Apparatus and method having TDMR reader to reader shunts

Abstract
A method of making a magnetic head is provided. The method includes forming a first read sensor and a first electrical contact formed with a first shunt region. The method further includes forming a first mid-shield layer on the first read sensor, the first mid-shield layer being electrically connected to the first electrical contact. Additionally the method also includes forming a second mid-shield layer over the first mid-shield layer. Further, the method also includes forming a second read sensor over the second mid-shield layer, the second read sensor having a second electrical contact formed with a second shunt region electrically connected to the first shunt region.
Description
BACKGROUND


FIGS. 1A-1B illustrate a related-art two-dimensional magnetic recording (TDMR) transducer 1. Specifically, FIG. 1A illustrates a plan view of the related-art read transducer 1 and FIG. 1B illustrates a schematic view of the related-art two-dimensional read transducer 1. As illustrated, the related-art read transducer may include the two outer shields (15, 50), four mid-shields (20, 25, 55, 60), and three read sensors (80, 85, 90), each having two terminals for a total of six terminals (05, 10, 30, 35, 40, 45). The two outer shields include a first outer shield (S1) 15 and a second outer shields (S2) 50. The four mid-shields include a first mid-shield (MS1) 55, a second mid-shield (MS2) 20, a third mid-shield (MS3) 60, and a fourth mid-shield (MS4) 25.


The three read sensors (illustrated in FIG. 1B) include a first read sensor (R1) 80, a second read sensor (R2) 85, and a third read sensor (R3) 90. The first read sensor (R1) 80 includes a negative terminal (R1−) 05 and a positive terminal (R1+) 45. The second read sensor (R2) 85 also includes a negative terminal (R2−) 10 and a positive terminal (R2+) 35. Further, the third read sensor (R3) 90 includes a negative terminal (R3−) 30 and a positive terminal (R3+) 40.


By employing multiple sensor array designs, TDMR technology may enable multi-terabit density recording. In principle TDMR operation schemes may require the read sensor array structure of the TDMR transducer be longitudinally aligned along the cross track direction with little or no separation to allow different signals to be obtained at the same data track locations simultaneously during read back process. However, a TDMR transducer 1 may suffer a misalignment between adjacent sensor locations and the actual tracks of interests due to skew angle and radius conditions.


Providing smaller vertical separation between adjacent sensors may reduce a skew angle causing misalignment. However, this requires very thin insulating films to separate one reader's mid-shield from the next reader's mid-shield. Such thin insulating films may suffer from Electrical Overstress (EOS) or Electrostatic Discharge (ESD) during manufacturing. The chance of EOS or ESD increases as more read sensors are added between the first outer shield (S1) 15 and a second outer shields (S2) 50. Accordingly, what is needed is a system and method for improving the manufacturing of a magnetic recording read transducer, particular for a TDMR.





BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS


FIG. 1A illustrates a plan view of the related-art read transducer 1 and FIG. 1B illustrates a schematic view of the related-art two-dimensional read transducer 1.



FIG. 2 is a schematic view illustrating an exemplary implementation of a disk drive.



FIG. 3 is an ABS view illustrating a portion of a two-dimensional read transducer manufactured from an exemplary implementation of a microstructure of the present application.



FIG. 4 is a plan view of the exemplary implementation of the microstructure of the present application.



FIGS. 5A and 5B are flow charts illustrating an exemplary implementation of a method for manufacturing a magnetic head according to the present application.





DETAILED DESCRIPTION OF THE EXEMPLARY IMPLEMENTATIONS


FIGS. 2-3 depict side and Air Bearing Surface views of a storage drive or disk drive 100. For clarity, FIGS. 3 and 4 are not to scale. For simplicity not all portions of the disk drive 100 are shown. In addition, although the disk drive 100 is depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive 100 is not shown. For simplicity, only single components are shown. However, multiples of one or more of the components and/or their sub-components might be used.


The disk drive 100 includes media 101, a slider 102, a head 103 including a write transducer 104 and a read transducer 110. The media 101 includes tracks 109. The write transducer includes at least a write pole 106 and coil(s) 108 for energizing the pole 106. Additional and/or different components may be included in the disk drive 100. The slider 102, and thus the transducers 104 and 110 are generally attached to a suspension (not shown). The transducers 104 and 110 are fabricated on the slider 102 and include an ABS proximate to the media 101 during use. Although both a write transducer 104 and a read transducer 110 are shown, in other implementations, only a read transducer 110 may be present.


