The present apparatus, systems and methods relate generally to apparatus and methods for integrating and/or registering a shape sensing fiber in or to an instrument or device.
Currently known minimally invasive procedures for diagnosis and treatment of medical conditions use elongate instruments, such as catheters or more rigid arms or shafts, to approach and address various tissue structures within the body. For various reasons, it is valuable to be able to determine the 3-dimensional spatial position of portions of such elongate instruments relative to other structures, such as the operating table, other instruments, or pertinent tissue structures. Conventional technologies such as electromagnetic position sensors may be utilized to measure 3-dimensional spatial position but may be limited in utility for elongate medical instrument applications due to hardware geometric constraints, electromagnetivity issues, etc. An alternative solution is the use of optical fibers containing optic shape sensors, available from suppliers such as Luna Innovations, Inc., of Blacksburg, Va., Micron Optics, Inc., of Atlanta, Ga., LxSix Photonics, Inc., of Quebec, Canada, and Ibsen Photonics A/S, of Denmark. By integrating an optical fiber into an elongate instrument such as a catheter, the real time 3-dimensional spatial shape of any or all of the length of the catheter may be determined.
Catheter structures may be designed to include an optical fiber. However, large strain changes induced by mechanical structures (such as pinching, twisting, etc.) may disrupt the accuracy of shape algorithms. The addition of components to a catheter may negatively affect the performance of a catheter (such as stiffness, inner and outer diameters, etc.).
There remains a need for apparatus and methods to improve integration and registration of a shape sensing fiber in or to an elongate instrument or other device and/or to a mechanical structure that is meaningful to the instrument or device/system.
In certain variations, various apparatus, systems and methods for integrating and/or registering a shape sensing fiber in various instruments, for example, an elongate instrument are described herein. Such systems and methods may allow for the shape detection of an elongate instrument or other structure.
In certain variations, a system may include an elongate instrument having a proximal end, a distal end and at least one lumen defined therein. The system may also include a shape sensing fiber, where at least a first portion of the fiber is positioned in the lumen of the elongate instrument. A second portion of the fiber may be fixed or otherwise attached in a known location or position relative to the elongate instrument or to another structure such that the coordinate system of the fiber can be matched to the coordinate system of the elongate instrument to register the fiber to the elongate instrument. As a result of this registration, the shape of an elongate instrument may be detected or determined.
In certain variations, a method for registering a fiber to an elongate instrument and/or detecting the shape of an elongate instrument may include one or more of the following steps. An assembly having an elongate instrument and a shape sensing fiber may be operated. The elongate instrument may have a proximal end, a distal end and at least one lumen defined therein, where least a first portion of the fiber may be positioned in the lumen of the elongate instrument. At least a second portion of the fiber may be fixed in a known location or position relative to the elongate instrument or to another structure. A position of the fixed portion of the fiber may be measured or ascertained relative to the elongate instrument to match the coordinate system of the fiber with the coordinate system of the elongate instrument to register the fiber to the elongate instrument.
In certain variations, a system may include an elongate instrument having a proximal end, a distal end and at least one lumen defined therein. The system may also include a shape sensing fiber, wherein at least a first portion of the fiber is positioned in the lumen of the elongate instrument. A second portion of the fiber may be configured in a known shape, plane or other orientation relative to the elongate instrument or to another structure such that the coordinate system of the fiber may be matched to the coordinate system of the elongate instrument to register the fiber to the elongate instrument.
In certain variations, a method of detecting the shape of an elongate instrument may include one or more of the following steps. Operating an assembly having an elongate instrument and a shape sensing fiber, where the elongate instrument may have a proximal end, a distal end and at least one lumen defined therein may be performed. At least a first portion of the fiber may be positioned in the lumen of the elongate instrument and at least a second portion of the fiber may be configured in a known shape, plane or other orientation. A position of the second portion of the fiber may be measured or ascertained relative to the elongate instrument to match the coordinate system of the fiber with the coordinate system of the elongate instrument to register the fiber to the elongate instrument.
In certain variations, a method for detecting the shape of an elongate instrument may include one or more of the following steps. Operating an assembly having an elongate instrument and a shape sensing fiber may be performed. The elongate instrument may have a proximal end, a distal end and at least one lumen defined therein. At least a first portion of the fiber may be positioned in the lumen of the elongate instrument and at least a second portion of the fiber may be fixed in a known location relative to the elongate instrument or to another structure. Saved registration data may be accessed regarding registration between the coordinate system of the fiber and the coordinate system of the elongate instrument from a memory component to determine the shape of the elongate instrument. Optionally, the structure may be a registration fixture which may be positioned in a known location relative to the elongate instrument.
In certain variations, a system may include an elongate instrument having a proximal end, a distal end and one or more lumens defined therein. The system may include a shape sensing fiber, where at least a portion of the fiber may be positioned within the lumen of the elongate instrument. The shape sensing fiber may have a service loop which allows for sliding or displacing of the fiber within the lumen of the elongate instrument when a distal portion of the elongate instrument is articulated, bent, navigated or manipulated. The system may also include a coil positioned within the lumen, and surrounding the fiber. The coil may be slideable within the lumen and the coil may maintain the lumen in an open state during articulation of the elongate instrument.
In certain variations, a system may include an elongate instrument having a proximal end, a distal end and at least one lumen defined therein. The system may include a housing coupled to a proximal portion of the elongate instrument, where the housing includes an interface for receiving an actuating force and transferring the actuating force to the elongate instrument to articulate a distal portion of the elongated instrument. The system may also include a shape sensing fiber. At least a first portion of the fiber may be positioned within the lumen of the elongate instrument, and a second portion of the fiber may be positioned within the housing. The second portion of the fiber may include a service loop which allows for sliding or displacing of the fiber within the lumen of the elongate instrument when the distal portion of the elongate instrument is articulated.
In certain variations, a method of actuating an elongate instrument may include one or more of the following steps. A system may be operatively coupled to a controller. The system may include an elongate instrument; a housing coupled to a proximal portion of the elongate instrument, where the housing comprises an interface for receiving an actuating force and transferring the actuating force to the elongate instrument to articulate a distal portion of the elongate instrument; and a shape sensing fiber. The elongate instrument may have a proximal end, a distal end and at least one lumen defined therein. At least a first portion of the fiber may be positioned within the lumen of the elongate instrument, and a second portion of the fiber may be positioned within the housing. The second portion of the fiber may include a service loop. Actuating motion may be transferred from the controller to the system to articulate the distal portion of the elongate instrument in at least one degree of freedom, where the service loop allows the fiber to slide or be displaced within the lumen of the elongate instrument when the distal portion of the elongate instrument is articulated, thereby controlling the amount of strain the fiber is subjected to and maintaining shape sensing properties of the fiber.
In certain variations, a system may include an elongate instrument having a proximal end, a distal end and at least one lumen defined therein. A housing may be coupled to a proximal portion of the elongate instrument, wherein the housing includes an interface for receiving an actuating force and transferring the actuating force to the elongate instrument to articulate a distal portion of the elongate instrument. The system also includes a shape sensing fiber. At least a first portion of the fiber may be positioned in the lumen of the elongate instrument. At least a second portion of the fiber may be positioned in the housing such that the coordinate system of the fiber can be matched to the coordinate system of the elongate instrument to register the fiber to the elongate instrument. The second portion of the fiber may include a service loop which allows for sliding or displacing of the fiber within the lumen of the elongate instrument when the distal portion of the elongate instrument is articulated.
In certain variations, a method of actuating an elongate instrument may include one or more of the following steps. An assembly may be operatively coupled to a controller. The assembly may include an elongate instrument; a housing coupled to a proximal portion of the elongate instrument, wherein the housing comprises an interface for receiving an actuating force and transferring the actuating force to the elongate instrument to articulate a distal portion of the elongate instrument; and a shape sensing fiber. At least a first portion of the fiber may be positioned in the lumen of the elongate instrument. At least a second portion of the fiber may be positioned in the housing such that the coordinate system of the fiber can be matched to the coordinate system of the elongate instrument to register the fiber to the elongate instrument. The second portion of the fiber may include a service loop. Actuation motion may be transferred from the controller to the assembly to articulate the distal end of the elongate instrument in at least one degree of freedom. The service loop may allow the fiber to slide or displace within the lumen of the elongate instrument when the distal portion of the elongate instrument is articulated, thereby controlling the amount of strain the fiber is subjected to. Saved registration data regarding registration between the coordinate system of the fiber and the coordinate system of the elongate instrument may be accessed from a memory component to determine the shape of the elongate instrument.
In one variation a method for integrating a shape sensing fiber in an elongate instrument may include inserting a fiber into a first lumen of the elongate instrument. The elongate instrument may include a support component positioned therein for maintaining patency of or otherwise supporting the first lumen during articulation of the elongate instrument. A distal end of the fiber may be fixed at a distal end of the elongate instrument and the fiber may remain free to slide or float within the first lumen of the elongate instrument.
In certain variations, an elongate instrument is provided. The elongate instrument may be configured to support the integration of a shape sensing fiber. The elongate instrument may include one or more lumens defined through the elongate instrument and one or more fibers. A distal end of a fiber may be fixed to a distal end of the elongate instrument. A support component may be positioned within the elongate instrument to maintain patency of or otherwise support one or more lumens during articulation of the elongate instrument. This may allow the fiber to slide or float within a lumen of the elongate instrument. Optionally, the fiber may include a service loop. Optionally, a registration fixture may be coupled to the elongate instrument. The registration fixture may have grooves for holding a fiber and/or an elongate instrument in certain shapes or orientations.
In certain variations, a method for registering a shape sensing fiber to an elongate instrument is provided. The method may include fixing at least a portion of the fiber to the elongate instrument or to a structure associated with the elongate instrument or providing an elongate instrument having a fiber fixed thereto or to an associated structure. Zero to six degrees of freedom may be ascertained from the fixed portion of the fiber. The location and/or orientation of the fixed portion of the fiber relative to the elongate instrument or to a structure associated with the elongate instrument may be determined to match the coordinate system of the fiber to the coordinate system of the elongate instrument, thereby registering the fiber to the elongate instrument.
In certain variations, a system is provided. The system may allow for the registering of a shape sensing fiber to an elongate instrument. The system may include a registration fixture configured to hold the elongate instrument and/or the complete length or a partial length of a fiber integrated in the elongate instrument in known positions or orientations such that data regarding the position or orientation of the partial or complete length of the fiber may be collected to calculate a transform between the coordinate system of the fiber and the coordinate system of the elongate instrument.
In certain variations, another method of registering a shape sensing fiber to an elongate instrument is provided. A known shape may be inserted or imposed in a fiber. The location of the known shape relative to a point on the elongate instrument or on a structure associated with the elongate instrument may be determined. The known shape in the fiber may be measured to create a transform between a fiber coordinate system and an elongate instrument coordinate system.
10A-10C show top views of variations of registration fixtures for positioning a fiber in various shapes or configurations.
Variations of the devices, systems and methods described herein are best understood from the detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings may not be to-scale. On the contrary, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. The drawings are taken for illustrative purposes only and are not intended to define or limit the scope of the claims to that which is shown.
Steerable Catheters (and Other Elongate Instruments)
Referring to
Referring to
Each of the embodiments depicted in
Elongate instruments, such as the catheters described above, endoscopes, bronchoscopes, etc., may include various structures or features for integrating and/or for supporting the requirements of a shape sensing fiber (e.g., a fiber optic shape sensor) and its associated algorithms to obtain accurate shape and position measurements of the elongate instrument, while maintaining the ability of the elongate instrument to be accurately driven and articulated.
Examples of Shape Sensing Fibers
Various types of shape sensing fibers may be used with elongate instruments to measure shape and position. It is well known that by applying the Bragg equation (wavelength=2*d*sin(theta)) to detect wavelength changes in reflected light, elongation in a diffraction grating pattern positioned longitudinally along a fiber or other elongate structure may be be determined. Further, with knowledge of thermal expansion properties of fibers or other structures which carry a diffraction grating pattern, temperature readings at the site of the diffraction grating may be calculated. “Fiberoptic Bragg grating” (“FBG”) sensors or components thereof, available from suppliers such as Luna Innovations, Inc., of Blacksburg, Va., Micron Optics, Inc., of Atlanta, Ga., LxSix Photonics, Inc., of Quebec, Canada, and Ibsen Photonics AIS, of Denmark, have been used in various applications to measure strain in structures such as highway bridges and aircraft wings, and temperatures in structures such as supply cabinets.
The use of such technology in shapeable instruments is disclosed in commonly assigned U.S. patent application Ser. Nos. 11/690,116, now abandoned; 11/176,598, now abandoned; 12/012,795, now abandoned; 12/106,254, issued as U.S. Pat. No. 8,050,523 on Nov. 1, 2011; 12/507,727now abandoned; 12/192,033, issued as U.S. Pat. No. 9,186,046 on Nov. 17, 2015, 12/236,478, issued as U.S. Pat. No. 8,989,528 on Mar. 24, 2015; and 12/837,440, issued as U.S. Pat. No. 8,780,339 on Jul. 15, 2014. The entirety of each of the above applications is incorporated by reference herein.
In an alternative variation, a single mode optical fiber is drawn with slight imperfections that result in index of refraction variations along the fiber core. These variations result in a small amount of backscatter that is called Rayleigh scatter. Changes in strain or temperature of the optical fiber cause changes to the effective length of the optical fiber. This change in the effective length results in variation or change of the spatial position of the Rayleigh scatter points. Cross correlation techniques can measure this change in the Rayleigh scattering and can extract information regarding the strain. These techniques can include using optical frequency domain reflectometer techniques in a manner that is very similar to that associated with low reflectivity fiber gratings. A more complete discussion of these methods can be found in M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter”, Applied Optics, Vol. 37, p. 1735, 1998 the entirety of which is incorporated by reference herein.
Methods and devices for calculating birefringence in an optical fiber based on Rayleigh scatter as well as apparatus and methods for measuring strain in an optical fiber using the spectral shift of Rayleigh scatter can be found in PCT Publication No. WO2006099056 filed on Mar. 9, 2006 and U.S. Pat. No. 6,545,760 filed on Mar. 24, 2000 both of which are incorporated by reference herein. Birefringence can be used to measure axial strain and/or temperature in a waveguide. Using Rayleigh scatter to determine birefringence rather than Bragg gratings offers several advantages. First, the cost of using Rayleigh scatter measurement is less than when using Bragg gratings. Rayleigh scatter measurement permits birefringence measurements at every location in the fiber, not just at predetermined locations. Since Bragg gratings require insertion at specific measurement points along a fiber, measurement of Rayleigh scatter allows for many more measurement points. Also, the process of physically “writing” a Bragg grating into an optical fiber can be time consuming as well as compromises the strength and integrity of the fiber. Such drawbacks do not occur when using Rayleigh scatter measurement.
Integration of Fibers in Steerable Catheters
When integrating a fiber into an elongate instrument, e.g., a manually or robotically steerable catheter, the distal end of the fiber and the distal end of the instrument can be fixed relative to one another. This provides for a reliable correlation between the shape of the fiber sensor and the actual shape of the instrument. If the fiber does not reside within the neutral axis (axis in which path length does not change during bending) of the elongate instrument (as is often the case) it can be beneficial to isolate the fiber from the axial strain of the instrument. This can be achieved by decoupling the fiber and the instrument (i.e., floating the fiber) along the length of the instrument.
In one variation, as shown in
In certain variations, a support component, e.g., a tube (e.g., polyimide), a liner (e.g., PTFE), coil, coil pipes, or braiding (polyimide) may be incorporated into or around any portion of a lumen of an elongate instrument to maintain the patency or openness of the lumen and minimize friction such that a fiber can slide freely or float within the lumen of the elongate instrument, or to provide reliable positioning of the lumen within the elongate instrument, or to reinforce a lumen. Such support components may hold a lumen open and prevent collapse of the lumen during articulation of the elongate instrument to avoid binding or pinching of the fibers. Such support components may be incorporated into an articulation section of an elongate instrument, along the entire length of the catheter, or along other various sections along the length of the catheter. For example,
The coil pipe 51 provides one mechanism for floating a fiber 53 inside a lumen 52 that undergoes bending strain such that: the lumen 52 remains patent (open) under bending strain; the fiber 53 to lumen 52 wall interface remains low in friction under bending strain; and/or the addition of the coil or mechanism does not contribute significantly to the overall axial and bending stiffness of the elongate instrument 200.
While the coil or coil pipe 51 is illustrated in
Expanded coil pipes may vary in size. For example, expanded coil pipes having a diameter ranging from about 1-2 mm or mils may be used in an elongate instrument where space constraints are an issue. Depending on the desired stiffness of the elongate instrument, coil pipe stiffness may be reduced by stretching the coil pipe so that tensile and compression stiffness of the coil pipe is decreased below that of other components of the elongate instrument. This reduces the effects of any potential increased bending stiffness or non-uniform bending stiffness that may be caused by the addition of a coil pipe to the elongate instrument.
The braid pattern of
The braid 56 and lumen 58 construct provides a mechanism or allows for a method for incorporating or integrating a fiber 59 in the wall of an elongate instrument 200 or shaft of the elongate instrument 200, such that: the fiber 59 is provided with an accurate and reliable radial positioning within the elongate instrument and has minimal twist; the fiber 59 assumes the same shape or substantially the same shape of the elongate instrument during elongate instrument bending; and/or the fiber 59 is free to float and is not impinged or minimally impinged during elongate instrument bending.
Tubes, liners, pipes or other support components may be incorporated into an elongate instrument in a symmetrical and balanced configuration. For example, tubes having 90 degree symmetry may be arranged in an elongate instrument to maintain uniform bending stiffness and provide ease in manufacturing.
