Apparatus and methods for debugging on a host and memory device

Information

  • Patent Grant
  • 11074988
  • Patent Number
    11,074,988
  • Date Filed
    Tuesday, August 6, 2019
    5 years ago
  • Date Issued
    Tuesday, July 27, 2021
    3 years ago
Abstract
Apparatus and methods for debugging on a host and memory device include an example apparatus comprising a memory device having an array of memory cells. Sensing circuitry is coupled to the array. The sensing circuitry includes a sense amplifier and a compute component configured to perform logical operations on the memory device. A controller is coupled to the array and sensing circuitry, the controller is configured to control performance of the logical operations. An interface is configured to receive a debugging indication and to cause the controller to halt a logical operation on the memory device.
Description
TECHNICAL FIELD

The present disclosure relates generally to semiconductor memory and methods, and more particularly, to apparatus and methods for debugging on a host and memory device.


BACKGROUND

Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other electronic systems. There are many different types of memory including volatile and non-volatile memory. Volatile memory can require power to maintain its data (e.g., host data, error data, etc.) and includes random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), synchronous dynamic random access memory (SDRAM), and thyristor random access memory (TRAM), among others. Non-volatile memory can provide persistent data by retaining stored data when not powered and can include NAND flash memory, NOR flash memory, and resistance variable memory such as phase change random access memory (PCRAM), resistive random access memory (RRAM), and magnetoresistive random access memory (MRAM), such as spin torque transfer random access memory (STT RAM), among others.


Computing systems often include a number of processing resources (e.g., one or more processors), which may retrieve and execute instructions and store the results of the executed instructions to a suitable location. A processing resource can comprise a number of functional units such as arithmetic logic unit (ALU) circuitry, floating point unit (FPU) circuitry, and/or a combinatorial logic block, for example, which can be used to execute instructions by performing logical operations such as AND, OR, NOT, NAND, NOR, and XOR, and invert (e.g., inversion) logical operations on data (e.g., one or more operands). For example, functional unit circuitry may be used to perform arithmetic operations such as addition, subtraction, multiplication, and/or division on operands via a number of logical operations.


A number of components in a computing system may be involved in providing instructions to the functional unit circuitry for execution. The instructions may be executed, for instance, by a processing resource such as a controller and/or host processor. Data (e.g., the operands on which the instructions will be executed) may be stored in a memory array that is accessible by the functional unit circuitry. The instructions and/or data may be retrieved from the memory array and sequenced and/or buffered before the functional unit circuitry begins to execute instructions on the data. Furthermore, as different types of operations may be executed in one or multiple clock cycles through the functional unit circuitry, intermediate results of the instructions and/or data may also be sequenced and/or buffered.


In many instances, the processing resources (e.g., processor and/or associated functional unit circuitry may be external to the memory array, and data is accessed via a bus between the processing resources and the memory array to execute a set of instructions. Processing performance may be improved in a processing in memory device, in which a processor may be implemented internal and/or near to a memory (e.g., directly on a same chip as the memory array). A processing in memory device may save time by reducing and/or eliminating external communications and may also conserve power.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a block diagram of an apparatus in the form of an computing system including a memory device in accordance with a number of embodiments of the present disclosure.



FIG. 1B is another block diagram of an apparatus in the form of an computing system including a memory device in accordance with a number of embodiments of the present disclosure.



FIG. 1C is a block diagram of a memory device in accordance with a number of embodiments of the present disclosure.



FIG. 1D is a block diagram of a bank to a memory device in accordance with a number of embodiments of the present disclosure.



FIG. 1E illustrates microcode instructions may be compiled and retrieved to load to a plurality of locations in the memory device and may be operated upon by a controller to perform debugging on the memory device in accordance with a number of embodiments of the present disclosure.



FIG. 1F illustrates one or more microcode instructions including an indication to a controller to halt an operation in association with a microcode instruction and conduct a debugging routine.



FIG. 2 is a schematic diagram illustrating sensing circuitry to a memory device in accordance with a number of embodiments of the present disclosure.



FIG. 3 is a schematic diagram illustrating sensing circuitry to a memory device in accordance with a number of embodiments of the present disclosure.



FIG. 4 is a logic table illustrating selectable logic operation results implemented by a sensing circuitry shown in FIG. 3 in accordance with a number of embodiments of the present disclosure.





DETAILED DESCRIPTION

The present disclosure includes apparatuses and methods for debugging on a host and memory device. In one embodiment, the apparatus comprises a memory device, e.g., processing in memory (PIM) device, having an array of memory cells and sensing circuitry coupled to the array. The sensing circuitry comprises a sense amplifier and a compute component and is configured to perform logical operations. A controller is coupled to the array and sensing circuitry. The controller can cause the memory device to execute instructions to perform logical operations using the sensing circuity. The apparatus further includes an interface that is configured to receive a debugging indication and to cause the controller to halt a logical operation on the memory device.


In some embodiments, the controller is configured to detect one or more debug bits stored in microcode instructions on the memory device, e.g., PIM device. The one or more debug bits may be set in microcode instructions by one or more registers after the microcode instructions have been stored to a memory array, e.g., random access memory (RAM) in the memory device. The one or more registers can be associated with the interface and may be configured to cause the one or more debug bits to be set in microcode instructions upon receipt of a debugging indication to the interface. The indication may be provided concurrently to the memory device and a host in order to correlate debugging instructions on the memory device and the host.


Typically, debugging an executable program may be performed on a host using software and/or hardware. For example, a breakpoint to halt an executing program, and run a debugging routine thereon, may be embedded in the executable program itself and/or controlled by particular hardware. A debugging software routine may then step through to test the instructions of the executable program to verify the executable program's operation, expected function and results for accuracy. When an executable program is written by a programmer it is then compiled and afterwards a debugging routine may be run on the compiled executable program while it is run on a host. Hence a host may traditionally be used to debug a program in one of two ways: one, by setting a breakpoint in software to halt and start the debugging routine; and/or second, by using more complex hardware to provide a breakpoint to halt an executing program.


Operations on certain devices may be controlled by executing microcode instructions. For example, in a processing in memory (PIM) device, microcode may be used and executed thereon by a reduced instruction set computer (RISC) type processing resource, e.g., controller. A RISC type processing resource is one example of a processing resource which operates on a reduced bit length instruction, e.g., a 32 or 64 bit length instruction. Thus, as used herein, microcode instructions are intended to include a 32 or 64 bit length instruction. Alternatively, microcode instructions may include other bit length instructions executing on a device, e.g., bit vector operation capable device, in which an instruction bit length is different than an instruction bit length being used with executable programs running on a host coupled thereto.


If a debugging routine is run on a host while microcode instructions are executing on a memory device, the host processor may not be able to halt the executing microcode instructions on the memory device. For example, software and/or hardware associated with the host may have no way of providing a breakpoint, e.g., interrupt, to halt microcode instructions on another device or even to signal to another device, e.g., a memory device, that a debugging routine is to be run on the host. Typical debugging systems on modern computers are isolated to assembly language or higher level languages using on-chip or off-chip breakpoints. Such high level debugging concepts do not apply well to debugging microcode instructions.


Therefore, according to various embodiments apparatus and methods are provided that may correlate instructions executing on a host processing resource with microcode instructions executing on another device, e.g., PIM device. In this manner, a system may concurrently debug instructions executing on a host with microcode instructions executing on another device. For example, a user (e.g., programmer, developer, etc.) may be able to perform the same debug operations, e.g., debugging routine, on a memory device executing microcode instructions as performed on the host processing resource. The debug operation may be performed concurrently for a host coupled to a memory device. In one or more embodiments, this is achieved by providing an interface to the memory device that correlates to a debugging interface used by the host processing resource.


Additionally, embodiments of the present disclosure enable a device executing, e.g., running, microcode instructions, such as a PIM capable device, to perform a debugging routine on the microcode instructions directly on the device itself, separate from using a host processing resource to conduct and coordinate a debugging routine. In one example embodiment a controller is configured to detect an indication contained within executing microcode instructions that indicates an operation being performed by the executing microcode instructions should be halted and a debugging routine executed.


The description provided herein will follow an example embodiment of microcode instructions executing on a memory device, e.g., a PIM capable device. The PIM capable device may be a bit vector operation capable memory device having an array of memory cells. In one example embodiment, the array of memory cells may be a random access memory (RAM). One example of a RAM memory includes dynamic random access memory (DRAM). Hence, examples herein may be discussed in relation to a PIM DRAM device. However, embodiments are not limited to the example use with a PIM device, PIM RAM, and/or PIM DRAM device.


As used herein, the term “bit vector” is intended to mean a physically contiguous number of bits. The physically contiguous number of bits may exist, e.g., be stored, on a bit vector operation capable memory device, e.g., PIM device, whether physically contiguous in rows (e.g., horizontally oriented) or physically contiguous in columns (e.g., vertically oriented) in an array of memory cells on the bit vector memory device. As used herein a “bit vector operation” is intended to mean an operation that is performed on a bit vector. The bit vector may be a contiguous portion (also referred to as “chunk”) of virtual address space. A chunk may or may not be contiguous physically to other chunks in the virtual address space.


In one memory device example, microcode instructions to perform various operations can be received to a PIM memory device and stored in an array of memory cells on the PIM memory device. The PIM device may be a bit vector operation capable memory device. A controller on the memory device can be configured to cause the memory device to execute instructions, e.g., execute microcode instructions, to control the memory device operation. In some embodiments, a controller is provided that is configured to cause the memory device to perform a logical operation using sensing circuitry having a sense amplifier and a compute component.


According to embodiments, the controller may receive the microcode instructions from a host and store the microcode instructions for particular operations to a particular memory location on the PIM device. The microcode instructions received to the PIM device can include debugging instructions (also referred to as debugging code) for performing a debugging routine, e.g., operation, on microcode instructions. In some embodiments, the debugging instructions may be contained with the microcode instructions. The microcode instructions may similarly be stored to a particular memory location on the PIM device with other microcode instructions.


According to some embodiments, an indication to signal to the controller to halt, e.g., stop, operations and to begin to execute debugging code on microcode instructions on the memory device may be placed within the microcode instructions themselves. For example, the indication may be in the form of one or more bits contained within the microcode instructions. In one example, the one or more bits may be set by a programmer and/or a host processor and received to and stored with the microcode instructions in a memory location on the PIM device.


In additional example embodiments, an interface is provided such that a PIM device, e.g., bit vector operation capable memory device, may receive the same debugging instructions as are received to a host processing resource. In some embodiments, the interface is provided via a high speed interface (HSI) that is coupled to one or more registers, e.g., memory mapped registers, and that is coupled to an out of bound bus, a data bus and an address and control bus for the PIM device. In this example, the out of bound bus may be separate from the data bus and the address and control bus. In various embodiments, the one or more registers may control setting the one or more bits for the indication and/or the debugging instructions contained within the microcode instructions.


The one or more bits may be set to signal the indication, e.g. a breakpoint indication, and/or set to provide information for particular debugging instructions to the controller within the microcode instructions. For example, the one or more bits may be set to signal to the controller to halt microcode instructions in connection with a particular operation and/or provide particular debugging instructions. Again, the controller can be configured to control the execution of the microcode instructions for various operations on the PIM device. In this manner, the controller can be configured to receive an indication and/or debugging instructions, e.g., as set by the registers, in association with executing microcode instructions on the PIM device. The indication and/or debugging instructions may cause the controller to halt an operation associated with the microcode instructions when the controller detects the one or more bits set in a particular manner in the microcode instructions. The indication and/or debugging instructions may further cause the controller to perform a debugging routine on a particular operation in the microcode instructions on the PIM device and in a manner that is concurrent with performing a debugging routine on a host. In the PIM device example, the one or more bits may be set in association with a multiply operation, an add operation, or more specifically with an OR logical operation, etc., as defined by the microcode instructions to a PIM device, e.g., a bit vector operation capable memory device.


