Apparatus and methods for providing tactile feedback while delivering a closure device

Information

  • Patent Grant
  • 8597325
  • Patent Number
    8,597,325
  • Date Filed
    Monday, November 29, 2010
    14 years ago
  • Date Issued
    Tuesday, December 3, 2013
    10 years ago
Abstract
An apparatus for sealing a passage through tissue includes a tubular member, a plug, and a locator member. The plug is disposed on a distal end of the tubular member and includes an external thread. The locator member is inserted into a lumen of the tubular member until a distal portion is disposed beyond the plug. The distal portion includes a helically wound wire and a tether coupled to the wire that is movable for causing the wire to buckle. To seal a passage communicating with a blood vessel, the distal portion of the locator member is inserted into the passage, and the plug is threaded into the passage until the distal portion extends into the vessel. The tether is pulled to buckle the wire, and the plug is unthreaded until the buckled wire contacts a wall of the vessel, whereupon the plug is released to seal the passage.
Description
FIELD OF THE INVENTION

The present invention relates generally to apparatus and methods for sealing or closing passages through tissue, particularly to devices for delivering a closure device within a passage communicating with a body lumen, such as a blood vessel, and more particularly to apparatus and methods for positioning such a device relative to the body lumen before delivery.


BACKGROUND OF THE INVENTION

Catheterization and interventional procedures, such as angioplasty or stenting, generally are performed by inserting a hollow needle through a patient's skin and muscle tissue into the vascular system. A guide wire may then be passed through the needle lumen into the patient's blood vessel accessed by the needle. The needle may be removed, and an introducer sheath may be advanced over the guide wire into the vessel, e.g., in conjunction with or subsequent to a dilator. A catheter or other device may then be advanced through a lumen of the introducer sheath and over the guide wire into a position for performing a medical procedure. Thus, the introducer sheath may facilitate introduction of various devices into the vessel, while minimizing trauma to the vessel wall and/or minimizing blood loss during a procedure.


Upon completion of the procedure, the devices and introducer sheath may be removed, leaving a puncture site in the vessel wall. External pressure may be applied to the puncture site until clotting and wound sealing occur. This procedure, however, may be time consuming and expensive, requiring as much as an hour of a physician's or nurse's time. It is also uncomfortable for the patient, and requires that the patient remain immobilized in the operating room, catheter lab, or holding area. In addition, a risk of hematoma exists from bleeding before hemostasis occurs.


Various apparatus have been suggested for percutaneously sealing a vascular puncture by occluding the puncture site. For example, U.S. Pat. Nos. 5,192,302 and 5,222,974, issued to Kensey et al., describe the use of a biodegradable plug that may be delivered through an introducer sheath into a puncture site. When deployed, the plug may seal the vessel and provide hemostasis. Such devices, however, may be difficult to position properly with respect to the vessel, which may be particularly significant since it is generally undesirable to expose the plug material, e.g., collagen, within the bloodstream, where it may float downstream and risk causing an embolism.


Another technique has been suggested that involves percutaneously suturing the puncture site, such as that disclosed in U.S. Pat. No. 5,304,184, issued to Hathaway et al. Percutaneous suturing devices, however, may require significant skill by the user, and may be mechanically complex and expensive to manufacture.


Staples and surgical clips have also been suggested for closing wounds or other openings in tissue. For example, U.S. Pat. Nos. 5,007,921 and 5,026,390, issued to Brown, disclose staples that may be used to close a wound or incision.


In addition, skin seals have been proposed that may be threaded into an opening in skin. For example, U.S. Pat. No. 5,645,565, issued to Rudd et al., discloses a surgical plug that may be screwed into a puncture to seal the puncture. The surgical plug includes an enlarged cap and a threaded shaft that extends from the cap. During an endoscopic procedure, the plug may be threaded into an opening through skin until the cap engages the surface of the skin. The plug is intended to seal the opening communicating with a body cavity to prevent insufflation fluid from leaking from the cavity. Such plugs, however, may only be used at the surface of the skin, and may not be introduced through tissue, for example, to seal an opening in the wall of a blood vessel or other subcutaneous region.


To facilitate positioning devices that are percutaneously inserted into a blood vessel, “bleed back” indicators have been suggested. For example, U.S. Pat. No. 4,317,445, issued to Robinson, discloses a flashback chamber on a first end of a cannula that communicates with a port on a second end. The second end is percutaneously introduced into a patient until the port enters the vessel, whereupon blood, under normal blood pressure, may advance along the cannula and enter the flashback chamber, thereby providing a visual indication that the vessel has been entered. This reference, however, does not discuss vascular wound closure, but is merely directed to an introducer device. In contrast, U.S. Pat. No. 5,676,974, issued to Kensey et al., discloses a bleed back lumen intended to facilitate positioning of a biodegradable plug within a puncture site. This device, however, requires that an anchor of the plug be positioned within the vessel, and therefore, may increase the risk of over-advancement of the plug itself into the vessel.


Alternatively, U.S. Pat. No. 5,674,231, issued to Green et al., discloses a deployable loop that may be advanced through a sheath into a vessel. The loop is intended to resiliently expand to engage the inner wall of the vessel, thereby facilitating holding the sheath in a desired location with respect to the vessel. The loop may also provide a support for facilitating the deployment and deflection of a surgical clip against the vessel wall. Such a device, however, may risk engagement between the loop and the surgical clip, thereby preventing the loop from being withdrawn from the vessel.


Accordingly, apparatus and methods for delivering devices for sealing punctures or other passages through tissue communicating with a blood vessel would be considered useful.


BRIEF SUMMARY

The present invention is directed to apparatus and methods for delivering devices for sealing or closing passages through tissue, such as punctures communicating with blood vessels or other body lumens, and, more particularly, to apparatus and methods for positioning such devices relative to the body lumens before delivery.


In accordance with one aspect of the present invention, an apparatus is provided for positioning a closure device within a passage through tissue communicating with a body lumen. The apparatus includes an elongate member, e.g., an introducer sheath or other tubular member, including a proximal end, a distal end, and a lumen extending between the proximal and distal ends defining a longitudinal axis.


A closure element is associated with the elongate member for sealing the passage. In a preferred embodiment, the closure element is a plug member disposed on the distal end of the elongate member. The plug member may include a thread pattern on its outer surface, and may include a distal port communicating with a passage therethrough that, in turn, communicates with the lumen in the handle device. A sealing member may be provided in the passage for substantially sealing the passage from fluid flow therethrough. The plug member is preferably releasably attached to the distal end of the elongate member, e.g., by one or more connectors on the distal end of the elongate member and/or on the plug member. Alternatively, the closure element may be a clip that is deployable from the elongate member, e.g., from a housing slidably disposed on the elongate member.


A locator member is provided that may be inserted through the lumen, the locator member having a distal portion that extends distally beyond the distal end of the elongate member when the locator member is fully inserted into the lumen. If the closure element is a plug member, the distal portion also extends beyond the plug member, e.g., through the passage therein.


The locator member includes an elongate deflectable element including a proximal end and a distal end, and a control element coupled to the distal end of the deflectable element. The control element is movable proximally for causing an intermediate portion of the deflectable element, e.g., the distal portion of the locator member, to buckle substantially transversely with respect to the longitudinal axis. In a preferred embodiment, the deflectable element is a helically wound wire and the control member is a tether extending along at least the intermediate portion of the helically wound wire. The tether may extend within the helically wound wire and/or along an outer surface of at least a portion of the helically wound wire. Preferably, the intermediate portion of the deflectable element has a cross-section in its buckled configuration that is larger than a cross-section of the lumen, thereby preventing the deflectable element from being withdrawn into the plug member and/or elongate member once activated.


In accordance with another aspect of the present invention, a method is provided for sealing a passage communicating with a body lumen using an apparatus, such as that described above. The apparatus generally includes an elongate member including proximal and distal ends, and a closure element deployable from the distal end of the elongate member.


A locator member is coupled to the elongate member such that a distal portion of the locator member extends beyond the distal end of the tubular member. For example, if the elongate member is an introducer sheath or other tubular member including a lumen, the locator member may be inserted into the lumen. The distal end of the elongate member is advanced through a patient's skin towards the body lumen via the passage until the distal portion of the locator member is located within the body lumen. For example, if the closure element is a plug member, the elongate member may be rotated to thread the plug member into the passage towards the body lumen.


A deflectable element on the distal portion of the locator member is buckled from an axial collapsed configuration to a transverse expanded configuration. The elongate member is manipulated such that the buckled distal portion engages or otherwise contacts a proximal wall of the body lumen, thereby providing a tactile indication of the location of the distal end of the elongate member relative to the body lumen.


The closure device is then deployed from the distal end of the elongate member within the passage. The elongate member and the locator member are then withdrawn from the passage, leaving the closure element to substantially seal the opening.


Preferably, the deflectable element of the locator member includes a helically wound wire, and a tether or other control member coupled to a distal end of the helically wound wire. The tether may be subjected to tension, e.g., directed proximally, to buckle the helically wound wire substantially transversely, thereby defining the transverse configuration.


In a preferred embodiment, the closure element is a plug member releasably coupled to the distal end of the elongate member and including an external thread pattern. If the elongate member is a tubular member, the plug member may include a distal port communicating with the lumen in the tubular member, such that the locator member may be inserted into the tubular member until the distal portion extends through the distal port of the plug member. The distal portion is inserted into the passage until the plug member enters the passage, whereupon the plug member is threaded into the passage until the distal portion of the locator member enters the body lumen. The distal portion may be activated, as described above, and used to provide tactile feedback to position the plug member. For example, the plug member may be at least partially unthreaded before the plug member is deployed within the passage.


In an alternative embodiment, the apparatus may be used in conjunction with an introducer sheath or other tubular member already in place within the passage, e.g., that is used to access the body lumen during a procedure. The locator member may be inserted through the tubular member until the distal portion of the locator member is located within the body lumen. The deflectable element on the distal portion of the locator member may be buckled from an axial collapsed configuration to a transverse expanded configuration. The locator member may be manipulated, e.g., pulled proximally, such that the buckled distal portion engages or otherwise contacts a proximal wall of the body lumen, thereby providing a tactile indication that the distal portion is disposed within the body lumen and/or limiting further proximal movement of the locator member.


A plug member (or other closure device) may then be advanced over the locator member into the passage. For example, the plug member, disposed on the distal end of an elongate member, may be threaded through the tissue along the passage over the locator member. Preferably, the locator member is inserted through the distal port of the plug member and/or through the lumen of the elongate member as the plug member is advanced. Once the plug member attains a desired location within the passage, the plug member may be released from the distal end of the elongate member within the passage. The distal portion of the locator member may be returned to its axial configuration, and the elongate member and the locator member may be withdrawn from the passage, leaving the plug member to substantially seal the opening.


To facilitate positioning of the plug member, the locator member may include one or more markers, e.g., disposed on a proximal portion, that may have a predetermined relation with the distal portion of the locator member. For example, the proximal portion of the locator member may include a marker band located a predetermined distance from the distal portion. The elongate member may include a window for observing the marker when the plug member reaches a predetermined location relative the distal portion, e.g., a predetermined distance proximal to the distal portion. Alternatively, the locator member and the elongate member may include cooperate tactile elements, e.g., tabs and pockets, that engage one another when the plug member reaches a predetermined location. The plug member may then be released at the predetermined location, and then the elongate member and locator member may be removed.


Other objects and features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of an apparatus for delivering a closure element, including an introducer sheath, a locator, and an actuator assembly, in accordance with the present invention.



FIG. 2 is a side view of the apparatus of FIG. 1, with the locator disposed within the sheath, and a housing on the sheath advanced to a delivery position.



FIGS. 3A and 3B are perspective views of the distal end of the apparatus of FIGS. 1 and 2, showing positioning elements on the locator in collapsed and expanded configurations, respectively.



FIGS. 4A-4F are cross-sectional views of a blood vessel, showing a method for delivering a closure device into a passage communicating with the vessel.



FIG. 5 is a cross-sectional view of the blood vessel of FIG. 4D, showing the positioning elements engaging a wall of the vessel.



FIG. 6 is a perspective view of an alternate embodiment of a distal portion of the locator with the positioning elements disposed in their expanded configuration.



FIGS. 7A and 7B are side views of another embodiment of a distal portion of a locator with positioning elements disposed in collapsed and expanded configurations, respectively.



FIGS. 8A and 8B are side views of the locator of FIGS. 7A and 7B, including a control on the locator for adjusting the expansion of the positioning elements.



FIG. 9 is a cross-section view of a distal portion of an alternative embodiment of an apparatus for delivering a closure element, in accordance with the present invention.



FIG. 10 is a cross-sectional view of a distal portion of yet another alternative embodiment of an apparatus for delivering a closure element, in accordance with the present invention.



FIGS. 11A and 11B are side views of another preferred embodiment of a locator device, in accordance with the present invention.



FIG. 12A is an exploded perspective view of an apparatus for delivering a closure device, including the locator device of FIGS. 11A and 11B.



FIG. 12B is a perspective view of the apparatus of FIG. 12A after assembly, and with the locator device deployed.



FIGS. 13A-13D are cross-sectional side views, showing a method for delivering a plug member using the apparatus of FIGS. 12A and 12B.



FIG. 14 is a detail of FIG. 13C, showing activation of the locator member with a blood vessel.



FIGS. 15A-15D are cross-sectional side views, showing another method for delivering a plug member using the apparatus of FIGS. 12A and 12B.





DETAILED DESCRIPTION

Turning now to the drawings, FIGS. 1-2 show a first preferred embodiment of an apparatus 10 for providing access into a blood vessel or other body lumen from an incision, puncture, or other passage (not shown in FIGS. 1 and 2), and/or for delivering a closure element, such as clip 26 (shown in phantom), for closing the passage. Generally, the apparatus 10 includes an introducer sheath 12, a housing 24 slidably disposed on the sheath 12, a locator member 14 insertable into the sheath 12, and an housing actuator assembly 30.


The sheath 12 includes a substantially flexible or semi-rigid tubular body 15 including a lumen 16 extending between its proximal and distal ends 18, 20. The distal end 20 has a size and shape to facilitate insertion into a blood vessel, e.g., having a tapered tip 22 for facilitating substantially atraumatic introduction through the passage and at least partially into the vessel. The lumen 16 has a size for accommodating insertion of one or more devices therethrough, such as a catheter, guidewire, and the like (not shown). The sheath 12 also preferably includes a seal (not shown), such as a hemostatic valve, within the lumen 16 at or near the proximal end 18 that provides a fluid-tight seal, yet accommodates insertion of one or more devices, such as the locator 14, into the lumen 16 without fluid passing proximally from the sheath 12.


Optionally, the sheath 12 may include a side port 19 that communicates with the lumen 16, for example, to allow the infusion of fluids into the lumen 16, through the sheath 12. Alternatively, or in addition, the side port 19 may be used to provide a “bleed back” indicator, such as that disclosed in co-pending application Ser. No. 09/680,837, filed Oct. 6, 2000, entitled “Apparatus and Methods for Positioning a Vascular Sheath,” which is assigned to the assignee of the present invention. The disclosure of this application and any references cited therein are expressly incorporated herein.


A housing 24 is slidably disposed on an exterior of the sheath 12, the housing 24 configured for releasably holding the closure element 26. The housing 24 may include an ejector or other mechanism (not shown) for deploying the closure element 26 from the housing 24. In a preferred embodiment, the closure element 26 is an annular-shaped clip, including one or more barbs 28 for engaging the tissue around the puncture adjacent to the wall of the vessel. Preferably, the clip 26 is configured for drawing the tissue around the puncture at the wall of the vessel substantially closed and/or for enhancing hemostasis within the puncture. Exemplary embodiments of a housing and closure element for use with an apparatus in accordance with the present invention are disclosed in co-pending application Ser. Nos. 09/478,179, 09/546,998, and 09/610,238, the disclosures of which are expressly incorporated herein by reference.


The housing 24 is actuable from the proximal end 18 of the sheath 12 (FIG. 1), for example, by housing actuator assembly 30, for advancing the closure element 26 distally during deployment. The housing 24 may be substantially permanently but slidably disposed on the sheath 12. In this embodiment, the housing actuator assembly 30 may be substantially permanently attached to the proximal end 18 of the sheath 12. The housing 24 may be coupled to the housing actuator assembly 30 such that the housing 24 may be directed axially along the exterior of the sheath.


Alternatively, the housing 24 may be provided separate from the sheath 12 (not shown), e.g., with the closure element 26 pre-loaded therein. In this embodiment, the housing actuator assembly 30 may also be provided separate from the sheath 12, as shown, either coupled to or separate from the housing 24. Any time before delivering the closure element 26, the housing 24 may be directed over the sheath 12, e.g., by inserting the proximal end 18 of the sheath 12. The housing actuator assembly 30 may be attached to the proximal end 18 of the sheath 12, e.g., by cooperating connectors (not shown). The housing 24 may be coupled to the housing actuator assembly 30, if not already attached, thereby preparing the housing 24 for use.


In a preferred embodiment shown in FIGS. 1 and 2, the housing actuator assembly 30 includes first and second actuator members 46, 48 that are generally movable with respect to one another. The first actuator member 46 may be connected to the proximal end 18 of the sheath 12, for example, by rods (not shown) such that the first member 46 is substantially fixed with respect to the sheath 12. A rod, cable, or other control wire 44 is coupled to and extends generally proximally from the housing 24. The control wire 44 may extend along an outer surface of the sheath 12, as shown, or alternatively may extend through a lumen (not shown) in the sheath 12 beyond the proximal end 18.


A loose end 50 of the control wire 46 may be coupled to the second actuator member 48. For example, the housing actuator assembly 30 may be advanced over the control wire 46 such that the loose end 50 passes through aperture 52 in the first member 46 and is received in a mating pocket 54 in the second member 48, as best seen in FIG. 2. The loose end 50 may be frictionally engaged within the pocket 54 or, alternatively, the loose end 50 and pocket 54 may include cooperating detents (not shown) for securing the control wire 44 to the second actuator member 48.


The second actuator member 48 may be movable with respect to the first actuator member 46 by one or more rods or rails (not shown) extending therebetween. Thus, the second actuator member 48 may be movable from a first or proximal position (not shown), located a first distance from the first actuator member 46, distally to a second or distal position (shown in FIG. 2), located a second closer distance from the first actuator member 46. When the housing actuator assembly 30 is attached to the sheath 12 with the control wire 44 coupled to the second actuator member 48, the housing 24 may be directed from a proximal position (e.g., shown in FIG. 1) to a distal or delivery position (e.g., shown in FIG. 2) when the second actuator member 48 is moved from its proximal position to its distal position.


In a preferred embodiment, the second actuator member 48 is biased to its distal position, for example, by spring 56 or other biasing element. The second actuator member 48 may be locked in its proximal position, for example, by a locking mechanism (not shown), thereby retaining the housing 24 in its proximal position. When it is desired to advance the housing 24, a button, switch, or other activation member (not shown) may be deployed to release the locking mechanism, thereby automatically directing the second actuator member 48 towards the first actuator member 46, and thereby advancing the housing 24 to its distal position, as described further below. The closure element 26 may be automatically ejected from the housing 24 once it reaches the distal position or the closure element 26 may be subsequently ejected by a separate action. It will be appreciated by those skilled in the art that other housing actuator configurations may be provided for advancing the housing 24 with respect to the sheath 12, e.g., to deliver the closure element 26.


