Apparatus and methods for selecting sections of an antenna array and use therewith

Information

  • Patent Grant
  • 10389037
  • Patent Number
    10,389,037
  • Date Filed
    Thursday, December 8, 2016
    8 years ago
  • Date Issued
    Tuesday, August 20, 2019
    5 years ago
Abstract
Aspects of the subject disclosure may include, selecting a first segment from a plurality of selectable segments of an array of dielectric antennas, where the first segment corresponds to a first set of one or more dielectric antennas from the array of dielectric antennas coupled to a first set of launchers, directing the first set of launchers to launch first electromagnetic waves directed to the first set of one or more dielectric antennas to generate a first beam pattern, selecting a second segment from the plurality of selectable segments, where the second segment corresponds to a second set of one or more dielectric antennas from the array of dielectric antennas coupled to a second set of launchers, and directing the second set of launchers to launch second electromagnetic waves directed to the second set of one or more dielectric antennas to generate a second beam pattern. Other embodiments are disclosed.
Description
FIELD OF THE DISCLOSURE

The subject disclosure relates to apparatus and methods for selecting segments of an antenna array and use therewith.


BACKGROUND

As smart phones and other portable devices increasingly become ubiquitous, and data usage increases, macrocell base station devices and existing wireless infrastructure in turn require higher bandwidth capability in order to address the increased demand. To provide additional mobile bandwidth, small cell deployment is being pursued, with microcells and picocells providing coverage for much smaller areas than traditional macrocells.


In addition, most homes and businesses have grown to rely on broadband data access for services such as voice, video and Internet browsing, etc. Broadband access networks include satellite, 4G or 5G wireless, power line communication, fiber, cable, and telephone networks.





BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:



FIG. 1 is a block diagram illustrating an example, non-limiting embodiment of a guided-wave communications system in accordance with various aspects described herein.



FIG. 2 is a block diagram illustrating an example, non-limiting embodiment of a transmission device in accordance with various aspects described herein.



FIG. 3 is a graphical diagram illustrating an example, non-limiting embodiment of an electromagnetic field distribution in accordance with various aspects described herein.



FIG. 4 is a graphical diagram illustrating an example, non-limiting embodiment of an electromagnetic field distribution in accordance with various aspects described herein.



FIG. 5A is a graphical diagram illustrating an example, non-limiting embodiment of a frequency response in accordance with various aspects described herein.



FIG. 5B is a graphical diagram illustrating example, non-limiting embodiments of a longitudinal cross-section of an insulated wire depicting fields of guided electromagnetic waves at various operating frequencies in accordance with various aspects described herein.



FIG. 6 is a graphical diagram illustrating an example, non-limiting embodiment of an electromagnetic field distribution in accordance with various aspects described herein.



FIG. 7 is a block diagram illustrating an example, non-limiting embodiment of an arc coupler in accordance with various aspects described herein.



FIG. 8 is a block diagram illustrating an example, non-limiting embodiment of an arc coupler in accordance with various aspects described herein.



FIG. 9A is a block diagram illustrating an example, non-limiting embodiment of a stub coupler in accordance with various aspects described herein.



FIG. 9B is a diagram illustrating an example, non-limiting embodiment of an electromagnetic distribution in accordance with various aspects described herein.



FIGS. 10A and 10B are block diagrams illustrating example, non-limiting embodiments of couplers and transceivers in accordance with various aspects described herein.



FIG. 11 is a block diagram illustrating an example, non-limiting embodiment of a dual stub coupler in accordance with various aspects described herein.



FIG. 12 is a block diagram illustrating an example, non-limiting embodiment of a repeater system in accordance with various aspects described herein.



FIG. 13 illustrates a block diagram illustrating an example, non-limiting embodiment of a bidirectional repeater in accordance with various aspects described herein.



FIG. 14 is a block diagram illustrating an example, non-limiting embodiment of a waveguide system in accordance with various aspects described herein.



FIG. 15 is a block diagram illustrating an example, non-limiting embodiment of a guided-wave communications system in accordance with various aspects described herein.



FIGS. 16A & 16B are block diagrams illustrating an example, non-limiting embodiment of a system for managing a power grid communication system in accordance with various aspects described herein.



FIG. 17A illustrates a flow diagram of an example, non-limiting embodiment of a method for detecting and mitigating disturbances occurring in a communication network of the system of FIGS. 16A and 16B.



FIG. 17B illustrates a flow diagram of an example, non-limiting embodiment of a method for detecting and mitigating disturbances occurring in a communication network of the system of FIGS. 16A and 16B.



FIGS. 18A, 18B, and 18C are block diagrams illustrating example, non-limiting embodiment of a transmission medium for propagating guided electromagnetic waves.



FIG. 18D is a block diagram illustrating an example, non-limiting embodiment of bundled transmission media in accordance with various aspects described herein.



FIG. 18E is a block diagram illustrating an example, non-limiting embodiment of a plot depicting cross-talk between first and second transmission mediums of the bundled transmission media of FIG. 18D in accordance with various aspects described herein.



FIG. 18F is a block diagram illustrating an example, non-limiting embodiment of bundled transmission media to mitigate cross-talk in accordance with various aspects described herein.



FIGS. 18G and 18H are block diagrams illustrating example, non-limiting embodiments of a transmission medium with an inner waveguide in accordance with various aspects described herein.



FIGS. 18I and 18J are block diagrams illustrating example, non-limiting embodiments of connector configurations that can be used with the transmission medium of FIG. 18A, 18B, or 18C.



FIG. 18K is a block diagram illustrating example, non-limiting embodiments of transmission mediums for propagating guided electromagnetic waves.



FIG. 18L is a block diagram illustrating example, non-limiting embodiments of bundled transmission media to mitigate cross-talk in accordance with various aspects described herein.



FIG. 18M is a block diagram illustrating an example, non-limiting embodiment of exposed stubs from the bundled transmission media for use as antennas in accordance with various aspects described herein.



FIGS. 18N, 18O, 18P, 18Q, 18R, 18S, 18T, 18U, 18V and 18W are block diagrams illustrating example, non-limiting embodiments of a waveguide device for transmitting or receiving electromagnetic waves in accordance with various aspects described herein.



FIGS. 19A and 19B are block diagrams illustrating example, non-limiting embodiments of a dielectric antenna and corresponding gain and field intensity plots in accordance with various aspects described herein.



FIGS. 19C and 19D are block diagrams illustrating example, non-limiting embodiments of a dielectric antenna coupled to a lens and corresponding gain and field intensity plots in accordance with various aspects described herein.



FIGS. 19E and 19F are block diagrams illustrating example, non-limiting embodiments of a dielectric antenna coupled to a lens with ridges and corresponding gain and field intensity plots in accordance with various aspects described herein.



FIG. 19G is a block diagram illustrating an example, non-limiting embodiment of a dielectric antenna having an elliptical structure in accordance with various aspects described herein.



FIG. 19H is a block diagram illustrating an example, non-limiting embodiment of near-field and far-field signals emitted by the dielectric antenna of FIG. 19G in accordance with various aspects described herein.



FIG. 19I is a block diagrams of example, non-limiting embodiments of a dielectric antenna for adjusting far-field wireless signals in accordance with various aspects described herein.



FIGS. 19J and 19K are block diagrams of example, non-limiting embodiments of a flange that can be coupled to a dielectric antenna in accordance with various aspects described herein.



FIG. 19L is a block diagram of example, non-limiting embodiments of the flange, waveguide and dielectric antenna assembly in accordance with various aspects described herein.



FIG. 19M is a block diagram of an example, non-limiting embodiment of a dielectric antenna coupled to a gimbal for directing wireless signals generated by the dielectric antenna in accordance with various aspects described herein.



FIG. 19N is a block diagram of an example, non-limiting embodiment of a dielectric antenna in accordance with various aspects described herein.



FIG. 19O is a block diagram of an example, non-limiting embodiment of an array of dielectric antennas configurable for steering wireless signals in accordance with various aspects described herein.


FIGS. 19P1, 19P2, 19P3, 19P4, 19P5, 19P6, 19P7 and 19P8 are side-view block diagrams of example, non-limiting embodiments of a cable, a flange, and dielectric antenna assembly in accordance with various aspects described herein.


FIGS. 19Q1, 19Q2 and 19Q3 are front-view block diagrams of example, non-limiting embodiments of dielectric antennas in accordance with various aspects described herein.



FIGS. 20A and 20B are block diagrams illustrating example, non-limiting embodiments of the transmission medium of FIG. 18A used for inducing guided electromagnetic waves on power lines supported by utility poles.



FIG. 20C is a block diagram of an example, non-limiting embodiment of a communication network in accordance with various aspects described herein.



FIG. 20D is a block diagram of an example, non-limiting embodiment of an antenna mount for use in a communication network in accordance with various aspects described herein.



FIG. 20E is a block diagram of an example, non-limiting embodiment of an antenna mount for use in a communication network in accordance with various aspects described herein.



FIG. 20F is a block diagram of an example, non-limiting embodiment of an antenna mount for use in a communication network in accordance with various aspects described herein.



FIG. 21A illustrates a flow diagram of an example, non-limiting embodiment of a method for transmitting downlink signals.



FIG. 21B illustrates a flow diagram of an example, non-limiting embodiment of a method for transmitting uplink signals.



FIG. 21C illustrates a flow diagram of an example, non-limiting embodiment of a method for inducing and receiving electromagnetic waves on a transmission medium.



FIG. 21D illustrates a flow diagram of an example, non-limiting embodiment of a method for inducing and receiving electromagnetic waves on a transmission medium.



FIG. 21E illustrates a flow diagram of an example, non-limiting embodiment of a method for transmitting wireless signals from a dielectric antenna.



FIG. 21F illustrates a flow diagram of an example, non-limiting embodiment of a method for receiving wireless signals at a dielectric antenna.



FIG. 21G illustrates a flow diagram of an example, non-limiting embodiment of a method for detecting and mitigating disturbances occurring in a communication network.



FIG. 21H is a block diagram illustrating an example, non-limiting embodiment of an alignment of fields of an electromagnetic wave to mitigate propagation losses due to water accumulation on a transmission medium in accordance with various aspects described herein.



FIGS. 21I and 21J are block diagrams illustrating example, non-limiting embodiments of electric field intensities of different electromagnetic waves propagating in the cable illustrated in FIG. 20H in accordance with various aspects described herein.



FIG. 21K is a block diagram illustrating an example, non-limiting embodiment of electric fields of a Goubau wave in accordance with various aspects described herein.



FIG. 21L is a block diagram illustrating an example, non-limiting embodiment of electric fields of a hybrid wave in accordance with various aspects described herein.



FIG. 21M is a block diagram illustrating an example, non-limiting embodiment of electric field characteristics of a hybrid wave versus a Goubau wave in accordance with various aspects described herein.



FIG. 21N is a block diagram illustrating an example, non-limiting embodiment of mode sizes of hybrid waves at various operating frequencies in accordance with various aspects described herein.



FIGS. 22A and 22B are block diagrams illustrating example, non-limiting embodiments of a waveguide device for launching hybrid waves in accordance with various aspects described herein.



FIG. 23 is a block diagram illustrating an example, non-limiting embodiment of a hybrid wave launched by the waveguide device of FIGS. 21A and 21B in accordance with various aspects described herein.



FIG. 24 illustrates a flow diagram of an example, non-limiting embodiment of a method for managing electromagnetic waves.



FIGS. 25A, 25B, 25C, and 25D are block diagrams illustrating example, non-limiting embodiments of a waveguide device in accordance with various aspects described herein.



FIGS. 25E, 25F, 25G, 25H, 25I, 25J, 25K, 25L, 25M, 25N, 25O, 25P, 25Q, 25R, 25S, and 25T are block diagrams illustrating example, non-limiting embodiments of wave modes and electric field plots in accordance with various aspects described herein.



FIG. 25U is a block diagram illustrating an example, non-limiting embodiment of a waveguide device in accordance with various aspects described herein.



FIGS. 25V, 25W, 25X are block diagrams illustrating example, non-limiting embodiments of wave modes and electric field plots in accordance with various aspects described herein.



FIG. 25Y illustrates a flow diagrams of an example, non-limiting embodiment of a method for managing electromagnetic waves.



FIG. 25Z is a block diagram illustrating an example, non-limiting embodiment of substantially orthogonal wave modes in accordance with various aspects described herein.



FIG. 25AA is a block diagram illustrating an example, non-limiting embodiment of an insulated conductor in accordance with various aspects described herein.



FIG. 25AB is a block diagram illustrating an example, non-limiting embodiment of an uninsulated conductor in accordance with various aspects described herein.



FIG. 25AC is a block diagram illustrating an example, non-limiting embodiment of an oxide layer formed on the uninsulated conductor of FIG. 25AB in accordance with various aspects described herein.



FIG. 25AD is a block diagram illustrating example, non-limiting embodiments of spectral plots in accordance with various aspects described herein.



FIG. 25AE is a block diagram illustrating example, non-limiting embodiments of spectral plots in accordance with various aspects described herein.



FIG. 25AF is a block diagram illustrating example, non-limiting embodiments of a wave mode and electric field plot in accordance with various aspects described herein.



FIG. 25AG is a block diagram illustrating example, non-limiting embodiments for transmitting orthogonal wave modes according to the method of FIG. 25Y in accordance with various aspects described herein.



FIG. 25AH is a block diagram illustrating example, non-limiting embodiments for transmitting orthogonal wave modes according to the method of FIG. 25Y in accordance with various aspects described herein.



FIG. 25AI is a block diagram illustrating example, non-limiting embodiments for selectively receiving a wave mode according to the method of FIG. 25Y in accordance with various aspects described herein.



FIG. 25AJ is a block diagram illustrating example, non-limiting embodiments for selectively receiving a wave mode according to the method of FIG. 25Y in accordance with various aspects described herein.



FIG. 25AK is a block diagram illustrating example, non-limiting embodiments for selectively receiving a wave mode according to the method of FIG. 25Y in accordance with various aspects described herein.



FIG. 25AL is a block diagram illustrating example, non-limiting embodiments for selectively receiving a wave mode according to the method of FIG. 25Y in accordance with various aspects described herein.



FIG. 26 is a block diagram illustrating example, non-limiting embodiments of a polyrod antenna for transmitting wireless signals in accordance with various aspects described herein.



FIG. 27 is a block diagram illustrating an example, non-limiting embodiment of electric field characteristics of transmitted signals from a polyrod antenna in accordance with various aspects described herein.



FIGS. 28A and 28B are block diagrams illustrating an example, non-limiting embodiment of a gain pattern and the corresponding input impedance for a polyrod antenna in accordance with various aspects described herein.



FIGS. 29A and 29B are block diagrams illustrating an example, non-limiting embodiment of a polyrod antenna array in accordance with various aspects described herein.



FIG. 30 is a block diagram illustrating an example, non-limiting embodiment of a gain pattern for a polyrod antenna array in accordance with various aspects described herein.



FIGS. 31A and 31B are block diagrams illustrating an example, non-limiting embodiment of electric field characteristics of transmitted signals from a polyrod antenna and a polyrod antenna array in accordance with various aspects described herein.



FIGS. 32A and 32B are block diagrams illustrating an example, non-limiting embodiment of a polyrod antenna array in accordance with various aspects described herein.



FIG. 33 is a block diagram illustrating an example, non-limiting embodiment of a gain pattern for a polyrod antenna array in accordance with various aspects described herein.



FIGS. 34A and 34B are block diagrams illustrating an example, non-limiting embodiment of VSWR and S-Parameter data for a polyrod antenna array in accordance with various aspects described herein.



FIG. 35 is a block diagram illustrating an example, non-limiting embodiment of electric field characteristics of transmitted signals from a polyrod antenna array in accordance with various aspects described herein.



FIGS. 36A, 36B and 37 are block diagrams illustrating an example, non-limiting embodiment of an antenna, electric field characteristics of transmitted signals from the antenna, and the antenna gain in accordance with various aspects described herein.



FIGS. 38, 39, 40, 41A, 41B, 42A, and 42B are block diagrams illustrating example, non-limiting embodiments of polyrod antennas in accordance with various aspects described herein.



FIG. 43 is a block diagram illustrating an example, non-limiting embodiment of a polyrod antenna array in accordance with various aspects described herein.



FIG. 44 illustrates a flow diagram of an example, non-limiting embodiment of a method for transmitting wireless signals utilizing beam steering in accordance with various aspects described herein.



FIG. 45 is a block diagram illustrating an example, non-limiting embodiment of a communication system that utilizes beam steering in accordance with various aspects described herein.



