Apparatus and method of forming channels in a heat-exchanging device

Information

  • Patent Grant
  • 7017654
  • Patent Number
    7,017,654
  • Date Filed
    Monday, August 18, 2003
    21 years ago
  • Date Issued
    Tuesday, March 28, 2006
    18 years ago
Abstract
An apparatus and method of manufacturing an apparatus for circulating a cooling material within a heat exchanger is disclosed. The apparatus comprises a manifold layer and an interface layer. The interface layer comprises one or more narrowing trenches. The manifold layer comprises a plurality of apertures, each positioned on either side of a narrowing trench. In operation, a cooling material is transmitted to an apertures, through a channel defined by the narrowing trench and a bottom surface of the manifold layer, and out an aperture, thereby cooling a heat-generating source coupled to a bottom surface of the interface layer. The method comprises forming a narrowing trench in an interface layer, which exhibits anisotropic etching, by etching the interface layer to form a trench having sloping sidewalls. The method further comprises coupling the interface layer to a manifold layer.
Description
FIELD OF THE INVENTION

This invention relates to the field of heat exchangers. More particularly, this invention relates to a method and apparatus for circulating a cooling material through optimally shaped channels and other geometric structures in a heat exchanger.


BACKGROUND OF THE INVENTION

Certain heat sinks use pumps to pump a cooling material through a portion of the heat sink overlying a heat-generating source. The cooling material absorbs the heat generated by the heat-generating source and carries it away from the heat-generating source, thereby cooling the heat-generating source. Pumps used to transmit the cooling material through the heat sink are operated at maximum flow rates.


Cooling materials transmitted along channels used in these heat sinks generally suffer from excessive and non-uniform pressure drops. The pumps used to circulate cooling materials, already overworked to pump the cooling material at high rates, require even more energy to account for these pressure drops.


Heat sinks made according to U.S. patent application Ser. No. 10/612,241, titled “Multi-Level Microchannel Heat Exchangers,” filed Jul. 1, 2003, require numerous semiconductor processing and assembly steps. While providing enhanced cooling capacity, these processing steps likely increase the cost of the heat exchanger. The benefits afforded by these processing and assembly steps may not be warranted by the added costs of manufacturing.


Accordingly, what is needed is a structure and a method of efficiently manufacturing a heat exchanger that provides for uniform pressure flows for the transmission of a cooling material.


BRIEF SUMMARY OF THE INVENTION

A heat exchanger circulates a cooling material that absorbs heat from a heat-generating source and carries the heat away from the heat-generating source, thereby cooling the heat-generating source. The heat exchanger can thus be used to cool a variety of heat sources, such as semiconductor devices, batteries, motors, walls of process chambers, and any source that generates heat.


In a first aspect of the present invention, a method of forming a heat exchanger comprises forming a manifold layer defining a plurality of apertures and forming an interface layer comprising one or more narrowing trenches. Each aperture is positioned on one side of a narrowing trench, whereby a path is defined from a first aperture, through a narrowing trench, and to a second aperture. In a first embodiment, the interface layer comprises a material exhibiting properties of anisotropic etching. Preferably, the material comprises a <110> oriented silicon substrate. In another embodiment, forming an interface layer comprises etching the <110> oriented silicon substrate in an etchant to produce a <111> oriented surface defining a sloping wall of a narrowing trench. Alternatively, the material is any orientation of silicon and is etched in an anisotropic plasma etch to form one or more narrowing trenches. In further embodiments, the etchant comprises potassium hydroxide (KOH) or tetramethyl ammonium hydroxide (TMAH). In another embodiment the one or more narrowing trenches are formed by a machining process such as milling, sawing, drilling, stamping, electrical discharge machining (EDM), wire EDM, coining, die casting, investment casting, or any combination of these. Alternatively, the one or more narrowing trenches are formed by electroplating, metal injection molding, LIGA processes, casting, or any combination of these.


In another embodiment, the manifold layer and the interface layer are formed of a monolithic device. In another embodiment, the method further comprises coupling the manifold layer to the interface layer. Coupling the manifold layer to the interface layer can comprise adhesively bonding the manifold layer to the interface layer, thermally fusing the manifold layer to the interface layer, anodically bonding the manifold layer to the interface layer, and eutectically bonding the manifold layer to the interface layer. In another embodiment, the manifold layer comprises a material selected from the group consisting essentially of a plastic, a glass, a metal, and a semiconductor.


In another embodiment, forming the manifold layer comprises forming a first plurality of interconnected hollow fingers and a second plurality of interconnected hollow fingers. The first plurality of interconnected hollow fingers provides flow paths to the one or more first apertures and the second plurality of interconnected hollow fingers provides flow paths from the one or more second apertures. Preferably, the first plurality of interconnected hollow fingers and the second plurality of interconnected hollow fingers lie substantially in a single plane.


In another embodiment, the method further comprises coupling a pump to the first plurality of interconnected hollow fingers. In another embodiment, the method further comprises coupling a heat-generating source to the interface layer. In another embodiment, the method comprises integrally forming a bottom surface of the interface layer with the heat-generating source. In another embodiment, the heat-generating source comprises a semiconductor microprocessor. In another embodiment, the method further comprises introducing a cooling material to the pump, so that the pump circulates the cooling material along the first plurality of fingers, to the one or more first apertures, along a the plurality of narrowing trenches, to the one or more second apertures, and to the second plurality of fingers, thereby cooling the heat-generating source. In another embodiment, the cooling material comprises a liquid, such as water. In other embodiments, the cooling material comprises a liquid/vapor mixture. In another embodiment, each aperture lies substantially in a single plane, parallel to a lower surface of the interface layer. In another embodiment, the manifold layer comprises a surface that extends into each narrowing trench and substantially conforms to a contour of each narrowing trench. In another embodiment, a narrowing trench has a depth:width aspect ratio of at least approximately 10:1.


In another embodiment, the method further comprises coupling an intermediate layer between the manifold layer and the interface layer. The intermediate layer comprises a plurality of openings positioned over the plurality of apertures, thereby controlling the flow of a cooling material to the paths.


In a second aspect of the present invention, a heat exchanger comprises a manifold layer defining a plurality of apertures, and an interface layer comprising a plurality of narrowing trenches. Each aperture is positioned on one side of a narrowing trench, whereby a path is defined from a first aperture, through a narrowing trench, and to a second aperture. In another embodiment, the interface layer comprises a material exhibiting anisotropic etching. Preferably, the material comprises a <110> oriented silicon substrate. In another embodiment, the interface layer is formed by etching the <110> oriented silicon substrate in an etchant to produce a <111> oriented surface defining a sloping wall of a narrowing trench. In other embodiments, the etchant comprises potassium hydroxide (KOH) or tetramethyl ammonium hydroxide (TMAH). In one embodiment, the narrowing trenches are formed by a machining process, such as milling, sawing, drilling, stamping, EDM, wire EDM, coining, die casting, investment casting, or any combination of these. Alternatively, the narrowing trenches are formed by electroplating, metal injection molding, LIGA processes, casting, or any combination of these.


In another embodiment, the manifold layer and the interface layer are formed of a monolithic device. In another embodiment, the manifold layer is coupled to the interface layer. The manifold layer can be coupled to the interface layer by adhesive bonding, thermal fusing, anodic bonding, or eutectic bonding. In another embodiment, the manifold layer comprises a material selected from the group consisting essentially of a plastic, a glass, a metal, and a semiconductor.


In another embodiment, the manifold layer comprises a first plurality of interconnected hollow fingers and a second plurality of interconnected hollow fingers. The first plurality of interconnected hollow fingers provide flow paths to the one or more first apertures and the second plurality of interconnected hollow fingers providing flow paths from the one or more second apertures. Preferably, the first plurality of interconnected hollow fingers and the second plurality of interconnected hollow fingers lie substantially in a single plane.


