Apparatus and methods for chemical mechanical polishing with an incrementally advanceable polishing sheet

Information

  • Patent Grant
  • 6520841
  • Patent Number
    6,520,841
  • Date Filed
    Friday, July 6, 2001
    23 years ago
  • Date Issued
    Tuesday, February 18, 2003
    21 years ago
Abstract
A chemical mechanical polishing apparatus has a rotatable platen, a generally linear polishing sheet having an exposed portion extending over a top surface of the platen for polishing the substrate, and a drive mechanism to incrementally advance the polishing sheet in a linear direction across a top surface of the platen by a fixed distance each time the polishing sheet is incremented. The polishing sheet is releasably secured to the platen to rotate with the platen, and it has a width greater than a diameter of the substrate.
Description




BACKGROUND




The present invention relates to apparatus and methods for chemical mechanical polishing a substrate.




Integrated circuits are typically formed on substrates, particularly silicon wafers, by the sequential deposition of conductive, semiconductive or insulative layers. After each layer is deposited, it is etched to create circuitry features. As a series of layers are sequentially deposited and etched, the outer or uppermost surface of the substrate, i.e., the exposed surface of the substrate, becomes increasingly nonplanar. This nonplanar surface can present problems in the photolithographic steps of the integrated circuit fabrication process. Therefore, there is a need to periodically planarize the substrate surface. In addition, plaranization is needed when polishing back a filler layer, e.g., when filling trenches in a dielectric layer with metal.




Chemical mechanical polishing (CMP) is one accepted method of planarization. This planarization method typically requires that the substrate be mounted on a carrier or polishing head. The exposed surface of the substrate is placed against a polishing pad, e.g., a circular pad or linear belt, that moves relative to the substrate. The polishing pad may be either a “standard” pad or a fixed-abrasive pad. A standard pad has a durable roughened surface, whereas a fixed-abrasive pad has abrasive particles held in a containment media. The carrier head provides a controllable load on the substrate to push it against the polishing pad. A polishing slurry, including at least one chemically-reactive agent, and abrasive particles if a standard pad is used, is supplied to the surface of the polishing pad.




During CMP operations, the polishing pad needs to be replaced periodically. For a fixed-abrasive pad, the substrate wears away the containment media to expose the embedded abrasive particles. Thus, the fixed-abrasive pad is gradually consumed by the polishing process. After a sufficient number of polishing runs the fixed-abrasive pad needs to be replaced. For a standard pad, the substrate thermally and mechanically damages the polishing pad and causes the pad's surface to become smoother and less abrasive. Therefore, standard pads must be periodically “conditioned” to restore a roughened texture to their surface. After a sufficient number of conditioning operations, the conditioning process consumes the pad or the pad is unable to be properly conditioned. The pad must then be replaced.




One problem encountered in the CMP process is difficulty in replacing the polishing pad. The polishing pad may be attached to the platen surface with an adhesive. Significant physical effort is often required to peel the polishing pad away from the platen surface. The adhesive then must be removed from the platen surface by scraping and washing with a solvent. A new polishing pad can then be adhesively attached to the clean surface of the platen. While this is happening, the platen is not available for the polishing of substrates, resulting in a decrease in polishing throughput.




SUMMARY




In one aspect, the invention is directed to a chemical mechanical polishing apparatus. The apparatus has a rotatable platen, a generally linear polishing sheet releasably secured to the platen to rotate with the platen, and a drive mechanism to incrementally advance the polishing sheet in a linear direction across the top surface of the platen. The polishing sheet has an exposed portion extending over a top surface of the platen for polishing the substrate, an unused portion wound around a feed roller, and a used portion wound around a take-up roller. The drive mechanism plays out a fixed length of the polishing sheet from the feed roller each time the drive mechanism advances the polishing sheet.




Implementations of the invention may include one or more of the following features. The drive mechanism may include a rigid frame that can be actuated to push the polishing sheet by a fixed distance. An enclosure may receive the feed roller, and the rigid frame may comprises a door to the enclosure. The door may be pivotally attached to the platen. The drive mechanism may include any of a pneumatic actuator to push the door by a fixed distance, a motor that applies a constant torque to the take-up roller, slip clutch that prevents the feed roller from rotating unless the polishing sheet is pulled with a first force that is greater than a second force applied by the motor, and a pneumatic actuator to push the rigid frame with a third force which is greater than the first force. The platen may have a channel to vacuum-chuck the polishing sheet to the platen.