FIG. 46 illustrates a flow diagram of an example, non-limiting embodiment of a method for transmitting wireless signals utilizing beam steering in accordance with various aspects described herein.



FIGS. 47A, 47B, 47C, 47D, 47E, 47F, 47G, 47H, and 47I are block diagrams illustrating example, non-limiting embodiments of an antenna system in accordance with various aspects described herein.



FIG. 47J illustrates a flow diagram of an example, non-limiting embodiment of a method for utilizing the antenna system of FIGS. 47A-47I.



FIG. 48 is a block diagram of an example, non-limiting embodiment of a computing environment in accordance with various aspects described herein.



FIG. 49 is a block diagram of an example, non-limiting embodiment of a mobile network platform in accordance with various aspects described herein.



FIG. 50 is a block diagram of an example, non-limiting embodiment of a communication device in accordance with various aspects described herein.





DETAILED DESCRIPTION

One or more embodiments are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the various embodiments. It is evident, however, that the various embodiments can be practiced without these details (and without applying to any particular networked environment or standard).


In an embodiment, a guided wave communication system is presented for sending and receiving communication signals such as data or other signaling via guided electromagnetic waves. The guided electromagnetic waves include, for example, surface waves or other electromagnetic waves that are bound to or guided by a transmission medium. It will be appreciated that a variety of transmission media can be utilized with guided wave communications without departing from example embodiments. Examples of such transmission media can include one or more of the following, either alone or in one or more combinations: wires, whether insulated or not, and whether single-stranded or multi-stranded; conductors of other shapes or configurations including wire bundles, cables, rods, rails, pipes; non-conductors such as dielectric pipes, rods, rails, or other dielectric members; combinations of conductors and dielectric materials; or other guided wave transmission media.


The inducement of guided electromagnetic waves on a transmission medium can be independent of any electrical potential, charge or current that is injected or otherwise transmitted through the transmission medium as part of an electrical circuit. For example, in the case where the transmission medium is a wire, it is to be appreciated that while a small current in the wire may be formed in response to the propagation of the guided waves along the wire, this can be due to the propagation of the electromagnetic wave along the wire surface, and is not formed in response to electrical potential, charge or current that is injected into the wire as part of an electrical circuit. The electromagnetic waves traveling on the wire therefore do not require a circuit to propagate along the wire surface. The wire therefore is a single wire transmission line that is not part of a circuit. Also, in some embodiments, a wire is not necessary, and the electromagnetic waves can propagate along a single line transmission medium that is not a wire.


More generally, “guided electromagnetic waves” or “guided waves” as described by the subject disclosure are affected by the presence of a physical object that is at least a part of the transmission medium (e.g., a bare wire or other conductor, a dielectric, an insulated wire, a conduit or other hollow element, a bundle of insulated wires that is coated, covered or surrounded by a dielectric or insulator or other wire bundle, or another form of solid or otherwise non-liquid or non-gaseous transmission medium) so as to be at least partially bound to or guided by the physical object and so as to propagate along a transmission path of the physical object. Such a physical object can operate as at least a part of a transmission medium that guides, by way of an interface of the transmission medium (e.g., an outer surface, inner surface, an interior portion between the outer and the inner surfaces or other boundary between elements of the transmission medium), the propagation of guided electromagnetic waves, which in turn can carry energy, data and/or other signals along the transmission path from a sending device to a receiving device.


Unlike free space propagation of wireless signals such as unguided (or unbounded) electromagnetic waves that decrease in intensity inversely by the square of the distance traveled by the unguided electromagnetic waves, guided electromagnetic waves can propagate along a transmission medium with less loss in magnitude per unit distance than experienced by unguided electromagnetic waves.


An electrical circuit allows electrical signals to propagate from a sending device to a receiving device via a forward electrical path and a return electrical path, respectively. These electrical forward and return paths can be implemented via two conductors, such as two wires or a single wire and a common ground that serves as the second conductor. In particular, electrical current from the sending device (direct and/or alternating) flows through the electrical forward path and returns to the transmission source via the electrical return path as an opposing current. More particularly, electron flow in one conductor that flows away from the sending device, returns to the receiving device in the opposite direction via a second conductor or ground. Unlike electrical signals, guided electromagnetic waves can propagate along a transmission medium (e.g., a bare conductor, an insulated conductor, a conduit, a non-conducting material such as a dielectric strip, or any other type of object suitable for the propagation of surface waves) from a sending device to a receiving device or vice-versa without requiring the transmission medium to be part of an electrical circuit (i.e., without requiring an electrical return path) between the sending device and the receiving device. Although electromagnetic waves can propagate in an open circuit, i.e., a circuit without an electrical return path or with a break or gap that prevents the flow of electrical current through the circuit, it is noted that electromagnetic waves can also propagate along a surface of a transmission medium that is in fact part of an electrical circuit. That is electromagnetic waves can travel along a first surface of a transmission medium having a forward electrical path and/or along a second surface of a transmission medium having an electrical return path. As a consequence, guided electromagnetic waves can propagate along a surface of a transmission medium from a sending device to a receiving device or vice-versa with or without an electrical circuit.


This permits, for example, transmission of guided electromagnetic waves along a transmission medium having no conductive components (e.g., a dielectric strip). This also permits, for example, transmission of guided electromagnetic waves that propagate along a transmission medium having no more than a single conductor (e.g., an electromagnetic wave that propagates along the surface of a single bare conductor or along the surface of a single insulated conductor or an electromagnetic wave that propagates all or partly within the insulation of an insulated conductor). Even if a transmission medium includes one or more conductive components and the guided electromagnetic waves propagating along the transmission medium generate currents that, at times, flow in the one or more conductive components in a direction of the guided electromagnetic waves, such guided electromagnetic waves can propagate along the transmission medium from a sending device to a receiving device without a flow of an opposing current on an electrical return path back to the sending device from the receiving device. As a consequence, the propagation of such guided electromagnetic waves can be referred to as propagating via a single transmission line or propagating via a surface wave transmission line.


In a non-limiting illustration, consider a coaxial cable having a center conductor and a ground shield that are separated by an insulator. Typically, in an electrical system a first terminal of a sending (and receiving) device can be connected to the center conductor, and a second terminal of the sending (and receiving) device can be connected to the ground shield. If the sending device injects an electrical signal in the center conductor via the first terminal, the electrical signal will propagate along the center conductor causing, at times, forward currents and a corresponding flow of electrons in the center conductor, and return currents and an opposing flow of electrons in the ground shield. The same conditions apply for a two terminal receiving device.


In contrast, consider a guided wave communication system such as described in the subject disclosure, which can utilize different embodiments of a transmission medium (including among others a coaxial cable) for transmitting and receiving guided electromagnetic waves without an electrical circuit (i.e., without an electrical forward path or electrical return path depending on your perspective). In one embodiment, for example, the guided wave communication system of the subject disclosure can be configured to induce guided electromagnetic waves that propagate along an outer surface of a coaxial cable (e.g., the outer jacket or insulation layer of the coaxial cable). Although the guided electromagnetic waves will cause forward currents on the ground shield, the guided electromagnetic waves do not require return currents in the center conductor to enable the guided electromagnetic waves to propagate along the outer surface of the coaxial cable. Said another way, while the guided electromagnetic waves will cause forward currents on the ground shield, the guided electromagnetic waves will not generate opposing return currents in the center conductor (or other electrical return path). The same can be said of other transmission media used by a guided wave communication system for the transmission and reception of guided electromagnetic waves.


For example, guided electromagnetic waves induced by the guided wave communication system on an outer surface of a bare conductor, or an insulated conductor can propagate along the outer surface of the bare conductor or the other surface of the insulated conductor without generating opposing return currents in an electrical return path. As another point of differentiation, where the majority of the signal energy in an electrical circuit is induced by the flow of electrons in the conductors themselves, guided electromagnetic waves propagating in a guided wave communication system on an outer surface of a bare conductor, cause only minimal forward currents in the bare conductor, with the majority of the signal energy of the electromagnetic wave concentrated above the outer surface of the bare conductor and not inside the bare conductor. Furthermore, guided electromagnetic waves that are bound to the outer surface of an insulated conductor cause only minimal forward currents in the center conductor or conductors of the insulated conductor, with the majority of the signal energy of the electromagnetic wave concentrated in regions inside the insulation and/or above the outside surface of the insulated conductor—in other words, the majority of the signal energy of the electromagnetic wave is concentrated outside the center conductor(s) of the insulated conductor.


Consequently, electrical systems that require two or more conductors for carrying forward and reverse currents on separate conductors to enable the propagation of electrical signals injected by a sending device are distinct from guided wave systems that induce guided electromagnetic waves on an interface of a transmission medium without the need of an electrical circuit to enable the propagation of the guided electromagnetic waves along the interface of the transmission medium.


It is further noted that guided electromagnetic waves as described in the subject disclosure can have an electromagnetic field structure that lies primarily or substantially outside of a transmission medium so as to be bound to or guided by the transmission medium and so as to propagate non-trivial distances on or along an outer surface of the transmission medium. In other embodiments, guided electromagnetic waves can have an electromagnetic field structure that lies primarily or substantially inside a transmission medium so as to be bound to or guided by the transmission medium and so as to propagate non-trivial distances within the transmission medium. In other embodiments, guided electromagnetic waves can have an electromagnetic field structure that lies partially inside and partially outside a transmission medium so as to be bound to or guided by the transmission medium and so as to propagate non-trivial distances along the transmission medium. The desired electronic field structure in an embodiment may vary based upon a variety of factors, including the desired transmission distance, the characteristics of the transmission medium itself, and environmental conditions/characteristics outside of the transmission medium (e.g., presence of rain, fog, atmospheric conditions, etc.).


Various embodiments described herein relate to coupling devices, that can be referred to as “waveguide coupling devices”, “waveguide couplers” or more simply as “couplers”, “coupling devices” or “launchers” for launching and/or extracting guided electromagnetic waves to and from a transmission medium at millimeter-wave frequencies (e.g., 30 to 300 GHz), wherein the wavelength can be small compared to one or more dimensions of the coupling device and/or the transmission medium such as the circumference of a wire or other cross sectional dimension, or lower microwave frequencies such as 300 MHz to 30 GHz. Transmissions can be generated to propagate as waves guided by a coupling device, such as: a strip, arc or other length of dielectric material; a horn, monopole, rod, slot or other antenna; an array of antennas; a magnetic resonant cavity, or other resonant coupler; a coil, a strip line, a waveguide or other coupling device. In operation, the coupling device receives an electromagnetic wave from a transmitter or transmission medium. The electromagnetic field structure of the electromagnetic wave can be carried inside the coupling device, outside the coupling device or some combination thereof. When the coupling device is in close proximity to a transmission medium, at least a portion of an electromagnetic wave couples to or is bound to the transmission medium, and continues to propagate as guided electromagnetic waves. In a reciprocal fashion, a coupling device can extract guided waves from a transmission medium and transfer these electromagnetic waves to a receiver.


According to an example embodiment, a surface wave is a type of guided wave that is guided by a surface of a transmission medium, such as an exterior or outer surface of the wire, or another surface of the wire that is adjacent to or exposed to another type of medium having different properties (e.g., dielectric properties). Indeed, in an example embodiment, a surface of the wire that guides a surface wave can represent a transitional surface between two different types of media. For example, in the case of a bare or uninsulated wire, the surface of the wire can be the outer or exterior conductive surface of the bare or uninsulated wire that is exposed to air or free space. As another example, in the case of insulated wire, the surface of the wire can be the conductive portion of the wire that meets the insulator portion of the wire, or can otherwise be the insulator surface of the wire that is exposed to air or free space, or can otherwise be any material region between the insulator surface of the wire and the conductive portion of the wire that meets the insulator portion of the wire, depending upon the relative differences in the properties (e.g., dielectric properties) of the insulator, air, and/or the conductor and further dependent on the frequency and propagation mode or modes of the guided wave.


According to an example embodiment, the term “about” a wire or other transmission medium used in conjunction with a guided wave can include fundamental guided wave propagation modes such as a guided waves having a circular or substantially circular field distribution, a symmetrical electromagnetic field distribution (e.g., electric field, magnetic field, electromagnetic field, etc.) or other fundamental mode pattern at least partially around a wire or other transmission medium. In addition, when a guided wave propagates “about” a wire or other transmission medium, it can do so according to a guided wave propagation mode that includes not only the fundamental wave propagation modes (e.g., zero order modes), but additionally or alternatively non-fundamental wave propagation modes such as higher-order guided wave modes (e.g., 1st order modes, 2nd order modes, etc.), asymmetrical modes and/or other guided (e.g., surface) waves that have non-circular field distributions around a wire or other transmission medium. As used herein, the term “guided wave mode” refers to a guided wave propagation mode of a transmission medium, coupling device or other system component of a guided wave communication system.


For example, such non-circular field distributions can be unilateral or multi-lateral with one or more axial lobes characterized by relatively higher field strength and/or one or more nulls or null regions characterized by relatively low-field strength, zero-field strength or substantially zero-field strength. Further, the field distribution can otherwise vary as a function of azimuthal orientation around the wire such that one or more angular regions around the wire have an electric or magnetic field strength (or combination thereof) that is higher than one or more other angular regions of azimuthal orientation, according to an example embodiment. It will be appreciated that the relative orientations or positions of the guided wave higher order modes or asymmetrical modes can vary as the guided wave travels along the wire.


As used herein, the term “millimeter-wave” can refer to electromagnetic waves/signals that fall within the “millimeter-wave frequency band” of 30 GHz to 300 GHz. The term “microwave” can refer to electromagnetic waves/signals that fall within a “microwave frequency band” of 300 MHz to 300 GHz. The term “radio frequency” or “RF” can refer to electromagnetic waves/signals that fall within the “radio frequency band” of 10 kHz to 1 THz. It is appreciated that wireless signals, electrical signals, and guided electromagnetic waves as described in the subject disclosure can be configured to operate at any desirable frequency range, such as, for example, at frequencies within, above or below millimeter-wave and/or microwave frequency bands. In particular, when a coupling device or transmission medium includes a conductive element, the frequency of the guided electromagnetic waves that are carried by the coupling device and/or propagate along the transmission medium can be below the mean collision frequency of the electrons in the conductive element. Further, the frequency of the guided electromagnetic waves that are carried by the coupling device and/or propagate along the transmission medium can be a non-optical frequency, e.g., a radio frequency below the range of optical frequencies that begins at 1 THz.


As used herein, the term “antenna” can refer to a device that is part of a transmitting or receiving system to transmit/radiate or receive wireless signals.


In accordance with one or more embodiments, a method includes receiving a plurality of communication signals, and generating, by a transmitting device according to the plurality of communication signals, wireless signals to induce a plurality of electromagnetic waves bound at least in part to an insulated transmission medium, wherein the plurality of electromagnetic waves propagate along the insulated transmission medium without an electrical return path, wherein each electromagnetic wave of the plurality of electromagnetic waves conveys at least one communication signal of the plurality of communication signals, wherein the plurality of electromagnetic waves have a signal multiplexing configuration that reduces interference between the plurality of electromagnetic waves and enables a receiving device to retrieve from each electromagnetic wave of the plurality of electromagnetic waves the at least one communication signal.


In accordance with one or more embodiments, a launcher can include a generator, and a circuit coupled to the generator. The controller performs operations including receiving a plurality of communication signals, and generating, according to the plurality of communication signals, signals that induce a plurality of electromagnetic waves bound at least in part to a dielectric layer of a transmission medium, wherein each electromagnetic wave of the plurality of electromagnetic waves conveys at least one communication signal of the plurality of communication signals, and wherein the plurality of electromagnetic waves has a signal multiplexing configuration that reduces interference between the plurality of electromagnetic waves.


In accordance with one or more embodiments, a device includes means for receiving a plurality of communication signals, and means for generating, according to a plurality of communication signals, signals that induce a plurality of electromagnetic waves bound at least in part to a dielectric material, wherein each electromagnetic wave of the plurality of electromagnetic waves conveys at least one communication signal of the plurality of communication signals, wherein the plurality of electromagnetic waves has a multiplexing configuration that reduces interference between the plurality of electromagnetic waves.