In another embodiment, the manifold layer comprises a first layer comprising one or more of the first apertures and one or more of the second apertures, and a second layer comprising a first plurality of interconnected fingers and a second plurality of interconnected fingers. The first plurality of interconnected fingers provides flow paths to the one or more first apertures and the second plurality of fingers provides flow paths from the one or more second apertures.


In another embodiment, the heat exchanger further comprises a pump coupled to the first plurality of fingers. In another embodiment, the heat exchanger further comprises a heat-generating source coupled to the interface layer. In another embodiment, the heat-generating source comprises a semiconductor microprocessor. In another embodiment, the heat-generating source is integrally formed to a bottom surface of the interface layer. In another embodiment, each aperture lies substantially in a single plane, parallel to a lower surface of the interface layer. In another embodiment, the manifold layer comprises a surface that extends into each trench and substantially conforms to a contour of each narrowing trench. In another embodiment, a depth:width aspect ratio for at least one of the plurality of narrowing trenches is at least 10:1.


In another embodiment, the heat exchanger further comprises an intermediate layer positioned between the manifold layer and the interface layer. The intermediate layer comprises a plurality of openings positioned over the plurality of apertures, thereby controlling the flow of a cooling material to the paths.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1A is a side cross-sectional view of an interface layer and a portion of a manifold layer, together forming a heat exchanger in accordance with the present invention, coupled to a heat-generating source.



FIG. 1B is a side cross-sectional view of the heat exchanger and heat-generating source of FIG. 1A, showing flow paths traveled by a cooling material.



FIG. 2 is a side cross-sectional view of an interface layer and a portion of a manifold layer, together forming a heat exchanger in accordance with the present invention, coupled to a heat-generating source, with the manifold layer having a curving bottom surface that extends into a plurality of the trenches that forms the interface layer.



FIG. 3 is a side cross-sectional view of an interface layer and a portion of a manifold layer, together forming a heat exchanger in accordance with the present invention, coupled to a heat-generating source, with the manifold layer having a piecewise curving bottom surface that extends into a plurality of the trenches that form the interface layer.



FIG. 4 is a perspective view of the manifold layer and the interface layer of FIG. 1A.



FIG. 5 is a perspective view of the manifold layer of FIG. 4.



FIG. 6A is a top cross-sectional view of the manifold layer and the interface layer of FIG. 4, showing how the narrowing trenches of the interface layer align with the fingers and the solid portions of the manifold layer.



FIG. 6B is a top cross-sectional view of the manifold layer and the interface layer of FIG. 6A, showing flow paths for a cooling material.



FIG. 7 is a perspective view of the manifold layer and the interface layer of FIG. 6B, again showing a flow path.



FIG. 8 is a perspective view of the manifold layer of FIG. 4, an intermediate layer, and the interface layer of FIG. 4, together forming a heat exchanger in accordance with the present invention.



FIG. 9 is a side cross-sectional view of the heat exchanger of FIG. 8, showing several flow paths.



FIG. 10 is a perspective view of a manifold layer of FIG. 4, an intermediate layer, and the interface layer of FIG. 4, together forming a heat exchanger in accordance with the present invention.



FIG. 11 is a side cross-sectional view of the heat exchanger of FIG. 10, showing a flow path.



FIG. 12A is a top view of an interface layer in accordance with one embodiment of the present invention.



FIG. 12B is side cross-sectional view of the interface layer of FIG. 12A and a manifold layer aligned with the interface layer, in accordance with the present invention.



FIG. 12C is more detailed top view of the interface layer of FIG. 12A.



FIGS. 13A-D show the steps used to form an interface layer, in accordance with the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1A is a side cross-sectional view of a portion of a heat exchanger 110 coupled to a heat-generating source 180. The heat exchanger 110 comprises a manifold layer 101 and an interface layer 105. The manifold layer 101 comprises a surface having a plurality of apertures 101A-E and a plurality of solid portions 101J-M. The interface layer 105 comprises a plurality of narrowing trenches 105A-D and is coupled at a bottom surface to the heat-generating source 180. Each narrowing trench is defined by a sloping sidewall, a substantially planar floor, and a second sloping sidewall. Each trench is narrowing in that a cross-sectional area at an upper plane of a trench is larger than a cross-sectional area at a bottom plane of the trench, realized, for example, by sloping sidewalls. As described in more detail below, the plurality of apertures 101A-E, the plurality of solid portions 101J-M, and the narrowing trenches 105A-D define flow paths or channels that can accommodate the flow of a cooling material. The cooling material comprises a fluid, such as a liquid, a vapor, air, or any combination of these. Circulating the cooling material in a narrowing trench above the heat-generating source 180 will cool that heat-generating source 180 at an area below the narrowing trench.



FIG. 1B is the side cross-sectional view of the heat exchanger 110 and heat-generating source 180 depicted in FIG. 1A. FIG. 1B further illustrates a cooling material introduced into the apertures 101B and 101D and removed from the apertures 10A, 101C, and 101E. Arrows in FIG. 1B indicate the direction of flow for the cooling material. The squiggly arrows show the path of heat from the heat-generating source 180 to the cooling material. Thus, as illustrated in FIG. 1B, in operation a cooling material is introduced into the apertures 101B and 101D by, for example, a pump (not shown) coupled to the apertures 101B and 101D. The cooling material introduced into the aperture 101B on the flow path 120 is divided into the flow paths 121 and 122. That portion of the cooling material traveling along the flow path 121 is channeled from the aperture 101B, to the narrowing trench 105A, and to the aperture 101A. The cooling material traveling along the flow path 121 absorbs the heat conducted by the interface layer 105 from the heat-generating source 180 to the cooling material substantially adjacent to the narrowing trench 105A. The cooling material traveling along the flow path 121 is then channeled to the aperture 101A, carrying the absorbed heat away from the heat-generating source 180, and thus cooling the heat-generating source 180 at a position substantially adjacent to the narrowing trench 105A. That portion of the cooling material traveling along the flow path 122 is channeled from the aperture 101B, to the narrowing trench 105B, and to the aperture 101C, thus cooling the heat-generating source 180 at a location substantially adjacent to the narrowing trench 105B. As illustrated in FIG. 1B, the cooling material traveling along the flow path 122 combines with the cooling material traveling along a flow path 131 to form cooling material traveling out of the aperture 101C along a flow path 130.


Similarly, cooling material introduced into the aperture 101D along a flow path 135 is divided into flow paths 131 and 132. That portion of the cooling material traveling along the flow path 131 is channeled from the aperture 101D, to the narrowing trench 105C, and to the aperture 101C, thus cooling the heat-generating source 180 at a location substantially adjacent to the narrowing trench 105C. As discussed above, the cooling material from the flow path 131 is combined with the cooling material from the flow path 122 to form cooling material on a flow path 130 at the aperture 101C. That portion of the cooling material traveling along the flow path 132 is channeled from the aperture 101D, to the narrowing trench 105D, and to the aperture 101E, thus cooling the heat-generating source 180 at a location substantially adjacent to the narrowing trench 105D.


The cooling material removed from the apertures 101A, 101C, and 101E can be processed in many ways. For example, the cooling material can removed from the heat exchanger 110, or it can be re-cooled and reintroduced into the apertures 101B and 101D.


As described in more detail below, the manifold layer 101 can have many shapes useful for providing a cooling material to the apertures 101B and 101D and for removing the cooling material from the apertures 10A, 101C, and 101E. It will be appreciated that the roles of the apertures can be reversed or assigned in different combinations. For example, the apertures 10A, 101C, and 101E can be used to introduce a cooling material into the channels formed by the narrowing trenches and the apertures 101B and 101D used to remove the cooling material from the channels formed by the narrowing trenches. Also, while the drawings show only five apertures 10A-E and four narrowing trenches 105A-D, fewer or more apertures and narrowing trenches can be formed in accordance with the present invention.


