This invention relates to the field of heat exchangers. More particularly, this invention relates to a method and apparatus for circulating a cooling material through optimally shaped channels and other geometric structures in a heat exchanger.
Certain heat sinks use pumps to pump a cooling material through a portion of the heat sink overlying a heat-generating source. The cooling material absorbs the heat generated by the heat-generating source and carries it away from the heat-generating source, thereby cooling the heat-generating source. Pumps used to transmit the cooling material through the heat sink are operated at maximum flow rates.
Cooling materials transmitted along channels used in these heat sinks generally suffer from excessive and non-uniform pressure drops. The pumps used to circulate cooling materials, already overworked to pump the cooling material at high rates, require even more energy to account for these pressure drops.
Heat sinks made according to U.S. patent application Ser. No. 10/612,241, titled “Multi-Level Microchannel Heat Exchangers,” filed Jul. 1, 2003, require numerous semiconductor processing and assembly steps. While providing enhanced cooling capacity, these processing steps likely increase the cost of the heat exchanger. The benefits afforded by these processing and assembly steps may not be warranted by the added costs of manufacturing.
Accordingly, what is needed is a structure and a method of efficiently manufacturing a heat exchanger that provides for uniform pressure flows for the transmission of a cooling material.
A heat exchanger circulates a cooling material that absorbs heat from a heat-generating source and carries the heat away from the heat-generating source, thereby cooling the heat-generating source. The heat exchanger can thus be used to cool a variety of heat sources, such as semiconductor devices, batteries, motors, walls of process chambers, and any source that generates heat.
In a first aspect of the present invention, a method of forming a heat exchanger comprises forming a manifold layer defining a plurality of apertures and forming an interface layer comprising one or more narrowing trenches. Each aperture is positioned on one side of a narrowing trench, whereby a path is defined from a first aperture, through a narrowing trench, and to a second aperture. In a first embodiment, the interface layer comprises a material exhibiting properties of anisotropic etching. Preferably, the material comprises a <110> oriented silicon substrate. In another embodiment, forming an interface layer comprises etching the <110> oriented silicon substrate in an etchant to produce a <111> oriented surface defining a sloping wall of a narrowing trench. Alternatively, the material is any orientation of silicon and is etched in an anisotropic plasma etch to form one or more narrowing trenches. In further embodiments, the etchant comprises potassium hydroxide (KOH) or tetramethyl ammonium hydroxide (TMAH). In another embodiment the one or more narrowing trenches are formed by a machining process such as milling, sawing, drilling, stamping, electrical discharge machining (EDM), wire EDM, coining, die casting, investment casting, or any combination of these. Alternatively, the one or more narrowing trenches are formed by electroplating, metal injection molding, LIGA processes, casting, or any combination of these.
In another embodiment, the manifold layer and the interface layer are formed of a monolithic device. In another embodiment, the method further comprises coupling the manifold layer to the interface layer. Coupling the manifold layer to the interface layer can comprise adhesively bonding the manifold layer to the interface layer, thermally fusing the manifold layer to the interface layer, anodically bonding the manifold layer to the interface layer, and eutectically bonding the manifold layer to the interface layer. In another embodiment, the manifold layer comprises a material selected from the group consisting essentially of a plastic, a glass, a metal, and a semiconductor.
In another embodiment, forming the manifold layer comprises forming a first plurality of interconnected hollow fingers and a second plurality of interconnected hollow fingers. The first plurality of interconnected hollow fingers provides flow paths to the one or more first apertures and the second plurality of interconnected hollow fingers provides flow paths from the one or more second apertures. Preferably, the first plurality of interconnected hollow fingers and the second plurality of interconnected hollow fingers lie substantially in a single plane.
