This invention relates to apparatus and methods to detect a target analyte in a test sample by forming a fluorescent complex comprising the target analyte and a probe. The apparatus includes a pulsed light source and a digitizer to measure fluorescent decay and/or lifetime of the fluorophore in the complex.
Analyte detection methods are widely utilized in research and development, drug discovery, biodefense, and diagnostic applications. For example, a polynucleotide probe (single-stranded polynucleotide that is complementary to a specific target polynucleotide) may be used to selectively identify the presence of a particular target polynucleotide via hybridization. Fluorescence is widely utilized because of its high degree of sensitivity to detect these hybridization events.
Single nucleotide polymorphisms (SNPs), which are widely abundant throughout genomes, are commonly utilized as genetic markers for conducting phenotype association studies. In many cases, genotyping an individual specimen for a SNP requires the identification the SNP alleles and determination of their state (i.e. homozygous or heterozygous) within the specimen.
The use of allele-specific hybridization probes (polynucleotide complementary to a SNP allele) to identify SNP alleles in the homozygous or heterozygous state is complicated by the occurrence of mismatching between different probes and target alleles. Many methods rely on precise control of the hybridization stringency to prevent single base pair mismatching. Microarrays are particularly susceptible to mismatching because of the need to hybridize thousands of diverse probes under the same hybridization conditions. Currently, complicated and/or expensive methods are needed in allele-specific hybridization techniques to maximize the formation of perfect matches between allele-specific probes and their respective target allele and minimize background from the formation of mismatches.
It is an object of the invention to utilize target-specific probes labeled with a fluorophore that has a fluorescence decay and/or lifetime that changes upon binding with a target analyte.
In one aspect, it is an object of the invention to provide a simple and robust method for genotyping SNP alleles. Fluorescent probe polynucleotides are used for identifying a SNP allele and determining both the homozygous and heterozygous states.
Apparatus and methods are provided for detecting and quantitating a target analyte by forming a binding complex comprising a target analyte (target) and a ligand (probe) that binds to the target. The probe and/or target has a fluorophore attached to it. The probe is attached to a substrate. Binding complex formation is detected by measuring the fluorescence decay and/or lifetime of the fluorophore in the complex. The fluorophore is attached to the probe or target at a position that results in a change in the fluorescence decay and/or lifetime of the fluorophore upon complex formation.
The apparatus includes a substrate wherein a probe is attached to an identifiable region of the substrate. The probe comprises a binding domain this is capable of binding to a target binding domain within the target. Preferably, the substrate contains more than one identifiable region where each region contains a different probe to allow for multiplex analysis of different targets in a test sample.
Alternatively, the same probe can be attached to a multiplicity of identifiable regions to assay a multiplicity of test samples for the presence of a single target.
In some instances, a multiplicity of probes are attached at one of the identifiable regions. If a target binds to such a region, the test sample may be assayed with a different substrate containing each of the probes separately attached to different identifiable regions of the substrate. This provides for the identification of the probe that originally formed a binding complex at the identifiable region of the first substrate.
The substrate can be in any format and configuration. It can be a bead array, encoded particle array, a traditional microarray, membrane, or a microwell plate.
The apparatus also includes a fluorescence decay detection system capable of measuring the fluorescence decay and/or lifetime of a fluorophore at each region of the substrate. The fluorescence decay and/or lifetime detection system comprises a pulsed light source and a digitizer. The pulsed light source can be a microlaser, preferably a solid-state passively q-switched laser that can produce laser pulses with short time intervals of duration (e.g., in the sub-nanosecond or nanosecond, such as 0.4 ns to several nanosecond range). A particularly preferred digitizer is a transient digitizer that can be used to sample fluorescent signals at about a 0.5 gigahertz or higher sampling rate.
In the methods of the invention, a fluorescently labeled binding complex is formed. The complex contains the probe attached to an identifiable region of a substrate, a target (if present in a test sample) and a fluorophore that is attached to the probe and/or target. The fluorescence decay and/or lifetime of the fluorophore is measured to provide an indication of the presence or absence of the target in the test sample.
The fluorescently labeled complex is typically formed by contacting a test sample with one or more probes attached to an identifiable region of a substrate. The binding domain of the probe interacts with and binds to the binding domain of a target. The contacting is under conditions that permit formation of a binding complex. In a preferred embodiment, the fluorophore is covalently attached to the probe and/or target at a position that causes a change in the fluorescence decay and/or lifetime of the fluorophore upon formation of the binding complex.
In one embodiment, the binding complex is a double-stranded polynucleotide. This method can be directed to detecting (1) the presence of a target polynucleotide or (2) the presence of single nucleotide polymorphisms (SNPs) in a target polynucleotide. In accordance with one aspect of the invention, methods are provided for detecting a target SNP allele(s) and determining the homozygous or heterozygous state in a test sample using one fluorescent probe polynucleotide. For SNP analysis, the fluorophore is attached to the probe at a terminal nucleotide. The fluorophore of the probe polynucleotide has a different fluorescence decay and/or lifetime when the probe polynucleotide forms a terminal homoduplex (i.e., matched base pairing at the terminal nucleotide of the probe) as compared to when it forms a terminal heteroduplex (i.e., with a base pair mismatch at the terminal nucleotide of the probe). The fluorescence decay and/or lifetime is different among samples that are: (1) homozygous for terminal homoduplexes, (2) homozygous for terminal heteroduplexes, (3) heterozygous (i.e., contains both terminal homoduplexes and terminal heteroduplexes). In a preferred embodiment, hybridization conditions favor the formation of both terminal homoduplex and terminal heteroduplex complexes between the probe polynucleotide and target polynucleotide that may contain one or more alleles. Such SNP determinations are preferably made using the fluorescent decay detection system disclosed herein. SNP determinations may also be made utilizing fluorescently labeled hybridization complexes immobilized on a substrate as described herein. Suitable fluorophores for SNP detection include, but are not limited to, BODIPY 576 (Molecular Probes, Eugene, Oreg.).
In accordance with another aspect of the invention, a capture polynucleotide is attached to the surface of a substrate. The capture polynucleotide has a binding domain that is substantially complementary to a first binding domain of the target polynucleotide. A probe polynucleotide has a binding domain that is substantially complementary to a second binding domain of the target polynucleotide. For SNP analysis, a terminal nucleotide of the probe is labeled with a fluorophore to distinguish specific nucleotide(s) in the target polynucleotide. The preferred method includes: (1) hybridizing a capture polynucleotide with a target polynucleotide allele(s) that may be found in a test sample, (2) hybridizing a fluorescently labeled probe polynucleotide with the target polynucleotides, before, during or after the capture of the target polynucleotide by the capture polynucleotide, (3) optionally removing unbound fluorescent probe polynucleotides (e.g., by washing), and (4) measuring the fluorescence decay and/or lifetime of the fluorophore in the hybridization complex to determine the presence of a target polynucleotide allele (s) and the homozygous or heterozygous state of the allele(s) in a test sample
In a preferred embodiment one or more different probe or capture polynucleotides are attached to one or more different identifiable regions on a substrate to allow multiplex detection and analysis of one or more different target polynucleotide SNPs.
Other features, objects, and advantages of the present invention are apparent in the detailed description that follows. It should be understood, however, that the detailed description, while indicating preferred embodiments of the invention, are given by way of illustration only, not limitation. Various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from the detailed description.
The invention provides apparatus and methods to detect and/or quantitate the presence of a target analyte (“target”) that may or may not be present in a test sample. A target specific probe (“probe”) binds to the target to form a binding complex. A fluorophore is attached to the probe and/or target in such a way that the fluorescence decay and/or lifetime of the fluorophore changes upon complex formation.
As will be appreciated by those in the art, the composition of the probe will depend on the composition of the target. Probes that bind to a wide variety of analytes are known or can be readily found using known techniques. For example, when the target is a single-stranded nucleic acid, the probe is generally a substantially complementary nucleic acid. Alternatively, as is generally described in U.S. Pat. Nos. 5,270,163, 5,475,096, 5,567,588, 5,595,877, 5,637,459, 5,683,867, 5,705,337, and related patents, hereby incorporated by reference, nucleic acid “aptamers” can also be developed for binding to virtually any target analyte. Similarly the target may be a nucleic acid binding protein and the probe is either a single-stranded or double-stranded nucleic acid; alternatively, the probe may be a nucleic acid binding protein when the target is a single or double-stranded nucleic acid. When the target is a protein, the binding probes include proteins (particularly including antibodies or fragments thereof (FAbs, etc.)), peptides, polypeptides, nucleic acids, small molecules, or aptamers, described above. Preferred probes are proteins including peptides and polypeptides. For example, when the target analyte is an enzyme, suitable binding probes include substrates, inhibitors, and other proteins that bind the enzyme, i.e., components of a multi-enzyme (or protein) complex. As will be appreciated by those in the art, any two molecules that will associate, preferably specifically, may be used, either as the target or the probe. Suitable target/probe pairs include, but are not limited to, antibodies/antigens, receptors/ligand, proteins/nucleic acids; nucleic acids/nucleic acids, enzymes/substrates and/or inhibitors, carbohydrates (including glycoproteins and glycolipids)/lectins, carbohydrates and other binding partners, proteins/proteins; and protein/small molecules. These may be wild-type or derivative sequences. In a preferred embodiment, the probes are portions (particularly the extracellular portions) of cell surface receptors that are known to multimerize, such as the growth hormone receptor, glucose transporters (particularly GLUT4 receptor), transferrin receptor, epidermal growth factor receptor, low density lipoprotein receptor, high density lipoprotein receptor, leptin receptor, interleukin receptors including IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-11, IL-12, IL-13, IL-15 and IL-17 receptors, VEGF receptor, PDGF receptor, EPO receptor, TPO receptor, ciliary neurotrophic factor receptor, prolactin receptor, and T-cell receptors. Alternatively, targets for such receptors can be used to probe a sample for the same or related receptors. Similarly, there is a host of literature relating to the development of binding partners based on combinatorial chemistry methods.