The housing actuator assembly 30 may also include an adjustment mechanism, such as threaded bolt or knob 58. For example, the knob 58 may be provided on the first actuator member 46 such that, as the knob 58 is rotated, the first actuator member 46 may be moved axially with respect to the sheath 12. Because the first actuator member 46 may be adjusted distally or proximally with respect to the sheath 12, the distal position of the second actuator member 48 consequently may be adjusted. This, in turn, may facilitate adjusting the distal position of the housing 24, e.g., to compensate for the thickness of a particular wall of a blood vessel when a closure element 26 is delivered to close a puncture in the wall.


Turning to FIGS. 1, 2, 3A, and 3B, the locator member 14 includes a flexible or semi-rigid tubular body or other elongate rail 32 having a proximal end 34 and a distal end 36. An actuator rod or other elongate member 38 is slidably disposed with respect to the rail 32, e.g., within a lumen 33 of tubular body 32. Preferably, the locator member 14 includes an annular ridge 40 or other detent on or near its proximal end 40 that may engage a complementary-shaped pocket 42 or other cooperating detent on the sheath 12. Thus, the locator member 14 may be substantially secured axially with respect to the sheath 12.


As best seen in FIGS. 3A and 3B, a distal portion 60 of the locator member 14 includes a substantially rounded, soft, and/or flexible distal tip 62, possibly including a pigtail (not shown) that may facilitate atraumatic advancement of the distal portion 60 into a blood vessel or other body lumen. The locator member 14 preferably has a length relative to the sheath 12 such that the distal portion 60 extends beyond the distal end 20 of the sheath 12 when the locator member 14 is fully received therein, as shown in FIG. 2.


One or more, and preferably a plurality of, positioning elements 64 are provided on the distal portion 60 that may be selectively expandable between a substantially axial collapsed configuration (shown in FIG. 3A) and a substantially transverse expanded configuration (shown in FIG. 3B). Preferably, the positioning elements 64 are substantially flexible splines configured for expanding substantially transversely with respect to a longitudinal axis 13 of the apparatus 10. In one embodiment, shown in FIGS. 1 and 2, the locator member 14 includes a pair of splines 64 disposed generally opposite one another about the distal portion 60. Alternatively, as shown in FIG. 6, the locator member 14 may include four splines 64′ that are substantially equally spaced about the distal portion 60. The locator member 14 may include more or fewer splines without deviating from the scope of the present invention.


Optionally, the splines 64 may include radiopaque markers (not shown) or may be at least partially formed from radiopaque material to facilitate observation of the splines 64 using fluoroscopy or other imaging systems. In addition, the housing 24 may include a radiopaque marker, e.g., at its distal end (not shown) and/or the closure element 26 may include a radiopaque marker or may be made from radiopaque material. This may facilitate monitoring the relative location of the closure element 26 to the splines 64, as described further below.


Returning to FIGS. 3A and 3B, each spline 64 preferably has a first fixed (e.g., proximal) end 64a and a second movable (e.g., distal) end 64b. The second end 64b may be axially movable towards the first end 64a to cause an intermediate region 64c of the spline 64 to expand transversely outward, thereby defining the substantially transverse expanded configuration. In a preferred embodiment, actuator rod 38 extends through the distal portion 60 and is coupled to the second end 64b of the splines 64 and/or to distal tip 62 of the locator member 14. The rod 38 may be moved axially, e.g., proximally, with respect to the rail 32 to selectively expand the splines 64 between their collapsed configuration and their expanded configuration.


A locator actuator 70 may be coupled to the locator member 14, the locator actuator 70 configured for selectively expanding the splines 64 from their collapsed configuration to their expanded configuration. For example, the locator actuator 70 may include a switch 72 that may be depressed or rotated to retract or move the rod 38 proximally, thereby expanding or deploying the splines 64. The locator actuator 70 preferably includes a lock (not shown) for securing the rod 38 in a proximal position and thereby locking the splines 64 in their expanded configuration. The lock may be released, for example, by depressing the switch 72. The locator actuator 70 may include a spring 74 or other biasing mechanism for biasing the rod 38 distally, e.g., to return the splines 64 to their collapsed configuration when the lock is released. For example, as described further below, the lock may be released upon activation of the housing actuator assembly 30, e.g., when the second actuator member 48 moves towards its distal position.


Turning to FIGS. 4A-4F, the apparatus 10 may be used to provide access into a blood vessel or other body lumen 90. Preferably, the apparatus 10 may be used to deliver a closure device, such as clip 26, to close and/or seal an incision, puncture, or other passage 92 that extends from a patient's skin 94 through intervening tissue 96, and a wall 98 of the vessel 90.


As shown in FIG. 4A, the sheath 12, without the locator member 14 therein, may be inserted or otherwise positioned within the blood vessel 90, i.e., through the passage 92. The sheath 12 is preferably provided with the housing 24 in its proximal position, without the housing actuator assembly (not shown) attached. Alternatively, the housing actuator assembly may be provided attached to the sheath 12 as long as the lumen 16 may be accessed. In a further alternative, the sheath 12 may be provided without the housing 24 thereon. The sheath 12 may be advanced over a guide wire or other rail (not shown) previously positioned through the passage 92 into the blood vessel 90 using a conventional procedure. Preferably, the blood vessel 90 is a peripheral vessel, such as a femoral or carotid artery, although other body lumens may be accessed using the sheath 12, as will be appreciated by those skilled in the art.


The passage 92, and consequently the sheath 12, may be oriented at a substantially acute angle “alpha” with respect to the vessel 90, thereby facilitating introduction of devices through the lumen 16 of the sheath 12 into the vessel 90 with minimal risk of damage to the vessel 90. One or more devices, such as a guide wire, a catheter, and the like (not shown), may be inserted through the sheath 12 and advanced to a desired location within the patient's body. For example, the devices may be used to perform a therapeutic or diagnostic procedure, such as angioplasty, atherectomy, stent implantation, and the like, within the patient's vasculature.


After the procedure is complete, the device(s) may be removed from the sheath 12, and the locator member 14 may be inserted through the hemostatic valve (not shown) into the lumen 16. If the housing 24 is not already provided on the sheath 12, the housing 24 and/or the housing actuator assembly (not shown) may be advanced over or otherwise attached to the proximal end of the sheath 12, preferably before the locator member 14 is inserted into the sheath 12.


As shown in FIG. 4B, when the locator member 14 is fully inserted within the sheath 12, the distal portion 60 extends beyond the distal end 20 of the sheath 12. In an alternative embodiment, the locator member 14 may be attached to an exterior surface (not shown) of the sheath 12, for example, along a track, e.g., cooperating slots, grooves, and the like (not shown) in the sheath 12 and locator member 14. The distal tip 62 preferably is substantially soft and/or flexible such that the distal portion 60 substantially atraumatically enters the vessel 90. In this fully inserted position, cooperating detents (not shown) may be engaged to substantially secure the locator member 14 axially with respect to the sheath 12. The housing actuator assembly (not shown) may be attached to the sheath 12, e.g., by attaching a control wire (not shown) from the housing 24 to the actuator assembly, as described above.


Alternatively, the sheath 12 may include a side port (not shown) at or near its distal end 20 and a bleed back lumen (also not shown) that extends from the side port to the proximal end of the sheath 12. Before or after insertion of the locator member 14, the sheath 12 may be manipulated until “bleed back” (i.e., blood entering the side port and passing proximally through the lumen due to exposure of the side port to blood pressure within the vessel) indicates a desired position for the distal end 20 of the sheath 12. For example, the sheath 12 may be partially withdrawn from the vessel 90 before the locator member 14 is inserted into the sheath 12 to minimize contact between the vessel wall 98 and the distal portion 60 of the locator member 14 during insertion of the locator member 14 into the sheath 12.


As shown in FIG. 4C, the splines 64 may then be directed to their expanded configuration, for example, by activating a switch on the proximal end (not shown) of the locator member 14. The sheath 12 and locator member 14 may then be moved in conjunction with one another, and preferably are together partially withdrawn from the vessel 90, until the splines 64 contact the wall 98 of the vessel 90, as shown in FIG. 4D. Thus, the splines 64 may provide a tactile indication of the position of the sheath 12 with respect to the wall 98 of the vessel 90. In addition, the splines 64 may assist in “presenting” the wall 98 of the vessel 90, e.g., for receiving a closure element, such as clip 26.


Turning to FIG. 4E, with the sheath 12 properly positioned, the housing 24 may then be actuated, for example, to advance the housing 24 distally into the passage 92 to deliver the clip 26. Preferably, movement of the housing 24 with respect to the distal end 20 of the sheath 12 is limited, e.g., by the housing actuator assembly (not shown), as described above. Preferably, the housing 24 may only be advanced a fixed distance such that the clip 26 substantially engages the wall 98 of the blood vessel, e.g., until the barbs 28 penetrate but do not pass completely through the wall 98. Thus, with the splines 64 fixed with respect to the distal end 20 of the sheath 12 and the distal position of the housing 24 fixed, the clip 26 may be advanced a predetermined distance into the passage 92 that is ascertainable and predictable. This predetermined distance may facilitate proper deployment of the clip 26 with respect to the wall 98 of the vessel 90, e.g., to prevent advancement of the clip 26 too far, i.e., into the vessel 90.


Alternatively, or in addition, the splines 64 include radiopaque markers, such that fluoroscopy and the like may be used to monitor and position the distal portion 60 of the locator member 14. The housing 24 and/or closure element 26 may also include radiopaque markers such that a relative position of the closure element 26 with respect to the splines 64, and consequently to the wall 98 of the vessel 90, may be ascertained before the closure element 26 is deployed from the housing 24.


In a preferred method, the splines 64 automatically return to their collapsed configuration when the closure element 26 is deployed from the housing 24 or when the housing 24 reaches its distal position, as shown in FIG. 4F. For example, the housing actuator assembly (not shown) may contact the locator actuator (also not shown) when the housing actuator assembly is used to advance the housing 24 to its distal position, thereby releasing the locator actuator. This enhancement may avoid any risk of contact between the clip 26 and the splines 64, e.g., which otherwise may risk driving the barbs 28 of the clip 26 through the wall 98 of the vessel 90 and into the splines 64. Alternatively, or in addition, the distal portion 60 of the locator member 14 may be automatically retracted, e.g., into the sheath 12, when the closure element 26 is deployed or the housing 24 is advanced.


Once the clip 26 is successfully deployed within the passage 92, i.e., into the wall 98 of the vessel 90, the apparatus 10 may be withdrawn from the passage 92. If the splines 64 of the locator member 14 are not automatically collapsed during advancement of the housing 24, the splines 64 may first be affirmatively collapsed, e.g., by depressing the locator actuator (not shown). The entire apparatus 10 may then be removed in one step, or alternatively, the locator member 14 may first be withdrawn from the sheath 12 before withdrawing the sheath 12, thereby leaving the clip 26 in place to close and/or seal the passage 92.


Turning to FIGS. 7A and 7B, another embodiment of a distal portion 160 of a locator member 114 is shown that may be used to position a sheath (not shown) before delivering a closure element (also not shown), similar to the embodiment described above. The locator member 114 includes a flexible or semi-rigid tubular body 132 having a proximal end (not shown) and a distal end 136. An actuator wire or rod 138 is slidably disposed with respect to the body 132, e.g., within a lumen 133 of body 132. The locator member 114 may include a detent (not shown) on or near its proximal end for securing the locator member 114 to a sheath (not shown).


The locator member 114 includes a distal portion 160 that terminates in a substantially rounded, soft, and/or flexible distal tip 162, possibly including a pigtail (not shown) that may facilitate atraumatic advancement of the distal portion 160 into a blood vessel or other body lumen. The locator member 114 preferably has a length relative to the sheath such that the distal portion 160 extends beyond a distal end of the sheath when the locator member 114 is fully received in the sheath, similar to the embodiment described above.


A plurality of splines 164 are provided on the distal portion 160 that may be selectively expandable between a substantially collapsed configuration (shown in FIG. 7A) and a substantially transverse expanded configuration (shown in FIG. 7B). Preferably, the splines 164 are substantially rigid or semi-rigid elements that include hinged regions 166, 168 that facilitate expansion substantially transversely with respect to a longitudinal axis 113 of the locator member 114. In one embodiment, each spline 164 is a single piece that includes a plurality of living hinges 166, 168. Alternatively, each spline 164 may include multiple segments that are connected by pins or other hinges (not shown). In a preferred embodiment, the distal portion 160 includes four equally spaced splines 164, although the locator member 14 may include more or fewer splines without deviating from the scope of the present invention. Optionally, the splines 164 may include radiopaque markers (not shown), similar to the embodiment described above.


Each spline 164 preferably has a first fixed end 164a and a second movable end 164b. The second end 164b may be axially movable towards the first end 164a to cause an intermediate region 164c of the spline 64 to expand transversely outward, thereby defining the substantially transverse expanded configuration. In a preferred embodiment, the actuator rod 138 extends through the distal portion 160 and is coupled to the second end 164b of the splines 164 and/or to distal tip 162 of the locator member 114. The rod 138 may be moved axially with respect to the body 132 to selectively expand the splines 164 between the collapsed and expanded configurations.


Turning to FIG. 8A, a locator actuator 170 may be coupled to the control rod 138 and a proximal end 134 of the locator member 114. The locator actuator 170 is configured for directing the control rod 138 axially to selectively expand the splines 164, similar to the embodiment described above.


In addition, the locator actuator 170 may allow the splines 164 to be expanded to one of a plurality of expanded configurations. For example, the locator actuator 170 may include an internal member (not shown), coupled to the control rod 138, that is slidable within an actuator body 176. A button 172 extending from the internal member is slidable in an axial slot 174 in the actuator body 176 for controlling movement of the control rod 138. The button 172 may be moved, thereby moving the control rod 138 and consequently moving the splines 164. For example, as shown in FIG. 8A, the button 172 may be moved to a position (for example, indicated as “4”) thereby expanding the splines 164 to an expanded diameter 165a. If desired, the button 172 may be moved to other available positions to reduce the expanded diameter, for example to the diameter 165b shown in FIG. 8B. This control of the expanded diameter of the splines 164 may be useful to allow the splines 164 to be deployed within body lumens of different sizes. Thus, the splines 164 may be expanded to a desired size corresponding to the size of the vessel into which the locator 114 is introduced, thereby minimizing the risk of damage to the vessel due to over expansion of the splines 164.


In an alternative embodiment, shown in FIG. 8B, the locator actuator 170′ may include a rotatable dial that controls expansion of the splines 164, similar to the linear actuator 170 shown in FIG. 8A. In addition, the locator actuator 170, 170′ may include demarcations indicating a size (not shown), e.g., a diameter of the expanded splines and/or the size of the body lumen corresponding to the size of the lumen into which the locator 114 is to be introduced.


In a further alternative, shown in FIG. 9, a locator member 214 may be provided that includes splines 264 that may be selectively expanded to different angles. A locator actuator (not shown) may allow controlled expansion of the splines 264a, 264b to desired angles with respect to the longitudinal axis 213 of the locator member. For example, a cable or other control wire (not shown) may be extended from the locator actuator to each of the splines 264a, 264b, e.g., through a lumen (not shown) in the locator body 232. Each cable may be directed axially to selectively expand or collapse the spline 264a, 264b connected to the respective cable.


For example, a spline 264b on the posterior side of the locator member 214 (away from the surface of the patient's skin) may be expanded towards the proximal end of the locator member 214 at an acute angle “alpha,” i.e., corresponding substantially to the angle of the passage through the patient's skin to the vessel 90, e.g., about thirty or forty five degrees. In contrast, the spline 264a on the anterior side of the locator member 214 (i.e. towards the surface of the patient's skin) may be expanded away from the proximal end of the locator member 214 at an oblique angle of one hundred eighty degrees less “alpha.” Thus, the splines 264 may be expanded to predetermined angles that facilitate better contact with the wall of the vessel, e.g., to better “present” the vessel wall during deployment of a closure element.


In yet another alternative embodiment, shown in FIG. 10, a locator member 314, such as those described above, may include a tubular sleeve 315 within which a body 332, including splines 364, may be axially directed. For example, a proximal end (not shown) of the sleeve 315 may be fixed to a proximal end (also not shown) of the body 332, e.g., to a locator actuator (not shown), such as those described above. At least a distal portion 317 of the sleeve 315 is formed from a substantially rigid, smooth walled tube, such as a hypotube, while the remainder of the sleeve 315 may be a portion of the same tube or may be formed from a substantially flexible or semi-rigid tubular member (not shown).


When the locator member 314 is fully inserted into an introducer sheath 12, such as those described above, the distal portion 317 of the sleeve 315 extends beyond a distal end 20 of the sheath 12. The splines 364 may then be selectively deployed from within the sleeve 315, expanded to a substantially transverse expanded configuration, collapsed, and retracted back into the sleeve 315.


For example, the sheath 20 may be positioned through a puncture 92 into a vessel 90, e.g., to perform a procedure within a patient's vasculature, as described above. The locator member 314 may then be inserted into the sheath 12 until the distal portion 317 extends beyond the distal end 20 of the sheath 12. The splines 364 may then be expanded, and the sheath 12 and locator member 314 manipulated to a desired position, e.g., such that the splines 364 contact the wall 98 of the vessel 90, thereby providing a tactile indication of the position of the sheath 12.


A closure element, such as clip 26 may then be deployed, e.g., from a housing (not shown) slidably mounted on the sheath 12. Barbs or tines 28 on the clip 26 penetrate into the wall 98 of the vessel 90, e.g., to close the opening in the wall 98 of the vessel 90, as described above. If the barbs 28 penetrate completely through the wall 98 of the vessel 90, the sleeve 315 protects the splines 364 and/or the body 33 of the locator member 314. The barbs 28 may engage but not penetrate or otherwise catch on the distal portion 317 of the sleeve 315, because of its substantially rigid and/or smooth construction. Thus, the barbs 28 may not penetrate or otherwise catch on the splines 364 when the clip 26 is deployed. The splines 364 may be collapsed and retracted into the sleeve 315, either manually or automatically, similar to the embodiments described above. When the sheath 12 is withdrawn from the puncture 92, the barbs 28 may slide along the distal portion 317 of the sleeve 315 until the distal portion 317 is withdrawn from within the clip 26, whereupon the barbs 28 may move inwards to close and/or seal the opening in the wall 98 of the vessel 90.


In alternative embodiments, the apparatus and methods of the present invention may be used to locate an introducer sheath within a blood vessel and/or to deliver closure elements other than a clip. For example, the apparatus may be used to deliver a collagen plug and the like into the passage, or a sealing material (either alone, or in conjunction with a clip).


