Apparatus and method for machining of hard metals with reduced detrimental white layer effect

Information

  • Patent Grant
  • 8220370
  • Patent Number
    8,220,370
  • Date Filed
    Tuesday, January 21, 2003
    21 years ago
  • Date Issued
    Tuesday, July 17, 2012
    12 years ago
Abstract
An apparatus and a method are disclosed for reducing a thickness of a thermomechanically-affected layer on an as-machined surface of a hard metal workpiece being machined by a hard cutting tool exerting a thermomechanical load on a surface of the workpiece. The method involves reducing the thermomechanical load on the surface of the workpiece, and the apparatus includes a means for reducing the thermomechanical load on the surface of the workpiece.
Description
BACKGROUND OF THE INVENTION

The present invention relates to the field of machining of hard metallic materials by cutting (e.g., shaping parts by removing excess material in the form of chips) with hard cutting tools, and more particularly to machining methods that reduce the thickness of a thermomechanically-affected layer (e.g., white layer) on as-machined surfaces of hard metal workpieces and/or mitigate the detrimental effects in machined surfaces of hard metal workplaces due to the thermomechanical load of a hard cutting tool machining the workpiece.


Specifically, the invention concerns machining of hard metallic parts, characterized by the surface hardness exceeding 42 Rockwell on Scale C, with hard cutting tools, characterized by the edge hardness exceeding 1500 Vickers. Machining of hard or hardened metallic parts brings about significant cost savings to the manufacturing industries through the reduction of heat-treating and machining steps in the production cycle and minimizing the extent of slow, finish-grinding operations. With the advent of hard, ceramic cutting tools and tool coatings, which include alumina (Al2O3), cubic boron nitride (CBN) and many other advanced materials, machining of hard metals has become feasible and includes outer diameter (OD) turning, inner diameter turning (boring), grooving, parting, facing, milling, drilling, and numerous other cutting operations.


A significant limitation of the widespread use of hard metal machining is the so-called “white layer” effect, a microscopic alteration of the as-machined surface of a workpiece, which effect is produced in response to an extremely high thermomechanical load exerted at the as-machined surface by the cutting tool. Although not fully understood, the thermomechanically-affected workpiece surface comprising an etching-resistant white layer is undesired because of associated tensile stresses, e.g., reduced fatigue-resistance, lower fracture toughness, and/or reduced wear resistance of parts produced. See, B. J. Griffins, White Layer Formation at Machined Surfaces and Their Relationship to White Layer Formations at Wom Surfaces, J. of Tribology, April 1985, Vol. 107/165.


It has been reported that a sharper and/or not worn cutting edge, as well as the conventional flooding of a cutting tool with a water-based, emulsified oil coolant, contribute to the reduction in the detrimental tensile stresses and white layer. W. Konig, M. Klinger, and R. Link, Machining Hard Materials with Geometrically Defined Cutting Edges—Field of Applications and Limitations, Annals of CIRP 1990, Vol. 57, pp. 61-64. Hard machining with conventional flood cooling has been reexamined but found to be ineffective. H. K. Tonshoff and H. G. Wobker, Potential and Limitations of Hard Turning, 1st Int. Machining and Grinding Conf., Sep. 12-14, 1995, Dearborn, Mich., SME Technical Paper MR95-215. Moreover, sharp-finished cutting edges easily fracture in the case of inexpensive, Al2O3-based tools, leaving expensive CBN tools as the only current option. It has been noted that the use of coolants in hard machining should be avoided since cooling accelerates the edge wear and shortens overall life of CBN tools used for finish-hardturning. T. J. Broskea, PCBN Tool Failure Mode Analysis, Intertech 2000, Vancouver B. C., Canada, Jul. 17-21, 2000. Numerous other publications and machining textbooks have indicated that the use of coolants with inexpensive Al2O3 tools brings about a rapid fracture. Using non-cooled CBN tools (dry turning), the effect of cutting speed on white layer thickness during hardturning of a popular hardened bearing steel 52100 has been examined. Y. K. Chou and C. J. Evans, Process Effects on White Layer Formation in Hard Turning, Trans. of NAMRI/SME, Vol. XXVI, 1998, pp. 117-122. Results showed that only relatively low cutting speeds, translating into reduced productivity rates, assure an acceptably thin white layer. Thus, the machining technology of today offers no solution for making hard, white layer-free parts quickly and at reduced costs.


It is desired to have an apparatus and a method which minimize the alteration of workpiece surfaces during hard machining, and more specifically, which eliminate or minimize tensile and/or fluctuating surface stresses and etch-resistant white layer (i.e., the detrimental effects of “white layer”).


It is further desired to have an apparatus and method which produce better parts having less of the detrimental effects of a thermomechanically-affected layer (e.g., “white layer”) and which do so faster, at lower costs, and with less expensive tools.


BRIEF SUMMARY OF THE INVENTION

Applicants' invention is an apparatus and a method for reducing a thickness of a thermomechanically-affected layer on an as-machined surface of a hard metal workpiece, and an apparatus and a method for mitigating a detrimental effect of a thermomechanical load in a machined surface of a hard metal workpiece. Another aspect of the invention is an apparatus and a method for machining a hard metal workpiece using the aforesaid apparatuses and methods. Other aspects of the invention are the workpieces machined by the apparatus and method for machining.


A first embodiment of the method for reducing a thickness of a thermomechanically-affected layer on an as-machined surface of a hard metal workpiece being machined by a hard cutting tool exerting a thermomechanical load on a surface of the workpiece includes reducing the thermomechanical load.


There are several variations of the first embodiment of that method. In one variation, the hard metal workpiece includes an iron-containing alloy. In another variation, the hard cutting tool is made at least in part of a material selected from a group containing a ceramic compound; a ceramic-ceramic composite; a ceramic-metal composite; a diamond-like, metal-free material; an alumina-based ceramic; a cubic boron nitride-based ceramic material; a tungsten carbide-based material; and a cermet-type material.


In another variation, the cutting tool initially has a first temperature prior to contacting the surface of the workpiece, and the thermomechanical load is reduced by cooling the cutting tool to a second temperature lower than the first temperature before the cutting tool contacts the surface of the workpiece or while the workpiece is being machined. In a variant of that variation, the cutting tool is cooled by an external cooling means. In one variant of that variant, the cooling means includes at least one cryogenic fluid. In another variant, the cooling means includes at least one inert, water-free coolant. In yet another variant, the cutting tool has a hardness and a resistance to cracking, and cooling the cutting tool with the cooling means results in an increase in the hardness or an increase in the resistance to cracking.


In another variation of the method, at least a portion of the thermomechanical load is a component of a cutting force, the component being applied in a direction normal to the surface of the workpiece, and the thermomechanical load is reduced by reducing the component of the cutting force. There are several variants of this variation. In one variant, the cutting tool has an inclination angle, and the component of the cutting force is reduced by making the inclination angle more positive. (The phrase “making the inclination angle more positive” is defined and discussed in the Detailed Description of the invention section below.) In another variant, the cutting tool has a rake angle, and the component of the cutting force is reduced by making the rake angle more positive.


A second embodiment of the method for reducing a thickness of a thermomechanically-affected layer on an as-machined surface of a hard metal workpiece being machined by a hard cutting tool includes multiple steps. In this embodiment, the cutting tool initially has a first temperature prior to contacting the surface of the workpiece and exerts a thermomechanical load on a surface of the workpiece, at least a portion of the thermomechanical load being a component of a cutting force, the component being applied in a direction normal to the surface of the workpiece. The first step of the method is to cool the cutting tool to a second temperature lower than the first temperature before the cutting tool contacts the surface of the workpiece or while the workpiece is being machined. The second step is to reduce the component of the cutting force.