In certain variations, where shape sensing fibers are incorporated into an elongate instrument in an unbalanced or nonsymmetrical configuration, additional fibers or “dummy fibers” may be introduced into the elongate instrument to create a more symmetric and uniform elongate instrument structure. Additional or “dummy” fibers may be added to the articulation or other section of the elongate instrument and they may be free floating.
A free floating fiber may contribute negligible bending stiffness to an elongate instrument while providing no or minimal friction or binding between the fiber and lumen of the elongate instrument. Various coatings, e.g., polyimide coatings or other friction reducing compounds such as silicones and other lubrication, may be applied to lumens or fibers to reduce friction between a fiber and lumen. A polyimide coating may also reduce the overall diameter of a fiber so that the fiber may be easily fit into a wall of an elongate instrument, such as a Hansen vascular catheter NORTHSTAR™ which has been described in previously incorporated applications.
Various mechanical structures and materials, such as those discussed supra, may be incorporated into an elongate instrument to avoid or reduce twist of the elongate instrument out of an articulation plane and/or to maintain a longitudinally uniform bending stiffness through an articulation section of the elongate instrument so that there is a constant or consistent radius of curvature in the articulation section. Indeed, various structures and/or materials may be introduced into an elongate instrument to stiffen various parts of the elongate instrument to avoid or reduce twist and to maintain uniform bending stiffness.
Lumens in an elongate instrument may be spaced apart from control wires in any number of degrees or configurations. For example, referring back to
In certain variations, an elongate instrument may have any combination of one or more control wires and one or more fibers. Any number of lumens of an elongate instrument may be populated with control wires and/or fibers and/or support components. For example, an elongate instrument having four lumens may have three lumens populated with control wires and one populated with a fiber. In certain variations, one or more fibers may be positioned in one or more lumens in a wall of an elongate instrument; for example, around the circumference of the elongate instrument. In other variations, one or more fibers may be positioned along a neutral axis of an elongate instrument, (e.g., along the center axis of the elongate instrument or the axis in which path length does not change or has negligible change during bending). In other variations, one or more fibers may be positioned along the outside of an elongate instrument. The fiber may be integrated into an elongate instrument in a manner such that it does not exceed the maximum strain tolerability of the fiber.
In certain variations, an elongate instrument may include a distal tip, distal end or other structures or materials configured to support at least a portion of a fiber distal end or fiber termination.
A distal tip of a fiber may include a termination attached thereto.
Because the junction 68, joint, or splice area where the termination 67 is spliced onto the fiber distal end 65 may be weak or fragile, the elongate instrument may include a distal tip 61 or other structure or material to protect the junction 68, termination 67 and/or fiber distal end 65. The fiber termination 67 and/or junction 68 may be placed in the elongate instrument in a position or section that bends or articulates minimally or in a reduced manner and/or may be protected by the elongate instrument or other structure so that the termination 67 and/or junction 68 don't bend or have minimal bending, and are protected during articulation and use of the elongate instrument, e.g., when the elongate instrument is contacting or ramming into tissue or other structures.
The elongate instrument tip 61 may include a control ring 69 used to terminate control or pull wires at the distal tip of the elongate instrument as previously described. The control ring 69 may be notched and may allow the fiber 65 to extend along the control ring 69 and into the tip 61. The tip 61 and/or control ring 69 may include stainless still, nylon, or other materials that provide stiffness to the tip 61 and control ring 69 sufficient to support the termination 67 and reduce or eliminate lateral bending of the termination 67. Nylon may be melted onto the termination 67 to fix the fiber 65 and/or termination 67 to the distal end or tip 61 of the elongate instrument. The elongate instrument tip 61 may include a stiff or rigid section, e.g., about 2-3 mm in length, that is strong enough to house the splice/junction 68 and termination 67 and prevent them from being loaded with too much strain or strain beyond the maximum strain tolerability of the splice/junction 68, fiber distal end 65, or termination 67 portions. In certain variations stiff materials, such as Nylon or PEBAX 72D may be melted over the junction, termination and/or fiber, e.g., as shown in
In certain variations various features that may reduce or eliminate breaking or bending of a fiber termination include the following. The elongate instrument tip may include a clear portion, made from a clear substance, e.g., clear nylon, that allows for visibility of the fiber through the wall of the elongate instrument tip. This helps preserve alignment or align the fiber and/or termination within the elongate instrument tip, during the fixing of the fiber and/or termination to the elongate instrument, e.g., during nylon or other material melt down. The stiff section of the elongate instrument tip, e.g., a stiff nylon section, may be increased or decreased in length to provide a length sufficient to protect the termination. A stiff or rigid sleeve, sheath, tube or cover, (e.g., made from 72D PEBAX, stainless steel, nylon, or polycarbonate) may be positioned or melted over at least portion of the distal section or tip of the elongate instrument, the stiff section of a spine, or the control ring to increase overall stiffness of the elongate instrument tip.
In certain variations, a rigid tube (e.g., stainless steel, nylon, or polycarbonate) may be positioned over the termination to protect the termination. The termination may be glued or otherwise fixed in a rigid tube which may be small enough to slide through a lumen of the elongate instrument. The termination and/or fiber and rigid tube may be slid through the lumen and fixed to the elongate instrument tip or to a nylon tip. Alternatively, the rigid tube may be integrated into the elongate instrument tip or control ring and the fiber and/or termination may be slid through the lumen of the elongate instrument and through the rigid tube and fixed to the elongate instrument by gluing or melting materials around the fiber. The length of the control ring may be modified or increased as necessary to extend beyond the termination to increase the length of the stiff section at the distal end or tip of the elongate instrument to protect the termination. Optionally a spine (e.g., nitinol spine) in the articulation section of the elongate instrument may be cut or designed such that at least a portion of the spine protects the termination and/or stiffens the elongate instrument. Optionally, stiff material, e.g., nylon, may be melted over the termination and/or junction section of the fiber for protection and to reduce strain. The elongate instrument tip or a feature attached to the termination or the termination may be designed in a variety of shapes, e.g., square, triangle, or have modified geometric features to provide strength.
In another variation, the elongate instrument tip may include light absorbing material (e.g., black materials such as black nylon) which may be positioned around the termination to reduce reflections at the tip of the fiber and elongate instrument. The light absorbing materials and other structures positioned in the elongate instrument or at the tip of the elongate instrument may improve or aid the optical properties required for fiber optic shape sensing.
In another variation, the fiber termination or junction may be coated and/or encapsulated to provide protection from fluid, water vapor, or vapor ingress. The distal end of a fiber, junction or the termination may be protected from moisture ingress in order to preserve the fiber's optical qualities. This may be accomplished by coating the termination and any fiber portion that may be stripped or spliced for attachment of the termination to the fiber with a coating material. Suitable coating materials may be thin to maintain the fiber diameter size at a size that is smaller than the size of the lumen in the elongate instrument in which the fiber may be positioned. The coating materials may also be conformal and able to resist or keep out moisture from the fiber. Such materials include, for example, polyimide dip/vapor deposition, parylene vapor deposition, urethane, and silicon. The fiber may be dip coated before insertion into a lumen. Encapsulation material could also be injected or melted from the open end of the lumen before an elongate instrument or catheter is tipped and the lumen end is sealed.
In certain variations an off the shelf fiber can be integrated into an elongate instrument, such as a catheter. The off the shelf fiber can include a bare fiber with a polyimide coating along the length of the fiber and a termination at its distal tip. The off the shelf fiber may be prepared to fulfill shape sensing requirements before or during integration of the fiber into an elongate instrument.
As shown in
A fiber has a minimum bend radius and may be fragile. As such, it may be desirable to minimize the number of fiber preparation steps performed after the fiber is incorporated or integrated into a catheter or elongate instrument. For example, preparation of the fiber's proximal end may be performed before integration of the fiber into the catheter. Calibration of a fiber may be performed before a pull tube is glued or affixed to a fiber or before the fiber is integrated or incorporated into a catheter or other elongate instrument.
Various processes and methods for integrating a fiber into an elongate instrument, such as a catheter, are described herein.
In alternative variations, a method or process for integrating or incorporating a fiber into a catheter may include the following. To avoid pushing the fragile fiber termination or section through the lumen of a catheter, the termination section of the fiber assembly may be affixed or glued into a long pull tube, e.g., a long polyimide pull tube 75 as illustrated in
Alternate materials and constructions may be utilized for a pull tube. In one variation the fiber assembly termination can be affixed to mandril which can be glued in a shorter pull tube. In another variation, the fiber assembly termination may be affixed or glued inside a stainless steel tube (e.g., the tube being about 3-6 mm in length). A pull tube and/or wire may then be affixed or glued to the stainless steel tube and the pull tube or wire is then pushed or pulled through a lumen of the catheter.
Providing a fiber with extra length or a service loop (e.g., the service loop may have a length of about 1-2 cm or longer) is one mechanism for absorbing a length change in the fiber when the fiber is positioned off of the neutral axis of an elongate instrument. For example, a fiber length change may occur when a catheter, and the fiber integrated therein, is bent or articulated in various degrees of freedom. If a fiber is anchored to an elongate instrument off the neutral or center axis of the elongate instrument, as the elongate instrument is bent, the fiber may take a different path than the elongate instrument. A service loop may accommodate a fiber length change due to axial compression or bending of the elongate instrument or due to manufacturing tolerances of the elongate instrument. A service loop may provide the fiber with extra length such that the fiber may slide in and out of the elongate instrument, as the service loop absorbs the length change. As an elongate instrument bends, the path length of the fiber may change and the amount of fiber present within the elongate instrument may change. A service loop may absorb these length changes. A service loop may allow an elongate instrument to be bent without adding strain to an integrated fiber, e.g., integrated in the walls of the elongate instrument. A service loop may allow a fiber to lengthen or contract within an elongate instrument without exceeding its minimum bend radius. A service loop may have various shapes and configurations and may be positioned anywhere along a fiber, e.g., anywhere along a fiber between a fixed distal section of the fiber (e.g., fixed to a distal section of an elongate instrument) and/or a fixed proximal section of the fiber (e.g., fixed to a proximal section of an elongate instrument or other structure associated with the elongate instrument). A service loop may be free floating and/or positioned in a groove or track or on a surface of a registration fixture.
In certain variations, a registration fixture may be positioned in a known orientation including but not limited to vertically or horizontally relative to a splayer or other structure associated with a catheter and the registration fixture may have a variety of shapes and configurations. The registration fixture may include a groove or track having a variety of shapes for receiving a fiber or service loop of the fiber. The groove or track may allow the service loop to spiral in the left hand or right hand direction or take on a configuration or shape similar to a bird's eye, a jog shape or other curve.
Various examples of registration fixtures are described herein. However, a registration fixture may be any structure on which or within which a fiber, elongate instrument, splayer or other structure may be positioned, coupled to, affixed to or otherwise held in various known or unknown configurations to register the coordinate system of a fiber with the coordinate system of an elongate instrument, splayer or other structure. In certain variations, in use, a register fixture may be located or positioned in any orientation or configuration (e.g., parallel or perpendicular) relative to an elongate instrument, splayer or other structure. In certain variations, the location of the registration fixture relative to the elongate instrument or structure of interest may be known. A registration fixture may or may not be attached or coupled to an elongate instrument. In certain variations, the registration fixture may be attached to a splayer or it may not be attached to an elongate instrument, e.g., a fixture used for in-factory registration or calibration.
Various registration fixtures are described herein.
Steps for manufacturing a catheter and integrating the fiber into the catheter assembly as shown in
The registration fixture 186 provides a method or mechanism for managing fiber slack at a proximal end of catheter; such that: the minimum bend radius of the fiber is not exceeded; the fiber is fixed on the proximal end, floating on the distal end, and the fiber is allowed to travel some predetermined distance; the fiber is supported after exiting the proximal end; the fiber is held in some position that allows for shape registration; and/or the proximal end anchor of the fiber can be adjusted to accommodate for tolerance stack up.
In another variation, a pull tube may not be necessary if the fiber termination can become more robust due to a change in materials, providing a pushable termination. The fiber assembly can remain bare and can be installed without the use of a pull tube. For the bare fiber assembly, a lid, cap, or short tube may be placed over the fiber distal end or termination to protect the termination during installation of the fiber assembly into the catheter assembly. In another example, a termination of attenuative glass may be fused to a fiber tip. The fiber/glass termination may be dip coated in a thin layer of polyimide. If the fiber is fixtured or positioned such that it is straight and does not collide forcefully with other components in the catheter, the fiber may be pushed through the catheter and embedded in nylon or another support structure, such as those described for the pullable termination, at the tip of the catheter
A variation of a method for integrating a shape sensing fiber in an elongate instrument may include inserting the fiber into a lumen of the elongate instrument, wherein the elongate instrument has a support component positioned therein for maintaining patency of the lumen during articulation of the elongate instrument; and fixing a distal end of the fiber at a distal end of the elongate instrument, wherein the fiber remains free to slide or float within the lumen of the elongate instrument.
A verification that the fiber 182 is not twisted can then be performed by either placing the catheter 181 in a known position and monitoring shape data from the fiber 182 to ensure the readings are accurate or by using a fixture to ensure no fiber twist. The proximal section of the fiber 182 which protrudes from the proximal end of the catheter 181 can then be placed into the service loop 188 in the registration fixture 186 and the anchor slide 189 on the proximal end of the fiber 182 can be placed into the pocket 184 of the registration fixture 186. The anchoring slide 189 is free to slide in the axial direction of the fiber 182 within the pocket 184. Thus anchoring slide 189 is adjusted within the pocket 184 until the desired fiber slack within the service loop 188 is obtained. Once in a desired position, the anchor slide 189 can be fixed, for example glued into place. A cover can be placed on the registration fixture 186 to protect and secure the fiber 182 within the service loop 188 and pocket 184.
In another variation, the fiber lumen at the distal control ring can be skived away such that the fiber is clearly visible once inserted. Outer plastic material that has flowed over the control ring can be cut away visually exposing the fiber. This method can allow the fiber to be aligned more accurately. Once aligned, a small amount of fast-curing adhesive can be applied to fill up the skive and provide a rigid, protective, encapsulation around the fiber termination. Various durometers of PEBAX, including but not limited to PEBAX 72D, 55D, and 35D, can then be melted onto the distal end of the catheter to form the catheter soft tip fully embedding and securing the fiber termination within the catheter tip. The fast curing adhesive bond can allow the catheter and fiber assembly to be handled before forming the catheter tip without the risk of misaligning the fiber. Indeed, a catheter or other elongate instrument tip may be encapsulated with PEBAX or other similar material.
In any of the variations described herein, fixturing or jigging may be built to more precisely align the termination splice or junction with a support structure in the catheter tip. Accurate or precise alignment may be important because the splice or junction may be more delicate and fragile than the surrounding structures, e.g., the fiber itself or the termination, e.g., made from glass.
In another variation, a fiber may be incorporated or integrated into a catheter before splayering is performed. The fiber may be placed in a protective enclosure during the final steps of the process and/or splayering.
In other variations, other mechanisms may be provided for eliminating the effects of differing strains on varying surfaces of a fiber. These other mechanisms may or may not involve the use of a service loop. In one variation shown in
In another variation, a fiber may be positioned along the neutral bending axis of a elongate instrument, e.g., a catheter, bronchoscope, or endoscope. The neutral bending axis an imaginary line that runs through any structure, which is not subjected to strain when the structure is subjected to a bend along its length. Since the neutral axis is not axially strained during bending, any material, for example a fiber, that is positioned along this line will not compress or expand during the bending of the structure. Thus positioning a fiber along the neutral bending axis of an elongate instrument would minimize the amount of strain experienced by the fiber. The fiber may be glued, imbedded or affixed to the elongate instrument along the neutral axis while avoiding breakage due to bending because of minima strain experienced by the fiber along the neutral axis. In certain variations, a fiber may be positioned or integrated anywhere within or on a surface of an elongate instrument. For example, a fiber may be positioned along a neutral bending axis of an elongate instrument, within a wall of an elongate instrument or on an outer surface of an elongate instrument. Floating the fiber and providing a service loop may or may not be required.
In another variation, the neutral bending axis of an elongate instrument may be altered by modifying the structure of the elongate instrument. For example, the neutral bending axis of the elongate instrument may be mechanically shifted to coincide with the center of the fiber. An elongate instrument, such as a catheter, may be constructed in such a way that the neutral bending axis of the shaft is not directly along the center of the catheter cross section. The neutral bending axis of a catheter may be shifted by intentionally adding a single or a series of axially stiff components, e.g., a hypodermic tube, along the length of the catheter or by integrating such components into a wall of the catheter. The inclusion of these stiff members will govern the location of the shaft's neutral bending axis and shift it relative to the structure's cross section center. The catheter may or may not have a central working lumen.
In one variation, in order to minimize or eliminate the strain applied to a shape sensing fiber, an axially stiff lumen, such as a hypodermic tube, may be incorporated into an elongate instrument or catheter shaft. This stiff lumen will now govern the neutral axis of the structure. If the fiber resides inside this lumen, it can be concluded that the fiber will not be subjected to any axial strain due to the bending of the structure. This fiber integration approach will allow for the fiber to not need a service loop at the proximal end of the catheter since it will not need to compensate for its overall length inside the catheter.
In certain variations, an elongate instrument configured to support the integration of a shape sensing fiber therein may be provided. The elongate instrument may include a central working lumen, a fiber lumen positioned along the neutral axis of bending of the elongate instrument, and one or more axially stiff components integrated in a wall of the elongate instrument. The axially stiff component may be in the form of a hypodermic tube. Optionally, the elongate instrument may not include a central working lumen.