In another embodiment, the method further comprises coupling a pump to the first plurality of interconnected hollow fingers. In another embodiment, the method further comprises coupling a heat-generating source to the interface layer. In another embodiment, the method comprises integrally forming a bottom surface of the interface layer with the heat-generating source. In another embodiment, the heat-generating source comprises a semiconductor microprocessor. In another embodiment, the method further comprises introducing a cooling material to the pump, so that the pump circulates the cooling material along the first plurality of fingers, to the one or more first apertures, along a the plurality of narrowing trenches, to the one or more second apertures, and to the second plurality of fingers, thereby cooling the heat-generating source. In another embodiment, the cooling material comprises a liquid, such as water. In other embodiments, the cooling material comprises a liquid/vapor mixture. In another embodiment, each aperture lies substantially in a single plane, parallel to a lower surface of the interface layer. In another embodiment, the manifold layer comprises a surface that extends into each narrowing trench and substantially conforms to a contour of each narrowing trench. In another embodiment, a narrowing trench has a depth:width aspect ratio of at least approximately 10:1.
In another embodiment, the method further comprises coupling an intermediate layer between the manifold layer and the interface layer. The intermediate layer comprises a plurality of openings positioned over the plurality of apertures, thereby controlling the flow of a cooling material to the paths.
In a second aspect of the present invention, a heat exchanger comprises a manifold layer defining a plurality of apertures, and an interface layer comprising a plurality of narrowing trenches. Each aperture is positioned on one side of a narrowing trench, whereby a path is defined from a first aperture, through a narrowing trench, and to a second aperture. In another embodiment, the interface layer comprises a material exhibiting anisotropic etching. Preferably, the material comprises a <110> oriented silicon substrate. In another embodiment, the interface layer is formed by etching the <110> oriented silicon substrate in an etchant to produce a <111> oriented surface defining a sloping wall of a narrowing trench. In other embodiments, the etchant comprises potassium hydroxide (KOH) or tetramethyl ammonium hydroxide (TMAH). In one embodiment, the narrowing trenches are formed by a machining process, such as milling, sawing, drilling, stamping, EDM, wire EDM, coining, die casting, investment casting, or any combination of these. Alternatively, the narrowing trenches are formed by electroplating, metal injection molding, LIGA processes, casting, or any combination of these.
In another embodiment, the manifold layer and the interface layer are formed of a monolithic device. In another embodiment, the manifold layer is coupled to the interface layer. The manifold layer can be coupled to the interface layer by adhesive bonding, thermal fusing, anodic bonding, or eutectic bonding. In another embodiment, the manifold layer comprises a material selected from the group consisting essentially of a plastic, a glass, a metal, and a semiconductor.
In another embodiment, the manifold layer comprises a first plurality of interconnected hollow fingers and a second plurality of interconnected hollow fingers. The first plurality of interconnected hollow fingers provide flow paths to the one or more first apertures and the second plurality of interconnected hollow fingers providing flow paths from the one or more second apertures. Preferably, the first plurality of interconnected hollow fingers and the second plurality of interconnected hollow fingers lie substantially in a single plane.
In another embodiment, the manifold layer comprises a first layer comprising one or more of the first apertures and one or more of the second apertures, and a second layer comprising a first plurality of interconnected fingers and a second plurality of interconnected fingers. The first plurality of interconnected fingers provides flow paths to the one or more first apertures and the second plurality of fingers provides flow paths from the one or more second apertures.
In another embodiment, the heat exchanger further comprises a pump coupled to the first plurality of fingers. In another embodiment, the heat exchanger further comprises a heat-generating source coupled to the interface layer. In another embodiment, the heat-generating source comprises a semiconductor microprocessor. In another embodiment, the heat-generating source is integrally formed to a bottom surface of the interface layer. In another embodiment, each aperture lies substantially in a single plane, parallel to a lower surface of the interface layer. In another embodiment, the manifold layer comprises a surface that extends into each trench and substantially conforms to a contour of each narrowing trench. In another embodiment, a depth:width aspect ratio for at least one of the plurality of narrowing trenches is at least 10:1.
In another embodiment, the heat exchanger further comprises an intermediate layer positioned between the manifold layer and the interface layer. The intermediate layer comprises a plurality of openings positioned over the plurality of apertures, thereby controlling the flow of a cooling material to the paths.