A first embodiment of the method for mitigating a detrimental effect of a thermomechanical load in a machined surface of a hard metal workpiece, the thermomechanical load being exerted on a surface of the workpiece by a hard cutting tool machining the workpiece, thereby forming the machined surface, includes cooling the machined surface by a cooling means having an initial temperature in a range of about −250° C. to about +25° C.


There are several variations of the first embodiment of that method. In one variation, the cooling means includes at least one inert, water-free coolant. In another variation, the cooling means includes at least one stream containing a cryogenic fluid or at least one ice particle having a temperature less than about −75° C. In another variation, the hard metal workpiece includes an iron-containing alloy. In another variation, the hard cutting tool is made at least in part of a material selected from a group containing a ceramic compound; a ceramic-ceramic composite; a ceramic-metal composite; a diamond-like, metal-free material; an alumina-based ceramic; a cubic boron nitride-based ceramic material; a tungsten carbide-based material; and a cermet-type material.


A second embodiment of the method for mitigating the detrimental effect is similar to the first embodiment, but also Includes cooling the cutting tool simultaneously by the cooling means.


In a third embodiment of the method for mitigating the detrimental effect, which is similar to the first embodiment, at least a portion of the thermomechanical load is a component of a cutting force, the component being applied in a direction normal to the surface of the workpiece. The method in this third embodiment includes reducing the component of the cutting force. In a variation of this embodiment, wherein the cutting tool has an inclination angle, the component of the cutting force is reduced by making the inclination angle more positive and the cooling means includes at least one stream containing a cryogenic fluid or at least one ice particle having a temperature less than about −75° C.


A fourth embodiment of the method for mitigating the detrimental effect is similar to the third embodiment, but includes cooling the cutting tool simultaneously by the cooling means. In a variation of the fourth embodiment, wherein the cutting tool has an inclination angle, the component of the cutting force is reduced by making the inclination angle more positive and the cooling means includes at least one stream containing a cryogenic fluid with at least one ice particle having a temperature less than about −75° C.


Another aspect of the invention is a method for machining a hard metal workpiece. There are several embodiments of this method.


A first embodiment of the method for machining a hard metal workpiece, whereby a thickness of a thermomechanically-affected layer on an as-machined surface of the workpiece is reduced, the workpiece being machined with a hard cutting tool initially having a first temperature prior to contacting the surface of the workpiece, the hard cutting tool exerting a thermomechanical load on a surface of the workpiece, includes cooling the cutting tool to a second temperature lower than the first temperature before the cutting tool contacts the surface of the workpiece or while the workpiece is being machined.


A second embodiment of the method for machining a hard metal workpiece, whereby a detrimental effect of a thermomechanical load is mitigated in a machined surface of the workpiece, the thermomechanical load being exerted on a surface of the workpiece by a hard cutting tool forming the machined surface of the workplace, includes cooling the machined surface by a cooling means having an initial temperature in a range of about −250° C. to about +25° C.


A third embodiment of the method for machining a hard metal workpiece, whereby a thickness of a thermomechanically-affected layer on an as-machined surface of the workpiece is reduced, the workpiece being machined with a hard cutting tool, the hard cutting tool exerting a thermomechanical load on a surface of the workpiece, at least a portion of the thermomechanical load being a component of a cutting force, the component being applied in a direction normal to the surface of the workpiece, includes reducing the component of the cutting force.


In a fourth embodiment of the method for machining, which is similar to the first embodiment, at least a portion of thermomechanical load is a component of a cutting force, the component being applied in a direction normal to the surface of the workpiece. The fourth embodiment includes reducing the component of the cutting force.


A fifth embodiment of the method for machining is similar to the second embodiment, but includes cooling the cutting tool simultaneously by the cooling means.


In a sixth embodiment of the method for machining, which is similar to the second embodiment, at least a portion of the thermomechanical load is a component of the cutting force, the component being applied in a direction normal to the surface of the workpiece. The sixth embodiment Includes reducing the component of the cutting force.


A seventh embodiment of the method for machining is similar to the sixth embodiment, but includes cooling the cutting tool simultaneously by the cooling means.


Another aspect of the invention is a workpiece machined by a method for machining as in any of the aforesaid embodiments and characterized by an improved surface or an improved property.


A first embodiment of the apparatus for reducing a thickness of a thermomechanically-affected layer on an as-machined surface of a hard metal workpiece being machined by a hard cutting tool exerting a thermomechanical load on a surface of the workpiece, includes a means for reducing the thermomechanical load.


There are several variations of the first embodiment of that apparatus. In one variation, the hard metal workpiece includes an iron-containing alloy. In another variation, the hard cutting tool is made at least in part of a material selected from a group containing a ceramic compound; a ceramic-ceramic composite; a ceramic-metal composite; a diamond-like, metal-free material; an alumina-based ceramic; a cubic boron nitride-based ceramic material; a tungsten carbide-based material; and a cermet-type material.


A second embodiment of the apparatus for reducing a thickness of a thermomechanically-affected layer on an as-machined surface of a hard metal workpiece being machined by a hard cutting tool initially having a first temperature prior to contacting the surface of the workpiece, the hard cutting tool exerting a thermomechanical load on a surface of the workpiece, at least a portion of the thermomechanical load being a component of a cutting force, the component being applied in a direction normal to the surface of the workpiece, includes: a means for cooling the cutting tool to a second temperature lower than the first temperature before the cutting tool contacts the surface of the workpiece or while the workpiece is being machined; and a means for reducing the component of the cutting force.


A first embodiment of the apparatus for mitigating a detrimental effect of a thermomechanical load in a machined surface of a hard metal workpiece, the thermomechanical load being exerted on a surface of the workpiece by a hard cutting tool machining the workpiece, thereby forming the machined surface, includes a means for cooling the machined surface by at least one stream of a coolant having an initial temperature In a range of about −250° C. to about +25° C. In one variation of this embodiment, the stream contains at least one inert, water-free coolant. In another variation, the at least one stream contains a cryogenic fluid or at least one ice particle having a temperature less than about −75° C.


A second embodiment of the apparatus for mitigating a detrimental effect of a thermomechanical load in the machined surface of a hard metal workpiece, the thermomechanical load being exerted on a surface of the workpiece by a hard cutting tool machining the workpiece, thereby forming the machined surface, wherein at least a portion of the thermomechanical load Is a component of the cutting force, the component being applied in a direction normal to the surface of the workpiece, includes: a means for cooling the machined surface by at least one stream containing at least one inert, water-free coolant having an initial temperature in a range of about −250° C. to about +25° C.; a means for cooling the cutting tool simultaneously by at least another stream containing at least one inert, water-free coolant; and a means for reducing the component of the cutting force.


Another aspect of the invention is an apparatus for machining a hard metal workpiece. There are several embodiments of the apparatus for machining.


A first embodiment of the apparatus for machining a hard metal workpiece, whereby a thickness of a thermomechanically-affected layer on an as-machined surface of the workpiece is reduced, the workpiece being machined by a hard cutting tool initially having a first temperature prior to contacting the surface of the workpiece, the hard cutting tool exerting a thermomechanical load on a surface of the workpiece, includes a means for cooling the cutting tool to a second temperature lower than the first temperature before the cutting tool contacts the surface of the workpiece or while the workpiece Is being machined.