Probes can be used to identify a target by way of high throughput screening of libraries which may contain one or more targets that are capable of binding to the probe. Such an approach can be used, for example, in the preliminary stages of drug discovery to detect and isolate molecules that bind to a probe.
In addition, drug candidates can be used as probes to identify the drugs' interaction with other molecules (targets), e.g., as a preliminary screen for drug toxicity.
In some embodiments, the probe and/or target is other than a polynucleotide. In some embodiments, the probe and/or target is other than a protein.
By “specifically bind” herein is meant that the probe binds the target, with specificity sufficient to differentiate between the target and other components or contaminants of the test sample. However, as will be appreciated by those in the art, it will be possible to detect targets using binding that is not highly specific. For example, an array of different probes can be used to detect any particular target by its “signature” of binding to a panel of probes. The binding should be sufficient to allow the target to remain bound under the conditions of the assay, including wash steps to remove non-specific binding. In some embodiments, for example in the detection of certain biomolecules, the binding constants of the target to the binding probe will be at least about 10−4 to 10−6 M−1, with at least about 10−5 to 10−9 being preferred and at least about 10−7 to 10−9 M−1 being particularly preferred.
In a preferred embodiment, the fluorophore is covalently attached to either the probe and/or the target such that upon formation of the binding complex, the fluorophore is exposed to a different environment as compared to the labeled probe or target in solution. This causes a change in the fluorescence decay and/or lifetime of the fluorophore upon complex formation. Fluorophores are generally attached at or near the binding domain of the probe or target so as to produce a change in the fluorescence decay and/or lifetime of the fluorophore upon complex formation. For example, the fluorophore may be attached to an amino acid that is within 4-6 amino acid residues more preferred within 1-3 amino acid residues most preferred within the binding domain of a protein. In the case of nucleic acids, the fluorophore may be attached at a terminal nucleotide. Alternatively, the fluorophore may be attached to a nucleotide so that it may bind to one or more grooves of a double-stranded polynucleotide complex or intercalate within the double-stranded domain.
Alternatively, the three-dimensional structure of the probe and/or target can be used to ascertain where to attach the fluorophore. In general, the fluorophore should be located on a probe or target so as to be within 3-5 nanometers, more preferably 1-2 nanometers and most preferably within the binding domain of the target or probe preferably upon complex formation.
The positioning of the fluorophore can be readily ascertained by determining the binding domain between the probe and the target, e.g., by alanine scanning or by viewing the three-dimensional structure of the probe and/or target.
Many probes and/or targets contain a multiplicity of subunits that form the backbone of the molecule. For example, proteins are made of amino acids, polynucleotides are made of nucleotides and carbohydrates are made of sugars, each of which define the backbone of the molecule. The fluorophores used in the invention may be attached to one or more of these subunits, i.e., the backbone, either directly or via a linker molecule. Such fluorophores are pendant fluorophores. Alternatively, a fluorescent analog of the subunit such as a fluorescent amino acid analog, or a fluorescent nucleotide analog can be incorporated into the backbone of a polynucleotide or protein of the molecule. (Hawkins, Topics in Fluorescence Spectroscopy, 7:151-175, Kluwer Academic/Plenum Publishers, New York, 2003; Hawkins, et al., 2001, Analytical Biochemistry, 298:231-240; Hawkins, et al., 1997, Analytical Biochemistry, 244:86-95). In an alternate embodiment, fluorescent protein such as green fluorescent protein (GFP) may be fused to a target and/or probe.
In some embodiments, the target and/or probe may have intrinsic fluorescence that has a fluorescence decay and/or lifetime that changes upon binding with the corresponding probe or target. For example, the amino acid tryptophan has intrinsic fluorescence that can be used to detect the binding of a protein containing the amino acid with a target or probe. (Striebel, et al., Proteomics 2004, 4:1703-1711.) In such cases, a fluorophore need not be incorporated into the target and/or probe. In such embodiments, it is preferred that the fluorescence decay detector system disclosed herein be used to measure fluorescence decay and/or lifetime.
In an alternate embodiment, a “capture probe” captures and immobilizes the target to the substrate. For example, the capture polynucleotide may bind to a first binding domain on the target to form a complex that is not fluorescently labeled. The captured target is then contacted with a fluorescently labeled probe which binds to a second binding domain on the target. Upon binding of the probe, the fluorophore demonstrates a change if fluorescent decay and/or lifetime. For example, a multimeric complex may contain three different members where the first member binds to second and third members. In such circumstances, the second member may act as a capture probe, the first member as the target and the third member as a fluorescently labeled probe.
This approach is also applicable to the well known sandwich assay involving an immobilized antibody (capture probe) specific for a first epitope on an antigen (target) and a fluorescently labeled second antibody (probe) specific for a second epitope on the antigen. By positioning the fluorophore on the second antibody near the antigen binding domain of the antibody, a change in the fluorescent decay and/or lifetime occurs upon sandwich formation. The change in fluorescent decay and/or lifetime provides an advantage over the prior art sandwich assay since bound and unbound labeled antibody can be measured separately. In some embodiments, unbound antibody can be removed prior to fluorescent analysis. In either case, the fluorescent detection system as disclosed herein may be used to measure fluorescent decay and/or lifetime of the complex formed.
In an additional embodiment, the probe and target are polynucleotides. In one embodiment, a probe polynucleotide is attached to the surface of the substrate. A test sample which may or may not contain a target polynucleotide is capable of hybridizing with the probe. In some embodiments, the immobilized probe nucleic acid is labeled at the terminal nucleotide such that upon binding of the target polynucleotide a change in the fluorescent decay and/or lifetime is discernable. This embodiment is particularly useful to detect point mutations. In this case, a perfect base pair match at the terminal nucleotide of the probe (having a fluorophore attached thereto) results in a defined fluorescence decay and/or lifetime. However, if a terminal nucleotide is mismatched with the nucleotide in a target, a different fluorescent decay and/or lifetime is observed.
In a particularly preferred embodiment involving polynucleotides, a capture polynucleotide is attached to the surface of a substrate at an identifiable region. This capture polynucleotide is capable of hybridizing to a portion of a single-stranded target polynucleotide. All or part of the other portion of the target polynucleotide is capable of hybridizing to all or a portion of a fluorescently labeled probe.
A probe polynucleotide can be labeled at one or more nucleotide (s) within the probe to detect the presence of the target polynucleotide. In a preferred embodiment, a fluorophore is covalently attached to the 5′ nucleotide (terminal nucleotide) of the probe polynucleotide. Furthermore, the fluorophore-labeled, 5′ nucleotide of the probe polynucleotide is opposite the polymorphic nucleotide (s) position of the target polynucleotide and may form a base pair match or mismatch upon hybridization of the probe polynucleotide. Such terminally labeled probe polynucleotides can be used for SNP analysis.
The fluorophore of the probe polynucleotide has a different fluorescence decay and/or lifetime when it forms a terminal homoduplex compared to when it forms a terminal heteroduplex.
For example, the fluorescence lifetime of the BODIPY 576 dye conjugated to the 5′ end of a DNA probe is affected by a 5′ terminal base pair match or mismatch in a hybridization complex (Kirschstein, et al., 1999, Bioelectrochemistry and Bioenergetics, 48:415-421; Winter, et al., 1997, Nucleosides & Nucleotides, 16(5&6):531-542; Winter, et al., 1999, Nucleosides & Nucleotides, 18(3):411-423).
One aspect of this invention relates to methods for detecting a target polynucleotide allele (s) and determination of the homozygous or heterozygous state in a test sample using one fluorescent probe polynucleotide.
In the methods, the probe polynucleotide is contacted with the test sample. Depending on the target polynucleotide alleles present, a homoduplex or heteroduplex is formed. A probe polynucleotide can be labeled at one or more nucleotide (s) within the probe to detect the presence of the target polynucleotide. In the example of a terminal-labeled probe polynucleotide, the fluorophore of the probe polynucleotide has a first fluorescence decay and/or lifetime when the probe polynucleotide forms a terminal homoduplex (i.e., a hybridization complex with a fluorophore labeled terminal nucleotide base pair match) and a second fluorescence decay and/or lifetime when it forms a terminal heteroduplex (i.e., a hybridization complex with a fluorophore labeled terminal nucleotide base pair mismatch). When both alleles are present, i.e., the sample contains heterozygous alleles, a third fluorescent decay and/or lifetime is measured that is between the first and second fluorescence decays and/or lifetimes.