Registration of a Fiber Integrated in an Elongate Instrument
Various mechanisms and methods for registering a fiber to an elongate instrument, to a splayer, component, fixture, or other structure which may or may not be coupled to or associated with an elongate instrument, or to other structures or devices are provided herein. In registration, the objective is to relate the coordinate system of the fiber to the coordinate system of the instrument of interest; this involves relating the x, y, z, position and orientation of the two coordinate system (all 6 degrees of freedom). Registration may involve the use of certain mechanical registration structures (e.g., structures that are meaningful to an elongate instrument) and/or alignment algorithms. Registration may also involve other steps such as locating the tip or other points of interest of the fiber and their orientation with relation to the instrument. These pieces of information (for instance the orientation and location of the tip), can be used for such applications such as instinctive driving described in detail in applications previously incorporated by reference. In certain variations, a coordinate system of a shape sensing fiber may be registered with an elongate instrument, catheter, splayer or other associated structures through the use of mechanical structure and/or algorithms. In certain variations, registration may allow a shape sensing fiber to be used in an instrument such as a catheter for localization, e.g., particular, instinctive, driving, shape feedback, and positional driving.
Methods and apparatus for registration or calibration of a fiber coordinate system to a robotic catheter assembly coordinate system will be described herein. It should be understood that similar methods and apparatus may be used for registration of a fiber with any system, for example any flexible elongate member including but not limited to manual catheters, endoscopes, bronchoscopes, or guide wires as well as any system with rigid linkages.
In order to register a fiber coordinate system to a catheter coordinate system, it may be desirable to use a full fiber length registration method including placing the entire or substantially the entire catheter assembly including the splayer and catheter with integrated fiber in known positions and orientations in a full fiber length registration fixture (e.g., a slide or plate or other structure) and then collecting data from fiber sensors within the fiber. The data collected from this process is used to calculate a transform or transformation matrix between the fiber coordinates and the catheter or splayer coordinates, which are physically tied to the registration fixture. The origin of the fiber coordinate system may be on the partial fiber length registration fixture (which may be affixed to the splayer) and the location of the partial fiber length registration fixture is determined through this registration process.
Also, the location of the fiber within the catheter may be determined. The orientation in roll and/or insert of the fiber distal tip glued or affixed within the catheter distal tip may be determined. The fiber includes a local coordinate system and the fiber can provide the location of the fiber tip. Registration provides the location of the catheter relative to the fiber.
Registration using the full fiber length registration method, which may use the entire or substantially the entire length of the fiber, can be used in one variation where an origin or proximal section of a fiber may or may not be fixed to the splayer or a partial fiber length registration fixture. The transformation of or the transformation matrix from the fiber coordinate system to the physical coordinate system of the splayer or catheter can be determined by placing the catheter with integrated fiber and splayer in a well machined and toleranced full fiber length registration fixture having known mechanical structures (such as curves, points, or grooves).
Various shapes for performing full fiber length registration on the full fiber length registration fixture may be utilized, e.g., shapes that extend in the forward, left, right, up, and/or down directions. The longer the lever arm or length of the fiber for calibration, the smaller the angular error should be. The accuracy of the registration procedure may depend on the accuracy of measurements that may be obtained and/or the fixture type or design.
In an alternative variation, the full fiber length registration fixture can include a splayer holder and instead of grooves can include various points placed in known locations relative to the splayer holder. With this full fiber length registration fixture, the tip of the catheter may be touched to the known points to calculate a transformation matrix between the fiber coordinate system and a physical coordinate system of the splayer or elongate instrument.
As described full fiber length registration involves registration and/or calibration on the entire or substantially entire length of a shape sensing fiber. When using full fiber length registration, assuming the shape sensing has close to zero error, having a long lever arm may allow for a more accurate calculation of the coordinate system transformation and provide a more accurate registration. Full fiber length registration may not require the use of fiducials in the mechanical registration fixture or structure if the fiber origin or a section at the fiber proximal end is fixed with the tolerance needed to maintain alignment out of the factory and is not able to rotate or change position once it is registered or calibrated.
However, in certain applications, the fiber origin may not be fixed with the tolerance needed to maintain alignment out of the factory. Also, the natural twist or roll during full fiber registration of the catheter in which the fiber is integrated may also provide a source of error during registration. If the elongate instrument twists while positioned in the grooves in the registration plate, the determined location of the fiber may no longer be accurate as the error lies within the diameter of the elongate instrument. In certain variations, an elongate instrument may not twist and/or the elongate instrument may have a diameter of about 2 mm (such as a vascular catheter) where 2 mm may be on the order of a shape sensing error such that any error due to twist is negligible. Thus additional registration or calibration beyond full fiber length registration may be necessary.
An alternative or additional registration or calibration method includes partial fiber length registration, e.g., at the proximal end of the fiber, or at least a partial length of the fiber registration. Partial fiber length registration can involve registration on any partial length or section of a shape sensing fiber. In certain variations, at least a section or portion of a fiber may be fixed or grounded relative to an elongate instrument or to a structure associated with an elongate instrument, such as a partial fiber length registration fixture (e.g., a plate or slide) or the splayer, such that the fiber may be registered to the elongate instrument or to a structure associated with the elongate instrument and the fiber may provide shape sensing or measuring of the elongate instrument. Partial fiber length registration may be performed in an ongoing manner, e.g., during use of an elongate instrument. Optionally, partial fiber length registration may be performed where no portion of the fiber is fixed to an elongate instrument or associated structure.
Referring back to
In the partial fiber length registration fixture 176 shown in
In certain variations, successive information further down the fiber shape, e.g., distally, may be used to correct for heading error, e.g., in situations where the reference or structure is readjusted to be the shaft of a catheter. This type of an adjustment would allow a comparison of the fiber shape to a catheter model. Optionally, the straight section of the hypotube near the proximal end of a catheter may be used to correct the heading from a splayer, e.g., where there is excessive error from the service loop or if the catheter becomes non-orthogonal to the splayer. Readjustments for the origin of the catheter shaft, based upon known fiber lengths in the splayer, may be made.
Registration structures or fixtures may take on additional alternative configurations. In one variation, a mechanical structure may be incorporated into a vertical handle or other functional, ergonomic structure on top of or adjacent a splayer. In certain variations, a fiber service loop may travel in plane or out of plane. Registration structures or fixtures may be positioned parallel to a splayer, bringing a fiber out of plane. For example, a plate may be positioned above or below a splayer and pulleys. Where a registration plate is located below the pulleys, the fiber may extend easily in plane with the service loop, e.g., where the fiber is placed in the lower lumen of a catheter. An example of an out of plane, horizontal mechanical registration structure or fixture is shown in
In some variations, in order to register the coordinate system of the fiber with the coordinate system of the catheter, full fiber length registration and/or the partial fiber length registration can be performed using the registration fixtures described in detail above. The method of registration, i.e., whether to use full fiber length registration, partial fiber length registration or both, depends on the mechanical stability of the 6 degrees of freedom at the origin of the fiber. In one variation, where all six degrees of freedom of the fiber origin can be securely fixed with regard to a section of the catheter or associated structure, a full length fiber registration can be performed as described above, e.g., during manufacturing, providing all six degrees of orientation of the catheter. In another variation, where the fiber origin can be partially fixed with less than six degrees of freedom, then both full fiber length and partial fiber length registration can be performed. In another variation, where the fiber origin is floating where no degrees of freedom are fixed, full fiber length registration and/or partial fiber length registration and/or a registration technique, such as known shape registration, can be performed.
Six degrees of freedom of a fiber can be fixed in certain variations where a section of the fiber, e.g., a section located at the proximal end or beginning of the fiber, is fixed or anchored relative to the elongate instrument or to a structure associated with the elongate instrument. Once a fiber is fixed relative to an elongate instrument or to a structure associated with the elongate instrument, the fiber may measure where that fixed point is relative to every other point on the fiber. In order to convert that relative position into an absolute position (e.g., the position of the tip of an elongate instrument) the location of that fixed point may be determined relative to some known reference (e.g., an elongate instrument, splayer, robot, or patient). In one variation, a point on the fiber may be fixed or glued down to something static, such that the fixed point of the fiber does not move. The location of the fixed point is then determined. All six degrees of freedom at the fixed point of the fiber are known, and every other point on the fiber may be measured relative to that fixed point. An anchored or fixed section of a fiber provides a stable starting position and origin for measuring the shape of the fiber, such that a relative measurement of the fiber shape (a measurement of one point on a fiber relative to another point on the fiber) may be converted into an absolute measurement of the elongate instrument shape.
In certain variations, a section of the fiber may be attached or affixed to an anchoring mechanism, where the anchoring mechanism may be glued or otherwise affixed or coupled to or positioned on an elongate instrument or a structure associated with the elongate instrument to fix, position, or anchor the fiber in place. Examples of anchoring mechanisms include but are not limited to a hypotube, tube or block made from silica, quartz, glass or other similar material. The anchoring mechanism may help maintain a section of the fiber in a straight configuration, providing a launch region on the fiber which may allow the start or beginning of the fiber to be located. In certain variations, the launch section of a fiber may be in a straight configuration to initialize a particular algorithm. In other variations, a launch section of a fiber may not be straight but may have one or more curves. The anchoring mechanism may be used to fix or anchor a section of the fiber or the origin of the fiber, preventing the fixed section or origin from moving in any of the six degrees of freedom such that an accurate registration of the fiber may be performed.
In certain variations, a system for measuring a shape of an elongate instrument includes a fiber and an anchoring mechanism where the fiber may be affixed to the anchoring mechanism and the anchoring mechanism may be affixed to the elongate instrument or to a structure associated with the elongate instrument. The anchoring mechanism may be in the form of a block, plate or slide. The anchoring mechanism may be made from silica, glass, quartz or a similar material and include a groove or track in which the fiber may be affixed or glued to bond the fiber to the anchoring mechanism. For example, the block may include a groove or track and the fiber may be affixed to the block within the groove or track. Optionally, the fiber may be affixed or glued to a surface of the block, e.g., where the block does not have a groove. The anchoring mechanism may be made from a material having a similar or identical thermal coefficient to that of the fiber.
In another case, it may be difficult to mechanically fix all six degrees of freedom of the fiber. For instance, the position of the fiber could be fixed well, as can the yaw and pitch by using a thin slot, but since the fiber is so thin, it could roll freely in the track. In a case such as this, less than 6 degrees of freedom can be determined from the fiber origin and from full fiber length registration. Thus, the remaining degrees of freedom can be determined using partial fiber length registration fixtures prior to and possibly during the procedure or during use of the catheter or elongate instrument if the fiber position changes in any degree of freedom. For instance, these other degrees of freedom can be determined by a heading, plane, or known shape in the service loop or splayer as previously described. This scheme can also be used if an error through the service loop or a section of the early shape measurement induces an error in one or more of the degrees of freedom of the origin; a secondary plane, shape, or heading can be used to correct these unknowns or errors in real time.
In alternative variations, the fiber origin may not be mechanically secured so no degrees of freedom can be fixed or determined from the origin of the fiber. In such a case, full fiber length registration, partial fiber length registration and/or one or more features or shapes can be used to determine one or more degrees of freedom. For instance, a plane from the service loop and a heading from the hypotube in the catheter may be used to determine all six degrees of freedom. In another variation, a well machined shape track (tolerance track shape track positioned in the device in a well-toleranced way) may be used to determine all six degrees of freedom of the system.
The above processes for registering a fiber may be used together or in the alternative to determine or measure one or more of the six degrees of freedom of a catheter or other elongate instrument. However, in certain variations, it may be difficult to obtain accurate or precise measurements in certain sections of a fiber, e.g., in the service loop. Thus, while one or more degrees of freedom may be measured based on a point on the fiber that is fixed or glued down, a known shape on the fiber may also be located to provide the remaining degrees of freedom. The known shape may be used to measure or detect one or more degrees of freedom to help correct for one or more errors that may have accumulated when measuring sections of the fiber, such as a service loop, that have tight bends or that may be difficult to measure. The tighter the bends imposed on a fiber are, the more difficult it may be for the fiber to maintain accuracy of its shape measurement. Use of the known shape registration technique in combination with the fixed fiber registration information may improve overall shape measuring accuracy.
In certain variations, a process for registering a fiber may or may not require fixing a point on the fiber. A known shape may be imposed or placed on the fiber and the shape may be recognized in a measurement coming from the fiber. The imposed shape is located in the measurement from the fiber and then lined up or registered with the known mechanical shape, machined to precise tolerances, providing an on the fly registration. The location of the shape in space and/or the orientation of the shape may be known or determined. For example, the shape may be referenced to certain data on a splayer. In certain variations, the shape may be located on a fixture, e.g., plate or slide, where the shape is toleranced tightly and the location of the shape is known relative to another point on the fixture, plate or slide.
The known shape registration technique may be used in combination with fixed fiber registration information obtained according to the fixed fiber registration techniques described above. In other variations, the known shape registration techniques may be used alone to ascertain one or more degrees of freedom or all six degrees of freedom of an elongate instrument by registering a fiber to an elongate instrument.
In another variation, twist or slide of the fiber may be difficult to detect or measure using the fixed fiber technique, so twist or slide may be detected or measured at a different point on the fiber, e.g., on a different plane, using the known shape technique.
In certain variations, the known shape may be placed anywhere in an elongate instrument, catheter or splayer, e.g., a known 2D or 3D shape. The physical structure for maintaining a shape may be located in a position that maintains the fiber shape and allows the shape to be recognized. The shape may be in a position where it is mechanically fixed relative to some other known structure or reference that has a known location. The shape may be structurally integrated into an elongate instrument, catheter, splayer, or fixture referenced to a splayer or robot, an introduction site (e.g., a known jog shape at a stabilizer at an introduction site) or into another component or structure associated with an elongate instrument. The above structures and sites may be used as references. Optionally, the shape may be reliably referenced to a known spot, origin or structure, such as something affixed or glued to a patient or to a physical organ.
The properties or configurations of known shapes used in the known shape registration technique may depend on the particular degrees of freedom to be obtained. For example, a bird's eye, jog, spiral and/or straight line shape in a fiber may be utilized. In certain variations, one or more known shapes (different or similar) may be placed along different lengths or sections of a fiber. The shapes may be used or read to measure or detect one or more degrees of freedom to calibrate out any errors that may have accumulated from measurements taken using the fixed fiber registration technique.
In certain variations, known shapes may be placed in an elongate instrument or other structure associated with the elongate instrument, e.g., by being mechanically placed therein. A lumen of an elongate instrument may be provided with a jog shape or other suitable shape. In certain variations, a straight hypotube holding a proximal section of a fiber may provide a known shape. The hypotube shape is straight and recognizable and its location is also known. The stiffness of the hypotube may be altered to make it stiffer and more accurate. A straight line shape may be placed in various sections of an elongate instrument or fiber and utilized as a known shape. A known shape may be straight, curved or any other possible configuration. A known recognition shape may be placed anywhere along the length of a fiber, elongate instrument, catheter, plate, splayer or other structure. Any known shape may allow for the measurement or ascertaining of one or more degrees of freedom.
Information about the shapes in a fiber in a fixture, splayer, or other structure located anywhere along the fiber may be used for performing registration or alignment. In certain variations, the shapes may be used for performing registration or alignment depending on the tolerances of the manufacturing process. In certain variations, the shapes may be used to confirm or reacquire registration or alignment information or to reacquire or check one or more degrees of freedom.
In certain variations, various registration techniques are provided that allow for all six degrees of freedom of a coordinate frame to be solved or ascertained with respect to another coordinate frame. In one variation, a fiber origin may be glued or otherwise affixed to an elongate instrument or structure associated with an elongate instrument and full fiber length registration or calibration may be utilized to ascertain all six degrees of freedom of an elongate instrument by registering the coordinate system of the fiber to the coordinate system of the elongate instrument.
Any of the various devices, systems or methods described herein for integrating or registering a fiber in or to an elongate instrument or other structure may apply to, be performed on or be incorporated in any manually and/or robotically controlled or steerable elongate instruments or catheters.
In certain variations, a housing, e.g., a splayer or instrument driver, may be coupled to a proximal portion of any of the elongate instruments or devices described herein. The housing may include an interface for receiving an actuating force and transferring the actuating force to the elongate instrument to articulate a distal portion of an elongate instrument. A shape sensing fiber may be integrated in the elongate instrument and may include a first portion positioned within the lumen of the elongate instrument. Optionally, the fiber may also include a second portion positioned within the housing, where the second portion can include a service loop which allows for sliding of the fiber within the lumen of the elongate instrument when the distal portion of the elongate instrument is articulated.
In any of the variations described herein, the particular shape that may be utilized in a fiber for registration purposes may depend on the a variety of factors, such as, the amount of error accrued going through that shape, how much slack is needed in a service loop, and any spatial restriction imposed by the particular system in which the fiber is being utilized. For example, in a robotic catheter system, space may be restricted due to the positioning of a guide wire manipulator or other component of the system. Examples of fiber shapes have been described supra, and include but are not limited to a bird's eye, jog or spiral shape or any other shape.
In certain variations, whether using a full or partial length registration fixture or any other known shape, the shape may include curves with large bends and a minimum number of turns to help minimize error. A shape may also be configured in a manner that allows the data to have long lever arms, e.g., a shape may cover the largest volume possible as permitted by the space available, to achieve an optimal registration. A shape may be configured in a manner, e.g., that balances a desired shape that minimizes error while occupying an adequate amount of space on a registration fixture (e.g., a shark fin or plate). In one variation, a shape may include a u-turn having a large bend radius.