In another aspect, the invention is directed to a method of operating a chemical mechanical polishing apparatus. In the method, a first portion of a generally linear polishing sheet is positioned to extend over a top surface of a rotatable platen. The polishing sheet includes a second portion wound around a feed roller and a third portion wound around a take-up roller. A rigid frame is actuated to push on the polishing sheet between the feed roller and the take-up roller, thereby generating slack in the polishing sheet, and a torque is applied to the take-up roller while holding the feed roller fixed to make the first portion of the polishing sheet taught.




Implementations of the invention may include one or more of the following features. At least a section of the first portion of the polishing sheet may be releasably secured to the platen before actuating the rigid frame. The rigid frame may push on a part of the polishing sheet located between the section of the polishing sheet secured to the platen and the feed roller, thereby generating slack in the part of the polishing sheet. The section of the polishing sheet may be released after actuating the rigid frame. The rigid frame may be actuated by a fixed distance.




In another aspect, the invention is directed to a method of chemical mechanical polishing in which a substrate is brought into contact with a generally linear polishing sheet that extends over a top surface of a rotatable platen. The polishing sheet includes an unused portion wound around a feed roller and a used portion wound around a take-up roller. The polishing sheet is releasably secured to the platen. The platen is rotated to rotate the polishing sheet and create relative motion between the substrate and the polishing sheet. The polishing sheet is released from the platen and incrementally advanced in a linear direction across the top surface of the platen by playing out a fixed length of the polishing sheet from the feed roller.




Potential advantages of the invention may include the following. A polishing sheet can be incrementally advanced by a repeatable spacing. The incremental advancing mechanism can installed in a rotatable platen.




Other features and advantages will be apparent from the following description, including the drawings and claims.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic exploded perspective view of a chemical mechanical polishing apparatus.





FIG. 2

is a top view of the CMP apparatus of FIG.


1


.





FIG. 3A

is a top view of the first polishing station of the CMP apparatus of FIG.


1


.





FIG. 3B

is a schematic exploded perspective view of a rectangular platen and a polishing cartridge.





FIG. 3C

is a schematic perspective view of a polishing cartridge attached to a rectangular platen.





FIG. 4

is a schematic cross-sectional view of the polishing station of FIG.


3


A.











DETAILED DESCRIPTION




Referring to

FIGS. 1 and 2

, one or more substrates


10


will be polished by a chemical mechanical polishing apparatus


20


. A description of a similar polishing apparatus may be found in U.S. Pat. No. 5,738,574, and in U.S. Pat. No. 6,244,935, the entire disclosures of which are incorporated herein by reference. The polishing apparatus


20


includes a machine base


22


with a table top


23


that supports a series of polishing stations, including a first polishing station


25




a


, a second polishing station


25




b


, and a final polishing station


25




c


, and a transfer station


27


. The transfer station


27


serves multiple functions, including receiving individual substrates


10


from a loading apparatus (not shown), washing the substrates, loading the substrates into carrier heads, receiving the substrates from the carrier heads, washing the substrates again, and finally, transferring the substrates back to the loading apparatus.




Each polishing station includes a rotatable platen. At least one of the polishing stations, such as the first station


25




a


, includes a polishing cartridge


102


mounted to a rotatable, rectangular platen


100


. The polishing cartridge


102


includes a linearly advanceable sheet or belt of polishing material, e.g., a fixed-abrasive polishing material. The remaining polishing stations, e.g., the second polishing station


25




b


and the final polishing station


25




c


, may include polishing pads


32


and


34


, respectively, that are adhesively attached to circular platens


30


. Each platen may be connected to a platen drive motor (not shown) that rotates the platen at thirty to two hundred revolutions per minute, although lower or higher rotational speeds may be used. Assuming that substrate


10


is an “eight-inch” (200 mm) diameter disk, the rectangular platen


100


may be about twenty inches on a side, and the circular platens


30


and polishing pads


32


and


34


may be about thirty inches in diameter.




Each polishing station


25




a


,


25




b


and


25




c


also includes a combined slurry/rinse arm


52


that projects over the associated polishing surface. Each slurry/rinse arm


52


may include two or more slurry supply tubes to provide a polishing liquid, slurry, or cleaning liquid to the surface of the polishing pad. For example, the polishing liquid dispensed onto a fixed-abrasive polishing sheet or a final polishing pad typically does not include abrasive particles, whereas a slurry dispensed onto a standard polishing pad typically includes abrasive particles. Typically, sufficient liquid is provided to cover and wet the entire polishing pad. Each slurry/rinse arm also includes several spray nozzles (not shown) which provide a high-pressure rinse at the end of each polishing and conditioning cycle.