The method comprises: (1) contacting a probe polynucleotide with a test sample that may contain one or more target polynucleotide alleles under conditions that favor the formation of both the terminal homoduplex and terminal heteroduplex complexes, and (2) measuring the fluorescence decay and/or lifetime of the fluorophore to detect the target polynucleotide allele(s) in a target and determine whether they are homozygous or heterozygous. The fluorescence decay and/or lifetime is different between samples that are (1) homozygous for terminal homoduplexes, (2) homozygous for terminal heteroduplexes, and (3) heterozygous (i.e. contains both terminal homoduplexes and terminal heteroduplexes). As used herein, a heterozygous sample contains target polynucleotides having more than one allele. As used herein, a homozygous sample contains target polynucleotides with one allele. In a preferred embodiment the allelic variation of the target polynucleotide is a SNP. The SNP may be representative of another polymorphism, including but not limited to, deletions, additions, substitutions, translocations, etc.
The hybridization conditions are chosen to maximize homoduplex/heteroduplex formation. However, the stringency of the hybridization conditions is high enough to prevent non-specific hybridization.
The invention preferably uses a fluorescence decay and/or lifetime measurement that allows a calibration-free reading that distinguishes the multiple contributions to the total fluorescence including, background fluorescence (autofluorescence), scatter, and the multiple components of the fluorophore whose spectra may be overlapping. Importantly, the fluorescence lifetime, which is an inherent molecular property, is resistant to affects of drift in light source intensity, wavelength dependence of detector response, light-scatter, and many other well-known factors that compromise the data in fluorescence intensity-based approaches.
Data from the fluorescence decay measurement can be analyzed in various ways to detect allele(s) and determine if they are homozygous or heterozygous. This may include, but is not limited to, calculating the fluorescence lifetime(s) and their relative contribution using a single-exponential analysis, multi-exponential analysis, or a global analysis. This may be compared with the fluorescence lifetime properties of reference samples or data that have a known target polynucleotide allele(s) and homozygous or heterozygous state. Alternatively, the collected fluorescence decay waveform may be compared with the fluorescence decay waveforms of reference samples or data that have a known target polynucleotide allele(s) and homozygous or heterozygous state.
In accordance with one aspect of this invention, the detection of a target polynucleotide allele(s) and determination of the homozygous or heterozygous state in a test sample using one fluorescent probe polynucleotide, may be homogeneous (i.e. in solution) or heterogeneous (i.e. on the surface of a substrate).
In a preferred embodiment, a probe polynucleotide may be added directly to a reaction mixture (e.g. PCR) before target amplification, for use in a single-step homogeneous assay.
In accordance with one aspect of the invention, a probe polynucleotide may be attached to an identifiable region on a substrate. In accordance with another aspect of this invention, a capture polynucleotide is attached to an identifiable region on a substrate. The capture polynucleotide is substantially complementary to a first binding domain of the target polynucleotide, and a fluorescent probe polynucleotide is substantially complementary to a second binding domain of the target polynucleotide. For SNP analysis, a terminal nucleotide of the probe polynucleotide is labeled with a fluorophore to distinguish a specific nucleotide in the target polynucleotide. The preferred method includes: (1) hybridizing a capture polynucleotide with a target polynucleotide allele(s) that may be found in a test sample, (2) hybridizing a fluorescently labeled probe polynucleotide with the target polynucleotide allele(s), before, during or after the capture of the target polynucleotide on the surface with the capture polynucleotide, (3) optionally removing unbound fluorescent probe polynucleotides (e.g., by washing), and (4) measuring the fluorescence decay and/or lifetime of the fluorophore to determine the presence of a target polynucleotide allele (s) and the homozygous or heterozygous state in a test sample. The use of a capture polynucleotide allows unbound probe polynucleotides to be removed, which eliminates a potential background signal.
In a preferred embodiment one or more different probe or capture polynucleotides are attached to one or more different identifiable regions on a substrate to allow multiplex detection and analysis of one or more different target polynucleotides.
By “polynucleotide,” “nucleic acid,” “oligonucleotide” or grammatical equivalents herein means at least two nucleotides covalently linked together. A polynucleotide of the present invention will generally contain phosphodiester bonds, although in some cases, as outlined below, nucleic acid analogs are included that may have alternate backbones, comprising, for example, phosphoramide (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl. Acids Res. 14:3487 (1986); Sawai et al, Chem. Lett. 805 (1984), Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate (Mag et al., Nucleic Acids Res. 19:1437 (1991); and U.S. Pat. No. 5,644,048), phosphorodithioate (Briu et al., J. Am. Chem. Soc. 111:2321 (1989), O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), and peptide nucleic acid backbones and linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31:1008 (1992); Nielsen, Nature, 365:566 (1993); Carlsson et al., Nature 380:207 (1996), all of which are incorporated by reference). Other analog nucleic acids include those with positive backbones (Denpcy et al., Proc. Natl. Acad. Sci. USA 92:6097 (1995); non-ionic backbones (U.S. Pat. Nos. 5,386,023, 5,637,684, 5,602,240, 5,216,141 and 4,469,863; Kiedrowshi et al., Angew. Chem. Intl. Ed. English 30:423 (1991); Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); Letsinger et al., Nucleoside & Nucleotide 13:1597 (1994); Chapters 2 and 3, ASC Symposium Series 580, “Carbohydrate Modifications in Antisense Research”, Ed. Y. S. Sanghui and P. Dan Cook; Mesmaeker et al., Bioorganic & Medicinal Chem. Lett. 4:395 (1994); Jeffs et al., J. Biomolecular NMR 34:17 (1994); Tetrahedron Lett. 37:743 (1996)) and non-ribose backbones, including those described in U.S. Pat. Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, “Carbohydrate Modifications in Antisense Research”, Ed. Y. S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within the definition of polynucleotide (see Jenkins et al., Chem. Soc. Rev. (1995) pp 169-176). Several polynucleotide analogs are described in Rawls, C & E News Jun. 2, 1997 page 35. All of these references are hereby expressly incorporated by reference. These modifications of the ribose-phosphate backbone may be done to increase the stability and half-life.
Peptide nucleic acids (PNA) include peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring polynucleotides. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration.
The polynucleotides may be single-stranded or double-stranded, as specified, or contain portions of both double-stranded or single-stranded sequence. The polynucleotide may be DNA, both genomic and cDNA, RNA or a hybrid, where the polynucleotide contains any combination of deoxyribo- and ribo-nucleotides, and any combination of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xathanine hypoxathanine, isocytosine, isoguanine, etc.
As used herein, the term “nucleoside” includes nucleotides as well as nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, “nucleoside” includes non-naturally occurring analog structures. Thus for example the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.
“Probe polynucleotide” or “probe” herein may be any of the aforementioned polynucleotides. Probe polynucleotides are designed to have a region that has a nucleotide sequence (the probe hybridization domain) that is complementary to a hybridization domain in a target polynucleotide such that the probe hybridizes to the target polynucleotide. Preferably the hybridization domain of the probe polynucleotide is designed to be complementary to the hybridization domain of the target polynucleotide that may or may not contain a mutation. The size of the probe polynucleotide may vary, as will be appreciated by those in the art, from 2 to 500 or more nucleotides in length, with probes of between 10 and 200 nucleotides being preferred, more preferably between 15 to 200, between 15 and 50 being particularly preferred, and from 10 to 35 nucleotides being especially preferred. The probe is preferably single-stranded.
“Capture polynucleotide” herein may be any of the aforementioned polynucleotides. Capture polynucleotides are designed to have a region that has a nucleotide sequence (the capture hybridization domain) that is complementary to a hybridization domain in a target polynucleotide such that the capture polynucleotide hybridizes to the target polynucleotide.
The complementarity of the probe and capture polynucleotide with the target need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization of the target polynucleotide with the capture polynucleotide and/or the probe polynucleotide. However, if the number of mismatches is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by “substantially complementary” herein is meant that (1) the capture polynucleotide hybridization domain and the hybridization domain in the target polynucleotide, and/or (2) the hybridization domain of the target polynucleotide and probe polynucleotide are sufficiently complementary to hybridize under normal hybridization conditions.
The size of the capture polynucleotide may vary, as will be appreciated by those in the art, from 2 to 500 or more nucleotides in length, with probes of between 10 and 200 nucleotides being preferred, more preferably between 15 to 200, between 15 and 50 being particularly preferred, and from 10 to 35 nucleotides being especially preferred. The capture polynucleotide is preferably single-stranded.
The term “target polynucleotide,” “target” or grammatical equivalents herein means a polynucleotide, typically a naturally occurring nucleic acid, that is of interest to identify or quantitate in a test sample. The target polynucleotide may be all or a portion of a gene, a regulatory sequence, genomic DNA, cDNA, RNA including mRNA and rRNA, or others. The target polynucleotide may be from a sample, or a secondary target such as a product of a reaction such as a ligation product from an oligonucleotide ligation reader reaction, an amplification probe from oligonucleotide ligation amplification, product of an isothermal amplification, a PCR reaction product, etc.