Similarly, cooling material introduced into the aperture 101D along a flow path 135 is divided into flow paths 131 and 132. That portion of the cooling material traveling along the flow path 131 is channeled from the aperture 101D, to the narrowing trench 105C, and to the aperture 101C, thus cooling the heat-generating source 180 at a location substantially adjacent to the narrowing trench 105C. As discussed above, the cooling material from the flow path 131 is combined with the cooling material from the flow path 122 to form cooling material on a flow path 130 at the aperture 101C. That portion of the cooling material traveling along the flow path 132 is channeled from the aperture 101D, to the narrowing trench 105D, and to the aperture 101E, thus cooling the heat-generating source 180 at a location substantially adjacent to the narrowing trench 105D.
The cooling material removed from the apertures 101A, 101C, and 101E can be processed in many ways. For example, the cooling material can removed from the heat exchanger 110, or it can be re-cooled and reintroduced into the apertures 101B and 101D.
As described in more detail below, the manifold layer 101 can have many shapes useful for providing a cooling material to the apertures 101B and 101D and for removing the cooling material from the apertures 10A, 101C, and 101E. It will be appreciated that the roles of the apertures can be reversed or assigned in different combinations. For example, the apertures 10A, 101C, and 101E can be used to introduce a cooling material into the channels formed by the narrowing trenches and the apertures 101B and 101D used to remove the cooling material from the channels formed by the narrowing trenches. Also, while the drawings show only five apertures 10A-E and four narrowing trenches 105A-D, fewer or more apertures and narrowing trenches can be formed in accordance with the present invention.
Preferably, the interface layer 105 has a thermal conductivity sufficient to conduct heat generated at the heat-generating source 180 to the cooling material traveling along the fluid paths 121, 122, 131, and 132. Preferably, the interface layer 105 has a thermal conductivity of approximately 20 W/m-K or larger. Preferably, the interface layer comprises a silicon material. It will be appreciated, however, that the interface layer 105 can comprise other materials, such as a metal, and can have a thermal conductivity smaller than 20 W/m-K.
It is believed that fluid paths channeled along sloping sidewalls, rounded corners, and other non-perpendicular edges in accordance with the present invention have advantages over channels having substantially perpendicular edges. Because sloping sidewalls provide a more uniform flow path than do right-angled sidewalls, there are fewer pressure drops along the flow path. Thus, a pump requires less energy to transmit the cooling material along the channels and thus forms part of a more efficient heat-exchanging system.
It will be appreciated that the bottom surfaces of the solid portions 201J-M, which form part of the flow paths for the heat exchanger 210 and substantially conform to the contour of the narrowing trenches 105A-D, can have other shapes, such as a polygonal shape that approximately mirrors the shape of the narrowing trenches 105A-D. For example,
This structure has several advantages. For example, a cooling material traveling along the exemplary fluid flow paths 221 (
It will be appreciated that while the above drawings depict symmetrical features, such as trenches and solid portions, heat exchangers in accordance with the present invention can have non-symmetrical features. Specifically, it may be advantageous to have larger openings at the outlets than at the inlets to accommodate the volume expansion associated with the transition from liquid to liquid/vapor mixtures. The narrowing trenches 105A-D (
The heat exchanger 300 comprises the manifold layer 101 and the interface layer 105, both of
Still referring to
As illustrated in
It will be appreciated that manifold layers used in accordance with the present invention can have configurations different from those described here. For example, the hollow fingers 190A-C need not be coupled to each other by the reservoir 198, and the hollow fingers 196A-B need not be coupled to each other by the reservoir 195. The plurality of hollow fingers 190 need not be interwoven with the plurality of hollow fingers 196. Manifold layers with any number and combination of hollow fingers can be used. Examples of manifold layers that can be used in accordance with the present invention are taught in co-pending U.S. patent application Ser. No. 10/439,635, filed on May 16, 2003, and titled “Method and Apparatus for Flexible Fluid Delivery for Cooling Desired Hot Spots in a Heat Producing Device,” which is hereby incorporated by reference.