The polishing stations that include a standard polishing pad, i.e., the second and final polishing stations


25




b


and


25




c


, may include an optional associated pad conditioner apparatus


40


. The polishing stations that include a fixed-abrasive polishing pad, i.e., the first polishing station


25




a


, may include an optional unillustrated cleaning apparatus to remove grit or polishing debris from the surface of the polishing sheet. The cleaning apparatus may include a rotatable brush to sweep the surface of the polishing sheet and/or a nozzle to spray a pressurized cleaning liquid, e.g., deionized water, onto the surface of the polishing sheet. The cleaning apparatus can be operated continuously, or between polishing operations. In addition, the cleaning apparatus could be stationary, or it could sweep across the surface of the polishing sheet. In addition, optional cleaning stations


45


may be positioned between adjacent polishing stations and between the polishing stations and the transfer station


27


to clean the substrate as it moves between the stations.




A rotatable multi-head carousel


60


is supported above the polishing stations by a center post


62


and is rotated about a carousel axis


64


by a carousel motor assembly. The carousel


60


includes four carrier head systems mounted on a carousel support plate


66


at equal angular intervals about carousel axis


64


. Three of the carrier head systems receive and hold substrates, and polish them by pressing them against the polishing sheet of the first station


25




a


and the polishing pads of the second and final stations


25




b


and


25




c


. One of the carrier head systems receives a substrate from and delivers a substrate to the transfer station


27


.




Each carrier head system includes a carrier or carrier head


80


. A carrier drive shaft


78


connects a carrier head rotation motor


76


(shown by the removal of one quarter of the carousel cover) to the carrier head


80


so that each carrier head can independently rotate about its own axis. In addition, each carrier head


80


independently laterally oscillates in a radial slot


72


formed in the carousel support plate


66


.




The carrier head


80


performs several mechanical functions. Generally, the carrier head holds the substrate against the polishing surface, evenly distributes a downward pressure across the back surface of the substrate, transfers torque from the drive shaft to the substrate, and ensures that the substrate does not slip out from beneath the carrier head during polishing operations. Descriptions of a suitable carrier head may be found in U.S. Pat. No. 6,183,354, and in U.S. patent application Ser. No. 09/470,820, filed Dec. 23, 1999, the disclosures of which are incorporated herein by reference.




Referring to

FIGS. 3A

,


3


B, and


3


C, the polishing cartridge


102


is detachably secured to the rectangular platen


100


at the first polishing station


25




a


. The polishing cartridge


102


includes a feed roller


130


, a take-up roller


132


, and a generally linear sheet or belt


110


of a polishing pad material. An unused or “fresh” portion


120


of the polishing sheet


110


is wrapped around the feed roller


130


, and a used portion


122


of the polishing sheet


110


is wrapped around the take-up roller


132


. A rectangular exposed portion


124


of the polishing sheet that is used to polish substrates extends between the used and unused portions


120


,


122


over a top surface


140


of the rectangular platen


100


. The polishing sheet may be a fixed-abrasive polishing material, such as a polyester belt that carries silicon oxide abrasive particles, available from 3M Corporation of Minneapolis, Minn. A transparent strip


118


can be formed along the length of the polishing sheet


110


by excluding abrasive particles from this region of the containment media. The transparent strip can be aligned with an aperture or transparent window


154


in rectangular platen


100


to provide optical monitoring of the substrate surface for end point detection.




The rectangular platen


100


can be rotated (as shown by phantom arrow “A” in

FIG. 3A

) to rotate the exposed portion of the polishing sheet and thereby provide relative motion between the substrate and the polishing sheet during polishing. Between polishing operations, the polishing sheet can be advanced (as shown by phantom arrow “B” in

FIG. 3A

) to expose an unused portion of the polishing sheet. When the polishing material advances, polishing sheet


110


unwraps from feed roller


130


, moves across the top surface of the rectangular platen, and is taken up by take-up roller


132


.




The feed and take-up rollers


130


and


132


should be slightly longer than the width of polishing sheet


110


. The rollers


130


,


132


may be plastic or metal cylinders about 20″ long and about 2″ in diameter. In addition, both end faces


136


of each roller may be chamfered to prevent polishing sheet


110


from slipping laterally.