The target polynucleotide has a hybridization domain that is substantially complementary to the hybridization domain of the probe or capture polynucleotide. Preferably, the hybridization domain of the target polynucleotide, that is complementary to the hybridization domain of the probe polynucleotide, may or may not contain a mutation. As used herein, a mutation may included, but is not limited to, a change in the nucleotide sequence of the hybridization domain of the target polynucleotide. This mutation may involve one or more nucleotides. As used herein, target polynucleotide alleles are different forms of a target polynucleotide. For example, they may differ by the nucleotide sequence of the hybridization domain.
The hybridization domain of the probe, target, and capture polynucleotide may be any length, with the understanding that longer sequences are more specific. As will be appreciated by those in the art, the hybridization domain may take many forms. For example, it may be contained within a larger polynucleotide, i.e., all or part of a gene or mRNA, a restriction fragment of a plasmid or genomic DNA, among others. The probe polynucleotide may be made to hybridize to the hybridization domain within the target polynucleotide to determine the presence, absence, or co-presence of target polynucleotide alleles in a sample. Accordingly, the region of the target polynucleotide that hybridizes to a region of a probe polynucleotide defines the hybridization domains for the probe and target.
Double-stranded target polynucleotides may be denatured to render them single-stranded so as to permit hybridization with the probe polynucleotides or capture polynucleotides. A preferred embodiment utilizes a thermal step, generally by raising the temperature of the reaction to about 95° C., although pH changes and other techniques may also be used.
In accordance with one aspect of this invention, the probe polynucleotide and target polynucleotide alleles are hybridized under conditions that favor the formation of both the homoduplex and heteroduplex complexes. As an example, the sample temperature may be raised high enough to denature the double-stranded target polynucleotides (e.g. 95° C.), and then rapidly lowered to a temperature below the melting temperature of both the homoduplex and heteroduplex complexes. Preferably, the hybridization stringency allows the homoduplex and heteroduplex complexes to form with the target polynucleotide alleles, but prevents hybridization with non-target polynucleotides.
The hybridization reactions outlined herein may be carried out in a variety of ways. For example, components of the hybridization reaction may be added simultaneously or sequentially. In addition, the reaction may include a number of other reagents such as salts, buffers, neutral proteins, e.g. albumin, detergents, etc., which may be used to facilitate optimal hybridization and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used, depending on the sample preparation methods and purity of the target polynucleotide.
Different hybridization stringencies may be needed to hybridize the capture polynucleotide and the probe polynucleotide. The hybridization is generally run under stringency conditions which allows formation of the hybridization complex only in the presence of target polynucleotide. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration, pH, organic solvent concentration, etc. These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Pat. No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.
A variety of hybridization conditions may be used, including high, moderate and low stringency conditions; see for example Maniatis et al., Molecular Cloning: A Laboratory Manual, 2d Edition, 1989, and Short Protocols in Molecular Biology, ed. Ausubel, et al, hereby incorporated by reference. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes, “Overview of principles of hybridization and the strategy of nucleic acid assays” (1993). Generally, stringent conditions are selected to be about 5-10° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target polynucleotide is present in excess, at Tm, 50% of the probes are all hybridized at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes (e.g. 10 to 50 nucleotides) and at least about 60° C. for long probes (e.g. greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of helix destabilizing agents such as formamide. The hybridization conditions may also vary when a non-ionic backbone, i.e. PNA is used, as is known in the art. In addition, cross-linking agents may be added after target binding to cross-link, i.e. covalently attach, the two strands of the hybridization complex.
Hybridization conditions also include those disclosed by Sambrook et al., Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, New York), using a hybridization solution comprising: 5×SSC, 5× Denhardt's reagent, 1.0% SDS, 0.05% sodium pyrophosphate and up to 50% formamide. Hybridization can be carried out at 37-42° C. for six hours. Following hybridization, substrates can be washed as follows: (1) 5 minutes at room temperature in 2×SSC and 1% SDS; (2) 15 minutes at room temperature in 2×SSC and 0.1% SDS; (3) 30 minutes to 1 hour at 37° C. in 1×SSC and 1% SDS; (4) 2 hours at 42-65° C. in 1×SSC and 1% SDS, changing the solution every 30 minutes. The aforementioned incubation times may be reduced significantly.
Different stringent conditions can be used for hybridization. One exemplary formula for calculating the stringency conditions suitable for hybridization between nucleic acid molecules of a specified sequence homology (Sambrook et al., 1989):
Tm=81.5 C+16.6 Log [Na+]+0.41(% G+C)−0.63(% formamide)−600/#bp in duplex
As an illustration of the above formula, using [Na+]=[0.368] and 50% formamide, with GC content of 42% and an average probe size of 200 bases, the Tm is 57° C. The Tm of a DNA duplex decreases by 1°-1.5° C. with every 1% decrease in homology. Thus, targets with greater than about 75% sequence identity might be observed using a hybridization temperature of 42° C. Such a sequence would be considered substantially homologous to the nucleic acid sequence of the present invention.
In another example, the hybridization conditions include 16-hour hybridization at 45° C., followed by at least three 10-minute washes at room temperature. The hybridization buffer comprises 100 mM MES, 1 M [Na+], 20 mM EDTA, and 0.01% Tween 20. The pH of the hybridization buffer preferably is between 6.5 and 6.7. The wash buffer is 6×SSPET. 6×SSPET contains 0.9 M NaCl, 60 mM NaH2PO4, 6 mM EDTA, and 0.005% Triton X-100. Under more stringent acid array hybridization conditions, the wash buffer can contain 100 mM MES, 0.1 M [Na+], and 0.01% Tween 20. The aforementioned incubation times may be reduced significantly.
In a preferred embodiment, the probe polynucleotides are designed for use in genetic diagnosis or genetic identification (e.g. forensic, personal, parental identification). For example, probe polynucleotides can be made to detect mutations in target polynucleotides such as the gene for nonpolyposis colon cancer, the BRCA1 breast cancer gene, P53, which is a gene associated with a variety of cancers, the Apo E4 gene that indicates a greater risk of Alzheimer's disease, allowing for easy presymptomatic screening of patients, mutations in the cystic fibrosis gene, mutations in the P450 genes, which may allow prediction of a patients response to drugs, or any of the others well known in the art.
Probe polynucleotides may be used to detect and identify (e.g. genus, species, strains, etc) organisms. Suitable target polynucleotides may also be associated with: (1) viruses, including but not limited to, orthomyxoviruses, (e.g. influenza virus), paramyxoviruses (e.g. respiratory syncytial virus, mumps virus, measles virus), adenoviruses, rhinoviruses, coronaviruses, reoviruses, togaviruses (e.g. rubella virus), parvoviruses, poxviruses (e.g. variola virus, vaccinia virus), enteroviruses (e.g. poliovirus, coxsackievirus), hepatitis viruses (including A, B and C), herpesviruses (e.g. Herpes simplex virus, varicella zoster virus, cytomegalovirus, Epstein-Barr virus), rotaviruses, Norwalk viruses, hantavirus, arenavirus, rhabdovirus (e.g. rabies virus), retroviruses (including HIV, HTLV-I and -II), papovaviruses (e.g. papillomavirus), polyomaviruses, and picornaviruses, and the like; (2) bacteria, including but not limited to, a wide variety of pathogenic and non pathogenic prokaryotes of interest including Bacillus; Vibrio, e.g. V. cholerae; Escherichia, e.g. Enterotoxigenic E. coli, Shigella, e.g. S. dysenteriae; Salmonella, e.g. S. typhi; Mycobacterium e.g. M. tuberculosis, M. leprae; Clostridium, e.g. C. botulinum, C. tetani, C. difficile, C. perfringens; Cornyebacterium, e.g. C. diphtheriae; Streptococcus, S. pyogenes, S. pneumoniae; Staphylococcus, e.g. S. aureus; Haemophilus, e.g. H. influenzae; Neisseria, e.g. N. meningitidis, N. gonorrhoeae; Yersinia, e.g. G. lamblia, Y. pestis, Pseudomonas, e.g. P. aeruginosa, P. putida; Chlamydia, e.g. C. trachomatis; Bordetella, e.g. B. pertussis; Treponema, e.g. T. palladium; and the like, (3) yeasts, and (4) fungi such as Aspergillus.
When pathogens such as bacteria are being detected, the preferred target polynucleotides include rRNA, as is generally described in U.S. Pat. Nos. 4,851,330; 5,288,611; 5,723,597; 6,641,632; 5,738,987; 5,830,654; 5,763,163; 5,738,989; 5,738,988; 5,723,597; 5,714,324; 5,582,975; 5,747,252; 5,567,587; 5,558,990; 5,622,827; 5,514,551; 5,501,951; 5,656,427; 5.352.579; 5,683,870; 5,374,718; 5,292,874; 5,780,219; 5,030,557; and 5,541,308, all of which are expressly incorporated by reference.