The read transducer 110 includes multiple read sensors 112, 114 and 116. The read sensors 112, 114 and 116 include sensor layers 113, 115 and 117, respectively, that may be free layers (FL) in a magneto resistive junction such as a tunneling magneto resistive (TMR) sensor (such as a current-perpendicular-to-plane (CPP) TMR sensor). As may be apparent to a person of ordinary skill in the art, other types of sensors (such as a giant magneto resistive (GMR) sensor) may also be used. Thus, each sensor 112, 114 and 116 may include a pinning layer, a pinned layer, a nonmagnetic spacer layer and a free layer 113, 115, and 117, respectively. For simplicity, only the free layers 113, 115 and 117 are separately labeled in FIG. 3. The sensors 112, 114 and 116 may also include seed layer(s) (not shown) and capping layer(s) (not shown). The pinning layer is generally an AFM layer that is magnetically coupled to the pinned layer. In other implementations, however, the pinning layer may be omitted or may use a different pinning mechanism. The free layers 113, 115 and 117 are each shown as a single layer, but may include multiple layers including but not limited to a synthetic antiferromagnetic (SAF) structure. The pinned layer may also be a simple layer or a multilayer. Although shown as extending the same distance from the ABS, the pinned layer may extend further than the corresponding free layer 113, 115, and/or 117, respectively. The nonmagnetic spacer layer may be a conductive layer, a tunneling barrier layer, or other analogous layer. Although depicted as a GMR or TMR sensor, in other implementations, other structures and other sensing mechanisms may be used for the sensor.


The read sensors 112, 114 and 116 are separated by distances d1 and d2 in a down track direction. The down track direction is perpendicular to the cross track direction. The cross track direction and track width direction are the same. In the implementation shown, the distance d1 and d2 between the sensors 112 and 114 and between the sensors 114 and 116, respectively, are the same. However, in other implementations, the distances between the sensors 112, 114 and 116 may not be the same. It may generally be desirable to reduce the distance between the sensors 112, 114 and 116 to reduce the skew effect discussed above. In some implementations, the distances d1 and d2 may each be at least ten nanometers and not more than four hundred nanometers. The read sensors 112, 114 and 116 may have various widths, w1, w2 and w3, respectively, in the track width, or cross-track, direction. In some embodiments, the various widths, w1, w2, and w3 the widths may be substantially equal. However, in other implementations, different widths may be possible. The widths of the sensors 112, 114 and 116 may also be based on the track pitch. The track pitch is the distance from the center of one track to the center of the next track. Further, the widths may depend not only on the track pitch, but also on the distance between the sensors 112, 114 and 116.


The read sensors 112, 114 and 116 may also be displaced along the cross track direction. Therefore, the centers of each of the read sensors 112, 114 and 116 are not aligned along a vertical line that runs the down track direction. In the implementation shown, none of the read sensors 112, 114 and 116 are aligned along a vertical line that runs in the down track direction. In other implementations, some or all of the read sensors 112, 114 and 116 may be aligned. The read sensors 112, 114 and 116 may also partially overlap in the track width/cross track direction. However, in other implementations, the read sensors 112, 114 and 116 may be aligned.


Also shown are bias structures 122, 123 and 124 that magnetically bias the read sensors 112, 114 and 116, respectively. The magnetic bias structure(s) 122, 123 and/or 124 may be soft bias structures fabricated with soft magnetic material(s). In other implementations, the magnetic bias structure(s) 122, 123 and/or 124 may be hard magnetic bias structures. Other mechanisms for biasing the sensors 112, 114 and 116 might also be used.


The read sensors are separated by shields 130 and 140. The read sensors 112, 114 and 116 and mid-shields 130 and 140 are surrounded by read shields 120 and 150. Thus, as used herein, a mid-shield shield may be considered to be an internal shield, which is interleaved with read sensors 112, 114 and 116 and between the outer, read shields 120, 150. The outermost shields 120, 150 for the read transducer 110 are termed read shields. In the implementation shown in FIGS. 2 and 3, three read sensors 112, 114 and 116 and two internal shields 130 and 140 are shown. However, in another implementation, another number of read sensors 112, 114 and 116 and internal shields 130 and 140 may be present. The shields/read shields 120, 130, 140 and 150 generally include soft magnetic material. In some implementations, one or more of the shields 120, 130, 140 and 150 may include ferromagnetic layers that are anti-ferromagnetically coupled.