In accordance with one or more embodiments, a device can include an array of dielectric antennas, a plurality of dielectric cores coupled to the array of dielectric antennas, processing system including a processor, and a memory that stores executable instructions that, when executed by the processing system, facilitate performance of operations. The operations can include organizing the array of dielectric antennas into a plurality of sections, each section comprising one or more dielectric antennas that differs from other dielectric antennas in other sections of the array of dielectric antennas, selecting a first section from the plurality of sections, wherein the first section corresponds to a first set of one or more dielectric antennas from the array of dielectric antennas coupled to a first set of one or more dielectric cores from the plurality of dielectric cores, launching first electromagnetic waves along the first set of one or more dielectric cores that causes the first set of one or more dielectric antennas to generate a first beam pattern, selecting a second section from the plurality of sections, wherein the second section corresponds to a second set of one or more dielectric antennas from the array of dielectric antennas coupled to a second set of one or more dielectric cores from the plurality of dielectric cores, wherein the first set of one or more dielectric antennas differs from the second set of one or more dielectric antennas, and wherein the first set of one or more dielectric cores differs from the second set of one or more dielectric cores, and launching second electromagnetic waves along the second set of one or more dielectric cores that cause the second set of one or more dielectric antennas to generate a second beam pattern, wherein the first beam pattern is directed to a first communication device, and wherein the second beam pattern is directed to a second communication device.


In accordance with one or more embodiments, a method can include selecting, by a processing system including a processor, a first section from a plurality of selectable sections of an array of dielectric antennas, wherein the first section corresponds to a first set of one or more dielectric antennas from the array of dielectric antennas coupled to a first set of launchers, directing, by the processing system, the first set of launchers to launch first electromagnetic waves directed to the first set of one or more dielectric antennas to generate a first beam pattern, selecting, by the processing system, a second section from the plurality of selectable sections, wherein the second section corresponds to a second set of one or more dielectric antennas from the array of dielectric antennas coupled to a second set of launchers, and directing, by the processing system, the second set of launchers to launch second electromagnetic waves directed to the second set of one or more dielectric antennas to generate a second beam pattern, wherein the first beam pattern conveys first data, wherein the second beam pattern conveys second data.


In accordance with one or more embodiments, a device can include means for selecting a segment from a plurality of selectable segments of an array of dielectric antennas, wherein the segment corresponds to a set of one or more dielectric antennas from the array of dielectric antennas coupled to a set of launchers, means for directing the set of launchers to launch electromagnetic waves directed to the set of one or more dielectric antennas to generate a first beam pattern, and means for directing the set of launchers to launch second electromagnetic waves directed to the set of one or more dielectric antennas to generate a second beam pattern, wherein the electromagnetic waves differ from the second electromagnetic waves based on frequency or phase.


Referring now to FIG. 1, a block diagram 100 illustrating an example, non-limiting embodiment of a guided wave communications system is shown. In operation, a transmission device 101 receives one or more communication signals 110 from a communication network or other communications device that includes data and generates guided waves 120 to convey the data via the transmission medium 125 to the transmission device 102. The transmission device 102 receives the guided waves 120 and converts them to communication signals 112 that include the data for transmission to a communications network or other communications device. The guided waves 120 can be modulated to convey data via a modulation technique such as phase shift keying, frequency shift keying, quadrature amplitude modulation, amplitude modulation, multi-carrier modulation such as orthogonal frequency division multiplexing and via multiple access techniques such as frequency division multiplexing, time division multiplexing, code division multiplexing, multiplexing via differing wave propagation modes and via other modulation and access strategies.


The communication network or networks can include a wireless communication network such as a mobile data network, a cellular voice and data network, a wireless local area network (e.g., WiFi or an 802.xx network), a satellite communications network, a personal area network or other wireless network. The communication network or networks can also include a wired communication network such as a telephone network, an Ethernet network, a local area network, a wide area network such as the Internet, a broadband access network, a cable network, a fiber optic network, or other wired network. The communication devices can include a network edge device, bridge device or home gateway, a set-top box, broadband modem, telephone adapter, access point, base station, or other fixed communication device, a mobile communication device such as an automotive gateway or automobile, laptop computer, tablet, smartphone, cellular telephone, or other communication device.


In an example embodiment, the guided wave communication system 100 can operate in a bi-directional fashion where transmission device 102 receives one or more communication signals 112 from a communication network or device that includes other data and generates guided waves 122 to convey the other data via the transmission medium 125 to the transmission device 101. In this mode of operation, the transmission device 101 receives the guided waves 122 and converts them to communication signals 110 that include the other data for transmission to a communications network or device. The guided waves 122 can be modulated to convey data via a modulation technique such as phase shift keying, frequency shift keying, quadrature amplitude modulation, amplitude modulation, multi-carrier modulation such as orthogonal frequency division multiplexing and via multiple access techniques such as frequency division multiplexing, time division multiplexing, code division multiplexing, multiplexing via differing wave propagation modes and via other modulation and access strategies.


The transmission medium 125 can include a cable having at least one inner portion surrounded by a dielectric material such as an insulator or other dielectric cover, coating or other dielectric material, the dielectric material having an outer surface and a corresponding circumference. In an example embodiment, the transmission medium 125 operates as a single-wire transmission line to guide the transmission of an electromagnetic wave. When the transmission medium 125 is implemented as a single wire transmission system, it can include a wire. The wire can be insulated or uninsulated, and single-stranded or multi-stranded (e.g., braided). In other embodiments, the transmission medium 125 can contain conductors of other shapes or configurations including wire bundles, cables, rods, rails, pipes. In addition, the transmission medium 125 can include non-conductors such as dielectric pipes, rods, rails, or other dielectric members; combinations of conductors and dielectric materials, conductors without dielectric materials or other guided wave transmission media. It should be noted that the transmission medium 125 can otherwise include any of the transmission media previously discussed.


Further, as previously discussed, the guided waves 120 and 122 can be contrasted with radio transmissions over free space/air or conventional propagation of electrical power or signals through the conductor of a wire via an electrical circuit. In addition to the propagation of guided waves 120 and 122, the transmission medium 125 may optionally contain one or more wires that propagate electrical power or other communication signals in a conventional manner as a part of one or more electrical circuits.


Referring now to FIG. 2, a block diagram 200 illustrating an example, non-limiting embodiment of a transmission device is shown. The transmission device 101 or 102 includes a communications interface (I/F) 205, a transceiver 210 and a coupler 220.


In an example of operation, the communications interface 205 receives a communication signal 110 or 112 that includes data. In various embodiments, the communications interface 205 can include a wireless interface for receiving a wireless communication signal in accordance with a wireless standard protocol such as LTE or other cellular voice and data protocol, WiFi or an 802.11 protocol, WIMAX protocol, Ultra Wideband protocol, Bluetooth protocol, Zigbee protocol, a direct broadcast satellite (DBS) or other satellite communication protocol or other wireless protocol. In addition or in the alternative, the communications interface 205 includes a wired interface that operates in accordance with an Ethernet protocol, universal serial bus (USB) protocol, a data over cable service interface specification (DOCSIS) protocol, a digital subscriber line (DSL) protocol, a Firewire (IEEE 1394) protocol, or other wired protocol. In additional to standards-based protocols, the communications interface 205 can operate in conjunction with other wired or wireless protocol. In addition, the communications interface 205 can optionally operate in conjunction with a protocol stack that includes multiple protocol layers including a MAC protocol, transport protocol, application protocol, etc.


In an example of operation, the transceiver 210 generates an electromagnetic wave based on the communication signal 110 or 112 to convey the data. The electromagnetic wave has at least one carrier frequency and at least one corresponding wavelength. The carrier frequency can be within a millimeter-wave frequency band of 30 GHz-300 GHz, such as 60 GHz or a carrier frequency in the range of 30-40 GHz or a lower frequency band of 300 MHz-30 GHz in the microwave frequency range such as 26-30 GHz, 11 GHz, 6 GHz or 3 GHz, but it will be appreciated that other carrier frequencies are possible in other embodiments. In one mode of operation, the transceiver 210 merely upconverts the communications signal or signals 110 or 112 for transmission of the electromagnetic signal in the microwave or millimeter-wave band as a guided electromagnetic wave that is guided by or bound to the transmission medium 125. In another mode of operation, the communications interface 205 either converts the communication signal 110 or 112 to a baseband or near baseband signal or extracts the data from the communication signal 110 or 112 and the transceiver 210 modulates a high-frequency carrier with the data, the baseband or near baseband signal for transmission. It should be appreciated that the transceiver 210 can modulate the data received via the communication signal 110 or 112 to preserve one or more data communication protocols of the communication signal 110 or 112 either by encapsulation in the payload of a different protocol or by simple frequency shifting. In the alternative, the transceiver 210 can otherwise translate the data received via the communication signal 110 or 112 to a protocol that is different from the data communication protocol or protocols of the communication signal 110 or 112.


In an example of operation, the coupler 220 couples the electromagnetic wave to the transmission medium 125 as a guided electromagnetic wave to convey the communications signal or signals 110 or 112. While the prior description has focused on the operation of the transceiver 210 as a transmitter, the transceiver 210 can also operate to receive electromagnetic waves that convey other data from the single wire transmission medium via the coupler 220 and to generate communications signals 110 or 112, via communications interface 205 that includes the other data. Consider embodiments where an additional guided electromagnetic wave conveys other data that also propagates along the transmission medium 125. The coupler 220 can also couple this additional electromagnetic wave from the transmission medium 125 to the transceiver 210 for reception.


The transmission device 101 or 102 includes an optional training controller 230. In an example embodiment, the training controller 230 is implemented by a standalone processor or a processor that is shared with one or more other components of the transmission device 101 or 102. The training controller 230 selects the carrier frequencies, modulation schemes and/or guided wave modes for the guided electromagnetic waves based on feedback data received by the transceiver 210 from at least one remote transmission device coupled to receive the guided electromagnetic wave.


In an example embodiment, a guided electromagnetic wave transmitted by a remote transmission device 101 or 102 conveys data that also propagates along the transmission medium 125. The data from the remote transmission device 101 or 102 can be generated to include the feedback data. In operation, the coupler 220 also couples the guided electromagnetic wave from the transmission medium 125 and the transceiver receives the electromagnetic wave and processes the electromagnetic wave to extract the feedback data.


In an example embodiment, the training controller 230 operates based on the feedback data to evaluate a plurality of candidate frequencies, modulation schemes and/or transmission modes to select a carrier frequency, modulation scheme and/or transmission mode to enhance performance, such as throughput, signal strength, reduce propagation loss, etc.


Consider the following example: a transmission device 101 begins operation under control of the training controller 230 by sending a plurality of guided waves as test signals such as pilot waves or other test signals at a corresponding plurality of candidate frequencies and/or candidate modes directed to a remote transmission device 102 coupled to the transmission medium 125. The guided waves can include, in addition or in the alternative, test data. The test data can indicate the particular candidate frequency and/or guide-wave mode of the signal. In an embodiment, the training controller 230 at the remote transmission device 102 receives the test signals and/or test data from any of the guided waves that were properly received and determines the best candidate frequency and/or guided wave mode, a set of acceptable candidate frequencies and/or guided wave modes, or a rank ordering of candidate frequencies and/or guided wave modes. This selection of candidate frequenc(ies) or/and guided-mode(s) are generated by the training controller 230 based on one or more optimizing criteria such as received signal strength, bit error rate, packet error rate, signal to noise ratio, propagation loss, etc. The training controller 230 generates feedback data that indicates the selection of candidate frequenc(ies) or/and guided wave mode(s) and sends the feedback data to the transceiver 210 for transmission to the transmission device 101. The transmission device 101 and 102 can then communicate data with one another based on the selection of candidate frequenc(ies) or/and guided wave mode(s).


In other embodiments, the guided electromagnetic waves that contain the test signals and/or test data are reflected back, repeated back or otherwise looped back by the remote transmission device 102 to the transmission device 101 for reception and analysis by the training controller 230 of the transmission device 101 that initiated these waves. For example, the transmission device 101 can send a signal to the remote transmission device 102 to initiate a test mode where a physical reflector is switched on the line, a termination impedance is changed to cause reflections, a loop back mode is switched on to couple electromagnetic waves back to the source transmission device 102, and/or a repeater mode is enabled to amplify and retransmit the electromagnetic waves back to the source transmission device 102. The training controller 230 at the source transmission device 102 receives the test signals and/or test data from any of the guided waves that were properly received and determines selection of candidate frequenc(ies) or/and guided wave mode(s).


While the procedure above has been described in a start-up or initialization mode of operation, each transmission device 101 or 102 can send test signals, evaluate candidate frequencies or guided wave modes via non-test such as normal transmissions or otherwise evaluate candidate frequencies or guided wave modes at other times or continuously as well. In an example embodiment, the communication protocol between the transmission devices 101 and 102 can include an on-request or periodic test mode where either full testing or more limited testing of a subset of candidate frequencies and guided wave modes are tested and evaluated. In other modes of operation, the re-entry into such a test mode can be triggered by a degradation of performance due to a disturbance, weather conditions, etc. In an example embodiment, the receiver bandwidth of the transceiver 210 is either sufficiently wide or swept to receive all candidate frequencies or can be selectively adjusted by the training controller 230 to a training mode where the receiver bandwidth of the transceiver 210 is sufficiently wide or swept to receive all candidate frequencies.


Referring now to FIG. 3, a graphical diagram 300 illustrating an example, non-limiting embodiment of an electromagnetic field distribution is shown. In this embodiment, a transmission medium 125 in air includes an inner conductor 301 and an insulating jacket 302 of dielectric material, as shown in cross section. The diagram 300 includes different gray-scales that represent differing electromagnetic field strengths generated by the propagation of the guided wave having an asymmetrical and non-fundamental guided wave mode.


In particular, the electromagnetic field distribution corresponds to a modal “sweet spot” that enhances guided electromagnetic wave propagation along an insulated transmission medium and reduces end-to-end transmission loss. In this particular mode, electromagnetic waves are guided by the transmission medium 125 to propagate along an outer surface of the transmission medium—in this case, the outer surface of the insulating jacket 302. Electromagnetic waves are partially embedded in the insulator and partially radiating on the outer surface of the insulator. In this fashion, electromagnetic waves are “lightly” coupled to the insulator so as to enable electromagnetic wave propagation at long distances with low propagation loss.


As shown, the guided wave has a field structure that lies primarily or substantially outside of the transmission medium 125 that serves to guide the electromagnetic waves. The regions inside the conductor 301 have little or no field. Likewise regions inside the insulating jacket 302 have low field strength. The majority of the electromagnetic field strength is distributed in the lobes 304 at the outer surface of the insulating jacket 302 and in close proximity thereof. The presence of an asymmetric guided wave mode is shown by the high electromagnetic field strengths at the top and bottom of the outer surface of the insulating jacket 302 (in the orientation of the diagram)—as opposed to very small field strengths on the other sides of the insulating jacket 302.


The example shown corresponds to a 38 GHz electromagnetic wave guided by a wire with a diameter of 1.1 cm and a dielectric insulation of thickness of 0.36 cm. Because the electromagnetic wave is guided by the transmission medium 125 and the majority of the field strength is concentrated in the air outside of the insulating jacket 302 within a limited distance of the outer surface, the guided wave can propagate longitudinally down the transmission medium 125 with very low loss. In the example shown, this “limited distance” corresponds to a distance from the outer surface that is less than half the largest cross sectional dimension of the transmission medium 125. In this case, the largest cross sectional dimension of the wire corresponds to the overall diameter of 1.82 cm, however, this value can vary with the size and shape of the transmission medium 125. For example, should the transmission medium 125 be of a rectangular shape with a height of 0.3 cm and a width of 0.4 cm, the largest cross sectional dimension would be the diagonal of 0.5 cm and the corresponding limited distance would be 0.25 cm. The dimensions of the area containing the majority of the field strength also vary with the frequency, and in general, increase as carrier frequencies decrease.


It should also be noted that the components of a guided wave communication system, such as couplers and transmission media can have their own cut-off frequencies for each guided wave mode. The cut-off frequency generally sets forth the lowest frequency that a particular guided wave mode is designed to be supported by that particular component. In an example embodiment, the particular asymmetric mode of propagation shown is induced on the transmission medium 125 by an electromagnetic wave having a frequency that falls within a limited range (such as Fc to 2Fc) of the lower cut-off frequency Fc for this particular asymmetric mode. The lower cut-off frequency Fc is particular to the characteristics of transmission medium 125. For embodiments as shown that include an inner conductor 301 surrounded by an insulating jacket 302, this cutoff frequency can vary based on the dimensions and properties of the insulating jacket 302 and potentially the dimensions and properties of the inner conductor 301 and can be determined experimentally to have a desired mode pattern. It should be noted however, that similar effects can be found for a hollow dielectric or insulator without an inner conductor. In this case, the cutoff frequency can vary based on the dimensions and properties of the hollow dielectric or insulator.