Turning to FIGS. 11A-12B, another preferred embodiment of an apparatus 410 is shown for sealing a passage through tissue communicating with a body lumen, such as a blood vessel, in accordance with the present invention. Generally, the apparatus 410 includes a plug member 412, an elongate shaft or handle device 414, and a locator member 416.


With particular reference to FIGS. 11A and 11B, the locator member 416 includes a helically wound wire 444 that includes proximal and distal ends 446, 448, defining a longitudinal axis 438 therebetween. The helically wound wire 444 may be formed from flexible material that is biased to assume an axial configuration, as shown in FIG. 11A, but may be deflectable, e.g., by buckling, as explained further below. The helically wound wire 444 has a diameter such that the locator member 416 may be advanced through a lumen 440 of the handle device 414 (as shown in FIGS. 12A and 12B) and/or directly into a passage through tissue. Preferably, adjacent turns of the helically wound wire 444 are in close proximity to or substantially abut one another in a relaxed state free from external forces, yet may be slidable and/or bendable with respect to one another to facilitate buckling of the locator member 416. Alternatively, adjacent turns of the helically wound wire 444 may have spaces between them in the relaxed state.


In a further alternative, the helically wound wire 444 may extend only partially from the distal end 448 towards the proximal end 446 (not shown). In this alternative, the locator member 416 may include a substantially straight wire, tubular body, or other proximal portion (not shown) that may extend from the helically wound wire to the proximal end 446 of the locator member 416. The proximal portion may be relatively more rigid, e.g., resistant to buckling than the helically wound wire and/or may be supported by the wall of the lumen 440 of the handle device 414.


The locator member 416 also includes a tether or other control element 450 that is coupled to the helically wound wire 444. Preferably, the tether 450 is an elongate wire, ribbon, cable, and the like that has a distal end 452 that is coupled to the distal end 448 of the helically wound wire 444. The tether 450 may include a handle 456 on its proximal end 458 for selectively pulling the tether 450 in a proximal direction to cause the helically wound wire 444 wire to buckle, as explained further below.


The tether 450 may extend along an outer surface of the helically wound wire 444 at least partially from the distal end 448 towards the proximal end 446, thereby defining a deflectable distal portion 454. For example, the tether 450 may extend along the outer surface of the helically wound wire 444 along its entire length. Alternatively, the tether 450 may extend along the outer surface of the distal portion 454, and then may pass between turns of the helically wound wire 444, and extend within the helically wound wire 444 to the proximal end 446 of the locator member 416. In a further alternative, the tether 450 may extend its entire length within the helically wound wire 444. For example, if the helically wound wire 444 has gaps between adjacent turns, the helically wound wire 444 may be compressed when the tether 450 is pulled to cause the helically wound wire 444 to buckle.


An actuator (not shown) may be provided on the proximal end 446 of the locator member 416. The actuator may be coupled to the proximal end 458 of the tether 450 and to the helically wound wire 444 for providing controlled relative movement of the tether 450 and the helically wound wire 444, as will be appreciated by those skilled in the art.


When the proximal end of the tether 450 is in its distal-most position, the helically wound wire 444 may extend generally parallel to the longitudinal axis 438, thereby defining an axial or inactivated configuration, such as that shown in FIG. 11A. Even if the distal portion of the helically wound wire 448 becomes slightly curved, e.g., when inserted into a body lumen, the distal portion is still considered “generally parallel” to the longitudinal axis 438. When the tether 450 is directed proximally, e.g., by applying a proximal force on the proximal end 458 and/or handle 456, it may pull the distal end 448 of the helically would wire 444 towards the proximal end 446, thereby causing the distal portion 454 of the helically wound wire 444 to buckle, thereby assuming a transverse or activated configuration, such as that shown in FIG. 11B.


Turning to FIGS. 12A and 12B, the plug member 412 is a body, preferably having a generally cylindrical shape, including a proximal end 420, a distal end 422, and an outer surface 430. The plug member 412 includes a lumen 424 that extends between a proximal opening 426 and a distal opening or port 428. The plug member 412 may be formed from biocompatible material, and preferably from bioabsorbable material, and/or may be substantially rigid or partially flexible.


The plug member 412 generally includes a helical thread pattern 418, including one or more helical threads, that extends at least partially between its proximal and distal ends 420, 422. The helical thread pattern 418 is preferably substantially rigid and may have a substantially square cross-section to facilitate sealing of a passage into which the plug member 412 is threaded.


A sealing member (not shown) may be provided within the lumen 424 for substantially sealing the lumen 424 from fluid flow therethrough. The sealing member is preferably formed from a material that expands when exposed to fluids, e.g., a gel foam, and may be bioabsorbable, e.g., if the plug member 414 is. Before exposure to fluid, the sealing member may be substantially recessed from the lumen 424, thereby accommodating inserting devices therethrough. Upon exposure to fluid, e.g., blood, the sealing member may expand, e.g., due to hydration and the like, across the lumen 424 and/or otherwise substantially seal the lumen 424.


Alternatively, the sealing member may be a valve (not shown) or a coil of material that is biased to substantially seal the lumen 424 from fluid flow. For example, the sealing member may be biased to substantially seal the lumen 424, yet may be deflected to accommodate insertion of one or more devices therethrough. In a further alternative, the lumen 424 may have a relatively small cross-section, and the sealing member may be omitted.


Additional information regarding plug members appropriate for use with the present invention may be found in U.S. Pat. No. 5,292,332 to Lee and U.S. Pat. No. 5,290,310 to Makower et al., the disclosures of which are expressly incorporated herein by reference.


Returning to FIGS. 12A and 12B, the handle device 414 has a proximal end 434, a distal end 436, and a lumen 440 that extends between the proximal and distal ends 434, 436, e.g., for accommodating insertion of the locator member 416 and/or other devices therethrough. A handle 442 may be provided on the proximal end 434 of the shaft 414 for facilitating manipulation of the apparatus 410, e.g., to facilitate rotation of the apparatus 410 into a passage, as described below. Preferably, the handle device 414 is a substantially rigid tubular member having a cross-section that is substantially smaller than a cross-section of the plug member 412, e.g., to minimize dilation of a passage into which the plug member 412 is inserted.


The plug member 412 and the distal end 436 of the handle device 414 generally include one or more connectors (not shown) for releasably securing the plug member 412 to the handle device 414, as described in application Ser. No. 09/732,835, filed Dec. 7, 2000, the disclosure of which is expressly incorporated herein by reference. Preferably, cooperating connectors (not shown) substantially couple the plug member 412 to the handle device 414 such that the plug member 412 cannot move independently of the handle device 414, e.g., such that the plug member 412 may be rotated only by rotating the handle device 414. Preferably, the handle 442 includes an actuator (not shown) that may be activated to release the connectors securing the plug member 412 to the handle device 414.


When the locator member 416 is fully inserted into the handle device 414, the distal portion 454 of the locator member 416, is preferably disposed beyond the distal end 436 of the handle device 414, and, more preferably, beyond the distal end 422 of the plug member 412, as shown in FIG. 12B. The locator member 416 may be coupled to the handle device 414, e.g., by cooperating detents or other connectors on their respective proximal ends 446, 434. All of the distal portion 454 of the locator member 416 may be disposed beyond the distal end 422 of the plug member 412, or a portion of the distal portion 454 may extend into the lumen 424 of the plug member and/or the lumen 440 of the handle device 414.


Turning to FIGS. 13A-13D, during use, the apparatus 410 may be used to seal and/or close a passage through tissue 96, such as a puncture 92 communicating with a blood vessel 90 or other body lumen. Initially, the plug member 412 may be connected to or otherwise disposed on the handle device 414. The locator device 416 may be inserted into the handle device 414 until the distal portion 454 extends beyond the plug member 412, as shown in FIG. 12B (but with the distal portion 454 in its axial configuration as shown in FIGS. 13A and 13B).


The puncture 92 may be used to provide percutaneous access to the vessel 90. For example, the puncture 92 may facilitate performing an endovascular procedure within a patient's vasculature, such as angioplasty, stenting, atherectomy, and the like, or may otherwise provide access via the vessel 90 to a region within the patient's body. Upon completion of the procedure, any instruments, such as an introducer sheath (not shown), may be removed from the vessel 90 and puncture 92.


The apparatus 410 may then be introduced into the puncture 92, for example, by initially inserting the distal portion 454 of the locator member 416 into the puncture 92. The distal portion 454 may have a substantially atraumatic distal tip, e.g., tapered and/or relatively flexible, to facilitate advancement of the apparatus 410 into the puncture 92. As the distal portion 454 of the locator member 416 is advanced into the puncture 92, the plug member 412 may be inserted into the puncture 92, as shown in FIG. 13A.


Because of the thread pattern 418, the handle device 414 may be rotated in a first direction to thread the plug member 412 into the puncture 92. Consequently, the outer surface 430 and/or the thread pattern 418 may engage tissue 96 surrounding the puncture 92, thereby substantially sealing the puncture 92 from fluid flow, such as blood flow, within the vessel 90. The apparatus 410 may be rotated in the first direction about its longitudinal axis 438 to thread the plug member 412 substantially atraumatically deeper into the puncture 92.


Turning to FIG. 13B, as the plug member 412 is advanced, the distal portion 454 of the locator device 416 eventually passes through the wall 98 of the vessel 90. This advancement may be monitored by providing one or more radiopaque markers (not shown) and the like on the handle device 414, the plug member 412, and/or the locator member 416, and using fluoroscopy while advancing the apparatus 410. Alternatively, depth markers (not shown) may be provided on the exterior of the handle device 414 for visual monitoring advancement. Tactile indication, e.g., resistance to further advancement, may also identify that the vessel 90 has been attained.


Once it is confirmed that the distal portion 454 is located within the lumen 90, the locator member 416 may be activated, e.g., by pulling the handle 456 proximally or activating an actuator (not shown) at the proximal end of the locator member 416. This causes the distal portion 454 to buckle to its transverse configuration, as shown in FIG. 13C. In the transverse configuration, the distal portion 454 has a cross-section such that the distal portion 454 may not be withdrawn into the plug member 412 and/or the puncture 92.


Rotation of the apparatus 410 may then be reversed, i.e., in a second direction opposite the first direction, to withdraw the plug member 412 a predetermined distance relative to the vessel 90. As the plug member 412 is withdrawn, the distal portion 454 of the locator member 416 may engage a wall 98 of the vessel 90, thereby creating resistance to further rotation. This may provide tactile feedback that the plug member 412 is disposed at a desired location, e.g., within the puncture 92 in close proximity to the vessel 90, but not extended into the vessel 90.


The plug member 412 may then be released from the handle device 414. The locator member 416 may be deactivated, i.e., returned to its axial configuration, and then withdrawn from the plug member 412, either simultaneously withdrawal of the handle device 414 or before withdrawal of the handle device 414. The sealing member (not shown) preferably substantially seals the lumen 424 (not shown, see FIGS. 12A and 12B) within the plug member 412 to prevent fluid within the vessel 90 from passing therethrough to leak from the puncture 92. Alternatively, leakage through the lumen 424 may be sufficiently insignificant, e.g., hemostatis may occur rapidly despite the presence of the lumen 424, and the sealing member may be eliminated.


Preferably, as explained above, the sealing member is a material that expands when exposed to fluid. For example, as the locator member 416 is withdrawn (either before or along with the handle device 414), fluid, e.g., blood, may flow proximally through the lumen 424 in the plug member 412, e.g., until it encounters the sealing member. Although a relatively small amount of fluid may pass beyond the sealing member, the sealing member may expand substantially due to the fluid contact until it substantially seals the lumen. Alternatively, the sealing member may be a valve that may open to accommodate the locator member 416, but may automatically close upon withdrawal of the locator member 416.


If the plug member 412 is bioabsorbable, it may remain within the puncture 92 as the tissue heals, thereby allowing the wall 98 of the vessel 90 and tissue 96 surrounding the passage 92 to at least partially heal before the plug member 12 is absorbed. Alternatively, the plug member 412 may be retrieved once the tissue between the plug member 12 and the vessel 90 has substantially healed.


In an alternative embodiment, a guidewire 102 may be used during the procedure. The apparatus 410 may be provided initially without the locator member 416, and the guidewire 102 may be backloaded through the plug member 412 and handle device 414. The guidewire 102 may be used to guide the plug member 412 as it is threaded through the puncture 92 until it at least partially enters the vessel 90. Once the vessel 90 has been attained, the guidewire 102 may be withdrawn, and the locator member 416 may be inserted through the handle device 414 until the distal portion 454 extends beyond the plug member 412 into the vessel 90. The distal portion 454 may be activated, and then the procedure may proceed substantially as just described to deliver the plug member 412.


In a further alternative, the locator member 416 shown in FIGS. 11A and 11B may be used to position and/or deliver other closure elements. For example, the locator member 416 may be substituted for the locator member with expandable positioning elements shown and described above in connection with FIGS. 1-3B, e.g., to deliver a clip within a housing that is slidable along a sheath (not shown) through which the locator member 416 may be inserted. In yet another alternative, the locator member with expandable positioning elements shown and described above in connection with FIGS. 1-3B may be used in place of the locator member 416 to position and/or deliver the plug member 412, using methods similar to those described above.


Turning to FIGS. 15A-15D, an apparatus 410 may be used in conjunction with an introducer sheath 402 or other tubular member already in place within the passage 92. For example, the introducer sheath 402 may be used to access the vessel 90 to perform a procedure within the patient's vasculature or elsewhere within the patient's body, as described above. The sheath 402 may be disposed such that a proximal end 404 is located outside the passage 92, and a distal end 406 is located within the vessel 90.


As shown in FIG. 15A, the locator member 416 may be inserted through the introducer sheath 402 until the distal portion 454 extends beyond the distal end 406 of the sheath 402 into the vessel 90. The distal portion 454 may be buckled from the axial configuration to the transverse configuration, as described above, and then the locator member 416 may be manipulated, e.g., pulled proximally, such that the buckled distal portion 454 engages or otherwise contacts a proximal wall 92 of the vessel 90. Thus, the locator member 416 may be secured from proximal movement relative to the vessel 90 and/or may provide tactile feedback of the location of the distal portion 416. The sheath 402 may be removed from the passage 92 either before or after buckling the distal portion 454 of the locator member 416.


The plug member 412 may then be advanced over the locator 416 member into the passage 92. For example, the plug member 412, disposed on the distal end 436 of an elongate member 414, may be threaded through the tissue 96 along the passage 92 such that threads 418 on the plug member 412 substantially engage the surrounding tissue 96. The locator member 416 may pass through a passage 424 in the plug member 412 and/or through the lumen 440 of the elongate member 414. Once the plug member 412 reaches a desired location within the passage 92, the plug member 412 may be released from the distal end 436 of the elongate member 414.


To facilitate positioning of the plug member 412 relative to the vessel 90, the locator member 416 and/or the elongate member 414 may include one or more depth markers. For example, the locator member 416 may include a marker band 460 at a predetermined location relative to the distal portion 454. The elongate member 414 may include a window 462 or other opening at a predetermined location on its proximal end 434. When the marker band 460 on the locator member 416 appears in the window 462, it may provide a visual indication that the plug 412 is disposed at a predetermined position relative to the wall 98 of the vessel 90. Alternatively, the locator member 416 and the elongate member 414 may include other cooperating elements, e.g., cooperating tactile elements as described above, for identifying when the plug 412 is disposed at a predetermined location.


After the plug 412 is released from the elongate member 414, the distal portion 454 of the locator member 416 may be returned to its axial configuration, and the elongate member 414 and the locator member 416 may be withdrawn from the passage 92, leaving the plug member 412 to substantially seal the passage 92, similar to the embodiments described above.


While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the appended claims.

Claims
  • 1. An apparatus for positioning a plug member within a passage through tissue communicating with a body lumen, comprising: an elongate member comprising a proximal end, a distal end, a lumen extending between the proximal and distal ends defining a longitudinal axis, and an outer surface;a threaded plug member coupled to the distal end of the elongate member, a periphery of a proximal-most end of the threaded plug member, at the coupling location of the threaded plug member and the elongate member, being disposed radially outwardly beyond the outer surface of the elongate member in both a pre-deployed configuration and a deployed configuration, the threaded plug member comprising a distal port therein in communication with the lumen and configured for sealing the passage; anda locator member extending from the threaded plug member, the locator member comprising an elongate deflectable element comprising a proximal end and a distal end, and a control element coupled to the distal end of the deflectable element, the control element being movable proximally for causing an intermediate portion of the deflectable element to transition from a first generally axial configuration to a second active configuration buckled substantially transversely with respect to the longitudinal axis.
  • 2. The apparatus of claim 1, the thread pattern is on an outer surface of the plug member.
  • 3. The apparatus of claim 1, wherein the plug member is releasable from the elongate member.
  • 4. The apparatus of claim 1, wherein the plug member comprises bioabsorbable material.
  • 5. The apparatus of claim 1, wherein the deflectable element comprises a helically wound wire extending between the proximal and distal ends of the deflectable element, and wherein the control element comprises a tether extending along an outer surface of at least a portion of the helically wound wire.
  • 6. The apparatus of claim 5, wherein the intermediate portion of the deflectable element has a cross-section in its buckled configuration that is larger than a cross-section of the distal port.
  • 7. An apparatus for sealing a passage through tissue communicating with a body lumen, comprising: an elongate member having a proximal end, a distal end, a lumen extending between the proximal and distal ends defining a longitudinal axis, and an outer surface;a plug member coupled to the distal end of the elongate member, a periphery of a proximal-most end of the plug member, at the coupling location of the plug member and the elongate member, being disposed radially outwardly beyond the outer surface of the elongate member, the coupling of the plug and the elongate member exposing a proximal-most end of the plug to the tissue in both a pre-deployed configuration and a deployed configuration, the plug member comprising a helical thread on its outer surface, the plug member comprising a distal port therein in communication with the lumen; anda locator member extendable distally from the distal port, the locator member comprising an elongate deflectable element comprising a proximal end and a distal end, and a control element coupled to the distal end of the deflectable element, the elongate deflectable element including a helically wound member having a proximal end spaced apart from a distal end in the longitudinal axis, the distal end of the helically wound member being the distal end of the elongate deflectable element, the control element being movable proximally for causing an intermediate portion of the deflectable element to buckle substantially transversely with respect to the longitudinal axis from a first generally axial configuration to a second substantially transversely buckled configuration.
  • 8. The apparatus of claim 7, wherein the deflectable element comprises a helically wound wire extending between the proximal and distal ends of the deflectable element, and wherein the control element comprises a tether extending along an outer surface of at least a portion of the helically wound wire.
  • 9. The apparatus of claim 8, wherein the intermediate portion of the deflectable element has a cross-section in its buckled configuration that is larger than a cross-section of the distal port.
  • 10. The apparatus of claim 7, wherein the plug member comprises a passage therein extending between the distal port and the lumen.
  • 11. The apparatus of claim 7, wherein the plug member is releasable from the elongate member.
  • 12. The apparatus of claim 11, wherein the elongate member comprises an actuator for releasing the plug member from the distal end of the elongate member.
  • 13. The apparatus of claim 11, wherein the plug member comprises bioabsorbable material.
  • 14. The apparatus of claim 7, wherein the locator member and the elongate member comprise cooperating feedback elements for identifying when the locator member is inserted a predetermined through the elongate member.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation application of U.S. patent application Ser. No. 10/006,400, filed Nov. 30, 2001, now U.S. Pat. No. 7,842,068, and entitled “Apparatus and Methods for Providing Tactile Feedback While Delivering a Closure Device”, which is a continuation-in-part of U.S. patent application Ser. No. 09/732,835, filed Dec. 7, 2000, now U.S. Pat. No. 6,780,197 the disclosures of which are each incorporated herein by this reference.

