The present invention relates generally to removing mercury and mercury-containing compounds from liquid wastes and specifically to removing mercury and mercury-containing compounds from dental effluents.
Each year tens of thousands of pounds of mercury-containing wastes are discharged by dental offices into municipal waste systems. Amalgam fillings typically contain about 50% mercury by weight. Mercury is a known environmental contaminant, classified by the USEPA as a persistent, bioaccumulative, and toxic material. Waste water treatment plants must meet strict limits on the amount of mercury they can release. The discharged form of mercury is typically highly toxic (i.e., unstable) and in violation of applicable environmental regulations. Although particulate removal systems used in some dental offices remove mercury-containing particles, they do not remove dissolved mercury and mercury-containing compounds. Examples of such devices are described in U.S. Pat. Nos. 5,885,076; 5,797,742; 5,795,159; 5,577,910; 5,227,053; 4,753,632; 4,591,437; 4,385,891; and 5,114,578, all of which are incorporated herein by this reference.
The present invention provides a method and apparatus for removing solid amalgam particles and/or soluble forms of mercury and other metals (such as silver) and other contaminants from dental effluents.
In one embodiment, a contaminant removal system is provided for treating a three-phase effluent. The system includes:
The particle collection vessel can be of any suitable design. For example, the vessel can be a settling tank, a sedimentation device, a centrifuge, or any other device that utilizes gravity or centrifugal forces for effectuating solids/liquid separation. In one configuration, the particle collection vessel includes one or more baffles to facilitate solid/liquid/gas separation.
To remove the liquid phase from the particle collection vessel, the system can include a timer connected to a pump on the first discharge line to cause periodic removal of the liquid phase from the vessel during periods when no waste is incoming (e.g., overnight). In this manner, the liquid is provided with a relatively quiescent period for effective settlement of entrained particles such as amalgam particles.
The liquid treatment device can be any suitable device for removing and/or stabilizing contaminants in the liquid phase to form the treated liquid phase. In one configuration, the liquid treatment device includes one or more devices for adding chemical additives, such as one or more of a pH adjustor, an oxidant, a reductant, and a precipitant with the liquid phase. In one configuration, the liquid treatment device includes one or more sorbent columns that contact the liquid phase with one or more sorbents.
The effluent can be any contaminated effluent regardless of the source. In a preferred configuration, the effluent is produced by dental work on a patient. The effluent is collected by a liquid collection device, such as a sink, suction tube or, evacuation line, and conveyed to the particle collection vessel via a waste discharge line. A single particle collection vessel can service a plurality of such liquid collection devices corresponding to a plurality of dental chairs.
In another embodiment, a process is provided for removing dissolved contaminants from the three-phase effluent. The process includes the steps of:
As noted, the liquid phase can be removed discontinuously from the collection vessel to provide more effective separation of the entrained particles from the liquid phase.
In one configuration, the contacting step further includes the steps of;
As will be appreciated, the additive, preferably a reactant (a compound that will react with the contaminant, such as a reductant, oxidant, and/or precipitant), maybe used in the absence of (or without) a sorbent. For example, the reactant could be a precipitant that forms a precipitate with the contaminant. The precipitate could be removed from the effluent by ifitration techniques, gravity separation techniques, etc. A flocculant, such as aluminum or commercially available polymers, could be further added to the effluent to act as a filter and/or settling aid.
The system and method can provide numerous benefits. For example, the system can remove not only solid amalgam particles but also remove and/or stabilize dissolved elemental mercury and speciated mercury. The system and method can be effective at capturing a high percentage of the amalgam particles. The vessel typically captures or collects at least most and more typically at least about 95% of all amalgam particles that are about 10 microns or greater in size. The chemical treatment device can further remove at least most of the amalgam particles that are less than about 10 microns in size. Amalgam particles typically represent at least 95% of the total mercury sent to the system. Any of the system components can be used as a recycling device. For example, the collection vessel or sorbent column can be operated for a predetermined period (typically 6–12 months) after which the vessel and/or column is replaced. The used vessel and/or column is shipped to a recycling facility to recover the captured amalgam particles and/or elemental and speciated mercury. The system can operate effectively without a sorbent. Proper selection of the additives can remove the need for a sorbent.