As described supra, in certain variations a region of the fiber, e.g., the proximal region or origin of a fiber may be configured to facilitate registration of a fiber to an elongate instrument. In one variation, a portion of a fiber may be fixed in one to six degrees of freedom by fixing or gluing the fiber to a block, where the block is in a fixed location relative to an elongate instrument or splayer.
In another variation, a fiber may positioned or configured into a known shape, plane, line, vector, orientation or other position within a registration fixture that is attached to or fixed in a known location relative to an elongate instrument, splayer or other structure. One to six degrees of freedom of the fiber may be deduced based on the known shape or other orientation. Optionally, an unknown arbitrary shape may be utilized from which zero degrees of freedom of the fiber may be deduced.
Once the proximal or other region of the fiber is configured in any manner described herein, one or more or a combination of registration techniques may be utilized to obtain one to six degrees of freedom of the fiber relative to the elongate instrument, a splayer, a housing, a catheter, a registration fixture or other structure of interest. One to six degrees of freedom of the fiber may be measured or ascertained relative to an elongate instrument, e.g., via a structure or fixture whose location relative to an elongate instrument is known. In one variation, a fiber may be fixed in six degrees of freedom such that all six degrees of freedom of the fiber can be deduced in a fixture which may hold the entire or substantially the entire length of the fiber. The fixture may or may not be attached to the elongate instrument. The resulting registration or calibration may not change where the fiber is fixed or glued in place. If less than six degrees of freedom of the fiber are obtained, the remaining degrees of freedom may be deduced dynamically to register the fiber to the elongate instrument dynamically, during use of the elongate instrument.
In another variation, where the fiber is in a known shape or is configured in a known plane or other orientation in a fixture, (e.g., a fixture attached to the elongate instrument), one to six degrees of freedom may be deduced during use of the elongate instrument. A fiber positioned in a known 2D shape may be utilized to determine one to six degrees of freedom. A fiber configured in a known plane may be utilized to determine at least one degree of freedom.
In other variations, other features may be utilized to register a fiber to an elongate instrument or other structure during use of that instrument or other device or structure. For example, various shapes in an anatomy coupled with a CT image or 3D model; a known shape in an introducer through which the elongate instrument passes; the known location of a leader and a sheath splayer; and/or other features may be utilized to register a fiber to a desired instrument or other structure.
In any of the variations described herein, the shape of the fiber or elongate instrument may be obtained by collecting data along the fiber from the proximal end to the distal end of the fiber. In certain variations, registration data (e.g., full length or partial length) may be stored on the splayer EEPROM, on a USB, a server, or other portable memory device, from which the data may be accessed.
In another variation, a fiber may be placed or configured in a known shape in various locations for obtaining registration data. For example, the fiber may be placed in a known shape between the registration fixture and the Lune box or controller. In another example, a known shape may be placed between the service loop or registration fixture and the distal end of the fiber, e.g., at the introducer site. In another example, a known shape may be placed on a table or patient bed which may allow the fiber to be registered to the bed to minimize or avoid movement from an RCM or setup joint.
In certain variations, a system may include an elongate instrument having a proximal end, a distal end and at least one lumen defined therein. The system may also include a shape sensing fiber, where at least a first portion of the fiber is positioned in the lumen of the elongate instrument. A second portion of the fiber may be fixed or otherwise attached in a known location or position relative to the elongate instrument or to another structure such that the coordinate system of the fiber can be matched to the coordinate system of the elongate instrument to register the fiber to the elongate instrument. In certain variations, registration may allow the shape of an elongate instrument to be detected or determined, e.g., based on the shape of the fiber.
The second portion of the fiber may be fixed such that one or more degrees of freedom of the fixed portion the fiber may be measured or ascertained relative to the elongate instrument or other structure. Optionally, the second portion of the fiber may have a known shape.
In certain variations, the system may include a registration fixture. The second portion of the fiber may be fixed in a known location on the registration fixture and the registration fixture may be in a known location relative to the elongate instrument. The registration fixture may have grooves or slots for holding at least a portion of the fiber and/or at least a portion of the elongate instrument in a known shape, orientation or position.
In certain variations, the second portion of the fiber may be configured in a known position or orientation in a registration fixture such that data can be collected regarding the position or orientation of at least a partial length of the second portion of the fiber. The collected data may be used to calculate a transform between the coordinate system of the fiber and the coordinate system of the elongate instrument or other structure, to perform registration.
In certain variations, a housing may be coupled to a proximal portion of the elongate instrument. The housing may include an interface for receiving an actuating force and transferring the actuating force to the elongate instrument to articulate a distal portion of the elongated instrument. The registration fixture may be positioned on or in the housing. A portion of the fiber may be positioned within the housing, where the portion of fiber includes a service loop. The service loop may allow for sliding or displacing of the fiber within the lumen of the elongate instrument when the distal portion of the elongate instrument is articulated.
In certain variations, the system may be removably coupled to an instrument driver and a controller which controls actuation of the elongate instrument. Actuation motion may be transferred from the controller to the system via the instrument driver to articulate the distal end of the elongate instrument in at least one degree of freedom. Any variation of the system or assemblies described herein may be disposable.
In certain variations, a method for registering a fiber to an elongate instrument and/or detecting the shape of an elongate instrument may include one or more of the following steps. An assembly having an elongate instrument and a shape sensing fiber may be operated. The elongate instrument may have a proximal end, a distal end and at least one lumen defined therein, where least a first portion of the fiber may be positioned in the lumen of the elongate instrument. At least a second portion of the fiber may be fixed in a known location or position relative to the elongate instrument or to another structure. A position of the fixed portion of the fiber may be measured or ascertained relative to the elongate instrument to match the coordinate system of the fiber with the coordinate system of the elongate instrument to register the fiber to the elongate instrument.
In certain variations, one or more degrees of freedom of the fixed portion the fiber may be measured or ascertained relative to the elongate instrument. Optionally, one or more degrees of freedom of a portion of the fiber configured in a known shape, plane or other orientation may be measured or ascertained relative to the elongate instrument. Measuring or ascertaining or matching of the coordinate systems may be performed while the elongate instrument is positioned within an anatomical region. The registration may allow the shape of the elongate instrument to be detected.
In certain variations, saved registration data regarding registration between the coordinate system of the fiber and the coordinate system of the elongate instrument may be accessed from a memory component to determine the shape of the elongate instrument.
In certain variations, the assembly may be removably coupled to an instrument driver and a controller which controls actuation of the elongate instrument, wherein actuation motion is transferred from the controller to the elongate instrument via the instrument driver to articulate the distal end of the elongate instrument in at least one degree of freedom.
In certain variations, the assembly may include a registration fixture. The second portion of the fiber may be fixed in a known location on the registration fixture and the registration fixture may be in a known location relative to the elongate instrument. One or more degrees of freedom of the second portion of the fiber may be measured or ascertained relative to the registration fixture and the elongate instrument. A registration fixture may have grooves for holding at least a portion of the fiber in a known shape, orientation or position.
In certain variations, data may be collected regarding the position or orientation of at least a partial length of the fixed portion of the fiber configured in a known position or orientation in a registration fixture. The collected data may be used to calculate a transform between the coordinate system of the fiber and the coordinate system of the elongate instrument or other structure.
In certain variations, a system may include an elongate instrument having a proximal end, a distal end and at least one lumen defined therein. The system may also include a shape sensing fiber, wherein at least a first portion of the fiber is positioned in the lumen of the elongate instrument. A second portion of the fiber may be configured in a known shape, plane or other orientation relative to the elongate instrument or to another structure such that the coordinate system of the fiber may be matched to the coordinate system of the elongate instrument to register the fiber to the elongate instrument.
In certain variations, one or more degrees of freedom of the second portion of the fiber may be measured or ascertained relative to the elongate instrument. In certain variations, the second portion of the fiber may be positioned between a distal end of the fiber and a service loop located at a proximal end of the fiber. The second portion of the fiber may be held within a registration fixture associated with the elongate instrument. In one variation, the second portion of the fiber may have a u-turn configuration with a large bend radius to minimize measurement error and fit within a registration fixture associated with the elongate instrument. In certain variations, the second portion of the fiber may be configured in a known position or orientation in a registration fixture such that data can be collected regarding the position or orientation of at least a partial length of the second portion of the fiber. The collected data may be used to calculate a transform between the coordinate system of the fiber and the coordinate system of the elongate instrument or other structure.
In certain variations, a method of detecting the shape of an elongate instrument may include one or more of the following steps. Operating an assembly having an elongate instrument and a shape sensing fiber, where the elongate instrument may have a proximal end, a distal end and at least one lumen defined therein may be performed. At least a first portion of the fiber may be positioned in the lumen of the elongate instrument and at least a second portion of the fiber may be configured in a known shape, plane or other orientation. A position of the second portion of the fiber may be measured or ascertained relative to the elongate instrument to match the coordinate system of the fiber with the coordinate system of the elongate instrument to register the fiber to the elongate instrument.
In certain variations, one or more degrees of freedom of the second portion of the fiber may be measured or ascertained relative to the elongate instrument. In certain variations, the second portion of the fiber may be positioned between a distal end of the fiber and a service loop located at a proximal end of the fiber. In other variations, a second portion of the fiber may be positioned on a portion of the fiber fixed to an operating table or bed.
In other variations, a second portion of the fiber may be held within a registration fixture associated with the elongate instrument. Optionally, data may be collected regarding the position or orientation of the second portion of the fiber configured in a known shape, plane or other orientation in a registration fixture. The collected data may be used to calculate a transform between the coordinate system of the fiber and the coordinate system of the elongate instrument or other structure.
In certain variations, a method for detecting the shape of an elongate instrument may include one or more of the following steps. Operating an assembly having an elongate instrument and a shape sensing fiber may be performed. The elongate instrument may have a. proximal end, a distal end and at least one lumen defined therein. At least a first portion of the fiber may be positioned in the lumen of the elongate instrument and at least a second portion of the fiber may be fixed in a known location relative to the elongate instrument or to another structure. Saved registration data may be accessed regarding registration between the coordinate system of the fiber and the coordinate system of the elongate instrument from a memory component to determine the shape of the elongate instrument. Optionally, the structure may be a registration fixture which may be positioned in a known location relative to the elongate instrument.
In certain variations, one or more degrees of freedom of the fixed portion the fiber may be measured or ascertained relative to the elongate instrument. This step may be performed while the elongate instrument is positioned within an anatomical region. In certain variations, one or more degrees of freedom of a portion of the fiber configured in a known shape, plane or other orientation may be measured or ascertained relative to the elongate instrument.
In certain variations, an assembly may be removably coupled to an instrument driver and a controller which controls actuation of the elongate instrument, wherein actuation motion is transferred from a controller to the elongate instrument via the instrument driver to articulate the distal end of the elongate instrument in at least one degree of freedom.
In certain variations, a system may include an elongate instrument having a proximal end, a distal end and one or more lumens defined therein. The system may include a shape sensing fiber, where at least a portion of the fiber may be positioned within the lumen of the elongate instrument. The shape sensing fiber may have a service loop which allows for sliding or displacing of the fiber within the lumen of the elongate instrument when a distal portion of the elongate instrument is articulated. The system may also include a coil positioned within the lumen, and surrounding or at least partially or substantially surrounding the fiber. The coil may be slideable within the lumen and the coil may maintain the lumen in an open state during articulation of the elongate instrument.
In certain variations, the coil may be positioned in a distal section of first lumen. In certain variations, a fiber may be free floating within the coil.
In certain variations, a proximal section of the first lumen may be incorporated into a braid in the elongate instrument. The braid may optionally be configured to wind around the proximal section of the lumen as well as a working lumen and control wire lumen of the elongate instrument, in a diamond braid pattern.
In certain variations, the elongate instrument may have a tip which is reinforced to support or protect at least a portion of a fiber termination positioned therein. The elongate instrument tip may include a control ring and the fiber may extend through or along the control ring.
In certain variations, a system may include an elongate instrument having a proximal end, a distal end and at least one lumen defined therein. The system may include a housing coupled to a proximal portion of the elongate instrument, where the housing includes an interface for receiving an actuating force and transferring the actuating force to the elongate instrument to articulate a distal portion of the elongated instrument. The system may also include a shape sensing fiber. At least a first portion of the fiber may be positioned within the lumen of the elongate instrument, and a second portion of the fiber may be positioned within the housing. The second portion of the fiber may include a service loop which allows for sliding or displacing of the fiber within the lumen of the elongate instrument when the distal portion of the elongate instrument is articulated.
In certain variations, the interface may be configured to couple to an actuator. The actuating force may be delivered via robotic control in a robotically controlled or steerable elongate instrument system. In certain variations, the interface may include a knob for a user to manually deliver such actuation force.
In certain variations, at least a portion of the sensing fiber may be fixed relative to the elongate instrument or to a structure associated with the elongate instrument. At least a portion of the fiber positioned within the lumen of the elongate instrument may be decoupled or free floating relative to the lumen of the elongate instrument.
In certain variations, the housing may include a registration fixture. At least a portion of the service loop may be held within a groove or track of the registration fixture. The service loop may be configured to slide in a single plane within the registration fixture. The service loop may have a shape configured to fit substantially within the registration fixture.
In certain variations, the registration fixture may include a pocket positioned thereon. The fiber may include an anchoring mechanism affixed to a proximal portion of the fiber, wherein the anchoring mechanism may be configured to slide within the pocket in no more than one degree of freedom or in one or more degrees of freedom. The fiber may include an anchoring mechanism affixed to a proximal portion of the fiber, wherein the anchoring mechanism may be affixed within the pocket to fix a known fiber length. Optionally, the anchoring mechanism may include a silica block or straight tube.
In certain variations, a method of actuating an elongate instrument may include one or more of the following steps. A system may be operatively coupled a to a controller. The system may include an elongate instrument; a housing coupled to a proximal portion of the elongate instrument, where the housing comprises an interface for receiving an actuating force and transferring the actuating force to the elongate instrument to articulate a distal portion of the elongate instrument; and a shape sensing fiber. The elongate instrument may have a proximal end, a distal end and at least one lumen defined therein. At least a first portion of the fiber may be positioned within the lumen of the elongate instrument, and a second portion of the fiber may be positioned within the housing. The second portion of the fiber may include a service loop. Actuating motion may be transferred from the controller to the system to articulate the distal portion of the elongate instrument in at least one degree of freedom, where the service loop allows the fiber to slide or be displaced within the lumen of the elongate instrument when the distal portion of the elongate instrument is articulated, thereby controlling the amount of strain the fiber is subjected to and maintaining shape sensing properties of the fiber.
In certain variations, the housing may include a registration fixture. At least a portion of the service loop may be held within a groove or track of the registration fixture. The service loop may be configured to slide in a single plane within the registration fixture. The service loop may have a shape configured to fit substantially within the registration fixture. In certain variations, at least a portion of the fiber positioned within the lumen of the elongate instrument may be decoupled or free floating relative to the lumen of the elongate instrument.
In certain variations, a system may include an elongate instrument having a proximal end, a distal end and at least one lumen defined therein. A housing may be coupled to a proximal portion of the elongate instrument, wherein the housing includes an interface for receiving an actuating force and transferring the actuating force to the elongate instrument to articulate a distal portion of the elongate instrument. The system also includes a shape sensing fiber. At least a first portion of the fiber may be positioned in the lumen of the elongate instrument. At least a second portion of the fiber may be positioned in the housing such that the coordinate system of the fiber can be matched to the coordinate system of the elongate instrument to register the fiber to the elongate instrument. The second portion of the fiber may include a service loop which allows for sliding or displacing of the fiber within the lumen of the elongate instrument when the distal portion of the elongate instrument is articulated.
In certain variations, at least a portion of the second portion of the fiber may be fixed such that one or more degrees of freedom of the fixed portion the fiber may be measured or ascertained relative to the elongate instrument. In certain variations, at least a portion of the second portion of the fiber may be configured in a known shape, plane or other orientation such that one or more degrees of freedom of the portion of the fiber may be measured or ascertained relative to the elongate instrument. In certain variations, at least a portion of the fiber positioned within the lumen of the elongate instrument may be decoupled or free floating relative to the lumen of the elongate instrument.
In certain variations, the system may be removably coupled to an instrument driver and a controller which controls actuation of the elongate instrument, wherein actuation motion is transferred from the controller to the system via the instrument driver to articulate the distal portion of the elongate instrument in at least one degree of freedom. Any of the systems described herein may be disposable.
In certain variations, the housing may include a registration fixture. Optionally, a fixed portion of the fiber and the service loop may be positioned on a single registration fixture. The registration fixture may include grooves for holding at least a portion of the service loop. A service loop may be configured to slide in a single plane within the registration fixture. In certain variations, a registration fixture may include grooves for holding at least a portion of the fiber or at least a portion of the elongate instrument in a known shape, orientation or position.
In certain variations, a method of actuating an elongate instrument may include one or more of the following steps. An assembly may be operatively coupled to a controller. The assembly may include an elongate instrument; a housing coupled to a proximal portion of the elongate instrument, wherein the housing comprises an interface for receiving an actuating force and transferring the actuating force to the elongate instrument to articulate a distal portion of the elongate instrument; and a shape sensing fiber. At least a first portion of the fiber may be positioned in the lumen of the elongate instrument. At least a second portion of the fiber may be positioned in the housing such that the coordinate system of the fiber can be matched to the coordinate system of the elongate instrument to register the fiber to the elongate instrument. The second portion of the fiber may include a service loop. Actuation motion may be transferred from the controller to the assembly to articulate the distal end of the elongate instrument in at least one degree of freedom. The service loop may allow the fiber to slide or displace within the lumen of the elongate instrument when the distal portion of the elongate instrument is articulated, thereby controlling the amount of strain the fiber is subjected to. Saved registration data regarding registration between the coordinate system of the fiber and the coordinate system of the elongate instrument may be accessed from a memory component to determine the shape of the elongate instrument.