It will be appreciated that the cooling material introduced to the inlet ports 197A-B can and generally does travel along hollow fingers in addition to the hollow fingers 196B and 190C. The present discussion is limited to cooling material traveling along the hollow fingers 196B and 190C only to simplify the present description. Along the hollow finger 196B, the cooling material can and generally is introduced into apertures other than the aperture 101B. Along the aperture 101B, the cooling material can and generally does travel along paths other than the flow path 121, as illustrated in FIG. 6B. For example, the cooling material traveling along the flow path 120 can be divided with a portion traveling along the flow path 122, as illustrated in FIG. 1B. As described in more detail below, the heat exchanger 300 can also comprise an intermediate layer that determines which apertures the cooling material is introduced into, thus controlling the flow of cooling material above a heat-generating source.
As illustrated in
It will be appreciated that heat exchangers in accordance with the present invention can have many alternative configurations. For example,
As illustrated in
Similarly, the cooling material traveling along the flow path 317D is introduced into the hollow finger 196A and along the flow paths 316C and 316D. The cooling material traveling along the flow path 316C travels through the aperture 311C and into the hollow finger 190B. The cooling material traveling along the flow path 316D travels through the aperture 311E and into the hollow finger 190A. Thus, as described below, by opening or closing the apertures 311A-C, the flow of cooling material through the heat exchanger 500 can be controlled.
Referring now to
Still referring to
In a preferred embodiment, the height H is approximately 1 mm, the widths W1 and W2 are both approximately 200 μm, the width G is approximately 20 μm, the length E is approximately 2 mm, and the length V is approximately 3.4 mm. It will be appreciated that in accordance with the present invention, H can be larger or smaller than 1 mm, one or both of W1 and W2 can be larger or smaller than 200 μm, G can be larger or smaller than 20 μm, and E can be larger or smaller than 2 mm. It will also be appreciated that the dimensions of the trench 705B can differ from those of the trench 705A; the dimensions of both are depicted as similar merely for ease of illustration. Preferably, H is chosen large enough to provide structure for the heat exchanger 790 and to withstand the heat generated by a heat-generating source coupled to the heat exchanger 790. Preferably, H is also small enough to allow heat to radiate quickly and efficiently to a cooling material circulating in the channels of the heat exchanger 790. In one embodiment, the above values are chosen to provide aspect ratios for the narrowing trenches of 10:1 or larger. It will be appreciated, however, that the dimensions can also be chosen to provide depth:width aspect ratios smaller than 10:1.
The material 805 is then exposed to an etchant, such as a wet etchant, to expose the <111> oriented planes (i.e., the sidewalls 811 and 812) and a bottom surface 813, as illustrated in
Preferably, the mask 815 is formed of a material substantially resistant to the etchant. Etchants used in accordance with the present invention include, but are not limited to, potassium hydroxide (KOH) and tetramethyl ammonium hydroxide (TMAH). Masks used in accordance with the present invention can comprise nitrides, oxides such as SiO2, and some metals.
Next, as illustrated in
Next, the interface layer 805 can be coupled to a heat-generating source, such as a semiconductor device. Alternatively, the heat-generating source can be integrally formed with a bottom surface of the interface layer 805, for example in one or more semiconductor device fabrication steps. A pump (not shown) can then be coupled to the manifold layer 810, as described above, to pump the cooling material through the heat exchanger and thus cool the heat-generating source. The cooling material can comprise a liquid, such as water, a gas, air, a vapor, or a combination of these.
Alternatively, the interface layer 805 can be manufactured from a metal, such as copper, using standard machining processes to form the narrowing trenches. These machining processes can include, but are not limited to, milling, sawing, drilling, stamping, EDM, wire EDM, coining, die casting, investment casting, or any combination of these. Alternatively, the interface layer 805 can be formed by other processes, including, but not limited to, electroplating, metal injection molding, LIGA processes, casting, or any combination of these.