A second embodiment of the apparatus for machining a hard metal workpiece, whereby a detrimental effect of a thermomechanical load is mitigated in a machined surface of the workpiece, the thermomechanical load being exerted on a surface of the workpiece by a hard cutting tool forming the machined surface of the workpiece, includes a means for cooling the machined surface by a stream of a fluid having an initial temperature in a range of about −250° C. to about +25° C.


A third embodiment of the apparatus for machining a hard metal workpiece, whereby a thickness of a thermomechanically-affected layer on an as-machined surface of the workpiece is reduced, the workpiece being machined by a hard cutting tool exerting a thermomechanical load on a surface of the workpiece, at least a portion of the thermomechanical load being a component of a cutting force, the component being applied In a direction normal to the surface of the workpiece, includes a means for reducing the component of the cutting force.


In a fourth embodiment, which is similar to the first embodiment, at least a portion of the thermomechanical load is a component of a cutting force, the component being applied In a direction normal to the surface of the workpiece. The fourth embodiment includes a means for reducing the component of the cutting force.


The fifth embodiment of the apparatus for machining is similar to the second embodiment, but includes a means for simultaneously cooling the cutting tool with at least one other stream of the fluid, the means for cooling being means for spraying the streams of the fluid.


A sixth embodiment of the apparatus for machining Is similar to the third embodiment, but includes a means for spraying the machined surface with at least one stream of a fluid having an initial temperature in a range of about −250° C. to about +25° C.


The seventh embodiment of the apparatus for machining Is similar to the sixth embodiment, but includes a means for spraying at least one other stream of the fluid simultaneously on the cutting tool.


Another aspect of the invention is a workpiece machined by an apparatus for machining as in any of the aforesaid embodiments and characterized by an improved surface or an improved property.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described by way of example with reference to the accompanying drawings, in which:



FIG. 1A is a schematic diagram illustrating an OD-hardturning operation using a solid barstock and a round cutting tool, plus a schematic representation of a detail illustrating a cross-sectional view of a typical subsurface microstructure of an as-machined workpiece;



FIG. 1B is a schematic diagram Illustrating an embodiment of the present invention used with an OD-hardturning operation similar to that shown In FIG. 1A;



FIG. 2 is a graph showing the measurement of white layer thickness for eight test conditions using different cutting speeds, cutting tool materials and cooling conditions;



FIG. 3A is a graph showing the change of subsurface hardness as a result of hardturning with different cutting tool materials and cooling conditions at a cutting speed of 700 feet per minute;



FIG. 3B Is a graph showing the results of residual stress measurements on four types of samples as shown in FIG. 3A;



FIG. 4A is a schematic diagram Illustrating a conventional method of hardturning where the inclination angle A-O-B is negative;



FIG. 4B is a schematic diagram illustrating an embodiment of the present invention wherein the inclination angle is increased from the negative value shown in FIG. 4A to a positive value B-O-C shown in FIG. 4B; and



FIG. 4C Is a schematic diagram illustrating another embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention involves machining hard metallic workpieces with hard cutting tools using a method which reduces the thickness of, or eliminates, thermomechanically-affected layers, including but not limited to white layer, and allows cutting at higher speeds without an excessive white layer using CBN tool materials, as well as less expensive Al2O3, carbide, cermet, or other hard tool materials. As used hereinafter, the term “white layer” refers to all types of “thermomechanically-affected layers,” including but not limited to those associated with surface tensile stresses (e.g., reduced fatigue-resistance, lower fracture toughness, and/or reduced wear resistance).


According to the present invention, the thermomechanical load exerted by the cutting tool at the machined surface is reduced using one or a combination of the three techniques (A, B, C) discussed below.

    • A. Cooling cutting tool with a precisely aimed jet or spray of inert, water-free coolant, so that the heat transferred from the hot tool interface to the workpiece Is reduced and, most preferably, the tool becomes a heat sink for the workpiece surface.


The temperature of the tool cooling jet may vary between +25° C. and −250° C., with the lower, cryogenic jet temperatures preferred. The tool cooled with such a jet makes the surface of a machined part colder. In addition, as observed during hard machining tests, in contrast to conventional machining technology teachings, the use of inert and water-free cooling jets enhances the life of Al2O3, CBN and other, hard cutting tools and, consequently, allows the use of sharper cutting edges which generate lower cutting forces and thinner white layers.

    • B. Cooling the as-formed or as-machined workpiece surface with the same type of direct impinging cooling jet or spray as in technique A.


Based on observations, it appears that cooling of the as-machined workpiece surface reduces the depth of heat penetration into machined material and, consequently, the extent of undesired material transformations. The surface-cooling jet of technique B may be separate from the tool-cooling jet of technique A; or just a single jet can be aimed in such a way that it cools both the tool and the surface simultaneously. Persons skilled in the art will recognize that multiple cooling jets or sprays of technique A and technique B could be used according to the present invention.

    • C. Reducing the cutting force component in the direction normal to the as-machined workpiece surface.


As observed during tests, the cutting force component normal to the as-machined workpiece surface appears to be a significant source of heat flux entering the surface and generating white layer. In the case of the most frequently practiced OD-hardturning operations, where the normal force is the radial force, a more positive tool inclination angle results in a reduced thermomechanical load entering the surface. In the case of orthogonal cutting, where the normal force is the feed force, a more positive rake angle will be more important. In the most generic cutting case, both the inclination angle and the rake angle are made more positive than the conventional, negative values that are used in current hard machining operations. Since the life of hard cutting tools scales inversely with the positive inclination and rake angle, the increase in the value of these angles is most advantageous if practiced in combination with technique A, which also enhances tool life during hard machining.



FIG. 1A is a schematic diagram of an OD-hardturning operation involving a solid barstock as the workpiece 12 and a round cutting tool 14 (with a cutting insert marked as CT) viewed from the topside of the tool rake surface. This view is referred to as the X-Z plane view. The X-Z projection of the major cutting forces that have to be applied to the workpiece via the cutting tool is denoted as Fxzfeed or feed force, and Fxzradial or radial force, where the feed force is less than the radial force. The location of the thermomechanically-affected layers 16 on the as-machined surface of the workpiece is illustrated In FIG. 1A. The detail on the right of the figure shows a cross-sectional view of the typical subsurface microstructure of the as-machined workpiece that can be observed under a scanning electron microscope (SEM) using magnifications ranging from 3,000 to 12,000 times. The following designations are used: OS—outer surface that was in direct contact with the cutting tool during hardturning, WL—white layer, DL—dark layer, and BM—base metal representing the parent or unaffected structure of the barstock.


Based on SEM examinations carried out on a popular bearing steel grade, AISI 52100 (1 wt % C and 1.5 wt % Cr), hardened to 61 Rockwell on scale C and hard machined, the white layer (WL) is a thin band of poorly etching material with broadly dispersed, spherical carbides. The underlying dark layer (DL) is thicker than the white layer, and contains more and bigger carbide particles, as well as microfeatures suggesting martensitic needles and latches. The thermomechanically-affected layer Includes both the white layer (WL) and the dark layer (DL) but also extends even deeper into the base metal and cannot be measured using simple microscopic methods. Consequently, the evaluation of the thickness of a thermomechanically-affected layer is usually based on (1) a microscopic measurement of the well contrasting white layer (WL), combined with (2) additional measurements of the mechanical properties of the material below the as-machined surface, e.g., residual stress and microhardness measurements.