US Referenced Citations (861)
Number Name Date Kind
287046 Norton Oct 1883 A
438400 Brennen Oct 1890 A
1088393 Backus Feb 1914 A
1242139 Callahan Oct 1917 A
1331401 Summers Feb 1920 A
1480935 Gleason Jan 1924 A
1596004 De Bengoa Aug 1926 A
1647958 Ciarlante Nov 1927 A
1880569 Weis Oct 1932 A
2087074 Tucker Jul 1937 A
2254620 Miller Sep 1941 A
2316297 Southerland et al. Apr 1943 A
2371978 Perham Mar 1945 A
2453227 James Nov 1948 A
2583625 Bergan Jan 1952 A
2684070 Kelsey Jul 1954 A
2910067 White Oct 1959 A
2944311 Schneckenberger Jul 1960 A
2951482 Sullivan Sep 1960 A
2969887 Darmstadt et al. Jan 1961 A
3015403 Fuller Jan 1962 A
3113379 Frank Dec 1963 A
3120230 Skold Feb 1964 A
3142878 Santora Aug 1964 A
3209754 Brown Oct 1965 A
3348595 Stevens, Jr. Oct 1967 A
3357070 Sloan Dec 1967 A
3482428 Kapitanov et al. Dec 1969 A
3494533 Green et al. Feb 1970 A
3510923 Blake May 1970 A
3523351 Filia Aug 1970 A
3586002 Wood et al. Jun 1971 A
3604425 Le Roy Sep 1971 A
3618447 Goins Nov 1971 A
3677243 Nerz Jul 1972 A
3682180 McFarlane Aug 1972 A
3757629 Schneider Sep 1973 A
3805337 Branstetter Apr 1974 A
3823719 Cummings Jul 1974 A
3828791 Santos Aug 1974 A
3856016 Davis Dec 1974 A
3874388 King et al. Apr 1975 A
3908662 Razgulov et al. Sep 1975 A
3926194 Greenberg et al. Dec 1975 A
3939820 Grayzel Feb 1976 A
3944114 Coppens Mar 1976 A
3960147 Murray Jun 1976 A
3985138 Jarvik Oct 1976 A
4007743 Blake Feb 1977 A
4014492 Rothfuss Mar 1977 A
4018228 Goosen Apr 1977 A
4047533 Perciaccante et al. Sep 1977 A
4064881 Meredith Dec 1977 A
4112944 Williams Sep 1978 A
4153321 Pombrol May 1979 A
4162673 Patel Jul 1979 A
4169476 Hiltebrandt Oct 1979 A
4189808 Brown Feb 1980 A
4192315 Hilzinger et al. Mar 1980 A
4201215 Crossett et al. May 1980 A
4204541 Kapitanov May 1980 A
4207870 Eldridge Jun 1980 A
4214587 Sakura, Jr. Jul 1980 A
4215699 Patel Aug 1980 A
4217902 March Aug 1980 A
4267995 McMillan May 1981 A
4273129 Boebel Jun 1981 A
4274415 Kanamoto et al. Jun 1981 A
4278091 Borzone Jul 1981 A
4317445 Robinson Mar 1982 A
4317451 Cerwin et al. Mar 1982 A
4318401 Zimmerman Mar 1982 A
4327485 Rix May 1982 A
4345606 Littleford Aug 1982 A
4359052 Staub Nov 1982 A
4368736 Kaster Jan 1983 A
4396139 Hall et al. Aug 1983 A
4407286 Noiles et al. Oct 1983 A
4411654 Boarini et al. Oct 1983 A
4412832 Kling et al. Nov 1983 A
4428376 Mericle Jan 1984 A
4440170 Golden et al. Apr 1984 A
4449531 Cerwin et al. May 1984 A
4475544 Reis Oct 1984 A
4480356 Martin Nov 1984 A
4485816 Krumme Dec 1984 A
RE31855 Osborne Mar 1985 E
4505273 Braun et al. Mar 1985 A
4505274 Speelman Mar 1985 A
4523591 Kaplan et al. Jun 1985 A
4523695 Braun et al. Jun 1985 A
4525157 Valaincourt Jun 1985 A
4526174 Froehlich Jul 1985 A
4586503 Kirsch et al. May 1986 A
4592498 Braun et al. Jun 1986 A
4596559 Fleischhacker Jun 1986 A
4607638 Crainich Aug 1986 A
4610251 Kumar Sep 1986 A
4610252 Catalano Sep 1986 A
4635634 Santos Jan 1987 A
4651737 Deniega Mar 1987 A
4664305 Blake, III et al. May 1987 A
4665906 Jervis May 1987 A
4687469 Osypka Aug 1987 A
4693249 Schenck et al. Sep 1987 A
4697312 Freyer Oct 1987 A
4719917 Barrows et al. Jan 1988 A
4724840 McVay et al. Feb 1988 A
4738658 Magro et al. Apr 1988 A
4744364 Kensey May 1988 A
4747407 Liu et al. May 1988 A
4759364 Boebel Jul 1988 A
4771782 Millar Sep 1988 A
4772266 Groshong Sep 1988 A
4777950 Kees, Jr. Oct 1988 A
4789090 Blake, III Dec 1988 A
4832688 Sagae et al. May 1989 A
4836204 Landymore et al. Jun 1989 A
4852568 Kensey Aug 1989 A
4860746 Yoon Aug 1989 A
4865026 Barrett Sep 1989 A
4874122 Froelich et al. Oct 1989 A
4878915 Brantigan Nov 1989 A
4885003 Hillstead Dec 1989 A
4886067 Palermo Dec 1989 A
4887601 Richards Dec 1989 A
4890612 Kensey Jan 1990 A
4902508 Badylak et al. Feb 1990 A
4917087 Walsh et al. Apr 1990 A
4917089 Sideris Apr 1990 A
4929240 Kirsch et al. May 1990 A
4934364 Green Jun 1990 A
4950258 Kawai et al. Aug 1990 A
4957499 Lipatov et al. Sep 1990 A
4961729 Vaillancourt Oct 1990 A
4976721 Blasnik et al. Dec 1990 A
4983176 Cushman et al. Jan 1991 A
4997436 Oberlander Mar 1991 A
4997439 Chen Mar 1991 A
5002562 Oberlander Mar 1991 A
5007921 Brown Apr 1991 A
5015247 Michelson May 1991 A
5021059 Kensey et al. Jun 1991 A
5026390 Brown Jun 1991 A
5030226 Green et al. Jul 1991 A
5032127 Frazee et al. Jul 1991 A
5047047 Yoon Sep 1991 A
5053008 Bajaj Oct 1991 A
5059201 Asnis Oct 1991 A
5061274 Kensey Oct 1991 A
5078731 Hayhurst Jan 1992 A
5092941 Miura Mar 1992 A
5100418 Yoon et al. Mar 1992 A
5100422 Berguer et al. Mar 1992 A
5108420 Marks Apr 1992 A
5108421 Fowler Apr 1992 A
5114032 Laidlaw May 1992 A
5114065 Storace May 1992 A
5116349 Aranyi May 1992 A
5122122 Allgood Jun 1992 A
5122156 Granger et al. Jun 1992 A
5131379 Sewell, Jr. Jul 1992 A
5141520 Goble et al. Aug 1992 A
5147381 Heimerl et al. Sep 1992 A
5156609 Nakao et al. Oct 1992 A
5167634 Corrigan, Jr. et al. Dec 1992 A
5167643 Lynn Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171250 Yoon Dec 1992 A
5176648 Holmes et al. Jan 1993 A
5192288 Thompson et al. Mar 1993 A
5192300 Fowler Mar 1993 A
5192301 Kamiya et al. Mar 1993 A
5192302 Kensey et al. Mar 1993 A
5192602 Spencer et al. Mar 1993 A
5193533 Body et al. Mar 1993 A
5197971 Bonutti Mar 1993 A
5207697 Carusillo et al. May 1993 A
5209756 Seedhorn et al. May 1993 A
5217024 Dorsey et al. Jun 1993 A
5222974 Kensey et al. Jun 1993 A
5226908 Yoon Jul 1993 A
5236435 Sewell, Jr. Aug 1993 A
5242456 Nash et al. Sep 1993 A
5242457 Akopov et al. Sep 1993 A
5242459 Buelna Sep 1993 A
5243857 Janota Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5246443 Mai Sep 1993 A
5250058 Miller et al. Oct 1993 A
5254105 Haaga Oct 1993 A
5255679 Imran Oct 1993 A
5269792 Kovac et al. Dec 1993 A
5275616 Fowler Jan 1994 A
5281422 Badylak et al. Jan 1994 A
5282808 Kovac et al. Feb 1994 A
5282827 Kensey et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290243 Chodorow et al. Mar 1994 A
5290310 Makower et al. Mar 1994 A
5292309 Van Tassel et al. Mar 1994 A
5292332 Lee Mar 1994 A
5304183 Gourlay et al. Apr 1994 A
5304184 Hathaway et al. Apr 1994 A
5304204 Bregen Apr 1994 A
5306254 Nash et al. Apr 1994 A
5309927 Welch May 1994 A
5318542 Hirsch et al. Jun 1994 A
5320639 Rudnick Jun 1994 A
5327908 Gerry Jul 1994 A
5330445 Haaga Jul 1994 A
5334216 Vidal et al. Aug 1994 A
5334217 Das Aug 1994 A
5335680 Moore Aug 1994 A
5340360 Stefanchik Aug 1994 A
5342393 Stack Aug 1994 A
5344439 Otten Sep 1994 A
5350399 Erlebacher et al. Sep 1994 A
5352229 Goble et al. Oct 1994 A
5364406 Sewell, Jr. Nov 1994 A
5364408 Gordon Nov 1994 A
5366458 Korthoff et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5383896 Gershony et al. Jan 1995 A
RE34866 Kensey et al. Feb 1995 E
5392978 Velez et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5404621 Heinke Apr 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5413584 Schulze May 1995 A
5416584 Kay May 1995 A
5417699 Klein et al. May 1995 A
5419765 Weldon et al. May 1995 A
5419777 Hofling May 1995 A
5421832 Lefebvre Jun 1995 A
5423857 Rosenman et al. Jun 1995 A
5425489 Shichman et al. Jun 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5431639 Shaw Jul 1995 A
5431667 Thompson et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5437631 Janzen Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5443477 Marin et al. Aug 1995 A
5443481 Lee Aug 1995 A
5445167 Yoon et al. Aug 1995 A
5449359 Groiso Sep 1995 A
5451235 Lock et al. Sep 1995 A
5456400 Shichman et al. Oct 1995 A
5462561 Voda Oct 1995 A
5464413 Siska, Jr. et al. Nov 1995 A
5466241 Leroy et al. Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5471982 Edwards et al. Dec 1995 A
5474557 Mai Dec 1995 A
5474569 Zinreich et al. Dec 1995 A
5476505 Limon Dec 1995 A
5478352 Fowler Dec 1995 A
5478353 Yoon Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5486195 Myers et al. Jan 1996 A
5497933 DeFonzo et al. Mar 1996 A
5507744 Tay et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5522840 Krajicek Jun 1996 A
5527322 Klein et al. Jun 1996 A
5536251 Evard et al. Jul 1996 A
5540712 Kleshinski et al. Jul 1996 A
5540716 Hlavacek Jul 1996 A
5544802 Crainich Aug 1996 A
5547474 Kloeckl et al. Aug 1996 A
5560532 DeFonzo et al. Oct 1996 A
5571120 Yoon Nov 1996 A
5573784 Badylak et al. Nov 1996 A
5575771 Walinsky Nov 1996 A
5584879 Reimold et al. Dec 1996 A
5591205 Fowler Jan 1997 A
5593412 Martinez et al. Jan 1997 A
5601602 Fowler Feb 1997 A
5609597 Lehrer Mar 1997 A
5613974 Andreas et al. Mar 1997 A
5618291 Thompson et al. Apr 1997 A
5620452 Yoon Apr 1997 A
5620461 Muijs et al. Apr 1997 A
5634936 Linden et al. Jun 1997 A
5643318 Tsukernik et al. Jul 1997 A
5645565 Rudd et al. Jul 1997 A
5645566 Brenneman et al. Jul 1997 A
5645567 Crainich Jul 1997 A
5649959 Hannam et al. Jul 1997 A
D383539 Croley Sep 1997 S
5669935 Rosenman et al. Sep 1997 A
5674231 Green et al. Oct 1997 A
5676689 Kensey et al. Oct 1997 A
5676974 Valdes et al. Oct 1997 A
5681280 Rusk et al. Oct 1997 A
5681334 Evans et al. Oct 1997 A
5683405 Yacoubian et al. Nov 1997 A
5690674 Diaz Nov 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5700273 Buelna et al. Dec 1997 A
5715987 Kelley et al. Feb 1998 A
5716375 Fowler Feb 1998 A
5720755 Dakov Feb 1998 A
5725498 Janzen et al. Mar 1998 A
5725552 Kotula et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5728114 Evans et al. Mar 1998 A
5728122 Leschinsky et al. Mar 1998 A
5728132 Van Tassel et al. Mar 1998 A
5728133 Kontos Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5735736 Volk Apr 1998 A
5735873 MacLean Apr 1998 A
5749826 Faulkner May 1998 A
5752966 Chang May 1998 A
5755726 Pratt et al. May 1998 A
5755778 Kleshinski May 1998 A
5766217 Christy Jun 1998 A
5766246 Mulhauser et al. Jun 1998 A
5769870 Salahieh et al. Jun 1998 A
5776147 Dolendo Jul 1998 A
5779707 Bertholet et al. Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5782860 Epstein et al. Jul 1998 A
5782861 Cragg et al. Jul 1998 A
5795958 Rao et al. Aug 1998 A
5797928 Kogasaka Aug 1998 A
5797931 Bito et al. Aug 1998 A
5797933 Snow et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5810776 Bacich et al. Sep 1998 A
5810846 Virnich et al. Sep 1998 A
5810851 Yoon Sep 1998 A
5817113 Gifford, III et al. Oct 1998 A
5820631 Nobles Oct 1998 A
5827298 Hart et al. Oct 1998 A
5830125 Scribner et al. Nov 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5843167 Dwyer et al. Dec 1998 A
5845657 Carberry et al. Dec 1998 A
5853421 Leschinsky et al. Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855312 Toledano Jan 1999 A
5858082 Cruz et al. Jan 1999 A
5860991 Klein et al. Jan 1999 A
5861005 Kontos Jan 1999 A
5861043 Carn Jan 1999 A
5868755 Kanner et al. Feb 1999 A
5868762 Cragg et al. Feb 1999 A
5868763 Spence et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5871501 Leschinsky et al. Feb 1999 A
5871525 Edwards et al. Feb 1999 A
5873876 Christy Feb 1999 A
5879366 Shaw et al. Mar 1999 A
5891088 Thompson et al. Apr 1999 A
5897487 Ouchi Apr 1999 A
5902310 Foerster et al. May 1999 A
5904697 Gifford, III et al. May 1999 A
5906631 Imran May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5910155 Ratcliff et al. Jun 1999 A
5919207 Taheri Jul 1999 A
5922009 Epstein et al. Jul 1999 A
5928231 Klein et al. Jul 1999 A
5928251 Aranyi et al. Jul 1999 A
5935147 Kensey et al. Aug 1999 A
5938667 Peyser et al. Aug 1999 A
5941890 Voegele et al. Aug 1999 A
5947999 Groiso Sep 1999 A
5948001 Larsen Sep 1999 A
5951518 Licata et al. Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5951576 Wakabayashi Sep 1999 A
5951589 Epstein et al. Sep 1999 A
5957900 Ouchi Sep 1999 A
5957936 Yoon et al. Sep 1999 A
5957938 Zhu et al. Sep 1999 A
5957940 Tanner et al. Sep 1999 A
5964782 Lafontaine et al. Oct 1999 A
5972034 Hofmann et al. Oct 1999 A
5976161 Kirsch et al. Nov 1999 A
5984934 Ashby et al. Nov 1999 A
5984948 Hasson Nov 1999 A
5984949 Levin Nov 1999 A
5993468 Rygaard Nov 1999 A
5993476 Groiso Nov 1999 A
6001110 Adams Dec 1999 A
6004341 Zhu et al. Dec 1999 A
6007563 Nash et al. Dec 1999 A
6010517 Baccaro Jan 2000 A
6013084 Ken et al. Jan 2000 A
6015815 Mollison Jan 2000 A
6019779 Thorud et al. Feb 2000 A
6022372 Kontos Feb 2000 A
6024750 Mastri Feb 2000 A
6024756 Huebsch et al. Feb 2000 A
6030364 Durgin et al. Feb 2000 A
6030413 Lazarus Feb 2000 A
6033427 Lee Mar 2000 A
6036703 Evans et al. Mar 2000 A
6036720 Abrams et al. Mar 2000 A
6045570 Epstein et al. Apr 2000 A
6048358 Barak Apr 2000 A
6056768 Cates et al. May 2000 A
6056769 Epstein et al. May 2000 A
6056770 Epstein et al. May 2000 A
6059800 Hart et al. May 2000 A
6059825 Hobbs et al. May 2000 A
6063085 Tay et al. May 2000 A
6063114 Nash et al. May 2000 A
6071300 Brenneman et al. Jun 2000 A
6077281 Das Jun 2000 A
6077291 Das Jun 2000 A
6080182 Shaw et al. Jun 2000 A
6080183 Tsugita et al. Jun 2000 A
6090130 Nash et al. Jul 2000 A
6095155 Criscuolo Aug 2000 A
6102271 Longo et al. Aug 2000 A
6110184 Weadock Aug 2000 A
6113612 Swanson et al. Sep 2000 A
6117125 Rothbarth et al. Sep 2000 A
6117148 Ravo Sep 2000 A
6117157 Tekulve Sep 2000 A
6117159 Huebsch et al. Sep 2000 A
6120524 Taheri Sep 2000 A
6126675 Schervinsky et al. Oct 2000 A
6136010 Modesitt et al. Oct 2000 A
6146385 Torrie et al. Nov 2000 A
6149660 Laufer et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6152144 Lesh et al. Nov 2000 A
6152936 Christy et al. Nov 2000 A
6152937 Peterson et al. Nov 2000 A
6161263 Anderson Dec 2000 A
6165204 Levinson et al. Dec 2000 A
6171277 Ponzi Jan 2001 B1
6171329 Shaw et al. Jan 2001 B1
6174322 Schneidt Jan 2001 B1
6179849 Yencho et al. Jan 2001 B1