Heat exchangers in accordance with the present invention provide smooth flow paths (channels) in which cooling materials travel. Such structures work more efficiently and thus reduce the load on the pumps pumping the cooling material through the heat exchanger. The method of manufacturing heat exchangers in accordance with one embodiment of the present invention are relatively inexpensive. Materials exhibiting anisotropic etching are chemically etched, preferably using wet chemistries, to form narrowing trenches that ultimately form the flow paths. The use of wet chemistries is inexpensive and quick compared to other device fabrication processes. The present invention can thus be used to inexpensively fabricate heat exchangers used to cool a variety of devices, such as semiconductor devices, motors, batteries, walls of process chambers, or any device that generates heat.
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. As such, references herein to specific embodiments and details thereof are not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications can be made to the embodiments chosen for illustration without departing from the spirit and scope of the invention.
This application claims priority under 35 U.S.C. § 119(e) of the co-pending U.S. provisional patent application Ser. No. 60/455,729, filed on Mar. 17, 2003, and titled “Microchannel Heat Exchanger Apparatus with Porous Configuration and Method of Manufacturing Thereof.” The provisional patent application Ser. No. 60/455,729, filed on Mar. 17, 2003, and titled “Microchannel Heat Exchanger Apparatus with Porous Configuration and Method of Manufacturing Thereof” is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
596062 | Firey | Dec 1897 | A |
2039593 | Hubbuch et al. | May 1936 | A |
2273505 | Florian | Feb 1942 | A |
3361195 | Meyerhoff et al. | Jan 1968 | A |
3654988 | Clayton, III | Apr 1972 | A |
3771219 | Tuzi et al. | Nov 1973 | A |
3817321 | von Cube et al. | Jun 1974 | A |
3823572 | Cochran, Jr. | Jul 1974 | A |
3923426 | Theeuwes | Dec 1975 | A |
3929154 | Goodwin | Dec 1975 | A |
3948316 | Souriau | Apr 1976 | A |
4109707 | Wilson et al. | Aug 1978 | A |
4138996 | Cartland | Feb 1979 | A |
4194559 | Eastman | Mar 1980 | A |
4211208 | Lindner | Jul 1980 | A |
4248295 | Ernst et al. | Feb 1981 | A |
4312012 | Frieser et al. | Jan 1982 | A |
4450472 | Tuckerman et al. | May 1984 | A |
4467861 | Kiseev et al. | Aug 1984 | A |
4485429 | Mittal | Nov 1984 | A |
4516632 | Swift et al. | May 1985 | A |
4540115 | Hawrylo | Sep 1985 | A |
4561040 | Eastman et al. | Dec 1985 | A |
4567505 | Pease et al. | Jan 1986 | A |
4573067 | Tuckerman et al. | Feb 1986 | A |
4574876 | Aid | Mar 1986 | A |
4644385 | Nakanishi et al. | Feb 1987 | A |
4664181 | Sumberg | May 1987 | A |
4758926 | Herrell et al. | Jul 1988 | A |
4866570 | Porter | Sep 1989 | A |
4868712 | Woodman | Sep 1989 | A |