FIG. 1B shows the same X-Z view of the cutting tool 14 and the workpiece 12 (barstock), but does not include the cross-sectional details of the subsurface microstructure as in FIG. 1A. Points CJxz1 and CJxz2 are X-Z plane projections of the preferred locations of cold jet-discharging orifices (not shown) that aim the cooling jets (18, 20) at the rake of the cutting tool, at the as-machined surface of the workpiece and, optionally, into the clearance gap between the cutting tool and the workpiece surface, just below the rake surface and the cutting tool-workpiece contact area. Thus, the cold jet impact is limited to the cutting tool and the as-machined workpiece surface area. It is important not to cool the barstock upstream of the cutting tool, since such cooling increases the mechanical energy required for cutting, i.e., cancels the cooling effect and simultaneously shortens the life of the cutting tool. As shown in FIG. 1B, the CJxz1 jet may be positioned higher or lower, above the rake along the Y-axis, and may impact only the rake surface along the contact length. This represents technique A, discussed earlier. Alternatively, the CJxz1 jet may spray both the rake and the as-machined surface downstream of the cutting tool. This alternate approach combines techniques A and B. The CJxz2 jet may be positioned behind or below the cutting tool, along the Y and the Z axes, in order to work according to technique B. The CJxz2 jet can be eliminated as well if the spray 18 from the CJxz1 jet is sufficiently effective in cooling the machined surface. The results of comparative tests carried out to evaluate the effectiveness of techniques A, B, and C are summarized in Table 1, which details the conditions of the tests.












TABLE 1





Cutting tool


Al2O3-based ceramic type,


system
Cutting Insert:
CBN, a “low-content PCBN” type
Al2O3-TICN composition








Insert designation
BNC80, 4NC-CNMA432, 4 cutting
KY4400, CNGA432, 4 cutting



and description:
edges, PVD-TIN coated
edges, PVD-TIN coated



Supplier/toolmaker:
Sumitomo
Kennametal



Edge chamfer
25° +/− 3°
25° +/− 3°



angle, measured:





Chamfer width,
0.00325 inches
0.00425 inches



measured:





Toolholder for
MCLNL-164C, Kennametal
MCLNL-164C, Kennametal



cutting insert:





Toolholder's angles:
−5° rake angle and −5° inclination
−5° rake angle and −5°




angle
inclination angle


Cutting
Cutting speed in
400 and 700
400 and 700


parameters
ft/minute:





Feedrate in
0.004
0.004



inches/revolution,





see: comment (1)





below





Depth of cut in
0.015
0.015



inches:





Cutting (feed)
Radial (along X-axis), facing
Radial (along X-axis), facing



direction:




Cooling
Two cooling
(1) Dry (no cooling), and
(1) Dry (no cooling), and


conditions
methods:
(2) CJxz 1 jet aimed at the tool rake
(2) CJxz 1 jet aimed at the tool




and at as-machined surface
rake and at as-machined




according to techniques A and B
surface according to techniques





A and B



Cooling medium for
Cryogenic liquid nitrogen jet
Cryogenic liquid nitrogen jet



case (2), above:
impacting rake and as-machined
impacting rake and as-




surface in form of a 2-phase fluid
machined surface in form of a




which is boiling at −197° C.
2-phase fluid which is boiling at





−197° C.


Workpiece
AISI 52100 bearing
Oil quenched and low-tempered to
Oil quenched and low-tempered


material
steel, 1.0 wt %
61 HRC +/− 1 HRC
to 61 HRC +/− 1 HRC



carbon, 1.5 wt %





chromium




White layer
Workpiece material
1.06 cubic inches
1.06 cubic inches


examination
volume removed by




conditions
a new cutting edge





before taking as-





machined





workpiece surface





samples for





examination of white





layer, see comment





(2) below





Number of
8
8



interruptions during





workpiece material





cutting prior to white





layer examination:





Surface roughness
Ra = 15-20
Ra = 15-30



range of as-
microinches/inch
microinches/inch



machined





workpiece surface





samples transferred





for white layer





evaluations





Residual stress
Incremental hole drilling with 1 mm
Incremental hole drilling with 1 mm



measurement
diameter drill, extensometer
diameter drill,



method:
rosette
extensometer rosette



Direction of
Perpendicular to as-machined
Perpendicular to as-machined



metallographic cut
workpiece surface and in the
workpiece surface and in the



for image evaluation
radial direction (along X-axis)
radial direction (along X-axis)



and microhardness





measurements:





Microhardness
Profiling hardness as a function of
Profiling hardness as a function



measurement
depth under as-machined
of depth under as-machined



method - Knoop,
workpiece surface with blade-
workpiece surface with blade-



100 G load applied
shaped indenter
shaped indenter



for 15 seconds





Etchant used for
Nital - 5% HNO3 in ethanol applied
Nital - 5% HNO3 in ethanol



developing white
to sample surface for 10 seconds
applied to sample surface for 10



layer contrast on

seconds



cross-sectional





metallographic





samples of as-





machined





workpiece surface:





Comments


(1) Since the feedrate was larger than the chamfer width of the CBN tool used, the effective rake angle of the CBN tool was larger, i.e. more positive or sharper, than the effective rake angle of the Al2O3 tool. Consequently, the CBN insert used generated lower nomal force during face cutting than the Al2O3 insert which, according to technique C results in a lower thermomechanical load at as-machined work surface, i.e. a


thinner thermomechanically-affected surface including white layer. The 2nd factor influencing white layer is the temperature at the tool-work contact area. Thermal conductivity of the low-PCBN tool is somewhat higher than that of the Al2O3—TiCN tool which means the contact area is cooler in the former case.


(2) The procedure of removing initial material volume with cutting edge prior to taking as-machined workpiece surface samples replicates typical industrial hard machining conditions where the majority of part is produced using somewhat worn cutting edges.







FIG. 2 shows the results of SEM measurements of the white layer thickness for eight (8) test conditions. The results show that the sharper and more conductive CBN tool tends to produce a thinner white layer than that produced by the Al2O3 tool. The reduction of the normal component of the cutting force coming with the sharper tools, and the reduction of tool temperature with more conductive tool materials, are consistent with our techniques A and C. However, the most significant factor in reducing white layer thickness was the cooling jet applied according to techniques A and B, which was capable of reducing the white layer by about 40% regardless of the tool and cutting speed used. The most Important and surprising finding is that the white layer produced with the jet-cooled Al2O3 tool is significantly thinner than the white layer produced by the CBN tool operated the conventional way (i.e., dry). Moreover, the white layer produced with the Al2O3 tool at 700 feet/minute is thinner than the white layer produced with the dry CBN tool at 400 fuminute. Thus, the present invention enables hard machining operators to produce better parts faster and at lower tooling cost.



FIG. 3A shows the change of subsurface hardness as a result of hardturning with the CBN and Al2O3 tools at the cutting speed of 700 feet/minute. Undesired softening of workpiece material observed within the first 15 micrometers under the as-machined surface after the conventional dry hardturning is prevented when the cryogenic cooling jet is used according to techniques A and B of the Invention.



FIG. 3B plots results of residual stress measurements on the same four types of samples as in FIG. 3A. In the case of Al2O3, the cryojet cooling eliminates a steep tensile stress resulting from the conventional dry hardturning. In the case of CBN, the cryojet makes the subsurface stress slightly more compressive and, just as in the case of Al2O3, flattens the fluctuation of stress with depth. Both FIGS. 3A and 3B show that the techniques A and B of the invention bring an unexpected improvement in the mechanical properties of a hard machined surface.