At frequencies lower than the lower cut-off frequency, the asymmetric mode is difficult to induce in the transmission medium 125 and fails to propagate for all but trivial distances. As the frequency increases above the limited range of frequencies about the cut-off frequency, the asymmetric mode shifts more and more inward of the insulating jacket 302. At frequencies much larger than the cut-off frequency, the field strength is no longer concentrated outside of the insulating jacket, but primarily inside of the insulating jacket 302. While the transmission medium 125 provides strong guidance to the electromagnetic wave and propagation is still possible, ranges are more limited by increased losses due to propagation within the insulating jacket 302—as opposed to the surrounding air.


Referring now to FIG. 4, a graphical diagram 400 illustrating an example, non-limiting embodiment of an electromagnetic field distribution is shown. In particular, a cross section diagram 400, similar to FIG. 3 is shown with common reference numerals used to refer to similar elements. The example shown corresponds to a 60 GHz wave guided by a wire with a diameter of 1.1 cm and a dielectric insulation of thickness of 0.36 cm. Because the frequency of the guided wave is above the limited range of the cut-off frequency of this particular asymmetric mode, much of the field strength has shifted inward of the insulating jacket 302. In particular, the field strength is concentrated primarily inside of the insulating jacket 302. While the transmission medium 125 provides strong guidance to the electromagnetic wave and propagation is still possible, ranges are more limited when compared with the embodiment of FIG. 3, by increased losses due to propagation within the insulating jacket 302.


Referring now to FIG. 5A, a graphical diagram illustrating an example, non-limiting embodiment of a frequency response is shown. In particular, diagram 500 presents a graph of end-to-end loss (in dB) as a function of frequency, overlaid with electromagnetic field distributions 510, 520 and 530 at three points for a 200 cm insulated medium voltage wire. The boundary between the insulator and the surrounding air is represented by reference numeral 525 in each electromagnetic field distribution.


As discussed in conjunction with FIG. 3, an example of a desired asymmetric mode of propagation shown is induced on the transmission medium 125 by an electromagnetic wave having a frequency that falls within a limited range (such as Fc to 2Fc) of the lower cut-off frequency Fc of the transmission medium for this particular asymmetric mode. In particular, the electromagnetic field distribution 520 at 6 GHz falls within this modal “sweet spot” that enhances electromagnetic wave propagation along an insulated transmission medium and reduces end-to-end transmission loss. In this particular mode, guided waves are partially embedded in the insulator and partially radiating on the outer surface of the insulator. In this fashion, the electromagnetic waves are “lightly” coupled to the insulator so as to enable guided electromagnetic wave propagation at long distances with low propagation loss.


At lower frequencies represented by the electromagnetic field distribution 510 at 3 GHz, the asymmetric mode radiates more heavily generating higher propagation losses. At higher frequencies represented by the electromagnetic field distribution 530 at 9 GHz, the asymmetric mode shifts more and more inward of the insulating jacket providing too much absorption, again generating higher propagation losses.


Referring now to FIG. 5B, a graphical diagram 550 illustrating example, non-limiting embodiments of a longitudinal cross-section of a transmission medium 125, such as an insulated wire, depicting fields of guided electromagnetic waves at various operating frequencies is shown. As shown in diagram 556, when the guided electromagnetic waves are at approximately the cutoff frequency (fc) corresponding to the modal “sweet spot”, the guided electromagnetic waves are loosely coupled to the insulated wire so that absorption is reduced, and the fields of the guided electromagnetic waves are bound sufficiently to reduce the amount radiated into the environment (e.g., air). Because absorption and radiation of the fields of the guided electromagnetic waves is low, propagation losses are consequently low, enabling the guided electromagnetic waves to propagate for longer distances.


As shown in diagram 554, propagation losses increase when an operating frequency of the guide electromagnetic waves increases above about two-times the cutoff frequency (fc)—or as referred to, above the range of the “sweet spot”. More of the field strength of the electromagnetic wave is driven inside the insulating layer, increasing propagation losses. At frequencies much higher than the cutoff frequency (fc) the guided electromagnetic waves are strongly bound to the insulated wire as a result of the fields emitted by the guided electromagnetic waves being concentrated in the insulation layer of the wire, as shown in diagram 552. This in turn raises propagation losses further due to absorption of the guided electromagnetic waves by the insulation layer. Similarly, propagation losses increase when the operating frequency of the guided electromagnetic waves is substantially below the cutoff frequency (fc), as shown in diagram 558. At frequencies much lower than the cutoff frequency (fc) the guided electromagnetic waves are weakly (or nominally) bound to the insulated wire and thereby tend to radiate into the environment (e.g., air), which in turn, raises propagation losses due to radiation of the guided electromagnetic waves.


Referring now to FIG. 6, a graphical diagram 600 illustrating an example, non-limiting embodiment of an electromagnetic field distribution is shown. In this embodiment, a transmission medium 602 is a bare wire, as shown in cross section. The diagram 300 includes different gray-scales that represent differing electromagnetic field strengths generated by the propagation of a guided wave having a symmetrical and fundamental guided wave mode at a single carrier frequency.


In this particular mode, electromagnetic waves are guided by the transmission medium 602 to propagate along an outer surface of the transmission medium—in this case, the outer surface of the bare wire. Electromagnetic waves are “lightly” coupled to the wire so as to enable electromagnetic wave propagation at long distances with low propagation loss. As shown, the guided wave has a field structure that lies substantially outside of the transmission medium 602 that serves to guide the electromagnetic waves. The regions inside the conductor 602 have little or no field.


Referring now to FIG. 7, a block diagram 700 illustrating an example, non-limiting embodiment of an arc coupler is shown. In particular a coupling device is presented for use in a transmission device, such as transmission device 101 or 102 presented in conjunction with FIG. 1. The coupling device includes an arc coupler 704 coupled to a transmitter circuit 712 and termination or damper 714. The arc coupler 704 can be made of a dielectric material, or other low-loss insulator (e.g., Teflon, polyethylene, etc.), or made of a conducting (e.g., metallic, non-metallic, etc.) material, or any combination of the foregoing materials. As shown, the arc coupler 704 operates as a waveguide and has a wave 706 propagating as a guided wave about a waveguide surface of the arc coupler 704. In the embodiment shown, at least a portion of the arc coupler 704 can be placed near a wire 702 or other transmission medium, (such as transmission medium 125), in order to facilitate coupling between the arc coupler 704 and the wire 702 or other transmission medium, as described herein to launch the guided wave 708 on the wire. The arc coupler 704 can be placed such that a portion of the curved arc coupler 704 is tangential to, and parallel or substantially parallel to the wire 702. The portion of the arc coupler 704 that is parallel to the wire can be an apex of the curve, or any point where a tangent of the curve is parallel to the wire 702. When the arc coupler 704 is positioned or placed thusly, the wave 706 travelling along the arc coupler 704 couples, at least in part, to the wire 702, and propagates as guided wave 708 around or about the wire surface of the wire 702 and longitudinally along the wire 702. The guided wave 708 can be characterized as a surface wave or other electromagnetic wave that is guided by or bound to the wire 702 or other transmission medium.


A portion of the wave 706 that does not couple to the wire 702 propagates as a wave 710 along the arc coupler 704. It will be appreciated that the arc coupler 704 can be configured and arranged in a variety of positions in relation to the wire 702 to achieve a desired level of coupling or non-coupling of the wave 706 to the wire 702. For example, the curvature and/or length of the arc coupler 704 that is parallel or substantially parallel, as well as its separation distance (which can include zero separation distance in an embodiment), to the wire 702 can be varied without departing from example embodiments. Likewise, the arrangement of arc coupler 704 in relation to the wire 702 may be varied based upon considerations of the respective intrinsic characteristics (e.g., thickness, composition, electromagnetic properties, etc.) of the wire 702 and the arc coupler 704, as well as the characteristics (e.g., frequency, energy level, etc.) of the waves 706 and 708.


The guided wave 708 stays parallel or substantially parallel to the wire 702, even as the wire 702 bends and flexes. Bends in the wire 702 can increase transmission losses, which are also dependent on wire diameters, frequency, and materials. If the dimensions of the arc coupler 704 are chosen for efficient power transfer, most of the power in the wave 706 is transferred to the wire 702, with little power remaining in wave 710. It will be appreciated that the guided wave 708 can still be multi-modal in nature (discussed herein), including having modes that are non-fundamental or asymmetric, while traveling along a path that is parallel or substantially parallel to the wire 702, with or without a fundamental transmission mode. In an embodiment, non-fundamental or asymmetric modes can be utilized to minimize transmission losses and/or obtain increased propagation distances.


It is noted that the term parallel is generally a geometric construct which often is not exactly achievable in real systems. Accordingly, the term parallel as utilized in the subject disclosure represents an approximation rather than an exact configuration when used to describe embodiments disclosed in the subject disclosure. In an embodiment, substantially parallel can include approximations that are within 30 degrees of true parallel in all dimensions.


In an embodiment, the wave 706 can exhibit one or more wave propagation modes. The arc coupler modes can be dependent on the shape and/or design of the coupler 704. The one or more arc coupler modes of wave 706 can generate, influence, or impact one or more wave propagation modes of the guided wave 708 propagating along wire 702. It should be particularly noted however that the guided wave modes present in the guided wave 706 may be the same or different from the guided wave modes of the guided wave 708. In this fashion, one or more guided wave modes of the guided wave 706 may not be transferred to the guided wave 708, and further one or more guided wave modes of guided wave 708 may not have been present in guided wave 706. It should also be noted that the cut-off frequency of the arc coupler 704 for a particular guided wave mode may be different than the cutoff frequency of the wire 702 or other transmission medium for that same mode. For example, while the wire 702 or other transmission medium may be operated slightly above its cutoff frequency for a particular guided wave mode, the arc coupler 704 may be operated well above its cut-off frequency for that same mode for low loss, slightly below its cut-off frequency for that same mode to, for example, induce greater coupling and power transfer, or some other point in relation to the arc coupler's cutoff frequency for that mode.


In an embodiment, the wave propagation modes on the wire 702 can be similar to the arc coupler modes since both waves 706 and 708 propagate about the outside of the arc coupler 704 and wire 702 respectively. In some embodiments, as the wave 706 couples to the wire 702, the modes can change form, or new modes can be created or generated, due to the coupling between the arc coupler 704 and the wire 702. For example, differences in size, material, and/or impedances of the arc coupler 704 and wire 702 may create additional modes not present in the arc coupler modes and/or suppress some of the arc coupler modes. The wave propagation modes can comprise the fundamental transverse electromagnetic mode (Quasi-TEM00), where only small electric and/or magnetic fields extend in the direction of propagation, and the electric and magnetic fields extend radially outwards while the guided wave propagates along the wire. This guided wave mode can be donut shaped, where few of the electromagnetic fields exist within the arc coupler 704 or wire 702.


Waves 706 and 708 can comprise a fundamental TEM mode where the fields extend radially outwards, and also comprise other, non-fundamental (e.g., asymmetric, higher-level, etc.) modes. While particular wave propagation modes are discussed above, other wave propagation modes are likewise possible such as transverse electric (TE) and transverse magnetic (TM) modes, based on the frequencies employed, the design of the arc coupler 704, the dimensions and composition of the wire 702, as well as its surface characteristics, its insulation if present, the electromagnetic properties of the surrounding environment, etc. It should be noted that, depending on the frequency, the electrical and physical characteristics of the wire 702 and the particular wave propagation modes that are generated, guided wave 708 can travel along the conductive surface of an oxidized uninsulated wire, an unoxidized uninsulated wire, an insulated wire and/or along the insulating surface of an insulated wire.


In an embodiment, a diameter of the arc coupler 704 is smaller than the diameter of the wire 702. For the millimeter-band wavelength being used, the arc coupler 704 supports a single waveguide mode that makes up wave 706. This single waveguide mode can change as it couples to the wire 702 as guided wave 708. If the arc coupler 704 were larger, more than one waveguide mode can be supported, but these additional waveguide modes may not couple to the wire 702 as efficiently, and higher coupling losses can result. However, in some alternative embodiments, the diameter of the arc coupler 704 can be equal to or larger than the diameter of the wire 702, for example, where higher coupling losses are desirable or when used in conjunction with other techniques to otherwise reduce coupling losses (e.g., impedance matching with tapering, etc.).


In an embodiment, the wavelength of the waves 706 and 708 are comparable in size, or smaller than a circumference of the arc coupler 704 and the wire 702. In an example, if the wire 702 has a diameter of 0.5 cm, and a corresponding circumference of around 1.5 cm, the wavelength of the transmission is around 1.5 cm or less, corresponding to a frequency of 70 GHz or greater. In another embodiment, a suitable frequency of the transmission and the carrier-wave signal is in the range of 30-100 GHz, perhaps around 30-60 GHz, and around 38 GHz in one example. In an embodiment, when the circumference of the arc coupler 704 and wire 702 is comparable in size to, or greater, than a wavelength of the transmission, the waves 706 and 708 can exhibit multiple wave propagation modes including fundamental and/or non-fundamental (symmetric and/or asymmetric) modes that propagate over sufficient distances to support various communication systems described herein. The waves 706 and 708 can therefore comprise more than one type of electric and magnetic field configuration. In an embodiment, as the guided wave 708 propagates down the wire 702, the electrical and magnetic field configurations will remain the same from end to end of the wire 702. In other embodiments, as the guided wave 708 encounters interference (distortion or obstructions) or loses energy due to transmission losses or scattering, the electric and magnetic field configurations can change as the guided wave 708 propagates down wire 702.


In an embodiment, the arc coupler 704 can be composed of nylon, Teflon, polyethylene, a polyamide, or other plastics. In other embodiments, other dielectric materials are possible. The wire surface of wire 702 can be metallic with either a bare metallic surface, or can be insulated using plastic, dielectric, insulator or other coating, jacket or sheathing. In an embodiment, a dielectric or otherwise non-conducting/insulated waveguide can be paired with either a bare/metallic wire or insulated wire. In other embodiments, a metallic and/or conductive waveguide can be paired with a bare/metallic wire or insulated wire. In an embodiment, an oxidation layer on the bare metallic surface of the wire 702 (e.g., resulting from exposure of the bare metallic surface to oxygen/air) can also provide insulating or dielectric properties similar to those provided by some insulators or sheathings.


It is noted that the graphical representations of waves 706, 708 and 710 are presented merely to illustrate the principles that wave 706 induces or otherwise launches a guided wave 708 on a wire 702 that operates, for example, as a single wire transmission line. Wave 710 represents the portion of wave 706 that remains on the arc coupler 704 after the generation of guided wave 708. The actual electric and magnetic fields generated as a result of such wave propagation may vary depending on the frequencies employed, the particular wave propagation mode or modes, the design of the arc coupler 704, the dimensions and composition of the wire 702, as well as its surface characteristics, its optional insulation, the electromagnetic properties of the surrounding environment, etc.


It is noted that arc coupler 704 can include a termination circuit or damper 714 at the end of the arc coupler 704 that can absorb leftover radiation or energy from wave 710. The termination circuit or damper 714 can prevent and/or minimize the leftover radiation or energy from wave 710 reflecting back toward transmitter circuit 712. In an embodiment, the termination circuit or damper 714 can include termination resistors, and/or other components that perform impedance matching to attenuate reflection. In some embodiments, if the coupling efficiencies are high enough, and/or wave 710 is sufficiently small, it may not be necessary to use a termination circuit or damper 714. For the sake of simplicity, these transmitter 712 and termination circuits or dampers 714 may not be depicted in the other figures, but in those embodiments, transmitter and termination circuits or dampers may possibly be used.


Further, while a single arc coupler 704 is presented that generates a single guided wave 708, multiple arc couplers 704 placed at different points along the wire 702 and/or at different azimuthal orientations about the wire can be employed to generate and receive multiple guided waves 708 at the same or different frequencies, at the same or different phases, at the same or different wave propagation modes.