In certain variations, at least a portion of the second portion of the fiber may be fixed such that one or more degrees of freedom of the fixed portion the fiber may be measured or ascertained relative to the elongate instrument. In certain variations, at least a portion of the second portion of the fiber may be configured in a known shape, plane or other orientation such that one or more degrees of freedom of the portion of the fiber may be measured or ascertained relative to the elongate instrument. In certain variations, at least a portion of the fiber positioned within the lumen of the elongate instrument may be decoupled or free floating relative to the lumen of the elongate instrument.
In certain variations, a system may be removably coupled to an instrument driver and a controller which controls actuation of the elongate instrument, wherein actuation motion is transferred from the controller to the system via the instrument driver to articulate the distal portion of the elongate instrument in at least one degree of freedom. In certain variations, the housing may include a registration fixture. Optionally, the service loop may have a shape configured to fit substantially within a registration fixture.
In any of the variations described herein, an elongate instrument may include one or more lumens. For example, the elongate instrument may include a primary lumen and one or more secondary lumens.
Each of the individual variations described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other variations. Modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention.
Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events. Furthermore, where a range of values is provided, every intervening value between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein.
All existing subject matter mentioned herein (e.g., publications, patents, patent applications and hardware) is incorporated by reference herein in its entirety except insofar as the subject matter may conflict with that of the present invention (in which case what is present herein shall prevail). The referenced items are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such material by virtue of prior invention.
Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
This disclosure is not intended to be limited to the scope of the particular forms set forth, but is intended to cover alternatives, modifications, and equivalents of the variations described herein. Further, the scope of the disclosure fully encompasses other variations that may become obvious to those skilled in the art in view of this disclosure. The scope of the present invention is limited only by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 15/258,470 filed Sep. 7, 2016, issued as U.S. Pat. No. 10,667,720 on Jun. 2, 2020, entitled “Apparatus and Methods for Fiber Integration and Registration,” which is a continuation of U.S. patent application Ser. No. 14/860,291 filed Sep. 21, 2015, now abandoned, entitled “Apparatus and Methods for Fiber Integration and Registration,” which is a continuation of U.S. Non-Provisional patent application Ser. No. 13/314,057, now U.S. Pat. No. 9,138,166, filed Dec. 7, 2011, entitled “Apparatus and Methods for Fiber Integration and Registration,” which claims the benefit of U.S. Provisional Patent Application No. 61/513,488, filed Jul. 29, 2011. The above-referenced patent applications are all incorporated herein by reference in their entireties for all purposes. This application is also related to and incorporates herein by reference in its entirety for all purposes U.S. patent application Ser. No. 12/837,440, now U.S. Pat. No. 8,780,339, filed Jul. 15, 2010, entitled “Fiber Shape Sensing Systems and Methods.”
Number | Name | Date | Kind |
---|---|---|---|
3572325 | Bazell et al. | Mar 1971 | A |
3807390 | Ostrowski et al. | Apr 1974 | A |
3913565 | Kawahara | Oct 1975 | A |
4294234 | Matsuo | Oct 1981 | A |
4392485 | Hiltebrandt | Jul 1983 | A |
4443698 | Schiffner | Apr 1984 | A |
4607619 | Seike et al. | Aug 1986 | A |
4690175 | Ouchi et al. | Sep 1987 | A |
4706656 | Kubota | Nov 1987 | A |
4741326 | Sidall et al. | May 1988 | A |
4745908 | Wardle | May 1988 | A |
4748969 | Wardle | Jun 1988 | A |
4750475 | Yoshihashi | Jun 1988 | A |
4761073 | Meltz et al. | Aug 1988 | A |
4771766 | Aoshiro | Sep 1988 | A |
4846791 | Hattler et al. | Jul 1989 | A |
4869238 | Opie et al. | Sep 1989 | A |
4906496 | Hosono et al. | Mar 1990 | A |
4907168 | Boggs | Mar 1990 | A |
4945305 | Blood | Jul 1990 | A |
4960410 | Pinchuk | Oct 1990 | A |
4967732 | Inoue | Nov 1990 | A |
4996419 | Morey | Feb 1991 | A |
5003982 | Halperin | Apr 1991 | A |
5007705 | Morey et al. | Apr 1991 | A |
5050585 | Takahashi | Sep 1991 | A |
5066133 | Brienza | Nov 1991 | A |
5067346 | Field | Nov 1991 | A |
5078714 | Katims | Jan 1992 | A |
5083549 | Cho et al. | Jan 1992 | A |
5086401 | Glassman et al. | Feb 1992 | A |
5106387 | Kittrell et al. | Apr 1992 | A |
5108800 | Koo | Apr 1992 | A |
5118931 | Udd et al. | Jun 1992 | A |
5125909 | Heimberger | Jun 1992 | A |
5144960 | Mehra et al. | Sep 1992 | A |
5168864 | Shockey | Dec 1992 | A |
5217002 | Katsurada | Jun 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5257617 | Takahashi | Nov 1993 | A |
5261391 | Inoue | Nov 1993 | A |
5267339 | Yamauchi et al. | Nov 1993 | A |
5287861 | Wilk | Feb 1994 | A |
5313934 | Wiita et al. | May 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5341807 | Nardella | Aug 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5380995 | Udd et al. | Jan 1995 | A |
5386818 | Schneebaum | Feb 1995 | A |
5394875 | Lewis et al. | Mar 1995 | A |
5397443 | Michaels | Mar 1995 | A |
5397891 | Udd et al. | Mar 1995 | A |
5398691 | Martin et al. | Mar 1995 | A |
5401956 | Dunphy et al. | Mar 1995 | A |
5408409 | Glassman et al. | Apr 1995 | A |
5433215 | Athanasiou et al. | Jul 1995 | A |
5447149 | Kikawada et al. | Sep 1995 | A |
5447529 | Marchlinski et al. | Sep 1995 | A |
5448988 | Watanabe | Sep 1995 | A |
5469857 | Laurent et al. | Nov 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5478330 | Imran et al. | Dec 1995 | A |
5482029 | Sekiguchi | Jan 1996 | A |
5489270 | van Erp | Feb 1996 | A |
5492131 | Galel | Feb 1996 | A |
5507725 | Savage et al. | Apr 1996 | A |
5533985 | Wang | Jul 1996 | A |
5553611 | Budd et al. | Sep 1996 | A |
5558091 | Acker et al. | Sep 1996 | A |
5563967 | Haake | Oct 1996 | A |
5580200 | Fullerton | Dec 1996 | A |
5591965 | Udd | Jan 1997 | A |
5600330 | Blood | Feb 1997 | A |
5627927 | Udd | May 1997 | A |
5630783 | Steinberg | May 1997 | A |
5631973 | Green | May 1997 | A |
5636255 | Ellis | Jun 1997 | A |
5662108 | Budd et al. | Sep 1997 | A |
5667673 | Ferre et al. | Oct 1997 | A |
5673704 | Marchlinski et al. | Oct 1997 | A |
5681296 | Ishida | Oct 1997 | A |
5697377 | Wittkampf | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5713946 | Ben-Haim | Feb 1998 | A |
5720775 | Lamard | Feb 1998 | A |
5722959 | Bierman | Mar 1998 | A |
5729129 | Acker | Mar 1998 | A |
5738096 | Ben-Haim | Apr 1998 | A |
5741429 | Donadio, III | Apr 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5754741 | Wang et al. | May 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5784542 | Ohm et al. | Jul 1998 | A |
5798521 | Froggatt | Aug 1998 | A |
5799055 | Peshkin et al. | Aug 1998 | A |
5810716 | Mukherjee et al. | Sep 1998 | A |
5815640 | Wang et al. | Sep 1998 | A |
5825982 | Wright et al. | Oct 1998 | A |
5828059 | Udd | Oct 1998 | A |
5833608 | Acker | Nov 1998 | A |
5836869 | Kudo et al. | Nov 1998 | A |
5836874 | Swanson et al. | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5843076 | Webster, Jr. et al. | Dec 1998 | A |
5845646 | Lemelson | Dec 1998 | A |
5873817 | Kokish et al. | Feb 1999 | A |
5873822 | Ferre et al. | Feb 1999 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5879287 | Yoshihashi | Mar 1999 | A |
5882347 | Mouris-Laan | Mar 1999 | A |
5888191 | Akiba | Mar 1999 | A |
5891095 | Eggers et al. | Apr 1999 | A |
5902239 | Buurman | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5911694 | Ikeda et al. | Jun 1999 | A |
5917978 | Rutterman | Jun 1999 | A |
5920319 | Vining et al. | Jul 1999 | A |
5921924 | Avitall | Jul 1999 | A |
5935079 | Swanson et al. | Aug 1999 | A |
5938586 | Wilk | Aug 1999 | A |
5938587 | Taylor et al. | Aug 1999 | A |
5950629 | Taylor et al. | Sep 1999 | A |
5953683 | Hansen et al. | Sep 1999 | A |
5983126 | Wittkampf | Nov 1999 | A |
6004271 | Moore | Dec 1999 | A |
6012494 | Balazs | Jan 2000 | A |
6016439 | Acker | Jan 2000 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6035082 | Murphy et al. | Mar 2000 | A |
6061587 | Kucharczyk et al. | May 2000 | A |
6063022 | Ben-Haim | May 2000 | A |
6063082 | Devore et al. | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6068604 | Krause et al. | May 2000 | A |
6069420 | Mizzi et al. | May 2000 | A |
6080181 | Jensen et al. | Jun 2000 | A |
6083170 | Ben-Haim | Jul 2000 | A |
6096004 | Meglan et al. | Aug 2000 | A |
6106511 | Jensen | Aug 2000 | A |
6129668 | Haynor et al. | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6143013 | Samson et al. | Nov 2000 | A |
6144026 | Udd et al. | Nov 2000 | A |
6157853 | Blume et al. | Dec 2000 | A |
6161032 | Acker | Dec 2000 | A |
6172499 | Ashe | Jan 2001 | B1 |
6174280 | Oneda | Jan 2001 | B1 |
6197015 | Wilson | Mar 2001 | B1 |
6198974 | Webster, Jr. | Mar 2001 | B1 |
6201984 | Funda et al. | Mar 2001 | B1 |
6203493 | Ben-Haim | Mar 2001 | B1 |
6215943 | Crotts et al. | Apr 2001 | B1 |
6226543 | Gilboa et al. | May 2001 | B1 |
6228028 | Klein et al. | May 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6233491 | Kordis et al. | May 2001 | B1 |
6233504 | Das et al. | May 2001 | B1 |
6234958 | Snoke et al. | May 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
6253770 | Acker et al. | Jul 2001 | B1 |
6256090 | Chen et al. | Jul 2001 | B1 |
6266551 | Osadchy et al. | Jul 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6272371 | Shlomo | Aug 2001 | B1 |
6275511 | Pan et al. | Aug 2001 | B1 |
6275628 | Jones et al. | Aug 2001 | B1 |
6301420 | Greenaway et al. | Oct 2001 | B1 |
6301496 | Reisfeld | Oct 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6310828 | Mumm et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6315715 | Taylor et al. | Nov 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6366722 | Murphy et al. | Apr 2002 | B1 |
6370411 | Osadchy et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6375471 | Wendlandt et al. | Apr 2002 | B1 |
6380732 | Gilboa | Apr 2002 | B1 |
6384483 | Igarashi et al. | May 2002 | B1 |
6389187 | Greenaway et al. | May 2002 | B1 |
6393340 | Funda et al. | May 2002 | B2 |
6398731 | Mumm et al. | Jun 2002 | B1 |
6400979 | Stoianovici et al. | Jun 2002 | B1 |
6404497 | Backman | Jun 2002 | B1 |
6404956 | Brennan, III et al. | Jun 2002 | B1 |
6415171 | Gueziec et al. | Jul 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6426796 | Pulliam et al. | Jul 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6464632 | Taylor | Oct 2002 | B1 |
6470205 | Bosselmann et al. | Oct 2002 | B2 |
6471710 | Bucholtz | Oct 2002 | B1 |
6485411 | Konstorum | Nov 2002 | B1 |
6491626 | Stone et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6493573 | Martinelli et al. | Dec 2002 | B1 |
6493608 | Niemeyer | Dec 2002 | B1 |
6530913 | Giba et al. | Mar 2003 | B1 |
6537205 | Smith | Mar 2003 | B1 |
6544230 | Flaherty | Apr 2003 | B1 |
6545760 | Froggatt et al. | Apr 2003 | B1 |
6550342 | Croteau et al. | Apr 2003 | B2 |
6551273 | Olson et al. | Apr 2003 | B1 |
6554793 | Pauker et al. | Apr 2003 | B1 |
6563107 | Danisch et al. | May 2003 | B2 |
6565554 | Niemeyer | May 2003 | B1 |
6571639 | May et al. | Jun 2003 | B1 |
6574355 | Green | Jun 2003 | B2 |
6580938 | Acker | Jun 2003 | B1 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6592520 | Peszynski | Jul 2003 | B1 |
6593884 | Gilboa et al. | Jul 2003 | B1 |
6594552 | Nowlin | Jul 2003 | B1 |
6610007 | Belson et al. | Aug 2003 | B2 |
6611700 | Vilsmeier et al. | Aug 2003 | B1 |
6615155 | Gilboa | Sep 2003 | B2 |
6618612 | Acker et al. | Sep 2003 | B1 |
6620173 | Gerbi et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626902 | Kucharczyk et al. | Sep 2003 | B1 |
6659939 | Moll et al. | Dec 2003 | B2 |
6669709 | Cohn | Dec 2003 | B1 |
6671055 | Wavering et al. | Dec 2003 | B1 |
6676668 | Mercereau et al. | Jan 2004 | B2 |
6690964 | Beiger et al. | Feb 2004 | B2 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6711429 | Gilboa et al. | Mar 2004 | B1 |
6716166 | Govari | Apr 2004 | B2 |
6716178 | Kilpatrick et al. | Apr 2004 | B1 |
6726675 | Beyar | Apr 2004 | B1 |
6726699 | Wright et al. | Apr 2004 | B1 |
6741883 | Gildenberg | May 2004 | B2 |
6746422 | Noriega | Jun 2004 | B1 |
6749560 | Konstorum | Jun 2004 | B1 |
6774624 | Anderson et al. | Aug 2004 | B2 |
6782287 | Grzeszczuk et al. | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6790173 | Saadat | Sep 2004 | B2 |
6796963 | Carpenter et al. | Sep 2004 | B2 |
6799065 | Niemeyer | Sep 2004 | B1 |
6817973 | Merril et al. | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6817981 | Luce | Nov 2004 | B2 |
6826343 | Davis et al. | Nov 2004 | B2 |
6827710 | Mooney et al. | Dec 2004 | B1 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6837846 | Jaffe | Jan 2005 | B2 |
6850817 | Green | Feb 2005 | B1 |
6852107 | Wang et al. | Feb 2005 | B2 |
6856827 | Seeley et al. | Feb 2005 | B2 |
6858003 | Evans et al. | Feb 2005 | B2 |
6876786 | Chliaguine et al. | Apr 2005 | B2 |
6888623 | Clements | May 2005 | B2 |
6892090 | Verard et al. | May 2005 | B2 |
6898337 | Averett et al. | May 2005 | B2 |
6905460 | Wang et al. | Jun 2005 | B2 |
6908428 | Aizenfeld | Jun 2005 | B2 |
6921362 | Ouchi | Jul 2005 | B2 |
6923048 | Willsch et al. | Aug 2005 | B2 |
6950570 | Novotny | Sep 2005 | B1 |