Hence, embodiments of the present disclosure provide apparatus and methods useful to enable debugging actual microcode operations within a memory device concurrently with debugging instructions executing separately on a host. Since microcode may exist as a series of device microcode instructions and since the microcode instructions are updateable, apparatus and methods embodiments are provided to debug a particular microcode instruction individually and/or multiple instructions concurrently.


In one example, one or more bits, e.g., “debug” bits, may be used, in the microcode itself, to designate if a certain operation will cause the controller to halt, e.g., stop, pause, etc., a particular microcode operation and may involve a user, e.g., designer, developer, programmer, etc., to step over the halt to continue the execution of the microcode operation. One or more “debug” bits can be present within one or within multiple microcode instructions. In normal microcode instruction execution, no debug bit set may be set in association with any microcode instruction operation. In the development environment, one or more debug bits can be set programmatically in advance or set in the download of the microcode sequence. Alternatively, in field use, the one or more debug bits can be set using registers, described according to embodiments herein, which are configured to cause one or more debug bits to be set in microcode instructions upon receipt of a debugging indication to an interface of a memory device, concurrent with a debugging routine sent to a host.


In one example embodiment, the one or more bits are set using the interface, e.g., HSI, and one or more registers to provide the same debug interface to a memory device as to a host. In some embodiments, the one or more registers are configured to set the one or more bits to provide the indication and/or debugging instructions contained within the microcode instructions.


The controller is configured such that if it identifies that a debug bit is set it halts the microcode instruction operation. For example, a program counter associated with the controller may stop and new microcode instructions will not be allowed to execute. In some embodiments, the one or more bits may be set using the interface and one or more registers to stop the program counter when the program counter reaches a certain value. A user, e.g., designer, developer, programmer, etc., may then have to act to manually restart/resume the microcode instruction execution sequence.


For example, a user may manually remove one or more debug bits, e.g., breakout indications (also referred to as “breakout points”), set other register values to provide indications and/or debugging instructions through the interface, e.g., HSI, insert new “debug” bits into microcode instructions using the interface and one or more registers, examine particular registers, execute a single microcode instruction at a time by enabling a “debug” bit in association with all microcode instructions, and/or examine a microcode instruction state stored on a particular PIM device. Alternatively, such actions may be contained in and/or performed by debugging code stored with the microcode instructions on the PIM device.


In some example PIM device embodiments, the apparatus and methods include an efficient method for providing a large number of microcode instructions, with arguments, to an array of memory cells on the PIM device and for routing those microcode instructions to a controller, e.g., an embedded processing engine, of the PIM device with low latency, while preserving the protocol, logical, and electrical interfaces for the array of memory cells. Hence, embodiments described herein may facilitate keeping an address and control bus at a standard width and data rate, reducing any amount of “special” design for the PIM device and also making the PIM device more compatible with existing memory interfaces in a variety of computing devices.


Additionally, the embodiments described herein may allow the host system to provide a large block of instructions, including debugging instructions, to a memory device at the beginning of an operation, significantly reducing, or completely eliminating, the interruptions in instruction execution to transfer more instructions to the memory device. Previous compromises in the memory device design and control flow for the controller to an array included significant increases in the I/O used on the memory device. The increase in the I/O used would increase the fraction of non-productive space on the memory device, increase the floor planning and noise containment complications, and increase the power dissipation on the memory device without adding additional computing performance. Other previous compromises included using relatively large, special purpose memory regions on the memory device to store instructions. Such special purpose memory regions may still not be large enough to hold the desired microcode instructions. Thus, an increase in contention for the I/O resources on the overall chip may remain and result in decreasing the effective speed of the memory device.


As described in more detail below, the embodiments can allow a host system to allocate a plurality of locations, e.g., sub-arrays (or “subarrays”) or portions of subarrays in a plurality of banks to hold instructions. The host system would perform the address resolution on an entire block of microcode instructions, e.g., PIM instructions, and write them into the allocated instruction locations, e.g., subarrays, with a target bank. Writing these commands may utilizes the normal write path to the memory device. After the instructions are written into the instruction storage locations, e.g., subarrays, the host system may direct the bank controller to start execution of an instructions block. In various embodiments, the controller will retrieve microcode instructions from the allocated instruction locations as necessary to handle the branches, loops, logical and data operations contained with the blocks of microcode instructions, caching the instructions and refilling an instruction cache as necessary.


In order to appreciate the improved methods and apparatus for implementing such methods, a discussion of a memory device having PIM capabilities, and associated host, follows. According to various embodiments, microcode instructions, e.g., PIM commands, for a memory device can be received to the memory device from a host and stored to an array of memory cells on the memory device. The array may be associated with sensing circuitry that can perform logical operations by executing the microcode instructions. Thus, microcode instructions may be executed on the memory device in less time, and using less power, than would be required if executing the microcode instructions on a separate host.


Thus, improved parallelism and/or reduced power consumption in association with performing compute functions as compared to previous systems such as previous PIM systems and systems having an external processor (e.g., a processing resource located external from a memory array, such as on a separate integrated circuit chip). For example, a number of embodiments can provide for performing fully complete compute functions such as integer add, subtract, multiply, divide, and CAM (content addressable memory) functions without transferring data out of the memory array and sensing circuitry via a bus (e.g., data bus, address bus, control bus, etc.). Such compute functions can involve performing a number of logical operations (e.g., logical functions such as AND, OR, NOT, NOR, NAND, XOR, etc.). However, embodiments are not limited to these examples. For instance, performing logical operations can include performing a number of non-Boolean logic operations such as copy, compare, destroy, etc.


In previous approaches, data may be transferred from the array and sensing circuitry (e.g., via a bus comprising input/output (I/O) lines) to a processing resource such as a processor, microprocessor, and/or compute engine, which may comprise ALU circuitry and/or other functional unit circuitry configured to perform the appropriate logical operations. However, transferring data from a memory array and sensing circuitry to such processing resource(s) can involve significant power consumption. Even if the processing resource is located on a same chip as the memory array, significant power can be consumed in moving data out of the array to the compute circuitry, which can involve performing a sense line (which may be referred to herein as a digit line or data line) address access (e.g., firing of a column decode signal) in order to transfer data from sense lines onto I/O lines (e.g., local I/O lines), moving the data to the array periphery, and providing the data to the compute function.


Furthermore, the circuitry of the processing resource(s) (e.g., compute engine) may not conform to pitch rules associated with a memory array. For example, the cells of a memory array may have a 4F2 or 6F2 cell size, where “F” is a feature size corresponding to the cells. As such, the devices (e.g., logic gates) associated with ALU circuitry of previous PIM systems may not be capable of being formed on pitch with the memory cells, which can affect chip size and/or memory density, for example. A number of embodiments of the present disclosure include sensing circuitry formed on pitch with an array of memory cells and capable of performing compute functions such as gather and scatter operations local to the array of memory cells.


In the following detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure. As used herein, designators such as “N”, “M”, etc., particularly with respect to reference numerals in the drawings, indicate that a number of the particular feature so designated can be included. As used herein, “a number of” a particular thing can refer to one or more of such things (e.g., a number of memory arrays can refer to one or more memory arrays). A “plurality of” is intended to refer to more than one of such things.


The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 206 may reference element “06” in FIG. 2, and a similar element may be referenced as 606 in FIG. 6. As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. In addition, as will be appreciated, the proportion and the relative scale of the elements provided in the figures are intended to illustrate certain embodiments of the present invention, and should not be taken in a limiting sense.



FIGS. 1A and 1B are block diagrams of an apparatus in the form of a computing system 100 including a memory device 120 in accordance with a number of embodiments of the present disclosure. As used herein, a memory device 120, controller 140, channel controller 143, bank arbiter 145, interface 141 (e.g., high speed interface (HSI) to a memory bank 121, memory array 130, register 136, sensing circuitry 150, and/or logic circuitry 170 might also be separately considered an “apparatus.”


In FIG. 1A, the example system 100 includes a host 110 coupled (e.g., connected) to memory device 120, which includes a memory array 130. Host 110 can be a host system such as a personal laptop computer, a desktop computer, a digital camera, a smart phone, or a memory card reader, among various other types of hosts. Host 110 can include a system motherboard and/or backplane and can include a number of processing resources (e.g., one or more processors, microprocessors, or some other type of controlling circuitry). The system 100 can include separate integrated circuits or both the host 110 and the memory device 120 can be on the same integrated circuit. The system 100 can be, for instance, a server system and/or a high performance computing (HPC) system and/or a portion thereof. Although the example shown in FIGS. 1A and 1B illustrates a system having a Von Neumann architecture, embodiments of the present disclosure can be implemented in non-Von Neumann architectures, which may not include one or more components (e.g., CPU, ALU, etc.) often associated with a Von Neumann architecture.


For clarity, the system 100 has been simplified to focus on features with particular relevance to the present disclosure. The memory array 130 can be a DRAM array, SRAM array, STT RAM array, PCRAM array, TRAM array, RRAM array, NAND flash array, and/or NOR flash array, for instance. The array 130 can comprise memory cells arranged in rows coupled by access lines (which may be referred to herein as word lines or select lines) and columns coupled by sense lines, which may be referred to herein as data lines or digit lines. Although a single array 130 is shown in FIG. 1, embodiments are not so limited. For instance, memory device 120 may include a number of arrays 130 (e.g., a number of banks of DRAM cells, NAND flash cells, etc.).


The memory device 120 includes address circuitry 142 to latch address signals for data provided over a data bus 156 (e.g., an I/O bus) through I/O circuitry 144. Status and/or exception information can be provided from the memory controller 140 on the memory device 120 to a channel controller 143, including an out-of-band bus 157 (shown in FIG. 1B), which in turn can be provided from the memory device 120 to the host 110. Address signals are received through address circuitry 142 and decoded by a row decoder 146 and a column decoder 152 to access the memory array 130. Data can be read from memory array 130 by sensing voltage and/or current changes on the data lines using sensing circuitry 150. The sensing circuitry 150 can read and latch a page (e.g., row) of data from the memory array 130. The I/O circuitry 144 can be used for bi-directional data communication with host 110 over the data bus 156. The write circuitry 148 is used to write data to the memory array 130.


Registers 136 may include one or more separate registers, e.g., separate and/or in addition to other array control registers such as double data rate (DDR) registers to a DRAM array. The registers 136 may be coupled to an interface (e.g., 141 in FIG. 1B) of the memory device 120 to a host 110. The registers 136 may also be used to control the operation of an array 130 of the memory device 120, e.g., a DRAM array, and/or the controller 140. As such, the registers 136 may be coupled to the I/O circuitry 144 and/or controller 140. In various embodiments the registers 136 may be memory mapped I/O registers 136. The memory mapped I/O registers 136 can be mapped to a plurality of locations in memory where microcode instructions are stored. The memory mapped I/O registers 136 may thus be configured to set one or more debug bits in microcode instructions stored to the plurality of locations. In some embodiments, the registers 136 may include a block of static random access memory (SRAM) cells. Registers 136 may be coupled to DDR registers to further control the operation of a dynamic random access memory (DRAM) array. Embodiments are not limited to the examples given herein.


Controller 140 may decode signals provided by control bus 154 from the host 110. According to various embodiments, the controller 140 can be a reduced instruction set computer (RISC) type controller operating on 32 and/or 64 bit length instructions. These signals can include chip enable signals, write enable signals, and address latch signals that are used to control operations performed on the memory array 130, including data read, data write, and data erase operations. In various embodiments, the controller 140 is responsible for executing instructions from the host 110. The controller 140 can include firmware in the form of executable microcode instructions and/or hardware in the form of an application specific integrated circuit (ASIC) and transistor circuitry. In various embodiments the controller 140 can control shifting data (e.g., right or left) in an array 130.