FIG. 8, a block diagram 800 illustrating an example, non-limiting embodiment of an arc coupler is shown. In the embodiment shown, at least a portion of the coupler 704 can be placed near a wire 702 or other transmission medium, (such as transmission medium 125), in order to facilitate coupling between the arc coupler 704 and the wire 702 or other transmission medium, to extract a portion of the guided wave 806 as a guided wave 808 as described herein. The arc coupler 704 can be placed such that a portion of the curved arc coupler 704 is tangential to, and parallel or substantially parallel to the wire 702. The portion of the arc coupler 704 that is parallel to the wire can be an apex of the curve, or any point where a tangent of the curve is parallel to the wire 702. When the arc coupler 704 is positioned or placed thusly, the wave 806 travelling along the wire 702 couples, at least in part, to the arc coupler 704, and propagates as guided wave 808 along the arc coupler 704 to a receiving device (not expressly shown). A portion of the wave 806 that does not couple to the arc coupler propagates as wave 810 along the wire 702 or other transmission medium.


In an embodiment, the wave 806 can exhibit one or more wave propagation modes. The arc coupler modes can be dependent on the shape and/or design of the coupler 704. The one or more modes of guided wave 806 can generate, influence, or impact one or more guide-wave modes of the guided wave 808 propagating along the arc coupler 704. It should be particularly noted however that the guided wave modes present in the guided wave 806 may be the same or different from the guided wave modes of the guided wave 808. In this fashion, one or more guided wave modes of the guided wave 806 may not be transferred to the guided wave 808, and further one or more guided wave modes of guided wave 808 may not have been present in guided wave 806.


Referring now to FIG. 9A, a block diagram 900 illustrating an example, non-limiting embodiment of a stub coupler is shown. In particular a coupling device that includes stub coupler 904 is presented for use in a transmission device, such as transmission device 101 or 102 presented in conjunction with FIG. 1. The stub coupler 904 can be made of a dielectric material, or other low-loss insulator (e.g., Teflon, polyethylene and etc.), or made of a conducting (e.g., metallic, non-metallic, etc.) material, or any combination of the foregoing materials. As shown, the stub coupler 904 operates as a waveguide and has a wave 906 propagating as a guided wave about a waveguide surface of the stub coupler 904. In the embodiment shown, at least a portion of the stub coupler 904 can be placed near a wire 702 or other transmission medium, (such as transmission medium 125), in order to facilitate coupling between the stub coupler 904 and the wire 702 or other transmission medium, as described herein to launch the guided wave 908 on the wire.


In an embodiment, the stub coupler 904 is curved, and an end of the stub coupler 904 can be tied, fastened, or otherwise mechanically coupled to a wire 702. When the end of the stub coupler 904 is fastened to the wire 702, the end of the stub coupler 904 is parallel or substantially parallel to the wire 702. Alternatively, another portion of the dielectric waveguide beyond an end can be fastened or coupled to wire 702 such that the fastened or coupled portion is parallel or substantially parallel to the wire 702. The fastener 910 can be a nylon cable tie or other type of non-conducting/dielectric material that is either separate from the stub coupler 904 or constructed as an integrated component of the stub coupler 904. The stub coupler 904 can be adjacent to the wire 702 without surrounding the wire 702.


Like the arc coupler 704 described in conjunction with FIG. 7, when the stub coupler 904 is placed with the end parallel to the wire 702, the guided wave 906 travelling along the stub coupler 904 couples to the wire 702, and propagates as guided wave 908 about the wire surface of the wire 702. In an example embodiment, the guided wave 908 can be characterized as a surface wave or other electromagnetic wave.


It is noted that the graphical representations of waves 906 and 908 are presented merely to illustrate the principles that wave 906 induces or otherwise launches a guided wave 908 on a wire 702 that operates, for example, as a single wire transmission line. The actual electric and magnetic fields generated as a result of such wave propagation may vary depending on one or more of the shape and/or design of the coupler, the relative position of the dielectric waveguide to the wire, the frequencies employed, the design of the stub coupler 904, the dimensions and composition of the wire 702, as well as its surface characteristics, its optional insulation, the electromagnetic properties of the surrounding environment, etc.


In an embodiment, an end of stub coupler 904 can taper towards the wire 702 in order to increase coupling efficiencies. Indeed, the tapering of the end of the stub coupler 904 can provide impedance matching to the wire 702 and reduce reflections, according to an example embodiment of the subject disclosure. For example, an end of the stub coupler 904 can be gradually tapered in order to obtain a desired level of coupling between waves 906 and 908 as illustrated in FIG. 9A.


In an embodiment, the fastener 910 can be placed such that there is a short length of the stub coupler 904 between the fastener 910 and an end of the stub coupler 904. Maximum coupling efficiencies are realized in this embodiment when the length of the end of the stub coupler 904 that is beyond the fastener 910 is at least several wavelengths long for whatever frequency is being transmitted.


Turning now to FIG. 9B, a diagram 950 illustrating an example, non-limiting embodiment of an electromagnetic distribution in accordance with various aspects described herein is shown. In particular, an electromagnetic distribution is presented in two dimensions for a transmission device that includes coupler 952, shown in an example stub coupler constructed of a dielectric material. The coupler 952 couples an electromagnetic wave for propagation as a guided wave along an outer surface of a wire 702 or other transmission medium.


The coupler 952 guides the electromagnetic wave to a junction at x0 via a symmetrical guided wave mode. While some of the energy of the electromagnetic wave that propagates along the coupler 952 is outside of the coupler 952, the majority of the energy of this electromagnetic wave is contained within the coupler 952. The junction at x0 couples the electromagnetic wave to the wire 702 or other transmission medium at an azimuthal angle corresponding to the bottom of the transmission medium. This coupling induces an electromagnetic wave that is guided to propagate along the outer surface of the wire 702 or other transmission medium via at least one guided wave mode in direction 956. The majority of the energy of the guided electromagnetic wave is outside or, but in close proximity to the outer surface of the wire 702 or other transmission medium. In the example shown, the junction at x0 forms an electromagnetic wave that propagates via both a symmetrical mode and at least one asymmetrical surface mode, such as the first order mode presented in conjunction with FIG. 3, that skims the surface of the wire 702 or other transmission medium.


It is noted that the graphical representations of guided waves are presented merely to illustrate an example of guided wave coupling and propagation. The actual electric and magnetic fields generated as a result of such wave propagation may vary depending on the frequencies employed, the design and/or configuration of the coupler 952, the dimensions and composition of the wire 702 or other transmission medium, as well as its surface characteristics, its insulation if present, the electromagnetic properties of the surrounding environment, etc.


Turning now to FIG. 10A, illustrated is a block diagram 1000 of an example, non-limiting embodiment of a coupler and transceiver system in accordance with various aspects described herein. The system is an example of transmission device 101 or 102. In particular, the communication interface 1008 is an example of communications interface 205, the stub coupler 1002 is an example of coupler 220, and the transmitter/receiver device 1006, diplexer 1016, power amplifier 1014, low noise amplifier 1018, frequency mixers 1010 and 1020 and local oscillator 1012 collectively form an example of transceiver 210.


In operation, the transmitter/receiver device 1006 launches and receives waves (e.g., guided wave 1004 onto stub coupler 1002). The guided waves 1004 can be used to transport signals received from and sent to a host device, base station, mobile devices, a building or other device by way of a communications interface 1008. The communications interface 1008 can be an integral part of system 1000. Alternatively, the communications interface 1008 can be tethered to system 1000. The communications interface 1008 can comprise a wireless interface for interfacing to the host device, base station, mobile devices, a building or other device utilizing any of various wireless signaling protocols (e.g., LTE, WiFi, WiMAX, IEEE 802.xx, etc.) including an infrared protocol such as an infrared data association (IrDA) protocol or other line of sight optical protocol. The communications interface 1008 can also comprise a wired interface such as a fiber optic line, coaxial cable, twisted pair, category 5 (CAT-5) cable or other suitable wired or optical mediums for communicating with the host device, base station, mobile devices, a building or other device via a protocol such as an Ethernet protocol, universal serial bus (USB) protocol, a data over cable service interface specification (DOCSIS) protocol, a digital subscriber line (DSL) protocol, a Firewire (IEEE 1394) protocol, or other wired or optical protocol. For embodiments where system 1000 functions as a repeater, the communications interface 1008 may not be necessary.


The output signals (e.g., Tx) of the communications interface 1008 can be combined with a carrier wave (e.g., millimeter-wave carrier wave) generated by a local oscillator 1012 at frequency mixer 1010. Frequency mixer 1010 can use heterodyning techniques or other frequency shifting techniques to frequency shift the output signals from communications interface 1008. For example, signals sent to and from the communications interface 1008 can be modulated signals such as orthogonal frequency division multiplexed (OFDM) signals formatted in accordance with a Long-Term Evolution (LTE) wireless protocol or other wireless 3G, 4G, 5G or higher voice and data protocol, a Zigbee, WIMAX, UltraWideband or IEEE 802.11 wireless protocol; a wired protocol such as an Ethernet protocol, universal serial bus (USB) protocol, a data over cable service interface specification (DOCSIS) protocol, a digital subscriber line (DSL) protocol, a Firewire (IEEE 1394) protocol or other wired or wireless protocol. In an example embodiment, this frequency conversion can be done in the analog domain, and as a result, the frequency shifting can be done without regard to the type of communications protocol used by a base station, mobile devices, or in-building devices. As new communications technologies are developed, the communications interface 1008 can be upgraded (e.g., updated with software, firmware, and/or hardware) or replaced and the frequency shifting and transmission apparatus can remain, simplifying upgrades. The carrier wave can then be sent to a power amplifier (“PA”) 1014 and can be transmitted via the transmitter receiver device 1006 via the diplexer 1016.


Signals received from the transmitter/receiver device 1006 that are directed towards the communications interface 1008 can be separated from other signals via diplexer 1016. The received signal can then be sent to low noise amplifier (“LNA”) 1018 for amplification. A frequency mixer 1020, with help from local oscillator 1012 can downshift the received signal (which is in the millimeter-wave band or around 38 GHz in some embodiments) to the native frequency. The communications interface 1008 can then receive the transmission at an input port (Rx).


In an embodiment, transmitter/receiver device 1006 can include a cylindrical or non-cylindrical metal (which, for example, can be hollow in an embodiment, but not necessarily drawn to scale) or other conducting or non-conducting waveguide and an end of the stub coupler 1002 can be placed in or in proximity to the waveguide or the transmitter/receiver device 1006 such that when the transmitter/receiver device 1006 generates a transmission, the guided wave couples to stub coupler 1002 and propagates as a guided wave 1004 about the waveguide surface of the stub coupler 1002. In some embodiments, the guided wave 1004 can propagate in part on the outer surface of the stub coupler 1002 and in part inside the stub coupler 1002. In other embodiments, the guided wave 1004 can propagate substantially or completely on the outer surface of the stub coupler 1002. In yet other embodiments, the guided wave 1004 can propagate substantially or completely inside the stub coupler 1002. In this latter embodiment, the guided wave 1004 can radiate at an end of the stub coupler 1002 (such as the tapered end shown in FIG. 4) for coupling to a transmission medium such as a wire 702 of FIG. 7. Similarly, if guided wave 1004 is incoming (coupled to the stub coupler 1002 from a wire 702), guided wave 1004 then enters the transmitter/receiver device 1006 and couples to the cylindrical waveguide or conducting waveguide. While transmitter/receiver device 1006 is shown to include a separate waveguide—an antenna, cavity resonator, klystron, magnetron, travelling wave tube, or other radiating element can be employed to induce a guided wave on the coupler 1002, with or without the separate waveguide.


In an embodiment, stub coupler 1002 can be wholly constructed of a dielectric material (or another suitable insulating material), without any metallic or otherwise conducting materials therein. Stub coupler 1002 can be composed of nylon, Teflon, polyethylene, a polyamide, other plastics, or other materials that are non-conducting and suitable for facilitating transmission of electromagnetic waves at least in part on an outer surface of such materials. In another embodiment, stub coupler 1002 can include a core that is conducting/metallic, and have an exterior dielectric surface. Similarly, a transmission medium that couples to the stub coupler 1002 for propagating electromagnetic waves induced by the stub coupler 1002 or for supplying electromagnetic waves to the stub coupler 1002 can, in addition to being a bare or insulated wire, be wholly constructed of a dielectric material (or another suitable insulating material), without any metallic or otherwise conducting materials therein.


It is noted that although FIG. 10A shows that the opening of transmitter receiver device 1006 is much wider than the stub coupler 1002, this is not to scale, and that in other embodiments the width of the stub coupler 1002 is comparable or slightly smaller than the opening of the hollow waveguide. It is also not shown, but in an embodiment, an end of the coupler 1002 that is inserted into the transmitter/receiver device 1006 tapers down in order to reduce reflection and increase coupling efficiencies.


Before coupling to the stub coupler 1002, the one or more waveguide modes of the guided wave generated by the transmitter/receiver device 1006 can couple to the stub coupler 1002 to induce one or more wave propagation modes of the guided wave 1004. The wave propagation modes of the guided wave 1004 can be different than the hollow metal waveguide modes due to the different characteristics of the hollow metal waveguide and the dielectric waveguide. For instance, wave propagation modes of the guided wave 1004 can comprise the fundamental transverse electromagnetic mode (Quasi-TEM00), where only small electrical and/or magnetic fields extend in the direction of propagation, and the electric and magnetic fields extend radially outwards from the stub coupler 1002 while the guided waves propagate along the stub coupler 1002. The fundamental transverse electromagnetic mode wave propagation mode may or may not exist inside a waveguide that is hollow. Therefore, the hollow metal waveguide modes that are used by transmitter/receiver device 1006 are waveguide modes that can couple effectively and efficiently to wave propagation modes of stub coupler 1002.


It will be appreciated that other constructs or combinations of the transmitter/receiver device 1006 and stub coupler 1002 are possible. For example, a stub coupler 1002′ can be placed tangentially or in parallel (with or without a gap) with respect to an outer surface of the hollow metal waveguide of the transmitter/receiver device 1006′ (corresponding circuitry not shown) as depicted by reference 1000′ of FIG. 10B. In another embodiment, not shown by reference 1000′, the stub coupler 1002′ can be placed inside the hollow metal waveguide of the transmitter/receiver device 1006′ without an axis of the stub coupler 1002′ being coaxially aligned with an axis of the hollow metal waveguide of the transmitter/receiver device 1006′. In either of these embodiments, the guided wave generated by the transmitter/receiver device 1006′ can couple to a surface of the stub coupler 1002′ to induce one or more wave propagation modes of the guided wave 1004′ on the stub coupler 1002′ including a fundamental mode (e.g., a symmetric mode) and/or a non-fundamental mode (e.g., asymmetric mode).


In one embodiment, the guided wave 1004′ can propagate in part on the outer surface of the stub coupler 1002′ and in part inside the stub coupler 1002′. In another embodiment, the guided wave 1004′ can propagate substantially or completely on the outer surface of the stub coupler 1002′. In yet other embodiments, the guided wave 1004′ can propagate substantially or completely inside the stub coupler 1002′. In this latter embodiment, the guided wave 1004′ can radiate at an end of the stub coupler 1002′ (such as the tapered end shown in FIG. 9) for coupling to a transmission medium such as a wire 702 of FIG. 9.


It will be further appreciated that other constructs the transmitter/receiver device 1006 are possible. For example, a hollow metal waveguide of a transmitter/receiver device 1006″ (corresponding circuitry not shown), depicted in FIG. 10B as reference 1000″, can be placed tangentially or in parallel (with or without a gap) with respect to an outer surface of a transmission medium such as the wire 702 of FIG. 4 without the use of the stub coupler 1002. In this embodiment, the guided wave generated by the transmitter/receiver device 1006″ can couple to a surface of the wire 702 to induce one or more wave propagation modes of a guided wave 908 on the wire 702 including a fundamental mode (e.g., a symmetric mode) and/or a non-fundamental mode (e.g., asymmetric mode). In another embodiment, the wire 702 can be positioned inside a hollow metal waveguide of a transmitter/receiver device 1006′″ (corresponding circuitry not shown) so that an axis of the wire 702 is coaxially (or not coaxially) aligned with an axis of the hollow metal waveguide without the use of the stub coupler 1002—see FIG. 10B reference 1000′″. In this embodiment, the guided wave generated by the transmitter/receiver device 1006′″ can couple to a surface of the wire 702 to induce one or more wave propagation modes of a guided wave 908 on the wire including a fundamental mode (e.g., a symmetric mode) and/or a non-fundamental mode (e.g., asymmetric mode).


In the embodiments of 1000″ and 1000′″, for a wire 702 having an insulated outer surface, the guided wave 908 can propagate in part on the outer surface of the insulator and in part inside the insulator. In embodiments, the guided wave 908 can propagate substantially or completely on the outer surface of the insulator, or substantially or completely inside the insulator. In the embodiments of 1000″ and 1000′″, for a wire 702 that is a bare conductor, the guided wave 908 can propagate in part on the outer surface of the conductor and in part inside the conductor. In another embodiment, the guided wave 908 can propagate substantially or completely on the outer surface of the conductor.