Current is driven perpendicular-to-plane for the sensors 112, 114 and 116. Thus, current is driven through the sensor 112 between the shields 120 and 130. Similarly, current is driven through the sensor 114 between the shields 130 and 140. Current is also driven through the sensor 116 between the shields 140 and 150. Thus, electrical connection is to be made to the shields 120, 130, 140 and 150. However, different currents may be desired to be driven through the sensors 112, 114 and 116. Similarly, the resistances of the sensors 112, 114 and 116 may be desired to be separately sensed. For example, the sensors 112, 114 and 116 may each be desired to be separately coupled to their own preamplifier (preamp). As a result, the sensors 112, 114 and 116 are desired to be electrically isolated from each other. Consequently, the shields 130 and 140 are configured to not only magnetically shield the sensors 112, 114 and 116, but also to provide electrical isolation. As a result, each middle shield 130 and 140 may include multiple conductive magnetic layers separated by one or more insulating layers. Thus, the shield 130 may include conductive magnetic middle shield layers 134 and 136 that are separated by an insulating layer 152. In some embodiments, the insulating layer 152 may be considered a magnetic-spacer layer 152. Similarly, the shield 140 includes conductive magnetic middle shield layers 144 and 146 separated by a magnetic shield layer 162. However, example implementations are not limited to this configuration, and may include configurations without an insulating layer 152, 162 formed between the conductive magnetic middle shield layers 134/144, 136/146. Further, in some embodiments, the conductive magnetic layers 134/144/136/146 may be formed from a conductive metal and may be referred to as metallic middle shield layers.


The insulating layer(s) 152 and/or 162 may also be configured to improve the performance of the shields 130 and/or 140, respectively. For example, a low dielectric constant material may be used for the insulating layers 152 and/or 162. A low dielectric constant material is one which has a dielectric constant less than eight. For example, SiO and/or SiOC might be used for the insulating layer(s) 152 and/or 162. As a result, capacitive coupling between the metallic middle shield layers 134 and 136 and/or the metallic middle shield layers 144 and 146 may be reduced. The thickness of the insulating layer(s) 152 and/or 162 may be varied. More specifically, the thickness of the insulating layer(s) 152 and/or 162 may be increased distal from the sensors 112, 114 and 116. In some implementations, the insulating layer 152 and 162 may be on the order of ten nanometers within five microns of the sensors 112, 114 and 116. Further from the sensors 112, 114 and 116, the thickness may be increased, for example to twenty nanometers. In addition, the material(s) may be changed further from the sensors 112, 114 and 116. For example, the insulating layer 152 may include a ten nanometer thick alumina sub-layer having a dielectric constant of approximately six. At least five microns from the sensors an additional sub-layer of silicon dioxide having a thickness of approximately ten nanometers with a dielectric constant of approximately three may be added. Thus, the insulating layer(s) 152 and/or 162 may have varying thicknesses and/or materials.


Additionally, in each shield 130 and 140, an electrical contact layer is formed between each sensor 112,114,116 and respective middle shield layers 134,136,144,146. For example, electrical contact layer 132 is formed between sensor 112 and middle shield layer 134. Similarly, electrical contact layer 138 is formed between sensor 114 and middle shield layer 136. Additionally, electrical contact layer 142 is formed between sensor 114 and middle shield layer 144. Further, electrical contact layer 148 is formed between sensor 116 and middle shield layer 148. In the illustrated embodiments, the electrical contact layers 132, 138, 142, 148 are illustrated as separate layers. However, the electrical contact layers 132, 138, 142, 148 are not limited to this configuration, and may be formed as a portion of the respective adjacent middle shield layers 134, 136, 144, 146.


In some implementations, the electrical contact layer is formed form the same materials as the neighboring sensors 112,114,116 and may be formed during the formation of neighboring sensor as discussed in greater detailed below. For example, electrical contact layer 132 may be formed during formation of the sensor 112. Further, electrical contact layers 138 and 142 may be formed during formation of the sensor 114. Additionally, electrical contact layer 148 may be formed during formation of the sensor 116.