Still referring to

FIGS. 3A

,


3


B and


3


C, rectangular platen


100


includes a generally planar rectangular top surface


140


bounded by a feed edge


142


, a take-up edge


144


, and two parallel lateral edges


146


. A groove


150


(shown in phantom in

FIGS. 3A and 3C

) is formed in the top surface


140


. The groove


150


may be a generally-rectangular pattern that extends along the edges


142


-


146


of the top surface


140


. A passage


152


(see

FIG. 5

) through the platen


100


connects the groove


150


to a vacuum source. When the passage


152


is evacuated, the exposed portion


124


of the polishing sheet


110


is vacuum-chucked to the top surface


140


of the platen


100


. This vacuum-chucking helps ensure that lateral forces caused by friction between the substrate and the polishing sheet during polishing do not force the polishing sheet off the platen. A central region


148


of the top surface


140


is free from grooves to prevent potential deflection of the polishing sheet into the grooves from interfering with the polishing uniformity.




As illustrated by

FIGS. 3B

,


3


C and


4


, the rectangular platen


100


includes two rollers


160


and


162


positioned at the feed edge


142


and take-up edge


144


of the rectangular top surface


140


, respectively. A first door


170


is pivotally attached to the feed side of the platen


100


to form a cavity


172


into which the feed roller


130


can be inserted. Similarly, a second first door


174


(shown in phantom in

FIG. 3B

) is pivotally attached to the take-up side of the platen


100


to form a cavity


176


into which the take-up roller


132


can be inserted. When the feed roller


130


and take-up roller


132


are inserted into place, the polishing sheet


110


extends through a slot between the bottom of the first door


170


and the platen


100


, upwardly around the first roller


160


, across the rectangular top surface


140


, around the second roller


162


, and through a slot between the bottom of the second door


174


and the platen.




A pneumatic cylinder


180


connects the first door


170


to the platen


100


to pivot the first door


170


inwardly or outwardly, as shown by arrow C. When the feed roller


130


is inserted into the cavity


172


, it engages an adjustable slip clutch


182


. Similarly, when the take-up roller


132


is inserted into the cavity


176


, it engages a one-way overrunning clutch


184


. The adjustable slip clutch


182


and one-way overrunning clutch


184


are illustrated schematically and in phantom. The adjustable slip clutch


182


prevents the feed roller


130


from rotating to advance the polishing sheet


110


unless the applied force is greater than some threshold force. In addition, the slip clutch


182


prevents the feed roller


130


from rotating “backwards”, i.e., to rewind the polishing sheet onto the feed roller


130


. The one-way overrunning clutch


184


can be a pneumatic motor that provides a constant rotary force to the take-up roller


132


. The pneumatic motor may be powered by a pneumatic control line


154


. This torque rotates the take-up roller


132


in a direction that winds the polishing sheet


110


onto the take-up roller


132


. However, the rotary force applied by the overruning clutch


184


is not sufficient to overcome the slip clutch


182


. Thus, the one-way overruning clutch


184


and adjustable slip clutch


182


maintain the polishing sheet


110


in a state of tension with the exposed portion of the polishing sheet


110


stretched across the top surface of the platen


100


.




A compressible backing pad


102


may be placed on the top surface of the platen to cushion the impact of the substrate against the polishing sheet. In addition, platen


100


may include an unillustrated shim plate. Shim plates of differing thickness may be attached to the platen to adjust the vertical position of the top surface of platen. The compressible backing pad can be attached to the shim plate.




In operation, the exposed portion


124


of the polishing sheet


110


is vacuum-chucked to the rectangular platen


100


by applying a vacuum to the passage


152


. A substrate is lowered into contact with the polishing sheet


110


by the carrier head


80


, and both the platen


100


and the carrier head


80


rotate to polish the exposed surface of the substrate. After polishing, the substrate is lifted off the polishing sheet


110


by the carrier head


80


. With the vacuum on passage


152


still active, the pneumatic cylinder


180


pushes the first pivoting door


170


outwardly by a predetermined distance. Since the outward force from the pneumatic cylinder


180


overcomes the adjustable slip clutch


182


, the feed roller


130


can rotate to play out segment of the polishing sheet


110


. Then the pneumatic cylinder


180


pulls the first door inwardly, leaving slack in the polishing sheet


110


between the feed roller


130


and the top surface


124


of the platen


100


. The vacuum on the passage


152


is removed to release the vacuum pulldown that holds the polishing sheet


110


on the platen. In addition, a fluid (such as air) can be forced through the passage