6958035 | Friedman et al. | Oct 2005 | B2 |
6963792 | Green | Nov 2005 | B1 |
6965708 | Luo et al. | Nov 2005 | B2 |
6974455 | Garabedian et al. | Dec 2005 | B2 |
6987897 | Elster et al. | Jan 2006 | B2 |
6994094 | Schwartz | Feb 2006 | B2 |
6996430 | Gilboa et al. | Feb 2006 | B1 |
7008401 | Thompson et al. | Mar 2006 | B2 |
7010182 | Pennington | Mar 2006 | B2 |
7021173 | Stoianovici et al. | Apr 2006 | B2 |
7038190 | Udd et al. | May 2006 | B2 |
7042573 | Froggatt | May 2006 | B2 |
7046866 | Sahlgren et al. | May 2006 | B2 |
7074179 | Wang et al. | Jul 2006 | B2 |
7087049 | Nowlin et al. | Aug 2006 | B2 |
7130700 | Gardeski et al. | Oct 2006 | B2 |
7154081 | Friedersdorf et al. | Dec 2006 | B1 |
7169141 | Brock et al. | Jan 2007 | B2 |
7225012 | Susil et al. | May 2007 | B1 |
7280863 | Shachar | Oct 2007 | B2 |
7297142 | Brock | Nov 2007 | B2 |
7320700 | Cooper et al. | Jan 2008 | B2 |
7330245 | Froggatt | Feb 2008 | B2 |
7331967 | Lee et al. | Feb 2008 | B2 |
7343195 | Strommer et al. | Mar 2008 | B2 |
7371210 | Brock | May 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7494494 | Stoianovici et al. | Feb 2009 | B2 |
7538883 | Froggatt | May 2009 | B2 |
7540866 | Viswanathan et al. | Jun 2009 | B2 |
7561276 | Boyd | Jul 2009 | B2 |
7562660 | Saadat | Jul 2009 | B2 |
7594903 | Webler et al. | Sep 2009 | B2 |
7645230 | Mikkaichi | Jan 2010 | B2 |
7645231 | Akiba | Jan 2010 | B2 |
7742805 | Furnish et al. | Jun 2010 | B2 |
7772541 | Froggatt et al. | Aug 2010 | B2 |
7781724 | Childers et al. | Aug 2010 | B2 |
7789827 | Landry | Sep 2010 | B2 |
7789875 | Brock et al. | Sep 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7922693 | Reis | Apr 2011 | B2 |
7930065 | Larkin et al. | Apr 2011 | B2 |
7947050 | Lee et al. | May 2011 | B2 |
7947051 | Lee et al. | May 2011 | B2 |
7963288 | Rosenberg et al. | Jun 2011 | B2 |
7972298 | Wallace et al. | Jul 2011 | B2 |
8050523 | Younge et al. | Nov 2011 | B2 |
8052621 | Wallace et al. | Nov 2011 | B2 |
8052636 | Moll et al. | Nov 2011 | B2 |
8083691 | Goldenberg et al. | Nov 2011 | B2 |
8092397 | Wallace et al. | Jan 2012 | B2 |
8190238 | Moll et al. | May 2012 | B2 |
8219178 | Smith et al. | Jul 2012 | B2 |
8246536 | Ochi | Aug 2012 | B2 |
8290571 | Younge et al. | Oct 2012 | B2 |
8317746 | Sewell et al. | Nov 2012 | B2 |
8333204 | Saadat | Dec 2012 | B2 |
8372019 | Goldenberg et al. | Feb 2013 | B2 |
8377077 | Reis | Feb 2013 | B2 |
8388556 | Wallace et al. | Mar 2013 | B2 |
8391957 | Carlson et al. | Mar 2013 | B2 |
8409234 | Stahler et al. | Apr 2013 | B2 |
8444637 | Podmore et al. | May 2013 | B2 |
8460236 | Roelle et al. | Jun 2013 | B2 |
8498691 | Moll et al. | Jul 2013 | B2 |
8515215 | Younge et al. | Aug 2013 | B2 |
8523883 | Saadat | Sep 2013 | B2 |
8602031 | Reis et al. | Dec 2013 | B2 |
8652030 | Matsuura et al. | Feb 2014 | B2 |
8657781 | Sewell et al. | Feb 2014 | B2 |
8672837 | Roelle et al. | Mar 2014 | B2 |
8705903 | Younge et al. | Apr 2014 | B2 |
8720448 | Reis et al. | May 2014 | B2 |
8758231 | Bunch et al. | Jun 2014 | B2 |
8780339 | Udd | Jul 2014 | B2 |
8811777 | Younge et al. | Aug 2014 | B2 |
8818143 | Younge et al. | Aug 2014 | B2 |
8821376 | Tolkowsky | Sep 2014 | B2 |
8827947 | Bosman et al. | Sep 2014 | B2 |
8827948 | Romo et al. | Sep 2014 | B2 |
8864655 | Ramamurthy et al. | Oct 2014 | B2 |
8894589 | Leo et al. | Nov 2014 | B2 |
8894610 | MacNamara et al. | Nov 2014 | B2 |
8961533 | Stahler et al. | Feb 2015 | B2 |
8989528 | Udd | Mar 2015 | B2 |
9014851 | Wong et al. | Apr 2015 | B2 |
9057600 | Walker et al. | Jun 2015 | B2 |
9066740 | Carlson et al. | Jun 2015 | B2 |
9138166 | Wong et al. | Sep 2015 | B2 |
9173713 | Hart et al. | Nov 2015 | B2 |
9186046 | Ramamurthy et al. | Nov 2015 | B2 |
9186047 | Ramamurthy et al. | Nov 2015 | B2 |
9204933 | Reis et al. | Dec 2015 | B2 |
9254123 | Alvarez et al. | Feb 2016 | B2 |
9271663 | Walker et al. | Mar 2016 | B2 |
9289578 | Walker et al. | Mar 2016 | B2 |
9314306 | Yu | Apr 2016 | B2 |
9314953 | Lauer | Apr 2016 | B2 |
9358076 | Moll et al. | Jun 2016 | B2 |
9404734 | Ramamurthy et al. | Aug 2016 | B2 |
9408669 | Kokish et al. | Aug 2016 | B2 |
9427551 | Leeflang et al. | Aug 2016 | B2 |
9441954 | Ramamurthy et al. | Sep 2016 | B2 |
9452018 | Yu | Sep 2016 | B2 |
9480820 | Goldenberg et al. | Nov 2016 | B2 |
9498291 | Balaji et al. | Nov 2016 | B2 |
9498601 | Tanner et al. | Nov 2016 | B2 |
9500472 | Ramamurthy et al. | Nov 2016 | B2 |
9500473 | Ramamurthy et al. | Nov 2016 | B2 |
9504604 | Alvarez | Nov 2016 | B2 |
9532840 | Wong et al. | Jan 2017 | B2 |
9561083 | Yu et al. | Feb 2017 | B2 |
9566414 | Wong et al. | Feb 2017 | B2 |
9591990 | Chen et al. | Mar 2017 | B2 |
9622827 | Yu et al. | Apr 2017 | B2 |
9636184 | Lee et al. | May 2017 | B2 |
9636483 | Hart et al. | May 2017 | B2 |
9710921 | Wong et al. | Jul 2017 | B2 |
9713509 | Schuh et al. | Jul 2017 | B2 |
9726476 | Ramamurthy et al. | Aug 2017 | B2 |
9727963 | Mintz et al. | Aug 2017 | B2 |
9737371 | Romo et al. | Aug 2017 | B2 |
9737373 | Schuh | Aug 2017 | B2 |
9744335 | Jiang | Aug 2017 | B2 |
9763741 | Alvarez et al. | Sep 2017 | B2 |
9788910 | Schuh | Oct 2017 | B2 |
9827061 | Balaji et al. | Nov 2017 | B2 |
9844353 | Walker et al. | Dec 2017 | B2 |
9844412 | Bogusky et al. | Dec 2017 | B2 |
9867635 | Alvarez et al. | Jan 2018 | B2 |
9918659 | Chopra | Mar 2018 | B2 |
9918681 | Wallace et al. | Mar 2018 | B2 |
9931025 | Graetzel et al. | Apr 2018 | B1 |
9949749 | Noonan et al. | Apr 2018 | B2 |
9955986 | Shah | May 2018 | B2 |
9962228 | Schuh et al. | May 2018 | B2 |
9980785 | Schuh | May 2018 | B2 |
9993313 | Schuh et al. | Jun 2018 | B2 |
10016900 | Meyer et al. | Jul 2018 | B1 |
10022192 | Ummalaneni | Jul 2018 | B1 |
10046140 | Kokish et al. | Aug 2018 | B2 |
10080576 | Romo et al. | Sep 2018 | B2 |
10123755 | Walker et al. | Nov 2018 | B2 |
10123843 | Wong et al. | Nov 2018 | B2 |
10130345 | Wong et al. | Nov 2018 | B2 |
10130427 | Tanner et al. | Nov 2018 | B2 |
10136959 | Mintz et al. | Nov 2018 | B2 |
10143360 | Roelle et al. | Dec 2018 | B2 |
10143526 | Walker et al. | Dec 2018 | B2 |
10145747 | Lin et al. | Dec 2018 | B1 |
10149720 | Romo | Dec 2018 | B2 |
10159532 | Ummalaneni et al. | Dec 2018 | B1 |
10159533 | Moll et al. | Dec 2018 | B2 |
10169875 | Mintz et al. | Jan 2019 | B2 |
10213264 | Tanner et al. | Feb 2019 | B2 |
10219874 | Yu et al. | Mar 2019 | B2 |
10231793 | Romo | Mar 2019 | B2 |
10231867 | Alvarez et al. | Mar 2019 | B2 |
10244926 | Noonan et al. | Apr 2019 | B2 |
10285574 | Landey et al. | May 2019 | B2 |
10299870 | Connolly et al. | May 2019 | B2 |
10314463 | Agrawal et al. | Jun 2019 | B2 |
10350390 | Moll et al. | Jul 2019 | B2 |
10363103 | Alvarez et al. | Jul 2019 | B2 |
10376672 | Yu | Aug 2019 | B2 |
10383765 | Alvarez et al. | Aug 2019 | B2 |
10398518 | Yu et al. | Sep 2019 | B2 |
10405939 | Romo et al. | Sep 2019 | B2 |
10405940 | Romo | Sep 2019 | B2 |
10426559 | Graetzel et al. | Oct 2019 | B2 |
10426661 | Kintz | Oct 2019 | B2 |
10434660 | Meyer | Oct 2019 | B2 |
10463439 | Joseph et al. | Nov 2019 | B2 |
10464209 | Ho et al. | Nov 2019 | B2 |
10470830 | Hill | Nov 2019 | B2 |
10482599 | Mintz et al. | Nov 2019 | B2 |
10493239 | Hart et al. | Dec 2019 | B2 |
10493241 | Jiang | Dec 2019 | B2 |
10500001 | Yu et al. | Dec 2019 | B2 |
10517692 | Eyre et al. | Dec 2019 | B2 |
10524866 | Srinivasan | Jan 2020 | B2 |
10524867 | Kokish et al. | Jan 2020 | B2 |
10539478 | Lin | Jan 2020 | B2 |
10543048 | Noonan et al. | Jan 2020 | B2 |
10555778 | Ummalaneni et al. | Feb 2020 | B2 |
10555780 | Tanner et al. | Feb 2020 | B2 |
10569052 | Kokish et al. | Feb 2020 | B2 |
10631949 | Schuh et al. | Apr 2020 | B2 |
10639108 | Romo et al. | May 2020 | B2 |
10639109 | Bovay et al. | May 2020 | B2 |
10639114 | Schuh | May 2020 | B2 |
10667720 | Wong et al. | Jun 2020 | B2 |
10667871 | Romo et al. | Jun 2020 | B2 |
10667875 | DeFonzo | Jun 2020 | B2 |
20010004676 | Ouchi | Jun 2001 | A1 |
20010009976 | Panescu et al. | Jul 2001 | A1 |
20010021843 | Bosselmann et al. | Sep 2001 | A1 |
20010029366 | Swanson et al. | Oct 2001 | A1 |
20020064330 | Croteau et al. | May 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020138009 | Brockway et al. | Sep 2002 | A1 |
20020156369 | Chakeres | Oct 2002 | A1 |
20020166955 | Ogawa | Nov 2002 | A1 |
20020177789 | Ferry et al. | Nov 2002 | A1 |
20030016898 | Baruch et al. | Jan 2003 | A1 |
20030036748 | Cooper et al. | Feb 2003 | A1 |
20030050649 | Brock et al. | Mar 2003 | A1 |
20030055360 | Zeleznik et al. | Mar 2003 | A1 |
20030073908 | Desai | Apr 2003 | A1 |
20030074011 | Gilboa et al. | Apr 2003 | A1 |
20030109780 | Coste-Maniere et al. | Jun 2003 | A1 |
20030130564 | Martone et al. | Jul 2003 | A1 |
20030135204 | Lee et al. | Jul 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030163199 | Chu et al. | Aug 2003 | A1 |
20030188585 | Esser et al. | Oct 2003 | A1 |
20030195502 | Garabedian et al. | Oct 2003 | A1 |
20030195664 | Nowlin et al. | Oct 2003 | A1 |
20040015122 | Zhang et al. | Jan 2004 | A1 |
20040034282 | Quaid, III | Feb 2004 | A1 |
20040034300 | Verard et al. | Feb 2004 | A1 |
20040034365 | Lentz et al. | Feb 2004 | A1 |
20040054322 | Vargas | Mar 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040152972 | Hunter | Aug 2004 | A1 |
20040165810 | Fujita | Aug 2004 | A1 |
20040171929 | Leitner et al. | Sep 2004 | A1 |
20040176751 | Weitzner et al. | Sep 2004 | A1 |
20040193013 | Isakawa et al. | Sep 2004 | A1 |
20040193146 | Lee et al. | Sep 2004 | A1 |
20040208413 | Scan dale et al. | Oct 2004 | A1 |
20040220588 | Kermode et al. | Nov 2004 | A1 |
20040249246 | Campos | Dec 2004 | A1 |
20050004515 | Hart et al. | Jan 2005 | A1 |
20050027397 | Niemeyer | Feb 2005 | A1 |
20050033149 | Strommer et al. | Feb 2005 | A1 |
20050036140 | Elster et al. | Feb 2005 | A1 |
20050054934 | Furnish et al. | Mar 2005 | A1 |
20050059960 | Simaan et al. | Mar 2005 | A1 |
20050085728 | Fukuda | Apr 2005 | A1 |
20050125005 | Fujikura | Jun 2005 | A1 |
20050131279 | Boulais et al. | Jun 2005 | A1 |
20050131460 | Gifford, III et al. | Jun 2005 | A1 |
20050137478 | Younge et al. | Jun 2005 | A1 |
20050154262 | Banik et al. | Jul 2005 | A1 |
20050159646 | Nordstrom et al. | Jul 2005 | A1 |
20050159789 | Brockway et al. | Jul 2005 | A1 |
20050165276 | Belson et al. | Jul 2005 | A1 |
20050165366 | Brustad | Jul 2005 | A1 |
20050171508 | Gilboa | Aug 2005 | A1 |
20050182295 | Soper et al. | Aug 2005 | A1 |
20050182330 | Brockway et al. | Aug 2005 | A1 |
20050200324 | Guthart et al. | Sep 2005 | A1 |
20050201664 | Udd et al. | Sep 2005 | A1 |
20050203382 | Govari et al. | Sep 2005 | A1 |
20050222554 | Wallace et al. | Oct 2005 | A1 |
20050222581 | Fischer et al. | Oct 2005 | A1 |
20050254575 | Hannuksela et al. | Nov 2005 | A1 |
20050256452 | DeMarchi | Nov 2005 | A1 |
20050272975 | McWeeney et al. | Dec 2005 | A1 |
20050273085 | Hinman et al. | Dec 2005 | A1 |
20050288549 | Mathis | Dec 2005 | A1 |
20060013523 | Childers et al. | Jan 2006 | A1 |
20060025679 | Viswanathan et al. | Feb 2006 | A1 |
20060036164 | Wilson | Feb 2006 | A1 |
20060036213 | Viswanathan et al. | Feb 2006 | A1 |
20060041188 | Dirusso et al. | Feb 2006 | A1 |
20060058647 | Strommer et al. | Mar 2006 | A1 |
20060076023 | Rapacki et al. | Apr 2006 | A1 |
20060095022 | Moll et al. | May 2006 | A1 |
20060100610 | Wallace et al. | May 2006 | A1 |
20060111692 | Hlavka et al. | May 2006 | A1 |
20060142897 | Green | Jun 2006 | A1 |
20060161045 | Merril et al. | Jul 2006 | A1 |
20060178556 | Hasser et al. | Aug 2006 | A1 |
20060184016 | Glossop | Aug 2006 | A1 |
20060200026 | Wallace et al. | Sep 2006 | A1 |
20060200049 | Leo et al. | Sep 2006 | A1 |
20060241368 | Fichtinger et al. | Oct 2006 | A1 |
20060253108 | Yu et al. | Nov 2006 | A1 |
20060264708 | Horne | Nov 2006 | A1 |
20060271036 | Garabedian et al. | Nov 2006 | A1 |
20060276827 | Mitelberg et al. | Dec 2006 | A1 |
20060293864 | Soss | Dec 2006 | A1 |
20070015997 | Higgins et al. | Jan 2007 | A1 |
20070038181 | Melamud et al. | Feb 2007 | A1 |
20070055128 | Glossop | Mar 2007 | A1 |
20070060847 | Leo et al. | Mar 2007 | A1 |
20070060879 | Weitzner et al. | Mar 2007 | A1 |
20070065077 | Childers et al. | Mar 2007 | A1 |
20070112355 | Salahieh | May 2007 | A1 |
20070123851 | Alejandro et al. | May 2007 | A1 |
20070135733 | Soukup et al. | Jun 2007 | A1 |
20070135763 | Musbach et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070161857 | Durant et al. | Jul 2007 | A1 |
20070201793 | Askins et al. | Aug 2007 | A1 |
20070225559 | Clerc et al. | Sep 2007 | A1 |
20070249901 | Ohline et al. | Oct 2007 | A1 |
20070265503 | Schlesinger et al. | Nov 2007 | A1 |
20070270645 | Ikeda | Nov 2007 | A1 |
20070270679 | Nguyen et al. | Nov 2007 | A1 |
20070276180 | Greenburg et al. | Nov 2007 | A1 |
20070282167 | Barenboym et al. | Dec 2007 | A1 |
20070287886 | Saadat | Dec 2007 | A1 |
20070287999 | Malecki et al. | Dec 2007 | A1 |
20070293721 | Gilboa | Dec 2007 | A1 |
20070293724 | Saadat et al. | Dec 2007 | A1 |
20070299434 | Malecki et al. | Dec 2007 | A1 |
20080009750 | Aeby et al. | Jan 2008 | A1 |
20080015445 | Saadat et al. | Jan 2008 | A1 |
20080039255 | Jinno et al. | Feb 2008 | A1 |
20080051629 | Sugiyama et al. | Feb 2008 | A1 |
20080065103 | Cooper et al. | Mar 2008 | A1 |
20080097293 | Chin et al. | Apr 2008 | A1 |
20080108869 | Sanders et al. | May 2008 | A1 |
20080139887 | Fitpatrick | Jun 2008 | A1 |
20080146874 | Miller | Jun 2008 | A1 |
20080177285 | Brock et al. | Jul 2008 | A1 |
20080183071 | Strommer et al. | Jul 2008 | A1 |
20080208001 | Hadani | Aug 2008 | A1 |
20080212082 | Froggatt et al. | Sep 2008 | A1 |
20080218770 | Moll et al. | Sep 2008 | A1 |
20080234631 | Reis | Sep 2008 | A1 |
20080243064 | Stahler et al. | Oct 2008 | A1 |
20080249536 | Stahler et al. | Oct 2008 | A1 |
20080262480 | Stahler et al. | Oct 2008 | A1 |
20080262513 | Stahler et al. | Oct 2008 | A1 |
20080300592 | Weitzner et al. | Dec 2008 | A1 |