The read transducer 110 may be used in higher density recording, such as TDMR. Through the placement of the sensors 112, 114 and 116, the transducer 110 may address skew issues that might otherwise adversely affect performance of the transducer 110. Consequently, the impedance and response of the transducer 110 may be sufficient for higher frequency performance. Cross talk may thus be reduced. In addition, the effect on the magnetics and other aspects of the transducer 110 because of the reduced overlap may be mitigated by the configuration of the shields 130 and 140. Performance of the magnetic transducer 110 may thus be improved.



FIG. 4 is a plan view of the exemplary implementation of the microstructure 190 of the present application. The microstructure 190 includes the read transducer 110 and an interconnection region 200 that may be removed during manufacturing of the read transducer 110. Specifically, once all of the layers of the read transducer 110 have been formed, the interconnection region 200 may be removed along plane 180 via known manufacturing methods to form the Air Bearing Surface (ABS) of the read transducer. Of course, embodiments of the present application need not have the interconnection region 200 be removed during processing and manufacturing of the read transducer 110.


As illustrated, each of the electrical contact layers 132/142/138/148 extend from the read transducer 110 into the interconnection region 200. Further, a shunt region 172/174/177/179 may be formed on the portions of the electrical contact layers 132/142/138/148 that extend into the interconnection region 200.


As illustrated, the upper most electrical contact layer 148 extends furthest into the interconnection region 200 and has the shunt region 177 formed thereon. Additionally, the electrical contact layer 142 extends into the interconnection region 200 less than electrical contact layer 132 and has the shunt region 179 formed thereon. Further, the electrical contact layer 138 extends over the shunt region 179 and has shunt region 174 formed thereon. Further, the lower most electrical contact layer 132 extends least furthest into the interconnection region 200 and has the shunt region 172 formed thereon. The lower most electrical contact layer 132 is the electrical contact layer closest to the lower outer shield 120. As discussed in the above embodiments, the electrical contact layers 132, 138, 142, 148 are illustrated as separate layers. However, the electrical contact layers 132, 138, 142, 148 are not limited to this configuration, and may be formed as a portion of the respective adjacent middle shield layers 134, 136, 144, 146.


Further, an electrical connection 170 is formed between the shunt region 172 and the shunt region 174. Additionally, and electrical connection 175 is formed between the shunt region 177 and the shunt region 177. In some embodiments, the electrical connections 170 and 175 may be formed as an electrically conductive layer, which provides minimal resistance and shorts together the respective shunt regions. In other embodiments, the electrical connections 170 and 175 may be formed from an electrically resistive layer that provides a specific level of resistance. For example, each electrical connection 170, 175 may be formed from the same materials as the read sensors and may provide a defined resistance value. For example, each electrical connection 170/175 may have provided an electrical resistance substantially equal to 10 kΩ plus or minus normal manufacturing tolerances.


By providing shunt regions 172/174/177/179 with electrical connections 170/175 therebetween, Electrical Overstress (EOS) or Electrostatic Discharge (ESD) during manufacturing may be reduced. Further, by provided a defined resistance between the shunt regions 172/174/177/179, the electrical properties of read transducer 110 may be measured during manufacturing prior to completion.


Additionally, in some embodiments an electrical connection (not shown) may be provided between the outer read shields 120 and 150 in the interconnection region 200 to electrically short together the outer read shields 120 and 150. Such an electrical connection or short between the outer read shields 120 and 150 may provide additional protection against EOS and ESD.



FIGS. 5A and 5B illustrate an exemplary implementation of a method 500 for manufacturing the read transducer. For simplicity, some steps may be omitted, interleaved, and/or combined. The method 500 is also described in the context of providing a single recording transducer having two read sensors. However, the method 500 may be used to form a portion or a complete two-dimensional transducer, such as TDMR transducers 110 illustrated in FIGS. 2-3 and/or the microstructure 190 of FIG. 4. Further, the method 500 may also be used to fabricate multiple transducers at substantially the same time. The method 500 may also be used to fabricate other transducers, as may be apparent to a person of ordinary skill in the art. The method 500 is also described in the context of particular layers. A particular layer may include multiple materials and/or multiple sub-layers. The method 500 also may start after formation of other portions of the magnetic recording transducer.