152


and the groove


150


to create a fluid bearing between the polishing sheet


110


and the top surface


124


of the platen


100


and reduce the friction therebetween. While the polishing sheet is free to move, the torque from the one-way overruning clutch


184


rotates the take-up roller


32


and winds the polishing sheet


110


until it is pulled taught over the platen


100


. This advances a fresh segment of the polishing sheet onto the top surface


124


of the platen. However, as previously noted, the rotary force applied by the overruning clutch


184


is not sufficient to overcome the slip clutch


182


. Thus, the polishing sheet


110


advances only by the amount played out when the pneumatic actuator


180


pushed out the first door


170


. Vacuum is reapplied to the passage


152


to vacuum-chuck the polishing sheet


110


to the rectangular platen


100


, and a new substrate is lowered into contact with the polishing sheet. Thus, between each polishing operation, the polishing sheet may be advanced incrementally. If the polishing station includes a cleaning apparatus, the polishing sheet may be washed between each polishing operation.




The amount that the sheet may be advanced will depend on the desired polishing uniformity and the properties of the polishing sheet, but should be on the order of 0.05 to 1.0 inches, e.g., 0.4 inch, per polishing operation. Assuming that the exposed portion


124


of polishing sheet is 20 inches long and the polishing sheet advances 0.4 inches after each polishing operation, the entire exposed portion of the polishing sheet will be replaced after about fifty polishing operations.




It should be noted that in an advancing mechanism that operates by rotating one of the rollers through a fixed angle, the length of polishing sheet played out varies. For example, if the polishing sheet was advanced by rotating the take-up roller through a fixed angle, the distance that the polishing sheet advances each operation would gradually increase (because the effective radius and circumference of the polishing sheet on the take-up roller increases as the polishing sheet accumulates on the take-up roller). In such a polishing device, the polishing rate may not be uniform, because the amount of fresh polishing sheet exposed changes from substrate to substrate. In contrast, an advantage of the polishing sheet advancing mechanism of polishing apparatus


20


is that a fixed length of the polishing sheet


110


is played out at each operation, independent of the amount of the polishing sheet remaining on the rollers


130


and


132


. By playing out a fixed length of the polishing sheet


110


at each operation, polishing uniformity can be improved.




Although the implementation described above uses a door that swings through a set distance, a variety of implementations are possible for the mechanism that plays out the fixed length of the polishing sheet. Some part of the platen other than the door could be actuated. In addition, instead of pivoting, the mechanism could be linearly actuated. For example, a pneumatic actuator could push a bar or plate on the top surface of the platen upwardly by a fixed distance, thereby playing out a fixed length of the polishing sheet.




Although the CMP apparatus is described a vacuum chucking the polishing sheet to the platen, other techniques could be used to secure the polishing sheet to the platen during polishing. For example, the edges of the polishing sheet could be clamped to the sides of the platen by a set of clamps.




In addition, although the CMP apparatus is described as having one rectangular platen with a fixed-abrasive polishing sheet and two circular platens with standard polishing pads, other configurations are possible. For example, the apparatus can include one, two or three rectangular platens. In fact, one advantage of CMP apparatus


20


is that each platen base


170


is adaptable to receive either a rectangular platen or a circular platen. The polishing sheet on each rectangular platen may be a fixed abrasive or a non-fixed abrasive polishing material. Similarly, each polishing pad on the circular platen can be a fixed-abrasive or a non-fixed abrasive polishing material. The standard polishing pads can have a single hard layer (e.g., IC-1000), a single soft layer (e.g., as in a Polytex pad), or two stacked layers (e.g., as in a combined IC-10000/SUBA IV polishing pad). Different slurries and different polishing parameters, e.g., carrier head rotation rate, platen rotation rate, carrier head pressure, can be used at the different polishing stations.




The invention is not limited to the embodiment depicted and described. Rather, the scope of the invention is defined by the appended claims.