Examples of the sensing circuitry 150 are described further below. For instance, in a number of embodiments, the sensing circuitry 150 can comprise a sense amplifier and a compute component, which may serve as, and be referred to herein as, an accumulator and can be used to perform logical operations (e.g., on data associated with complementary data lines).


In a number of embodiments, the sensing circuitry 150 can be used to perform logical operations using data stored in array 130 as inputs and store the results of the logical operations back to the array 130 without transferring data via a sense line address access (e.g., without firing a column decode signal). As such, various compute functions can be performed using, and within, sensing circuitry 150 rather than (or in association with) being performed by processing resources external to the sensing circuitry (e.g., by a processor associated with host 110 and/or other processing circuitry, such as ALU circuitry, located on device 120 (e.g., on controller 140 or elsewhere)).


In various previous approaches, data associated with an operand, for instance, would be read from memory via sensing circuitry and provided to external ALU circuitry via I/O lines (e.g., via local I/O lines and/or global I/O lines). The external ALU circuitry could include a number of registers and would perform compute functions using the operands, and the result would be transferred back to the array via the I/O lines. In contrast, in a number of embodiments of the present disclosure, sensing circuitry 150 is configured to perform logical operations on data stored in memory array 130 and store the result back to the memory array 130 without enabling an I/O line (e.g., a local I/O line) coupled to the sensing circuitry 150. The sensing circuitry 150 can be formed on pitch with the memory cells of the array 130. As used herein, the term “on pitch” is intended to mean the sensing circuitry is formed according to a same design rule, photolithographic and/or other semiconductor fabrication process as the array 130. Additional peripheral sense amplifiers, registers, cache and/or data buffering, e.g., logic circuitry 170, can be coupled to the sensing circuitry 150 and can be used to store, e.g., cache and/or buffer, results of operations described herein.


As such, in a number of embodiments, circuitry external to array 130 and sensing circuitry 150 is not needed to perform compute functions as the sensing circuitry 150 can perform the appropriate logical operations to perform such compute functions without the use of an external processing resource. Therefore, the sensing circuitry 150 may be used to compliment and/or to replace, at least to some extent, such an external processing resource (or at least the bandwidth consumption of such an external processing resource).


However, in a number of embodiments, the sensing circuitry 150 may be used to perform logical operations (e.g., to execute instructions) in addition to logical operations performed by an external processing resource (e.g., host 110). For instance, host 110 and/or sensing circuitry 150 may be limited to performing only certain logical operations and/or a certain number of logical operations.


Enabling an I/O line can include enabling (e.g., turning on) a transistor having a gate coupled to a decode signal (e.g., a column decode signal) and a source/drain coupled to the I/O line. However, embodiments are not limited to not enabling an I/O line. For instance, in a number of embodiments, the sensing circuitry (e.g., 150) can be used to perform logical operations without enabling column decode lines of the array; however, the local I/O line(s) may be enabled in order to transfer a result to a suitable location other than back to the array 130 (e.g., to an external register).



FIG. 1B is a block diagram of another apparatus architecture in the form of a computing system 100 including a plurality of memory devices 120-1, . . . , 120-N coupled to a host 110 via a channel controller 143 in accordance with a number of embodiments of the present disclosure. In at least one embodiment the channel controller 143 may be coupled to the plurality of memory devices 120-1, . . . , 120-N in an integrated manner in the form of a module 118, e.g., formed on same chip with the plurality of memory devices 120-1, . . . , 120-N. In an alternative embodiment, the channel controller 143 may be integrated with the host 110, as illustrated by dashed lines 111, e.g., formed on a separate chip from the plurality of memory devices 120-1, . . . , 120-N. The channel controller 143 can be coupled to each of the plurality of memory devices 120-1, . . . , 120-N via an address and control (A/C) bus 154 as described in FIG. 1A which in turn can be coupled to the host 110.


The channel controller 143 can also be coupled to each of the plurality of memory devices, 120-1, . . . , 120-N via a data bus 156 as described in FIG. 1A which in turn can be coupled to the host 110. In addition, the channel controller 143 can be coupled to each of the plurality of memory devices 120-1, . . . , 120-N via an out-of-bound (OOB) bus 157 associated with an interface 141 (e.g., high speed interface (HSI). As used herein, the term channel controller is intended to mean logic in the form of firmware (e.g., microcode instructions) and/or hardware (e.g., an application specific integrated circuit (ASIC)) to implement one or more particular functions. One example of a channel controller may include a state machine. Another example may include an embedded processing resource. The channel controller 143 includes logic to handle input/output (I/O) tasks to a device.


As shown in FIG. 1B, the channel controller 143 can receive the status and exception information from an interface 141 (e.g., HSI, also referred to herein as a status channel interface) associated with a bank arbiter 145 in each of the plurality of memory devices 120-1, . . . , 120-N. In various embodiments the interface 141 is configured to receive a debugging indication for one or move of the plurality of memory devices 120-1, . . . , 120-N from a host 110. In other embodiments, the interface 141 is configured to receive a debugging indication for one or more of the plurality of memory devices 120-1, . . . , 120-N from another debugging tool, e.g. third party debugging tool. The other debugging tool may be in the form of separate hardware, software, firmware or some combination thereof. In some embodiments the debugging indication may be received to a dedicated pin on the interface 141 associated with an out of bound (OOB) bus 157. In the example embodiment of FIG. 1B, the debugging indication may be received to the interface 141 from the host 110 via the channel controller 143.


In the example of FIG. 1B, each of the plurality of memory devices 120-1, . . . , 120-N can include a bank arbiter 145 to sequence control and data with a plurality of banks, e.g., Bank zero (0), Bank one (1), . . . , Bank six (6), Bank seven (7), etc. Each of the plurality of banks, Bank 0, . . . , Bank 7, can include a controller 140 and other components, including an array of memory cells 130 and sensing circuitry 150, logic circuitry 170, etc., as described in connection with FIG. 1A.


For example, each of the plurality of banks, e.g., Bank 0, . . . , Bank 7, in the plurality of memory devices 120-1, . . . , 120-N can include address circuitry 142 to latch address signals provided over a data bus 156 (e.g., an I/O bus) through I/O circuitry 144. Status and/or exception information can be provided from the controller 140 on the memory device 120 to the channel controller 143, using the OOB bus 157, which in turn can be provided from the plurality of memory devices 120-1, . . . , 120-N to the host 110 and vice versa. For example, in some example embodiments a debugging indication may be received as an exception to a controller 140 on the memory device from a host 110 via the channel controller 143 using the OOB bus 157.


For each of the plurality of banks, e.g., Bank 0, . . . , Bank 7, address signals can be received through address circuitry 142 and decoded by a row decoder 146 and a column decoder 152 to access the memory array 130. Data can be read from memory array 130 by sensing voltage and/or current changes on the data lines using sensing circuitry 150. The sensing circuitry 150 can read and latch a page (e.g., row) of data from the memory array 130. Each of the plurality of banks can further include registers 136 as shown in FIG. 1A configured to receive a debugging indication from a host 110. The I/O circuitry 144 can be used for bi-directional data communication with host 110 over the data bus 156. The write circuitry 148 is used to write data to the memory array 130 and the OOB bus 157 can be used to report status, exception and other data information to the channel controller 143.


The channel controller 143 can include one or more local buffers 161 to store an microcode instructions and can include logic 160 to allocate a plurality of locations, e.g., subarrays or portions of subarrays, in the arrays of each respective bank to store microcode instructions, e.g., bank commands and arguments, PIM commands, debugging instructions, etc., for the various banks associated with the operation of each of the plurality of memory devices 120-1, . . . , 120-N. The channel controller 143 can send microcode instructions, e.g., bank commands and arguments, PIM commands, status and exception information, debugging indications and/or debugging instructions, etc., to the plurality of memory devices 120-1, . . . , 120-N to store those microcode instructions within a given bank of a memory device. For example, the channel controller 143 and/or bank arbiter 145 may send one or more debugging indications and/or debugging instructions to registers 136 associated with arrays 130 of the plurality of banks 121-1, . . . , 121-7.


As described above in connection with FIG. 1A, the memory array 130 can be a DRAM array, SRAM array, STT RAM array, PCRAM array, TRAM array, RRAM array, NAND flash array, and/or NOR flash array, for instance. The array 130 can comprise memory cells arranged in rows coupled by access lines (which may be referred to herein as word lines or select lines) and columns coupled by sense lines, which may be referred to herein as data lines or digit lines.


As in FIG. 1A, a controller 140 associated with a particular bank, Bank 0, . . . , Bank 7, in a given memory device, 120-1, . . . , 120-N, may decode signals provided by control bus 154 from the host 110. These signals can include chip enable signals, write enable signals, debugging indication signals as described herein, and address latch signals that are used to control operations performed on the memory array 130, including data read, data write, and data erase operations. In various embodiments, the controller 140 is responsible for executing instructions from the host 110. And, as above, the controller 140 can be in the form of firmware and/or hardware.



FIG. 1C is a block diagram of at least a portion of a memory device in accordance with a number of embodiments of the present disclosure. The memory device shown in FIG. 1C may represent different detail to the memory device 120 shown in FIGS. 1A and 1B. As shown in FIG. 1C, an interface 141 (e.g., HSI) may be coupled to a bank arbiter 145 for the memory device 120. In various embodiments the interface 141 may be configured to receive a debugging indication from a host 110 and/or from another debugging tool, whether in the form of hardware, software, firmware or some combination thereof. In some embodiments the debugging indication may be received to one or more dedicated pins on the interface 141.


In the example embodiment of FIG. 1C, the debugging indication may be received to the interface 141 from the host 110 and/or from another debugging tool via a channel controller 143. The interface 141 may be coupled to a channel controller 143 via an address and control bus 154, data bus 156, and an out of band (OOB) bus 157 as described in FIGS. 1A and 1B. The bank arbiter 145 may be coupled to a plurality of banks 121-1, . . . , 121-7 (Bank 0-Bank 7) including arrays 130 and registers 136 as shown in FIGS. 1A and 1B.


In some embodiments, each bank in the plurality of banks 121-1, . . . , 121-7 (Bank 0-Bank 7) may be configured with a controller 140-1, . . . , 140-7. The controllers 140-1, . . . , 140-7 may represent the controllers shown in FIGS. 1A and 1B. According to the example embodiment shown in FIG. 1C, each controller 140-1, . . . , 140-7 may comprise a control logic 131-1, . . . , 131-7, a sequencer 132-1, . . . , 132-7, and timing circuitry (e.g., an atomic state machine (Atto)) 133-1, . . . , 133-7. In some embodiments the control logic 131-1, . . . , 131-7 may be responsible for fetching microcode instructions (e.g., extended protocol instruction set architecture (EPISA) machine instructions), from an array of memory cells, e.g., a DRAM array, in one or more banks of the plurality of banks 121-1, . . . , 121-7 (Bank 0-Bank 7). The control logic 131-1, . . . , 131-7 may decode the microcode instructions into function calls, e.g., microcode function calls (uCODE), implemented by the sequencers 132-1, . . . , 132-7.


The microcode function calls can be the operations that the sequencers 132-1, . . . , 132-7 receive and operate on to cause the memory device to perform particular logical operations. For example, the function calls may be received and operated on by the sequencers 132-1, . . . , 132-7 to cause the sensing circuitry 150 shown in FIG. 1A to perform a logical operation, e.g., addition, multiplication, or, as a more specific example, a Boolean such as an OR and/or XOR operation, etc. The logical operations may additionally comprise DRAM operations such as a read, write, copy, and/or erase operations, etc. The controllers 140-1, . . . , 140-7 may be coupled to sensing circuitry 150 and/or logic 170, including cache, buffers, sense amplifiers and/or registers, associated with arrays of memory cells via control lines and data paths 149/151, described more in connection with FIG. 1D. The sensing circuitry 150 and logic 170 can further be associated to the arrays of memory cells via data I/Os shown as 155-1, . . . , 155-7.