The Particulate Collection System
A first embodiment of the present invention is depicted in
The timer 112 is connected to the pump 108 to cause discontinuous discharge of the liquid waste (or liquid phase) from the collection vessel 104. The timer 108 ensures that there is a sufficient (predetermined) settling time (in which the liquids and solid phases are relatively quiescent) prior to activating the pump 108 to discharge the (supernatant) wastewater or liquid phase. Typically, the predetermined settling time (between pump activation cycles) ranges from about 1 to about 24 hrs and more typically from about 8 to about 12 hrs. The discharge is performed at a controlled, slow rate (typically in the range of from about 10 to about 1000 ml/min and more typically in the range of from about 20 to about 200 ml/min).
The baffle assembly 170 includes a cylindrical baffle tube 174 having a plurality of supporting legs 178a–c spaced at intervals around the bottom of the baffle tube 174. The inner and outer radii of the baffle tube 174 are less than the inner radius of the housing 150 so that the baffle assembly can be received inside of the housing. Typically, the inner and outer radii of the baffle tube 174 are no more than about 50% of the inner housing 150 radius and typically are no less than about 10% of the inner housing 150 radius. The baffle tube 174, of course, has a hollow interior to permit fluids to flow upwardly and/or downwardly through the tube as shown. The dip tube 162 is positioned inside of the baffle tube 174 during use and at or near the central vertical axes of the housing 150. The baffle tube 174 is located such that the dip tube 162 and the cap outlet port 180a are located inside the cylindrical housing of the tube.
The cap 158 includes two conduits 180a,b that pass through the cap 158 and project a distance “D1” (typically from about 0.5 to about 3 inches below the cap surface 184. The conduits 180a,b connect to the vacuum lines 120 and 116, respectively. The distance “D” is sufficient to hold the baffle tube 174 in position within the housing 150 (i.e., under ports 166 and 180a) during use.
The collection vessel 104 and baffle assembly 170 can be made of any suitable material, with corrosion resistant plastics, such as PVC being preferred.
In operation, a three-phase mixture 117 of gas, solids or particles (e.g., mercury amalgam particles), and liquid from the dental chair(s) passes through vacuum line 116 and into the annular area 190 between the exterior surface 192 of the baffle tube 170 and the interior surface 188 of the housing 150. The velocity of the mixture is slowed by the large flow area within the vessel, causing solid particles 189 to settle out of the mixture and collect in the bottom of the housing 150. The gas phase 118 of the mixture passes above (i.e., the top 190 of the baffle tube 170 is typically spaced from the cap bottom 184) and around baffle tube 170 (i.e., the baffle tube exterior 192 is typically spaced from the housing interior around the baffle tube's periphery). The liquid phase 119 also settles out of the gas phase (due to the decrease in gas velocity) and collects in the bottom of the housing with the particles. Baffle tube 170 forces the liquid flow between legs 178a–c in order to exit vessel 150 via either dip tube 162 or outlet port 180a. This flow path will create some particle separation (albeit less than in normal operation) in the event that the vessel 150 overflows. Periodically, the pump 108 is activated by the timer 112 and draws collected liquid phase out of the bottom of the housing via dip tube 162 and discharges the liquid phase through discharge line 128 into the exhaust hose 132. The pump 108 is typically activated at a time interval ranging from about 5 mins. to about 12 hrs, more typically from about 2 to about 12 hours, and even more typically from about 2 to about 6 hours. The flow rate of pump 108 is low enough, typically about 0.02 to about 1 l/min., to prevent entrainment of the settled particles. The dip tube 162 design prevents particles from being withdrawn with the liquid and, therefore, the particles remain in the bottom of the housing 150.
The system has numerous operational benefits. The system can be effective at capturing about 95% of all particles that are greater than about 10 micron in size. This fraction of particles typically amounts to about 95% of the total mercury sent to the system. The system can be a self-priming system and will hold a vacuum when turned off. The pump can run dry without damaging the motor or the drive unit. The unit can be used as a recycling device. After the unit operates for a predetermined period (typically six to twelve months) the vessel is replaced with a new vessel and the used vessel shipped to a recycling facility to recover the captured amalgam particles. The vessel can remove fine amalgam particles that can damage the dental vacuum pump.
Installation of the system depends on the application. The system is designed to work with either wet- or dry-vacuum systems. In a dry-vac system, it is preferred that the vessel be installed upstream of the dry vac's air/water separator. The existing air/water separator may be removed; however, it is recommended that the existing air/water separator be left in place to protect the vacuum pump in the event that the vessel overfills. Because liquids will not damage a wet-vac pump, no such precaution is required for a wet system. If installed downstream of an existing air/water separator, the system is typically installed to receive the liquid outlet flow from the air/water separator. Different size clinics can be accommodated by adjusting the overall size of the system. In one configuration, the system is designed so that if any problem occurs with the unit, fluid flow will bypass the vessel and allow continued operation of the dental suction system.