Referring now to FIG. 11, a block diagram 1100 illustrating an example, non-limiting embodiment of a dual stub coupler is shown. In particular, a dual coupler design is presented for use in a transmission device, such as transmission device 101 or 102 presented in conjunction with FIG. 1. In an embodiment, two or more couplers (such as the stub couplers 1104 and 1106) can be positioned around a wire 1102 in order to receive guided wave 1108. In an embodiment, one coupler is enough to receive the guided wave 1108. In that case, guided wave 1108 couples to coupler 1104 and propagates as guided wave 1110. If the field structure of the guided wave 1108 oscillates or undulates around the wire 1102 due to the particular guided wave mode(s) or various outside factors, then coupler 1106 can be placed such that guided wave 1108 couples to coupler 1106. In some embodiments, four or more couplers can be placed around a portion of the wire 1102, e.g., at 90 degrees or another spacing with respect to each other, in order to receive guided waves that may oscillate or rotate around the wire 1102, that have been induced at different azimuthal orientations or that have non-fundamental or higher order modes that, for example, have lobes and/or nulls or other asymmetries that are orientation dependent. However, it will be appreciated that there may be less than or more than four couplers placed around a portion of the wire 1102 without departing from example embodiments.


It should be noted that while couplers 1106 and 1104 are illustrated as stub couplers, any other of the coupler designs described herein including arc couplers, antenna or horn couplers, magnetic couplers, etc., could likewise be used. It will also be appreciated that while some example embodiments have presented a plurality of couplers around at least a portion of a wire 1102, this plurality of couplers can also be considered as part of a single coupler system having multiple coupler subcomponents. For example, two or more couplers can be manufactured as single system that can be installed around a wire in a single installation such that the couplers are either pre-positioned or adjustable relative to each other (either manually or automatically with a controllable mechanism such as a motor or other actuator) in accordance with the single system.


Receivers coupled to couplers 1106 and 1104 can use diversity combining to combine signals received from both couplers 1106 and 1104 in order to maximize the signal quality. In other embodiments, if one or the other of the couplers 1104 and 1106 receive a transmission that is above a predetermined threshold, receivers can use selection diversity when deciding which signal to use. Further, while reception by a plurality of couplers 1106 and 1104 is illustrated, transmission by couplers 1106 and 1104 in the same configuration can likewise take place. In particular, a wide range of multi-input multi-output (MIMO) transmission and reception techniques can be employed for transmissions where a transmission device, such as transmission device 101 or 102 presented in conjunction with FIG. 1 includes multiple transceivers and multiple couplers.


It is noted that the graphical representations of waves 1108 and 1110 are presented merely to illustrate the principles that guided wave 1108 induces or otherwise launches a wave 1110 on a coupler 1104. The actual electric and magnetic fields generated as a result of such wave propagation may vary depending on the frequencies employed, the design of the coupler 1104, the dimensions and composition of the wire 1102, as well as its surface characteristics, its insulation if any, the electromagnetic properties of the surrounding environment, etc.


Referring now to FIG. 12, a block diagram 1200 illustrating an example, non-limiting embodiment of a repeater system is shown. In particular, a repeater device 1210 is presented for use in a transmission device, such as transmission device 101 or 102 presented in conjunction with FIG. 1. In this system, two couplers 1204 and 1214 can be placed near a wire 1202 or other transmission medium such that guided waves 1205 propagating along the wire 1202 are extracted by coupler 1204 as wave 1206 (e.g. as a guided wave), and then are boosted or repeated by repeater device 1210 and launched as a wave 1216 (e.g. as a guided wave) onto coupler 1214. The wave 1216 can then be launched on the wire 1202 and continue to propagate along the wire 1202 as a guided wave 1217. In an embodiment, the repeater device 1210 can receive at least a portion of the power utilized for boosting or repeating through magnetic coupling with the wire 1202, for example, when the wire 1202 is a power line or otherwise contains a power-carrying conductor. It should be noted that while couplers 1204 and 1214 are illustrated as stub couplers, any other of the coupler designs described herein including arc couplers, antenna or horn couplers, magnetic couplers, or the like, could likewise be used.


In some embodiments, repeater device 1210 can repeat the transmission associated with wave 1206, and in other embodiments, repeater device 1210 can include a communications interface 205 that extracts data or other signals from the wave 1206 for supplying such data or signals to another network and/or one or more other devices as communication signals 110 or 112 and/or receiving communication signals 110 or 112 from another network and/or one or more other devices and launch guided wave 1216 having embedded therein the received communication signals 110 or 112. In a repeater configuration, receiver waveguide 1208 can receive the wave 1206 from the coupler 1204 and transmitter waveguide 1212 can launch guided wave 1216 onto coupler 1214 as guided wave 1217. Between receiver waveguide 1208 and transmitter waveguide 1212, the signal embedded in guided wave 1206 and/or the guided wave 1216 itself can be amplified to correct for signal loss and other inefficiencies associated with guided wave communications or the signal can be received and processed to extract the data contained therein and regenerated for transmission. In an embodiment, the receiver waveguide 1208 can be configured to extract data from the signal, process the data to correct for data errors utilizing for example error correcting codes, and regenerate an updated signal with the corrected data. The transmitter waveguide 1212 can then transmit guided wave 1216 with the updated signal embedded therein. In an embodiment, a signal embedded in guided wave 1206 can be extracted from the transmission and processed for communication with another network and/or one or more other devices via communications interface 205 as communication signals 110 or 112. Similarly, communication signals 110 or 112 received by the communications interface 205 can be inserted into a transmission of guided wave 1216 that is generated and launched onto coupler 1214 by transmitter waveguide 1212.


It is noted that although FIG. 12 shows guided wave transmissions 1206 and 1216 entering from the left and exiting to the right respectively, this is merely a simplification and is not intended to be limiting. In other embodiments, receiver waveguide 1208 and transmitter waveguide 1212 can also function as transmitters and receivers respectively, allowing the repeater device 1210 to be bi-directional.


In an embodiment, repeater device 1210 can be placed at locations where there are discontinuities or obstacles on the wire 1202 or other transmission medium. In the case where the wire 1202 is a power line, these obstacles can include transformers, connections, utility poles, and other such power line devices. The repeater device 1210 can help the guided (e.g., surface) waves jump over these obstacles on the line and boost the transmission power at the same time. In other embodiments, a coupler can be used to jump over the obstacle without the use of a repeater device. In that embodiment, both ends of the coupler can be tied or fastened to the wire, thus providing a path for the guided wave to travel without being blocked by the obstacle.


Turning now to FIG. 13, illustrated is a block diagram 1300 of an example, non-limiting embodiment of a bidirectional repeater in accordance with various aspects described herein. In particular, a bidirectional repeater device 1306 is presented for use in a transmission device, such as transmission device 101 or 102 presented in conjunction with FIG. 1. It should be noted that while the couplers are illustrated as stub couplers, any other of the coupler designs described herein including arc couplers, antenna or horn couplers, magnetic couplers, or the like, could likewise be used. The bidirectional repeater 1306 can employ diversity paths in the case of when two or more wires or other transmission media are present. Since guided wave transmissions have different transmission efficiencies and coupling efficiencies for transmission medium of different types such as insulated wires, un-insulated wires or other types of transmission media and further, if exposed to the elements, can be affected by weather, and other atmospheric conditions, it can be advantageous to selectively transmit on different transmission media at certain times. In various embodiments, the various transmission media can be designated as a primary, secondary, tertiary, etc. whether or not such designation indicates a preference of one transmission medium over another.


In the embodiment shown, the transmission media include an insulated or uninsulated wire 1302 and an insulated or uninsulated wire 1304 (referred to herein as wires 1302 and 1304, respectively). The repeater device 1306 uses a receiver coupler 1308 to receive a guided wave traveling along wire 1302 and repeats the transmission using transmitter waveguide 1310 as a guided wave along wire 1304. In other embodiments, repeater device 1306 can switch from the wire 1304 to the wire 1302, or can repeat the transmissions along the same paths. Repeater device 1306 can include sensors, or be in communication with sensors (or a network management system 1601 depicted in FIG. 16A) that indicate conditions that can affect the transmission. Based on the feedback received from the sensors, the repeater device 1306 can make the determination about whether to keep the transmission along the same wire, or transfer the transmission to the other wire.


Turning now to FIG. 14, illustrated is a block diagram 1400 illustrating an example, non-limiting embodiment of a bidirectional repeater system. In particular, a bidirectional repeater system is presented for use in a transmission device, such as transmission device 101 or 102 presented in conjunction with FIG. 1. The bidirectional repeater system includes waveguide coupling devices 1402 and 1404 that receive and transmit transmissions from other coupling devices located in a distributed antenna system or backhaul system.


In various embodiments, waveguide coupling device 1402 can receive a transmission from another waveguide coupling device, wherein the transmission has a plurality of subcarriers. Diplexer 1406 can separate the transmission from other transmissions, and direct the transmission to low-noise amplifier (“LNA”) 1408. A frequency mixer 1428, with help from a local oscillator 1412, can downshift the transmission (which is in the millimeter-wave band or around 38 GHz in some embodiments) to a lower frequency, such as a cellular band (˜1.9 GHz) for a distributed antenna system, a native frequency, or other frequency for a backhaul system. An extractor (or demultiplexer) 1432 can extract the signal on a subcarrier and direct the signal to an output component 1422 for optional amplification, buffering or isolation by power amplifier 1424 for coupling to communications interface 205. The communications interface 205 can further process the signals received from the power amplifier 1424 or otherwise transmit such signals over a wireless or wired interface to other devices such as a base station, mobile devices, a building, etc. For the signals that are not being extracted at this location, extractor 1432 can redirect them to another frequency mixer 1436, where the signals are used to modulate a carrier wave generated by local oscillator 1414. The carrier wave, with its subcarriers, is directed to a power amplifier (“PA”) 1416 and is retransmitted by waveguide coupling device 1404 to another system, via diplexer 1420.


An LNA 1426 can be used to amplify, buffer or isolate signals that are received by the communication interface 205 and then send the signal to a multiplexer 1434 which merges the signal with signals that have been received from waveguide coupling device 1404. The signals received from coupling device 1404 have been split by diplexer 1420, and then passed through LNA 1418, and downshifted in frequency by frequency mixer 1438. When the signals are combined by multiplexer 1434, they are upshifted in frequency by frequency mixer 1430, and then boosted by PA 1410, and transmitted to another system by waveguide coupling device 1402. In an embodiment bidirectional repeater system can be merely a repeater without the output device 1422. In this embodiment, the multiplexer 1434 would not be utilized and signals from LNA 1418 would be directed to mixer 1430 as previously described. It will be appreciated that in some embodiments, the bidirectional repeater system could also be implemented using two distinct and separate unidirectional repeaters. In an alternative embodiment, a bidirectional repeater system could also be a booster or otherwise perform retransmissions without downshifting and upshifting. Indeed in example embodiment, the retransmissions can be based upon receiving a signal or guided wave and performing some signal or guided wave processing or reshaping, filtering, and/or amplification, prior to retransmission of the signal or guided wave.


Referring now to FIG. 15, a block diagram 1500 illustrating an example, non-limiting embodiment of a guided wave communications system is shown. This diagram depicts an exemplary environment in which a guided wave communication system, such as the guided wave communication system presented in conjunction with FIG. 1, can be used.


To provide network connectivity to additional base station devices, a backhaul network that links the communication cells (e.g., macrocells and macrocells) to network devices of a core network correspondingly expands. Similarly, to provide network connectivity to a distributed antenna system, an extended communication system that links base station devices and their distributed antennas is desirable. A guided wave communication system 1500 such as shown in FIG. 15 can be provided to enable alternative, increased or additional network connectivity and a waveguide coupling system can be provided to transmit and/or receive guided wave (e.g., surface wave) communications on a transmission medium such as a wire that operates as a single-wire transmission line (e.g., a utility line), and that can be used as a waveguide and/or that otherwise operates to guide the transmission of an electromagnetic wave.


The guided wave communication system 1500 can comprise a first instance of a distribution system 1550 that includes one or more base station devices (e.g., base station device 1504) that are communicably coupled to a central office 1501 and/or a macrocell site 1502. Base station device 1504 can be connected by a wired (e.g., fiber and/or cable), or by a wireless (e.g., microwave wireless) connection to the macrocell site 1502 and the central office 1501. A second instance of the distribution system 1560 can be used to provide wireless voice and data services to mobile device 1522 and to residential and/or commercial establishments 1542 (herein referred to as establishments 1542). System 1500 can have additional instances of the distribution systems 1550 and 1560 for providing voice and/or data services to mobile devices 1522-1524 and establishments 1542 as shown in FIG. 15.


Macrocells such as macrocell site 1502 can have dedicated connections to a mobile network and base station device 1504 or can share and/or otherwise use another connection. Central office 1501 can be used to distribute media content and/or provide internet service provider (ISP) services to mobile devices 1522-1524 and establishments 1542. The central office 1501 can receive media content from a constellation of satellites 1530 (one of which is shown in FIG. 15) or other sources of content, and distribute such content to mobile devices 1522-1524 and establishments 1542 via the first and second instances of the distribution system 1550 and 1560. The central office 1501 can also be communicatively coupled to the Internet 1503 for providing internet data services to mobile devices 1522-1524 and establishments 1542.


Base station device 1504 can be mounted on, or attached to, utility pole 1516. In other embodiments, base station device 1504 can be near transformers and/or other locations situated nearby a power line. Base station device 1504 can facilitate connectivity to a mobile network for mobile devices 1522 and 1524. Antennas 1512 and 1514, mounted on or near utility poles 1518 and 1520, respectively, can receive signals from base station device 1504 and transmit those signals to mobile devices 1522 and 1524 over a much wider area than if the antennas 1512 and 1514 were located at or near base station device 1504.


It is noted that FIG. 15 displays three utility poles, in each instance of the distribution systems 1550 and 1560, with one base station device, for purposes of simplicity. In other embodiments, utility pole 1516 can have more base station devices, and more utility poles with distributed antennas and/or tethered connections to establishments 1542.


A transmission device 1506, such as transmission device 101 or 102 presented in conjunction with FIG. 1, can transmit a signal from base station device 1504 to antennas 1512 and 1514 via utility or power line(s) that connect the utility poles 1516, 1518, and 1520. To transmit the signal, radio source and/or transmission device 1506 upconverts the signal (e.g., via frequency mixing) from base station device 1504 or otherwise converts the signal from the base station device 1504 to a microwave band signal and the transmission device 1506 launches a microwave band wave that propagates as a guided wave traveling along the utility line or other wire as described in previous embodiments. At utility pole 1518, another transmission device 1508 receives the guided wave (and optionally can amplify it as needed or desired or operate as a repeater to receive it and regenerate it) and sends it forward as a guided wave on the utility line or other wire. The transmission device 1508 can also extract a signal from the microwave band guided wave and shift it down in frequency or otherwise convert it to its original cellular band frequency (e.g., 1.9 GHz or other defined cellular frequency) or another cellular (or non-cellular) band frequency. An antenna 1512 can wireless transmit the downshifted signal to mobile device 1522. The process can be repeated by transmission device 1510, antenna 1514 and mobile device 1524, as necessary or desirable.


Transmissions from mobile devices 1522 and 1524 can also be received by antennas 1512 and 1514 respectively. The transmission devices 1508 and 1510 can upshift or otherwise convert the cellular band signals to microwave band and transmit the signals as guided wave (e.g., surface wave or other electromagnetic wave) transmissions over the power line(s) to base station device 1504.


Media content received by the central office 1501 can be supplied to the second instance of the distribution system 1560 via the base station device 1504 for distribution to mobile devices 1522 and establishments 1542. The transmission device 1510 can be tethered to the establishments 1542 by one or more wired connections or a wireless interface. The one or more wired connections may include without limitation, a power line, a coaxial cable, a fiber cable, a twisted pair cable, a guided wave transmission medium or other suitable wired mediums for distribution of media content and/or for providing internet services. In an example embodiment, the wired connections from the transmission device 1510 can be communicatively coupled to one or more very high bit rate digital subscriber line (VDSL) modems located at one or more corresponding service area interfaces (SAIs—not shown) or pedestals, each SAI or pedestal providing services to a portion of the establishments 1542. The VDSL modems can be used to selectively distribute media content and/or provide internet services to gateways (not shown) located in the establishments 1542. The SAIs or pedestals can also be communicatively coupled to the establishments 1542 over a wired medium such as a power line, a coaxial cable, a fiber cable, a twisted pair cable, a guided wave transmission medium or other suitable wired mediums. In other example embodiments, the transmission device 1510 can be communicatively coupled directly to establishments 1542 without intermediate interfaces such as the SAIs or pedestals.