In a preferred embodiment the fluorescence decay of the unbound probe polynucleotide is different from both the homoduplex and heteroduplex bound forms. In another preferred embodiment the probe polynucleotide in non-fluorescent in the unbound form and becomes fluorescent upon formation of a homoduplex or heteroduplex.
A preferred fluorophore is environmentally sensitive, wherein the fluorescence decay is sensitive to the change in environment that occurs upon complex formation between probe and target. See also, Willets, et al., 2004, J. Phys. Chem. B, 108(29):10465-10473, for further information on environmentally sensitive fluorophores. Fluorophores may include, but are not limited to, derivatives of cyanine (e.g. reactive forms of thiazole orange and oxazole yellow that are suitable for conjugation to polynucleotides), indole, bisbenzimide, phenanthridine, pyrene, naphthalene, pyridyloxazole, dapoxyl, and acridine.
Other flurophores may include, but are not limited to, acridone and quinacridone derivatives (Amersham Biosciences, WO/20003099432 and WO/2003099424), 2,3 diazabicyclo[2.2.2]-oct-2ene derivatives, Nile Red, Dansyl, and merocyanine derivatives (e.g. Toutchkine et al., 2003, J. Am. Chem. Soc., 125:4132-4145).
Fluorophores may also include, but are not limited to, 1-pyrenebutanoic acid, succinimidyl ester; 2-dimethylaminonaphthalene-6-sulfonyl chloride; 2-(4′-(iodoacetamido)anilino)naphthalene-6-sulfonic acid, sodium salt (IAANS); 2-(4′-maleimidylanilino)naphthalene-6-sulfonic acid, sodium salt (MIANS); 6-acryloyl-2-dimethylaminonaphthalene (acrylodan); 6-bromoacetyl-2-dimethyl-aminonaphthalene (badan); 6-((5-dimethylaminonaphthalene-1-sulfonyl)amino)-hexanoic acid, succinimidyl ester (dansyl-X, SE); 1-(2-maleimidylethyl)-4-(5-(4-methoxyphenyl)oxazol-2-yl)pyridinium methanesulfonate (PyMPO maleimide); Dapoxyl® 3-sulfonamidopropionic acid, succinimidyl ester; Bodipy fluorophores (e.g. 576, R6G, TMR, TR); and reactive forms of SYBR Green I and Picogreen (e.g. SYBR, S-21500, S-21501, S-21502) (Molecular Probes, Eugene, Oreg.).
If required, the target polynucleotide is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification as needed, as will be appreciated by those in the art. The target polynucleotide may be amplified as required; suitable amplification techniques are outlined in PCT US99/01705, hereby expressly incorporated by reference. In addition, techniques to increase the amount or rate of hybridization can also be used; see for example WO 99/67425 and U.S. Ser. Nos. 09/440,371 and 60/171,981, all of which are hereby incorporated by reference.
In one embodiment, polynucleotides in the test sample are treated to produce smaller fragments, such as by sonication, hydrodynamic flow prior to hybridization or digestion with one or more restriction endonuclease. This treatment can reduce the length of target polynucleotides.
The substrates of the invention are used for attachment of probe or capture polynucleotides to identifiable regions on the surface of the substrate. By “substrate” or “solid support” or other grammatical equivalents herein is meant any material that can be modified to contain discrete individual sites appropriate of the attachment of probe or capture polynucleotides. Suitable substrates include glass and modified or functionalized glass, fiberglass, teflon, ceramics, mica, plastic (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyimide, polycarbonate, polyurethanes, Teflon™, and derivatives thereof, etc.), GETEK (a blend of polypropylene oxide and fiberglass), etc, polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses and a variety of other polymers. The substrate may comprise planar chips, bead arrays, microarrays (Schena, M., Microarray Analysis (2003), John Wiley & Sons, Inc. Hoboken, N.J.), membranes, microwell plates, encoded regions (e.g., encoded particles) (Braeckmans, K., et al., “Scanning the Code,” Modern Drug Discovery, February 2003, p. 28-32), three dimensional “gel pad” arrays, and those including electronic components (e.g. Nanogen).
The probe or capture polynucleotide may be attached to the surface of substrates using photolithographic techniques (such as the Affymetrix GeneChip™), spotting techniques (e.g. Synteni and Incyte), printing techniques (Agilent and Rosetta).
As used herein, the term “attached” or grammatical equivalents refers to covalent as well as noncovalent attachment to describe when the attachment of a probe or capture polynucleotide to a substrate. For example, a reactive functional group on a probe polynucleotide can react with another reactive group on the surface of the substrate to form a covalent linkage. An example of a probe polynucleotide having a free amino group is capable of forming a covalent bond with an aldehyde group on the surface of the substrate. Alternatively, a member of a binding pair can be immobilized on the surface of the substrate where the other member of the binding pair is attached to the probe polynucleotide. Upon application of the probe to the substrate, a noncovalent interaction occurs between the members of the binding pair. A well known example is streptavidin binding with biotin although other binding pairs can be used. Strong binding of the probe to the surface of the substrate may permit the use of probes in subsequent analysis.
As used herein, “identifiable region” refers to a region on the surface of a substrate that can be identified by way of x-y coordinates, e.g. on a planar surface or by the coordinates of microwells in a microwell plate. Alternatively, coded regions can be used so that the detection of the fluorescence waveform and be correlated with the code for the particular region (see Braeckmans, K. S., et al., “Scanning the Code,” Modern Drug Discovery, February 2003, p. 28-32). Identifiable regions may contain any concentration or density of probe or capture polynucleotides. A preferred density is ˜2.6×105 molecules/μm2˜2.6×105 molecules/mm2. See also Schena, M., Microarray Analysis, 2003, John Wiley & Sons, Inc., Hoboken, N.J.
The present invention finds particular utility in array formats, i.e. wherein there is a matrix of identifiable regions. By “array” herein is meant a plurality of probe or capture polynucleotides in an array format; the size of the array will depend on the composition and end use of the array. Arrays containing from about 2 different probe or capture polynucleotides to many thousands can be made. Generally, the array will comprise from two to as many as 100,000 or more, depending on the size of the substrates. Preferred ranges are from about 2 to about 10,000, with from about 5 to about 1000 being preferred, and from about 10 to about 100 being particularly preferred. In some embodiments, the probe or capture polynucleotides may not be in array format; that is, for some embodiments, a single probe or capture polynucleotide can be used to detect a target polynucleotide. In addition, in some arrays, multiple substrates may be used, either of different or identical compositions. Thus for example, large arrays may comprise a plurality of smaller substrates. For example, the array may comprise a bead array or a microplate. See, e.g., U.S. Pat. Nos. 5,591,578; 5,824,473; 5,705,348; 5,780,234 and 5,770,369; U.S. Ser. Nos. 08/873,598 08/911,589; WO 98/20162; WO98/12430; WO98/57158; WO 00/16089) WO99/57317; WO99/67425; WO00/24941; PCT US00/10903; WO00/38836; WO99/37819; WO99/57319 and PCTUS00/20476; and related materials, all of which are expressly incorporated by reference in their entirety.
Hybridization may be carried out in an environment where the temperature is controlled. If double-stranded polynucleotide is present, it may be necessary to denature the sample by raising the temperature followed by equilibration at an appropriate temperature for carrying out the hybridization based on the G/C content of the hybridization domains and the components of the hybridization buffer. This may occur independently of the apparatus of the invention. In this case, the substrate may be transferred to a platform within the apparatus so that the regions of the substrate can be placed in optical communication with the fluorescence detection system.
The apparatus may also integrate sample preparation, purification, hybridization, signal detection, and data analysis. Crude samples (e.g., bacterial cells, crude bacterial cell lysate containing proteins, carbohydrates, lipids, DNA, RNA, etc.) can be treated appropriately (e.g., physical (heat) and chemical (NaOH)) prior to subsequent purification and/or hybridization. Samples that are not completely homogeneous may pass through a filtration system to retain large fragments (e.g., tissue or debris) to prevent obstruction.
In a preferred embodiment, thermocycler and thermoregulating systems such as controlled blocks or platforms are used in the apparatus of the invention to stabilize the temperature of the substrate to provide accurate temperature control for incubating samples from 0° C. to 100° C. This provides controlled hybridization conditions.
The apparatus of the invention may further comprise liquid handling components, including components for loading and unloading fluids at each region or set of regions. The liquid handling systems can include robotic systems comprising any number of components. In addition, any or all of the steps outlined herein may be automated; thus, for example, the systems may be completely or partially automated.
Fully robotic or microfluidic systems include automated liquid-, particle-, cell- and organism-handling systems including high throughput pipetting to perform all steps required for analysis. This includes liquid, particle, cell, and organism manipulations such as aspiration, dispensing, mixing, diluting, washing, accurate volumetric transfers; retrieving, and discarding of pipet tips; and repetitive pipetting of identical volumes for multiple deliveries from a single sample aspiration. These manipulations use cross-contamination-free liquid, particle, cell, and organism transfers. The system may perform automated replication of the test samples to regions of a substrate. This may include high-density transfers and serial dilutions.