FIGS. 6 and 8–10 show a particle collection system according to another embodiment of the present invention. The baffle assembly 200 includes a spacer assembly 204 that engages the upper end of the baffle tube 170. Spacers 208a–c are positioned at intervals around the periphery of the baffle tube 170 to maintain the correct, spaced relationship between the tube wall and the housing interior. Because the spacer assembly 204 maintains the tube exterior in a spaced apart relationship relative to the housing wall, the cap 210 does not require downwardly projecting conduits 180a,b.
The Combined Particulate Removal and Purification System
Referring to
The system 300 includes the particulate collection vessel 104 described above and, in addition, a chemical doser 304 and a sorbent column 308 and sub-micron filter 309. The doser 304 and sorbent column 308 are in communication with discharge line 312 and pump 108. Pump output line 312b is connected to the doser 304 and an output line 312c from the doser 304 is connected to the sorbent column 308. The output line 312d from the sorbent discharges into the sewer or line 128.
As will be appreciated, the dissolved mercury-containing compounds, colloidal mercury, and small (e.g., less than about 10 microns) amalgam particles in the waste liquid from the particulate collection vessel are removed and/or stabilized by the doser 304 and sorbent column 308 and polishing sub-micron filter 309.
One or more dosers 304 can be used to directly reduce mercury levels in the wastewater and/or adjust wastewater chemistry. A doser will typically release one or more suitable additives to the wastewater to maintain desirable chemical properties, to convert dissolved mercury to a less soluble form of mercury, or enhance the performance of a mercury-selective sorbent in the sorbent column 308 in removing dissolved mercury from dental amalgam wastewater, and/or to kill or neutralize organic material in the wastewater. Suitable solid additives are preferably nontoxic and sparingly soluble in the wastewater so that they are slowly released into the water. Alternately, the additive could be added by any other suitable technique. For example, the additive can be slowly added (as a liquid, solid, or gas) via a dosing mechanism (e.g., a pump) or by encapsulation in a slowly dissolving substance.
In another embodiment, the reagent can be added to the collection vessel via the dental suction line. For example, most dental offices flush a suction line cleaning solution through their evacuation system. The reagent could be added in the same method, or be co-blended, with the line cleanser. In this case, the additive is added to and in the effluent upstream of the collection vessel and further additive addition(s) in or downstream of the collection vessel is/are optional. The blending could be done during or after production of the cleanser. The blending can be done by known techniques such as by using a ribbon blender. Typical dental line cleansers contain surfactants and disinfectants and may range in pH from acid to highly basic. Active ingredients include sodium hydroxide (Alprojet™), chloramine T (Tiutol™, Aseptoclean 2™), sodium perborate or another percarbonate, hydrogen peroxide (Orotol Ultra™), ammonium chloride (S&M matic™, Vacusol™), sodium hypochlorite (bleach), pyridine compounds (Green & Clean™), phosphoric acid (Purevac™), glycolic acid, citric acid, isopropanol, chlorhexidine gluconate (Biovac™), and/or enzymes (Vacukleen™). In this case, any of these cleansers would further include one or more of the additives of the present invention.
The doser 304 can be of any suitable design. The doser may include a separator contacting chamber or may add reagent directly into collection vessel 104. In one design, the doser 304 includes inner and outer containment vessels 320a,b forming annulus 322 therebetween and a bed 336 of additive particles contained within the inner containment vessel 320b. Wastewater 328 flows in the annulus 322 between the inner and outer containment vessels, through the space 332 between the bottoms 336, 340 of the inner and outer containment vessels 320b,a, and through the (fluidized) bed 336 in the inner containment vessel 320b. In another design, the dosing occurs within the amalgam separator 104 itself.
In one configuration, the doser contacts an additive (or pH adjustor) for controlling wastewater pH. The additive can be any suitable substance for controlling pH, such as a base, e.g. hydroxides, carbonates, and phosphates with hydroxides and carbonates being preferred, or acid, e.g., organic acid and mineral acids, with mineral acids being preferred. Sufficient pH adjustor added to maintain a pH preferably ranging from about pH2 to about pH6 or from about pH8 to about pH10, depending on the application. pH adjustment is used to enhance the performance of other additives or of sorbent materials. Sorbents often work better at low pH, whereas many precipitating additives require a high pH.