In 505, a first outer shield layer 120 is formed. The first outer shield layer 120 may generally be formed from a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the first outer shield layer 120 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process.


Further, in 510, a first read sensor 112 is formed on the first outer shield layer 120. As discussed above, each read sensor 112, 114 and 116 may include a pinning layer, a pinned layer, a nonmagnetic spacer layer and a free layer 113, 115, and 117, respectively. The pinning layer is generally an AFM layer that is magnetically coupled to the pinned layer. In other implementations, however, the pinning layer may be omitted or may use a different pinning mechanism. The free layers 113, 115 and 117 are each shown as a single layer, but may include multiple layers including but not limited to a synthetic antiferromagnetic (SAF) structure. The pinned layer may also be a simple layer or a multilayer. Although shown as extending the same distance from the ABS, the pinned layer may extend further than the corresponding free layer 113, 115, and/or 117, respectively. Further, the formation process of the first read sensor 112 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process.


After the first read sensor 112 is formed, a first electrical contact layer 132 may be formed over the first read sensor 112 in 515. The first electrical contact layer 132 may generally be formed from a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the first electrical contact layer 132 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process.


The first electrical contact layer 132 is formed to extend into the interconnection region 200 illustrated in FIG. 4. Further during the formation of the first electrical contact layer 132, the shunt region 172 is also formed using the same materials as the electrical contact layer. In some embodiments, the formation of the first electrical contact layer 132 may formed during the formation of the read sensor 112 and in some embodiments the formation of the first electrical contact layer 132 may be a separate, discrete process from the sensor 112 formation.


In 520, a first metallic middle-shield layer 134 is formed over the first electrical contact layer 132. The first metallic middle-shield layer 134 may generally be formed from a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the first metallic middle-shield layer 134 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process.


As discussed above, the first electrical contact layer 132 is illustrated as a separate layer. However, the first electrical contact layers 132 is not limited to this configuration, and may be formed as a portion of the adjacent first metallic middle-shield layer 134.


In 525, a second metallic middle-shield layer 136 is formed above the first metallic middle-shield layer 134. In some implementations, the insulation layer 152 may be formed between the first and second metallic middle-shield layers 134, 136. The second metallic middle-shield layer 136 may generally be formed from a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the second metallic middle-shield layer 136 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process.


In 530, a second electrical contact layer 138 may be formed over the second middle-shield layer 136. The second electrical contact layer 138 may generally be formed from a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the second electrical contact layer 138 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process.


The second electrical contact layer 138 is formed to extend into the interconnection region 200 illustrated in FIG. 4. Further during the formation of the second electrical contact layer 138, the shunt region 174 is also formed using the same materials as the electrical contact layer. Additionally the electrical connection 175 may also be formed during the formation of the second electrical contact layer 138.


As discussed above, the second electrical contact layer 138 is illustrated as a separate layer. However, the second electrical contact layers 138 is not limited to this configuration, and may be formed as a portion of the adjacent second metallic middle-shield layer 136.


Further, in 535, a second read sensor 114 is formed above the second middle-shield shield layer 136. In some embodiments, the second electrical contact layer 138 may formed during the formation of the second read sensor 114 in 535 and in some embodiments the formation of the second electrical contact layer 138 may be a separate, discrete process from the sensor 114 formation.


As discussed above, each read sensor 112, 114 and 116 may include a pinning layer, a pinned layer, a nonmagnetic spacer layer and a free layer 113, 115, and 117, respectively. The pinning layer is generally an AFM layer that is magnetically coupled to the pinned layer. In other implementations, however, the pinning layer may be omitted or may use a different pinning mechanism. The free layers 113, 115 and 117 are each shown as a single layer, but may include multiple layers including but not limited to a synthetic antiferromagnetic (SAF) structure. The pinned layer may also be a simple layer or a multilayer. Although shown as extending the same distance from the ABS, the pinned layer may extend further than the corresponding free layer 113, 115, and/or 117, respectively. Further, the formation process of the second read sensor 114 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process.