6179860 Fulton, III et al. Jan 2001 B1
6193708 Ken et al. Feb 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6198974 Webster, Jr. Mar 2001 B1
6200329 Fung et al. Mar 2001 B1
6206895 Levinson Mar 2001 B1
6206913 Yencho et al. Mar 2001 B1
6206931 Cook et al. Mar 2001 B1
6210407 Webster Apr 2001 B1
6220248 Voegele et al. Apr 2001 B1
6221102 Baker et al. Apr 2001 B1
6231561 Frazier et al. May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6248124 Pedros et al. Jun 2001 B1
6254617 Spence et al. Jul 2001 B1
6254642 Taylor Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6267773 Gadberry et al. Jul 2001 B1
6273903 Wilk Aug 2001 B1
6277140 Ginn et al. Aug 2001 B2
6280460 Bolduc et al. Aug 2001 B1
6287322 Zhu et al. Sep 2001 B1
6296657 Brucker Oct 2001 B1
6302898 Edwards et al. Oct 2001 B1
6305891 Burlingame Oct 2001 B1
6309416 Swanson et al. Oct 2001 B1
6319258 McAllen, III et al. Nov 2001 B1
6322580 Kanner Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6329386 Mollison Dec 2001 B1
6334865 Redmond et al. Jan 2002 B1
6348064 Kanner Feb 2002 B1
6355052 Neuss et al. Mar 2002 B1
6358258 Arcia et al. Mar 2002 B1
6375671 Kobayashi et al. Apr 2002 B1
D457958 Dycus May 2002 S
6383208 Sancoff et al. May 2002 B1
6391048 Ginn et al. May 2002 B1
6395015 Borst et al. May 2002 B1
6398752 Sweezer et al. Jun 2002 B1
6402765 Monassevitch et al. Jun 2002 B1
6409739 Nobles et al. Jun 2002 B1
6419669 Frazier et al. Jul 2002 B1
6423054 Ouchi Jul 2002 B1
6425911 Akerfeldt et al. Jul 2002 B1
6428472 Haas Aug 2002 B1
6428548 Durgin et al. Aug 2002 B1
6443158 Lafontaine et al. Sep 2002 B1
6443963 Baldwin et al. Sep 2002 B1
6447540 Fontaine et al. Sep 2002 B1
6450391 Kayan et al. Sep 2002 B1
6458130 Frazier et al. Oct 2002 B1
6461364 Ginn et al. Oct 2002 B1
6482224 Michler et al. Nov 2002 B1
6488692 Spence et al. Dec 2002 B1
6500115 Krattiger et al. Dec 2002 B2
6506210 Kanner Jan 2003 B1
6508828 Akerfeldt et al. Jan 2003 B1
6514280 Gilson Feb 2003 B1
6517555 Caro Feb 2003 B1
6517569 Mikus et al. Feb 2003 B2
6527737 Kaneshige Mar 2003 B2
6533762 Kanner et al. Mar 2003 B2
6533812 Swanson et al. Mar 2003 B2
6537288 Vargas et al. Mar 2003 B2
6547806 Ding Apr 2003 B1
6551319 Lieberman Apr 2003 B2
6558349 Kirkman May 2003 B1
6569173 Blatter et al. May 2003 B1
6569185 Ungs May 2003 B2
6572629 Kalloo et al. Jun 2003 B2
6578585 Stachowski et al. Jun 2003 B1
6582452 Coleman et al. Jun 2003 B2
6582482 Gillman et al. Jun 2003 B2
6596012 Akerfeldt et al. Jul 2003 B2
6599303 Peterson et al. Jul 2003 B1
6602263 Swanson et al. Aug 2003 B1
6610072 Christy et al. Aug 2003 B1
6613059 Schaller et al. Sep 2003 B2
6613060 Adams et al. Sep 2003 B2
6616686 Coleman et al. Sep 2003 B2
6620165 Wellisz Sep 2003 B2
6623509 Ginn Sep 2003 B2
6623510 Carley et al. Sep 2003 B2
6626918 Ginn et al. Sep 2003 B1
6626919 Swanstrom Sep 2003 B1
6626920 Whayne Sep 2003 B2
6632197 Lyon Oct 2003 B2
6632238 Ginn et al. Oct 2003 B2
6634537 Chen Oct 2003 B2
6645205 Ginn Nov 2003 B2
6645225 Atkinson Nov 2003 B1
6652538 Kayan et al. Nov 2003 B2
6652556 VanTassel et al. Nov 2003 B1
6663655 Ginn et al. Dec 2003 B2
6669714 Coleman et al. Dec 2003 B2
6673083 Kayan et al. Jan 2004 B1
6676671 Robertson et al. Jan 2004 B2
6676685 Pedros et al. Jan 2004 B2
6679904 Gleeson et al. Jan 2004 B2
6685707 Roman et al. Feb 2004 B2
6689147 Koster, Jr. Feb 2004 B1
6695867 Ginn et al. Feb 2004 B2
6699256 Logan et al. Mar 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6712836 Berg et al. Mar 2004 B1
6712837 Akerfeldt et al. Mar 2004 B2
6719777 Ginn et al. Apr 2004 B2
6726704 Loshakove et al. Apr 2004 B1
6736822 McClellan et al. May 2004 B2
6743195 Zucker Jun 2004 B2
6743243 Roy et al. Jun 2004 B1
6743259 Ginn Jun 2004 B2
6749621 Pantages et al. Jun 2004 B2
6749622 McGuckin et al. Jun 2004 B2
6755842 Kanner et al. Jun 2004 B2
6767356 Kanner et al. Jul 2004 B2
6780197 Roe et al. Aug 2004 B2
6786915 Akerfeldt et al. Sep 2004 B2
6790218 Jayaraman Sep 2004 B2
6790220 Morris et al. Sep 2004 B2
6837906 Ginn Jan 2005 B2
6846319 Ginn et al. Jan 2005 B2
6849078 Durgin et al. Feb 2005 B2
6860895 Akerfeldt et al. Mar 2005 B1
6890343 Ginn et al. May 2005 B2
6896687 Dakov May 2005 B2
6896692 Ginn et al. May 2005 B2
6904647 Byers, Jr. Jun 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6926723 Mulhauser et al. Aug 2005 B1
6926731 Coleman et al. Aug 2005 B2
6929634 Dorros et al. Aug 2005 B2
6942641 Seddon Sep 2005 B2
6942674 Belef et al. Sep 2005 B2
6942691 Chuter Sep 2005 B1
6964668 Modesitt et al. Nov 2005 B2
6969397 Ginn Nov 2005 B2
6984238 Gifford, III et al. Jan 2006 B2
6989003 Wing et al. Jan 2006 B2
6989016 Tallarida et al. Jan 2006 B2
7001398 Carley et al. Feb 2006 B2
7001400 Modesitt et al. Feb 2006 B1
7008435 Cummins Mar 2006 B2
7008439 Janzen et al. Mar 2006 B1
7025776 Houser et al. Apr 2006 B1
7033379 Peterson Apr 2006 B2
7060084 Loshakove et al. Jun 2006 B1
7063711 Loshakove et al. Jun 2006 B1
7074232 Kanner et al. Jul 2006 B2
7076305 Imran et al. Jul 2006 B2
7083635 Ginn Aug 2006 B2
7087064 Hyde Aug 2006 B1
7108709 Cummins Sep 2006 B2
7111768 Cummins et al. Sep 2006 B2
7112225 Ginn Sep 2006 B2
7144411 Ginn et al. Dec 2006 B2
7163551 Anthony et al. Jan 2007 B2
7169158 Sniffin et al. Jan 2007 B2
7169164 Borillo et al. Jan 2007 B2
7211101 Carley et al. May 2007 B2
7229452 Kayan Jun 2007 B2
7261716 Strobel et al. Aug 2007 B2
7311720 Mueller et al. Dec 2007 B2
7316704 Bagaoisan et al. Jan 2008 B2
7322995 Bechman et al. Jan 2008 B2
7326230 Ravikumar Feb 2008 B2
7331979 Khosravi et al. Feb 2008 B2
7335220 Khosravi et al. Feb 2008 B2
D566272 Walberg et al. Apr 2008 S
7361178 Hearn et al. Apr 2008 B2
7361183 Ginn Apr 2008 B2
7361185 O'Malley et al. Apr 2008 B2
7393363 Ginn Jul 2008 B2
7396359 Derowe et al. Jul 2008 B1
7431729 Chanduszko Oct 2008 B2
7465286 Patterson et al. Dec 2008 B2
7533790 Knodel et al. May 2009 B1
7582103 Young et al. Sep 2009 B2
7582104 Corcoran et al. Sep 2009 B2
7597706 Kanner et al. Oct 2009 B2
7622628 Bergin et al. Nov 2009 B2
7645285 Cosgrove et al. Jan 2010 B2
D611144 Reynolds Mar 2010 S
7780696 Daniel et al. Aug 2010 B2
7799042 Williamson, IV et al. Sep 2010 B2
7806904 Carley et al. Oct 2010 B2
7819895 Ginn et al. Oct 2010 B2
7841502 Walberg et al. Nov 2010 B2
7842068 Ginn Nov 2010 B2
7850709 Cummins et al. Dec 2010 B2
7850797 Carley et al. Dec 2010 B2
7854810 Carley et al. Dec 2010 B2
7857828 Jabba et al. Dec 2010 B2
7867249 Palermo et al. Jan 2011 B2
7879071 Carley et al. Feb 2011 B2
7931671 Tenerz Apr 2011 B2
7967842 Bakos Jun 2011 B2
8103327 Harlev et al. Jan 2012 B2
8105352 Egnelöv Jan 2012 B2
8226666 Zarbatany et al. Jul 2012 B2
20010007077 Ginn et al. Jul 2001 A1
20010031972 Robertson et al. Oct 2001 A1
20010046518 Sawhney Nov 2001 A1
20010047180 Grudem et al. Nov 2001 A1
20020026215 Redmond et al. Feb 2002 A1
20020029050 Gifford, III et al. Mar 2002 A1
20020038127 Blatter et al. Mar 2002 A1
20020042622 Vargas et al. Apr 2002 A1
20020049427 Wiener et al. Apr 2002 A1
20020058960 Hudson et al. May 2002 A1
20020077657 Ginn et al. Jun 2002 A1
20020082641 Ginn et al. Jun 2002 A1
20020099389 Michler et al. Jul 2002 A1
20020106409 Sawhney et al. Aug 2002 A1
20020107542 Kanner et al. Aug 2002 A1
20020133193 Ginn et al. Sep 2002 A1
20020151921 Kanner et al. Oct 2002 A1
20020183786 Girton Dec 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20020198562 Akerfeldt et al. Dec 2002 A1
20020198589 Leong Dec 2002 A1
20030004543 Gleeson et al. Jan 2003 A1
20030009180 Hinchliffe et al. Jan 2003 A1
20030023248 Parodi Jan 2003 A1
20030032981 Kanner et al. Feb 2003 A1
20030045893 Ginn Mar 2003 A1
20030055455 Yang et al. Mar 2003 A1
20030060846 Egnelov et al. Mar 2003 A1
20030065358 Frecker et al. Apr 2003 A1
20030078598 Ginn et al. Apr 2003 A1
20030083679 Grudem et al. May 2003 A1
20030093096 McGuckin et al. May 2003 A1
20030097140 Kanner May 2003 A1
20030109890 Kanner et al. Jun 2003 A1
20030125766 Ding Jul 2003 A1
20030144695 McGuckin, Jr. et al. Jul 2003 A1
20030158577 Pantages et al. Aug 2003 A1
20030158578 Pantages et al. Aug 2003 A1
20030195504 Tallarida et al. Oct 2003 A1
20040009205 Sawhney Jan 2004 A1
20040009289 Carley et al. Jan 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040059376 Breuniger Mar 2004 A1
20040068273 Fariss et al. Apr 2004 A1
20040073236 Carley et al. Apr 2004 A1
20040073255 Ginn et al. Apr 2004 A1
20040078053 Berg et al. Apr 2004 A1
20040082906 Tallarida et al. Apr 2004 A1
20040087985 Loshakove et al. May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040092964 Modesitt et al. May 2004 A1
20040092968 Caro et al. May 2004 A1
20040092973 Chandusko et al. May 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040093027 Fabisiak et al. May 2004 A1
20040097978 Modesitt et al. May 2004 A1
20040127940 Ginn et al. Jul 2004 A1
20040143290 Brightbill Jul 2004 A1
20040143291 Corcoran et al. Jul 2004 A1
20040153122 Palermo Aug 2004 A1
20040158127 Okada Aug 2004 A1
20040158287 Cragg et al. Aug 2004 A1
20040158309 Wachter et al. Aug 2004 A1
20040167511 Buehlmann et al. Aug 2004 A1
20040167570 Pantages Aug 2004 A1
20040191277 Sawhney et al. Sep 2004 A1
20040215232 Belhe et al. Oct 2004 A1
20040249412 Snow et al. Dec 2004 A1
20040254591 Kanner et al. Dec 2004 A1
20040267193 Bagaoisan et al. Dec 2004 A1
20040267308 Bagaoisan et al. Dec 2004 A1
20040267312 Kanner et al. Dec 2004 A1
20050038460 Jayaraman Feb 2005 A1
20050038500 Boylan et al. Feb 2005 A1
20050059982 Zung et al. Mar 2005 A1
20050075665 Brenzel et al. Apr 2005 A1
20050085851 Fiehler et al. Apr 2005 A1
20050085854 Ginn Apr 2005 A1
20050085855 Forsberg Apr 2005 A1
20050090859 Ravlkumar Apr 2005 A1
20050119695 Carley et al. Jun 2005 A1
20050121042 Belhe et al. Jun 2005 A1
20050149117 Khosravi et al. Jul 2005 A1
20050152949 Hotchkiss et al. Jul 2005 A1
20050165357 McGuckin et al. Jul 2005 A1
20050169974 Tenerez et al. Aug 2005 A1
20050177189 Ginn et al. Aug 2005 A1
20050187564 Jayaraman Aug 2005 A1
20050203552 Laufer et al. Sep 2005 A1
20050216057 Coleman et al. Sep 2005 A1
20050222614 Ginn et al. Oct 2005 A1
20050228443 Yassinzadeh Oct 2005 A1
20050245876 Khosravi et al. Nov 2005 A1
20050267528 Ginn et al. Dec 2005 A1
20050267530 Cummins et al. Dec 2005 A1
20050273136 Belef et al. Dec 2005 A1
20050273137 Ginn Dec 2005 A1
20050274768 Cummins et al. Dec 2005 A1
20050283188 Loshakove et al. Dec 2005 A1
20060030867 Zadno Feb 2006 A1
20060034930 Khosravi et al. Feb 2006 A1
20060047313 Khanna et al. Mar 2006 A1
20060058844 White et al. Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060100664 Pai et al. May 2006 A1
20060142784 Kontos Jun 2006 A1
20060167484 Carley et al. Jul 2006 A1
20060190014 Ginn et al. Aug 2006 A1
20060190036 Wendel et al. Aug 2006 A1
20060190037 Ginn et al. Aug 2006 A1
20060190038 Carley et al. Aug 2006 A1
20060195123 Ginn et al. Aug 2006 A1
20060195124 Ginn et al. Aug 2006 A1
20060206146 Tenerez Sep 2006 A1
20060253037 Ginn et al. Nov 2006 A1
20060253072 Pai et al. Nov 2006 A1
20060287674 Ginn et al. Dec 2006 A1
20660293698 Douk Dec 2006
20070005093 Cox Jan 2007 A1
20070010853 Ginn et al. Jan 2007 A1
20070010854 Cummins et al. Jan 2007 A1
20070021778 Carly Jan 2007 A1
20070027525 Ben-Muvhar Feb 2007 A1
20070049968 Sibbitt, Jr. et al. Mar 2007 A1
20070060895 Sibbitt, Jr. et al. Mar 2007 A1
20070060950 Khosravi et al. Mar 2007 A1
20070060951 Shannon Mar 2007 A1
20070083230 Javois Apr 2007 A1
20070083231 Lee Apr 2007 A1
20070112304 Voss May 2007 A1
20070112365 Hilal et al. May 2007 A1
20070123816 Zhu et al. May 2007 A1
20070123817 Khosravi et al. May 2007 A1
20070123936 Goldin et al. May 2007 A1
20070172430 Brito et al. Jul 2007 A1
20070179527 Eskuri et al. Aug 2007 A1
20070185530 Chin-Chen et al. Aug 2007 A1
20070203507 McLaughlin et al. Aug 2007 A1
20070213747 Monassevitch et al. Sep 2007 A1
20070225755 Preinitz et al. Sep 2007 A1
20070225756 Preinitz et al. Sep 2007 A1
20070225757 Preinitz et al. Sep 2007 A1
20070225758 Preinitz et al. Sep 2007 A1
20070239209 Fallman Oct 2007 A1
20070250080 Jones et al. Oct 2007 A1
20070265658 Nelson et al. Nov 2007 A1
20070270904 Ginn Nov 2007 A1
20070275036 Green, III et al. Nov 2007 A1
20070276416 Ginn et al. Nov 2007 A1
20070276488 Wachter et al. Nov 2007 A1
20070282352 Carley et al. Dec 2007 A1
20070282373 Ashby et al. Dec 2007 A1
20080004636 Walberg et al. Jan 2008 A1
20080004640 Ellingwood Jan 2008 A1
20080009794 Bagaoisan et al. Jan 2008 A1
20080033459 Shafi et al. Feb 2008 A1
20080058839 Nobles et al. Mar 2008 A1
20080065151 Ginn Mar 2008 A1
20080065152 Carley Mar 2008 A1
20080086075 Isik et al. Apr 2008 A1
20080093414 Bender et al. Apr 2008 A1
20080114378 Matsushita May 2008 A1
20080114395 Mathisen et al. May 2008 A1
20080177288 Carlson Jul 2008 A1
20080210737 Ginn et al. Sep 2008 A1
20080221616 Ginn et al. Sep 2008 A1
20080243148 Mikkaichi et al. Oct 2008 A1
20080243182 Bates et al. Oct 2008 A1
20080269801 Coleman et al. Oct 2008 A1
20080269802 Coleman et al. Oct 2008 A1
20080272173 Coleman et al. Nov 2008 A1
20080287988 Smith et al. Nov 2008 A1
20080300628 Ellingwood Dec 2008 A1
20080312666 Ellingwood et al. Dec 2008 A1
20080312686 Ellingwood Dec 2008 A1
20080312740 Wachter et al. Dec 2008 A1
20080319475 Clark Dec 2008 A1
20090054912 Heanue et al. Feb 2009 A1
20090105728 Noda et al. Apr 2009 A1
20090112306 Bonsignore et al. Apr 2009 A1
20090137900 Bonner et al. May 2009 A1
20090157101 Reyes et al. Jun 2009 A1
20090157102 Reynolds et al. Jun 2009 A1
20090171388 Dave et al. Jul 2009 A1
20090177212 Carley et al. Jul 2009 A1
