BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a perspective view of a luminal prosthesis delivery system composed of multiple linked stents arranged axially along a delivery catheter.
FIG. 2A is a side view of a luminal prosthesis delivery system with multiple linked stents mounted on a delivery catheter and positioned in a vessel, at a target lesion site.
FIG. 2B is a side view illustrating a group of stent segments selected for deployment.
FIG. 2C is a side view illustrating the stent segments selected for deployment separated from the remaining stent segments.
FIG. 2D is a side view illustrating the selected stent segments radially expanded while the remaining stent segments are left behind on the delivery catheter.
FIG. 3 shows two stent segments coupled together with magnets.
FIG. 4A shows stent segments coupled together by overlapping stent segment ends.
FIG. 4B illustrates stent segment ends that overlap smoothly.
FIG. 4C illustrates stent segments coupled with overlapping arch shaped stent segment ends.
FIG. 4D shows stent segment ends that couple together by mating a raised surface with a corresponding depressed surface.
FIG. 5 shows balloon inflation breaking the coupling structure between stent segments.
FIG. 6A shows a luminal prosthesis comprised of stent segments coupled together with a strand of material. A cutting mechanism on the delivery catheter severs the coupling structure.
FIG. 6B shows a similar luminal prosthesis as in FIG. 6A, with an alternative cutting mechanism.
FIG. 6C shows a luminal prosthesis with a coupling structure comprised of a series of axially oriented loops of material between adjacent stent segment ends.
FIG. 6D shows the luminal prosthesis of FIG. 6C highlighting the coupling structure.
FIG. 6E shows another luminal prosthesis with a coupling structure comprised of a single strand of material circumferentially threaded through adjacent stent segment ends.
FIG. 6F shows the luminal prosthesis of FIG. 6E highlighting the coupling structure.
FIG. 7A shows a luminal prosthesis delivery system with a movable coupling structure.
FIG. 7B shows the luminal prosthesis delivery system of FIG. 7A with some of the coupling structures closed.
FIG. 7C shows a luminal prosthesis delivery system with an active closing element that closes the coupling structure between stent segments.
FIG. 7D shows a luminal prosthesis delivery system where an active closing element reflows an adhesive between adjacent stent segments.
FIG. 7E shows the coupling structure formed when an active closing element reflows adhesive between adjacent stent segment ends.
FIG. 7F further illustrates how a coupling structure may be formed when an active closing element reflows adhesive between adjacent stent segment ends.
FIG. 8A shows a luminal prosthesis delivery system where the coupling elements are closed by balloon inflation.
FIG. 8B shows how the coupling elements of FIG. 8A engage upon balloon inflation.
FIG. 8C illustrates another geometry where coupling elements engage during balloon inflation.
FIG. 8D shows yet another geometry where coupling elements engage during balloon inflation.
FIG. 8E is a side view of the coupling elements when they are engaged.
FIG. 8F is a top view of hook shaped coupling elements when engaged.
FIG. 8G shows another geometry of coupling elements adapted to engage during balloon inflation.
FIG. 8H illustrates a stent delivery catheter having multiple expandable members adapted to selectively interlock stent segments together.
FIG. 8I illustrates multiple inflation lumens used to selectively inflate the expandable members of FIG. 8H.
FIG. 9A shows a luminal prosthesis delivery system with releasable couplings in between stent segments.
FIG. 9B shows a possible geometry of the coupling structure in FIG. 9A.
FIG. 9C shows another geometry of the coupling structure in FIG. 9A.
FIG. 10A shows a luminal prosthesis wherein the coupling structure between adjacent stent segments is decoupled by balloon inflation.
FIG. 10B shows one embodiment of the coupling structure of FIG. 10A where overlapping stent ends interlock.
FIG. 10C shows a protuberance on one stent segment end that can form a part of the coupling structure of FIG. 10A.
FIG. 10D shows an alternative embodiment of the coupling structure of FIG. 10A wherein an adhesive couples adjacent stent segment ends together.
FIG. 10E shows the adhesive of FIG. 10D, applied to one stent segment end.
FIG. 11A shows a releasable coupling structure between adjacent stent segment ends.
FIG. 11B shows an alternative embodiment of the releasable coupling structure of FIG. 11A.
FIG. 11C illustrates overlapping stent segment ends that have the releasable coupling structure of FIG. 11A.
FIG. 11D shows a ball-socket coupling structure that may be employed as the coupling structure in FIG. 11A.
FIG. 11E shows interleaving struts that may be employed as the coupling structure in FIG. 11A.
FIG. 11F shows mating hooks which may be employed as the coupling structure in FIG. 11A.
FIGS. 11G-11H show another embodiment of a releasable coupling structure.
FIG. 12A illustrates an inflatable decoupling element.
FIG. 12B shows overlapping stent segment ends releasably coupled.
FIG. 12C is a cross-sectional view of overlapping stent segment ends in FIG. 12B.
FIG. 12D illustrates breakable chain linked coupling elements between stent segments.
FIG. 12E illustrates an adhesive coupling element between stent segments.
FIG. 12F shows a hook/ring coupling element between stent segments.
FIG. 12G shows mating hooks coupling stent segments together.
FIGS. 12H-12L show various geometries of interlocking stent segment ends.
FIG. 13A shows stent segments rotationally coupled together.
FIG. 13B shows stent segment ends with hook features that may be rotationally coupled together.
FIG. 14A shows stent segments coupled together with a coating layer.
FIG. 14B shows the coupling between stent segments in FIG. 14A broken by balloon inflation.
FIGS. 15A-15B show a liquid bonding material used to create a coupling structure between stent segments.
FIG. 16A illustrates how self-expanding connecting rings may be used to couple stent segments together.
FIG. 16B shows self-expanding connecting rings linked to balloon expandable stent segments.
FIG. 16C shows a series of self-expanding connecting rings coupled to stent segments.
FIG. 17A shows a heating element used to decouple adjacent stent segments from one another.
FIG. 17B shows adjacent stent segments coupled together with a thermal shape memory alloy or polymer coupling element.
FIGS. 17C-17D show alternative geometries of thermal shape memory alloy coupling elements.
FIG. 17E shows a stent segment with thermal shape memory loops and hooks.
FIG. 18 shows stent segments welded/bonded together after deployment.