In one configuration, the doser 304 contacts an oxidant with the wastewater to oxidize organic matter before passing the wastewater through the sorbent column. As will be appreciated, organic matter can clog, bio-foul, or otherwise impair the performance of the sorbent material. Any suitable oxidant can be used. Preferred oxidants include organic halogen derivatives (e.g., symclosene, oxyhalide salts (e.g., hypochlorite), ozone, hydrogen peroxide and/or organic peroxides). In typical applications, the amount of oxidant added will range from about 10 to about 1000 ppm.
In another configuration, a reductant is contacted by the doser with the wastewater to reduce mercury-containing compounds and materials. Reducing agents minimize oxidation and release of mercury from captured amalgam and helps to chemically reduce incoming oxidized mercury, thereby making it less soluble. For example, reduced elemental mercury has a very low solubility—on the order of 20 micrograms/L. Any suitable reductant can be used. Preferred reductants include stannous chloride, iron, tin oxalate, bisulfites, and/or polyvalent metals.
A reducing additive should create a solution oxidation/reduction potential capable of reducing oxidized forms of mercury back to elemental mercury. The standard electrode potentials (E°) for mercurous (Hg2+++2c=2ē) and mercuric (Hg+++2ē=Hg) reduction are about +0.789 V and +0.854 V respectively. These are measured versus a standard hydrogen electrode. Thus to create a solution environment where the concentration of oxidized mercury is no greater than that for elemental mercury (the assumed minimum limit for a solution in contact with amalgam) the required potential is given by:
at 25° C. In Equation (1), the activity of elemental mercury, aHg, is equal to unity by convention, and [Hgoxidized] represents the molar concentration of oxidized mercury. The equation is exact if species activity is used in place of concentration. Assuming a desired minimum concentration of 10−7 molar (˜20 ppb), the solution Eh is preferably about ≦+0.38 V. In typical applications, the amount of reductant added will range from about 10 to about 1000 ppm.
In another configuration, a precipitant is contacted by the doser with the wastewater to cause precipitation of mercury-containing compounds as insoluble mercury precipitates. Any suitable precipitant can be used. Preferred precipitants include iodates, sulfides and polysulfides, thioamides (e.g., thioacetamide), carbamates and thiocarbamates (e.g., sodium diethylthiocarbamate), polycarbamates, thiocarbamides, and polymeric or immobilized variants of these functional groups and mixtures and derivatives thereof. Carbamates are preferred as they are generally nontoxic and pH insensitive. In general, the precipitant can be any chemical which forms a sparingly soluble or readily filterable complex with mercury or mercury-bearing compounds. In typical applications, the amount of precipitant added will range from about 10 to about 1000 ppm.
In some configurations, the processes and compositions of U.S. Pat. Nos. 5,880,060; 5,667,695; 5,370,827; 5,330,658; 5,080,799; 4,108,769; and/or 4,072,605, all of which are incorporated herein by this reference, are used as or in lieu of the doser.
When a precipitant is used, a particle filter, such as a fine screen or membrane, can be located in or downstream of the doser and in or upstream of the sorbent column (if a sorbent column is present) to remove precipitated mercury particles. The filter preferably has a pore size sufficient to remove the particles, which typically ranges from about 10 to about 0.45 microns. In one configuration, the particle filter is located downstream of the sorbent column (
The sorbent column 308 can be of any suitable design. The sorbent column can be configured to contain one or multiple sorbent beds of the same or differing sorbents. The typical column design is a packed-bed of sorbent particles. Other column designs include monolithic sorbent structures and fluidized bed designs.
Referring to
The sorbent can be any sorbent capable of collecting mercury. Preferred sorbents include one or more of activated carbon, ion exchange resins such as cellulosic resins (e.g., as discussed in U.S. Pat. No. 5,907,037 which is incorporated herein by this reference) chelating resins and porous silica, and zeolites.
In a preferred configuration, the first sorbent bed 380 of activated carbon is located near the input port 358 to remove dissolved mercury and residual oxidant (if added previously by a chemical doser 304) from liquid 119 and the second sorbent bed 384 of an ion exchange resin is located above the first sorbent bed near the output port 366 to remove further dissolved mercury from liquid 119.