In some embodiments the sequencers 132-1, . . . , 132-7 may generate sequences of operation cycles for a DRAM array. For example, each sequence may be designed to perform operations, such as a Boolean logic operation (AND, OR, XOR, etc.), which together achieve a specific function, such as repetitively calculating the logic equations for a one (1) bit add in order to calculate a multiple bit sum. Each of these operations may be fed into a first in/first out (FIFO) buffer provided by the timing circuitry 133-1, . . . , 133-7 for execution using the sensing circuity 150 and/or logic 170 associated with the array of memory cells, e.g., DRAM arrays.


In the example embodiment shown in FIG. 1C the timing circuitry 133-1, . . . , 133-7, may provide timing and be responsible providing conflict free access to the arrays from four (4) FIFO queues. One FIFO queue may support array computation, one may be for Instruction fetch, one for microcode (e.g., Ucode) instruction fetch, and one for DRAM I/O. In various embodiments both the control logic 131-1, . . . , 131-7 and the sequencers 132-1, . . . , 132-7 can generate status information, which is routed back to the bank arbiter 145 via a FIFO interface. The bank arbiter 145 may aggregate this status data and report it back to a channel controller, such as 143 shown in FIG. 1B, via the interface 141.



FIG. 1D is a block diagram of a bank 121 to a memory device in accordance with a number of embodiments of the present disclosure. For example, bank 121 can represent an example bank to a memory device such one of the plurality of banks, Bank 0, . . . , Bank 7 (121-0, . . . , 121-7), shown in FIG. 1B. As shown in FIG. 1D, a bank architecture can include an additional address and control path 153 coupled the controller 140. The controller 140 shown in FIG. 1D can, for example, include at least a portion of the functionality described in connection with the controller 140 shown in FIGS. 1A, 1B and 1C. Also, as shown in FIG. 1D, a bank architecture can include an additional data path 155 coupled to a plurality of control/data registers 151 in an instruction (e.g., microcode instructions) and read path. The data path 155 may additionally be coupled to a plurality of bank sections, e.g., bank section 123, in a particular bank 121.


As shown in the example embodiment of FIG. 1D, a bank section 123 can be further subdivided into a plurality of subarrays 125-1, 125-2, . . . , 125-N and separated by of plurality of sensing circuitry and logic 150/170. An example embodiment, of such sensing circuitry 150 is described further in connection with FIGS. 2-4. In one example, a bank section 123 may be divided into sixteen (16) subarrays. However, embodiments are not limited to this example number.



FIG. 1D, illustrates an instruction cache 171 associated with the controller 140 and coupled to a write path 149 and coupled to each of the subarrays 125-1, . . . , 125-N in the bank section 123. Alternatively or additionally, logic circuitry 170 shown in FIG. 1A may be used as an instruction cache, e.g., used to cache and/or re-cache retrieved microcode instructions local (e.g., on-pitch) to a particular bank. In at least one embodiment, the plurality of subarrays 125-1, . . . , 125-N, and/or portions of the plurality of subarrays, may be referred to as a plurality of locations for storing microcode instructions, e.g., PIM commands, and/or constant data to an array 130, bank 121 and/or bank section 123 of a memory device 120.


According to embodiments of the present disclosure, the controller 140 shown in FIG. 1D, is configured to receive a block of instructions and/or constant data from a host, e.g., host 110 in FIG. 1A. Alternatively, the block of instructions and/or constant data may be received to the controller 140 from a channel controller 143 either integrated with the host 110 or separate from the host, e.g., integrated in the form of a module 118 with one or more of a plurality of memory devices, 120-1, . . . , 120-N, as shown in FIG. 1B.


The block of instructions and/or data can include a set of microcode instructions, e.g. PIM commands, and/or constant data, e.g., data to set up for PIM calculations. According to embodiments, the controller 140 is configured to store the block of instructions and/or constant data from the host 110 and/or channel controller 143 in a memory device 120, e.g., in array 130 shown in FIG. 1A, bank 121, bank section 123 and/or subarrays 125 shown in FIG. 1D. The controller 140 is further configured to receive and execute microcode instructions to perform logical operation using the sensing circuitry having a compute component, such as sensing circuitry shown as 150 in FIG. 1A and compute components 231 and 331 described in connection with FIGS. 2 and 3.


In at least one embodiment the controller 140 is configured to use memory device protocol and memory device logical and electrical interfaces to receive and execute the microcode instructions and/or operate on constant data to perform logical operations using the sensing circuitry 150, 250 and/or 350. For example, in some embodiments the controller 140 may be configured to use a DRAM protocol and DRAM logical and electrical interfaces to receive and execute the microcode instructions, detect a debugging indication therein and execute debugging instructions to perform a debugging routine on the microcode instructions in association with a particular operation. Embodiments, however, are not limited to this example. In some embodiments, the microcode instructions and/or constant data received to the controller 140 can be pre-resolved, e.g., pre-defined, by a programmer and/or provided to the host 110 and/or channel controller 143. In alternative embodiments, the microcode instructions may be operated upon by registers 136, based on a debugging indication received to an interface 141 of the memory device 120, to concurrently perform a debugging operation on microcode instructions on the memory device 120 with a debugging routine being executed on a separate host 110.


In some embodiments, a bank arbiter 145 is configured to receive an instruction block of microcode instructions and/or constant data relevant to a particular bank from among the plurality of banks 121-1, . . . , 121-7 and the bank arbiter is configured to send the microcode instructions and/or constant data to the particular bank. The controller 140 can then store microcode instructions in the received instruction block and/or constant data to a plurality of locations for the particular bank as allocated by the host 110 and/or channel controller 143. For example, the host 110 and/or channel controller 143 may be configured to address translate the plurality of locations for the bank arbiter 145 to assign to banks of the memory device 120. In at least one embodiment, as shown in FIG. 1D, the plurality of locations includes a number of subarrays 125-1, . . . , 125-N in the banks 121-1, . . . , 121-7, e.g., DRAM banks, and/or portions of the number of subarrays.


Further, according to some embodiments, the controller 140 is configured such that a bank 121 can receive a subsequent instruction block of microcode instructions relevant to the particular bank and store instructions in the received instruction block to a plurality of locations for the particular bank while, e.g., in parallel, the memory controller 140 is executing a previously received instruction block. Hence, the embodiments described herein avoid needing to wait for future, or a next set of microcode instructions, e.g., PIM commands, to be received from a host 110 and/or channel controller 143.


As the reader will appreciate, and as described in more detail in the examples of FIGS. 2-4, a controller 140 may be configured to control the execution of microcode instructions, e.g., PIM commands and/or debugging instructions, by controlling the sensing circuitry 150, including compute components 231 and/or 331 shown in FIGS. 2 and 3, to perform and/or debug logical functions such as AND, OR, NOT, NAND, NOR, and XOR logical functions concurrent with debugging instructions executing separately on a host. In addition, the controller 140 may be configured to control the sensing circuitry 150 to perform non-Boolean logic operations, including copy, compare and erase operations, as part of executing microcode instructions, e.g., PIM commands.


According to embodiments, the controller 140 is configured to perform debugging operations directly on the memory device 120 in response to a debugging indication. One or more debug bits may be contained in microcode instructions received as a file and stored to an array of the memory device 120 and/or set by registers 136 in response to the debugging indication. FIGS. 1E and 1F are diagrams illustrating example embodiments of the manner in which instructions for a computing system may be compiled and stored to disk or database and retrieved to load to a plurality of locations, e.g., banks 121-1, . . . , 121-7, on a processing in memory (PIM) device 120 for debugging on the PIM device 120.


As described according to embodiments herein, the one or more debug bits can be set in microcode instructions as controlled by registers 136 after the microcode instructions have been stored to an array of the memory device 120. Such registers 136 may be configured to retrieve microcode instructions from the array and to cause one or more debug bits to be set the microcode instructions in response to one or more debugging indications. The debugging indications may be received via the interface 141. According to embodiments, the one or more indications may be provided concurrently to the memory device 120 and a separate host 110 in order to correlate debugging instructions on the memory device 120 and the host 110.



FIG. 1E is a diagram illustrating microcode instructions 191, e.g., PIM instructions, may be written in a programming language, e.g., by a programmer, and that PIM code (pim.c) may be compiled into a PIM executable file (pim.exe) by a compiler or other programming tool. The PIM executable (pim.exe) may include instructions to perform a horizontal add operation (add.h), for example. The PIM executable (pim.exe) may be stored in a file or database 151 as microcode instructions. The microcode instructions may have microcode for many intended memory device operations such as addition, multiplication, and/or more specific Boolean operations such as an OR logical operation, as reflected in the microcode 192.


According to various embodiments, a programmer may place an indication, e.g., breakpoint, in the microcode anywhere it is desired that an operation be halted and a debugging operation run on the microcode operation. For example, the programmer may set one or more particular bits in the microcode to signal to a controller to halt a particular operation on PIM device and to commence performing a debugging routine on the so indicated operation.


According some embodiments, the one or more bits are set in microcode instructions as controlled by registers 136 after the microcode instructions has been stored to an array of the memory device 120. The one or more bits can be set to break on particular microcode instructions, such as to break when a horizontal add instruction operation is received to the controller 140, or alternatively when a multiplication operation and/or OR operation is received, etc.


As shown in the example embodiment of FIG. 1E, the microcode instruction for an operation, such as a horizontal add operation (add.h), may be retrieved from a particular location where it has been stored, e.g., banks 121-1, . . . , 121-7, bank sections, subarrays, etc., in the memory device 120 and provided to a controller 140 associated with the particular bank. In this example, a sequencer 132 may detect one or more bits set as a flag and/or indication, e.g., as a breakpoint indication, to the controller 140 to cause the controller 140 to halt, e.g., stop or pause, execution of the operation and to commence a debugging routine on the microcode instructions within the memory device 120.


In one example embodiment, the control logic 131 and sequencer 132 (described in connection with FIG. 1C) may detect a “debug” bit set in the microcode instructions and may cause timing circuity 133 (described in connection with FIG. 1C) to begin a debugging routine on the microcode instructions. It is noted that according to embodiments, the memory device 120 may allow for normal operations, read, write, etc., to continue to function with the memory device, e.g., continue to read and/or write to the array on the memory device. For example, the read and/or write operations can be used with the debugging routine being conducted on the microcode instructions on the memory device. In this example, the timing circuitry 133 can be responsible for timing the debugging routine and can be responsible for providing conflict free access to the arrays of memory cells in the memory device 120 in association with conducting a debugging routine.



FIG. 1F illustrates that one or more microcode instructions 163 may be composed of a plurality of bit fields 164, 165, 166 and 167. For example, a microcode instruction may be 64 bit word with several spare or unused bit fields available to be used as debug bits, according to embodiments described herein. In the example of FIG. 1F, the unused bit fields 164 can then be used by a programmer to set an indication directly within the a particular microcode instruction that an operation should break upon receipt of the instruction by a controller and that a debugging routine is to be commenced. As shown, other bit fields in the microcode instructions will serve other microcode instructions purposes such logic bit fields 165, e.g., extended row address (XRA) bit fields, sequencer instruction bit fields 166, arithmetic logic unit (ALU) bit fields 167, etc.


Hence, as a programmer writes microcode instructions 160 for a memory device, the programmer will code particular operations, e.g., an addition (add) operation, and may insert a breakpoint indication directly into the microcode instructions 160. As those microcode instructions are compiled 161 the breakpoint indication may be converted to one or more set, “debug” bits in the microcode instructions which then are present in the microcode instructions 163 themselves.