Preferably, the interface layer 105 has a thermal conductivity sufficient to conduct heat generated at the heat-generating source 180 to the cooling material traveling along the fluid paths 121, 122, 131, and 132. Preferably, the interface layer 105 has a thermal conductivity of approximately 20 W/m-K or larger. Preferably, the interface layer comprises a silicon material. It will be appreciated, however, that the interface layer 105 can comprise other materials, such as a metal, and can have a thermal conductivity smaller than 20 W/m-K.


It is believed that fluid paths channeled along sloping sidewalls, rounded corners, and other non-perpendicular edges in accordance with the present invention have advantages over channels having substantially perpendicular edges. Because sloping sidewalls provide a more uniform flow path than do right-angled sidewalls, there are fewer pressure drops along the flow path. Thus, a pump requires less energy to transmit the cooling material along the channels and thus forms part of a more efficient heat-exchanging system.



FIG. 2 is a side cross-sectional view of a heat exchanger 210, in accordance with the present invention, coupled to a heat-generating source 280. The heat-exchanger 210 comprises the interface layer 105 of FIG. 1A and a manifold layer 201 comprising a plurality of apertures 201A-E and a plurality of solid portions 201J-M. FIG. 2 also depicts a flow path 220 from the aperture 201B, divided into a flow path 221 to the aperture 201A and a flow path 222 to the aperture 201C. A flow path 235 from the aperture 201D is divided into the flow paths 231 and 232. The flow path 231 is combined with the flow path 222 to form a flow path 230 at the aperture 201C. The flow path 232 extends to the aperture 201E. As illustrated in FIG. 2, a bottom surface of the solid portion 201J that forms part of the flow path 221 extends into the narrowing trench 205A and substantially conforms to the contour of the narrowing trench 205A. The bottom surface of the solid portion 201J thus has a non-perpendicular and preferably rounded surface that forms part of the flow path 221. This configuration is expected to enhance the fluid flow of the cooling material at the bottom of each narrowing trench 105A, 105B, 105C, and 105D, thereby enhancing the heat removal while reducing the pressure drops. A bottom surface of the solid portions 201K-M, forming part of the flow paths 222, 231, and 232, respectively, have similar contours.


It will be appreciated that the bottom surfaces of the solid portions 201J-M, which form part of the flow paths for the heat exchanger 210 and substantially conform to the contour of the narrowing trenches 105A-D, can have other shapes, such as a polygonal shape that approximately mirrors the shape of the narrowing trenches 105A-D. For example, FIG. 3 illustrates a cross-sectional diagram of a heat exchanger 250, in accordance with the present invention, coupled to the heat-generating source 280. The heat exchanger 250 comprises the interface layer 105 described above and a manifold layer 265 having apertures 265A-E and solid portions 265J-M. FIG. 3 also shows an exemplary flow path 261 from the aperture 265B to the aperture 265A. The solid portions 265J-M each has a bottom surface that extends into each of the plurality of narrowing trenches 105A-D, respectively. The solid portion 265J is exemplary. As illustrated in FIG. 3, the bottom surface of the solid portion 265J is formed from piecewise straight edges, such as exemplary piecewise straight edges 270A-C, which extend into the narrowing trench 105A. As described above, it will be appreciated that because the bottom surface of the solid portion 265J extends into the narrowing trench 105D, the flow path 261 has a smaller cross-sectional area than a corresponding flow path formed when the bottom surface of a solid portion does not extend into the narrowing channels. Thus, for example, the flow path 261 illustrated in FIG. 3 has a smaller cross-sectional area than the flow path 121 illustrated in FIG. 1B.


This structure has several advantages. For example, a cooling material traveling along the exemplary fluid flow paths 221 (FIG. 2) and 261 (FIG. 3) do not encounter any sharp edges as they travel between apertures, cooling a heat-generating source, and thus travel with fewer pressure drops. These structures also reduce the volume of the channel (flow path) along which the cooling material is transmitted. Forcing the same amount of cooling material along each smaller channel increases the velocity of the cooling material, which will increase the rate at which heat is carried away from the heat-generating source 280. Those skilled in the art will recognize other advantages with a manifold layer having a bottom surface that defines a portion of a channel, conforming to the shape of a narrowing trench.


It will be appreciated that while the above drawings depict symmetrical features, such as trenches and solid portions, heat exchangers in accordance with the present invention can have non-symmetrical features. Specifically, it may be advantageous to have larger openings at the outlets than at the inlets to accommodate the volume expansion associated with the transition from liquid to liquid/vapor mixtures. The narrowing trenches 105A-D (FIG. 1A) can also have different shapes and dimensions. And rather than aligned in symmetrical rows, the narrowing trenches can be apportioned in any number between rows, can even be staggered, or can be positioned and distributed in any manner to fit the application at hand. Furthermore, it will be appreciated that while FIGS. 1A-B, 2, and 3 all depict a one-dimensional view of a heat exchanger with four narrowing trenches 105A-D, it will be appreciated that a heat exchanger in accordance with the present invention can have fewer than or more than four trenches in a one-, two- or three-dimensional configuration.



FIG. 4, for example, is a perspective view of a heat exchanger 300 with a plurality of narrowing trenches in a two-dimensional configuration, used to cool a heat-generating source (not shown). It is believed that using a large number of small narrowing trenches has advantages over using a small number of large narrowing trenches to cool a heat-generating source. It is believed that small narrowing trenches formed without any sharp angles advantageously reduce pressure drops associated with cooling materials transmitted through the heat exchanger, thus requiring less energy to pump the cooling material through the heat exchanger. It is also believed that the smaller narrowing trenches increase the surface-to-volume ratio of the cooling material to the surface of the heat-generating source, thus aiding in more efficiently cooling the heat-generating source.


The heat exchanger 300 comprises the manifold layer 101 and the interface layer 105, both of FIG. 1A, but gives a more complete three-dimensional view of each. FIG. 1A illustrates only a cross-sectional portion of the manifold layer 101. FIG. 4 illustrates the manifold layer 101 with a portion of a top, enclosing surface 189 cut away to expose elements of the manifold layer 101, contained below the top surface 189 and described below. As described in more detail above, the interface layer 105 comprises the narrowing trenches 105A-D and narrowing trenches 106A-D and 107A-D. Because the narrowing trenches 106A-D and 107A-D perform similar functions to the narrowing trenches 105A-D, the following discussions will be limited to the narrowing trenches 105A-D. FIG. 4 also shows a plane RR′SS′ perpendicular to the top surface 189 and described below in relation to FIG. 7.


Still referring to FIG. 4, the manifold layer 101 comprises a first plurality of hollow fingers 196A-B (collectively, 196), a second plurality of hollow fingers 190A-C (collectively, 190), solid portions 11J-M, a first reservoir 195, a second reservoir 198, inlet ports 197A and 197B coupled to the first reservoir 195, and outlet ports 199A and 199B coupled to the second reservoir 198. Preferably, the hollow fingers 190 and 196 all lie substantially in a single plane, parallel to a bottom surface of the manifold layer 101. As described below, the hollow fingers 190 and 196 are openings in the manifold layer 101, providing communications path between a top surface of the manifold layer 101 and a bottom surface of the manifold layer 101. The hollow fingers 196 are coupled to the first reservoir 195 and thus to each other, and provide a flow (communication) path from the first reservoir 195 to a first portion of the bottom surface of the manifold layer 101. Thus, in operation, a cooling material can flow from the inlet ports 197A-B, to the first reservoir 195, to the hollow fingers 196, and through the bottom of the manifold layer 101 into the interface layer 105. Similarly, the hollow fingers 190 are coupled to the second reservoir 198 and thus to each other, and provide a flow path from the interface layer 105 up through the bottom of the manifold layer 101, and to the second reservoir 198. Thus, in operation, a cooling material can flow from the inlet ports 197A-B, through the hollow fingers 196, down to the interface layer 105, along a narrowing trench 105D, back up to the hollow fingers 190 in the manifold layer 101, and to the outlet ports 199A-B.