After the second read sensor 114 is formed, a third electrical contact layer 142 may be formed over the second read sensor 114 in 540. The third electrical contact layer 142 may generally be formed from a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the third electrical contact layer 142 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process.


The third electrical contact layer 142 is formed to extend into the interconnection region 200 illustrated in FIG. 4. Further during the formation of the third electrical contact layer 142, the shunt region 179 is also formed using the same materials as the electrical contact layer. In some embodiments, the formation of the third electrical contact layer 142 may formed during the formation of the read sensor 114 and in some embodiments the formation of the third electrical contact layer 142 may be a separate, discrete process from the sensor 114 formation.


In 545, a third metallic middle-shield layer 144 is formed over the third electrical contact layer 142. The third metallic middle-shield layer 144 may generally be formed from a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the third metallic middle-shield layer 144 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process.


As discussed above, the third electrical contact layer 142 is illustrated as a separate layer. However, the third electrical contact layers 142 is not limited to this configuration, and may be formed as a portion of the adjacent third metallic middle-shield layer 144.


In 550, a fourth metallic middle-shield layer 146 is formed above the third metallic middle-shield layer 144. In some implementations, the insulation layer 162 may be formed between the third and fourth metallic middle-shield layers 144, 146. The fourth metallic middle-shield layer 146 may generally be formed from a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the fourth metallic middle-shield layer 146 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process.


In 555, a fourth electrical contact layer 148 may be formed over the fourth middle-shield layer 146. The fourth electrical contact layer 148 may generally be formed from a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the fourth electrical contact layer 148 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process.


The fourth electrical contact layer 148 is formed to extend into the interconnection region 200 illustrated in FIG. 4. Further during the formation of the fourth electrical contact layer 148, the shunt region 177 is also formed using the same materials as the electrical contact layer. Additionally the electrical connection 170 may also be formed during the formation of the second electrical contact layer 148.


As discussed above, the fourth electrical contact layer 148 is illustrated as a separate layer. However, the fourth electrical contact layers 148 is not limited to this configuration, and may be formed as a portion of the adjacent fourth metallic middle-shield layer 146.


Further, in 560, a third read sensor 116 is formed above the fourth middle-shield shield layer 146. In some embodiments, the fourth electrical contact layer 148 may formed during the formation of the third read sensor 114 in 560 and in some embodiments the formation of the fourth electrical contact layer 148 may be a separate, discrete process from the sensor 116 formation.


As discussed above, each read sensor 112, 114 and 116 may include a pinning layer, a pinned layer, a nonmagnetic spacer layer and a free layer 113, 115, and 117, respectively. The pinning layer is generally an AFM layer that is magnetically coupled to the pinned layer. In other implementations, however, the pinning layer may be omitted or may use a different pinning mechanism. The free layers 113, 115 and 117 are each shown as a single layer, but may include multiple layers including but not limited to a synthetic antiferromagnetic (SAF) structure. The pinned layer may also be a simple layer or a multilayer. Although shown as extending the same distance from the ABS, the pinned layer may extend further than the corresponding free layer 113, 115, and/or 117, respectively. Further, the formation process of the third read sensor 116 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process.


In 565, a second outer shield layer 150 is formed over the third read sensor 116. The second outer shield layer 150 may generally be formed from a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the second outer shield layer 150 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art including sputtering or any other known process. Once the second outer shield layer 150 is formed in 565 the process 500 may end in some implementations. However, in some implementations, the interconnection region 200 may be removed along plane 180 to form the ABS. The removal of the interconnection region 200 may be done through any process that may be apparent to a person of ordinary skill in the art (such as dicing, etching, etc.).


The foregoing detailed description has set forth various implementations of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof.


While certain implementations have been described, these implementations have been presented by way of example only, and are not intended to limit the scope of the protection. Indeed, the novel methods and apparatuses described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the protection. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the protection.