4893174 | Yamada et al. | Jan 1990 | A |
4894709 | Phillips et al. | Jan 1990 | A |
4896719 | O'Neill et al. | Jan 1990 | A |
4903761 | Cima | Feb 1990 | A |
4908112 | Pace | Mar 1990 | A |
4938280 | Clark | Jul 1990 | A |
5009760 | Zare et al. | Apr 1991 | A |
5016090 | Galyon et al. | May 1991 | A |
5016138 | Woodman | May 1991 | A |
5043797 | Lopes | Aug 1991 | A |
5057908 | Weber | Oct 1991 | A |
5058627 | Brannen | Oct 1991 | A |
5070040 | Pankove | Dec 1991 | A |
5083194 | Bartilson | Jan 1992 | A |
5088005 | Ciaccio | Feb 1992 | A |
5096388 | Weinberg | Mar 1992 | A |
5099311 | Bonde et al. | Mar 1992 | A |
5099910 | Walpole et al. | Mar 1992 | A |
5125451 | Matthews | Jun 1992 | A |
5131233 | Cray et al. | Jul 1992 | A |
5161089 | Chu et al. | Nov 1992 | A |
5179500 | Koubek et al. | Jan 1993 | A |
5203401 | Hamburgen et al. | Apr 1993 | A |
5218515 | Bernhardt | Jun 1993 | A |
5219278 | van Lintel | Jun 1993 | A |
5228502 | Chu et al. | Jul 1993 | A |
5232047 | Matthews | Aug 1993 | A |
5239200 | Messina et al. | Aug 1993 | A |
5239443 | Fahey et al. | Aug 1993 | A |
5263251 | Matthews | Nov 1993 | A |
5265670 | Zingher | Nov 1993 | A |
5269372 | Chu et al. | Dec 1993 | A |
5274920 | Matthews | Jan 1994 | A |
5275237 | Rolfson et al. | Jan 1994 | A |
5308429 | Bradley | May 1994 | A |
5309319 | Messina | May 1994 | A |
5310440 | Zingher | May 1994 | A |
5316077 | Reichard | May 1994 | A |
5317805 | Hoopman et al. | Jun 1994 | A |
5325265 | Turlik et al. | Jun 1994 | A |
5336062 | Richter | Aug 1994 | A |
5346000 | Schlitt | Sep 1994 | A |
5380956 | Loo et al. | Jan 1995 | A |
5383340 | Larson et al. | Jan 1995 | A |
5386143 | Fitch | Jan 1995 | A |
5388635 | Gruber et al. | Feb 1995 | A |
5421943 | Tam et al. | Jun 1995 | A |
5427174 | Lomolino, Sr. et al. | Jun 1995 | A |
5436793 | Sanwo et al. | Jul 1995 | A |
5459099 | Hsu | Oct 1995 | A |
5490117 | Oda et al. | Feb 1996 | A |
5508234 | Dusablon, Sr. et al. | Apr 1996 | A |
5514832 | Dusablon, Sr. et al. | May 1996 | A |
5514906 | Love et al. | May 1996 | A |
5544696 | Leland | Aug 1996 | A |
5548605 | Benett et al. | Aug 1996 | A |
5575929 | Yu et al. | Nov 1996 | A |
5579828 | Reed et al. | Dec 1996 | A |
5585069 | Zanzucchi et al. | Dec 1996 | A |
5641400 | Kaltenbach et al. | Jun 1997 | A |
5658831 | Layton et al. | Aug 1997 | A |
5675473 | McDunn et al. | Oct 1997 | A |
5692558 | Hamilton et al. | Dec 1997 | A |
5696405 | Weld | Dec 1997 | A |
5703536 | Davis et al. | Dec 1997 | A |
5704416 | Larson et al. | Jan 1998 | A |
5727618 | Mundinger et al. | Mar 1998 | A |
5740013 | Roesner et al. | Apr 1998 | A |
5759014 | Van Lintel | Jun 1998 | A |
5763951 | Hamilton et al. | Jun 1998 | A |
5768104 | Salmonson et al. | Jun 1998 | A |
5774779 | Tuchinskiy | Jun 1998 | A |
5800690 | Chow et al. | Sep 1998 | A |
5801442 | Hamilton et al. | Sep 1998 | A |
5835345 | Staskus et al. | Nov 1998 | A |