As illustrated in FIG. 4, the hollow fingers 196 are interwoven with the hollow fingers 190 in that the hollow fingers 196 are interdigitated with the hollow fingers 190. Moreover, the solid portions 101J-M alternate with the hollow fingers 196 and the hollow fingers 190. Thus, the solid portion 101M is between the hollow fingers 190A and 196A, the solid portion 101L is between the hollow fingers 196A and 190B, the solid portion 101K is between the hollow fingers 190B and 196B, and the solid portion 101J is between the hollow fingers 196B and 190C. The solid portions 101J-M thus provide structure for the manifold layer 101. FIG. 5 is a perspective view of the manifold layer 101 of FIG. 4, with the top surface 189 (FIG. 4) completely removed.


It will be appreciated that manifold layers used in accordance with the present invention can have configurations different from those described here. For example, the hollow fingers 190A-C need not be coupled to each other by the reservoir 198, and the hollow fingers 196A-B need not be coupled to each other by the reservoir 195. The plurality of hollow fingers 190 need not be interwoven with the plurality of hollow fingers 196. Manifold layers with any number and combination of hollow fingers can be used. Examples of manifold layers that can be used in accordance with the present invention are taught in co-pending U.S. patent application Ser. No. 10/439,635, filed on May 16, 2003, and titled “Method and Apparatus for Flexible Fluid Delivery for Cooling Desired Hot Spots in a Heat Producing Device,” which is hereby incorporated by reference.



FIG. 6A is a top cross-sectional view of the manifold layer 101 aligned over the interface layer 105. When the manifold layer 101 is aligned over the interface layer 105, the two define a plurality of apertures 101A-E, as illustrated, for example, in FIG. 1A. For example, as illustrated in FIGS. 6A and 1, the solid portion 101J overlies and spans a portion of the narrowing trench 105D, defining the apertures 10A and 101B; the solid portion 101K overlies and spans a portion of the narrowing trench 105B, defining the apertures 101B and 101C; the solid portion 101L overlies and spans a portion of the narrowing trench 105C, defining the apertures 101C and 101D; and the solid portion 101M overlies and spans a portion of the narrowing trench 105D, defining the apertures 101D and 101E. FIG. 6A also illustrates the dashed line segment TT′ shown in FIG. 4.



FIG. 6B illustrates flow paths along the manifold layer 101 of FIG. 6A for the heat exchanger 300 shown in FIG. 4. To simplify the present discussion, only the two flow paths 120 and 121 from FIG. 1B are described in FIG. 6B. As illustrated in FIG. 6B, a cooling material is introduced into the inlet ports 197A-B by, for example, a pump (not shown). The cooling material then flows into the first reservoir 195 and then into the hollow finger 196B. Referring now to FIGS. 1B and 6B, the cooling material travels along the hollow finger 196B and down into the aperture 101B along the flow path 120. The “{circumflex over (x)}” marking the flow path 120 in FIG. 6B indicates that the cooling material travels into the plane of the drawing and thus into the aperture 101B. The cooling material next travels within the channel defined by the narrowing trench 105A along the flow path 121 and out the aperture 101A. The “⊙” marking the flow path 121 in FIG. 6B indicates that the cooling material travels out of the plane of the drawing and thus into the aperture 10A and into the hollow finger 190C. It will be appreciated that phrases such as “into” and “out of” used herein are used to help describe the direction of flow in reference to the drawings and are not intended to limit the scope of the present invention. Next, the cooling material traveling along the hollow finger 190C flows to the reservoir 198 and to the outlet ports 199A-B. From here, the cooling material can be removed from the heat exchanger 300 or cooled and reintroduced to the inlet ports 197A-B.


It will be appreciated that the cooling material introduced to the inlet ports 197A-B can and generally does travel along hollow fingers in addition to the hollow fingers 196B and 190C. The present discussion is limited to cooling material traveling along the hollow fingers 196B and 190C only to simplify the present description. Along the hollow finger 196B, the cooling material can and generally is introduced into apertures other than the aperture 101B. Along the aperture 101B, the cooling material can and generally does travel along paths other than the flow path 121, as illustrated in FIG. 6B. For example, the cooling material traveling along the flow path 120 can be divided with a portion traveling along the flow path 122, as illustrated in FIG. 1B. As described in more detail below, the heat exchanger 300 can also comprise an intermediate layer that determines which apertures the cooling material is introduced into, thus controlling the flow of cooling material above a heat-generating source.



FIG. 7 illustrates a section of the heat exchanger 300 of FIG. 4, with the top surface 189 removed. FIG. 7 shows that section of the heat exchanger 300 of FIG. 4 delimited by the plane RR′SS′ and containing the first reservoir 195. The plane RR′SS′ intersects the hollow fingers 190, the hollow fingers 196, the solid portions 101J-M, and the narrowing trenches 105A-D, all shown in FIG. 4. FIG. 7 is used to describe a three-dimensional flow path for a portion of a cooling material 103.


As illustrated in FIG. 7, the cooling material 103 is introduced into the inlet port 197A, into the reservoir 195, along the hollow finger 196A, down to the aperture 101D, along the flow path 132 through the narrowing trench 105D, up to the aperture 101E, and up through the hollow finger 190A. The cooling material then flows in a direction out of and perpendicular to the page. Referring to FIG. 4, the cooling material then flows into the second reservoir 198 and out one or both of the outlet ports 199A and 199B. Again referring to FIG. 7, while traveling along the flow path 132, the cooling material absorbs heat generated by the heat-generating source 180 and conducted by that portion of the interface layer 105 substantially adjacent to the narrowing trench 105D. The cooling material carries the absorbed heat away from the heat-generating source 180, thus cooling the heat-generating source 180 at a location adjacent to the narrowing trench 105D. The cooling material circulating in the other narrowing trenches 105A-C cools the heat-generating source 180 in a similar manner at locations adjacent to the narrowing trenches 105A-C.


It will be appreciated that heat exchangers in accordance with the present invention can have many alternative configurations. For example, FIG. 8 illustrates a heat exchanger 500 comprising the manifold layer 101 and interface layer 105, both of FIG. 4, with an intermediate layer 310 positioned between the manifold layer 101 and the interface layer 105. As in FIG. 4, FIG. 8 shows the manifold layer with a portion of the top surface 189 cut away. The intermediate layer 310 can be used, for example, to allow cooling material to flow only into those channels that are above hot spots and to prevent cooling material from flowing into those channels that are not above hot spots. Thus, less cooling material is required and less energy is required for a pump circulating the cooling material.


As illustrated in FIG. 8, the intermediate layer 310 has a plurality of apertures 311A-E, used to control the flow of the cooling material from the manifold layer 101 to the interface layer 105. While FIG. 9 depicts one row of apertures 311A-E, it will be appreciated that the intermediate layer 310 can and generally does contain more than one row of apertures. FIG. 9 depicts one row of apertures to simplify the present discussion. The use of the intermediate layer 310 in accordance with the present invention is described in relation to FIG. 9.



FIG. 9 is a side cross-sectional view of a section of the manifold layer 101, the intermediate layer 310, and the interface layer 105 of FIG. 8. As illustrated in FIG. 9, the aperture 311A is positioned between the hollow finger 190C and the narrowing trench 105A; the aperture 311B is positioned between the hollow finger 196B and the narrowing trenches 105A and 105B; the aperture 311C is positioned between the hollow finger 190B and the narrowing trenches 105B and 105C; the aperture 311D is positioned between the hollow finger 196A and the narrowing trenches 105C and 105D; and the aperture 311E is positioned between the hollow finger 190A and the narrowing trench 105D. In this way, the cooling material traveling along the flow path 317B is introduced into the hollow finger 196B and along the flow paths 316A and 316B. The cooling material traveling along the flow path 316A travels through the aperture 311A and into the hollow finger 190C. The cooling material traveling along the flow path 316B travels through the aperture 311C and into the hollow finger 190B.