As FIG. 1B presented the X-Z plane view of OD-hardturning, FIGS. 4A, 4B and 4C present the same operation but in the X-Y plane showing a section of the face of the barstock or workpiece 12 and the side of the cutting insert (CT). FIG. 4A shows the conventional method of hardturning where the Inclination angle A-O-B is negative. The X-Y projection of the work-material reaction force that resists machining operation, Rxymach, can be presented with some degree of simplification as a sum of two forces projected on the same plane X-Y: tangential reaction cutting force, Rxytan, and radial reaction force, Rxyrad. The radial reaction force is larger than zero, usually larger than the tangential or the feed force (extending along the Z-axis), and in some hardturning cases larger than the tangential and feed forces combined. To balance the radial reaction force, the radial force applied via the cutting tool to the workplace surface, Fxzrad, must be equally large, which leads to a high thermomechanical load being applied by the cutting tool to the workpiece surface and contributes to the formation of thick white layers.



FIG. 4B presents a modification of the conventional cutting geometry (in FIG. 4A) as the inclination angle, B-O-C, is increased from the initial negative value (represented by A-O-B) in FIG. 4A to a new positive value, which results in reversing the direction of the radial reaction force, Rxyrad. In effect, the increased or more positive inclination angle reduces the required radial force of the cutting tool to zero or below zero, resulting in a reduction of the thermomechanically-affected layer at the workpiece surface. This modification of the cutting geometry represents technique C of the present invention. This technique may be extended to hard facing and hard orthogonal cutting operations where, if effective rake angles are made more positive than the conventionally used negative angles, then the thermomechanical load at the workpiece surface is reduced, and the thermomechanically-affected layer is thinner.


The increased inclination and/or rake angles may produce tensile stresses around the cutting edges of typically brittle tools used in hard machining. Such tensile stresses may lead to premature tool failures in the case of the conventional technology that teaches dry cutting conditions. As observed, the failures are less frequent and tool life is extended when at least one cooling jet or spray is aimed at the rake of the cutting tool during hard machining, and the cooling fluid used is inert, water-free, and preferably cryogenic. (The term “inert” means that the cooling fluid does not react with the hard metal and does not degrade the mechanical properties of the hard metal or the hard cutting tool.)



FIG. 4C shows the X-Y plane projection of two cooling Jets, CJxy 1 and CJxy 2, corresponding to the jets shown in FIG. 1B in the X-Z plane view. The application of technique C is most advantageous from the production and cost standpoint, when CJ1 or, alternatively, CJ1 and CJ2 are spraying coolant during the hard cutting, as shown In FIG. 4C.


The present invention minimizes detrimental white layer and other thermomechanically-affected layers In an as-machined workpiece surface by reducing the thermomechanical load exerted by the cutting tool on the workpiece material surface during hard machining. As discussed above, the present invention includes three techniques (A, B, C) which may be used separately or in combination (AB, AC, BC, ABC).


Although illustrated and described herein with reference to certain specific embodiments, the present invention is nevertheless not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the spirit of the invention.