Claims
  • 1. A layered micro-structure for a magnetic head, the micro-structure comprising: a first read sensor and a first electrical contact with a first shunt region;a first mid-shield layer formed on the first read sensor, the first mid-shield layer being electrically connected to the first electrical contact;a second mid-shield layer formed over the first mid-shield layer; anda second read sensor formed over the second mid-shield layer, the second read sensor having a second electrical contact between the second read sensor and the second mid-shield layer, the second electrical contact having a second shunt region electrically connected to the first shunt region; anda first electrical connection layer formed between, and electrically connecting, the first shunt region and the second shunt region.
  • 2. The micro-structure of claim 1, wherein the first electrical connection layer comprises an electrically resistive layer formed between the first shunt region and the second shunt region.
  • 3. The micro-structure of claim 1, further comprising: a first outer shield layer, wherein the first read sensor is formed over the first outer shield layer; anda second outer shield layer formed over the second read sensor.
  • 4. The micro-structure of claim 1, wherein the first shunt region is formed in a region of the micro-structure that is removable to form an air bearing surface; and wherein the second shunt region is formed in the region of the micro-structure that is removable to form the air bearing surface.
  • 5. The micro-structure of claim 1, wherein the second read sensor further comprises a third electrical contact having a third shunt region; and wherein the micro-structure further comprises:a third mid-shield layer formed over the second read sensor, the third mid-shield layer being electrically connected to the third electrical contact;a fourth mid-shield layer formed over the third mid-shield layer; anda third read sensor formed over the fourth mid-shield layer, the third read sensor having a fourth electrical contact including a fourth shunt region electrically connected to the third shunt region; anda second electrical connection layer formed between, and electrically connecting, the fourth shunt region and the third shunt region.
  • 6. The micro-structure of claim 5, wherein the first electrical connection layer comprises a first electrically resistive layer formed between the first shunt region and the second shunt region; and wherein the second electrical connection layer comprises a second electrically resistive layer formed between the third shunt region and the fourth shunt region.
  • 7. The micro-structure of claim 5, further comprising: a first outer shield layer, wherein the first read sensor is formed over the first outer shield layer; anda second outer shield layer formed over the third read sensor.
  • 8. The micro-structure of claim 5, wherein the first shunt region is formed in a region of the microstructure that is removable to form an air bearing surface; wherein the second shunt region is formed in the region of the micro-structure that is removable to form the air bearing surface;wherein the third shunt region is formed in the region of the micro-structure that is removable to form the air bearing surface; andwherein the fourth shunt region is formed in the region of the micro-structure that is removable to form the air bearing surface.
  • 9. A storage device comprising: a storage medium; anda slider disposed proximate to the storage medium, the slider comprising the micro-structure according to claim 1 mounted on the slider.
US Referenced Citations (628)
Number Name Date Kind
5255141 Valstyn et al. Oct 1993 A
5699212 Erpelding et al. Dec 1997 A
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6271604 Frank, Jr. et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank, Jr. et al. Oct 2001 B1
6304414 Crue, Jr. et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue, Jr. et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank, Jr. et al. Mar 2002 B1
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank, Jr. et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue, Jr. et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank, Jr. et al. Jun 2002 B1
6417998 Crue, Jr. et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6451514 Iitsuka Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue, Jr. et al. Oct 2002 B1
6466404 Crue, Jr. et al. Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue, Jr. et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535361 Cain et al. Mar 2003 B2
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6629357 Akoh Oct 2003 B1
6633459 Heim et al. Oct 2003 B2
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6643106 Bougtaghou et al. Nov 2003 B2
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6650519 Karr et al. Nov 2003 B1
6654195 Frank, Jr. et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank, Jr. et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6729015 Matono et al. May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6744608 Sin et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781927 Heanuc et al. Aug 2004 B1
6785955 Chen et al. Sep 2004 B1
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue, Jr. et al. Dec 2004 B1
6833979 Knapp et al. Dec 2004 B1