Alternatively, the unused bit fields 164 may represent one or more debug bits that can be set, as controlled by registers 136, after the microcode instructions has been stored to an array in the memory device 120. In some embodiments, the registers 136 may be memory mapped registers to the unused bit fields 164 in the microcode instructions. The registers may comprise a register interface, e.g., interface 141 in FIGS. 1B and 1C, separate from a double date rate (DDR) control register interface for an array on the memory device 120.


Such registers 136 may be configured to cause one or more debug bits to be set in microcode instructions in response to one or more debugging indications. The debugging indications may be received via an interface 141 on the memory device 120. The one or more indications may correlate the execution of a debugging routine on the memory device 120 with the execution of a debugging routine on a host 110.


According to embodiments, one or more of the debug bit fields 164 in the microcode instructions 163 may contain additional information on the debug routine itself. For example, a first debug bit may be set to signal to a controller 140 to halt execution of the operation associated with that microcode instruction. In one or more embodiments, a sequencer 132 associated with the controller 140 is halted by spinning, e.g., by entering a loop until the detected bit is reset. Other one or more debug bits may be set to signal a debug action and/or routine to execute. As the reader will appreciate, one or more other debug bits may be set to signal a debug routine to execute a step, single step, or step over debugging action. For example, a single step debugging action may include executing a debugging routine until the sequencer 132 reaches a next microcode instruction. Alternatively, a step over debugging action may be signaled in which the debugging routine runs on one microcode instruction, steps over a next microcode instruction, and continues on a subsequent microcode instruction. In the example of FIG. 1F, three (3) microcode instruction lines are illustrated, e.g., 0, 1, and 2. Hence in the step over debugging action, a debugging routine would be conducted for the operation associated with microcode instruction 0, microcode instruction 1 would be stepped over and the debugging routine would continue to be conducted for the operation associated with microcode instruction 2 (as shown by the “arrow”).


As noted above, such debug bits can be present on one or a multiple of microcode instructions. In normal execution, no operation has the one or more debug bits set. In the development environment, the debug bit fields 164 can be set programmatically, in the download of the microcode sequence. In another embodiment, e.g., in the field, the registers 136 are configured and used to cause one or more debug bits to be set in microcode instructions in response to receipt of one or more debugging indications. Embodiments are not limited to the examples given herein.


In various embodiments, the sequencer 132 of a controller 140 is configured to identify whether a debug bit has been set. If the sequencer 132 detects that a given debug bit is set, a program counter associated with the sequencer 132 can be stopped and new instructions prevented from executing. In some embodiments, a user may have to manually restart/resume the executing sequence once the debugging routine is complete. Accordingly, a programmer may add and/or remove breakpoint indications from the microcode instructions together with examining debug register results. In an alternative embodiment, breakpoint indications may be added and/or removed from the microcode instructions in response to receipt of a debugging indication to the memory device 120 in parallel with debugging instructions being executed on a separate host 110.



FIGS. 2-4 illustrate additional functionality of a PIM device, e.g., bit vector operation capable memory device, according to one or more embodiments of the present disclosure. FIG. 2 is a schematic diagram illustrating sensing circuitry 250 in accordance with a number of embodiments of the present disclosure. The sensing circuitry 250 can correspond to sensing circuitry 150 shown in FIG. 1A. A memory cell comprises a storage element (e.g., capacitor) and an access device (e.g., transistor). For instance, a first memory cell comprises transistor 202-1 and capacitor 203-1, and a second memory cell comprises transistor 202-2 and capacitor 203-2, etc. In this example, the memory array 230 is a DRAM array of 1T1C (one transistor one capacitor) memory cells. In a number of embodiments, the memory cells may be destructive read memory cells (e.g., reading the data stored in the cell destroys the data such that the data originally stored in the cell is refreshed after being read).


The cells of the memory array 230 can be arranged in rows coupled by word lines 204-X (Row X), 204-Y (Row Y), etc., and columns coupled by pairs of complementary sense lines (e.g., data lines DIGIT(n−1)/DIGIT(n−1)_, DIGIT(n)/DIGIT(n)_, DIGIT(n+1)/DIGIT(n+1)_). The individual sense lines corresponding to each pair of complementary sense lines can also be referred to as data lines 205-1 (D) and 205-2 (D_) respectively. Although only one pair of complementary data lines are shown in FIG. 2, embodiments of the present disclosure are not so limited, and an array of memory cells can include additional columns of memory cells and/or data lines (e.g., 4,096, 8,192, 16,384, etc.).


Memory cells can be coupled to different data lines and/or word lines. For example, a first source/drain region of a transistor 202-1 can be coupled to data line 205-1 (D), a second source/drain region of transistor 202-1 can be coupled to capacitor 203-1, and a gate of a transistor 202-1 can be coupled to word line 204-Y. A first source/drain region of a transistor 202-2 can be coupled to data line 205-2 (D_), a second source/drain region of transistor 202-2 can be coupled to capacitor 203-2, and a gate of a transistor 202-2 can be coupled to word line 204-X. The cell plate, as shown in FIG. 2, can be coupled to each of capacitors 203-1 and 203-2. The cell plate can be a common node to which a reference voltage (e.g., ground) can be applied in various memory array configurations.


The memory array 230 is coupled to sensing circuitry 250 in accordance with a number of embodiments of the present disclosure. In this example, the sensing circuitry 250 comprises a sense amplifier 206 and a compute component 231 corresponding to respective columns of memory cells (e.g., coupled to respective pairs of complementary data lines). The sense amplifier 206 can be coupled to the pair of complementary sense lines 205-1 and 205-2. The compute component 231 can be coupled to the sense amplifier 206 via pass gates 207-1 and 207-2. The gates of the pass gates 207-1 and 207-2 can be coupled to logical operation selection logic 213.


The logical operation selection logic 213 can be configured to include pass gate logic for controlling pass gates that couple the pair of complementary sense lines un-transposed between the sense amplifier 206 and the compute component 231 (as shown in FIG. 2) and/or swap gate logic for controlling swap gates that couple the pair of complementary sense lines transposed between the sense amplifier 206 and the compute component 231. The logical operation selection logic 213 can also be coupled to the pair of complementary sense lines 205-1 and 205-2. The logical operation selection logic 213 can be configured to control continuity of pass gates 207-1 and 207-2 based on a selected logical operation, as described in detail below for various configurations of the logical operation selection logic 213.


The sense amplifier 206 can be operated to determine a data value (e.g., logic state) stored in a selected memory cell. The sense amplifier 206 can comprise a cross coupled latch, which can be referred to herein as a primary latch. In the example illustrated in FIG. 2, the circuitry corresponding to sense amplifier 206 comprises a latch 215 including four transistors coupled to a pair of complementary data lines D 205-1 and D_205-2. However, embodiments are not limited to this example. The latch 215 can be a cross coupled latch (e.g., gates of a pair of transistors, such as n-channel transistors (e.g., NMOS transistors) 227-1 and 227-2 are cross coupled with the gates of another pair of transistors, such as p-channel transistors (e.g., PMOS transistors) 229-1 and 229-2). The cross coupled latch 215 comprising transistors 227-1, 227-2, 229-1, and 229-2 can be referred to as a primary latch.


In operation, when a memory cell is being sensed (e.g., read), the voltage on one of the data lines 205-1 (D) or 205-2 (D_) will be slightly greater than the voltage on the other one of data lines 205-1 (D) or 205-2 (D_). An ACT signal and the RNL* signal can be driven low to enable (e.g., fire) the sense amplifier 206. The data lines 205-1 (D) or 205-2 (D_) having the lower voltage will turn on one of the PMOS transistor 229-1 or 229-2 to a greater extent than the other of PMOS transistor 229-1 or 229-2, thereby driving high the data line 205-1 (D) or 205-2 (D_) having the higher voltage to a greater extent than the other data line 205-1 (D) or 205-2 (D_) is driven high.


Similarly, the data line 205-1 (D) or 205-2 (D_) having the higher voltage will turn on one of the NMOS transistor 227-1 or 227-2 to a greater extent than the other of the NMOS transistor 227-1 or 227-2, thereby driving low the data line 205-1 (D) or 205-2 (D_) having the lower voltage to a greater extent than the other data line 205-1 (D) or 205-2 (D_) is driven low. As a result, after a short delay, the data line 205-1 (D) or 205-2 (D_) having the slightly greater voltage is driven to the voltage of the supply voltage VCC through source transistor 211, and the other data line 205-1 (D) or 205-2 (D_) is driven to the voltage of the reference voltage (e.g., ground) through the sink transistor 213. Therefore, the cross coupled NMOS transistors 227-1 and 227-2 and PMOS transistors 229-1 and 229-2 serve as a sense amplifier pair, which amplify the differential voltage on the data lines 205-1 (D) and 205-2 (D_) and operate to latch a data value sensed from the selected memory cell.


Embodiments are not limited to the sense amplifier 206 configuration illustrated in FIG. 2. As an example, the sense amplifier 206 can be current-mode sense amplifier and/or single-ended sense amplifier (e.g., sense amplifier coupled to one data line). Also, embodiments of the present disclosure are not limited to a folded data line architecture such as that shown in FIG. 2.


The sense amplifier 206 can, in conjunction with the compute component 231, be operated to perform various logical operations using data from an array as input. In a number of embodiments, the result of a logical operation can be stored back to the array without transferring the data via a data line address access (e.g., without firing a column decode signal such that data is transferred to circuitry external from the array and sensing circuitry via local I/O lines). As such, a number of embodiments of the present disclosure can enable performing logical operations and compute functions associated therewith using less power than various previous approaches. Additionally, since a number of embodiments eliminate the need to transfer data across I/O lines in order to perform compute functions (e.g., between memory and discrete processor), a number of embodiments can enable an increased parallel processing capability as compared to previous approaches.


The sense amplifier 206 can further include equilibration circuitry 214, which can be configured to equilibrate the data lines 205-1 (D) and 205-2 (D_). In this example, the equilibration circuitry 214 comprises a transistor 224 coupled between data lines 205-1 (D) and 205-2 (D_). The equilibration circuitry 214 also comprises transistors 225-1 and 225-2 each having a first source/drain region coupled to an equilibration voltage (e.g., VDD/2), where VDD is a supply voltage associated with the array. A second source/drain region of transistor 225-1 can be coupled data line 205-1 (D), and a second source/drain region of transistor 225-2 can be coupled data line 205-2 (D_)). Gates of transistors 224, 225-1, and 225-2 can be coupled together, and to an equilibration (EQ) control signal line 226. As such, activating EQ enables the transistors 224, 225-1, and 225-2, which effectively shorts data lines 205-1 (D) and 205-2 (D_) together and to the an equilibration voltage (e.g., VDD/2).


Although FIG. 2 shows sense amplifier 206 comprising the equilibration circuitry 214, embodiments are not so limited, and the equilibration circuitry 214 may be implemented discretely from the sense amplifier 206, implemented in a different configuration than that shown in FIG. 2, or not implemented at all.


As described further below, in a number of embodiments, the sensing circuitry 250 (e.g., sense amplifier 206 and compute component 231) can be operated to perform a selected logical operation and initially store the result in one of the sense amplifier 206 or the compute component 231 without transferring data from the sensing circuitry via an I/O line (e.g., without performing a data line address access via activation of a column decode signal, for instance).


Performance of logical operations (e.g., Boolean logical functions involving data values) is fundamental and commonly used. Boolean logic functions are used in many higher level functions. Consequently, speed and/or power efficiencies that can be realized with improved logical operations, can translate into speed and/or power efficiencies of higher order functionalities.