In another example embodiment, system 1500 can employ diversity paths, where two or more utility lines or other wires are strung between the utility poles 1516, 1518, and 1520 (e.g., for example, two or more wires between poles 1516 and 1520) and redundant transmissions from base station/macrocell site 1502 are transmitted as guided waves down the surface of the utility lines or other wires. The utility lines or other wires can be either insulated or uninsulated, and depending on the environmental conditions that cause transmission losses, the coupling devices can selectively receive signals from the insulated or uninsulated utility lines or other wires. The selection can be based on measurements of the signal-to-noise ratio of the wires, or based on determined weather/environmental conditions (e.g., moisture detectors, weather forecasts, etc.). The use of diversity paths with system 1500 can enable alternate routing capabilities, load balancing, increased load handling, concurrent bi-directional or synchronous communications, spread spectrum communications, etc.


It is noted that the use of the transmission devices 1506, 1508, and 1510 in FIG. 15 are by way of example only, and that in other embodiments, other uses are possible. For instance, transmission devices can be used in a backhaul communication system, providing network connectivity to base station devices. Transmission devices 1506, 1508, and 1510 can be used in many circumstances where it is desirable to transmit guided wave communications over a wire, whether insulated or not insulated. Transmission devices 1506, 1508, and 1510 are improvements over other coupling devices due to no contact or limited physical and/or electrical contact with the wires that may carry high voltages. The transmission device can be located away from the wire (e.g., spaced apart from the wire) and/or located on the wire so long as it is not electrically in contact with the wire, as the dielectric acts as an insulator, allowing for cheap, easy, and/or less complex installation. However, as previously noted conducting or non-dielectric couplers can be employed, for example in configurations where the wires correspond to a telephone network, cable television network, broadband data service, fiber optic communications system or other network employing low voltages or having insulated transmission lines.


It is further noted, that while base station device 1504 and macrocell site 1502 are illustrated in an embodiment, other network configurations are likewise possible. For example, devices such as access points or other wireless gateways can be employed in a similar fashion to extend the reach of other networks such as a wireless local area network, a wireless personal area network or other wireless network that operates in accordance with a communication protocol such as a 802.11 protocol, WIMAX protocol, UltraWideband protocol, Bluetooth protocol, Zigbee protocol or other wireless protocol.


Referring now to FIGS. 16A & 16B, block diagrams illustrating an example, non-limiting embodiment of a system for managing a power grid communication system are shown. Considering FIG. 16A, a waveguide system 1602 is presented for use in a guided wave communications system, such as the system presented in conjunction with FIG. 15. The waveguide system 1602 can comprise sensors 1604, a power management system 1605, a transmission device 101 or 102 that includes at least one communication interface 205, transceiver 210 and coupler 220.


The waveguide system 1602 can be coupled to a power line 1610 for facilitating guided wave communications in accordance with embodiments described in the subject disclosure. In an example embodiment, the transmission device 101 or 102 includes coupler 220 for inducing electromagnetic waves on a surface of the power line 1610 that longitudinally propagate along the surface of the power line 1610 as described in the subject disclosure. The transmission device 101 or 102 can also serve as a repeater for retransmitting electromagnetic waves on the same power line 1610 or for routing electromagnetic waves between power lines 1610 as shown in FIGS. 12-13.


The transmission device 101 or 102 includes transceiver 210 configured to, for example, up-convert a signal operating at an original frequency range to electromagnetic waves operating at, exhibiting, or associated with a carrier frequency that propagate along a coupler to induce corresponding guided electromagnetic waves that propagate along a surface of the power line 1610. A carrier frequency can be represented by a center frequency having upper and lower cutoff frequencies that define the bandwidth of the electromagnetic waves. The power line 1610 can be a wire (e.g., single stranded or multi-stranded) having a conducting surface or insulated surface. The transceiver 210 can also receive signals from the coupler 220 and down-convert the electromagnetic waves operating at a carrier frequency to signals at their original frequency.


Signals received by the communications interface 205 of transmission device 101 or 102 for up-conversion can include without limitation signals supplied by a central office 1611 over a wired or wireless interface of the communications interface 205, a base station 1614 over a wired or wireless interface of the communications interface 205, wireless signals transmitted by mobile devices 1620 to the base station 1614 for delivery over the wired or wireless interface of the communications interface 205, signals supplied by in-building communication devices 1618 over the wired or wireless interface of the communications interface 205, and/or wireless signals supplied to the communications interface 205 by mobile devices 1612 roaming in a wireless communication range of the communications interface 205. In embodiments where the waveguide system 1602 functions as a repeater, such as shown in FIGS. 12-13, the communications interface 205 may or may not be included in the waveguide system 1602.


The electromagnetic waves propagating along the surface of the power line 1610 can be modulated and formatted to include packets or frames of data that include a data payload and further include networking information (such as header information for identifying one or more destination waveguide systems 1602). The networking information may be provided by the waveguide system 1602 or an originating device such as the central office 1611, the base station 1614, mobile devices 1620, or in-building devices 1618, or a combination thereof. Additionally, the modulated electromagnetic waves can include error correction data for mitigating signal disturbances. The networking information and error correction data can be used by a destination waveguide system 1602 for detecting transmissions directed to it, and for down-converting and processing with error correction data transmissions that include voice and/or data signals directed to recipient communication devices communicatively coupled to the destination waveguide system 1602.


Referring now to the sensors 1604 of the waveguide system 1602, the sensors 1604 can comprise one or more of a temperature sensor 1604a, a disturbance detection sensor 1604b, a loss of energy sensor 1604c, a noise sensor 1604d, a vibration sensor 1604e, an environmental (e.g., weather) sensor 1604f, and/or an image sensor 1604g. The temperature sensor 1604a can be used to measure ambient temperature, a temperature of the transmission device 101 or 102, a temperature of the power line 1610, temperature differentials (e.g., compared to a setpoint or baseline, between transmission device 101 or 102 and 1610, etc.), or any combination thereof. In one embodiment, temperature metrics can be collected and reported periodically to a network management system 1601 by way of the base station 1614.


The disturbance detection sensor 1604b can perform measurements on the power line 1610 to detect disturbances such as signal reflections, which may indicate a presence of a downstream disturbance that may impede the propagation of electromagnetic waves on the power line 1610. A signal reflection can represent a distortion resulting from, for example, an electromagnetic wave transmitted on the power line 1610 by the transmission device 101 or 102 that reflects in whole or in part back to the transmission device 101 or 102 from a disturbance in the power line 1610 located downstream from the transmission device 101 or 102.


Signal reflections can be caused by obstructions on the power line 1610. For example, a tree limb may cause electromagnetic wave reflections when the tree limb is lying on the power line 1610, or is in close proximity to the power line 1610 which may cause a corona discharge. Other obstructions that can cause electromagnetic wave reflections can include without limitation an object that has been entangled on the power line 1610 (e.g., clothing, a shoe wrapped around a power line 1610 with a shoe string, etc.), a corroded build-up on the power line 1610 or an ice build-up. Power grid components may also impede or obstruct with the propagation of electromagnetic waves on the surface of power lines 1610. Illustrations of power grid components that may cause signal reflections include without limitation a transformer and a joint for connecting spliced power lines. A sharp angle on the power line 1610 may also cause electromagnetic wave reflections.


The disturbance detection sensor 1604b can comprise a circuit to compare magnitudes of electromagnetic wave reflections to magnitudes of original electromagnetic waves transmitted by the transmission device 101 or 102 to determine how much a downstream disturbance in the power line 1610 attenuates transmissions. The disturbance detection sensor 1604b can further comprise a spectral analyzer circuit for performing spectral analysis on the reflected waves. The spectral data generated by the spectral analyzer circuit can be compared with spectral profiles via pattern recognition, an expert system, curve fitting, matched filtering or other artificial intelligence, classification or comparison technique to identify a type of disturbance based on, for example, the spectral profile that most closely matches the spectral data. The spectral profiles can be stored in a memory of the disturbance detection sensor 1604b or may be remotely accessible by the disturbance detection sensor 1604b. The profiles can comprise spectral data that models different disturbances that may be encountered on power lines 1610 to enable the disturbance detection sensor 1604b to identify disturbances locally. An identification of the disturbance if known can be reported to the network management system 1601 by way of the base station 1614. The disturbance detection sensor 1604b can also utilize the transmission device 101 or 102 to transmit electromagnetic waves as test signals to determine a roundtrip time for an electromagnetic wave reflection. The round trip time measured by the disturbance detection sensor 1604b can be used to calculate a distance traveled by the electromagnetic wave up to a point where the reflection takes place, which enables the disturbance detection sensor 1604b to calculate a distance from the transmission device 101 or 102 to the downstream disturbance on the power line 1610.


The distance calculated can be reported to the network management system 1601 by way of the base station 1614. In one embodiment, the location of the waveguide system 1602 on the power line 1610 may be known to the network management system 1601, which the network management system 1601 can use to determine a location of the disturbance on the power line 1610 based on a known topology of the power grid. In another embodiment, the waveguide system 1602 can provide its location to the network management system 1601 to assist in the determination of the location of the disturbance on the power line 1610. The location of the waveguide system 1602 can be obtained by the waveguide system 1602 from a pre-programmed location of the waveguide system 1602 stored in a memory of the waveguide system 1602, or the waveguide system 1602 can determine its location using a GPS receiver (not shown) included in the waveguide system 1602.


The power management system 1605 provides energy to the aforementioned components of the waveguide system 1602. The power management system 1605 can receive energy from solar cells, or from a transformer (not shown) coupled to the power line 1610, or by inductive coupling to the power line 1610 or another nearby power line. The power management system 1605 can also include a backup battery and/or a super capacitor or other capacitor circuit for providing the waveguide system 1602 with temporary power. The loss of energy sensor 1604c can be used to detect when the waveguide system 1602 has a loss of power condition and/or the occurrence of some other malfunction. For example, the loss of energy sensor 1604c can detect when there is a loss of power due to defective solar cells, an obstruction on the solar cells that causes them to malfunction, loss of power on the power line 1610, and/or when the backup power system malfunctions due to expiration of a backup battery, or a detectable defect in a super capacitor. When a malfunction and/or loss of power occurs, the loss of energy sensor 1604c can notify the network management system 1601 by way of the base station 1614.


The noise sensor 1604d can be used to measure noise on the power line 1610 that may adversely affect transmission of electromagnetic waves on the power line 1610. The noise sensor 1604d can sense unexpected electromagnetic interference, noise bursts, or other sources of disturbances that may interrupt reception of modulated electromagnetic waves on a surface of a power line 1610. A noise burst can be caused by, for example, a corona discharge, or other source of noise. The noise sensor 1604d can compare the measured noise to a noise profile obtained by the waveguide system 1602 from an internal database of noise profiles or from a remotely located database that stores noise profiles via pattern recognition, an expert system, curve fitting, matched filtering or other artificial intelligence, classification or comparison technique. From the comparison, the noise sensor 1604d may identify a noise source (e.g., corona discharge or otherwise) based on, for example, the noise profile that provides the closest match to the measured noise. The noise sensor 1604d can also detect how noise affects transmissions by measuring transmission metrics such as bit error rate, packet loss rate, jitter, packet retransmission requests, etc. The noise sensor 1604d can report to the network management system 1601 by way of the base station 1614 the identity of noise sources, their time of occurrence, and transmission metrics, among other things.


The vibration sensor 1604e can include accelerometers and/or gyroscopes to detect 2D or 3D vibrations on the power line 1610. The vibrations can be compared to vibration profiles that can be stored locally in the waveguide system 1602, or obtained by the waveguide system 1602 from a remote database via pattern recognition, an expert system, curve fitting, matched filtering or other artificial intelligence, classification or comparison technique. Vibration profiles can be used, for example, to distinguish fallen trees from wind gusts based on, for example, the vibration profile that provides the closest match to the measured vibrations. The results of this analysis can be reported by the vibration sensor 1604e to the network management system 1601 by way of the base station 1614.


The environmental sensor 1604f can include a barometer for measuring atmospheric pressure, ambient temperature (which can be provided by the temperature sensor 1604a), wind speed, humidity, wind direction, and rainfall, among other things. The environmental sensor 1604f can collect raw information and process this information by comparing it to environmental profiles that can be obtained from a memory of the waveguide system 1602 or a remote database to predict weather conditions before they arise via pattern recognition, an expert system, knowledge-based system or other artificial intelligence, classification or other weather modeling and prediction technique. The environmental sensor 1604f can report raw data as well as its analysis to the network management system 1601.


The image sensor 1604g can be a digital camera (e.g., a charged coupled device or CCD imager, infrared camera, etc.) for capturing images in a vicinity of the waveguide system 1602. The image sensor 1604g can include an electromechanical mechanism to control movement (e.g., actual position or focal points/zooms) of the camera for inspecting the power line 1610 from multiple perspectives (e.g., top surface, bottom surface, left surface, right surface and so on). Alternatively, the image sensor 1604g can be designed such that no electromechanical mechanism is needed in order to obtain the multiple perspectives. The collection and retrieval of imaging data generated by the image sensor 1604g can be controlled by the network management system 1601, or can be autonomously collected and reported by the image sensor 1604g to the network management system 1601.


Other sensors that may be suitable for collecting telemetry information associated with the waveguide system 1602 and/or the power lines 1610 for purposes of detecting, predicting and/or mitigating disturbances that can impede the propagation of electromagnetic wave transmissions on power lines 1610 (or any other form of a transmission medium of electromagnetic waves) may be utilized by the waveguide system 1602.


Referring now to FIG. 16B, block diagram 1650 illustrates an example, non-limiting embodiment of a system for managing a power grid 1653 and a communication system 1655 embedded therein or associated therewith in accordance with various aspects described herein. The communication system 1655 comprises a plurality of waveguide systems 1602 coupled to power lines 1610 of the power grid 1653. At least a portion of the waveguide systems 1602 used in the communication system 1655 can be in direct communication with a base station 1614 and/or the network management system 1601. Waveguide systems 1602 not directly connected to a base station 1614 or the network management system 1601 can engage in communication sessions with either a base station 1614 or the network management system 1601 by way of other downstream waveguide systems 1602 connected to a base station 1614 or the network management system 1601.


The network management system 1601 can be communicatively coupled to equipment of a utility company 1652 and equipment of a communications service provider 1654 for providing each entity, status information associated with the power grid 1653 and the communication system 1655, respectively. The network management system 1601, the equipment of the utility company 1652, and the communications service provider 1654 can access communication devices utilized by utility company personnel 1656 and/or communication devices utilized by communications service provider personnel 1658 for purposes of providing status information and/or for directing such personnel in the management of the power grid 1653 and/or communication system 1655.



FIG. 17A illustrates a flow diagram of an example, non-limiting embodiment of a method 1700 for detecting and mitigating disturbances occurring in a communication network of the systems of FIGS. 16A & 16B. Method 1700 can begin with step 1702 where a waveguide system 1602 transmits and receives messages embedded in, or forming part of, modulated electromagnetic waves or another type of electromagnetic waves traveling along a surface of a power line 1610. The messages can be voice messages, streaming video, and/or other data/information exchanged between communication devices communicatively coupled to the communication system 1655. At step 1704 the sensors 1604 of the waveguide system 1602 can collect sensing data. In an embodiment, the sensing data can be collected in step 1704 prior to, during, or after the transmission and/or receipt of messages in step 1702. At step 1706 the waveguide system 1602 (or the sensors 1604 themselves) can determine from the sensing data an actual or predicted occurrence of a disturbance in the communication system 1655 that can affect communications originating from (e.g., transmitted by) or received by the waveguide system 1602. The waveguide system 1602 (or the sensors 1604) can process temperature data, signal reflection data, loss of energy data, noise data, vibration data, environmental data, or any combination thereof to make this determination. The waveguide system 1602 (or the sensors 1604) may also detect, identify, estimate, or predict the source of the disturbance and/or its location in the communication system 1655. If a disturbance is neither detected/identified nor predicted/estimated at step 1708, the waveguide system 1602 can proceed to step 1702 where it continues to transmit and receive messages embedded in, or forming part of, modulated electromagnetic waves traveling along a surface of the power line 1610.