The purified wastewater 390 is fully compliant with pertinent environmental regulations. Typically, the purified wastewater 390 contains no more than about 10 ppb mercury.
In operation, the wastewater 328 is removed from the vessel 104 as described above and passed through the input at the top of the doser 304, through the annulus 322 and through the additive bed 336, and is removed through the output at the top of the doser 304 to form a treated wastewater. The treated wastewater 400 is introduced into the sorbent column 308 through input 358, passed sequentially first through sorbent bed 380 and second through sorbent bed 384 to form a purified wastewater 390. The wastewater is filtered with a polishing filter 308 to remove sorbent residue. Purified wastewater 390 can be discharged directly into the sewer.
The international organization for standardization (ISO) is a worldwide federation of national standards bodies. ISO standards provide safety and performance guidelines for a variety of equipment categories, including dental equipment. International standard ISO 11143 was prepared by the ISO dentistry technical committee to assess the performance of dental amalgam separators.
Amalgam separators are defined as items of dental equipment designed to retain amalgam particles carried by the wastewater from the dental treatment system, so as to reduce the number of amalgam particles and therefore the mercury entering the sewage system. The use of a centrifuge, filtration, sedimentation or combination of any of these methods may achieve separation of the amalgam particles.
ISO 11143 specifies requirements for amalgam separators used in connection with dental equipment in the dental treatment system. It specifies the efficiency of the amalgam separator (minimum of 95%) in terms of the level of retention of the amalgam based on a laboratory test. The standard also describes the test procedure for determining this efficiency, as well as requirements for the safe functioning of the separator, labeling, and instructions for use of the device. The ground amalgam sample for the efficiency test of the amalgam separator is divided into three different fractions:
In addition, 50% of the fine fraction particles should be less than 0.01 mm. The test sample used to assess the efficiency of the amalgam separator has a particle size distribution that reflects the situation found in dental treatment systems. The size fractions used in the standard are based on investigations that have been carried out to determine the particle size distribution of amalgam particles in water from dental treatment systems.
In summer 2000, the BullfroHg™ amalgam separator was independently tested following ISO 11143. The separator received a score of 99.6% removal efficiency when empty and 98.6% efficiency when full, easily passing the required test efficiency of 95%.
Value of the efficiency: 98.3%
The BullfroHg™ Hg amalgam separator passed the test.
In addition to the ISO test, ADA further performed an initial screening of the doser concept. The tests were intended to demonstrate that mercury levels could be reduced by reagent addition. Dental waste from a Denver-area clinic was used in these tests. The wastewater was first ifitered through a 10-micron filter to remove large particles. Some of the wastewater was sent through a 0.45-micron filter to determine the amount of “soluble” mercury. The tests consisted of 150 mL of waste and 10 g of reagent placed into 250-mL shaker flasks. The flasks were shaken overnight and the solutions in each flask were again ifitered with a 10-micron filter to remove solids. Half of the samples were then filtered through a 0.45-micron filter. The results are plotted in
Sixteen different reagent combinations were tested in these first trials. Several reduced the amount of mercury in the wastewater sample. Of those tested, iron, calcium carbonate, potassium iodate and tin oxalate appear to yield the best results. Some tested reagents successfully reduced the mercury levels, but are not believed to be practical for other reasons.
These initial tests were intended to demonstrate that mercury levels could be reduced by addition of a reagent. Reagents other than those tested are also possible.
In addition to the above tests, the City of Toronto carried out independent testing of a system as depicted in
The foregoing description of the present invention has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Consequently, variations and modifications commensurate with the above teachings, in the skill or knowledge of the relevant art, are within the scope of the present invention. For example, the particulate collection vessel can be used without the addition of an additive or the use of a sorbent. The embodiments described here and above are further intended to explain best modes for practicing the invention and to enable others skilled in the art to utilize the invention in such, or other, embodiments and with various modifications required by the particular applications or uses of the present invention. It is intended that the appended claims be construed to include alternative embodiments to the extent permitted by the prior art.
The present application is a continuation of U.S. patent application Ser. No. 09/794,577 filed Feb. 27, 2001, entitled “APPARATUS AND METHOD FOR REMOVING MERCURY AND MERCURIC COMPOUNDS FROM DENTAL EFFLUENTS” (now U.S. Pat. No. 6,797,178), which claims the benefits of U.S. Provisional Application Ser. Nos. 60/191,916, filed Mar. 24, 2000; 60/239,463, filed Oct. 10, 2000; and 60/267,6 14, filed Feb. 9, 2001, all of which are incorporated herein by reference in their entireties.