As shown in FIG. 2, the compute component 231 can also comprise a latch, which can be referred to herein as a secondary latch 264. The secondary latch 264 can be configured and operated in a manner similar to that described above with respect to the primary latch 215, with the exception that the pair of cross coupled p-channel transistors (e.g., PMOS transistors) comprising the secondary latch can have their respective sources coupled to a supply voltage (e.g., VDD), and the pair of cross coupled n-channel transistors (e.g., NMOS transistors) of the secondary latch can have their respective sources selectively coupled to a reference voltage (e.g., ground), such that the secondary latch is continuously enabled. The configuration of the compute component is not limited to that shown in FIG. 2 at 231, and various other embodiments are described further below.



FIG. 3 is a schematic diagram illustrating sensing circuitry capable of implementing an XOR logical operation in accordance with a number of embodiments of the present disclosure. FIG. 3 shows a sense amplifier 306 coupled to a pair of complementary sense lines 305-1 and 305-2, and a compute component 331 coupled to the sense amplifier 306 via pass gates 307-1 and 307-2. The sense amplifier 306 shown in FIG. 3 can correspond to sense amplifier 206 shown in FIG. 2. The compute component 331 shown in FIG. 3 can correspond to sensing circuitry 150, including compute component, shown in FIG. 1A, for example. The logical operation selection logic 313 shown in FIG. 3 can correspond to logical operation selection logic 213 shown in FIG. 2.


The gates of the pass gates 307-1 and 307-2 can be controlled by a logical operation selection logic signal, Pass. For example, an output of the logical operation selection logic can be coupled to the gates of the pass gates 307-1 and 307-2. The compute component 331 can comprise a loadable shift register configured to shift data values left and right.


According to the embodiment illustrated in FIG. 3, the compute components 331 can comprise respective stages (e.g., shift cells) of a loadable shift register configured to shift data values left and right. For example, as illustrated in FIG. 3, each compute component 331 (e.g., stage) of the shift register comprises a pair of right-shift transistors 381 and 386, a pair of left-shift transistors 389 and 390, and a pair of inverters 387 and 388. The signals PHASE 1R, PHASE 2R, PHASE 1L, and PHASE 2L can be applied to respective control lines 382, 383, 391 and 392 to enable/disable feedback on the latches of the corresponding compute components 331 in association with performing logical operations and/or shifting data in accordance with embodiments described herein.


The sensing circuitry shown in FIG. 3 also shows a logical operation selection logic 313 coupled to a number of logic selection control input control lines, including ISO, TF, TT, FT, and FF. Selection of a logical operation from a plurality of logical operations is determined from the condition of logic selection control signals on the logic selection control input control lines, as well as the data values present on the pair of complementary sense lines 305-1 and 305-2 when the isolation transistors 350-1 and 350-2 are enabled via the ISO control signal being asserted.


According to various embodiments, the logical operation selection logic 313 can include four logic selection transistors: logic selection transistor 362 coupled between the gates of the swap transistors 342 and a TF signal control line, logic selection transistor 352 coupled between the gates of the pass gates 307-1 and 307-2 and a TT signal control line, logic selection transistor 354 coupled between the gates of the pass gates 307-1 and 307-2 and a FT signal control line, and logic selection transistor 364 coupled between the gates of the swap transistors 342 and a FF signal control line. Gates of logic selection transistors 362 and 352 are coupled to the true sense line through isolation transistor 350-1 (having a gate coupled to an ISO signal control line). Gates of logic selection transistors 364 and 354 are coupled to the complementary sense line through isolation transistor 350-2 (also having a gate coupled to an ISO signal control line).


Data values present on the pair of complementary sense lines 305-1 and 305-2 can be loaded into the compute component 331 via the pass gates 307-1 and 307-2. The compute component 331 can comprise a loadable shift register. When the pass gates 307-1 and 307-2 are OPEN, data values on the pair of complementary sense lines 305-1 and 305-2 are passed to the compute component 331 and thereby loaded into the loadable shift register. The data values on the pair of complementary sense lines 305-1 and 305-2 can be the data value stored in the sense amplifier 306 when the sense amplifier is fired. The logical operation selection logic signal, Pass, is high to OPEN the pass gates 307-1 and 307-2.


The ISO, TF, TT, FT, and FF control signals can operate to select a logical function to implement based on the data value (“B”) in the sense amplifier 306 and the data value (“A”) in the compute component 331. In particular, the ISO, TF, TT, FT, and FF control signals are configured to select the logical function to implement independent from the data value present on the pair of complementary sense lines 305-1 and 305-2 (although the result of the implemented logical operation can be dependent on the data value present on the pair of complementary sense lines 305-1 and 305-2. For example, the ISO, TF, TT, FT, and FF control signals select the logical operation to implement directly since the data value present on the pair of complementary sense lines 305-1 and 305-2 is not passed through logic to operate the gates of the pass gates 307-1 and 307-2.


Additionally, FIG. 3 shows swap transistors 342 configured to swap the orientation of the pair of complementary sense lines 305-1 and 305-2 between the sense amplifier 306 and the compute component 331. When the swap transistors 342 are OPEN, data values on the pair of complementary sense lines 305-1 and 305-2 on the sense amplifier 306 side of the swap transistors 342 are oppositely-coupled to the pair of complementary sense lines 305-1 and 305-2 on the compute component 331 side of the swap transistors 342, and thereby loaded into the loadable shift register of the compute component 331.


The logical operation selection logic signal Pass can be activated (e.g., high) to OPEN the pass gates 307-1 and 307-2 (e.g., conducting) when the ISO control signal line is activated and either the TT control signal is activated (e.g., high) and data value on the true sense line is “1” or the FT control signal is activated (e.g., high) and the data value on the complement sense line is “1.”


The data value on the true sense line being a “1” OPENs logic selection transistors 352 and 362. The data value on the complimentary sense line being a “1” OPENs logic selection transistors 354 and 364. If the ISO control signal or either the respective TT/FT control signal or the data value on the corresponding sense line (e.g., sense line to which the gate of the particular logic selection transistor is coupled) is not high, then the pass gates 307-1 and 307-2 will not be OPENed by a particular logic selection transistor.


The logical operation selection logic signal Pass* can be activated (e.g., high) to OPEN the swap transistors 342 (e.g., conducting) when the ISO control signal line is activated and either the TF control signal is activated (e.g., high) and data value on the true sense line is “1,” or the FF control signal is activated (e.g., high) and the data value on the complement sense line is “1.” If either the respective control signal or the data value on the corresponding sense line (e.g., sense line to which the gate of the particular logic selection transistor is coupled) is not high, then the swap transistors 342 will not be OPENed by a particular logic selection transistor.


The Pass* control signal is not necessarily complementary to the Pass control signal. It is possible for the Pass and Pass* control signals to both be activated or both be deactivated at the same time. However, activation of both the Pass and Pass* control signals at the same time shorts the pair of complementary sense lines together, which may be a disruptive configuration to be avoided.


The sensing circuitry illustrated in FIG. 3 is configured to select one of a plurality of logical operations to implement directly from the four logic selection control signals (e.g., logical operation selection is not dependent on the data value present on the pair of complementary sense lines). Some combinations of the logic selection control signals can cause both the pass gates 307-1 and 307-2 and swap transistors 342 to be OPEN at the same time, which shorts the pair of complementary sense lines 305-1 and 305-2 together. According to a number of embodiments of the present disclosure, the logical operations which can be implemented by the sensing circuitry illustrated in FIG. 3 can be the logical operations summarized in the logic tables shown in FIG. 4.



FIG. 4 is a logic table illustrating selectable logic operation results implemented by a sensing circuitry shown in FIG. 3 in accordance with a number of embodiments of the present disclosure. The four logic selection control signals (e.g., TF, TT, FT, and FF), in conjunction with a particular data value present on the complementary sense lines, can be used to select one of plural logical operations to implement involving the starting data values stored in the sense amplifier 306 and compute component 331. The four control signals, in conjunction with a particular data value present on the complementary sense lines, controls the continuity of the pass gates 307-1 and 307-2 and swap transistors 342, which in turn affects the data value in the compute component 331 and/or sense amplifier 306 before/after firing. The capability to selectably control continuity of the swap transistors 342 facilitates implementing logical operations involving inverse data values (e.g., inverse operands and/or inverse result), among others.


Logic Table 4-1 illustrated in FIG. 4 shows the starting data value stored in the compute component 331 shown in column A at 444, and the starting data value stored in the sense amplifier 306 shown in column B at 445. The other 3 column headings in Logic Table 4-1 refer to the continuity of the pass gates 307-1 and 307-2, and the swap transistors 342, which can respectively be controlled to be OPEN or CLOSED depending on the state of the four logic selection control signals (e.g., TF, TT, FT, and FF), in conjunction with a particular data value present on the pair of complementary sense lines 305-1 and 305-2. The “Not Open” column corresponds to the pass gates 307-1 and 307-2 and the swap transistors 342 both being in a non-conducting condition, the “Open True” corresponds to the pass gates 307-1 and 307-2 being in a conducting condition, and the “Open Invert” corresponds to the swap transistors 342 being in a conducting condition. The configuration corresponding to the pass gates 307-1 and 307-2 and the swap transistors 342 both being in a conducting condition is not reflected in Logic Table 4-1 since this results in the sense lines being shorted together.


Via selective control of the continuity of the pass gates 307-1 and 307-2 and the swap transistors 342, each of the three columns of the upper portion of Logic Table 4-1 can be combined with each of the three columns of the lower portion of Logic Table 4-1 to provide 3×3=9 different result combinations, corresponding to nine different logical operations, as indicated by the various connecting paths shown at 475. The nine different selectable logical operations that can be implemented by the sensing circuitry, e.g., 150 in FIG. 1A, are summarized in Logic Table 4-2 illustrated in FIG. 4, including an XOR logical operation.


The columns of Logic Table 4-2 illustrated in FIG. 4 show a heading 480 that includes the state of logic selection control signals. For example, the state of a first logic selection control signal is provided in row 476, the state of a second logic selection control signal is provided in row 477, the state of a third logic selection control signal is provided in row 478, and the state of a fourth logic selection control signal is provided in row 479. The particular logical operation corresponding to the results is summarized in row 447.


While example embodiments including various combinations and configurations of sensing circuitry, sense amplifiers, compute component, dynamic latches, isolation devices, and/or shift circuitry have been illustrated and described herein, embodiments of the present disclosure are not limited to those combinations explicitly recited herein. Other combinations and configurations of the sensing circuitry, sense amplifiers, compute component, dynamic latches, isolation devices, and/or shift circuitry disclosed herein are expressly included within the scope of this disclosure.


Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that an arrangement calculated to achieve the same results can be substituted for the specific embodiments shown. This disclosure is intended to cover adaptations or variations of one or more embodiments of the present disclosure. It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of the one or more embodiments of the present disclosure includes other applications in which the above structures and methods are used. Therefore, the scope of one or more embodiments of the present disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.