20080319311 | Hamadeh | Dec 2008 | A1 |
20090024195 | Rezai et al. | Jan 2009 | A1 |
20090054884 | Farley et al. | Feb 2009 | A1 |
20090076476 | Barbagli et al. | Mar 2009 | A1 |
20090082660 | Rahn et al. | Mar 2009 | A1 |
20090099420 | Woodley et al. | Apr 2009 | A1 |
20090123111 | Udd | May 2009 | A1 |
20090138025 | Stahler et al. | May 2009 | A1 |
20090163851 | Holloway | Jun 2009 | A1 |
20090201503 | Bennion et al. | Aug 2009 | A1 |
20090221908 | Glossop | Sep 2009 | A1 |
20090227997 | Wang et al. | Sep 2009 | A1 |
20090247880 | Naruse et al. | Oct 2009 | A1 |
20090254083 | Wallace et al. | Oct 2009 | A1 |
20090262109 | Markowitz et al. | Oct 2009 | A1 |
20090299344 | Lee et al. | Dec 2009 | A1 |
20090306587 | Milijasevic et al. | Dec 2009 | A1 |
20090312756 | Schlesinger et al. | Dec 2009 | A1 |
20090318797 | Hadani | Dec 2009 | A1 |
20090320527 | Harper et al. | Dec 2009 | A1 |
20090324161 | Prisco | Dec 2009 | A1 |
20100030023 | Yoshie | Feb 2010 | A1 |
20100073150 | Olson et al. | Mar 2010 | A1 |
20100081920 | Whitmore, III et al. | Apr 2010 | A1 |
20100106140 | Odland et al. | Apr 2010 | A1 |
20100114115 | Schlesinger et al. | May 2010 | A1 |
20100121138 | Goldenberg et al. | May 2010 | A1 |
20100121269 | Goldenberg | May 2010 | A1 |
20100125284 | Tanner et al. | May 2010 | A1 |
20100130823 | Ando | May 2010 | A1 |
20100168918 | Zhao | Jul 2010 | A1 |
20100175701 | Reis et al. | Jul 2010 | A1 |
20100179632 | Bruszewski et al. | Jul 2010 | A1 |
20100217184 | Koblish et al. | Aug 2010 | A1 |
20100228191 | Alvarez et al. | Sep 2010 | A1 |
20100249497 | Peine et al. | Sep 2010 | A1 |
20100249506 | Prisco et al. | Sep 2010 | A1 |
20100280320 | Alvarez et al. | Nov 2010 | A1 |
20100280525 | Alvarez et al. | Nov 2010 | A1 |
20100312096 | Guttman et al. | Dec 2010 | A1 |
20100331856 | Carlson et al. | Dec 2010 | A1 |
20110009863 | Stanislaw | Jan 2011 | A1 |
20110046441 | Wiltshire et al. | Feb 2011 | A1 |
20110077681 | Nagano | Mar 2011 | A1 |
20110090486 | Udd | Apr 2011 | A1 |
20110098533 | Onoda | Apr 2011 | A1 |
20110130718 | Kidd et al. | Jun 2011 | A1 |
20110148442 | Berner | Jun 2011 | A1 |
20110152880 | Alvarez et al. | Jun 2011 | A1 |
20110152883 | Reis | Jun 2011 | A1 |
20110200171 | Bettel et al. | Aug 2011 | A1 |
20110245844 | Jinno et al. | Oct 2011 | A1 |
20110261183 | Ma et al. | Oct 2011 | A1 |
20110295247 | Schlesinger et al. | Dec 2011 | A1 |
20110295248 | Wallace et al. | Dec 2011 | A1 |
20110295267 | Tanner et al. | Dec 2011 | A1 |
20110295268 | Roelle et al. | Dec 2011 | A1 |
20110301662 | Bar-Yoseph et al. | Dec 2011 | A1 |
20110306836 | Ohline et al. | Dec 2011 | A1 |
20110319910 | Roelle et al. | Dec 2011 | A1 |
20120071894 | Tanner et al. | Mar 2012 | A1 |
20120071895 | Stahler et al. | Mar 2012 | A1 |
20120089047 | Ryba et al. | Apr 2012 | A1 |
20120116253 | Wallace et al. | May 2012 | A1 |
20120123327 | Miller | May 2012 | A1 |
20120136419 | Zarembo et al. | May 2012 | A1 |
20120143226 | Belson et al. | Jun 2012 | A1 |
20120190976 | Kleinstreuer | Jul 2012 | A1 |
20120191079 | Moll et al. | Jul 2012 | A1 |
20120191083 | Moll et al. | Jul 2012 | A1 |
20120191086 | Moll et al. | Jul 2012 | A1 |
20120191107 | Tanner et al. | Jul 2012 | A1 |
20120239012 | Laurent et al. | Sep 2012 | A1 |
20120259244 | Roberts et al. | Oct 2012 | A1 |
20120281205 | Askins | Nov 2012 | A1 |
20120283747 | Popovic | Nov 2012 | A1 |
20130018400 | Milton et al. | Jan 2013 | A1 |
20130030363 | Wong et al. | Jan 2013 | A1 |
20130030519 | Tran et al. | Jan 2013 | A1 |
20130035537 | Wallace et al. | Feb 2013 | A1 |
20130085330 | Ramamurthy et al. | Apr 2013 | A1 |
20130085331 | Ramamurthy et al. | Apr 2013 | A1 |
20130085333 | Ramamurthy et al. | Apr 2013 | A1 |
20130090528 | Ramamurthy et al. | Apr 2013 | A1 |
20130090530 | Ramamurthy | Apr 2013 | A1 |
20130090552 | Ramamurthy et al. | Apr 2013 | A1 |
20130109957 | Hooft et al. | May 2013 | A1 |
20130144116 | Cooper et al. | Jun 2013 | A1 |
20130158477 | Goldenberg et al. | Jun 2013 | A1 |
20130165854 | Sandhu et al. | Jun 2013 | A1 |
20130165908 | Purdy et al. | Jun 2013 | A1 |
20130165945 | Roelle | Jun 2013 | A9 |
20130226151 | Suehara | Aug 2013 | A1 |
20130253534 | Reis | Sep 2013 | A1 |
20130304091 | Straehnz | Nov 2013 | A1 |
20130317276 | D'Andrea | Nov 2013 | A1 |
20130317519 | Romo et al. | Nov 2013 | A1 |
20130345519 | Piskun et al. | Dec 2013 | A1 |
20140046313 | Pederson et al. | Feb 2014 | A1 |
20140069437 | Reis et al. | Mar 2014 | A1 |
20140142591 | Alvarez et al. | May 2014 | A1 |
20140200402 | Snoke et al. | Jul 2014 | A1 |
20140257334 | Wong et al. | Sep 2014 | A1 |
20140264081 | Walker et al. | Sep 2014 | A1 |
20140275988 | Walker et al. | Sep 2014 | A1 |
20140276392 | Wong et al. | Sep 2014 | A1 |
20140276394 | Wong et al. | Sep 2014 | A1 |
20140276594 | Tanner et al. | Sep 2014 | A1 |
20140276646 | Wong et al. | Sep 2014 | A1 |
20140276934 | Balaji et al. | Sep 2014 | A1 |
20140276935 | Yu | Sep 2014 | A1 |
20140276936 | Kokish et al. | Sep 2014 | A1 |
20140276937 | Wong et al. | Sep 2014 | A1 |
20140276938 | Hsu et al. | Sep 2014 | A1 |
20140316397 | Brown | Oct 2014 | A1 |
20140357984 | Wallace et al. | Dec 2014 | A1 |
20140364870 | Alvarez et al. | Dec 2014 | A1 |
20150031950 | Drontle et al. | Jan 2015 | A1 |
20150142013 | Tanner et al. | May 2015 | A1 |
20150265807 | Park et al. | Sep 2015 | A1 |
20160001038 | Romo et al. | Jan 2016 | A1 |
20160007881 | Wong et al. | Jan 2016 | A1 |
20160067009 | Ramamurthy et al. | Mar 2016 | A1 |
20160067450 | Kowshik | Mar 2016 | A1 |
20160202053 | Walker et al. | Jul 2016 | A1 |
20160213884 | Park | Jul 2016 | A1 |
20160227982 | Takahashi | Aug 2016 | A1 |
20160228032 | Walker et al. | Aug 2016 | A1 |
20160235495 | Wallace et al. | Aug 2016 | A1 |
20160270865 | Landey et al. | Sep 2016 | A1 |
20160287279 | Bovay et al. | Oct 2016 | A1 |
20160287346 | Hyodo et al. | Oct 2016 | A1 |
20160338785 | Kokish et al. | Nov 2016 | A1 |
20160346049 | Allen et al. | Dec 2016 | A1 |
20170007337 | Dan | Jan 2017 | A1 |
20170007343 | Yu | Jan 2017 | A1 |
20170065356 | Balaji et al. | Mar 2017 | A1 |
20170113019 | Wong et al. | Apr 2017 | A1 |
20170172680 | Bowling | Jun 2017 | A1 |
20170202627 | Sramek et al. | Jul 2017 | A1 |
20170209073 | Sramek et al. | Jul 2017 | A1 |
20170209224 | Walker et al. | Jul 2017 | A1 |
20170281218 | Timm | Oct 2017 | A1 |
20170290631 | Lee et al. | Oct 2017 | A1 |
20180025666 | Ho et al. | Jan 2018 | A1 |
20180056044 | Choi et al. | Mar 2018 | A1 |
20180214011 | Graetzel et al. | Aug 2018 | A1 |
20180221038 | Noonan et al. | Aug 2018 | A1 |
20180221039 | Shah | Aug 2018 | A1 |
20180250083 | Schuh et al. | Sep 2018 | A1 |
20180271616 | Schuh et al. | Sep 2018 | A1 |
20180279852 | Rafii-Tari et al. | Oct 2018 | A1 |
20180280660 | Landey et al. | Oct 2018 | A1 |
20180289431 | Draper et al. | Oct 2018 | A1 |
20180325499 | Landey et al. | Nov 2018 | A1 |
20180326181 | Kokish et al. | Nov 2018 | A1 |
20180333044 | Jenkins | Nov 2018 | A1 |
20180360435 | Romo | Dec 2018 | A1 |
20190000559 | Berman et al. | Jan 2019 | A1 |
20190000560 | Berman et al. | Jan 2019 | A1 |
20190000576 | Mintz et al. | Jan 2019 | A1 |
20190083183 | Moll et al. | Mar 2019 | A1 |
20190110839 | Rafii-Tari et al. | Apr 2019 | A1 |
20190151148 | Alvarez et al. | Apr 2019 | A1 |
20190167366 | Ummalaneni | Jun 2019 | A1 |
20190175009 | Mintz | Jun 2019 | A1 |
20190175062 | Rafii-Tari et al. | Jun 2019 | A1 |
20190175799 | Hsu | Jun 2019 | A1 |
20190183585 | Rafii-Tari et al. | Jun 2019 | A1 |
20190183587 | Rafii-Tari et al. | Jun 2019 | A1 |
20190216548 | Ummalaneni | Jul 2019 | A1 |
20190216576 | Eyre | Jul 2019 | A1 |
20190223974 | Romo | Jul 2019 | A1 |
20190228525 | Mintz et al. | Jul 2019 | A1 |
20190246882 | Graetzel et al. | Aug 2019 | A1 |
20190262086 | Connolly et al. | Aug 2019 | A1 |
20190269468 | Hsu et al. | Sep 2019 | A1 |
20190274764 | Romo | Sep 2019 | A1 |
20190287673 | Michihata | Sep 2019 | A1 |
20190290109 | Agrawal et al. | Sep 2019 | A1 |
20190298160 | Ummalaneni et al. | Oct 2019 | A1 |
20190298460 | Al-Jadda | Oct 2019 | A1 |
20190298465 | Chin | Oct 2019 | A1 |
20190307987 | Yu | Oct 2019 | A1 |
20190328213 | Landey et al. | Oct 2019 | A1 |
20190336238 | Yu | Nov 2019 | A1 |
20190365209 | Ye et al. | Dec 2019 | A1 |
20190365479 | Rafii-Tari | Dec 2019 | A1 |
20190365486 | Srinivasan et al. | Dec 2019 | A1 |
20190374297 | Wallace et al. | Dec 2019 | A1 |
20190375383 | Alvarez | Dec 2019 | A1 |
20190380787 | Ye | Dec 2019 | A1 |
20190380797 | Yu | Dec 2019 | A1 |
20200000533 | Schuh | Jan 2020 | A1 |
20200022767 | Hill | Jan 2020 | A1 |
20200038128 | Joseph | Feb 2020 | A1 |
20200039086 | Meyer | Feb 2020 | A1 |
20200046434 | Graetzel | Feb 2020 | A1 |
20200046942 | Alvarez | Feb 2020 | A1 |
20200054408 | Schuh et al. | Feb 2020 | A1 |
20200060516 | Baez | Feb 2020 | A1 |
20200093549 | Chin | Mar 2020 | A1 |
20200093554 | Schuh | Mar 2020 | A1 |
20200100845 | Julian | Apr 2020 | A1 |
20200100853 | Ho | Apr 2020 | A1 |
20200100855 | Leparmentier | Apr 2020 | A1 |
20200101264 | Jiang | Apr 2020 | A1 |
20200107894 | Wallace | Apr 2020 | A1 |
20200121502 | Kintz | Apr 2020 | A1 |
20200146769 | Eyre | May 2020 | A1 |
Number | Date | Country |
---|---|---|
2285342 | Oct 1998 | CA |
1846181 | Oct 2006 | CN |
1857877 | Nov 2006 | CN |
102316817 | Jan 2012 | CN |
102458295 | May 2012 | CN |
102665590 | Sep 2012 | CN |
102711586 | Oct 2012 | CN |
102973317 | Mar 2013 | CN |
103767659 | May 2014 | CN |
103930063 | Jul 2014 | CN |
0 543 539 | May 1993 | EP |
0 776 739 | Jun 1997 | EP |
1 103 223 | May 2001 | EP |
1 442 720 | Aug 2004 | EP |
0 904 796 | Nov 2004 | EP |
2001-296110 | Aug 1999 | JP |
2000-292627 | Oct 2000 | JP |
2001-013334 | Jan 2001 | JP |
2001-201645 | Jul 2001 | JP |
2003-185897 | Jul 2003 | JP |
2004-180953 | Jul 2004 | JP |
2004-251779 | Sep 2004 | JP |
2005-010064 | Jan 2005 | JP |
3649666 | May 2005 | JP |
2006-525087 | Nov 2006 | JP |
2007-511247 | May 2007 | JP |
2010-046384 | Mar 2010 | JP |
2011-015992 | Jan 2011 | JP |
2012-105793 | Jun 2012 | JP |
WO 9202276 | Feb 1992 | WO |
WO 9414494 | Jul 1994 | WO |
WO 9744089 | Nov 1997 | WO |
WO 9808121 | Feb 1998 | WO |
WO 9945994 | Sep 1999 | WO |
WO 0011495 | Mar 2000 | WO |
WO 0045193 | Aug 2000 | WO |
WO 0067640 | Nov 2000 | WO |
WO 0133165 | May 2001 | WO |
WO 0219898 | Mar 2002 | WO |
WO 0247751 | Jun 2002 | WO |
WO 0274178 | Sep 2002 | WO |
WO 03065095 | Aug 2003 | WO |
WO 03077769 | Sep 2003 | WO |
WO 03091839 | Nov 2003 | WO |
WO 04001469 | Dec 2003 | WO |
WO 04039273 | May 2004 | WO |
WO 04105849 | Dec 2004 | WO |
WO 05032637 | Apr 2005 | WO |
WO 05055605 | Jun 2005 | WO |
WO 05081202 | Sep 2005 | WO |
WO 05087128 | Sep 2005 | WO |
WO 06092707 | Sep 2006 | WO |
WO 06099056 | Sep 2006 | WO |
WO 07015139 | Feb 2007 | WO |
WO 07045028 | Apr 2007 | WO |
WO 09097461 | Jun 2007 | WO |
WO 07109778 | Sep 2007 | WO |
WO 07146987 | Dec 2007 | WO |
WO 08094949 | Aug 2008 | WO |
WO 08097540 | Aug 2008 | WO |
WO 08131303 | Oct 2008 | WO |
WO 09092059 | Jul 2009 | WO |
WO 09094588 | Jul 2009 | WO |
WO 10081187 | Jul 2010 | WO |
WO 11005335 | Jan 2011 | WO |
WO 13107468 | Jul 2013 | WO |
WO 15093602 | Dec 2013 | WO |
WO 16003052 | Jan 2016 | WO |
Entry |
---|
European Examination Report dated Dec. 19, 2018 for Application No. EP 12819991.6, 7 pgs. |
European Examination Report dated Jun. 25, 2019 for Application No. EP 12819991.6, 5 pgs. |
International Search Report and Written Opinion dated Oct. 18, 2012 for Application No. PCT/US2012/048181, 11 pgs. |
“Fiber Optic Interferometer Fabry-Perot,” viewed on Dec. 9, 2010, http://physicsanimations.com/sensors/English/interf.htm (5 pages). |
“Speciality Guidewires,” Retrieved from the Internet: http://www.galtmedical.com/pdf/Guidewires.pdf, retrieved on Jun. 18, 2014 (2 pages). |
Abouraddy et al., “Towards multimaterial multifunctional fibres that see, hear, sense, and communicate,” Nature Materials, May 2007, pp. 336-342, vol. 6. |
Berthold, III, “Historical Review of Microbend Fiber-Optic Sensors,” Journal of Lightwave Technology, Jul. 1995, pp. 1193-1199, vol. 13 No. 7. |
Blandino et al., “Three-Dimensional Shape Sensing for Inflatable Booms,” 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Conference Dates: Apr. 18-21, 2005, Austin, Texas (10 pages). |
Capouilliet et al., “A Fiber Bragg Grating Measurement System for Monitoring Optical Fiber Strain,” IWCS/FOCUS Internet Conference, Nov. 12-15, 2001 (9 pages). |
Childers et al., “Recent developments in the application of optical frequency domain reflectometry to distributed Bragg grating sensing,” Luna Innovations and NASA Langley Research Center joint PowerPoint presentation (26 pages). |
Danisch et al., “Bend Enhanced Fiber Optic Sensors in a Teleoperation Application,” Fiber Optic and Laser Sensors XI, 1993, pp. 73-85, SPIE vol. 2070. |
Danisch et al., “Spatially continuous six degree of freedom position and orientation sensor,” Sensor Review, 1999, pp. 106-112, vol. 19. |
Davis et al., “Fiber-optic bragg grating array for shape and vibration mode sensing,” 1994, pp. 94-102, SPIE vol. 2191. |
Davis, “Strain Survey of an F/A-18 Stabilator Spindle Using High Density Bragg Grating Arrays,” Feb. 2005 (33 pages). |
Duncan et al., “A distributed sensing technique for aerospace applications,” Luna Innovations, Inc., American Institute of Aeronautics and Astronautics, 2004 (8 pages). |
Duncan et al., “Characterization of a fiber optic shape and position sensor,” Conference Title: Smart Structures and Materials 2006: Smart Sensor Monitoring Systems and Applications; San Diego, CA, Conference Date: Monday Feb. 27, 2006, Published in: Proc. SPIE, vol. 6167, 616704. |
Duncan et al., “Fiber-optic shape and position sensing,” Proceedings of the 5th International Conference on Structural Health Monitoring (2005), Structural Health Monitoring, 2005: Advancements and Challenges for Implementation (8 pages). |