6834010 Qi et al. Dec 2004 B1
6846991 Girard et al. Jan 2005 B2
6859343 Alfoqaha et al. Feb 2005 B1
6859997 Tong et al. Mar 2005 B1
6861937 Feng et al. Mar 2005 B1
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue, Jr. et al. May 2005 B1
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6944938 Crue, Jr. et al. Sep 2005 B1
6947258 Li Sep 2005 B1
6950266 McCaslin et al. Sep 2005 B1
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989972 Stoev et al. Jan 2006 B1
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7041985 Wang et al. May 2006 B1
7046490 Ueno et al. May 2006 B1
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7092195 Liu et al. Aug 2006 B1
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7119995 Granstrom et al. Oct 2006 B2
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7154715 Yamanaka et al. Dec 2006 B2
7170725 Zhou et al. Jan 2007 B1
7177117 Jiang et al. Feb 2007 B1
7193815 Stoev et al. Mar 2007 B1
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7211339 Seagle et al. May 2007 B1
7212384 Stoev et al. May 2007 B1
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248449 Seagle Jul 2007 B1
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7291279 Dill et al. Nov 2007 B2
7292400 Bishop Nov 2007 B2
7292409 Stoev et al. Nov 2007 B1
7296339 Yang et al. Nov 2007 B1
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7318947 Park et al. Jan 2008 B1
7333295 Medina et al. Feb 2008 B1
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7371152 Newman May 2008 B1
7372665 Stoev et al. May 2008 B1
7375926 Stoev et al. May 2008 B1
7375931 Jayasekara et al. May 2008 B2
7379269 Krounbi et al. May 2008 B1
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7392579 Leung et al. Jul 2008 B2
7417832 Erickson et al. Aug 2008 B1
7419891 Chen et al. Sep 2008 B1
7428124 Song et al. Sep 2008 B1
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7493688 Wang et al. Feb 2009 B1
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7542246 Song et al. Jun 2009 B1
7545608 Araki et al. Jun 2009 B2
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7639457 Chen et al. Dec 2009 B1
7660080 Liu et al. Feb 2010 B1
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7785666 Sun et al. Aug 2010 B1
7796356 Fowler et al. Sep 2010 B1
7800858 Bajikar et al. Sep 2010 B1
7819979 Chen et al. Oct 2010 B1
7829264 Wang et al. Nov 2010 B1
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7869160 Pan et al. Jan 2011 B1
7872824 Macchioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916426 Hu et al. Mar 2011 B2
7918013 Dunn et al. Apr 2011 B1
7968219 Jiang et al. Jun 2011 B1
7982989 Shi et al. Jul 2011 B1
8008912 Shang Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu et al. Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8107200 Leung et al. Jan 2012 B2
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8151441 Rudy et al. Apr 2012 B1
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179636 Bai et al. May 2012 B1
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8196285 Zhang et al. Jun 2012 B1
8199444 Golcher et al. Jun 2012 B2
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233248 Li et al. Jul 2012 B1
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310785 Zhang et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320219 Wolf et al. Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao et al. Jan 2013 B1
8349195 Si et al. Jan 2013 B1
8351307 Wolf et al. Jan 2013 B1
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu et al. Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8394280 Wan et al. Mar 2013 B1
8400731 Li et al. Mar 2013 B1
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8413317 Wan et al. Apr 2013 B1
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8441756 Sun et al. May 2013 B1
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8472288 Wolf et al. Jun 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8537502 Park et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner et al. Oct 2013 B1
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582226 Tetzlaff et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan et al. Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8717709 Shi et al. May 2014 B1
8720044 Tran et al. May 2014 B1
8721902 Wang et al. May 2014 B1
8724259 Liu et al. May 2014 B1
8749790 Tanner et al. Jun 2014 B1
8749920 Knutson et al. Jun 2014 B1
8753903 Tanner et al. Jun 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8760819 Liu et al. Jun 2014 B1
8760822 Li et al. Jun 2014 B1
8760823 Chen et al. Jun 2014 B1
8763235 Wang et al. Jul 2014 B1
8780498 Jiang et al. Jul 2014 B1
8780505 Xiao Jul 2014 B1
8786983 Liu et al. Jul 2014 B1
8790524 Luo et al. Jul 2014 B1
8790527 Luo et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
8813324 Emley et al. Aug 2014 B2
8891207 Li et al. Nov 2014 B1
8908333 Rudy et al. Dec 2014 B1
9042058 Li et al. May 2015 B1
9087527 Li et al. Jul 2015 B1
20040218309 Seigler Nov 2004 A1
20040264065 Ionescu et al. Dec 2004 A1
20070081278 Feldbaum et al. Apr 2007 A1
20080066294 Mahadev et al. Mar 2008 A1
20090168213 Araki et al. Jul 2009 A1
20100290157 Zhang et al. Nov 2010 A1
20110086240 Xiang et al. Apr 2011 A1
20120111826 Chen et al. May 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120298621 Gao Nov 2012 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1