Similarly, the cooling material traveling along the flow path 317D is introduced into the hollow finger 196A and along the flow paths 316C and 316D. The cooling material traveling along the flow path 316C travels through the aperture 311C and into the hollow finger 190B. The cooling material traveling along the flow path 316D travels through the aperture 311E and into the hollow finger 190A. Thus, as described below, by opening or closing the apertures 311A-C, the flow of cooling material through the heat exchanger 500 can be controlled.



FIG. 10 shows a heat exchanger 600 having the manifold layer 101, the interface layer 105, both of FIG. 8, and an intermediate layer 314 positioned between the manifold layer 101 and the interface layer 105. The intermediate layer 314 is configured to allow cooling material to flow only along the flow path 316D (FIG. 11). As in FIGS. 4 and 8, FIG. 10 shows the manifold layer 101 with a portion of the top surface 189 cut away. The intermediate layer 314 has the apertures 311D and 311E, but not the apertures 311A-C as shown in FIG. 8. Thus, as illustrated in FIG. 11, the cooling material is controlled to flow only along the flow path 316D and not along the flow paths 316A-C. Intermediate layers such as the intermediate layer 314 are useful, for example, when a heat-generating source (not shown) coupled to a bottom surface of the interface layer 105 has non-uniform heat-generating portions. In one example, the heat-generating source needs to be cooled only below the narrowing trench 105D and thus below the flow path 316D. Intermediate layers such as that described here are taught, for example, in U.S. patent application Ser. No. 10/439,635, filed on May 16, 2003, and titled “Method and apparatus for Flexible Fluid Delivery for Cooling Desired Hot Spots in a Heat Producing Device,” incorporated by reference above.



FIGS. 12A-C are used to show features of a portion of a heat exchanger 790 in accordance with one embodiment of the present invention. FIGS. 12A-C show, respectively, a top view of an interface layer 705, a side cross-sectional view of a heat exchanger 790 formed from the interface layer 705 and a manifold layer 701, and a more detailed top view of the interface layer 705.



FIG. 12A illustrates that the interface layer 705 has top surface 707 and narrowing trenches 705A and 705B. As illustrated in FIG. 12A, the narrowing trench 705A has a first vertical edge wall 711 delineated by the line AA′ and a second vertical edge wall 712 delineated by the line BB′. The line MM′ bisects the interface layer 705 and is used below to describe features of the interface layer 705. As described in more detail below, in the discussion of FIG. 12C, the narrowing trench 705A comprises two sloping sidewall sections 709 and 710, each of which comprises two sloping sidewalls (709A and 709B, and 710A and 710B, respectively).



FIG. 12B is a cross-sectional view of the heat exchanger 790, in accordance with one embodiment of the present invention. FIG. 12B illustrates a cross section of the interface layer 705 of FIG. 12A, taken along the line MM′, and a cross-section of the manifold layer 701. The manifold layer 701 comprises an aperture 701A with a width W1 and an aperture 701B with a width W2. The narrowing trench 705A has a height H measured from a point X on the top surface 707 of the narrowing trench 705A to a point Y on a flat bottom surface 706 of the narrowing trench 705A. In the cross section shown, the narrowing trench 705A has a first sloping sidewall section 709 that extends from the point X to the point Y. Similarly, the narrowing trench 705A has a second sloping sidewall section 710 that extends from a point X′ on the top surface 707 of the narrowing trench 705A to a point Y′ on the bottom surface 706.



FIG. 12B further illustrates that the sloping sidewall section 709 (and thus, as described below, each of the sidewalls 709A and 709B that form the sidewall section 709) makes an angle θ1 with the bottom surface 706, measured clockwise from the bottom surface 706. The sidewall section 710 makes an angle θ2 with the bottom surface 706, measured counterclockwise from the bottom surface 706. Preferably, both θ1 and θ2 are between 0 degrees and 90 degrees. Also, preferably, θ1 equals θ2.


Referring now to FIG. 12C, the sloping sidewall section 709 (FIG. 12B) is comprised of two sloping sidewalls 709A and 709B angled to each other. Each of the sloping sidewalls 709A and 709B makes the angle θ1 with the bottom surface 706, measured clockwise from the bottom surface 706. The sloping sidewall section 710 (FIG. 12B) is comprised of two sloping sidewalls 710A and 710B angled to each other. Each of the sidewalls 710A and 710B makes the angle θ2 with the bottom surface 706, measured counterclockwise from the bottom surface 706. As illustrated in FIG. 12C, the line MM′ bisects the heat exchanger 790, intersecting the sloping sidewall section 709 where the sloping sidewall 709A meets the sidewall 709B and where the sloping sidewall 710A meets the sloping sidewall 710B.


Still referring to FIG. 12C, the narrowing trench 705A has a width G, the distance between the lines AA′ and BB′. A length of the bottom surface 706 along the cross section MM′, delimited by the line segment DD′, has a length E. A width of an upper portion of the narrowing trench 705A along the line MM′, delimited by the line segment CC′, has a length V.


In a preferred embodiment, the height H is approximately 1 mm, the widths W1 and W2 are both approximately 200 μm, the width G is approximately 20 μm, the length E is approximately 2 mm, and the length V is approximately 3.4 mm. It will be appreciated that in accordance with the present invention, H can be larger or smaller than 1 mm, one or both of W1 and W2 can be larger or smaller than 200 μm, G can be larger or smaller than 20 μm, and E can be larger or smaller than 2 mm. It will also be appreciated that the dimensions of the trench 705B can differ from those of the trench 705A; the dimensions of both are depicted as similar merely for ease of illustration. Preferably, H is chosen large enough to provide structure for the heat exchanger 790 and to withstand the heat generated by a heat-generating source coupled to the heat exchanger 790. Preferably, H is also small enough to allow heat to radiate quickly and efficiently to a cooling material circulating in the channels of the heat exchanger 790. In one embodiment, the above values are chosen to provide aspect ratios for the narrowing trenches of 10:1 or larger. It will be appreciated, however, that the dimensions can also be chosen to provide depth:width aspect ratios smaller than 10:1.



FIGS. 13A-D depict steps used to fabricate a narrowing trench (and thus a channel) and a portion of a manifold layer, in accordance with one embodiment of the present invention. While FIGS. 13A-D depict the formation of one narrowing trench, it will be appreciated that by using appropriate masks, the steps illustrated in FIGS. 13A-D can be used to form a plurality of narrowing trenches in accordance with the present invention.



FIG. 13A illustrates a material 805 having a <110> orientation with a mask 815 formed or deposited over a surface of the material 805. The mask 815 is patterned using, for example, photo-lithographic processes to expose areas that will later define the narrowing trenches. The material 805 exhibits anisotropic etching, as described below. Preferably, the material 805 is <110> oriented silicon. It will be appreciated that etching <110> oriented silicon will expose <111> oriented sidewalls of the silicon. Alternatively, the material 805 is any orientation of silicon or any other material or composite of materials that together exhibit anisotropic etching.


The material 805 is then exposed to an etchant, such as a wet etchant, to expose the <111> oriented planes (i.e., the sidewalls 811 and 812) and a bottom surface 813, as illustrated in FIG. 13B, of the resulting narrowing trench 805A. Alternatively, the material 805 is etched in an anisotropic plasma etch. As illustrated in FIG. 13B, the sloping sidewall 811 makes an angle θ3, measured clockwise from the a bottom surface of the trench 805A, of approximately 54.7 degrees. It will be appreciated that the present invention contemplates sidewalls having other angles with the bottom surface of the trench 805A, angles preferably greater than 0 degrees but less than 90 degrees. The present invention also contemplates forming angled sidewalls within this range by, for example, combining piecewise sections to form an angled sidewall.


Preferably, the mask 815 is formed of a material substantially resistant to the etchant. Etchants used in accordance with the present invention include, but are not limited to, potassium hydroxide (KOH) and tetramethyl ammonium hydroxide (TMAH). Masks used in accordance with the present invention can comprise nitrides, oxides such as SiO2, and some metals.