This invention was made with Government support under Grant No. 5R44DE13081-03 awarded by the National Institutes of Health. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
1697095 | Turner | Jan 1929 | A |
2145901 | Shoemaker | Feb 1939 | A |
2367496 | Greentree | Jan 1945 | A |
2860952 | Bergeron et al. | Nov 1958 | A |
3194629 | Dreibelbis et al. | Jul 1965 | A |
3201149 | Bragg | Aug 1965 | A |
3232033 | Williston et al. | Feb 1966 | A |
3257776 | Park et al. | Jun 1966 | A |
3374608 | Manes | Mar 1968 | A |
3499837 | Jaunarajs | Mar 1970 | A |
3516947 | Dudzik | Jun 1970 | A |
3674428 | Dean et al. | Jul 1972 | A |
3677696 | Bryk et al. | Jul 1972 | A |
3740331 | Anderson et al. | Jun 1973 | A |
3749761 | Dean et al. | Jul 1973 | A |
3755161 | Yokota et al. | Aug 1973 | A |
3790370 | Lalancette | Feb 1974 | A |
3835217 | Dunsmoor | Sep 1974 | A |
3847598 | Coulter et al. | Nov 1974 | A |
3857704 | Coulter | Dec 1974 | A |
3864327 | Marchant | Feb 1975 | A |
3873581 | Fitzpatrick et al. | Mar 1975 | A |
3876451 | Zall | Apr 1975 | A |
3890225 | Kajiyama | Jun 1975 | A |
3935098 | Oda et al. | Jan 1976 | A |
3947354 | Swanson et al. | Mar 1976 | A |
3948863 | Akamatsu et al. | Apr 1976 | A |
3961031 | Yasui et al. | Jun 1976 | A |
3969244 | Kobayashi et al. | Jul 1976 | A |
3984606 | Morgan | Oct 1976 | A |
3994719 | Corte et al. | Nov 1976 | A |
3999825 | Cannon | Dec 1976 | A |
4008937 | Filippi | Feb 1977 | A |
4038071 | Di Bella | Jul 1977 | A |
4051316 | Wing et al. | Sep 1977 | A |
4053401 | Fukushima et al. | Oct 1977 | A |
4069140 | Wunderlich | Jan 1978 | A |
4072605 | Thelander | Feb 1978 | A |
4083783 | Wing et al. | Apr 1978 | A |
4087359 | Patron et al. | May 1978 | A |
4094777 | Sugier et al. | Jun 1978 | A |
4101631 | Ambrosini et al. | Jul 1978 | A |
4108769 | Krieg et al. | Aug 1978 | A |
4110209 | Vogel | Aug 1978 | A |
4118243 | Sandesara | Oct 1978 | A |
4133755 | Tarao et al. | Jan 1979 | A |
4147626 | Findlay et al. | Apr 1979 | A |
4151077 | Nogueira et al. | Apr 1979 | A |
4153556 | Riedinger | May 1979 | A |
4160730 | Nguyen | Jul 1979 | A |
4196173 | deJong et al. | Apr 1980 | A |
4230486 | Capuano et al. | Oct 1980 | A |
4233274 | Allgulin | Nov 1980 | A |
4238329 | Zievers | Dec 1980 | A |
4245989 | Folkenroth et al. | Jan 1981 | A |
4249786 | Mahoff | Feb 1981 | A |
4256227 | Petrovich | Mar 1981 | A |
4256707 | Flynn, Jr. et al. | Mar 1981 | A |
4260494 | Dotson et al. | Apr 1981 | A |
4273747 | Rasmussen | Jun 1981 | A |
4285564 | Spinner | Aug 1981 | A |
4340623 | Justus | Jul 1982 | A |
4354942 | Kaczur et al. | Oct 1982 | A |
4363749 | Weiss et al. | Dec 1982 | A |
4377483 | Yamashita et al. | Mar 1983 | A |
4385891 | Ligotti | May 1983 | A |
4419107 | Roydhouse | Dec 1983 | A |
4443417 | Wiklund | Apr 1984 | A |
4459370 | van der Wal et al. | Jul 1984 | A |
4474896 | Chao | Oct 1984 | A |
4500327 | Nishino et al. | Feb 1985 | A |
4564374 | Hofmann | Jan 1986 | A |
4583999 | Lindahl et al. | Apr 1986 | A |