5836750 | Cabuz | Nov 1998 | A |
5858188 | Soane et al. | Jan 1999 | A |
5863708 | Zanzucchi et al. | Jan 1999 | A |
5869004 | Parce et al. | Feb 1999 | A |
5870823 | Bezama et al. | Feb 1999 | A |
5874795 | Sakamoto | Feb 1999 | A |
5876655 | Fisher | Mar 1999 | A |
5880017 | Schwiebert et al. | Mar 1999 | A |
5880524 | Xie | Mar 1999 | A |
5901037 | Hamilton et al. | May 1999 | A |
5921087 | Bhatia et al. | Jul 1999 | A |
5936192 | Tauchi | Aug 1999 | A |
5940270 | Puckett | Aug 1999 | A |
5942093 | Rakestraw et al. | Aug 1999 | A |
5945217 | Hanrahan | Aug 1999 | A |
5964092 | Tozuka et al. | Oct 1999 | A |
5965001 | Chow et al. | Oct 1999 | A |
5965813 | Wan et al. | Oct 1999 | A |
5978220 | Frey et al. | Nov 1999 | A |
5993750 | Ghosh et al. | Nov 1999 | A |
5997713 | Beetz, Jr. et al. | Dec 1999 | A |
5998240 | Hamilton et al. | Dec 1999 | A |
6007309 | Hartley | Dec 1999 | A |
6010316 | Haller et al. | Jan 2000 | A |
6013164 | Paul et al. | Jan 2000 | A |
6014312 | Schulz-Harder et al. | Jan 2000 | A |
6019165 | Batchelder | Feb 2000 | A |
6019882 | Paul et al. | Feb 2000 | A |
6034872 | Chrysler et al. | Mar 2000 | A |
6039114 | Becker et al. | Mar 2000 | A |
6054034 | Soane et al. | Apr 2000 | A |
6068752 | Dubrow et al. | May 2000 | A |
6090251 | Sundberg et al. | Jul 2000 | A |
6096656 | Matzke et al. | Aug 2000 | A |
6100541 | Nagle et al. | Aug 2000 | A |
6101715 | Fuesser et al. | Aug 2000 | A |
6119729 | Oberholzer et al. | Sep 2000 | A |
6126723 | Drost et al. | Oct 2000 | A |
6129145 | Yamamoto et al. | Oct 2000 | A |
6129260 | Andrus et al. | Oct 2000 | A |
6131650 | North et al. | Oct 2000 | A |
6140860 | Sandhu et al. | Oct 2000 | A |
6146103 | Lee et al. | Nov 2000 | A |
6154363 | Chang | Nov 2000 | A |
6159353 | West et al. | Dec 2000 | A |
6167948 | Thomas | Jan 2001 | B1 |
6171067 | Parce | Jan 2001 | B1 |
6174675 | Chow et al. | Jan 2001 | B1 |
6176962 | Soane et al. | Jan 2001 | B1 |
6186660 | Kopf-Sill et al. | Feb 2001 | B1 |
6206022 | Tsai et al. | Mar 2001 | B1 |
6210986 | Arnold et al. | Apr 2001 | B1 |
6216343 | Leland et al. | Apr 2001 | B1 |
6227809 | Forster et al. | May 2001 | B1 |
6234240 | Cheon | May 2001 | B1 |
6238538 | Parce et al. | May 2001 | B1 |
6253832 | Hallefalt | Jul 2001 | B1 |
6253835 | Chu et al. | Jul 2001 | B1 |
6257320 | Wargo | Jul 2001 | B1 |
6277257 | Paul et al. | Aug 2001 | B1 |
6287440 | Arnold et al. | Sep 2001 | B1 |
6301109 | Chu et al. | Oct 2001 | B1 |
6313992 | Hildebrandt | Nov 2001 | B1 |
6317326 | Vogel et al. | Nov 2001 | B1 |
6321791 | Chow | Nov 2001 | B1 |
6322753 | Lindberg et al. | Nov 2001 | B1 |
6324058 | Hsiao | Nov 2001 | B1 |
6330907 | Ogushi et al. | Dec 2001 | B1 |
6336497 | Lin | Jan 2002 | B1 |
6337794 | Agonafer et al. | Jan 2002 | B1 |
6351384 | Daikoku et al. | Feb 2002 | B1 |
6366462 | Chu et al. | Apr 2002 | B1 |
6366467 | Patel et al. | Apr 2002 | B1 |