Next, as illustrated in FIG. 13C, the mask 815 is removed, using any of a variety of techniques. Next, as illustrated in FIG. 13D, a manifold layer 810 is coupled to the interface layer 805. The manifold layer 810 can be coupled to the interface layer using a variety of techniques, including adhesive bonding, thermal fusing, anodic bonding, eutectic bonding, or other any other form of bonding. Alternatively, the manifold layer 810 and the interface layer 805 can be formed from a single monolithic device during device fabrication. Preferably, the manifold layer 810 is formed and oriented so that the resulting apertures all lie substantially in a single plane, substantially parallel to the bottom surfaces of the narrowing trenches. The manifold layer 810 can be formed from a variety of materials including, but not limited to, a plastic, a glass, a metal, a semiconductor, and a composite of materials.


Next, the interface layer 805 can be coupled to a heat-generating source, such as a semiconductor device. Alternatively, the heat-generating source can be integrally formed with a bottom surface of the interface layer 805, for example in one or more semiconductor device fabrication steps. A pump (not shown) can then be coupled to the manifold layer 810, as described above, to pump the cooling material through the heat exchanger and thus cool the heat-generating source. The cooling material can comprise a liquid, such as water, a gas, air, a vapor, or a combination of these.


Alternatively, the interface layer 805 can be manufactured from a metal, such as copper, using standard machining processes to form the narrowing trenches. These machining processes can include, but are not limited to, milling, sawing, drilling, stamping, EDM, wire EDM, coining, die casting, investment casting, or any combination of these. Alternatively, the interface layer 805 can be formed by other processes, including, but not limited to, electroplating, metal injection molding, LIGA processes, casting, or any combination of these.


Heat exchangers in accordance with the present invention provide smooth flow paths (channels) in which cooling materials travel. Such structures work more efficiently and thus reduce the load on the pumps pumping the cooling material through the heat exchanger. The method of manufacturing heat exchangers in accordance with one embodiment of the present invention are relatively inexpensive. Materials exhibiting anisotropic etching are chemically etched, preferably using wet chemistries, to form narrowing trenches that ultimately form the flow paths. The use of wet chemistries is inexpensive and quick compared to other device fabrication processes. The present invention can thus be used to inexpensively fabricate heat exchangers used to cool a variety of devices, such as semiconductor devices, motors, batteries, walls of process chambers, or any device that generates heat.


The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. As such, references herein to specific embodiments and details thereof are not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications can be made to the embodiments chosen for illustration without departing from the spirit and scope of the invention.

Claims
  • 1. A method of forming a heat exchanger, comprising: a. forming a manifold layer defining a plurality of apertures; b. forming an interface layer comprising one or more narrowing trenches, each aperture positioned on one side of a narrowing trench, whereby a path is defined from a first aperture, through a narrowing trench, and to a second aperture; and c. coupling an intermediate layer having a plurality of openings positioned over the plurality of apertures.
  • 2. The method of claim 1, wherein the interface layer comprises a material exhibiting anisotropic etching.
  • 3. The method of claim 2, wherein the material comprises a <110> oriented silicon substrate.
  • 4. The method of claim 3, wherein forming an interface layer comprises etching the <110> oriented silicon substrate in an etchant to produce a <111> oriented surface defining a sloping wall of a narrowing trench.
  • 5. The method of claim 4, wherein the etchant comprises potassium hydroxide (KOH).
  • 6. The method of claim 4, wherein the etchant comprises tetramethyl ammonium hydroxide (TMAH).
  • 7. The method of claim 1, wherein the one or more narrowing trenches are formed by a machining process selected from the group consisting of milling, sawing, drilling, stamping, EDM, wire EDM, coining, die casting, and investment casting.
  • 8. The method of claim 1, wherein the one or more narrowing trenches are formed by a process selected from the group consisting of electroplating, metal injection molding, LIGA processes, and casting.
  • 9. The method of claim 1, wherein the manifold layer and the interface layer are formed of a monolithic device.
  • 10. The method of claim 1, further comprising coupling the manifold layer to the interface layer.
  • 11. The method of claim 10, wherein coupling the manifold layer to the interface layer comprises adhesively bonding the manifold layer to the interface layer.
  • 12. The method of claim 10, wherein coupling the manifold layer to the interface layer comprises thermally fusing the manifold layer to the interface layer.
  • 13. The method of claim 10, wherein coupling the manifold layer to the interface layer comprises anodically bonding the manifold layer to the interface layer.
  • 14. The method of claim 10, wherein coupling the manifold layer to the interface layer comprises eutectically bonding the manifold layer to the interface layer.
  • 15. The method of claim 1, wherein the manifold layer comprises a material selected from the group consisting essentially of a plastic, a glass, a metal, and a semiconductor.
  • 16. The method of claim 1, wherein forming the manifold layer comprises forming a first plurality of interconnected hollow fingers and a second plurality of interconnected hollow fingers, the first plurality of interconnected hollow fingers providing flow paths to the one or more first apertures and the second plurality of interconnected hollow fingers providing flow paths from the one or more second apertures.
  • 17. The method of claim 16, wherein the first plurality of interconnected hollow fingers and the second plurality of interconnected hollow fingers lie substantially in a single plane.
  • 18. The method of claim 16, further comprising coupling a pump to the first plurality of interconnected hollow fingers.
  • 19. The method of claim 1, further comprising coupling a heat-generating source to the interface layer.
  • 20. The method of claim 19, wherein a bottom surface of the interface layer is integrally formed with the heat-generating source.
  • 21. The method of claim 19, wherein the heat-generating source comprises a semiconductor microprocessor.
  • 22. The method of claim 18, further comprising introducing a cooling material to the pump, so that the pump circulates the cooling material along the first plurality of interconnected hollow fingers, to the one or more first apertures, along a plurality of narrowing trenches, to the one or more second apertures, and to the second plurality of interconnected hollow fingers, thereby cooling the heat-generating source.
  • 23. The method of claim 22, wherein the cooling material comprises a liquid.
  • 24. The method of claim 23, wherein the liquid comprises water.
  • 25. The method of claim 22, wherein the cooling material comprises a liquid/vapor mixture.
  • 26. The method of claim 1, wherein each aperture lies substantially in a single plane, parallel to a lower surface of the interface layer.
  • 27. The method of claim 1, wherein the manifold layer comprises a surface that extends into each narrowing trench and substantially conforms to a contour of each narrowing trench.
  • 28. The method of claim 1, wherein a narrowing trench has a depth:width aspect ratio of at least approximately 10:1.
  • 29. The method of claim 1, wherein each of the one or more trenches has a substantially planar floor.
  • 30. A heat exchanger comprising: a. a manifold layer defining a plurality of apertures; b. an interface layer comprising a plurality of narrowing trenches, each aperture positioned on one side of a narrowing trench, whereby a path is defined from a first aperture, through a narrowing trench, and to a second aperture; and c. an intermediate layer having a plurality of openings positioned over the plurality of apertures between the manifold layer and the interface layer.
  • 31. The heat exchanger of claim 30, wherein the interface layer comprises a material exhibiting anisotropic etching.
  • 32. The heat exchanger of claim 31, wherein the material exhibiting anisotropic etching comprises a <110> oriented silicon substrate.
  • 33. The heat exchanger of claim 32, wherein the interface layer is formed by etching the <110> oriented silicon substrate in an etchant to produce a <111> oriented surface defining a sloping wall of a narrowing trench.
  • 34. The heat exchanger of claim 33, wherein the etchant comprises potassium hydroxide (KOH).
  • 35. The heat exchanger of claim 33, wherein the etchant comprises tetramethyl ammonium hydroxide (TMAH).
  • 36. The heat exchanger of claim 30, wherein the narrowing trenches are formed by a machining process selected from the group consisting of milling, sawing, drilling, stamping, EDM, wire EDM, coining, die casting, and investment casting.
  • 37. The heat exchanger of claim 30, wherein the narrowing trenches are formed by a process selected from the group consisting of electroplating, metal injection molding, LIGA processes, and casting.
  • 38. The heat exchanger of claim 30, wherein the manifold layer and the interface layer are formed of a monolithic device.
  • 39. The heat exchanger of claim 30, wherein the manifold layer is coupled to the interface layer.
  • 40. The heat exchanger of claim 39, wherein the manifold layer is coupled to the interface layer by adhesive bonding.
  • 41. The heat exchanger of claim 39, wherein the manifold layer is coupled to the interface layer by thermal fusing.
  • 42. The heat exchanger of claim 39, wherein the manifold layer is coupled to the interface layer by anodic bonding.
  • 43. The heat exchanger of claim 39, wherein the manifold later is coupled to the interface layer by eutectic bonding.
  • 44. The heat exchanger of claim 30, wherein the manifold layer comprises a material selected from the group consisting essentially of a plastic, a glass, a metal, and a semiconductor.
  • 45. The heat exchanger of claim 30, wherein the manifold layer comprises a first plurality of interconnected hollow fingers and a second plurality of interconnected hollow fingers, the first plurality of interconnected hollow fingers providing flow paths to the one or more first apertures and the second plurality of interconnected hollow fingers providing flow paths from the one or more second apertures.
  • 46. The heat exchanger of claim 45, wherein the first plurality of interconnected hollow fingers and the second plurality of interconnected hollow fingers lie substantially in a single plane.
  • 47. The heat exchanger of claim 45, further comprising a pump coupled to the first plurality of interconnected hollow fingers.
  • 48. The heat exchanger of claim 30, further comprising a heat-generating source coupled to the interface layer.
  • 49. The heat exchanger of claim 48, wherein the heat-generating source comprises a semiconductor microprocessor.
  • 50. The heat exchanger of claim 48, wherein the heat-generating source is integrally formed to a bottom surface of the interface layer.
  • 51. The heat exchanger of claim 30, wherein each aperture lies substantially in a single plane, parallel to a lower surface of the interface layer.
  • 52. The heat exchanger of claim 30, wherein the manifold layer comprises a surface that extends into each trench and substantially conforms to a contour of each narrowing trench.
  • 53. The heat exchanger of claim 30, wherein a depth:width aspect ratio for at least one of the plurality of narrowing trenches is at least 10:1.
  • 54. The heat exchanger of claim 30, wherein each of the one or more narrowing trenches has a substantially planar floor.
  • 55. A method of forming a heat exchanger, comprising: a. forming a manifold layer defining a plurality of apertures; b. forming an interface layer comprising one or more narrowing trenches, each aperture positioned on one side of a narrowing trench, whereby a path is defined from a first aperture, through a narrowing trench, and to a second aperture; and a. coupling an intermediate layer between the manifold layer and the interface layer, the intermediate layer comprising a plurality of openings positioned over the plurality of apertures, thereby controlling the flow of a cooling material to the paths.
  • 56. A heat exchanger comprising: a. a manifold layer defining a plurality of apertures; b. an interface layer comprising a plurality of narrowing trenches, each aperture positioned on one side of a narrowing trench, whereby a path is defined from a first aperture, through a narrowing trench, and to a second aperture; and c. an intermediate layer positioned between the manifold layer and the interface layer, the intermediate layer comprising a plurality of openings positioned over the plurality of apertures, thereby controlling the flow of a cooling material to the paths.
RELATED APPLICATION