Claims
  • 1. A method for reducing a thickness of a thermomechanically-affected layer, including a white layer (WL) and a dark layer (DL), on and under an as-machined surface of a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, being machined by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool exerting a thermomechanical load on a surface of the hard metal workpiece, comprising: reducing the thermomechanical load being exerted on the surface of the hard metal workpiece by the hard cutting tool,wherein the step of reducing the thermomechanical load comprises one or a combination of at least two of the following:(a) cooling the hard cutting tool with a first precisely aimed jet or spray of an inert, water-free coolant having an initial temperature in a range of about −250° C. to about +25° C.;(b) cooling the as-machined surface of the hard metal workpiece with at least one of the first precisely aimed jet or spray and a second precisely aimed jet or spray of the inert, water-free coolant or an other inert, water-free coolant having an initial temperature in a range of about −250° C. to about +25° C.; and(c) reducing a cutting force component in a direction normal to the as-machined surface of the hard metal workpiece when at least a portion of the thermomechanical load is a component of a cutting force, the component being applied in a direction normal to the surface of the hard metal workpiece.
  • 2. A method as in claim 1, wherein at least one of the first and second jet or spray of the inert, water-free coolant or the other inert, water-free coolant comprises at least one stream containing a cryogenic fluid or at least one ice particle having a temperature less than −75° C.
  • 3. A method as in claim 1, wherein the cutting tool has an inclination angle, and wherein the component of the cutting force is reduced by making the inclination angle more positive.
  • 4. A method as in claim 1, wherein the cutting tool has a rake angle, and wherein the component of the cutting force is reduced by making the rake angle more positive.
  • 5. A method as in claim 1, wherein the hard cutting tool has a hardness and a resistance to cracking, and wherein cooling the hard cutting tool with the first precisely aimed jet or spray of the inert, water-free coolant results in an increase in the hardness or an increase in the resistance to cracking.
  • 6. A method as in claim 1, wherein the hard metal workpiece comprises an iron-containing alloy.
  • 7. A method as in claim 1, wherein the hard cutting tool is made at least in part of a material selected from a group containing a ceramic compound; a ceramic-ceramic composite; a ceramic-metal composite; a diamond-like, metal-free material; an alumina-based ceramic; a cubic boron nitride-based ceramic material; a tungsten carbide-based material; and a cermet-type material.
  • 8. A method for reducing a thickness of a thermomechanically-affected layer, including a white layer (WL) and a dark layer (DL), on and under an as-machined surface of a hard metal workpiece, having an edge hardness exceeding 42 Rockwell on Scale C, being machined by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool initially having a first temperature prior to contacting the surface of the hard metal workpiece, the hard cutting tool exerting a thermomechanical load on a surface of the hard metal workpiece, at least a portion of the thermomechanical load being a component of a cutting force, the component being applied in a direction normal to the surface of the hard metal workpiece, comprising the steps of: cooling the hard cutting tool to a second temperature lower than the first temperature before the hard cutting tool contacts the surface of the hard metal workpiece or while the hard metal workpiece is being machined by the hard cutting tool; andreducing the component of the cutting force.
  • 9. A method for mitigating a detrimental effect of a thermomechanical load in a machined surface of a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, the thermomechanical load being exerted on a surface of the hard metal workpiece by a hard cutting tool, having an edge hardness exceeding 1500 Vicker, the hard cutting tool machining the hard metal workpiece, thereby forming the machined surface, comprising cooling the machined surface by a cooling means having an initial temperature in a range of about −250° C. to about +25° C.
  • 10. A method as in claim 9, wherein the cooling means comprises at least one stream containing a cryogenic fluid or at least one ice particle having a temperature less than −75° C.
  • 11. A method as in claim 9, wherein the cooling means comprises at least one inert, water-free coolant.
  • 12. A method as in claim 9, wherein the hard metal workpiece comprises an iron-containing alloy.
  • 13. A method as in claim 9, wherein the hard cutting tool is made at least in part of a material selected from a group containing a ceramic compound; a ceramic-ceramic composite; a ceramic-metal composite; a diamond-like, metal-free material; an alumina-based ceramic; a cubic boron nitride-based ceramic material; a tungsten carbide-based material; and a cermet-type material.
  • 14. A method for mitigating a detrimental effect of a thermomechanical load in a machined surface of a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, the thermomechanical load being exerted on a surface of the hard metal workpiece by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool machining the hard metal workpiece, thereby forming the machined surface, wherein at least a portion of the thermomechanical load is a component of a cutting force, the component being applied in a direction normal to the surface of the workpiece, comprising the steps of: cooling the machined surface by a cooling means having an initial temperature in a range of about −250° C. to about +25° C.; andreducing the component of the cutting force.
  • 15. A method as claim 14 wherein the hard cutting tool has an inclination angle, and wherein the component of the cutting force is reduced by making the inclination angle more positive and the cooling means comprises at least one stream containing a cryogenic fluid or at least one ice particle having a temperature less than −75° C.
  • 16. A method for mitigating a detrimental effect of a thermomechanical load in a machined surface of a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, the thermomechanical load being exerted on a surface of the hard metal workpiece by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool machining the hard metal workpiece, thereby forming the machined surface, wherein at least a portion of the thermomechanical load is a component of the cutting force, the component being applied in a direction normal to the surface of the workpiece, comprising the steps of: cooling the machined surface by a cooling means having an initial temperature in a range of about −250° C. to about +25° C.;cooling the hard cutting tool simultaneously by the cooling means; andreducing the component of the cutting force.
  • 17. A method as in claim 16, wherein the hard cutting tool has an inclination angle, and wherein the component of the cutting force is reduced by making the inclination angle more positive and the cooling means comprises at least one stream containing a cryogenic fluid with at least one ice particle having a temperature less than −75° C.
  • 18. A method for machining a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, whereby a thickness of a thermomechanically-affected layer, including a white layer (WL) and a dark layer (DL), on an as-machined surface of the hard metal workpiece is reduced, the hard metal workpiece being machined with a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool initially having a first temperature prior to contacting the surface of the hard metal workpiece, the hard cutting tool exerting a thermomechanical load on a surface of the hard metal workpiece, comprising cooling the hard cutting tool to a second temperature lower than the first temperature before the hard cutting tool contacts the surface of the hard metal workpiece or while the hard metal workpiece is being machined.
  • 19. An after-machined workpiece having been machined by a method for machining a hard metal workpiece, whereby a thickness of a thermomechanically-affected layer on an as-machined surface of the hard metal workpiece is reduced, the hard metal workpiece being machined with a hard cutting tool initially having a first temperature prior to contacting the surface of the hard metal workpiece, the hard cutting tool exerting a thermomechanical load on a surface of the hard metal workpiece, the method comprising cooling the hard cutting tool to a second temperature lower than the first temperature before the hard cutting tool contacts the surface of the hard metal workpiece or while the hard metal workpiece is being machined, the after-machined workpiece comprising: an after-machined surface having at least one of a lesser amount of surface residual tensile stress, a greater amount of surface residual compressive stress, a thinner thickness of the thermomechanically-affected layer, and a greater amount of microhardness compared to an other after-machined surface of an other hard metal workpiece machined by dry cutting, the other hard metal workpiece having an other amount of surface residual tensile stress, an other amount of surface residual compressive stress, an other thickness of an other thermomechanically-affected layer, and an other microhardness.
  • 20. A method for machining a hard metal workpiece, whereby a detrimental effect of a thermomechanical load is mitigated in a machined surface of the hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, the thermomechanical load being exerted on a surface of the hard metal workpiece by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool forming the machined surface of the hard metal workpiece, comprising cooling the machined surface by a cooling means having an initial temperature in a range of about −250° C. to about +25° C.
  • 21. An after-machined workpiece having been machined by a method for machining a hard metal workpiece, whereby a detrimental effect of a thermomechanical load is mitigated in a machined surface of the hard metal workpiece, the thermomechanical load being exerted on a surface of the hard metal workpiece by a hard cutting tool forming the machined surface of the hard metal workpiece, the method comprising cooling the machined surface by a cooling means having an initial temperature in a range of about −250° C. to about +25° C., the after-machined workpiece comprising: an after-machined surface having at least one of a lesser amount of surface residual tensile stress, a greater amount of surface residual compressive stress, a thinner thickness of the thermomechanically-affected layer, and a greater amount of microhardness compared to an other after-machined surface of an other hard metal workpiece machined by dry cutting, the other hard metal workpiece having an other amount of surface residual tensile stress, an other amount of surface residual compressive stress, an other thickness of an other thermomechanically-affected layer, and an other microhardness.
