
5795295 | Hellmuth et al. | Aug 1998 | A |
5803082 | Stapleton et al. | Sep 1998 | A |
5807261 | Benaron et al. | Sep 1998 | A |
5817144 | Gregory | Oct 1998 | A |
5840023 | Oraevsky et al. | Nov 1998 | A |
5842995 | Mahadevan-Jansen et al. | Dec 1998 | A |
5843000 | Nishioka et al. | Dec 1998 | A |
5847827 | Fercher | Dec 1998 | A |
5865754 | Sevick-Muraca et al. | Feb 1999 | A |
5871449 | Brown | Feb 1999 | A |
5877856 | Fercher | Mar 1999 | A |
5887009 | Mandella et al. | Mar 1999 | A |
5892583 | Li | Apr 1999 | A |
5920373 | Bille | Jul 1999 | A |
5920390 | Farahi et al. | Jul 1999 | A |
5921926 | Rolland et al. | Jul 1999 | A |
5949929 | Hamm | Sep 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5956355 | Swanson et al. | Sep 1999 | A |
5968064 | Selmon et al. | Oct 1999 | A |
5983125 | Alfano et al. | Nov 1999 | A |
5987346 | Benaron et al. | Nov 1999 | A |
5991697 | Nelson et al. | Nov 1999 | A |
5994690 | Kulkarni et al. | Nov 1999 | A |
6002480 | Izatt et al. | Dec 1999 | A |
6004314 | Wei et al. | Dec 1999 | A |
6006128 | Izatt et al. | Dec 1999 | A |
6010449 | Selmon et al. | Jan 2000 | A |
6033721 | Nassuphis | Mar 2000 | A |
6044288 | Wake et al. | Mar 2000 | A |
6048742 | Weyburne et al. | Apr 2000 | A |
6053613 | Wei et al. | Apr 2000 | A |
6069698 | Ozawa et al. | May 2000 | A |
6091496 | Hill | Jul 2000 | A |
6091984 | Perelman et al. | Jul 2000 | A |
6111645 | Tearney et al. | Aug 2000 | A |
6117128 | Gregory | Sep 2000 | A |
6120516 | Selmon et al. | Sep 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6134010 | Zavislan | Oct 2000 | A |
6141577 | Rolland et al. | Oct 2000 | A |
6151522 | Alfano et al. | Nov 2000 | A |
6159445 | Klaveness et al. | Dec 2000 | A |
6160826 | Swanson et al. | Dec 2000 | A |
6161031 | Hochmann et al. | Dec 2000 | A |
6166373 | Mao | Dec 2000 | A |
6175669 | Colston et al. | Jan 2001 | B1 |
6185271 | Kinsinger | Feb 2001 | B1 |
6191862 | Swanson et al. | Feb 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6198956 | Dunne | Mar 2001 | B1 |
6201989 | Whitehead et al. | Mar 2001 | B1 |
6208415 | De Boer et al. | Mar 2001 | B1 |
6208887 | Clarke | Mar 2001 | B1 |
6249349 | Lauer | Jun 2001 | B1 |
6263234 | Engelhardt et al. | Jul 2001 | B1 |
6272376 | Marcu et al. | Aug 2001 | B1 |
6282011 | Tearney et al. | Aug 2001 | B1 |
6308092 | Hoyns | Oct 2001 | B1 |
6324419 | Guzelsu et al. | Nov 2001 | B1 |
6341036 | Tearney et al. | Jan 2002 | B1 |
6353693 | Kano et al. | Mar 2002 | B1 |
6377349 | Fercher | Apr 2002 | B1 |
6384915 | Everett et al. | May 2002 | B1 |
6393312 | Hoyns | May 2002 | B1 |
6394964 | Sievert, Jr. et al. | May 2002 | B1 |
6421164 | Tearney et al. | Jul 2002 | B2 |
6445944 | Ostrovsky | Sep 2002 | B1 |
6463313 | Winston et al. | Oct 2002 | B1 |
6469846 | Ebizuka et al. | Oct 2002 | B2 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6485482 | Belef | Nov 2002 | B1 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6549804 | Osorio et al. | Apr 2003 | B1 |
6552796 | Magnin et al. | Apr 2003 | B2 |
6558324 | Von Behren et al. | May 2003 | B1 |
6564087 | Pitris et al. | May 2003 | B1 |
6564089 | Izatt et al. | May 2003 | B2 |
6615071 | Casscells, III et al. | Sep 2003 | B1 |
6622732 | Constantz | Sep 2003 | B2 |
6680780 | Fee | Jan 2004 | B1 |
6685885 | Nolte et al. | Feb 2004 | B2 |
6687007 | Meigs | Feb 2004 | B1 |
6687010 | Horii et al. | Feb 2004 | B1 |
6806963 | Wälti et al. | Oct 2004 | B1 |
6816743 | Moreno et al. | Nov 2004 | B2 |
6980299 | de Boer | Dec 2005 | B1 |
7006231 | Ostrovsky et al. | Feb 2006 | B2 |
20010047137 | Moreno et al. | Nov 2001 | A1 |
20020016533 | Marchitto et al. | Feb 2002 | A1 |
20020085209 | Mittleman et al. | Jul 2002 | A1 |
20020122246 | Tearney et al. | Sep 2002 | A1 |
20020161357 | Rox et al. | Oct 2002 | A1 |
20020163622 | Magnin et al. | Nov 2002 | A1 |
20020196446 | Roth et al. | Dec 2002 | A1 |
20020198457 | Tearney et al. | Dec 2002 | A1 |
20030023153 | Izatt et al. | Jan 2003 | A1 |
20030026735 | Nolte et al. | Feb 2003 | A1 |
20030135101 | Webler | Jul 2003 | A1 |
20030171691 | Casscells, III et al. | Sep 2003 | A1 |
20030236443 | Cespedes et al. | Dec 2003 | A1 |
20040150829 | Koch et al. | Aug 2004 | A1 |
20040166593 | Nolte et al. | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
4309056 | Sep 1994 | DE |
1 9542955 | May 1997 | DE |
0110201 | Jun 1984 | EP |
0251062 | Jan 1988 | EP |
1426799 | Jun 2004 | EP |
2209221 | May 1989 | GB |
4135550 | May 1992 | JP |
4135551 | May 1992 | JP |
9219930 | Nov 1992 | WO |
9303672 | Mar 1993 | WO |
9533971 | Dec 1995 | WO |
9732182 | Sep 1997 | WO |
9814132 | Apr 1998 | WO |
9835203 | Aug 1998 | WO |
9848838 | Nov 1998 | WO |
9944089 | Sep 1999 | WO |
WO 9944089 | Sep 1999 | WO |
9957507 | Nov 1999 | WO |
0058766 | Oct 2000 | WO |
0138820 | May 2001 | WO |
0142735 | Jun 2001 | WO |
0236015 | May 2002 | WO |
0238040 | May 2002 | WO |
0254027 | Jul 2002 | WO |
03020119 | Mar 2003 | WO |
0 3062802 | Jul 2003 | WO |
2004105598 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050018200 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60347528 | Jan 2002 | US |