This application claims priority under 35 U.S.C. § 119(e) of the co-pending U.S. provisional patent application Ser. No. 60/455,729, filed on Mar. 17, 2003, and titled “Microchannel Heat Exchanger Apparatus with Porous Configuration and Method of Manufacturing Thereof.” The provisional patent application Ser. No. 60/455,729, filed on Mar. 17, 2003, and titled “Microchannel Heat Exchanger Apparatus with Porous Configuration and Method of Manufacturing Thereof” is hereby incorporated by reference.

US Referenced Citations (240)
Number Name Date Kind
596062 Firey Dec 1897 A
2039593 Hubbuch et al. May 1936 A
2273505 Florian Feb 1942 A
3361195 Meyerhoff et al. Jan 1968 A
3654988 Clayton, III Apr 1972 A
3771219 Tuzi et al. Nov 1973 A
3817321 von Cube et al. Jun 1974 A
3823572 Cochran, Jr. Jul 1974 A
3923426 Theeuwes Dec 1975 A
3929154 Goodwin Dec 1975 A
3948316 Souriau Apr 1976 A
4109707 Wilson et al. Aug 1978 A
4138996 Cartland Feb 1979 A
4194559 Eastman Mar 1980 A
4211208 Lindner Jul 1980 A
4248295 Ernst et al. Feb 1981 A
4312012 Frieser et al. Jan 1982 A
4450472 Tuckerman et al. May 1984 A
4467861 Kiseev et al. Aug 1984 A
4485429 Mittal Nov 1984 A
4516632 Swift et al. May 1985 A
4540115 Hawrylo Sep 1985 A
4561040 Eastman et al. Dec 1985 A
4567505 Pease et al. Jan 1986 A
4573067 Tuckerman et al. Feb 1986 A
4574876 Aid Mar 1986 A
4644385 Nakanishi et al. Feb 1987 A
4664181 Sumberg May 1987 A
4758926 Herrell et al. Jul 1988 A
4866570 Porter Sep 1989 A
4868712 Woodman Sep 1989 A
4893174 Yamada et al. Jan 1990 A
4894709 Phillips et al. Jan 1990 A
4896719 O'Neill et al. Jan 1990 A
4903761 Cima Feb 1990 A
4908112 Pace Mar 1990 A
4938280 Clark Jul 1990 A
5009760 Zare et al. Apr 1991 A
5016090 Galyon et al. May 1991 A
5016138 Woodman May 1991 A
5043797 Lopes Aug 1991 A
5057908 Weber Oct 1991 A
5058627 Brannen Oct 1991 A
5070040 Pankove Dec 1991 A
5083194 Bartilson Jan 1992 A
5088005 Ciaccio Feb 1992 A
5096388 Weinberg Mar 1992 A
5099311 Bonde et al. Mar 1992 A
5099910 Walpole et al. Mar 1992 A
5125451 Matthews Jun 1992 A
5131233 Cray et al. Jul 1992 A
5161089 Chu et al. Nov 1992 A
5179500 Koubek et al. Jan 1993 A
5203401 Hamburgen et al. Apr 1993 A
5218515 Bernhardt Jun 1993 A
5219278 van Lintel Jun 1993 A
5228502 Chu et al. Jul 1993 A
5232047 Matthews Aug 1993 A
5239200 Messina et al. Aug 1993 A
5239443 Fahey et al. Aug 1993 A
5263251 Matthews Nov 1993 A
5265670 Zingher Nov 1993 A
5269372 Chu et al. Dec 1993 A
5274920 Matthews Jan 1994 A
5275237 Rolfson et al. Jan 1994 A
5308429 Bradley May 1994 A
5309319 Messina May 1994 A
5310440 Zingher May 1994 A
5316077 Reichard May 1994 A
5317805 Hoopman et al. Jun 1994 A
5325265 Turlik et al. Jun 1994 A
5336062 Richter Aug 1994 A
5346000 Schlitt Sep 1994 A
5380956 Loo et al. Jan 1995 A
5383340 Larson et al. Jan 1995 A
5386143 Fitch Jan 1995 A
5388635 Gruber et al. Feb 1995 A
5421943 Tam et al. Jun 1995 A
5427174 Lomolino, Sr. et al. Jun 1995 A
5436793 Sanwo et al. Jul 1995 A
5459099 Hsu Oct 1995 A
5490117 Oda et al. Feb 1996 A
5508234 Dusablon, Sr. et al. Apr 1996 A
5514832 Dusablon, Sr. et al. May 1996 A
5514906 Love et al. May 1996 A
5544696 Leland Aug 1996 A
5548605 Benett et al. Aug 1996 A
5575929 Yu et al. Nov 1996 A
5579828 Reed et al. Dec 1996 A
5585069 Zanzucchi et al. Dec 1996 A
5641400 Kaltenbach et al. Jun 1997 A
5658831 Layton et al. Aug 1997 A
5675473 McDunn et al. Oct 1997 A
5692558 Hamilton et al. Dec 1997 A
5696405 Weld Dec 1997 A
5703536 Davis et al. Dec 1997 A
5704416 Larson et al. Jan 1998 A
5727618 Mundinger et al. Mar 1998 A
5740013 Roesner et al. Apr 1998 A
5759014 Van Lintel Jun 1998 A
5763951 Hamilton et al. Jun 1998 A
5768104 Salmonson et al. Jun 1998 A
5774779 Tuchinskiy Jun 1998 A
5800690 Chow et al. Sep 1998 A
5801442 Hamilton et al. Sep 1998 A
5835345 Staskus et al. Nov 1998 A
5836750 Cabuz Nov 1998 A
5858188 Soane et al. Jan 1999 A
5863708 Zanzucchi et al. Jan 1999 A
5869004 Parce et al. Feb 1999 A
5870823 Bezama et al. Feb 1999 A
5874795 Sakamoto Feb 1999 A
5876655 Fisher Mar 1999 A
5880017 Schwiebert et al. Mar 1999 A
5880524 Xie Mar 1999 A
5901037 Hamilton et al. May 1999 A
5921087 Bhatia et al. Jul 1999 A
5936192 Tauchi Aug 1999 A
5940270 Puckett Aug 1999 A
5942093 Rakestraw et al. Aug 1999 A
5945217 Hanrahan Aug 1999 A