Duncan et al., “High-accuracy fiber-optic shape sensing,” Conference Title: Sensor Systems and Networks: Phenomena, Technology, and Applications for NOE and Health Monitoring 2007, San Diego, California, USA, Conference Date: Monday Mar. 19, 2007, Published in: Proc. SPIE, vol. 6530 (11 pages). |
Duncan et al., “Use of high spatial resolution fiber-optic shape sensors to monitor the shape of deployable space structures,” Space Technology and Applications Int.Forum-Staif 2005 (7 pages). |
Duncan, “Sensing Shape: Fiber-Bragg-grating sensor arrays monitor shape at a high resolution,” Spie's OE Magazine, Sep. 2005, pp. 18-21. |
Flockhart et al., “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Optics Letters, Mar. 15, 2003, pp. 387-389, vol. 28, No. 6. |
Froggatt et al., “Distributed Fiber-Optic Strain and Temperature Sensors Using Photoinduced Bragg Gratings,” Thesis (Masters of Science), Feb. 1995 (22 pages). |
Froggatt et al., “Distributed measurement of static strain in an optical fiber with multiple Bragg gratings at nominally equal wavelengths,” Applied Optics, Apr. 1, 1998, pp. 1741-1746, vol. 37 No. 10. |
Froggatt et al., “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Applied Optics, Apr. 1, 1998, pp. 1735-1740, vol. 37, No. 1O. |
Froggatt, “Intracore and extracore examination of fiber gratings with coherent detection,” Thesis (PhD), 2000 (156 pages). |
Gander et al., “Bend Measurement using multicore optical fiber,” Proceedings of OFS-12, Oct. 1997, pp. 166-169. |
Gander et al., “Measurement of bending in two dimensions using multicore optical fibre,” European Workshop on Optical Fibre Sensors, Jun. 1998, pp. 64-68, SPIE vol. 3483. |
Gifford et al., “Swept-wavelength Interferometric Interrogation of Fiber Rayleigh Scatter for Distributed Sensing Applications,” Fiber Optic Sensors and Applications V, 2007, pp. 67700E-1-67700E-9, Proc. of SPIE vol. 6770. |
Grant et al., “Investigation of Structural Properties of Carbon-Epoxy Composites using Fiber-Bragg Gratings,” Applications of Photonic Technology 5, 2002, pp. 191-199, Proc. of SPIE vol. 4833. |
Grobnic et al., “Localized High Birefringence Induced in SMF-28 Fiber by Femtosecond IR Laser Exposure of the Cladding,” Journal of Lightwave Technology, Aug. 2007, pp. 1996-2001, vol. 25, No. 8. |
Grossman et al., “Development of microbend sensors for pressure, load, displacement measurements in civil engineering,” Downloaded from SPIE Digital Library on Nov. 4, 2010, May 1994, pp. 112-125, vol. 2191. |
Hayano et al., “Structural Health Monitoring System Using FBG Sensor Simultaneous Detection of Acceleration and Strain,” Department of System Design Engineering, Keio University (14 pages). |
Heo et al., “Design of TR-EFPI fiber optic pressure sensor for the medical application,” Korea Advanced Institute of Science and Technology (6 pages). |
Hill et al., “Fiber Bragg Grating Technology Fundamentals and Overview,” Journal of Lightwave Technology, Aug. 1997, pp. 1263-1276, vol. 15, No. 8. |
Hotate et al., “Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function,” Optics Express, May 26, 2008, pp. 7881-7887, vol. 16, No. |
Huang et al., “Continuous arbitrary strain profile measurements with fiber bragg gratings,” Smart Materials and Structures, 1998, pp. 248-256, vol. 7. |
Janssen et al., “Signal averaging in the undergraduate laboratory,” Europe Journal of Physics, 1988, pp. 131-134, vol. 9. |
Katsuki et al., “The Experimental Research on the Health Monitoring of the Concrete Structures Using Optical Fiber Sensor,” BAM International Symposium, Sep. 16-19, 2003 (7 pages). |
Kersey et al., “Fiber Grating Sensors,” Journal of Lightwave Technology, Aug. 1997, pp. 1442-1463, vol. 15, No. 8. |
Kim et al., “Micromachined Fabry-Perot Cavity Pressure Transducer,” IEEE Photonics Technology Letters, Dec. 1995, pp. 1471-1473, vol. 7, No. 12. |
Kirby et al., “Optimal sensor layout for shape estimation form strain sensors,” Smart Structures and Materials, 1995, pp. 367-376, vol. 2444. |
Klute et al., “Fiber-optic shape sensing and distributed strain measurements on a morphing chevron,” 44th AlAA Aerospace Sciences Meeting and Exhibit, Conference dates: Jan. 9-12, 2006, American Institute of Aeronautics and Astronautics (25 pages). |
Kreger et al., “Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter,” Fiber Optic Sensors and Applications VI, 2009, pp. 73160A-1-73160A-8, vol. 7316. |
Kreger et al., “High-Resolution Extended Distance Distributed Fiber-Optic Sensing Using Rayleigh Backscatter,” Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring, 2007, pp. 65301R-1-65301R-10, Proc. of SPIE vol. 6530. |
Kunzler et al., “Damage Evaluation and Analysis of Composite Pressure Vessels Using Fiber Bragg Gratings to Determine Structural Health” (9 pages). |
Lawrence et al., “A Fiber Optic Sensor for Transverse Strain Measurement,” Experimental Mechanics, Sep. 1999, pp. 202-209, vol. 39, No. 3. |
Lawrence et al., “Multi-Parameter Sensing with Fiber Bragg Gratings,” 1996, pp. 24-31, SPIE vol. 2872. |
Lee et al., “Intraoperative Use of Duel Fiberoptic Catheter for Simultaneous in Vivo Visualization and Laser Vaporization of Peripheral Atherosclerotic Obstructive Disease,” Catheterization and Cardiovascular Diagnosis, 1984, pp. 11-16, vol. 10. |
Lequime et al., “Fiber optic pressure and temperature sensor for down-hole applications,” Fiber Optic Sensors: Engineering and Applications, 1991, pp. 652-657, Proceedings SPIE vol. 1511. |
Lopatin et al., “Distributed Measurement of Strain in Smart Materials Using Rayleigh Scattering,” 32 International SAMPE Technical Conference, conference dates: Nov. 5-9, 2000, pp. 231-241. |
Luna Innovations, “Distributed Sensing System Sensor Array Specification,” pp. 1-3, website, retrieved from www.lunainnovations.com. |
Maas, “Shape measurement using phase shifting speckle interferometry,” Laser Interferometry IV: Computer-Aided Interferometry (1991), 1992, pp. 558-568, SPIE vol. 1553. |
MacDonald, “Frequency domain optical reflectometer,” Applied Optics, May 15, 1981, pp. 1840-1844, vol. 20, No. 10. |
Measures, Raymond et al., “Fiber Optic Strain Sensing”, Fiber Optic Smart Structures, 1995, pp. 171-247, John Wiley & Sons Inc. |
Mihailov et al., “UV-induced polarization-dependent loss (POL) in tilted fibre Bragg gratings: application of a POL equalizer,” IEE Proc.-Optoelectron., Oct./Dec. 2002, pp. 211-216. vol. 149, No. ⅚. |
Miller et al., “Shape sensing using distributed fiber optic strain measurements,” Second European Workshop on Optical Fibre Sensors, 2004, pp. 528-531, Proc. of SPIE vol. 5502. |
Morey, “Fiber-optic bragg grating sensors,” Fiber Optic and Laser Sensors VII, 1989, pp. 98-107, SPIE vol. 1169. |
Ohn et al., “Arbitrary strain profile measurement within fibre gratings using interferometric Fourier transform technique,” Electronics Letters, Jul. 3, 1997, pp. 1242-1243, vol. 33, No. 14. |
Pinet et al., “True challenges of disposable optical fiber sensors for clinical environment,” Third European Workshop on Optical Fibre Sensors, 2007, pp. 66191Q-1-66191Q-4, Proc. of SPIE vol. 6619. |
Posey et al., “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electronics Letters, Sep. 28, 2000, pp. 1688-1689, vol. 36, No. 20. |
Raum et al., “Performance Analysis of a Fiber-Optic Shape Sensing System,” Collection of Technical papers—44th A1AA, 2006, (11 pages). |
Raum, “Error Analysis of Three Dimensional Shape Sensing Algorithm,” Apr. 26, 2005 (13 pages). |
Reyes et al., “Tunable POL of Twisted-Tilted Fiber Gratings,” IEEE Photonics Technology Letters, Jun. 2003, pp. 828-830, vol. 15, No. 6. |
Satava, “How the Future of Surgery is Changing: Robotics, telesurgery, surgical simulators and other advanced technologies,” May 2006, pp. 2-21. |
Sato et al., “Ground strain measuring system using optical fiber sensors,” Part of the SPIE Conference on Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, Mar. 1999, pp. 470-479, SPIE vol. 3670. |
Schreiber et al., “Stress-induced birefringence in large-mode-area micro-structured optical fibers,” Optics Express, May 16, 2005, pp. 3637-3646, vol. 13, No. 10. |
Schulz et al., “Advanced fiber grating strain sensor systems for bridges, structures, and highways” (11 pages). |
Schulz et al., “Health monitoring of adhesive joints using multi-axis fiber grating strain sensor system,” (12 pages). |
Soller et al., “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Optics Express, Jan. 24, 2005, pp. 666-674, vol. 13, No. 2. |
Soller et al., “Optical Frequency Domain Reflectometry for Single- and Multi-Mode Avionics Fiber-Optics Applications,” IEEE, 2006, pp. 38-39. |
Sorin, “Survey of Different Techniques,” Optical Reflectometry for Component Characterization, 1997, Chapter 10, Section 10.5, pp. 424-429. |
Tian et al., “Torsion Measurement Using Fiber Bragg Grating Sensors,” Experimental Mechanics, Sep. 2001, pp. 248-253, vol. 41, No. 3. |
Trimble, “A successful fiber sensor for medical applications,” Fiber Optic Sensors in Medical Diagnostics, 1993, pp. 147-150, SPIE vol. 1886. |
Udd et al., “Multidimensional strain field measurements using fiber optic grating sensors,” Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, 2000, pp. 254-262, Proceedings SPIE vol. 3986. |
Udd et al., “Progress on developing a multiaxis fiber optic strain sensor,” Third Pacific Northwest Fiber Optic Sensor Workshop, 1997, pp. 50-56, Proceedings SPIE vol. 3180. |
Udd et al., “Usage of Multi-Axis Fiber Grating Strain Sensors to Support Nondestructive Evaluation of Composite Parts and Adhesive Bond Lines,” pp. 1-9. |
Udd, “Good Sense,” Spie's OE Magazine, Aug. 2002, pp. 27-30. |
Walker et al.. “Shaping the radiation field of tilted fiber Bragg gratings,” J. Opt. Soc. Am. B. May 2005, pp. 962-975, vol. 22, No. 5. |
Wippich et al., “Tunable Lasers and Fiber-Bragg-Grating Sensors,” The Industrial Physicist, Jun./Jul. 2003, pp. 24-27. |
Wong et al., “Distributed Bragg grating integrated-optical filters: Synthesis and fabrication,” J. Vac. Sci. Technol. B., Nov./Dec. 1995, pp. 2859-2864, vol. 13, No. 6. |
Wu et al., Sep. 2003, Fabrication of self-apodized short-length fiber Bragg gratings, Applied Optics, 42(25):5017-5023. |
Xu et al., “Miniature fiber optic pressure and temperature sensors,” Fiber Optic Sensor Technology and Applications IV, 2005, pp. 600403-1-600403-6, Proc. of SPIE vol. 6004. |
Xue et al., “Simultaneous Measurement of Stress and Temperature with a Fiber Bragg Grating Based on Loop Thin-Wall Section Beam,” Applied Optics, Mar. 2, 2006, pp. 1-16. |
Ye et al., “A polarization-maintaining fibre Bragg Grating interrogation system for multi-axis strain sensing,” Measurement Science and Technology, 2002, pp. 1446-1449, vol. 13. |
Zhang et al., “FBG Sensor Devices for Spatial Shape Detection of Intelligent Colonoscope,” Proceedings of the 2004 IEEE International Conference on Robotics & Automation, Apr. 2004, pp. 835-840, Louisiana. |
Zhang et al., “Fiber-Bragg-grating-based seismic geophone for oil/gas prospecting,” Optical Engineering, Aug. 2006, pp. 084404-1-84404-4, vol. 45, No. 8. |
Zhang, “Novel shape detection systems based on FBG sensor net for intelligent endoscope,” Journal of Shanghai University (English Edition), 2006, pp. 154-155, vol. 10, No. 2. |
Chinese Office Action for Chinese Patent Application No. 200780006359.8, dated Aug. 9, 2010, in Chinese language with translation provided by Chinese associate (6 pages). |
First Chinese Office Action for Chinese Patent Application No. 200780009956.6, dated Feb. 5, 2010 (20 pages). |
Extended European Search Report dated Feb. 25, 2015 in patent application No. 12819991.6. |
European Office Action for European Patent Application No. 07757358.2, dated Dec. 9, 2008 (3 pages). |
International Search Report for International Patent Application No. PCT/US2005/007108, dated Jun. 27, 2005 (4 pages). |
Written Opinion of the International Searching Authority for International Patent Application No. PCT/US2005/007108, dated Jun. 27, 2005 (6 pages). |
International Search Report for International Patent Application No. PCT/US2006/026218, dated Dec. 12, 2006 (4 pages). |
Written Opinion of the International Searching Authority for International Patent Application No. PCT/US2006/026218, dated Dec. 12, 2006 (7 pages). |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2007/062617, dated Aug. 26, 2008 (7 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2007/064728, dated Jul. 31, 2007 (13 pages). |
Written Opinion of the International Search Authority for International Patent Application No. PCT/US2007/064728, dated Jul. 31, 2007 (9 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2008/001505, dated Dec. 3, 2008 (8 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2008/060936, dated Nov. 6, 2008 (12 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2008/073215, dated Jan. 21, 2009 (12 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2008/082236, dated Oct. 16, 2009 (16 pages). |
Office Action for U.S. Appl. No. 11/678,016, dated Aug. 31, 2010 (30 pages). |
Office Action for U.S. Appl. No. 12/507,727, dated Dec. 22, 2010 (15 pages). |
Papers from prosecution File History for U.S. Appl. No. 11/690,116 (45 pages). |
Papers from prosecution File History for U.S. Appl. No. 12/106,254 (57 pages). |
Prosecution File History for U.S. Pat. No. 8,048,063 (1,405 pages). |
Prosecution File History of U.S. Pat. No. 5,798,521 (69 pages). |
Prosecution File History of U.S. Pat. No. 6,256,090 (126 pages). |
Prosecution File History of U.S. Pat. No. 6,470,205 (64 pages). |
Number | Date | Country | |
---|---|---|---|
20200337593 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
61513488 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15258470 | Sep 2016 | US |
Child | 16872734 | US | |
Parent | 14860291 | Sep 2015 | US |
Child | 15258470 | US | |
Parent | 13314057 | Dec 2011 | US |
Child | 14860291 | US |