4591437 | Ernryd et al. | May 1986 | A |
4599177 | Hayashi et al. | Jul 1986 | A |
4614592 | Googin et al. | Sep 1986 | A |
4654322 | Holbein et al. | Mar 1987 | A |
4670160 | Moriya et al. | Jun 1987 | A |
4693731 | Tarakad et al. | Sep 1987 | A |
4695447 | Shultz | Sep 1987 | A |
4709118 | Yan | Nov 1987 | A |
4721582 | Nelson | Jan 1988 | A |
4731187 | Moriya et al. | Mar 1988 | A |
4752398 | Holbein et al. | Jun 1988 | A |
4753632 | Hofmann et al. | Jun 1988 | A |
4764219 | Yan | Aug 1988 | A |
4764355 | Romey et al. | Aug 1988 | A |
4771030 | Audeh | Sep 1988 | A |
4786483 | Audeh | Nov 1988 | A |
4786484 | Nelson | Nov 1988 | A |
4814091 | Napier et al. | Mar 1989 | A |
4814152 | Yan | Mar 1989 | A |
4834953 | Audeh | May 1989 | A |
4843102 | Horton | Jun 1989 | A |
4844815 | Ader et al. | Jul 1989 | A |
4861493 | Jansen | Aug 1989 | A |
4877515 | Audeh | Oct 1989 | A |
4892567 | Yan | Jan 1990 | A |
4902662 | Toulhoat et al. | Feb 1990 | A |
4909926 | Yan | Mar 1990 | A |
4909944 | Jackson et al. | Mar 1990 | A |
4911825 | Roussel et al. | Mar 1990 | A |
4915818 | Yan | Apr 1990 | A |
4917862 | Kraw et al. | Apr 1990 | A |
4919826 | Alzner | Apr 1990 | A |
4933158 | Aritsuka et al. | Jun 1990 | A |
4950408 | Duisters et al. | Aug 1990 | A |
4962276 | Yan | Oct 1990 | A |
4969995 | Jackson et al. | Nov 1990 | A |
4985389 | Audeh | Jan 1991 | A |
4986898 | Torihata et al. | Jan 1991 | A |
5017135 | Meyer | May 1991 | A |
5034054 | Woodward | Jul 1991 | A |
5053209 | Yan | Oct 1991 | A |
5062948 | Kawazoe et al. | Nov 1991 | A |
5064626 | Johnson et al. | Nov 1991 | A |
5080799 | Yan | Jan 1992 | A |
5085844 | Nowack et al. | Feb 1992 | A |
5107060 | Yan | Apr 1992 | A |
5114578 | Sundström | May 1992 | A |
5120515 | Audeh et al. | Jun 1992 | A |
5141724 | Audeh et al. | Aug 1992 | A |
5154833 | Robinson | Oct 1992 | A |
5173286 | Audeh | Dec 1992 | A |
5188530 | Trawoger et al. | Feb 1993 | A |
5192163 | Fleming | Mar 1993 | A |
5200087 | Nishihara | Apr 1993 | A |
5202301 | McNamara | Apr 1993 | A |
5209773 | Audhe et al. | May 1993 | A |
5227053 | Brym | Jul 1993 | A |
5238488 | Wilhelm | Aug 1993 | A |
5245106 | Cameron et al. | Sep 1993 | A |
5248488 | Yan | Sep 1993 | A |
5294417 | Moore et al. | Mar 1994 | A |
5298168 | Guess | Mar 1994 | A |
5304693 | Boitiaux et al. | Apr 1994 | A |
5308500 | Schwarzbach | May 1994 | A |
5322628 | Yan | Jun 1994 | A |
5330658 | Grant et al. | Jul 1994 | A |
5336835 | McNamara | Aug 1994 | A |
5338444 | van Buren et al. | Aug 1994 | A |
5346627 | Siefert et al. | Sep 1994 | A |
5357002 | Lezzi et al. | Oct 1994 | A |
5360632 | Johnson et al. | Nov 1994 | A |
5369072 | Benjamin et al. | Nov 1994 | A |
5370827 | Grant et al. | Dec 1994 | A |
5391217 | Zoche | Feb 1995 | A |
5409522 | Durham et al. | Apr 1995 | A |
5419884 | Weekman et al. | May 1995 | A |
5421994 | Sarrazin et al. | Jun 1995 | A |
5437797 | Helmig | Aug 1995 | A |
5460643 | Hasenpusch et al. | Oct 1995 | A |