Claims
  • 1. A chemical mechanical polishing apparatus, comprising:a rotatable platen; a generally linear polishing sheet releasably secured to the platen to rotate with the platen, the polishing sheet having an exposed portion extending over a top surface of the platen for polishing the substrate, an unused portion wound around a feed roller, and a used portion wound around a take-up roller; and a drive mechanism to incrementally advance the polishing sheet in a linear direction across the top surface of the platen by playing out a fixed length of the polishing sheet from the feed roller each time the drive mechanism advances the polishing sheet.
  • 2. The apparatus of claim 1, wherein the drive mechanism includes a rigid frame that is actuated to push the polishing sheet by a fixed distance.
  • 3. The apparatus of claim 2, further comprising an enclosure to receive the feed roller, and wherein the rigid frame comprises a door to the enclosure.
  • 4. The apparatus of claim 3, wherein the door is pivotally attached to the platen.
  • 5. The apparatus of claim 3, wherein the drive mechanism includes a pneumatic actuator to push the door by a fixed distance.
  • 6. The apparatus of claim 2, wherein the drive mechanism includes a motor that applies a constant torque to the take-up roller.
  • 7. The apparatus of claim 6, wherein the drive mechanism includes a slip clutch that prevents the feed roller from rotating unless the polishing sheet is pulled with a first force that is greater than a second force applied by the motor.
  • 8. The apparatus of claim 7, wherein the drive mechanism includes a pneumatic actuator to push the rigid frame with a third force which is greater than the first force.
  • 9. The apparatus of claim 1, further comprising a channel in the platen to vacuum-chuck the polishing sheet to the platen.
  • 10. A method of advancing a generally linear polishing sheet in a chemical mechanical polishing apparatus, comprising:positioning a first portion of the generally linear polishing sheet to extend over a top surface of a rotatable platen, the polishing sheet including a second portion wound around a feed roller and a third portion wound around a take-up roller; actuating a rigid frame to push on the polishing sheet between the feed roller and the take-up roller, thereby generating slack in the polishing sheet; and applying a torque to the take-up roller while holding the feed roller fixed to make the first portion of the polishing sheet taught.
  • 11. The method of claim 10, further comprising releasably securing at least a section of the first portion of the polishing sheet to the platen before actuating the rigid frame.
  • 12. The method of claim 11, wherein the rigid frame pushes on a part of the polishing sheet located between the section of the polishing sheet secured to the platen and the feed roller, thereby generating slack in the part of the polishing sheet.
  • 13. The method of claim 10, further comprising releasing the section of the polishing sheet after actuating the rigid frame.
  • 14. The method of claim 10, wherein the rigid frame is actuated by a fixed distance.
  • 15. A method of chemical mechanical polishing, comprising:bringing a substrate into contact with a generally linear polishing sheet that extends over a top surface of a rotatable platen, the polishing sheet including an unused portion wound around a feed roller and a used portion wound around a take-up roller; releasably securing the polishing sheet to the platen; rotating the platen to rotate the polishing sheet and create relative motion between the substrate and the polishing sheet; releasing the polishing sheet from the platen; and incrementally advancing the polishing sheet in a linear direction across the top surface of the platen by playing out a fixed length of the polishing sheet from the feed roller each time the drive mechanism advances the polishing sheet.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to Provisional U.S. Application Ser. No. 60/217,249, filed Jul. 10, 2000, the entirety of which is incorporated by reference.

US Referenced Citations (28)
Number Name Date Kind
4347689 Hammond Sep 1982 A
4642943 Taylor, Jr. Feb 1987 A
5065547 Shimizu et al. Nov 1991 A
5088240 Ruble et al. Feb 1992 A
5099615 Ruble et al. Mar 1992 A
5209027 Ishida et al. May 1993 A
5276999 Bando Jan 1994 A
5335453 Baldy et al. Aug 1994 A
5399125 Dozier Mar 1995 A
5476413 Hasegawa et al. Dec 1995 A
5487697 Jensen Jan 1996 A
5490808 Jantschek et al. Feb 1996 A
5558568 Talieh et al. Sep 1996 A
5593344 Weldon et al. Jan 1997 A
5660581 Shin et al. Aug 1997 A
5676590 Hiraoka Oct 1997 A
5692947 Talieh et al. Dec 1997 A
5704827 Nishi et al. Jan 1998 A
5722877 Meyer et al. Mar 1998 A
5762536 Pant et al. Jun 1998 A
5800248 Pant et al. Sep 1998 A
5871390 Pant et al. Feb 1999 A
5897426 Somekh Apr 1999 A
5899801 Tolles et al. May 1999 A
5997384 Blalock Dec 1999 A
6068542 Hosokai May 2000 A
6244935 Birang et al. Jun 2001 B1
6419559 Gurusamy et al. Jul 2002 B1
Foreign Referenced Citations (6)
Number Date Country
0 756 917 Feb 1997 EP
0 818 272 Jan 1998 EP
62-162466 Jul 1987 JP
2-269553 Nov 1990 JP
4-250967 Sep 1992 JP
7-111256 Apr 1995 JP
Provisional Applications (1)
Number Date Country
60/217249 Jul 2000 US