20090187215 Mackiewicz et al. Jul 2009 A1
20090216267 Willard et al. Aug 2009 A1
20090227938 Fasching et al. Sep 2009 A1
20090230168 Coleman et al. Sep 2009 A1
20090254119 Sibbitt, Jr. et al. Oct 2009 A1
20090287244 Kokish Nov 2009 A1
20090312789 Kassab et al. Dec 2009 A1
20100114156 Mehl May 2010 A1
20100114159 Roorda et al. May 2010 A1
20100160958 Clark Jun 2010 A1
20100168790 Clark Jul 2010 A1
20100179567 Voss et al. Jul 2010 A1
20100179571 Voss Jul 2010 A1
20100179572 Voss et al. Jul 2010 A1
20100179589 Roorda et al. Jul 2010 A1
20100179590 Fortson et al. Jul 2010 A1
20100185234 Fortson et al. Jul 2010 A1
20100217132 Ellingwood et al. Aug 2010 A1
20100249828 Mavani et al. Sep 2010 A1
20110066163 Cho et al. Mar 2011 A1
20110178548 Tenerz Jul 2011 A1
20120035630 Roorda Feb 2012 A1
20120245603 Voss Sep 2012 A1
20120245626 Ellingwood et al. Sep 2012 A1
20120255655 Carley et al. Oct 2012 A1
20120310261 Cummins et al. Dec 2012 A1
20130006274 Walberg et al. Jan 2013 A1
Foreign Referenced Citations (137)
Number Date Country
2003297432 Jul 2004 AU
2 339 060 Feb 2000 CA
197 11 288 Oct 1998 DE
29723736 Apr 1999 DE
19859952 Feb 2000 DE
102006056283 Jun 2008 DE
0 386 361 Sep 1990 EP
0 534 696 Mar 1993 EP
0 621 032 Oct 1994 EP
0 756 851 Feb 1997 EP
0 774 237 May 1997 EP
0 858 776 Aug 1998 EP
0 941 697 Sep 1999 EP
1 867 287 Dec 2007 EP
2 443 238 Jul 1980 FR
2 715 290 Jul 1995 FR
2 722 975 Feb 1996 FR
2 768 324 Mar 1999 FR
1 358 466 Jul 1974 GB
2 075 144 Nov 1981 GB
2 397 240 Jul 2004 GB
S20000722 Oct 2001 IE
S20000724 Oct 2001 IE
S20010547 Jul 2002 IE
S20010815 Jul 2002 IE
S20010748 Aug 2002 IE
S20010749 Aug 2002 IE
S20020452 Dec 2002 IE
S20020664 Feb 2003 IE
S20020665 Feb 2003 IE
S20020451 Jul 2003 IE
S20020552 Jul 2003 IE
S20030424 Dec 2003 IE
S20030490 Jan 2004 IE
S20040368 Nov 2005 IE
S20050342 Nov 2005 IE
58-181006 Dec 1983 JP
12 74750 Nov 1989 JP
2000102546 Apr 2000 JP
9302140 Jul 1995 NL
171425 Apr 1997 PL
2086192 Aug 1997 RU
495067 Dec 1975 SU
912155 Mar 1982 SU
1243708 Jul 1986 SU
1324650 Jul 1987 SU
1405828 Jun 1988 SU
1456109 Feb 1989 SU
1560133 Apr 1990 SU
WO 9624291 Aug 1996 WO
WO 9707741 Mar 1997 WO
WO 9720505 Jun 1997 WO
WO 9727897 Aug 1997 WO
WO 9806346 Feb 1998 WO
WO 9806448 Feb 1998 WO
WO 9816161 Apr 1998 WO
WO 9817179 Apr 1998 WO
WO 9818389 May 1998 WO
WO 9824374 Jun 1998 WO
WO 9825508 Jun 1998 WO
WO 9858591 Dec 1998 WO
WO 9921491 May 1999 WO
WO 9940849 Aug 1999 WO
WO 9960941 Dec 1999 WO
WO 9962408 Dec 1999 WO
WO 9962415 Dec 1999 WO
WO 0006029 Feb 2000 WO
WO 0007505 Feb 2000 WO
WO 0007640 Feb 2000 WO
WO 0027311 May 2000 WO
WO 0027313 May 2000 WO
WO 0056223 Sep 2000 WO
WO 0056227 Sep 2000 WO
WO 0056228 Sep 2000 WO
WO 0071032 Nov 2000 WO
WO 0121058 Mar 2001 WO
WO 0135832 May 2001 WO
WO 0147594 Jul 2001 WO
WO 0149186 Jul 2001 WO
WO 0191628 Dec 2001 WO
WO 0219915 Mar 2002 WO
WO 0219920 Mar 2002 WO
WO 0219922 Mar 2002 WO
WO 0219924 Mar 2002 WO
WO 0228286 Apr 2002 WO
WO 0238055 May 2002 WO
WO 0245593 Jun 2002 WO
WO 0245594 Jun 2002 WO
WO 02062234 Aug 2002 WO
WO 02098302 Dec 2002 WO
WO 03013363 Feb 2003 WO
WO 03013364 Feb 2003 WO
WO 03047434 Jun 2003 WO
WO 03071955 Sep 2003 WO
WO 03071956 Sep 2003 WO
WO 03071957 Sep 2003 WO
WO 03094748 Nov 2003 WO
WO 03101310 Dec 2003 WO
WO 2004004578 Jan 2004 WO
WO 2004012602 Feb 2004 WO
WO 2004060169 Jul 2004 WO
WO 2004069054 Aug 2004 WO
WO 2005000126 Jan 2005 WO
WO 2005006990 Jan 2005 WO
WO 2005041782 May 2005 WO
WO 2005063129 Jul 2005 WO
WO 2005082256 Sep 2005 WO
WO 2005092204 Oct 2005 WO
WO 2005110240 Nov 2005 WO
WO 2005112782 Dec 2005 WO
WO 2005115251 Dec 2005 WO
WO 2005115521 Dec 2005 WO
WO 2006000514 Jan 2006 WO
WO 2006026116 Mar 2006 WO
WO 2006052611 May 2006 WO
WO 2006052612 May 2006 WO
WO 2006078578 Jul 2006 WO
WO 2006083889 Aug 2006 WO
WO 2006115901 Nov 2006 WO
WO 2006115904 Nov 2006 WO
WO 2006118877 Nov 2006 WO
WO 2007005585 Jan 2007 WO
WO 2007025014 Mar 2007 WO
WO 2007081836 Jul 2007 WO
WO 2007088069 Aug 2007 WO
WO 2008031102 Mar 2008 WO
WO 2008036384 Mar 2008 WO
WO 2008074027 Jun 2008 WO
WO 2008150915 Dec 2008 WO
WO 2009079091 Jun 2009 WO
WO 2010062693 Jun 2010 WO
WO 2010081101 Jul 2010 WO
WO 2010081102 Jul 2010 WO
WO 2010081103 Jul 2010 WO
WO 2010081106 Jul 2010 WO
200100527 Jan 2001 ZA
200100528 Jan 2001 ZA
Non-Patent Literature Citations (514)
Entry
U.S. Appl. No. 09/610,128, filed Jul. 5, 2000, Kerievsky.
U.S. Appl. No. 09/866,551, filed May 25, 2001, Ginn.
U.S. Appl. No. 12/113,092, filed Apr. 30, 2008, Ginn et al.
U.S. Appl. No. 12/548,274, filed Aug. 26, 2009, Clark.
U.S. Appl. No. 12/724,304, filed Mar. 15, 2010, Fortson.
U.S. Appl. No. 12/848,642, filed Aug. 2, 2010, Fortson et al.
U.S. Appl. No. 12/897,358, filed Oct. 4, 2010, Carley.
U.S. Appl. No. 12/941,809, filed Nov. 8, 2010, Ginn et al.
U.S. Appl. No. 12/950,628, filed Nov. 19, 2010, Walberg et al.
U.S. Appl. No. 12/961,331, filed Dec. 6, 2010, Voss.
U.S. Appl. No. 12/945,646, filed Nov. 12, 2010, Carley et al.
U.S. Appl. No. 12/966,923, filed Dec. 13, 2010, Cummins et al.
U.S. Appl. No. 12/973,204, filed Dec. 20, 2010, Jabba et al.
U.S. Appl. No. 12/987,792, filed Jan. 10, 2011, Palermo et al.
U.S. Appl. No. 60/693,531, filed Jun. 24, 2005, Carly.
U.S. Appl. No. 60/696,069, filed Jul. 1, 2005, Pantages et al.
U.S. Appl. No. 60/793,444, filed Apr. 20, 2006, Jones et al.
U.S. Appl. No. 60/946,026, filed Jun. 25, 2007, Ellingwood.
U.S. Appl. No. 60/946,030, filed Jun. 25, 2007, Voss et al.
U.S. Appl. No. 60/946,042, filed Jun. 25, 2007, Ellingwood et al.
U.S. Appl. No. 61/015,144, filed Dec. 19, 2007, Mackiewicz et al.
U.S. Appl. No. 61/109,822, filed Oct. 30, 2008, Mehl et al.
U.S. Appl. No. 61/139,995, filed Dec. 22, 2008, Clark.
U.S. Appl. No. 61/141,597, filed Dec. 30, 2008, Clark.
U.S. Appl. No. 61/143,748, filed Jan. 9, 2009, Mehl et al.
U.S. Appl. No. 61/143,751, filed Jan. 9, 2009, Voss et al.
U.S. Appl. No. 61/145,468, filed Jan. 16, 2009, Fortson, et al.
“Hand tool for forming telephone connections—comprises pliers with reciprocably driven ram crimping clip around conductors against anvil”, Derwent-ACC-No. 1978-B8090A.
Database WPI; Section PQ, Week 200120; Derwent Publications Ltd., London GB; Class P31, AN 2001-203165; XP002199926 & ZA 200 100 528 A (Anthony T), Feb. 28, 2001 abstract.
Deepak Mital et al, Renal Transplantation Without Sutures Using the Vascular Clipping System for Renal Artery and Vein Anastomosis—A New Technique, Transplantation Issue, Oct. 1996, pp. 1171-1173, vol. 62—No. 8, Section of Transplantation Surgery, Department of General Surgery, Rush-Presbyterian/St. Luke's Medical Center, Chigago, IL.
DL Wessel et al, Outpatient closure of the patent ductus arteriosus, Circulation, May 1988, pp. 1068-1071, vol. 77—No. 5, Department of Anesthesia, Children's Hospital, Boston, MA.
E Pikoulis et al, Arterial reconstruction with vascular clips is safe and quicker than sutured repair, Cardiovascular Surgery, Dec. 1998, pp. 573-578(6), vol. 6—No. 6, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD.
G Gershony et al, Novel vascular sealing device for closure of percutaneous vascular access sites, Cathet. Cardiovasc. Diagn., Jan. 1998, pp. 82-88, vol. 45.
H De Swart et al, A new hemostatic puncture closure device for the immediate sealing of arterial puncture sites, American journal of cardiology, Aug. 1993, pp. 445-449, vol. 72—No. 5, Department of Cardiology, Academic Hospital Maastricht, The Netherlands.
Harrith M. Hasson M.D. , Laparoscopic Cannula Cone with Means for Cannula Stabilization and Wound Closure, The Journal of the American Association of Gynecologic Laparoscopists, May 1998, pp. 183-185, vol. 5—No. 2, Division of Obstetrics and Gynecology, University of Chicago, Chigago, IL.
J. Findlay et al, Carotid Arteriotomy Closure Using a Vascular Clip System, Neurosurgery, Mar. 1998, pp. 550-554, vol. 42—No. 3, Division of Neurosurgery, University of Alberta, Edmonton, Canada.
Jeremy L Gilbert PhD, Wound Closure Biomaterials and Devices, Shock., Mar. 1999, p. 226, vol. 11—No. 3, Institution Northwestern University (editorial review).
Jochen T. Cremer, MD, et al, Different approaches for minimally invasive closure of atrial septal defects, Ann. Thorac. Surg., Nov 1998, pp. 1648-1652, vol. 67, a Division of Thoracic and Cardiovascular Surgery, Surgical Center, Hannover Medical School. Hannover, Germany.
K Narayanan et al, Simultaneous primary closure of four fasciotomy wounds in a single setting using the Sure-Closure device, Injury, Jul. 1996, pp. 449-451, vol. 27—No. 6, Department of Surgery, Mercy Hospital of Pittsburgh, PA.
Marshall A.C., Lock J.E., Structural and Compliant Anatomy of the Patent Foramen Ovale in Patients Undergoing Transcatheter Closure, Am Heart J Aug. 2000; 140(2); pp. 303-307.
MD Gonze et al, Complications associated with percutaneous closure devices, Conference: Annual Meeting of the Society for Clinical Vascular Surgery, The American journal of surgery, Mar. 1999, pp. 209-211, vol. 178, No. 3, Department of Surgery, Section of Vascular Surgery, Ochsner Medical Institutions, New Orleans, LA.
MD Hellinger et al, Effective peritoneal and fascial closure of abdominal trocar sites utilizing the Endo-Judge, J Laparoendosc Surg., Oct. 1996, pp. 329-332, vol. 6—No. 5, Orlando Regional Medical Center, FL.
Michael Gianturco, A Play on Catheterization, Forbes, Dec. 1996, p. 146, vol. 158—No. 15.
Inlet Medical Inc. Brochure, pp. 1-2, referencing OM Elashry et al, Comparative clinical study of port-closure techniques following laparoscopic surgery, Department of Surgery, Mallickrodt Institute of Radiography, J Am Coll Surg., Oct. 1996, pp. 335-344, vol. 183—No. 4.
P M N Werker, et al, Review of facilitated approaches to vascular anastomosis surgery, Conference: Utrecht MICABG Workshop 2, The Annals of thoracic surgery, Apr. 1996, pp. S122-S127, vol. 63—No. 6, Department of Plastic, Reconstructive and Hand surgery, University Hospital Utrecht Netherlands Departments of Cardiology and Cardiopulmonary Surgery, Heart Lung Institute, Utrecht Netherlands.; Utrect University Hospital Utrecht Netherlands.
Peter Rhee Md et al, Use of Titanium Vascular Staples in Trauma, Journal of Trauma-Injury Infection & Critical Care, Dec. 1998, pp. 1097-1099, vol. 45—No. 6, Institution from the Department of Surgery, Washington Hospital Center, Washington DC, and Uniformed Services University of the Health Sciences, Bethesda, Maryland.
ProstarXL—Percutaneous Vascular Surgical Device, www.Archive.org, Jun. 1998, Original Publisher: http://prostar.com, may also be found at http://web.archive.org/web/19980630040429/www.perclose.com/html/prstrxl.html.
SA Beyer-Enke et al, Immediate sealing of arterial puncture site following femoropopliteal angioplasty: A prospective randomized trial, Cardiovascular and Interventional Radiology 1996, Nov.-Dec. 1996, pp. 406-410, vol. 19—No. 6, Gen Hosp North, Dept Dianost & Intervent Radiol, Nurnberg, Germany (Reprint).
Scott Hensley, Closing Wounds. New Devices seal arterial punctures in double time, Modern Healthcare (United States), Mar. 23, 2008, p. 48.
Sigmund Silber et al, A novel vascular device for closure of percutaneous arterial access sites, The American Journal of Cardiology, Apr. 1999, pp. 1248-1252, vol. 83—No. 8.
Simonetta Blengino et al, A Randomized Study of the 8 French Hemostatic Puncture Closure Device vs Manual Compression After Coronary Interventions, Journal of the American College of Cardiology, Feb. 1995, p. 262A, vol. 25.—No. 2, Supplement 1.
Stretch Comb by Scunci, retrieved via internet at www.scunci.com/productdetail by examiner on Oct. 9, 2007, publication date unavailable.
Swee Lian Tan, MD, PhD, FACS, Explanation of Infected Hemostatic Puncture Closure Devices—A Case Report, Vascular and Endovascular Surgery, 1999, pp. 507-510, vol. 33—No. 5, Parkland Medical Center, Derry, New Hampshire.
SY Nakada et al, Comparison of newer laparoscopic port closure techniques in the porcine model, J Endourol, Oct. 1995, pp. 397-401, vol. 9—No. 5, Department of Surgery/Urology, University of Wisconsin Medical School, Madison.
Taber's Cyclopedic Medical Dictionary, 18th Ed. 1997, pp. 747 and 1420.
Thomas P. Baum RPA-C et al, Delayed Primary Closure Using Silastic Vessel Loops and Skin Staples: Description of the Technique and Case Reports, Annals of Plastic Surgery, Mar. 1999, pp. 337-340, vol. 42—No. 3, Institution Department of Plastic and Reconstructive Surgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY.
Tomoaki Hinohara, Percutaneous vascular surgery (Prostar® Plus and Techstar® for femoral artery site closure), Interventional Cardiology Newsletter, May-Jul. 1997, pp. 19-22, pp. 24-28, vol. 5—No. 3-4.
UT Aker et al, Immediate arterial hemostasis after cardiac catheterization: initial experience with a new puncture closure device, Cathet Cardiovasc Diagn, Mar. 1994, pp. 228-232, vol. 33—No. 3, Missouri Baptist Medical Center, St. Louis.
Wei Qu et al, An absorbable pinned-ring device for microvascular anastomosis of vein grafts: Experimental studies, Microsurgery 1999, Mar. 1999, pp. 128-134, vol. 19—No. 3, Department of Orthopaedic Surgery, Hiroshima University School of Medicine, Hiroshima, Japan.
William G. Kussmaul III MD, et al., Rapid arterial hemostasis and decreased access site complications after cardiac catheterization and angioplasty: Results of a randomized trial of a novel hemostatic device, Journal of the American College of Cardiology, Jun. 1995, pp. 1685-1692, vol. 25—No. 7.
U.S. Appl. No. 09/478,179, Nov. 6, 2000, Notice of Allowance.