In a preferred embodiment, the format is a bead, and the substrate is based on a bead array such as described in U.S. Pat. Nos. 6,288,220 and 6,391,562, US Patent Application Publication 20020132264, Kohara et al., Nucleic Acid Research, 30(16):e87 (2002), Kohara, Analytical Chemistry, 75(13):3079-3085 (2003); Noda et al., Analytical Chemistry, 75(13):3250-3255) (2003), all of which are incorporated herein by reference. In one specific example, a fluid sample containing denatured DNA (single-stranded DNA) is flowed in a reciprocal manner through a tube filled with a linear array of capture polynucleotide-labeled beads. This allows rapid hybridization (<10 min). The bead array is comprised of a capillary tube with an inside diameter slightly larger than the bead diameter. Beads with specific capture polynucleotides attached may be arranged in the capillary by a predetermined order.
In another preferred embodiment, the probe or capture polynnucleotides are arranged in respective spatially discrete areas on a substrate surface, like a traditional microarray slide. Each of these discrete areas have a predetermined or determinable position.
In another embodiment, the platform is a microwell plate, such as a 96-well plate. Furthermore, probe or capture polynucleotides can be attached to an array of predetermined or determinable discrete areas on the substrate surface, e.g., within a single well.
Fluorescence Decay Detection System
Any fluorescence decay detection system or fluorescence decay measurement approach (e.g. frequency domain, time-correlated single photon counting, direct recording) can be used in the present invention.
In a preferred embodiment, the fluorescence decay detection system contains a pulsed light source and a digitizer. The detection system is designed to be in optical communication with the substrate when placed within the apparatus. Optical communication refers to the ability of the apparatus to sample fluorescent waveforms from one or more identifiable regions on the substrate and transmit them as an analog waveform to the digitizer. For example, optical communication between each of the identifiable regions and the detection system can be achieved: (1) by translating the substrate in two dimensions to position the identifiable region within the pulsed light beam, (2) translating the light and optics in two dimensions to sample the identifiable regions; and (3) scanning of the identifiable regions on the substrate. In a preferred embodiment, optical communication between each of the identifiable regions and the detection system can be achieved without performing a raster scan or generating an image of the regions.
“Pulsed Light Source”
The pulsed light source preferably produces pulses with short time interval of duration, e.g., in the sub-nanosecond or nanosecond, such as 0.4 ns to several nanosecond range. The pulsed light source may include, but is not limited to, a laser, laser diode (LD), or a light emitting diode (LED). In a preferred embodiment, the pulsed light source is a solid-state passively q-switched laser (“microlaser”).
“Digitizer”
The transient digitizer preferably can sample fluorescent signals at about a 0.5 gigahertz or higher sampling rate. A fluorescence decay waveform can be directly recorded following pulsed laser excitation. This allows rapid collection of fluorescence decay waveforms for processing data from many regions or samples. U.S. patent application Ser. No. 09/835,894 filed Jun. 20, 2003, corresponding to U.S. Patent Publication No. 2002/0158211, published Oct. 31, 2002; U.S. patent application Ser. No. 10/431,347, filed May 7, 2003, corresponding to U.S. Patent Publication No. 2004/0007675, published Jan. 15, 2004, each entitled “Multi-Dimensional Fluorescence Apparatus and Method for Rapid and Highly Sensitive Quantitative Analysis of Mixtures,” and U.S. patent application Ser. No. 10/600,319, filed Jun. 20, 2003, corresponding to U.S. Patent Publication No. 2004/0051656, published Mar. 18, 2004, entitled “System for Digitizing Transient Signals,” describe apparatus and methods to record fluorescence decay waveforms following pulsed laser excitation. Each of these applications are incorporated herein by reference. These methods are superior to tradition methods such as frequency domain or time correlated single photon counting in many aspects.
The conceptually simpler approach is to excite the fluorescence with a light pulse of short duration and to measure the temporal pattern of the subsequent fluorescence. The entire fluorescence decay curve can be measured following a single laser excitation pulse with a digital oscilloscope or transient digitizer, whose function is to track the output of a photomultiplier tube or other photodetector at closely-spaced time intervals. A plot of fluorescence intensity vs. time interval expressed relative to the time at which the excited state population is generated is commonly referred to as a fluorescence decay curve; a digitized representation of a transient signal as a function of time is also commonly referred to as a waveform or profile. In the ideal case that the time duration (pulse width) of the excitation pulse is much shorter than the fluorescence decay time, the lifetime can be determined from a plot of ln It vs. t where It is fluorescence intensity at-time t relative to the laser pulse. Many mathematical deconvolution techniques are available for situations in which the excitation pulse duration is not infinitesimally short compared to the fluorescence lifetime. Deconvolution techniques require that the intensity be measured as a function of time for both the excitation pulse and the subsequent fluorescence pulse. Apart from a relatively uninteresting multiplicative factor, the mathematical relationship between the fluorescence and excitation waveforms involves a single parameter, namely the fluorescence lifetime. Each deconvolution procedure has the same goal, namely to determine the value of the lifetime that gives the best fit between the observed and predicted fluorescence decay curves.
In another embodiment, multiple input signals are received at digitizer 105. For this embodiment, each strobe causes sampler 110 to obtain a sample of each of the input signals and store the samples in analog memory 150. In one embodiment, analog memory 150 has a plurality of arrays each of which receives samples from a respective one of the input signals. There can be a single A/D converter for each of arrays or a single A/D converter for all of the arrays, etc. For one embodiment, the multiple input signals are copies of each other and are delayed in time relative to each other. For another embodiment, each of the multiple input signals are amplified or attenuated.
A design can also include a digital signal processor (DSP) that is useful to perform not only rapid processing of the digitized data that is the result of A to D conversions but also to provide intelligent control over one or more functions or parameters leading to output of the digitized data. In particular, a DSP can be made with CMOS or bi-CMOS technology and capacitor arrays of the kind that have been used to capture analog samples at high sampling rates can also be realized in CMOS or bi-CMOS. Thus, with CMOS or bi-CMOS (or any other chip-making methodology that permits realization of the essential components on a common substrate), it becomes possible to design a chip in which the DSP and the analog sample storage might be closely coordinated.
As used herein, DSP means any one of the conventional digital signal processor designs that has sufficient speed to handle the volume of data produced from A to D conversion within the time frames discussed further below. A DSP is typically characterized by optimization for numerical and vector processing, typically accomplished in part by having separate memories for data and for instructions. An example of a design of a commercially available DSP that is suitable for adoption in the present invention is the TMS320 family from Texas Instruments Incorporated. Specifically, a design such as the TMS320LF2812, might be adopted and adapted to eliminate the external bus, as part of integrating A to D conversion circuitry with the DSP. While only one DSP is depicted in the embodiments below, where greater processing power is needed, more than one could be used.
A to D converter (ADC) 40 provides to the DSP on bus 45 the digital data that results from conversion of the analog inputs by ADC 40. The ADC 40 has a timing unit 42 that provides signals over internal bus 43a to a sampling and storage unit 44, which in turn provides the samples as outputs to conversion unit 46 over internal bus 43b. Sampling and storage unit 44 is in one embodiment a switch capacitor array with the capacity to accumulate charge in individual cells, which represent the samples having different analog levels that become digitized. Conversion unit 46 passes the now digitized data to a readout unit 48, using internal bus 43c. The DSP has communication paths 72, 74, 76 and 78 connecting it to the readout unit 48, the conversion unit 46, the sampling and storage unit 44 and the timing unit 42, respectively. Thus, the DSP has means for operably controlling a variety of parameters of operation of the ADC 40.
Also part of the digitizer system 100 are: a trigger unit 70, which receives external triggers from one or more trigger sources, e.g., 70a and 70b, and provides trigger signals over line 71 to timing unit 42; an input signal unit 72 that receives the analog input signals to be sampled from sensor 10, selects and conditions these signals in various ways and passes the resulting signals on to the sampling and storage unit 44 on communication path 73; and a test signal unit 74 that provides test signals to the input signal unit 72 via communication path 75. The DSP has communication paths 61, 63 and 65 connecting it to the trigger unit 71, the input signal unit 72 and the test signal unit 74, respectively, which together form a trigger/input module 80. (In an alternative embodiment the trigger/input module 80 includes only units 71 and 72.) The communication and control relationship of the DSP 60 to the various components is now described.
Trigger Unit 70
The trigger unit 70 is used to initiate the sampling that precedes an A to D conversion. (Although shown as integrated on chip 100, it is also possible for all or portions of trigger unit 70 to be implemented off-chip.) The timing of this sampling can be significant to applications. The trigger unit 70 has a variety of trigger facilities and parameters that are available for DSP control. The DSP 60 can enable or disable triggering, select the trigger source (e.g., select 70a or 70b), set the trigger gain, clear the triggered condition, set the trigger threshold level, and assert a trigger. The DSP can also set the time delay between the arrival of an external trigger and the triggering of the timing unit. Small changes in the delay can be used to implement equivalent time sampling (ETS) of repeatable input signals. Large changes in delay can be used to capture long transients as multiple segments or to move the sampling window to a region of interest. The trigger unit 70 can be held in a “ready” state without dissipating a lot of power (at least compared to a unit that is continuously clocked at a high rate), and it can “wake up” the rest of the system 100 (which could be in a low power state) when a trigger signal arrives.