6367544 | Calaman | Apr 2002 | B1 |
6388317 | Reese | May 2002 | B1 |
6396706 | Wohlfarth | May 2002 | B1 |
6397932 | Calaman et al. | Jun 2002 | B1 |
6400012 | Miller et al. | Jun 2002 | B1 |
6406605 | Moles | Jun 2002 | B1 |
6415860 | Kelly et al. | Jul 2002 | B1 |
6416642 | Alajoki et al. | Jul 2002 | B1 |
6417060 | Tavkhelidze et al. | Jul 2002 | B1 |
6424531 | Bhatti et al. | Jul 2002 | B1 |
6431260 | Agonafer et al. | Aug 2002 | B1 |
6437981 | Newton et al. | Aug 2002 | B1 |
6438984 | Novotny et al. | Aug 2002 | B1 |
6443222 | Yun et al. | Sep 2002 | B1 |
6444461 | Knapp et al. | Sep 2002 | B1 |
6457515 | Vafai et al. | Oct 2002 | B1 |
6459581 | Newton et al. | Oct 2002 | B1 |
6466442 | Lin | Oct 2002 | B1 |
6477045 | Wang | Nov 2002 | B1 |
6492200 | Park et al. | Dec 2002 | B1 |
6495015 | Schoeniger et al. | Dec 2002 | B1 |
6519151 | Chu et al. | Feb 2003 | B1 |
6533029 | Phillips | Mar 2003 | B1 |
6536516 | Davies et al. | Mar 2003 | B1 |
6537437 | Galambos et al. | Mar 2003 | B1 |
6543521 | Sato et al. | Apr 2003 | B1 |
6553253 | Chang | Apr 2003 | B1 |
6572749 | Paul et al. | Jun 2003 | B1 |
6578626 | Calaman et al. | Jun 2003 | B1 |
6581388 | Novotny et al. | Jun 2003 | B1 |
6587343 | Novotny et al. | Jul 2003 | B1 |
6588498 | Bhatti et al. | Jul 2003 | B1 |
6591625 | Simon | Jul 2003 | B1 |
6600220 | Barber et al. | Jul 2003 | B1 |
6601643 | Cho et al. | Aug 2003 | B1 |
6606251 | Kenny, Jr. et al. | Aug 2003 | B1 |
6609560 | Cho et al. | Aug 2003 | B1 |
6632655 | Mehta et al. | Oct 2003 | B1 |
6632719 | DeBoer et al. | Oct 2003 | B1 |
6651735 | Cho et al. | Nov 2003 | B1 |
6729383 | Cannell et al. | May 2004 | B1 |
6743664 | Liang et al. | Jun 2004 | B1 |
20010016985 | Insley et al. | Aug 2001 | A1 |
20010024820 | Mastromatteo et al. | Sep 2001 | A1 |
20010044155 | Paul et al. | Nov 2001 | A1 |
20010045270 | Bhatti et al. | Nov 2001 | A1 |
20010046703 | Burns et al. | Nov 2001 | A1 |
20010055714 | Cettour-Rose et al. | Dec 2001 | A1 |
20020011330 | Insley et al. | Jan 2002 | A1 |
20020075645 | Kitano et al. | Jun 2002 | A1 |
20020121105 | McCarthy, Jr. et al. | Sep 2002 | A1 |
20020134543 | Estes et al. | Sep 2002 | A1 |
20030062149 | Goodson et al. | Apr 2003 | A1 |
20030121274 | Wightman | Jul 2003 | A1 |
20030213580 | Philpott et al. | Nov 2003 | A1 |
20040040695 | Chesser et al. | Mar 2004 | A1 |
20040052049 | Wu et al. | Mar 2004 | A1 |
20040089008 | Tilton et al. | May 2004 | A1 |
20040125561 | Gwin et al. | Jul 2004 | A1 |
20040160741 | Moss et al. | Aug 2004 | A1 |
20040188069 | Tomioka et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
97212126.9 | Mar 1997 | CN |
1-256775 | Oct 1989 | JP |
10-99592 | Apr 1998 | JP |
2000-277540 | Oct 2000 | JP |
2001-326311 | Nov 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040182560 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
60455729 | Mar 2003 | US |