5463167 | Ou | Oct 1995 | A |
5492627 | Hagen et al. | Feb 1996 | A |
5523067 | Markovs | Jun 1996 | A |
5536416 | Coltrinari et al. | Jul 1996 | A |
5569436 | Lerner | Oct 1996 | A |
5577910 | Holland | Nov 1996 | A |
5599515 | Misra et al. | Feb 1997 | A |
5607496 | Brooks | Mar 1997 | A |
5613851 | Trawöger et al. | Mar 1997 | A |
5658487 | Carey et al. | Aug 1997 | A |
5667695 | Bedard et al. | Sep 1997 | A |
5670122 | Zamansky et al. | Sep 1997 | A |
5679259 | Bolser | Oct 1997 | A |
5695726 | Lerner | Dec 1997 | A |
5741397 | Kraver | Apr 1998 | A |
5753125 | Kreisler | May 1998 | A |
5788852 | Mescon | Aug 1998 | A |
5795159 | Ralls et al. | Aug 1998 | A |
5797742 | Fraker | Aug 1998 | A |
5846434 | Seaman et al. | Dec 1998 | A |
5880060 | Blake et al. | Mar 1999 | A |
5885076 | Ralls et al. | Mar 1999 | A |
5898093 | Vos | Apr 1999 | A |
5900042 | Mendelsohn et al. | May 1999 | A |
5907037 | Gujral et al. | May 1999 | A |
5908559 | Kreisler | Jun 1999 | A |
5919001 | Lin | Jul 1999 | A |
5922277 | Donhoff et al. | Jul 1999 | A |
5967965 | Vyshkina et al. | Oct 1999 | A |
5976270 | Zelez et al. | Nov 1999 | A |
5976383 | Guess et al. | Nov 1999 | A |
5986161 | Akae et al. | Nov 1999 | A |
6022216 | Cattani | Feb 2000 | A |
6024239 | Turner et al. | Feb 2000 | A |
6083306 | Cattani | Jul 2000 | A |
6083473 | Esquivel et al. | Jul 2000 | A |
6103205 | Wojtowicz et al. | Aug 2000 | A |
6132623 | Nikolaidis et al. | Oct 2000 | A |
6139485 | Pal et al. | Oct 2000 | A |
6139751 | Bogaert et al. | Oct 2000 | A |
6153108 | Klock et al. | Nov 2000 | A |
6165366 | Sarangapani | Dec 2000 | A |
6214304 | Rosenthal et al. | Apr 2001 | B1 |
6270679 | Kreisler | Aug 2001 | B1 |
6274045 | Kreisler | Aug 2001 | B1 |
6284208 | Thomassen | Sep 2001 | B1 |
6294139 | Vicard et al. | Sep 2001 | B1 |
6322613 | Wojtowicz et al. | Nov 2001 | B1 |
6372187 | Madden et al. | Apr 2002 | B1 |
6375909 | Dangtran et al. | Apr 2002 | B1 |
6387276 | Nikolaidis et al. | May 2002 | B1 |
6403044 | Litz et al. | Jun 2002 | B1 |
6447740 | Caldwell et al. | Sep 2002 | B1 |
6524371 | El-Shoubary et al. | Feb 2003 | B1 |
6533842 | Maes et al. | Mar 2003 | B1 |
6534024 | Honjo et al. | Mar 2003 | B1 |
6558642 | El-Shoubary et al. | May 2003 | B1 |
6656423 | Joslyn | Dec 2003 | B1 |
6719828 | Lovell | Apr 2004 | B1 |
6797178 | Albiston et al. | Sep 2004 | B1 |
6911570 | Broderick et al. | Jun 2005 | B1 |
20030099585 | Aligulin | May 2003 | A1 |
Number | Date | Country |
---|---|---|
2173171 | Oct 1996 | CA |
2173271 | Feb 1999 | CA |
3813 264 | Nov 1988 | DE |
41 23907 | Jan 1993 | DE |
44 22 468 | Jan 1996 | DE |
48026672 | Apr 1973 | JP |
51069483 | Jun 1976 | JP |
WO 02096559 | May 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050034651 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
60267614 | Feb 2001 | US | |
60239463 | Oct 2000 | US | |
60191916 | Mar 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09794577 | Feb 2001 | US |
Child | 10926577 | US |