  • 22. A method for machining a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, whereby a thickness of a thermomechanically-affected layer on an as-machined surface of the hard metal workpiece is reduced, the hard metal workpiece being machined with a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool exerting a thermomechanical load on a surface of the hard metal workpiece, at least a portion of the thermomechanical load being a component of a cutting force, the component being applied in a direction normal to the surface of the hard metal workpiece, comprising reducing the component of the cutting force.
  • 23. An after-machined workpiece having been machined by a method for machining a hard metal workpiece, whereby a thickness of a thermomechanically-affected layer on an as-machined surface of the hard metal workpiece is reduced, the hard metal workpiece being machined with a hard cutting tool, the hard cutting tool exerting a thermomechanical load on a surface of the hard metal workpiece, at least a portion of the thermomechanical load being a component of a cutting force, the component being applied in a direction normal to the surface of the hard metal workpiece, the method comprising reducing the component of the cutting force, the after-machined workpiece comprising: an after-machined surface having at least one of a lesser amount of surface residual tensile stress, a greater amount of surface residual compressive stress, a thinner thickness of the thermomechanically-affected layer, and a greater amount of microhardness compared to an other after-machined surface of an other hard metal workpiece machined by dry cutting, the other hard metal workpiece having an other amount of surface residual tensile stress, an other amount of surface residual compressive stress, an other thickness of an other thermomechanically-affected layer, and an other microhardness.
  • 24. A method for machining a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, whereby a thickness of a thermomechanically-affected layer, including a white layer (WL) and a dark layer (DL), on an as-machined surface of the hard metal workpiece is reduced, the hard metal workpiece being machined with a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool initially having a first temperature prior to contacting the surface of the hard metal workpiece, the hard cutting tool exerting a thermomechanical load on a surface of the hard metal workpiece, at least a portion of the thermomechanical load being a component of a cutting force, the component being applied in a direction normal to the surface of the hard metal workpiece, comprising the steps of: cooling the hard cutting tool to a second temperature lower than the first temperature before the hard cutting tool contacts the surface of the hard metal workpiece or while the hard metal workpiece is being machined; andreducing the component of the cutting force.
  • 25. A method for machining a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, whereby a detrimental effect of a thermomechanical load is mitigated in a machined surface of the hard metal workpiece, the thermomechanical load being exerted on a surface of the hard metal workpiece by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool forming the machined surface of the hard metal workpiece, comprising the steps of: cooling the machined surface by a cooling means having an initial temperature in a range of about −250° C. to about +25° C.; andcooling the hard cutting tool simultaneously by the cooling means.
  • 26. A method for machining a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, whereby a detrimental effect of a thermomechanical load is mitigated in a machined surface of the hard metal workpiece, the thermomechanical load being exerted on a surface of the hard metal workpiece by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool forming the machined surface of the hard metal workpiece, wherein at least a portion of the thermomechanical load is a component of a cutting force, the component being applied in a direction normal to the surface of the workpiece, comprising the steps of: cooling the machined surface by a cooling means having an initial temperature in a range of about −250° C. to about +25° C.; andreducing the component of the cutting force.
  • 27. An apparatus for reducing a thickness of a thermomechanically-affected layer, including a white layer (WL) and a dark layer (DL), on and under an as-machined surface of a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, being machined by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool exerting a thermomechanical load on a surface of the hard metal workpiece, comprising: a means for reducing the thermomechanical load being exerted on the surface of the hard metal workpiece by the hard cutting tool,wherein the means for reducing the thermomechanical load comprises one or a combination of at least two of the following:(a) a means for cooling the hard cutting tool with a first precisely aimed jet or spray of an inert, water-free coolant having an initial temperature in a range of about −250° C. to about +25° C.;(b) a means for cooling the as-machined surface of the hard metal workpiece with at least one of the first precisely aimed jet or spray and a second precisely aimed jet or spray of the inert, water-free coolant or an other inert, water-free coolant having an initial temperature in a range of about −250° C. to about +25° C.; and(c) a means (B-O-C of CT) for reducing a cutting force component in a direction normal to the as-machined surface of the hard metal workpiece when at least a portion of the thermomechanical load is a component of a cutting force, the component being applied in a direction normal to the surface of the hard metal workpiece.
  • 28. An apparatus as in claim 27, wherein the hard metal workpiece comprises an iron-containing alloy.
  • 29. An apparatus as in claim 27, wherein the hard cutting tool is made at least in part of a material selected from a group containing a ceramic compound; a ceramic-ceramic composite; a ceramic-metal composite; a diamond-like, metal-free material; an alumina-based ceramic; a cubic boron nitride-based ceramic material; a tungsten carbide-based material; and a cermet-type material.
  • 30. An apparatus for reducing a thickness of a thermomechanically-affected layer on an as-machined surface of a hard metal workpiece having a surface hardness exceeding 42 Rockwell on Scale C, being machined by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool initially having a first temperature prior to contacting the surface of the hard metal workpiece, the hard cutting tool exerting a thermomechanical load on a surface of the workpiece, at least a portion of the thermomechanical load being a component of a cutting force, the component being applied in a direction normal to the surface of the hard metal workpiece, comprising: a means for cooling the hard cutting tool to a second temperature lower than the first temperature before the hard cutting tool contacts the surface of the hard metal workpiece or while the hard metal workpiece is being machined; anda means for reducing the component of the cutting force.
  • 31. An apparatus for mitigating a detrimental effect of a thermomechanical load in a machined surface of a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, the thermomechanical load being exerted on a surface of the hard metal workpiece by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool machining the hard metal workpiece, thereby forming the machined surface, comprising a means for cooling the machined surface by at least one stream of a coolant having an initial temperature in a range of about −250° C. to about +25° C.
  • 32. An apparatus as in claim 31, wherein the at least one stream contains a cryogenic fluid or at least one ice particle having a temperature less than −75° C.
  • 33. An apparatus as in claim 31, wherein the stream contains at least one inert, water-free coolant.
  • 34. An apparatus for machining a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, whereby a thickness of a thermomechanically-affected layer, including a white layer (WL) and a dark layer (DL), on an as-machined surface of the hard metal workpiece is reduced, the hard metal workpiece being machined by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool initially having a first temperature prior to contacting the surface of the hard metal workpiece, the hard cutting tool exerting a thermomechanical load on a surface of the hard metal workpiece, comprising a means for cooling the hard cutting tool to a second temperature lower than the first temperature before the hard cutting tool contacts the surface of the hard metal workpiece or while the hard metal workpiece is being machined.
  • 35. An after-machined workpiece having been machined by an apparatus for machining a hard metal workpiece, whereby a thickness of a thermomechanically-affected layer on an as-machined surface of the hard metal workpiece is reduced, the hard metal workpiece being machined by a hard cutting tool initially having a first temperature prior to contacting the surface of the hard metal workpiece, the hard cutting tool exerting a thermomechanical load on a surface of the hard metal workpiece, the apparatus comprising a means for cooling the cutting tool to a second temperature lower than the first temperature before the cutting tool contacts the surface of the hard metal workpiece or while the hard metal workpiece is being machined, the after-machined workpiece comprising: an after-machined surface having at least one of a lesser amount of surface residual tensile stress, a greater amount of surface residual compressive stress, a thinner thickness of the thermomechanically-affected layer, and a greater amount of microhardness compared to an other after-machined surface of an other hard metal workpiece machined by dry cutting, the other hard metal workpiece having an other amount of surface residual tensile stress, an other amount of surface residual compressive stress, an other thickness of an other thermomechanically-affected layer, and an other microhardness.