To calibrate the trigger delay, the DSP 60 configures the trigger and test signal units 70, 74 so that a test signal is generated in response to the trigger signal. The DSP 60 can observe the effects of changes made by the DSP 60 to the trigger delay by inspecting the location of the test signal in the waveform read out from the ADC. Useful settings are saved by the DSP for later use.
Input Signal Unit 72
The input signal unit 72 may have one or more channels on which it receives the analog signals that are to be sampled. (Although shown as integrated on chip 100, it is also possible for all or portions of input signal unit 72 to be implemented off-chip.) The input signal unit 72 also has the ability to condition the incoming analog signals by adjusting the level with an offset, amplification or attenuation. The DSP 60 can select the input source, set offsets in input signal levels, and set gains.
To calibrate the offset, the DSP 60 sets the input signal unit to present a null signal and uses the ADC 40 to measure the result. The DSP can cause the input signal unit to change the offset or save the result and make a digital correction later.
To calibrate the gain, the DSP 60 controls the input signal unit to present DC signals with known levels. The DSP can also cause the test signal unit to generate signals with known amplitudes. The DSP uses the ADC output to observe changes made by the DSP to the gain. Useful gain settings can be saved by the DSP for later use.
If the same signal is available to more than one channel but with different delays, this DSP control provides a way to obtain interleaved samples. If the same signal is available to more than one channel but with different gains, this DSP control provides a way to extend dynamic range, as explained further below.
The DSP 60 may be able to detect an input out-of-range condition, by monitoring the input signal unit 72. If this event causes a condition flag to be set, the DSP 60 can read and clear this flag.
Test Signal Unit 74
Test signals are used to measure the trigger delay and the sampling rate. The signals used for measuring trigger delay are initiated by a signal from the Trigger Unit 70. The DSP 60 can adjust the timing and shape of the test signals. The DSP 60 enables and disables their use. Test Signal Unit 74 is also connected to Trigger Unit 70 via communication link 67. (Although shown as integrated on chip 100, it is also possible for all or portions of test signal unit 74 to be implemented off-chip.)
Timing Unit 42
The timing unit 42 generates the sampling strobes for the ADC 40. The rate at which these are generated is adjustable, which also influences the interval of time during which they are generated (sampling window). The DSP 60 can set the rate at which the strobes are generated and the length of time during which the storage cells track the input signal. The DSP 60 receives a signal from the timing unit 42 indicating when the sampling is done.
More specifically, the amount of time that a sampling capacitor tracks the input signal can be selectable, such as by the DSP 60. For example, it could track for N sampling periods where N is a pre-selected number, such as, 1, 2, 4, 8, or 16. This selection of the number of sampling periods is independent of the sampling rate and the width of the sampling window.
The DSP 60 can calibrate the sampling rate by causing the test signal unit 74 to generate a signal with features that are separated by a known period of time. An example of such a signal would be a clock signal. This signal is digitized by the ADC and the DSP uses the ADC output to determine the current sampling rate. The DSP then increases or decreases the sampling rate accordingly. As an alternative, a delay locked loop could be used to control the sampling rate. The DSP 60 could select the number of clock pulses from a clock and use this to define the width of the sampling window and thereby the sampling rate.
Sampling & Storage Unit 44
The sampling gates are essentially integrated into the storage unit; that is why the two functions, sampling and storage, are pictured as one unit. The DSP 60 can set the reference voltage level for the storage cells. The storage cells are organized as a matrix of capacitors, with multiple channels. The multiple cells in each channel are converted in parallel by presenting them in parallel to the conversion unit 46. The DSP 60 selects the channel to be presented to the conversion unit 46. There is a bank of buffers (not shown) between the storage cells and the A/D converters. These buffers are in one embodiment considered part of the sampling and storage unit 44. The DSP 60 can set the reference voltage level for these buffers. The DSP 60 can be programmed to set the voltage to which the capacitor cells are to be initialized or not to initialize the capacitors. In the latter case, the capacitors are “initialized” to their values from the previous sampling operation (subject to any leakage of charge during the interval between sampling operations).
Conversion Unit 46
The conversion unit uses a ramped reference voltage or an adjustable DC threshold to perform the determination of the analog level present in a cell. The DSP 60 can set the comparator reference voltage level, reset the ramp, start the ramp, control the ramp speed, start the counter for counting levels, advance the counter, set the range over which the counter will count, and reset the counter. The conversion unit 46 can send and the DSP 60 can receive a signal indicating that all the comparators have fired and/or a separate signal indicating that at least one comparator has fired. The DSP 60 can select between the ramp and the adjustable DC threshold. The DSP 60 can force the latches in the readout unit 48 to be loaded with the current counter output.
The DSP can measure and set (and thereby calibrate) the ramp speed by causing the input signal unit to present various DC levels to the ADC. The differences between the outputs of the ADC for the various levels are a measure of the ramp speed. The DSP can increase or decrease the ramp speed accordingly. The DSP may also control the duration of the time interval between the start of the ramp and the start of the counter.
Readout Unit 48
The readout unit 48 holds the digitized data in either serial or randomly addressable form in readiness for the DSP 60. The DSP 60 can shift out or select from this unit the data and permit the data to be driven onto the DSP data bus 66. If there is a known pattern of non-uniformity in the cells that have provided the digitized values, the DSP 60 can use a correction table, formula or other corrective reference and computation to apply corrections to deal with cell-to-cell variations. Cell-to-cell result variations are caused by differences in the circuit elements constituting the sampling cells (the switches and capacitors), the storage unit output buffers, and the comparators in the A/D converters. The DSP can measure these variations by using the output of the ADC when the input is a DC level. The DSP can set the DC level via its connections to the input signal unit. Dependence on various properties of the input signal (e.g., level and rate of change) can be measured by generating signals with the desired properties, which may involve coordination with the test signal unit. The results of these measurements are used by the DSP to apply corrections to acquired waveforms.
Output Port 66
The DSP 60 can communicate (exchange data with) an external device, such as a PC, using output port 66. Depending on the number of samples taken and any preprocessing that can be done by the DSP 60, the size of the sample record to be delivered from a digitizer chip 100 can vary. The digitizer becomes a more effective part of an overall digital sampling solution, to the extent it is programmed with instructions for preprocessing that remove unnecessary data or otherwise optimize the size of the sample record.
Power Levels
In many applications, power consumption is a significant variable, due to thermal considerations, limitations on available power, etc. The DSP 60 can use communication links to various elements in system 100 with which the DSP has communication, including those in the ADC 40 or within the DSP 60 itself, to reduce power usage by idling circuits within the system 100, reducing the frequency of their use, or using low power operational modes. Power conservation features can be of two types, depending on whether or not they prevent the digitizer from being able to respond to a trigger event; the latter enabling greater conservation but placing the digitizer in an inactive mode.
Turning now to
Timing Generator 242
The trigger signal (from trigger unit 70, see
Another feature of one embodiment of the timing generator appears in the arrangement shown in
Sample Cell Arrays 244
Analog samples of the input signals (from input signal unit 72, see
A/D Converters 246
All the samples of a single channel are converted, in parallel, from analog to digital form by an array of single-slope A/D converters (one shown at 251). The A/D converters share the outputs from an analog ramp generator 247 and a Gray counter 249. External signals set the ramp speed, start and reset the ramp, and reset and advance the counter. The counter output is latched into individual output latches of a shift register stage 253, as comparators detect the ramp output passing by the voltage levels of the associated sample cells.
Readout Shift-Register 248
During the readout phase, the output latches are in one embodiment configured as a shift register. The latched values appear at the output of the readout-shift register.
Control by DSP
Operation of the ADC 40 and the trigger/input module 80 is variable based on a number of parameters. The DSP 60 gives the flexibility needed to quickly adapt the ADC's operation to various sampling and conversion methods that are found useful during the development of applications for the embodiments shown. The DSP 60 can also flexibly control operation of components of the trigger/input module 80. In either case, control may be based on signals from or states sensed within the ADC 40 and the trigger/input module. The DSP 60 can perform any of the following:
Operating the ADC
The ADC 40 as shown in the embodiment of
The DSP 60 starts the conversion process by selecting the channel to be converted, starting the analog ramp, and sending a clock signal to the Gray counter. The ramp speed and the counter clock frequency determine the step size. In one embodiment, the steps are of a size to permit 8-12 bits of resolution, preferably 10-12 bits of resolution and most preferably 10 bits. The ramp approach avoids the use of one comparator for each level of resolution, as is the case for “flash” A to D converters.
After conversion, the DSP 60 configures the output latches to form a shift register and reads out the digital values. To convert and read out the other channels, the DSP selects each one in turn and takes the ADC through the conversion and readout phases for the selected channel.