In the foregoing Detailed Description, some features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the disclosed embodiments of the present disclosure have to use more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A system, comprising: a host configured to generate instructions;a memory device coupled to the host and comprising: a memory array;sensing circuitry coupled to the memory array, the sensing circuitry further comprising: a sense amplifier;a compute component configured to perform logical operations;a controller coupled to the memory array and the sensing circuitry, the controller configured to detect one or more debug bits stored in microcode instructions within the memory device, wherein the controller is configured to retrieve the debug bits from a register on the memory device and set the debug bits in the microcode instructions after the microcode instructions are first stored in the memory array, the register being associated with an interface on the memory device;the interface configured to receive a debugging indication, provided concurrently to the host and the memory device, in order to correlate debugging instructions on the processing in memory device and the host; andthe sensing circuitry operated by the controller to execute the debugging instructions directly on the memory device, separate from the host, upon receipt of the debugging indication.
  • 2. The system of claim 1, wherein the interface on the memory device is configured to accept the debugging instructions from the host.
  • 3. The system of claim 1, wherein the controller halts a logical operation being performed by the sensing circuitry operated by the controller executing the microcode instructions stored on the array of the memory device.
  • 4. The system of claim 1, wherein the controller is configured to execute a debugging routine, with an identical process, on the microcode instructions on the memory device, concurrently with executing the debugging routine on the host.
  • 5. The system of claim 1, wherein the controller is configured to detect the debugging indication, received to the interface and triggered by a debug bit set in the microcode instructions, and to halt an operation being performed by execution of the microcode instructions on the memory device, in order and to execute a debugging routine.
  • 6. The system of claim 1, wherein the controller is configured to cause the memory device to perform logical operations using the sensing circuitry.
  • 7. The system of claim 1, wherein the controller is configured, upon receipt of the of the debugging indication to the interface, to execute a step debugging operation on the memory device in correlation with a step debugging operation being executed by the host.
  • 8. The system of claim 1, wherein the controller stores the microcode instructions in the memory array and causes the memory device to execute logical operations in the sensing circuitry and execute microcode instructions on the memory device.
  • 9. The system of claim 8, wherein upon receipt of the debugging indication, the controller uses the compute component to pause the logical operations on the memory device.
  • 10. A system comprising; a memory device comprising an array of memory cells;sensing circuitry coupled to the array of memory cells, the sensing circuitry comprising: a sense amplifier; anda compute component configured to perform logical operations;a controller coupled to the array of memory cells and sensing circuitry and, the controller is configured to cause performance of logical operations using the sensing circuitry and to detect one or more debug bits stored in microcode instructions on the memory device, the controller is configured to retrieve one or more debug bits from storable in one or more registers on the memory device after the microcode instructions are stored in the memory array; andan interface associated with the one or more registers configured to cause the one or more debug bits to be set in microcode instructions upon receipt of a debugging indication, and wherein the controller is configured to halt a logical operation being performed by the sensing circuitry operated by the controller directly on the memory device, separate from a host, to execute the microcode instructions stored in the array of memory cells on the memory device and retrieving and executing debugging code from the microcode instructions to perform a debugging routine directly on the memory device using the sensing circuitry.
  • 11. The system of claim 10, wherein the controller receives an indication to perform a debugging routine by setting a debug bit in the microcode instructions sored in the array of memory cells.
  • 12. The system of claim 10, wherein one or more debug bits is present within a plurality of microcode instructions.
  • 13. The system of claim 10, wherein the system further comprises logic circuitry coupled to the sensing circuitry to receive debugging results.
  • 14. The system of claim 10, wherein the system further comprises: a plurality of subarrays;a plurality of banks to store the microcode instructions; anda bank controller.
  • 15. The system of claim 14, wherein the system allocates the microcode instructions to the plurality of subarrays and the bank controller is configured to retrieve the microcode instruction from the subarrays, cache the microcode instructions and refilling the microcode instructions.
  • 16. A method for debugging on a memory device, comprising: generating instruction by a host, the host coupled to the memory device;performing logical operations in a sensing circuitry;detecting, via a controller, debugging bits in microcode instructions on the memory device, wherein the debugging bits are retrieved from a register on the memory and set in the microcode instructions after the microcode instructions are stored in the memory array, the register associated with an interface on the memory device; andreceiving a debugging indication and performing a debugging routine concurrently on the host and the memory device to directly execute debugging instructions on the host and memory device using the sensing circuitry operated by the controller, separate from the host.
  • 17. The method of claim 16, wherein the method further comprises halting the logical operation being performed by the sensing circuitry executing the microcode instructions stored in an array of memory cells on the memory device and retrieving and executing debugging code from the microcode instructions to perform a debugging routine directly on the processing in memory device using the sensing circuitry.
PRIORITY INFORMATION

This application is a Continuation of U.S. application Ser. No. 15/077,171, filed Mar. 22, 2016, which issues as U.S. Pat. No. 10,388,393 on Aug. 20, 2019, the contents of which are incorporated herein by reference.