5964092 Tozuka et al. Oct 1999 A
5965001 Chow et al. Oct 1999 A
5965813 Wan et al. Oct 1999 A
5978220 Frey et al. Nov 1999 A
5993750 Ghosh et al. Nov 1999 A
5997713 Beetz, Jr. et al. Dec 1999 A
5998240 Hamilton et al. Dec 1999 A
6007309 Hartley Dec 1999 A
6010316 Haller et al. Jan 2000 A
6013164 Paul et al. Jan 2000 A
6014312 Schulz-Harder et al. Jan 2000 A
6019165 Batchelder Feb 2000 A
6019882 Paul et al. Feb 2000 A
6034872 Chrysler et al. Mar 2000 A
6039114 Becker et al. Mar 2000 A
6054034 Soane et al. Apr 2000 A
6068752 Dubrow et al. May 2000 A
6090251 Sundberg et al. Jul 2000 A
6096656 Matzke et al. Aug 2000 A
6100541 Nagle et al. Aug 2000 A
6101715 Fuesser et al. Aug 2000 A
6119729 Oberholzer et al. Sep 2000 A
6126723 Drost et al. Oct 2000 A
6129145 Yamamoto et al. Oct 2000 A
6129260 Andrus et al. Oct 2000 A
6131650 North et al. Oct 2000 A
6140860 Sandhu et al. Oct 2000 A
6146103 Lee et al. Nov 2000 A
6154363 Chang Nov 2000 A
6159353 West et al. Dec 2000 A
6167948 Thomas Jan 2001 B1
6171067 Parce Jan 2001 B1
6174675 Chow et al. Jan 2001 B1
6176962 Soane et al. Jan 2001 B1
6186660 Kopf-Sill et al. Feb 2001 B1
6206022 Tsai et al. Mar 2001 B1
6210986 Arnold et al. Apr 2001 B1
6216343 Leland et al. Apr 2001 B1
6227809 Forster et al. May 2001 B1
6234240 Cheon May 2001 B1
6238538 Parce et al. May 2001 B1
6253832 Hallefalt Jul 2001 B1
6253835 Chu et al. Jul 2001 B1
6257320 Wargo Jul 2001 B1
6277257 Paul et al. Aug 2001 B1
6287440 Arnold et al. Sep 2001 B1
6301109 Chu et al. Oct 2001 B1
6313992 Hildebrandt Nov 2001 B1
6317326 Vogel et al. Nov 2001 B1
6321791 Chow Nov 2001 B1
6322753 Lindberg et al. Nov 2001 B1
6324058 Hsiao Nov 2001 B1
6330907 Ogushi et al. Dec 2001 B1
6336497 Lin Jan 2002 B1
6337794 Agonafer et al. Jan 2002 B1
6351384 Daikoku et al. Feb 2002 B1
6366462 Chu et al. Apr 2002 B1
6366467 Patel et al. Apr 2002 B1
6367544 Calaman Apr 2002 B1
6388317 Reese May 2002 B1
6396706 Wohlfarth May 2002 B1
6397932 Calaman et al. Jun 2002 B1
6400012 Miller et al. Jun 2002 B1
6406605 Moles Jun 2002 B1
6415860 Kelly et al. Jul 2002 B1
6416642 Alajoki et al. Jul 2002 B1
6417060 Tavkhelidze et al. Jul 2002 B1
6424531 Bhatti et al. Jul 2002 B1
6431260 Agonafer et al. Aug 2002 B1
6437981 Newton et al. Aug 2002 B1
6438984 Novotny et al. Aug 2002 B1
6443222 Yun et al. Sep 2002 B1
6444461 Knapp et al. Sep 2002 B1
6457515 Vafai et al. Oct 2002 B1
6459581 Newton et al. Oct 2002 B1
6466442 Lin Oct 2002 B1
6477045 Wang Nov 2002 B1
6492200 Park et al. Dec 2002 B1
6495015 Schoeniger et al. Dec 2002 B1
6519151 Chu et al. Feb 2003 B1
6533029 Phillips Mar 2003 B1
6536516 Davies et al. Mar 2003 B1
6537437 Galambos et al. Mar 2003 B1
6543521 Sato et al. Apr 2003 B1
6553253 Chang Apr 2003 B1
6572749 Paul et al. Jun 2003 B1
6578626 Calaman et al. Jun 2003 B1
6581388 Novotny et al. Jun 2003 B1
6587343 Novotny et al. Jul 2003 B1
6588498 Bhatti et al. Jul 2003 B1
6591625 Simon Jul 2003 B1
6600220 Barber et al. Jul 2003 B1
6601643 Cho et al. Aug 2003 B1
6606251 Kenny, Jr. et al. Aug 2003 B1
6609560 Cho et al. Aug 2003 B1
6632655 Mehta et al. Oct 2003 B1
6632719 DeBoer et al. Oct 2003 B1
6651735 Cho et al. Nov 2003 B1
6729383 Cannell et al. May 2004 B1
6743664 Liang et al. Jun 2004 B1
20010016985 Insley et al. Aug 2001 A1
20010024820 Mastromatteo et al. Sep 2001 A1
20010044155 Paul et al. Nov 2001 A1
20010045270 Bhatti et al. Nov 2001 A1
20010046703 Burns et al. Nov 2001 A1
20010055714 Cettour-Rose et al. Dec 2001 A1
20020011330 Insley et al. Jan 2002 A1
20020075645 Kitano et al. Jun 2002 A1
20020121105 McCarthy, Jr. et al. Sep 2002 A1
20020134543 Estes et al. Sep 2002 A1
20030062149 Goodson et al. Apr 2003 A1
20030121274 Wightman Jul 2003 A1
20030213580 Philpott et al. Nov 2003 A1
20040040695 Chesser et al. Mar 2004 A1
20040052049 Wu et al. Mar 2004 A1
20040089008 Tilton et al. May 2004 A1
20040125561 Gwin et al. Jul 2004 A1
20040160741 Moss et al. Aug 2004 A1
20040188069 Tomioka et al. Sep 2004 A1
Foreign Referenced Citations (5)
Number Date Country
97212126.9 Mar 1997 CN
1-256775 Oct 1989 JP
10-99592 Apr 1998 JP
2000-277540 Oct 2000 JP
2001-326311 Nov 2001 JP
Related Publications (1)
Number Date Country
20040182560 A1 Sep 2004 US
Provisional Applications (1)
Number Date Country
60455729 Mar 2003 US