U.S. Appl. No. 09/546,998, May 6, 2002, Notice of Allowance.
U.S. Appl. No. 09/610,238, Mar. 26, 2001, Notice of Allowance.
U.S. Appl. No. 09/610,238, Sep. 5, 2001, Office Action.
U.S. Appl. No. 09/610,238, Feb. 11, 2002, Notice of Allowance.
U.S. Appl. No. 09/680,837, Jul. 9, 2002, Office Action.
U.S. Appl. No. 09/680,837, Nov. 6, 2002, Office Action.
U.S. Appl. No. 09/680,837, Mar. 25, 2003, Office Action.
U.S. Appl. No. 09/680,837, Jun. 16, 2003, Notice of Allowance.
U.S. Appl. No. 09/732,178, Aug. 1, 2002, Office Action.
U.S. Appl. No. 09/732,178, Dec. 24, 2002, Office Action.
U.S. Appl. No. 09/732,178, Jun. 10, 2003, Office Action.
U.S. Appl. No. 09/732,178, Jul. 3, 2003, Office Action.
U.S. Appl. No. 09/732,178, Nov. 17, 2003, Notice of Allowance.
U.S. Appl. No. 09/732,835, Sep. 11, 2003, Office Action.
U.S. Appl. No. 09/732,835, Feb. 9, 2004, Office Action.
U.S. Appl. No. 09/732,835, Mar. 17, 2004, Notice of Allowance.
U.S. Appl. No. 09/764,813, Mar. 26, 2001, Office Action.
U.S. Appl. No. 09/764,813, Jun. 4, 2001, Notice of Allowance.
U.S. Appl. No. 09/933,299, Feb. 26, 2003, Office Action.
U.S. Appl. No. 09/933,299, Jun. 16, 2003, Notice of Allowance.
U.S. Appl. No. 09/948,813, Jan. 31, 2003, Notice of Allowance.
U.S. Appl. No. 09/949,398, Mar. 4, 2003, Office Action.
U.S. Appl. No. 09/949,398, Jul. 28, 2003, Notice of Allowance.
U.S. Appl. No. 09/949,438, Dec. 17, 2002, Office Action.
U.S. Appl. No. 09/949,438, Apr. 21, 2003, Notice of Allowance.
U.S. Appl. No. 10/006,400, Aug. 27, 2004, Office Action.
U.S. Appl. No. 10/006,400, Feb. 23, 2005, Office Action.
U.S. Appl. No. 10/006,400, Apr. 11, 2005, Office Action.
U.S. Appl. No. 10/006,400, Jul. 27, 2005, Office Action.
U.S. Appl. No. 10/006,400, Mar. 6, 2006, Office Action.
U.S. Appl. No. 10/006,400, May 24, 2006, Office Action.
U.S. Appl. No. 10/006,400, Oct. 26, 2006, Office Action.
U.S. Appl. No. 10/006,400, Apr. 19, 2007, Office Action.
U.S. Appl. No. 10/006,400, Apr. 2, 2008, Office Action.
U.S. Appl. No. 10/006,400, Jan. 2, 2009, Office Action.
U.S. Appl. No. 10/006,400, Jul. 9, 2009, Notice of Allowance.
U.S. Appl. No. 10/006,400, Jan. 13, 2010, Notice of Allowance.
U.S. Appl. No. 10/006,400, Apr. 27, 2010, Notice of Allowance.
U.S. Appl. No. 10/006,400, Aug. 2, 2010, Notice of Allowance.
U.S. Appl. No. 10/081,717, Sep. 29, 2003, Notice of Allowance.
U.S. Appl. No. 10/081,723, May 13, 2005, Notice of Allowance.
U.S. Appl. No. 10/081,725, Feb. 9, 2004, Notice of Allowance.
U.S. Appl. No. 10/081,725, Apr. 13, 2004, Office Action.
U.S. Appl. No. 10/081,726, Apr. 11, 2003, Notice of Allowance.
U.S. Appl. No. 10/081,726, Jun. 9, 2003, Notice of Allowance.
U.S. Appl. No. 10/147,774, Nov. 4, 2004, Office Action.
U.S. Appl. No. 10/147,774, May 4, 2005, Office Action.
U.S. Appl. No. 10/147,774, Oct. 18, 2005, Office Action.
U.S. Appl. No. 10/147,774, Apr. 18, 2007, Notice of Allowance.
U.S. Appl. No. 10/147,774, Sep. 27, 2007, Notice of Allowance.
U.S. Appl. No. 10/147,774, Feb. 4, 2008, Notice of Allowance.
U.S. Appl. No. 10/147,774, Jun. 30, 2008, Office Action.
U.S. Appl. No. 10/147,774, Mar. 18, 2009, Office Action.
U.S. Appl. No. 10/147,774, Oct. 26, 2009, Office Action.
U.S. Appl. No. 10/147,774, Jun. 8, 2010, Office Action.
U.S. Appl. No. 10/147,774, Dec. 2, 2010, Notice of Allowance.
U.S. Appl. No. 10/240,183, Jul. 27, 2004, Office Action.
U.S. Appl. No. 10/240,183, Dec. 17, 2004, Office Action.
U.S. Appl. No. 10/240,183, Mar. 9, 2005, Notice of Allowance.
U.S. Appl. No. 10/240,183, Aug. 11, 2006, Office Action.
U.S. Appl. No. 10/264,306, Feb. 9, 2005, Office Action.
U.S. Appl. No. 10/264,306, Oct. 4, 2005, Office Action.
U.S. Appl. No. 10/264,306, May 10, 2006, Notice of Allowance.
U.S. Appl. No. 10/264,306, Jul. 2, 2007, Notice of Allowance.
U.S. Appl. No. 10/264,306, Feb. 4, 2008, Notice of Allowance.
U.S. Appl. No. 10/264,306, Jun. 27, 2008, Office Action.
U.S. Appl. No. 10/264,306, Feb. 26, 2009, Office Action.
U.S. Appl. No. 10/264,306, Aug. 13, 2009, Office Action.
U.S. Appl. No. 10/264,306, Jan. 27, 2010, Office Action.
U.S. Appl. No. 10/264,306, Jun. 15, 2010, Office Action.
U.S. Appl. No. 10/264,306, Oct. 29, 2010, Notice of Allowance.
U.S. Appl. No. 10/335,075, Aug. 10, 2005, Office Action.
U.S. Appl. No. 10/335,075, Dec. 19, 2005, Office Action.
U.S. Appl. No. 10/335,075, Apr. 21, 2006, Office Action.
U.S. Appl. No. 10/335,075, Dec. 27, 2006, Notice of Allowance.
U.S. Appl. No. 10/356,214, Nov. 30, 2005, Office Action.
U.S. Appl. No. 10/356,214, Aug. 23, 2006, Office Action.
U.S. Appl. No. 10/356,214, Feb. 13, 2007, Office Action.
U.S. Appl. No. 10/356,214, Sep. 12, 2007, Office Action.
U.S. Appl. No. 10/356,214, Mar. 6, 2008, Office Action.
U.S. Appl. No. 10/356,214, Nov. 4, 2008, Office Action.
U.S. Appl. No. 10/356,214, Apr. 29, 2009, Office Action.
U.S. Appl. No. 10/356,214, Jan. 13, 2010, Notice of Allowance.
U.S. Appl. No. 10/356,214, May 13, 2010, Notice of Allowance.
U.S. Appl. No. 10/356,214, Sep. 3, 2010, Notice of Allowance.
U.S. Appl. No. 10/435,104, Jun. 10, 2004, Office Action.
U.S. Appl. No. 10/435,104, Sep. 21, 2004, Notice of Allowance.
U.S. Appl. No. 10/435,104, Jan. 3, 2006, Examiner Amendment.
U.S. Appl. No. 10/435,104, May 16, 2006, Office Action.
U.S. Appl. No. 10/435,104, Dec. 28, 2006, Notice of Allowance.
U.S. Appl. No. 10/435,104, Jul. 10, 2007, Notice of Allowance.
U.S. Appl. No. 10/435,104, Aug. 2, 2007, Notice of Allowance.
U.S. Appl. No. 10/435,104, Oct. 26, 2007, Notice of Allowance.
U.S. Appl. No. 10/435,104, Nov. 14, 2007, Notice of Allowance.
U.S. Appl. No. 10/435,104, Apr. 4, 2008, Notice of Allowance.
U.S. Appl. No. 10/435,104, Sep. 26, 2008, Notice of Allowance.
U.S. Appl. No. 10/435,104, Dec. 22, 2008, Notice of Allowance.
U.S. Appl. No. 10/435,104, Jul. 23, 2009, Notice of Allowance.
U.S. Appl. No. 10/435,104, Jan. 20, 2010, Notice of Allowance.
U.S. Appl. No. 10/435,104, Jun. 2, 2010, Office Action.
U.S. Appl. No. 10/435,104, Oct. 5, 2010, Notice of Allowance.
U.S. Appl. No. 10/455,768, Nov. 16, 2004, Office Action.
U.S. Appl. No. 10/455,768, Apr. 6, 2005, Notice of Allowance.
U.S. Appl. No. 10/486,067, Jan. 10, 2006, Office Action.
U.S. Appl. No. 10/486,067, Sep. 20, 2006, Notice of Allowance.
U.S. Appl. No. 10/486,070, Apr. 20, 2005, Office Action.
U.S. Appl. No. 10/486,070, Aug. 10, 2005, Office Action.
U.S. Appl. No. 10/486,070, Oct. 18, 2005, Notice of Allowance.
U.S. Appl. No. 10/517,004, Aug. 13, 2007, Office Action.
U.S. Appl. No. 10/517,004, Jan. 30, 2008, Office Action.
U.S. Appl. No. 10/517,004, Aug. 13, 2008, Notice of Allowance.
U.S. Appl. No. 10/517,004, Feb. 10, 2009, Notice of Allowance.
U.S. Appl. No. 10/517,004, Mar. 24, 2009, Notice of Allowance.
U.S. Appl. No. 10/517,004, Jun. 26, 2009, Notice of Allowance.
U.S. Appl. No. 10/517,004, Jan. 11, 2010, Notice of Allowance.
U.S. Appl. No. 10/517,004, Apr. 23, 2010, Notice of Allowance.
U.S. Appl. No. 10/517,004, Aug. 3, 2010, Notice of Allowance.
U.S. Appl. No. 10/517,004, Nov. 23, 2010, Issue Notification.
U.S. Appl. No. 10/519,778, Feb. 23, 2006, Office Action.
U.S. Appl. No. 10/519,778, May 31, 2006, Notice of Allowance.
U.S. Appl. No. 10/541,083, Oct. 16, 2007, Office Action.
U.S. Appl. No. 10/541,083, Oct. 31, 2007, Office Action.
U.S. Appl. No. 10/541,083, May 5, 2008, Office Action.
U.S. Appl. No. 10/541,083, Sep. 19, 2008, Notice of Allowance.
U.S. Appl. No. 10/541,083, Dec. 29, 2008, Notice of Allowance.
U.S. Appl. No. 10/541,083, Apr. 16, 2009, Notice of Allowance.
U.S. Appl. No. 10/541,083, Sep. 30, 2009, Notice of Allowance.
U.S. Appl. No. 10/541,083, Feb. 5, 2010, Notice of Allowance.
U.S. Appl. No. 10/541,083, May 10, 2010, Notice of Allowance.
U.S. Appl. No. 10/541,083, Aug. 17, 2010, Notice of Allowance.
U.S. Appl. No. 10/541,083, Dec. 1, 2010, Issue Notification.
U.S. Appl. No. 10/616,832, Jun. 30, 2006, Office Action.
U.S. Appl. No. 10/616,832, Oct. 20, 2006, Office Action.
U.S. Appl. No. 10/616,832, May 29, 2007, Office Action.
U.S. Appl. No. 10/616,832, Jan. 22, 2008, Office Action.
U.S. Appl. No. 10/616,832, Sep. 17, 2008, Office Action.
U.S. Appl. No. 10/616,832, Jul. 21, 2009, Office Action.
U.S. Appl. No. 10/616,832, Jan. 11, 2010, Notice of Allowance.
U.S. Appl. No. 10/616,832, May 12, 2010, Notice of Allowance.
U.S. Appl. No. 10/616,832, Sep. 20, 2010, Notice of Allowance.
U.S. Appl. No. 10/616,832, Jan. 26, 2011, Issue Notification.
U.S. Appl. No. 10/617,090, Mar. 22, 2005, Office Action.
U.S. Appl. No. 10/617,090, Jul. 6, 2005, Notice of Allowance.
U.S. Appl. No. 10/617,090, Oct. 5, 2005, Notice of Allowance.
U.S. Appl. No. 10/638,115, Sep. 22, 2006, Office Action.
U.S. Appl. No. 10/638,115, Jan. 31, 2007, Office Action.
U.S. Appl. No. 10/638,115, Sep. 18, 2007, Office Action.
U.S. Appl. No. 10/638,115, Feb. 7, 2008, Office Action.
U.S. Appl. No. 10/638,115, Oct. 29, 2008, Office Action.
U.S. Appl. No. 10/638,115, May 7, 2009, Notice of Allowance.
U.S. Appl. No. 10/638,115, Dec. 1, 2009, Notice of Allowance.
U.S. Appl. No. 10/638,115, Apr. 2, 2010, Notice of Allowance.
U.S. Appl. No. 10/638,115, Aug. 13, 2010, Notice of Allowance.
U.S. Appl. No. 10/638,115, Dec. 22, 2010, Issue Notification.
U.S. Appl. No. 10/667,144, Sep. 19, 2006, Office Action.
U.S. Appl. No. 10/667,144, May 2, 2007, Office Action.
U.S. Appl. No. 10/667,144, Nov. 19, 2007, Office Action.
U.S. Appl. No. 10/667,144, Dec. 5, 2007, Office Action.
U.S. Appl. No. 10/667,144, May 12, 2008, Office Action.
U.S. Appl. No. 10/667,144, Mar. 24, 2009, Office Action.
U.S. Appl. No. 10/667,144, Nov. 23, 2009, Office Action.
U.S. Appl. No. 10/667,144, Jun. 22, 2010, Office Action.
U.S. Appl. No. 10/669,313, Oct. 31, 2005, Office Action.
U.S. Appl. No. 10/669,313, Jan. 11, 2006, Notice of Allowance.
U.S. Appl. No. 10/669,313, Jun. 28, 2006, Notice of Allowance.
U.S. Appl. No. 10/682,459, Sep. 15, 2006, Office Action.
U.S. Appl. No. 10/682,459, Apr. 18, 2007, Office Action.
U.S. Appl. No. 10/682,459, Apr. 2, 2008, Office Action.
U.S. Appl. No. 10/682,459, Dec. 4, 2008, Office Action.
U.S. Appl. No. 10/682,459, Jun. 10, 2009, Office Action.
U.S. Appl. No. 10/682,459, Dec. 23, 2009, Office Action.
U.S. Appl. No. 10/682,459, Apr. 28, 2010, Office Action.
U.S. Appl. No. 10/682,459, Oct. 12, 2010, Office Action.
U.S. Appl. No. 10/786,444, Oct. 30, 2006, Office Action.
U.S. Appl. No. 10/786,444, Apr. 17, 2007, Office Action.
U.S. Appl. No. 10/786,444, Aug. 31, 2007, Office Action.
U.S. Appl. No. 10/786,444, Apr. 24, 2008, Office Action.
U.S. Appl. No. 10/786,444, Oct. 17, 2008, Office Action.
U.S. Appl. No. 10/786,444, Jun. 18, 2009, Office Action.
U.S. Appl. No. 10/786,444, Jan. 14, 2010, Office Action.
U.S. Appl. No. 10/787,073, Nov. 30, 2006, Office Action.
U.S. Appl. No. 10/787,073, Sep. 5, 2007, Office Action.
U.S. Appl. No. 10/787,073, Feb. 22, 2008, Office Action.
U.S. Appl. No. 10/787,073, Nov. 12, 2008, Office Action.
U.S. Appl. No. 10/787,073, Aug. 13, 2009, Office Action.
U.S. Appl. No. 10/787,073, Feb. 17, 2010, Notice of Allowance.
U.S. Appl. No. 10/787,073, Aug. 25, 2010, Notice of Allowance.
U.S. Appl. No. 10/787,073, Sep. 15, 2010, Issue Notification.
U.S. Appl. No. 10/908,721, Oct. 19, 2006, Office Action.
U.S. Appl. No. 10/908,721, Aug. 10, 2007, Office Action.
U.S. Appl. No. 10/908,721, Jan. 25, 2008, Office Action.
U.S. Appl. No. 10/908,721, Nov. 25, 2008, Office Action.
U.S. Appl. No. 10/908,721, Jun. 23, 2009, Office Action.
U.S. Appl. No. 10/908,721, Feb. 2, 2010, Office Action.
U.S. Appl. No. 11/048,503, Mar. 13, 2009, Office Action.
U.S. Appl. No. 11/048,503, Jun. 26, 2009, Office Action.
U.S. Appl. No. 11/048,503, Jan. 11, 2010, Notice of Allowance.
U.S. Appl. No. 11/048,503, Apr. 26, 2010, Notice of Allowance.
U.S. Appl. No. 11/048,503, Jul. 30, 2010, Notice of Allowance.
U.S. Appl. No. 11/048,503, Dec. 8, 2010, Issue Notification.
U.S. Appl. No. 11/113,549, Feb. 6, 2007, Office Action.
U.S. Appl. No. 11/113,549, May 30, 2007, Office Action.
U.S. Appl. No. 11/113,549, Nov. 9, 2007, Office Action.
U.S. Appl. No. 11/113,549, Apr. 16, 2008, Office Action.
U.S. Appl. No. 11/113,549, Jul. 21, 2009, Office Action.
U.S. Appl. No. 11/113,549, Jul. 6, 2010, Office Action.
U.S. Appl. No. 11/113,549, Jan. 4, 2011, Office Action.
U.S. Appl. No. 11/152,562, May 13, 2008, Office Action.
U.S. Appl. No. 11/152,562, Feb. 13, 2009, Office Action.
U.S. Appl. No. 11/152,562, Jul. 6, 2009, Office Action.
U.S. Appl. No. 11/152,562, Mar. 31, 2010, Office Action.
U.S. Appl. No. 11/152,562, Sep. 16, 2010, Notice of Allowance.
U.S. Appl. No. 11/152,562, Jan. 26, 2011, Issue Notification.
U.S. Appl. No. 11/198,811, Aug. 26, 2008, Office Action.
U.S. Appl. No. 11/198,811, Apr. 6, 2009, Office Action.
U.S. Appl. No. 11/198,811, Sep. 22, 2009, Office Action.
U.S. Appl. No. 11/198,811, Jun. 29, 2010, Notice of Allowance.
U.S. Appl. No. 11/198,811, Oct. 20, 2010, Issue Notification.
U.S. Appl. No. 11/344,793, Jan. 22, 2009, Office Action.
U.S. Appl. No. 11/344,868, Mar. 25, 2009, Office Action.
U.S. Appl. No. 11/344,891, Apr. 29, 2008, Office Action.
U.S. Appl. No. 11/344,891, Dec. 8, 2008, Office Action.
U.S. Appl. No. 11/344,891, Feb. 26, 2009, Office Action.
U.S. Appl. No. 11/344,891, Oct. 7, 2009, Office Action.
U.S. Appl. No. 11/344,891, May 7, 2010, Office Action.
U.S. Appl. No. 11/390,586, Jun. 24, 2009, Office Action.
U.S. Appl. No. 11/390,586, Jul. 6, 2010, Office Action.
U.S. Appl. No. 11/396,141, May 22, 2009, Office Action.
