Claims
- 1. A honing head for burnishing a surface of a planar disc to be used in data recording and reproduction, the head comprising:
a sliding body having a bearing surface with a polished finish; an array of recesses formed into the bearing surface of the body, wherein trailing edges of the recesses form shearing edged walls; and at least one channel formed into the bearing surface wherein the channel interconnects the array of recesses and extends towards an outer edge of the slider.
- 2. A honing head as set forth in claim 1 above, wherein the array of recesses includes a geometry in which individual recesses overlap and in which the pattern of recesses includes recesses that are aligned in separate rows, and wherein there are a number of channels each extending through a number of recesses in a different one of the rows.
- 3. A honing head as set forth in claim 2 above, wherein the array of recesses is arranged in an oval configuration, and wherein the bearing surface includes a diamond-like coating.
- 4. A honing head as set forth in claim 3 above, wherein the sliding body comprises an aluminum oxide-titanium carbide material, and wherein the honing head has dimensions of less than 0.10 of an inch on a side and the dimensions of the recesses are less than 500 microns on a side.
- 5. The honing head as set forth in claim 4 above, wherein the recesses are diamond shape, with a trailing edge corner being directed in a direction toward the relative movement of a disc relative to the honing head, and wherein the recesses are of a depth of 10-20 microns.
- 6. A method for burnishing a surface of a planar disc to be used in data recording and reproduction by employing a slider mechanism having an array of surface recesses and at least one channel interconnecting the array of surface recesses comprising the steps of:
rotating a planar disc having surface asperities about an axis substantially normal to the disc surface; scanning a surface of the planar disc to be burnished with a magnetic data-head equipped with a piezo-electric element for detecting asperities, wherein the magnetic data-head is matched in its flight properties to the flight properties of a standard data-head which is later to scan the disc surface in normal operation; monitoring electric signals generated by the piezo-electric element during contact between the data-head and surface asperities, wherein the electric signals are stored in a computer to locate target locations; moving the slider mechanism, maintained in substantially parallel relation to the disc at a nominal height from the nominal surface of the disc, to a desired target location; shearing upper surfaces of the asperities with trailing edges of the surface depressions within the slider mechanism; collecting the sheared asperities upper surfaces within the surface depressions; expelling any excess debris away from disc surface through the channels interconnecting the surface depressions by centripetal forces; and continuing the above-mentioned steps until a sufficient surface smoothness it attained.
- 7. A method according to claim 6 above, wherein the slider mechanism is urged against the disc with a force of less than 10 grams, the slider mechanism has a surface area of less than {fraction (1/100)} inch in contact with the disc, and wherein the asperities to be removed are of less than a microinch in height above the nominal surface of the disc.
- 8. A method as set forth in claim 6 above, wherein the disc is rotated at a surface velocity of from 400-600 inches per second, and further including the steps of utilizing the rotational speed of the disc to generate pressure differentials and air currents in the recesses to move sheared particulates from the vicinity of the honing head.
- 9. A method for removing minute surface imperfections from a planar disc to be used in data recording and reproduction by employing a slider mechanism having surface depressions comprising the steps of:
rotating a disc having surface imperfections about an axis substantially normal to the disc surface; maintaining the slider in substantially parallel relation to the disc at a height of less than 1 min from a nominal surface of the disc; shearing upper surfaces of imperfections with trailing edges of depressions; continuing the operation at that radial location until a track of desired surface smoothness is defined; and repeating the above-mentioned steps at different radial locations.
- 10. A head for micro-burnishing a nominally flat surface to reduce asperities to less than about 0.5 min. relative to a nominal plane of a flat surface comprising:
hardened planar surface of less than 1/100 in2 in area, the surface including an array of diamond shaped depressions having apices angled in the direction of relative movement between the element and the surface to be micro-burnished and the surface also including a plurality of recessed channels interconnecting depressions in the array with an edge of the element to form outlets for the collected particulate.
- 11. A head as set forth in claim 10 above, wherein the array of depressions is arranged in rows within the hardened planar surface, and wherein each channel intersects the recesses in a different row.
- 12. A head as set forth in claim 11 above, wherein the recesses in the array have dimensions of less than about 300 microns on the side, wherein the recesses are of uniform depth of in the range of about 10-20 microns, and wherein the hardened planar surface includes a diamond like coating.
- 13. A head as set forth in claim 10 above, wherein the diamond shaped depressions are not depressions but are recesses and they are not even diamond shaped because they are of general shape which could be oval or triangular and which have trailing edges which are in communication with the channels that intersects that particular head and furthermore wherein the array of heads overlaps in a direction transverse to the direction of relative movement between the disc and head so as to cover the entire band and the head has a contact surface that has a chamfer on the leading edge and the outline of the array is curvilinear in shape such as to provide a transition between lesser number of recesses at the sides of the array in comparison to lots of recesses in the middle of the array.
- 14. A method for fabricating a honing head, having an array of depressions, used for burnishing a planar disc to be used in data recording and reproduction, using photolithographic techniques, comprising the steps of:
applying a photoresist material to a bearing surface in a pattern defining an array of planar geometries; exposing the bearing surface to a light source, creating a mask in the form of an array of planar geometries, wherein the array of planar geometries are unmasked and define the surface topography of the bearing surface; exposing the head to plasma rays, wherein the unmasked array of planar geometries will be milled to a desired depth; and applying a diamond-like-carbon coating to all surfaces of the head.
- 15. A method for burnishing a surface of a planar disc to be used in data recording and reproduction by employing a slider mechanism having an array of surface depressions and at least one channel interconnecting the array of surface depressions comprising the steps of media comprising the steps of:
rotating a planar disc having surface asperities about an axis substantially normal to the disc surface; and positioning a surface of the slider mechanism parallel and adjacent a nominal planar disc surface, wherein the array of surface depressions provide negative pressure between the nominal planar disc surface and the slider to enable the slider to travel within about 0.6 μin of the nominal planar disc surface.
- 16. Apparatus for reducing disc surface asperities to sub-micro inch height, the apparatus comprising:
a burnishing head; and means disposed on the burnishing head for micro-burnishing a normally flat surface to reduce asperities to less than 0.5 min. relative to a nominal plane of the flat surface.
REFERENCE TO PRIOR APPLICATION
[0001] This application relies for priority on a previously filed provisional application, Ser. No. 60/100,903, filed in Sep. 23, 1998.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60100903 |
Sep 1998 |
US |
Divisions (1)
|
Number |
Date |
Country |
Parent |
09404984 |
Sep 1999 |
US |
Child |
09894485 |
Jun 2001 |
US |