The DSP's ability to select a channel provides a facility for adjusting dynamic range. There are benefits when the amplitude of the input signal, as seen by the ADC 40, “matches” the input range of the ADC. It is a purpose of the input signal unit 72 to adjust the amplitude of the input signal to achieve this match. However, when the amplitude of the input signal is not known in advance (especially if it is a one-time signal), there may be no opportunity to make this adjustment. A solution to this problem is to route the signal to multiple input channels via paths in which there are amplifiers with differing gains. The input signal unit 72 can accomplish this function and generate multiple copies of the input signal, each copy having an amplitude differing from that of the other copies. For example, the copies may differ in scale by factors of 2. The ADC 40 samples all the copies at the same time, storing the analog samples for each copy in a separate array of storage cells. Now, for greatest efficiency, it is advantageous to convert and read out only the copy whose amplitude most closely matches the input range of the ADC.
What is needed, then, is a quick means by which the DSP 60 can identify the best copy without converting and reading out all the copies. One possibility is to check the input signal unit to see which signals (after amplification) exceeded the input range and pick the largest one that did not. The input signal unit 72 could perform this test and set flags for the DSP to sense. If this information is not available from the input signal unit 72, an alternative is to convert the smallest signal first and, based on the measured amplitude, select the best fit from among the remaining copies (if better than the smallest signal).
Another scheme is possible if the conversion unit 46 provides a DSP-readable indicator that at least one of the comparators has fired. In this case the DSP 60 can select a threshold against which the samples are to be compared and then test all the samples of one channel in parallel against this threshold. If at least one of the comparators fires, then the copy is too large. The DSP can use this capability to quickly find the largest copy that is not too large and take it through the conversion and read out processes.
Data Conversion and Correction
The data from the ADC is in a Gray code format. Before the DSP can perform arithmetic operations with this data, it must be converted to binary code format. This conversion can be done by hardware during readout. The DSP can correct for fixed sample-to-sample variations that are seen when a null input signal is digitized. Measurements of these variations, called pedestals, can be stored in the DSP and subtracted from the data after Gray-to-binary conversion. Each channel has its own set of measured pedestals.
DSP Control of the Trigger, Bias Currents, and Reference Voltages (GLUE A 650): For precise and repeatable control, digital to analog converters (DACs) are built into the TRIG 620, BIAS 622, and REFS 624 components. These DACs control the trigger reference level, the sampling speed and ramp speed bias currents, a number of reference voltages (including the PD 630, PMT1632, and PMT2634 signal offsets), and the TEST 680 signal offset. The DACs are programmed by the DSP. Changes may be made from the PC 642 by sending commands to the DSP.
Signal Sources (TEST 680, PD 630, PMT1632, PMT2634): The ADC has four input channels (S0-S3) 644. In this example, one channel, the TEST channel, is used for DSP-generated patterns. Another channel, the PD channel, accepts signals from a PIN photodiode. A transimpedance amplifier (TIA) (not shown) may be inserted between the photodiode and the ADC to keep the bias voltage constant, provide some gain, and drive the ADC input. The other two channels, PMT1 and PMT2, accept signals conducted by a 50-ohm coaxial cable. A typical use for one of these channels is to connect to a photomultiplier tube (PMT).
Triggering (TRIG 620): A reverse-biased PIN photodiode is used to detect the laser pulse. A comparator generates the trigger signal when the output of the photodiode exceeds a reference level. The trigger signal must remain active while the ADC is sampling, so a means of latching the signal is needed. The DSP clears the latch when the digitizer is ready to receive the next trigger.
Bias Currents and Reference Voltages (BIAS 622 & REFs 624): There are a number of bias currents and reference voltages that must be set within certain ranges for proper operation of the ADC and the analog input circuitry. Some of these may be variable and others may be set to fixed nominal values. Two useful variable settings are the current biases that control the sampling speed and the ramp speed. These determine the time and amplitude resolutions by which waveforms are sampled and digitized.
Input Signal Conditioning (SIGS 690): The input signals may be AC- or DC-coupled and may have a DC offset added. After this, the TEST, PMT1, and PMT2 channels have an amplifier with a fixed or variable gain. The offsets and gains may be adjustable by the DSP. There may also be input protection circuitry. Out-of-range inputs could be reported to the DSP.
The DSP-ADC Interface (GLUE B 660): The control and status pins of the ADC may be connected to individually programmable digital I/O pins of the DSP. Use is also made of the DSP's data bus. During the readout phase, the digitized data from the ADC is driven onto the bus and loaded into RAM within the DSP. The glue logic includes the tri-state drivers and control logic to perform this read operation.
Timing for Sampling and Digitizing
One or more fluorophore-labeled probes or targets are induced to fluoresce by one or more laser pulses. The first pulse is shown at line a of
Each laser pulse will have a relatively short time interval of duration (in the sub-nanosecond, in one embodiment about 0.4, to several nanosecond range) and each corresponding fluorescence waveform will be somewhat longer but also in the several nanosecond range. In order to get a good waveform of the fluorescence emission, it is desirable to take analog samples at a 1 to 4 gigahertz rate. Thus, in one embodiment the sample rate interval for one sample is approximately 1/109 second. The duration of an entire sampling window is on the order of about 10 to 100 nanoseconds. By contrast, the duration of the event repetition interval is about 10 to 100 microseconds. Thus, because sampling occurs at the start of the event repetition interval, almost all of this latter period is available for processing the analog samples, which are collected in the first 10 to 100 nanoseconds.
In
DSP 60 may have control software for performing an additional level of processing on the raw digital sample values. Preferably, the processing reduces the size of the data record to be outputted, but it may also add additional measures derived from the raw sample data, such as waveform summing. This will result in another set of data or processed record, shown as a shorter column of binary numbers labeled “Processed Samples” at lines d and e of
DSP Functions
Placement of the DSP on the chip leads to the usual advantages of speeding inter-component communication, but there are other advantages that arise when DSP-executed functions can occur on chip. A particular benefit is reduced power consumption. This can be particularly useful in applications where a digitizer is needed at a point of signal origination. The present design permits embedding the digitizer/DSP at a point of signal origination, such as a particular location in a transmission network or circuit, even when that point has little power available or limited thermal requirements. This embedded digitizer/DSP also permits real time, digitized data to be generated without bringing in a large piece of equipment. A further benefit of the ADC and DSP integrated on one chip is that while there are internal paths with many lines (particularly where parallelism is used), there are fewer pins or contact points for external signals. This latter also helps reduce overall chip size.
It should be understood that the above-described embodiments and the following examples are given by way of illustration, not limitation. Various changes and modifications within the scope of the present invention will become apparent to those skilled in the art from the present description.
The SNP of the human β-globin gene, known to cause sickle cell anemia, was used as a model system. BODIPY 576 (Molecular Probes, Inc., Eugene, Oreg.) was conjugated to a 20 bp polynucleotide complementary to the mutant β-globin gene. A wild and mutant type target polynucleotide (50 bp) was synthesized. The mutant type target polynucleotide contained the single base pair mutation (adenine to thymine) of the β-globin gene.
The BODIPY 576 probe was hybridized to both the wild type and mutant type DNA targets individually in solution and fluorescence lifetimes for each sample was calculated (Table 1). The BODIPY 576 probe is suitable for SNP genotyping because BODIPY 576 has a different fluorescence lifetime in the homoduplex conformation than the heteroduplex conformation.
A 100 nM concentration of the BODIPY 576 probe was hybridized to three different samples in solution, containing various target polynucleotides, each at 400 nM concentration. The three samples were:
Sample 1: homozygous, allele A
Sample 2: homozygous, allele B
Sample 3: heterozygous, allele A and B
The probe polynucleotide and target polynucleotides were hybridized by heating at 94° C. for 4 min, after which the samples were rapidly cooled to 40° C., which is below the melting temperature of both the homoduplex and heteroduplex complexes, and held at that temperature for ten minutes. The temperature was then brought to room temperature and the fluorescence decay data were acquired.
Although all of the samples exhibit non-single exponential decay, the lifetimes on the basis of a single exponential fit are shown in Table 2. The lifetime of the heterozygous sample (homoduplex and heteroduplex, 4.67 ns) is between the lifetimes of the homozygous samples, Sample 1 (homoduplex, 4.87 ns) and Sample 2 (heteroduplex, 4.33 ns). The lifetime for the heterozygous AB mixture may be linearly related to the mole fraction of the A allele in the mixture. On this basis, it is estimated that the mole fraction of A in the mixture is (4.67−4.33)/(4.87−4.33)=63%. Modifying hybridization conditions may change the ratio of homoduplex and heteroduplex conformations.
Analyzing the waveform for an unknown sample as a linear combination of the waveforms for hybridized A allele and hybridized B allele. The waveforms for these reference samples are basis functions for fitting the unknown waveform as a linear combination of the A and B waveforms. Choose the weighting coefficient of the A allele waveform to be X and the weighting coefficient of the B allele waveform as 1−X. Ideally X=1 if the unknown corresponds to the A allele and X=0 is the unknown corresponds to the B allele. In the heterozygous case, X will reflect the relative proportions of the A and B alleles in the unknown. The results for 512-shot averages are as follows:
This analysis assumes that the fluorescence efficiency of the BODIPY 576 does not depend on which target to which the probe is hybridized. With this reasonable assumption, we obtain 62% as the estimated mole fraction of A allele, in excellent agreement with the previous estimate.
Number | Date | Country | |
---|---|---|---|
60515395 | Oct 2003 | US |