  • 36. An after-machined workpiece having been machined by an apparatus for machining a hard metal workpiece, whereby a detrimental effect of a thermomechanical load is mitigated in a machined surface of the hard metal workpiece, the thermomechanical load being exerted on a surface of the hard metal workpiece by a hard cutting tool forming the machined surface of the hard metal workpiece, the apparatus comprising a means for cooling the machined surface by a stream of a fluid having an initial temperature in a range of about −250° C. to about +25° C., the after-machined workpiece comprising: an after-machined surface having at least one of a lesser amount of surface residual tensile stress, a greater amount of surface residual compressive stress, a thinner thickness of the thermomechanically-affected layer, and a greater amount of microhardness compared to an other after-machined surface of an other hard metal workpiece machined by dry cutting, the other hard metal workpiece having an other amount of surface residual tensile stress, an other amount of surface residual compressive stress, an other thickness of an other thermomechanically-affected layer, and an other microhardness.
  • 37. An apparatus for machining a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, whereby a thickness of a thermomechanically-affected layer on an as-machined surface of the hard metal workpiece is reduced, the hard metal workpiece being machined by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting toll exerting a thermomechanical load on a surface of the hard metal workpiece, at least a portion of the thermomechanical load being a component of a cutting force, the component being applied in a direction normal to the surface of the hard metal workpiece, comprising a means for reducing the component of the cutting force.
  • 38. An after-machined workpiece having been machined by an apparatus for machining a hard metal workpiece, whereby a thickness of a thermomechanically-affected layer on an as-machined surface of the hard metal workpiece is reduced, the hard metal workpiece being machined by a hard cutting tool exerting a thermomechanical load on a surface of the hard metal workpiece, at least a portion of the thermomechanical load being a component of a cutting force, the component being applied in a direction normal to the surface of the hard metal workpiece, the apparatus comprising a means for reducing the component of the cutting force, the after-machined workpiece comprising: an after-machined surface having at least one of a lesser amount of surface residual tensile stress, a greater amount of surface residual compressive stress, a thinner thickness of the thermomechanically-affected layer, and a greater amount of microhardness compared to an other after-machined surface of an other hard metal workpiece machined by dry cutting, the other hard metal workpiece having an other amount of surface residual tensile stress, an other amount of surface residual compressive stress, an other thickness of an other thermomechanically-affected layer, and an other microhardness.
  • 39. An apparatus for machining a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, whereby a thickness of a thermomechanically-affected layer, including a white layer (WL) and a dark layer (DL), on an as-machined surface of the hard metal workpiece is reduced, the hard metal workpiece being machined by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool initially having a first temperature prior to contacting the surface of the hard metal workpiece, the hard cutting tool exerting a thermomechanical load on a surface of the hard metal workpiece, at least a portion of the thermomechanical load being a component of a cutting force, the component being applied in a direction normal to the surface of the hard metal workpiece, comprising: a means for cooling the hard cutting tool to a second temperature lower than the first temperature before the hard cutting tool contacts the surface of the hard metal workpiece or while the hard metal workpiece is being machined; anda means for reducing the component of the cutting force.
  • 40. An apparatus for machining a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, whereby a detrimental effect of a thermomechanical load is mitigated in a machined surface of the hard metal workpiece, the thermomechanical load being exerted on a surface of the hard metal workpiece by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool forming the machined surface of the hard metal workpiece, comprising: a means for spraying the machined surface with at least one stream of a fluid having an initial temperature in a range of about −250° C. to about +25° C.; anda means for spraying at least one other stream of the fluid simultaneously on the hard cutting tool.
  • 41. An apparatus for machining a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, whereby a detrimental effect of a thermomechanical load is mitigated in a machined surface of the hard metal workpiece, the thermomechanical load being exerted on a surface of the hard metal workpiece by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting toll forming the machined surface of the hard metal workpiece, wherein at least a portion of the thermomechanical load is a component of a cutting force, the component being applied in a direction normal to the surface of the hard metal workpiece, comprising: a means for spraying the machined surface with at least one stream of a fluid having an initial temperature in a range of about −250° C. to about +25° C.; anda means for reducing the component of the cutting force.
  • 42. An apparatus for machining a hard metal workpiece, having a surface hardness exceeding 42 Rockwell on Scale C, whereby a detrimental effect of a thermomechanical load is mitigated in a machined surface of the hard metal workpiece, the thermomechanical load being exerted on a surface of the hard metal workpiece by a hard cutting tool, having an edge hardness exceeding 1500 Vickers, the hard cutting tool forming the machined surface of the hard metal workpiece, wherein at least a portion of the thermomechanical load is a component of a cutting force, the component being applied in a direction normal to the surface of the hard metal workpiece, comprising: a means for spraying the machined surface with at least one stream of a fluid having an initial temperature in a range of about −250° C. to about +25° C.;a means for spraying at least one other stream of the fluid simultaneously on the hard cutting tool; anda means for reducing the component of the cutting force.
Priority Claims (1)
Number Date Country Kind
10/066830 Feb 2002 US national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US03/01682 1/21/2003 WO 00 9/17/2004
Publishing Document Publishing Date Country Kind
WO03/066916 8/14/2003 WO A
US Referenced Citations (87)
Number Name Date Kind
2635399 West, Jr. Apr 1953 A
2641047 Jackman et al. Jun 1953 A
3077802 Philip Feb 1963 A
3433028 Klee Mar 1969 A
3571877 Zerkle Mar 1971 A
3650337 Andrews et al. Mar 1972 A
3696627 Longsworth Oct 1972 A
3751780 Villalobos Aug 1973 A
3889520 Stoferle et al. Jun 1975 A
3900975 Lightstone et al. Aug 1975 A
3971114 Dudley Jul 1976 A
3979981 Lightstone et al. Sep 1976 A
4083220 Kobayashi et al. Apr 1978 A
4296610 Davis Oct 1981 A
4336689 Davis Jun 1982 A
4404827 Van den Sype Sep 1983 A
4510760 Wieland Apr 1985 A
4547470 Tanase et al. Oct 1985 A
4666665 Hornsby et al. May 1987 A
4715187 Stearns Dec 1987 A
4716738 Tatge et al. Jan 1988 A
4788842 Kopp et al. Dec 1988 A
4829859 Yankoff May 1989 A
4829869 Katada et al. May 1989 A
4844047 Brehm et al. Jul 1989 A
4848198 Royal et al. Jul 1989 A
5025547 Sheu et al. Jun 1991 A
5103701 Lundin et al. Apr 1992 A
5123250 Maric Jun 1992 A
5237894 Lindeke Aug 1993 A
5265505 Frechette Nov 1993 A
5392608 Lee Feb 1995 A
5432132 Dasgupta et al. Jul 1995 A
5449647 Brandt Sep 1995 A
5477691 White Dec 1995 A
5509335 Emerson Apr 1996 A
5592863 Jaskowiak et al. Jan 1997 A
5597272 Moriguchi Jan 1997 A
5738281 Zurecki et al. Apr 1998 A
5761941 Matsui et al. Jun 1998 A
5761974 Wang et al. Jun 1998 A
5762381 Vogel et al. Jun 1998 A
5799553 Billatos Sep 1998 A
5862833 Perez Jan 1999 A
5878496 Liu et al. Mar 1999 A
5901623 Hong May 1999 A
6007909 Rolander et al. Dec 1999 A
6010283 Henrich et al. Jan 2000 A
6017172 Ukegawa et al. Jan 2000 A
6053669 Lagerberg Apr 2000 A
6105374 Kamody Aug 2000 A
6145322 Odashima Nov 2000 A
6179692 Hara Jan 2001 B1
6200198 Ukai et al. Mar 2001 B1
6202525 Hendrickson et al. Mar 2001 B1
6305183 Mukai et al. Oct 2001 B1
6330818 Jain Dec 2001 B1
6332385 Kautto et al. Dec 2001 B1
6360577 Austin Mar 2002 B2
6454877 Kumar et al. Sep 2002 B1
6513336 Zureck et al. Feb 2003 B2
6564682 Zurecki et al. May 2003 B1
6622570 Prevey, III Sep 2003 B1
6652200 Kraemer Nov 2003 B2
6658907 Inoue et al. Dec 2003 B2
6666061 Heimann Dec 2003 B2
6675622 Plicht et al. Jan 2004 B2
6706324 Chandrasekar et al. Mar 2004 B2
6815362 Wong et al. Nov 2004 B1
6874344 Junius et al. Apr 2005 B1
20020040905 Groll Apr 2002 A1
20020150496 Chandrasekar et al. Oct 2002 A1
20020174528 Prevey, III Nov 2002 A1
20020189413 Zurecki et al. Dec 2002 A1
20030110781 Zurecki et al. Jun 2003 A1
20030145694 Zurecki et al. Aug 2003 A1
20040043626 Chou San et al. Mar 2004 A1
20040154443 Zurecki et al. Aug 2004 A1
20040232258 Cerv et al. Nov 2004 A1
20040234350 Jager et al. Nov 2004 A1
20040237542 Zurecki et al. Dec 2004 A1
20050011201 Zurecki et al. Jan 2005 A1
20050016337 Zurecki et al. Jan 2005 A1
20050211029 Zurecki et al. Sep 2005 A1
20060053987 Ghosh et al. Mar 2006 A1
20070084263 Zurecki Apr 2007 A1
20070175255 Pawelski et al. Aug 2007 A1
Foreign Referenced Citations (39)
Number Date Country
87102713 Sep 1987 CN
196 00 172 Dec 1997 DE
43 26 517 Jun 1998 DE
197 30 539 Apr 1999 DE
0 842 722 May 1998 EP
0 711 663 Jul 1999 EP
1142669 Oct 2001 EP
1 580 284 Sep 2005 EP
0 945 222 Nov 2005 EP
1 637 257 Mar 2006 EP
2 724 337 Mar 1996 FR
2804492 Aug 2001 FR
2804492 Aug 2001 FR
32-8397 Sep 1957 JP
62-10105 Jan 1987 JP
63-62637 Dec 1988 JP
5-508114 Nov 1993 JP
06-031502 Feb 1994 JP
6330077 Nov 1994 JP
9-300172 Nov 1997 JP
09-300172 Nov 1997 JP
11-156669 Jun 1999 JP
11-320328 Nov 1999 JP
2000024801 Jan 2000 JP
2000-65291 Mar 2000 JP
2000-296438 Oct 2000 JP
2000343427 Dec 2000 JP
2002-59336 Feb 2002 JP
2002-059336 Feb 2002 JP
9216464 Oct 1992 WO
WO 9217315 Oct 1992 WO
9708486 Mar 1997 WO
9810893 Mar 1998 WO
9960079 Nov 1999 WO
02096598 Dec 2002 WO
03002277 Jan 2003 WO
03022517 Mar 2003 WO
03066916 Aug 2003 WO
2005120739 Dec 2005 WO
Related Publications (1)
Number Date Country
20050016337 A1 Jan 2005 US