U.S. Appl. No. 11/396,141, Aug. 26, 2009, Office Action.
U.S. Appl. No. 11/396,141, May 4, 2010, Office Action.
U.S. Appl. No. 11/396,731, Feb. 13, 2009, Office Action.
U.S. Appl. No. 11/396,731, May 22, 2009, Office Action.
U.S. Appl. No. 11/396,731, Jun. 29, 2010, Office Action.
U.S. Appl. No. 11/406,203, May 14, 2007, Office Action.
U.S. Appl. No. 11/406,203, Jan. 29, 2008, Notice of Allowance.
U.S. Appl. No. 11/406,203, May 23, 2008, Notice of Allowance.
U.S. Appl. No. 11/406,203, Sep. 22, 2008, Notice of Allowance.
U.S. Appl. No. 11/406,203, Mar. 3, 2009, Office Action.
U.S. Appl. No. 11/406,203, Sep. 16, 2009, Office Action.
U.S. Appl. No. 11/406,203, Jun. 18, 2010, Notice of Allowance.
U.S. Appl. No. 11/406,203, Oct. 6, 2010, Issue Notification.
U.S. Appl. No. 11/411,925, Jun. 6, 2007, Office Action.
U.S. Appl. No. 11/411,925, Feb. 5, 2008, Office Action.
U.S. Appl. No. 11/411,925, Jan. 12, 2009, Office Action.
U.S. Appl. No. 11/411,925, Sep. 10, 2009, Office Action.
U.S. Appl. No. 11/427,297, Jan. 30, 2009, Office Action.
U.S. Appl. No. 11/427,297, Sep. 15, 2009, Office Action.
U.S. Appl. No. 11/427,297, Sep. 15, 2010, Office Action.
U.S. Appl. No. 11/427,309, May 28, 2008, Office Action.
U.S. Appl. No. 11/427,309, Jan. 2, 2009, Office Action.
U.S. Appl. No. 11/427,309, Apr. 20, 2009, Office Action.
U.S. Appl. No. 11/427,309, Nov. 6, 2009, Office Action.
U.S. Appl. No. 11/427,309, Apr. 26, 2010, Office Action.
U.S. Appl. No. 11/427,309, Nov. 15, 2010, Office Action.
U.S. Appl. No. 11/455,993, Feb. 17, 2009, Office Action.
U.S. Appl. No. 11/455,993, Dec. 16, 2009, Office Action.
U.S. Appl. No. 11/532,325, Feb. 23, 2009, Office Action.
U.S. Appl. No. 11/532,325, Jun. 17, 2009, Office Action.
U.S. Appl. No. 11/532,325, Jan. 5, 2010, Office Action.
U.S. Appl. No. 11/532,576, Mar. 1, 2010, Office Action.
U.S. Appl. No. 11/532,576, Apr. 23, 2010, Office Action.
U.S. Appl. No. 11/532,576, Oct. 13, 2010, Notice of Allowance.
U.S. Appl. No. 11/674,930, Jan. 8, 2009, Office Action.
U.S. Appl. No. 11/674,930, Jun. 4, 2009, Office Action.
U.S. Appl. No. 11/674,930, Jan. 8, 2010, Office Action.
U.S. Appl. No. 11/675,462, Dec. 10, 2009, Office Action.
U.S. Appl. No. 11/675,462, Aug. 31, 2010, Office Action.
U.S. Appl. No. 11/744,089, Nov. 26, 2008, Office Action.
U.S. Appl. No. 11/744,089, Aug. 14, 2009, Office Action.
U.S. Appl. No. 11/757,108, Nov. 25, 2009, Office Action.
U.S. Appl. No. 11/767,818, Dec. 24, 2009, Office Action.
U.S. Appl. No. 11/767,818, Mar. 22, 2010, Office Action.
U.S. Appl. No. 11/767,818, Sep. 30, 2010, Office Action.
U.S. Appl. No. 11/852,190, Jun. 24, 2010, Office Action.
U.S. Appl. No. 11/852,190, Nov. 1, 2010, Office Action.
U.S. Appl. No. 11/958,281, Sep. 2, 2010, Office Action.
U.S. Appl. No. 11/958,281, Oct. 8, 2010, Office Action.
U.S. Appl. No. 11/958,295, Aug. 27, 2009, Office Action.
U.S. Appl. No. 11/958,295, May 25, 2010, Office Action.
U.S. Appl. No. 11/959,334, Aug. 19, 2009, Office Action.
U.S. Appl. No. 11/959,334, Jan. 12, 2010, Notice of Allowance.
U.S. Appl. No. 11/959,334, Apr. 14, 2010, Notice of Allowance.
U.S. Appl. No. 11/959,334, Jul. 23, 2010, Notice of Allowance.
U.S. Appl. No. 11/959,334, Nov. 10, 2010, Issue Notification.
U.S. Appl. No. 12/106,928, Jan. 23, 2009, Office Action.
U.S. Appl. No. 12/106,928, Oct. 5, 2009, Office Action.
U.S. Appl. No. 12/106,928, May 10, 2010, Office Action.
U.S. Appl. No. 12/106,928, Oct. 25, 2010, Office Action.
U.S. Appl. No. 12/106,937, Mar. 30, 2009, Office Action.
U.S. Appl. No. 12/106,937, Nov. 18, 2009, Office Action.
U.S. Appl. No. 12/113,851, Apr. 27, 2010, Office Action.
U.S. Appl. No. 12/113,851, Jun. 24, 2010, Office Action.
U.S. Appl. No. 12/113,851, Dec. 16, 2010, Office Action.
U.S. Appl. No. 12/114,031, Oct. 5, 2010, Office Action.
U.S. Appl. No. 12/114,031, Nov. 22, 2010, Office Action.
U.S. Appl. No. 12/114,091, Oct. 27, 2010, Office Action.
U.S. Appl. No. 12/114,091, Dec. 17, 2010, Office Action.
U.S. Appl. No. 12/402,398, Mar. 9, 2010, Office Action.
U.S. Appl. No. 12/402,398, May 20, 2010, Office Action.
U.S. Appl. No. 12/402,398, Jan. 24, 2011, Office Action.
U.S. Appl. No. 12/403,256, Dec. 16, 2009, Office Action.
U.S. Appl. No. 12/403,256, Mar. 30, 2010, Office Action.
U.S. Appl. No. 12/403,256, Aug. 19, 2010, Notice of Allowance.
U.S. Appl. No. 12/403,256, Nov. 23, 2010, Issue Notification.
U.S. Appl. No. 12/403,277, Jul. 8, 2010, Office Action.
U.S. Appl. No. 12/403,277, Oct. 12, 2010, Office Action.
U.S. Appl. No. 12/945,646, Jan. 20, 2011, Office Action.
U.S. Appl. No. 29/296,370, Aug. 18, 2008, Office Action.
U.S. Appl. No. 29/296,370, Dec. 2, 2008, Notice of Allowance.
U.S. Appl. No. 29/296,370 Apr. 1, 2009, Notice of Allowance.
U.S. Appl. No. 29/296,370, Feb. 10, 2010, Issue Notification.
U.S. Appl. No. 13/017,636, filed Jan. 31, 2011, Carley et al.
U.S. Appl. No. 13/026,989, filed Feb. 14, 2011, Cummins.
U.S. Appl. No. 10/264,306, filed Feb. 16, 2011, Issue Notification.
U.S. Appl. No. 11/767,818, filed Feb. 16, 2011, Office Action.
U.S. Appl. No. 13/030,922, filed Feb. 18, 2011, Cummins.
U.S. Appl. No. 10/356,214, filed Feb. 23, 2011, Issue Notification.
U.S. Appl. No. 13/039,087, filed Mar. 2, 2011, Palermo et al.
U.S. Appl. No. 11/852,190, filed Mar. 2, 2011, Office Action.
U.S. Appl. No. 12/122,603, filed Mar. 3, 2011, Office Action.
U.S. Appl. No. 11/958,281, filed Mar. 10, 2011, Office Action.
U.S. Appl. No. 11/532,576, filed Mar. 16, 2011, Issue Notification.
U.S. Appl. No. 11/396,731, Mar. 22, 2011, Office Action.
U.S. Appl. No. 11/427,297, Mar. 21, 2011, Office Action.
U.S. Appl. No. 10/682,459, filed Apr. 1, 2011, Notice of Allowance.
U.S. Appl. No. 12/403,277, filed Mar. 31, 2011, Office Action.
U.S. Appl. No. 10/147,774, Apr. 6, 2011, Issue Notification.
U.S. Appl. No. 12/122,603, Apr. 22, 2011, Office Action.
U.S. Appl. No. 12/113,851, Apr. 27, 2011, Office Action.
U.S. Appl. No. 12/481,377, Apr. 28, 2011, Office Action.
U.S. Appl. No. 12/114,031, May 11, 2011, Office Action.
U.S. Appl. No. 12/143,020, May 11, 2011, Office Action.
U.S. Appl. No. 13/028,041, filed Feb. 15, 2011, Von Oepen.
U.S. Appl. No. 13/112,618, filed May 20, 2011, Gianotti et al.
U.S. Appl. No. 13/112,631, filed May 20, 2011, Voss.
U.S. Appl. No. 13/153,594, filed Jun. 6, 2011, Reyes et al.
U.S. Appl. No. 10/667,144, filed Jun. 6, 2011, Office Action.
U.S. Appl. No. 12/481,377, Jun. 21, 2011, Office Action.
U.S. Appl. No. 12/114,091, Jul. 7, 2011, Office Action.
U.S. Appl. No. 12/945,646, Jul. 6, 2011, Office Action.
U.S. Appl. No. 12/135,858, Jul. 13, 2011, Office Action.
U.S. Appl. No. 13/111,371, filed May 19, 2011, Ziobro.
U.S. Appl. No. 13/222,899, filed Aug. 31, 2011, Carley et al.
U.S. Appl. No. 11/396,731, Sep. 1, 2011, Office Action.
U.S. Appl. No. 11/675,462, Aug. 3, 2011, Office Action.
U.S. Appl. No. 12/114,031, Aug. 2, 2011, Office Action.
U.S. Appl. No. 12/143,020, Aug. 31, 2011, Office Action.
U.S. Appl. No. 12/897,358, Aug. 22, 2011, Office Action.
U.S. Appl. No. 12/122,603, Sep. 23, 2011, Office Action.
U.S. Appl. No. 12/393,877, Sep. 29, 2011, Office Action.
U.S. Appl. No. 13/026,989, Sep. 16, 2011, Office Action.
U.S. Appl. No. 10/667,144, Oct. 28, 2011, Notice of Allowance.
U.S. Appl. No. 12/945,646, Oct. 26, 2011, Office Action.
U.S. Appl. No. 11/675,462, Dec. 22, 2011, Notice of Allowance.
U.S. Appl. No. 11/767,818, Feb. 3, 2012, Notice of Allowance.
U.S. Appl. No. 12/114,031, Mar. 6, 2012, Office Action.
U.S. Appl. No. 12/135,858, Feb. 16, 2012, Office Action.
U.S. Appl. No. 12/143,020, Feb. 23, 2012, Notice of Allowance.
U.S. Appl. No. 12/338,977, Jan. 19, 2012, Office Action.
U.S. Appl. No. 12/393,877, Dec. 13, 2011, Office Action.
U.S. Appl. No. 12/481,377, Jan. 3, 2012, Office Action.
U.S. Appl. No. 12/548,274, Dec. 28, 2011, Restriction Requirement.
U.S. Appl. No. 12/548,274, Mar. 2, 2012, Office Action.
U.S. Appl. No. 12/608,769, Feb. 10, 2012, Office Action.
U.S. Appl. No. 12/642,319, Feb. 27, 2012, Restriction Requirement.
U.S. Appl. No. 12/684,400, Feb. 13, 2012, Restriction Requirement.
U.S. Appl. No. 12/684,470, Dec. 20, 2011, Restriction Requirement.
U.S. Appl. No. 12/684,542, Jan. 30, 2012, Restriction Requirement.
U.S. Appl. No. 12/684,562, Dec. 28, 2011, Restriction Requirement.
U.S. Appl. No. 12/684,562, Feb. 16, 2012, Office Action.
U.S. Appl. No. 12/684,569, Dec. 20, 2011, Restriction Requirement.
U.S. Appl. No. 12/684,569, Jan. 27, 2012, Office Action.
U.S. Appl. No. 12/688,065, Mar. 13, 2012, Restriction Requirement.
U.S. Appl. No. 12/724,304, Feb. 10, 2012, Office Action.
U.S. Appl. No. 12/897,358, Jan. 12, 2012, Notice of Allowance.
U.S. Appl. No. 12/897,358, Mar. 5, 2012, Notice of Allowance.
U.S. Appl. No. 12/941,809, Dec. 13, 2011, Restriction Requirement.
U.S. Appl. No. 12/941,809, Jan. 30, 2012, Office Action.
U.S. Appl. No. 12/945,646, Feb. 21, 2012, Notice of Allowance.
U.S. Appl. No. 12/966,923, Feb. 3, 2012, Notice of Allowance.
U.S. Appl. No. 12/973,204, Mar. 7, 2012, Notice of Allowance.
U.S. Appl. No. 12/987,792, Mar. 13, 2012, Office Action.
U.S. Appl. No. 12/724,304, Mar. 13, 2013, Interview Summary.
U.S. Appl. No. 13/308,227, filed Nov. 30, 2011, Yibarren.
U.S. Appl. No. 11/390,586, May 3, 2012, Notice of Allowance.
U.S. Appl. No. 11/427,297, Jun. 26, 2012, Notice of Allowance.
U.S. Appl. No. 11/744,089, Aug. 8, 2012, Office Action.
U.S. Appl. No. 12/113,851, Mar. 29, 2012, Office Action.
U.S. Appl. No. 12/114,091, Apr. 5, 2012, Office Action.
U.S. Appl. No. 12/114,091, Nov. 8, 2012, Office Action.
U.S. Appl. No. 12/338,977, Jul. 11, 2012, Office Action.
U.S. Appl. No. 12/338,977, Nov. 28, 2012, Office Action.
U.S. Appl. No. 12/393,877, May 21, 2012, Office Action.
U.S. Appl. No. 12/402,398, Sep. 20, 2012, Office Action.
U.S. Appl. No. 12/403,277, Apr. 3, 2012, Office Action.
U.S. Appl. No. 12/403,277, Nov. 5, 2012, Office Action.
U.S. Appl. No. 12/481,377, Aug. 10, 2012, Notice of Allowance.
U.S. Appl. No. 12/548,274, Sep. 10, 2012, Office Action.
U.S. Appl. No. 12/608,769, Aug. 22, 2012, Office Action.
U.S. Appl. No. 12/608,769, Nov. 5, 2012, Notice of Allowance.
U.S. Appl. No. 12/608,773, Jun. 7, 2012, Restriction Requirement.
U.S. Appl. No. 12/608,773, Jul. 20, 2012, Office Action.
U.S. Appl. No. 12/608,773, Jan. 7, 2013, Office Action.
U.S. Appl. No. 12/642,319, Aug. 28, 2012, Office Action.
U.S. Appl. No. 12/684,400, May 9, 2012, Office Action.
U.S. Appl. No. 12/684,400, Oct. 16, 2012, Office Action.
U.S. Appl. No. 12/684,470, Mar. 23, 2012, Office Action.
U.S. Appl. No. 12/684,470, Aug. 30, 2012, Office Action.
U.S. Appl. No. 12/684,542, Apr. 16, 2012, Office Action.
U.S. Appl. No. 12/684,542, Sep. 13, 2012, Office Action.
U.S. Appl. No. 12/684,562, Aug. 21, 2012, Office Action.
U.S. Appl. No. 12/684,569, Jul. 30, 2012, Office Action.
U.S. Appl. No. 12/688,065, Apr. 26, 2012, Office Action.
U.S. Appl. No. 12/688,065, Oct. 12, 2012, Office Action.
U.S. Appl. No. 12/724,304, Jul. 11, 2012, Notice of Allowance.
U.S. Appl. No. 12/848,642, Sep. 20, 2012, Restriction Requirement.
U.S. Appl. No. 12/848,642 Nov. 9, 2012, Office Action.
U.S. Appl. No. 12/850,242, Aug. 6, 2012, Restriction Requirement.
U.S. Appl. No. 12/850,242, Oct. 17, 2012, Office Action.
U.S. Appl. No. 12/941,809, Jun. 1, 2012, Office Action.
U.S. Appl. No. 12/961,331, Dec. 4, 2012, Restriction Requirement.
U.S. Appl. No. 12/987,792, Sep. 17, 2012, Office Action.
U.S. Appl. No. 13/026,989, Jun. 8, 2012, Office Action.
U.S. Appl. No. 13/030,922, Dec. 18, 2012, Restriction Requirement.
U.S. Appl. No. 13/039,087, Jul. 17, 2012, Office Action.
U.S. Appl. No. 13/039,087, Nov. 6, 2012, Notice of Allowance.
U.S. Appl. No. 13/111,371, Oct. 12, 2012, Restriction Requirement.
U.S. Appl. No. 13/111,371, Dec. 18, 2012, Office Action.
U.S. Appl. No. 13/490,143, Jan. 4, 2013, Restriction Requirement.
U.S. Appl. No. 13/615,547, Jan. 18, 2013, Office Action.
U.S. Appl. No. 11/344,891, Jan. 22, 2013, Notice of Allowance.
U.S. Appl. No. 13/030,922, Jan. 31, 2013, Office Action.
U.S. Appl. No. 13/153,594, Jan. 29, 2013, Office Action.
U.S. Appl. No. 12/402,398, Mar. 13, 2013, Notice of Allowance.
U.S. Appl. No. 13/028,041, Jan. 4, 2013, Office Action.
U.S. Appl. No. 13/028,041, Feb. 26, 2013, Office Action.
U.S. Appl. No. 13/791,829, filed Mar. 8, 2013, Roorda et al.
U.S. Appl. No. 13/791,846, filed Mar. 8, 2013, Palermo.
U.S. Appl. No. 13/112,618, Mar. 29, 2013, Office Action.
U.S. Appl. No. 13/113,631, Mar. 29, 2013, Office Action.
U.S. Appl. No. 13/308,227, Apr. 10, 2013, Office Action.
U.S. Appl. No. 13/525,839, Apr. 1, 2013, Office Action.
U.S. Appl. No. 11/744,089, Apr. 15, 2013, Office Action.
U.S. Appl. No. 12/850,242, Apr. 18, 2013, Office Action.
U.S. Appl. No. 13/052,634, Feb. 8, 2013, Office Action.
U.S. Appl. No. 13/052,634, Apr. 22, 2013, Office Action.
U.S. Appl. No. 13/615,547, Apr. 12, 2013, Notice of Allowance.
U.S. Appl. No. 11/396,141, Apr. 30, 2013, Office Action.
U.S. Appl. No. 11/852,190, Apr. 24, 2013, Office Action.
U.S. Appl. No. 12/848,642, Apr. 26, 2013, Office Action.
U.S. Appl. No. 13/490,143, Apr. 29, 2013, Notice of Allowance.
U.S. Appl. No. 12/961,331, Feb. 1, 2013, Office Action.
U.S. Appl. No. 13/488,233, Feb. 5, 2013, Notice of Allowance.
Related Publications (1)
Number Date Country
20110071565 A1 Mar 2011 US
Continuations (1)
Number Date Country
Parent 10006400 Nov 2001 US
Child 12955859 US
Continuation in Parts (1)
Number Date Country
Parent 09732835 Dec 2000 US
Child 10006400 US