US Referenced Citations (307)
Number Name Date Kind
4380046 Fung Apr 1983 A
4435792 Bechtolsheim Mar 1984 A
4435793 Ochii Mar 1984 A
4727474 Batcher Feb 1988 A
4843264 Galbraith Jun 1989 A
4958378 Bell Sep 1990 A
4977542 Matsuda et al. Dec 1990 A
5023838 Herbert Jun 1991 A
5034636 Reis et al. Jul 1991 A
5201039 Sakamura Apr 1993 A
5210850 Kelly et al. May 1993 A
5253308 Johnson Oct 1993 A
5276643 Hoffmann et al. Jan 1994 A
5325519 Long et al. Jun 1994 A
5367488 An Nov 1994 A
5379257 Matsumura et al. Jan 1995 A
5386379 Ali-Yahia et al. Jan 1995 A
5398213 Yeon et al. Mar 1995 A
5440482 Davis Aug 1995 A
5446690 Tanaka et al. Aug 1995 A
5473576 Matsui Dec 1995 A
5481500 Reohr et al. Jan 1996 A
5485373 Davis et al. Jan 1996 A
5506811 McLaury Apr 1996 A
5615404 Knoll et al. Mar 1997 A
5638128 Hoogenboom Jun 1997 A
5638317 Tran Jun 1997 A
5654936 Cho Aug 1997 A
5678021 Pawate et al. Oct 1997 A
5724291 Matano Mar 1998 A
5724366 Furutani Mar 1998 A
5751987 Mahant-Shetti et al. May 1998 A
5787458 Miwa Jul 1998 A
5854636 Watanabe et al. Dec 1998 A
5867429 Chen et al. Feb 1999 A
5870504 Nemoto et al. Feb 1999 A
5915084 Wendell Jun 1999 A
5935263 Keeth et al. Aug 1999 A
5986942 Sugibayashi Nov 1999 A
5991209 Chow Nov 1999 A
5991785 Alidina et al. Nov 1999 A
6005799 Rao Dec 1999 A
6009020 Nagata Dec 1999 A
6085336 Swoboda Jul 2000 A
6092186 Betker et al. Jul 2000 A
6122211 Morgan et al. Sep 2000 A
6125071 Kohno et al. Sep 2000 A
6134164 Lattimore et al. Oct 2000 A
6147514 Shiratake Nov 2000 A
6151244 Fujino et al. Nov 2000 A
6157578 Brady Dec 2000 A
6163862 Adams et al. Dec 2000 A
6166942 Vo et al. Dec 2000 A
6172918 Hidaka Jan 2001 B1
6175514 Henderson Jan 2001 B1
6181698 Hariguchi Jan 2001 B1
6208544 Beadle et al. Mar 2001 B1
6226215 Yoon May 2001 B1
6301153 Takeuchi et al. Oct 2001 B1
6301164 Manning et al. Oct 2001 B1
6304477 Naji Oct 2001 B1
6314530 Mann Nov 2001 B1
6351789 Green Feb 2002 B1
6389507 Sherman May 2002 B1
6418498 Martwick Jul 2002 B1
6466499 Blodgett Oct 2002 B1
6499123 McFarland et al. Dec 2002 B1
6510098 Taylor Jan 2003 B1
6522985 Swoboda Feb 2003 B1
6563754 Lien et al. May 2003 B1
6578058 Nygaard Jun 2003 B1
6731542 Le et al. May 2004 B1
6754746 Leung et al. Jun 2004 B1
6768679 Le et al. Jul 2004 B1
6807614 Chung Oct 2004 B2
6816422 Hamade et al. Nov 2004 B2
6819612 Achter Nov 2004 B1
6894549 Eliason May 2005 B2
6943579 Hazarichuk et al. Sep 2005 B1
6948056 Roth et al. Sep 2005 B1
6950771 Fan et al. Sep 2005 B1
6950898 Merritt et al. Sep 2005 B2
6956770 Khalid et al. Oct 2005 B2
6961272 Schreck Nov 2005 B2
6965648 Smith et al. Nov 2005 B1
6985394 Kim Jan 2006 B2
6987693 Cernea et al. Jan 2006 B2
7020017 Chen et al. Mar 2006 B2
7028170 Saulsbury Apr 2006 B2
7045834 Tran et al. May 2006 B2
7054178 Shiah et al. May 2006 B1
7061817 Raad et al. Jun 2006 B2
7079407 Dimitrelis Jul 2006 B1
7173857 Kato et al. Feb 2007 B2
7187585 Li et al. Mar 2007 B2
7196928 Chen Mar 2007 B2
7260565 Lee et al. Aug 2007 B2
7260672 Garney Aug 2007 B2
7372715 Han May 2008 B2
7400532 Aritome Jul 2008 B2
7406494 Magee Jul 2008 B2
7447720 Beaumont Nov 2008 B2
7454451 Beaumont Nov 2008 B2
7457181 Lee et al. Nov 2008 B2
7535769 Cernea May 2009 B2
7546438 Chung Jun 2009 B2
7562198 Noda et al. Jul 2009 B2
7574466 Beaumont Aug 2009 B2
7602647 Li et al. Oct 2009 B2
7663928 Tsai et al. Feb 2010 B2
7676709 Chan Mar 2010 B2
7685365 Rajwar et al. Mar 2010 B2
7692466 Ahmadi Apr 2010 B2
7752417 Manczak et al. Jul 2010 B2
7791962 Noda et al. Sep 2010 B2
7796453 Riho et al. Sep 2010 B2
7805587 Van Dyke et al. Sep 2010 B1
7808854 Takase Oct 2010 B2
7827372 Bink et al. Nov 2010 B2
7869273 Lee et al. Jan 2011 B2
7898864 Dong Mar 2011 B2
7924628 Danon et al. Apr 2011 B2
7937535 Ozer et al. May 2011 B2
7957206 Bauser Jun 2011 B2
7979667 Allen et al. Jul 2011 B2
7996749 Ding et al. Aug 2011 B2
8042082 Solomon Oct 2011 B2
8045391 Mohklesi Oct 2011 B2
8059438 Chang et al. Nov 2011 B2
8095825 Hirotsu et al. Jan 2012 B2
8112730 Aleksanyan et al. Feb 2012 B2
8117462 Snapp et al. Feb 2012 B2
8164942 Gebara et al. Apr 2012 B2
8208328 Hong Jun 2012 B2
8213248 Moon et al. Jul 2012 B2
8223568 Seo Jul 2012 B2
8238173 Akerib et al. Aug 2012 B2
8274841 Shimano et al. Sep 2012 B2
8279683 Klein Oct 2012 B2
8310884 Iwai et al. Nov 2012 B2
8332367 Bhattacherjee et al. Dec 2012 B2
8339824 Cooke Dec 2012 B2
8339883 Yu et al. Dec 2012 B2
8347154 Bahali et al. Jan 2013 B2
8351292 Matano Jan 2013 B2
8356144 Hessel et al. Jan 2013 B2
8417921 Gonion et al. Apr 2013 B2
8462532 Argyres Jun 2013 B1
8484276 Carlson et al. Jul 2013 B2
8495438 Roine Jul 2013 B2
8503250 Demone Aug 2013 B2
8526239 Kim Sep 2013 B2
8533245 Cheung Sep 2013 B1
8555037 Gonion Oct 2013 B2
8599613 Abiko et al. Dec 2013 B2
8605015 Guttag et al. Dec 2013 B2
8625376 Jung et al. Jan 2014 B2
8644101 Jun et al. Feb 2014 B2
8650232 Stortz et al. Feb 2014 B2
8873272 Lee Oct 2014 B2
8885426 Burstein et al. Nov 2014 B1
8964496 Manning Feb 2015 B2
8971124 Manning Mar 2015 B1
9015390 Klein Apr 2015 B2
9032264 Hashimoto May 2015 B2
9047193 Lin et al. Jun 2015 B2
9165023 Moskovich et al. Oct 2015 B2
9460799 Costa et al. Oct 2016 B1
20010007112 Porterfield Jul 2001 A1
20010008492 Higashiho Jul 2001 A1
20010010057 Yamada Jul 2001 A1
20010028584 Nakayama et al. Oct 2001 A1
20010043089 Forbes et al. Nov 2001 A1
20020013918 Swoboda Jan 2002 A1
20020059355 Peleg et al. May 2002 A1
20030167426 Slobodnik Sep 2003 A1
20030214853 Hosono et al. Nov 2003 A1
20030222879 Lin et al. Dec 2003 A1
20040073592 Kim et al. Apr 2004 A1
20040073773 Demjanenko Apr 2004 A1
20040085840 Vali et al. May 2004 A1
20040095826 Perner May 2004 A1
20040154002 Ball et al. Aug 2004 A1
20040205289 Srinivasan Oct 2004 A1
20040213060 Naso et al. Oct 2004 A1
20040240251 Nozawa et al. Dec 2004 A1
20050015557 Wang et al. Jan 2005 A1
20050078514 Scheuerlein et al. Apr 2005 A1
20050097417 Agrawal et al. May 2005 A1
20050114638 Chen May 2005 A1
20060047937 Selvaggi et al. Mar 2006 A1
20060069849 Rudelic Mar 2006 A1
20060146623 Mizuno et al. Jul 2006 A1
20060149804 Luick et al. Jul 2006 A1
20060181917 Kang et al. Aug 2006 A1
20060215432 Wickeraad et al. Sep 2006 A1
20060225072 Lari et al. Oct 2006 A1
20060291282 Liu et al. Dec 2006 A1
20060294312 Walmsley Dec 2006 A1
20070103986 Chen May 2007 A1
20070171747 Hunter et al. Jul 2007 A1
20070180006 Gyoten et al. Aug 2007 A1
20070180184 Sakashita et al. Aug 2007 A1
20070195602 Fong et al. Aug 2007 A1
20070285131 Sohn Dec 2007 A1
20070285979 Turner Dec 2007 A1
20070291532 Tsuji Dec 2007 A1
20080025073 Arsovski Jan 2008 A1
20080037333 Kim et al. Feb 2008 A1
20080052711 Forin et al. Feb 2008 A1
20080130386 Pyeon Jun 2008 A1
20080137388 Krishnan et al. Jun 2008 A1
20080148115 Sokolov et al. Jun 2008 A1
20080165601 Matick et al. Jul 2008 A1
20080178053 Gorman et al. Jul 2008 A1
20080215937 Dreibelbis et al. Sep 2008 A1
20090067218 Graber Mar 2009 A1
20090154238 Lee Jun 2009 A1
20090154273 Borot et al. Jun 2009 A1
20090235059 Moyer Sep 2009 A1
20090254697 Akerib Oct 2009 A1
20090290434 Kurjanowicz Nov 2009 A1
20100067296 Li Mar 2010 A1
20100091582 Vali et al. Apr 2010 A1
20100172190 Lavi et al. Jul 2010 A1
20100210076 Gruber et al. Aug 2010 A1
20100226183 Kim Sep 2010 A1
20100308858 Noda et al. Dec 2010 A1
20100332895 Billing et al. Dec 2010 A1
20110051523 Manabe et al. Mar 2011 A1
20110063919 Chandrasekhar et al. Mar 2011 A1
20110093662 Walker et al. Apr 2011 A1
20110103151 Kim et al. May 2011 A1
20110119467 Cadambi et al. May 2011 A1
20110122695 Li et al. May 2011 A1
20110140741 Zerbe et al. Jun 2011 A1
20110219260 Nobunaga et al. Sep 2011 A1
20110267883 Lee et al. Nov 2011 A1
20110317496 Bunce et al. Dec 2011 A1
20120005397 Lim et al. Jan 2012 A1
20120017039 Margetts Jan 2012 A1
20120023281 Kawasaki et al. Jan 2012 A1
20120120705 Mitsubori et al. May 2012 A1
20120127804 Ong et al. May 2012 A1
20120134216 Singh May 2012 A1
20120134225 Chow May 2012 A1
20120134226 Chow May 2012 A1
20120140540 Agam et al. Jun 2012 A1
20120182798 Hosono et al. Jul 2012 A1
20120195146 Jun et al. Aug 2012 A1
20120198310 Tran et al. Aug 2012 A1
20120246380 Akerib et al. Sep 2012 A1
20120265964 Murata et al. Oct 2012 A1
20120281486 Rao et al. Nov 2012 A1
20120303627 Keeton et al. Nov 2012 A1
20130003467 Klein Jan 2013 A1
20130061006 Hein Mar 2013 A1
20130107623 Kavalipurapu et al. May 2013 A1
20130117541 Choquette et al. May 2013 A1
20130124783 Yoon et al. May 2013 A1
20130132702 Patel et al. May 2013 A1
20130138646 Sirer et al. May 2013 A1
20130163362 Kim Jun 2013 A1
20130173888 Hansen et al. Jul 2013 A1
20130205114 Badam et al. Aug 2013 A1
20130219112 Okin et al. Aug 2013 A1
20130227361 Bowers et al. Aug 2013 A1
20130283122 Anholt et al. Oct 2013 A1
20130286705 Grover et al. Oct 2013 A1
20130326154 Haswell Dec 2013 A1
20130332707 Gueron et al. Dec 2013 A1
20140185395 Seo Jul 2014 A1
20140215185 Danielsen Jul 2014 A1
20140250279 Manning Sep 2014 A1
20140344934 Jorgensen Nov 2014 A1
20150029798 Manning Jan 2015 A1
20150042380 Manning Feb 2015 A1
20150063052 Manning Mar 2015 A1
20150078108 Cowles et al. Mar 2015 A1
20150120987 Wheeler Apr 2015 A1
20150134713 Wheeler May 2015 A1
20150270015 Murphy et al. Sep 2015 A1
20150279466 Manning Oct 2015 A1
20150324290 Leidel Nov 2015 A1
20150325272 Murphy Nov 2015 A1
20150356009 Wheeler et al. Dec 2015 A1
20150356022 Leidel et al. Dec 2015 A1
20150357007 Manning et al. Dec 2015 A1
20150357008 Manning et al. Dec 2015 A1
20150357019 Wheeler et al. Dec 2015 A1
20150357020 Manning Dec 2015 A1
20150357021 Hush Dec 2015 A1
20150357022 Hush Dec 2015 A1
20150357023 Hush Dec 2015 A1
20150357024 Hush et al. Dec 2015 A1
20150357047 Tiwari Dec 2015 A1
20160062672 Wheeler Mar 2016 A1
20160062673 Tiwari Mar 2016 A1
20160062692 Finkbeiner et al. Mar 2016 A1
20160062733 Tiwari Mar 2016 A1
20160063284 Tiwari Mar 2016 A1
20160064045 La Fratta Mar 2016 A1
20160064047 Tiwari Mar 2016 A1
20160260495 Paudel et al. Sep 2016 A1
20170263306 Murphy Sep 2017 A1
20190179568 Hsu Jun 2019 A1
20190196988 Agarwal Jun 2019 A1
Foreign Referenced Citations (15)
Number Date Country
102141905 Aug 2011 CN
0214718 Mar 1987 EP
2026209 Feb 2009 EP
2338320 Dec 1999 GB
H0831168 Feb 1996 JP
2009259193 Mar 2015 JP
10-0211482 Aug 1998 KR
10-2010-0134235 Dec 2010 KR
10-2013-0049421 May 2013 KR
9638790 Dec 1996 WO
2001065359 Sep 2001 WO
2010079451 Jul 2010 WO
2013062596 May 2013 WO
2013081588 Jun 2013 WO
2013095592 Jun 2013 WO
Non-Patent Literature Citations (19)
Entry
A. Silvagni, G. Fusillo, R. Ravasio, M. Picca and S. Zanardi, “An overview of logic architectures inside flash memory devices,” in Proceedings of the IEEE, vol. 91, No. 4, pp. 569-580, Apr. 2003, doi: 10.1109/JPROC.2003.811707. (Year: 2003).
Boyd et al., “On the General Applicability of Instruction-Set Randomization”, Jul.-Sep. 2010, (14 pgs.), vol. 7, Issue 3, IEEE Transactions on Dependable and Secure Computing.
Stojmenovic, “Multiplicative Circulant Networks Topological Properties and Communication Algorithms”, (25 pgs.), Discrete Applied Mathematics 77 (1997) 281-305.
“4.9.3 MINLOC and MAXLOC”, Jun. 12, 1995, (5pgs.), Message Passing Interface Forum 1.1, retrieved from http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node79.html.
Derby, et al., “A High-Performance Embedded DSP Core with Novel SIMD Features”, Apr. 6-10, 2003, (4 pgs), vol. 2, pp. 301-304, 2003 IEEE International Conference on Accoustics, Speech, and Signal Processing.
Debnath, Biplob, Bloomflash: Bloom Filter on Flash-Based Storage, 2011 31st Annual Conference on Distributed Computing Systems, Jun. 20-24, 2011, 10 pgs.
Pagiamtzis, Kostas, “Content-Addressable Memory Introduction”, Jun. 25, 2007, (6 pgs.), retrieved from: http://www.pagiamtzis.com/cam/camintro.
Pagiamtzis, et al., “Content-Addressable Memory (CAM) Circuits and Architectures: A Tutorial and Survey”, Mar. 2006, (16 pgs.), vol. 41, No. 3, IEEE Journal of Solid-State Circuits.
International Search Report and Written Opinion for PCT Application No. PCT/US2013/043702, dated Sep. 26, 2013, (11 pgs.).
Elliot, et al., “Computational RAM: Implementing Processors in Memory”, Jan.-Mar. 1999, (10 pgs.), vol. 16, Issue 1, IEEE Design and Test of Computers Magazine.
Dybdahl, et al., “Destructive-Read in Embedded DRAM, Impact on Power Consumption,” Apr. 2006, (10 pgs.), vol. 2, Issue 2, Journal of Embedded Computing-Issues in embedded single-chip multicore architectures.
Kogge, et al., “Processing in Memory: Chips to Petaflops,” May 23, 1997, (8 pgs.), retrieved from: http://www.cs.ucf.edu/courses/cda5106/summer02/papers/kogge97PIM.pdf.
Draper, et al., “The Architecture of the DIVA Processing-In-Memory Chip,” Jun. 22-26, 2002, (12 pgs.), ICS '02, retrieved from: http://www.isi.edu/˜draper/papers/ics02.pdf.
Dibi, et al., “Processing-In-Memory Technology for Knowledge Discovery Algorithms,” Jun. 25, 2006, (10 pgs.), Proceeding of the Second International Workshop on Data Management on New Hardware, retrieved from: http://www.cs.cmu.edu/˜damon2006/pdf/adibi06inmemory.pdf.
U.S. Appl. No. 13/449,082, entitled, “Methods and Apparatus for Pattern Matching,” filed Apr. 17, 2012, (37 pgs.).
U.S. Appl. No. 13/743,686, entitled, “Weighted Search and Compare in a Memory Device,” filed Jan. 17, 2013, (25 pgs.).
U.S. Appl. No. 13/774,636, entitled, “Memory as a Programmable Logic Device,” filed Feb. 22, 2013, (30 pgs.).
U.S. Appl. No. 13/774,553, entitled, “Neural Network in a Memory Device,” filed Feb. 22, 2013, (63 pgs.).
U.S. Appl. No. 13/796,189, entitled, “Performing Complex Arithmetic Functions in a Memory Device,” filed Mar. 12, 2013, (23 pgs.).
Related Publications (1)
Number Date Country
20210043266 A1 Feb 2021 US
Continuations (1)
Number Date Country
Parent 15077171 Mar 2016 US
Child 16532778 US