If at step 1708 a disturbance is detected/identified or predicted/estimated to occur, the waveguide system 1602 proceeds to step 1710 to determine if the disturbance adversely affects (or alternatively, is likely to adversely affect or the extent to which it may adversely affect) transmission or reception of messages in the communication system 1655. In one embodiment, a duration threshold and a frequency of occurrence threshold can be used at step 1710 to determine when a disturbance adversely affects communications in the communication system 1655. For illustration purposes only, assume a duration threshold is set to 500 ms, while a frequency of occurrence threshold is set to 5 disturbances occurring in an observation period of 10 sec. Thus, a disturbance having a duration greater than 500 ms will trigger the duration threshold. Additionally, any disturbance occurring more than 5 times in a 10 sec time interval will trigger the frequency of occurrence threshold.


In one embodiment, a disturbance may be considered to adversely affect signal integrity in the communication systems 1655 when the duration threshold alone is exceeded. In another embodiment, a disturbance may be considered as adversely affecting signal integrity in the communication systems 1655 when both the duration threshold and the frequency of occurrence threshold are exceeded. The latter embodiment is thus more conservative than the former embodiment for classifying disturbances that adversely affect signal integrity in the communication system 1655. It will be appreciated that many other algorithms and associated parameters and thresholds can be utilized for step 1710 in accordance with example embodiments.


Referring back to method 1700, if at step 1710 the disturbance detected at step 1708 does not meet the condition for adversely affected communications (e.g., neither exceeds the duration threshold nor the frequency of occurrence threshold), the waveguide system 1602 may proceed to step 1702 and continue processing messages. For instance, if the disturbance detected in step 1708 has a duration of 1 msec with a single occurrence in a 10 sec time period, then neither threshold will be exceeded. Consequently, such a disturbance may be considered as having a nominal effect on signal integrity in the communication system 1655 and thus would not be flagged as a disturbance requiring mitigation. Although not flagged, the occurrence of the disturbance, its time of occurrence, its frequency of occurrence, spectral data, and/or other useful information, may be reported to the network management system 1601 as telemetry data for monitoring purposes.


Referring back to step 1710, if on the other hand the disturbance satisfies the condition for adversely affected communications (e.g., exceeds either or both thresholds), the waveguide system 1602 can proceed to step 1712 and report the incident to the network management system 1601. The report can include raw sensing data collected by the sensors 1604, a description of the disturbance if known by the waveguide system 1602, a time of occurrence of the disturbance, a frequency of occurrence of the disturbance, a location associated with the disturbance, parameters readings such as bit error rate, packet loss rate, retransmission requests, jitter, latency and so on. If the disturbance is based on a prediction by one or more sensors of the waveguide system 1602, the report can include a type of disturbance expected, and if predictable, an expected time occurrence of the disturbance, and an expected frequency of occurrence of the predicted disturbance when the prediction is based on historical sensing data collected by the sensors 1604 of the waveguide system 1602.


At step 1714, the network management system 1601 can determine a mitigation, circumvention, or correction technique, which may include directing the waveguide system 1602 to reroute traffic to circumvent the disturbance if the location of the disturbance can be determined. In one embodiment, the waveguide coupling device 1402 detecting the disturbance may direct a repeater such as the one shown in FIGS. 13-14 to connect the waveguide system 1602 from a primary power line affected by the disturbance to a secondary power line to enable the waveguide system 1602 to reroute traffic to a different transmission medium and avoid the disturbance. In an embodiment where the waveguide system 1602 is configured as a repeater the waveguide system 1602 can itself perform the rerouting of traffic from the primary power line to the secondary power line. It is further noted that for bidirectional communications (e.g., full or half-duplex communications), the repeater can be configured to reroute traffic from the secondary power line back to the primary power line for processing by the waveguide system 1602.


In another embodiment, the waveguide system 1602 can redirect traffic by instructing a first repeater situated upstream of the disturbance and a second repeater situated downstream of the disturbance to redirect traffic from a primary power line temporarily to a secondary power line and back to the primary power line in a manner that avoids the disturbance. It is further noted that for bidirectional communications (e.g., full or half-duplex communications), repeaters can be configured to reroute traffic from the secondary power line back to the primary power line.


To avoid interrupting existing communication sessions occurring on a secondary power line, the network management system 1601 may direct the waveguide system 1602 to instruct repeater(s) to utilize unused time slot(s) and/or frequency band(s) of the secondary power line for redirecting data and/or voice traffic away from the primary power line to circumvent the disturbance.


At step 1716, while traffic is being rerouted to avoid the disturbance, the network management system 1601 can notify equipment of the utility company 1652 and/or equipment of the communications service provider 1654, which in turn may notify personnel of the utility company 1656 and/or personnel of the communications service provider 1658 of the detected disturbance and its location if known. Field personnel from either party can attend to resolving the disturbance at a determined location of the disturbance. Once the disturbance is removed or otherwise mitigated by personnel of the utility company and/or personnel of the communications service provider, such personnel can notify their respective companies and/or the network management system 1601 utilizing field equipment (e.g., a laptop computer, smartphone, etc.) communicatively coupled to network management system 1601, and/or equipment of the utility company and/or the communications service provider. The notification can include a description of how the disturbance was mitigated and any changes to the power lines 1610 that may change a topology of the communication system 1655.


Once the disturbance has been resolved (as determined in decision 1718), the network management system 1601 can direct the waveguide system 1602 at step 1720 to restore the previous routing configuration used by the waveguide system 1602 or route traffic according to a new routing configuration if the restoration strategy used to mitigate the disturbance resulted in a new network topology of the communication system 1655. In another embodiment, the waveguide system 1602 can be configured to monitor mitigation of the disturbance by transmitting test signals on the power line 1610 to determine when the disturbance has been removed. Once the waveguide system 1602 detects an absence of the disturbance it can autonomously restore its routing configuration without assistance by the network management system 1601 if it determines the network topology of the communication system 1655 has not changed, or it can utilize a new routing configuration that adapts to a detected new network topology.



FIG. 17B illustrates a flow diagram of an example, non-limiting embodiment of a method 1750 for detecting and mitigating disturbances occurring in a communication network of the system of FIGS. 16A and 16B. In one embodiment, method 1750 can begin with step 1752 where a network management system 1601 receives from equipment of the utility company 1652 or equipment of the communications service provider 1654 maintenance information associated with a maintenance schedule. The network management system 1601 can at step 1754 identify from the maintenance information, maintenance activities to be performed during the maintenance schedule. From these activities, the network management system 1601 can detect a disturbance resulting from the maintenance (e.g., scheduled replacement of a power line 1610, scheduled replacement of a waveguide system 1602 on the power line 1610, scheduled reconfiguration of power lines 1610 in the power grid 1653, etc.).


In another embodiment, the network management system 1601 can receive at step 1755 telemetry information from one or more waveguide systems 1602. The telemetry information can include among other things an identity of each waveguide system 1602 submitting the telemetry information, measurements taken by sensors 1604 of each waveguide system 1602, information relating to predicted, estimated, or actual disturbances detected by the sensors 1604 of each waveguide system 1602, location information associated with each waveguide system 1602, an estimated location of a detected disturbance, an identification of the disturbance, and so on. The network management system 1601 can determine from the telemetry information a type of disturbance that may be adverse to operations of the waveguide, transmission of the electromagnetic waves along the wire surface, or both. The network management system 1601 can also use telemetry information from multiple waveguide systems 1602 to isolate and identify the disturbance. Additionally, the network management system 1601 can request telemetry information from waveguide systems 1602 in a vicinity of an affected waveguide system 1602 to triangulate a location of the disturbance and/or validate an identification of the disturbance by receiving similar telemetry information from other waveguide systems 1602.


In yet another embodiment, the network management system 1601 can receive at step 1756 an unscheduled activity report from maintenance field personnel. Unscheduled maintenance may occur as result of field calls that are unplanned or as a result of unexpected field issues discovered during field calls or scheduled maintenance activities. The activity report can identify changes to a topology configuration of the power grid 1653 resulting from field personnel addressing discovered issues in the communication system 1655 and/or power grid 1653, changes to one or more waveguide systems 1602 (such as replacement or repair thereof), mitigation of disturbances performed if any, and so on.


At step 1758, the network management system 1601 can determine from reports received according to steps 1752 through 1756 if a disturbance will occur based on a maintenance schedule, or if a disturbance has occurred or is predicted to occur based on telemetry data, or if a disturbance has occurred due to an unplanned maintenance identified in a field activity report. From any of these reports, the network management system 1601 can determine whether a detected or predicted disturbance requires rerouting of traffic by the affected waveguide systems 1602 or other waveguide systems 1602 of the communication system 1655.


When a disturbance is detected or predicted at step 1758, the network management system 1601 can proceed to step 1760 where it can direct one or more waveguide systems 1602 to reroute traffic to circumvent the disturbance. When the disturbance is permanent due to a permanent topology change of the power grid 1653, the network management system 1601 can proceed to step 1770 and skip steps 1762, 1764, 1766, and 1772. At step 1770, the network management system 1601 can direct one or more waveguide systems 1602 to use a new routing configuration that adapts to the new topology. However, when the disturbance has been detected from telemetry information supplied by one or more waveguide systems 1602, the network management system 1601 can notify maintenance personnel of the utility company 1656 or the communications service provider 1658 of a location of the disturbance, a type of disturbance if known, and related information that may be helpful to such personnel to mitigate the disturbance. When a disturbance is expected due to maintenance activities, the network management system 1601 can direct one or more waveguide systems 1602 to reconfigure traffic routes at a given schedule (consistent with the maintenance schedule) to avoid disturbances caused by the maintenance activities during the maintenance schedule.


Returning back to step 1760 and upon its completion, the process can continue with step 1762. At step 1762, the network management system 1601 can monitor when the disturbance(s) have been mitigated by field personnel. Mitigation of a disturbance can be detected at step 1762 by analyzing field reports submitted to the network management system 1601 by field personnel over a communications network (e.g., cellular communication system) utilizing field equipment (e.g., a laptop computer or handheld computer/device). If field personnel have reported that a disturbance has been mitigated, the network management system 1601 can proceed to step 1764 to determine from the field report whether a topology change was required to mitigate the disturbance. A topology change can include rerouting a power line 1610, reconfiguring a waveguide system 1602 to utilize a different power line 1610, otherwise utilizing an alternative link to bypass the disturbance and so on. If a topology change has taken place, the network management system 1601 can direct at step 1770 one or more waveguide systems 1602 to use a new routing configuration that adapts to the new topology.


If, however, a topology change has not been reported by field personnel, the network management system 1601 can proceed to step 1766 where it can direct one or more waveguide systems 1602 to send test signals to test a routing configuration that had been used prior to the detected disturbance(s). Test signals can be sent to affected waveguide systems 1602 in a vicinity of the disturbance. The test signals can be used to determine if signal disturbances (e.g., electromagnetic wave reflections) are detected by any of the waveguide systems 1602. If the test signals confirm that a prior routing configuration is no longer subject to previously detected disturbance(s), then the network management system 1601 can at step 1772 direct the affected waveguide systems 1602 to restore a previous routing configuration. If, however, test signals analyzed by one or more waveguide coupling device 1402 and reported to the network management system 1601 indicate that the disturbance(s) or new disturbance(s) are present, then the network management system 1601 will proceed to step 1768 and report this information to field personnel to further address field issues. The network management system 1601 can in this situation continue to monitor mitigation of the disturbance(s) at step 1762.


In the aforementioned embodiments, the waveguide systems 1602 can be configured to be self-adapting to changes in the power grid 1653 and/or to mitigation of disturbances. That is, one or more affected waveguide systems 1602 can be configured to self-monitor mitigation of disturbances and reconfigure traffic routes without requiring instructions to be sent to them by the network management system 1601. In this embodiment, the one or more waveguide systems 1602 that are self-configurable can inform the network management system 1601 of its routing choices so that the network management system 1601 can maintain a macro-level view of the communication topology of the communication system 1655.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIGS. 17A and 17B, respectively, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Turning now to FIG. 18A, a block diagram illustrating an example, non-limiting embodiment of a transmission medium 1800 for propagating guided electromagnetic waves is shown. In particular, a further example of transmission medium 125 presented in conjunction with FIG. 1 is presented. In an embodiment, the transmission medium 1800 can comprise a first dielectric material 1802 and a second dielectric material 1804 disposed thereon. In an embodiment, the first dielectric material 1802 can comprise a dielectric core (referred to herein as dielectric core 1802) and the second dielectric material 1804 can comprise a cladding or shell such as a dielectric foam that surrounds in whole or in part the dielectric core (referred to herein as dielectric foam 1804). In an embodiment, the dielectric core 1802 and dielectric foam 1804 can be coaxially aligned to each other (although not necessary). In an embodiment, the combination of the dielectric core 1802 and the dielectric foam 1804 can be flexed or bent at least by 45 degrees without damaging the materials of the dielectric core 1802 and the dielectric foam 1804. In an embodiment, an outer surface of the dielectric foam 1804 can be further surrounded in whole or in part by a third dielectric material 1806, which can serve as an outer jacket (referred to herein as jacket 1806). The jacket 1806 can prevent exposure of the dielectric core 1802 and the dielectric foam 1804 to an environment that can adversely affect the propagation of electromagnetic waves (e.g., water, soil, etc.).


The dielectric core 1802 can comprise, for example, a high density polyethylene material, a high density polyurethane material, or other suitable dielectric material(s). The dielectric foam 1804 can comprise, for example, a cellular plastic material such an expanded polyethylene material, or other suitable dielectric material(s). The jacket 1806 can comprise, for example, a polyethylene material or equivalent. In an embodiment, the dielectric constant of the dielectric foam 1804 can be (or substantially) lower than the dielectric constant of the dielectric core 1802. For example, the dielectric constant of the dielectric core 1802 can be approximately 2.3 while the dielectric constant of the dielectric foam 1804 can be approximately 1.15 (slightly higher than the dielectric constant of air).


The dielectric core 1802 can be used for receiving signals in the form of electromagnetic waves from a launcher or other coupling device described herein which can be configured to launch guided electromagnetic waves on the transmission medium 1800. In one embodiment, the transmission 1800 can be coupled to a hollow waveguide 1808 structured as, for example, a circular waveguide 1809, which can receive electromagnetic waves from a radiating device such as a stub antenna (not shown). The hollow waveguide 1808 can in turn induce guided electromagnetic waves in the dielectric core 1802. In this configuration, the guided electromagnetic waves are guided by or bound to the dielectric core 1802 and propagate longitudinally along the dielectric core 1802. By adjusting electronics of the launcher, an operating frequency of the electromagnetic waves can be chosen such that a field intensity profile 1810 of the guided electromagnetic waves extends nominally (or not at all) outside of the jacket 1806.


By maintaining most (if not all) of the field strength of the guided electromagnetic waves within portions of the dielectric core 1802, the dielectric foam 1804 and/or the jacket 1806, the transmission medium 1800 can be used in hostile environments without adversely affecting the propagation of the electromagnetic waves propagating therein. For example, the transmission medium 1800 can be buried in soil with no (or nearly no) adverse effect to the guided electromagnetic waves propagating in the transmission medium 1800. Similarly, the transmission medium 1800 can be exposed to water (e.g., rain or placed underwater) with no (or nearly no) adverse effect to the guided electromagnetic waves propagating in the transmission medium 1800. In an embodiment, the propagation loss of guided electromagnetic waves in the foregoing embodiments can be 1 to 2 dB per meter or better at an operating frequency of 60 GHz. Depending on the operating frequency of the guided electromagnetic waves and/or the materials used for the transmission medium 1800 other propagation losses may be possible. Additionally, depending on the materials used to construct the transmission medium 1800, the transmission medium 1800 can in some embodiments be flexed laterally with no (or nearly no) adverse effect to the guided electromagnetic waves propagating through the dielectric core 1802 and the dielectric foam 1804.



FIG. 18B depicts a transmission medium 1820 that differs from the transmission medium 1800 of FIG. 18A, yet provides a further example of the transmission medium 125 presented in conjunction with FIG. 1. The transmission medium 1820 shows similar reference numerals for similar elements of the transmission medium 1800 of FIG. 18A. In contrast to the transmission medium 1800, the transmission medium 1820 comprises a conductive core 1822 having an insulation layer 1823 surrounding the conductive core 1822 in whole or in part. The combination of the insulation layer 1823 and the conductive core 1822 will be referred to herein as an insulated conductor 1825. In the illustration of FIG. 18B, the insulation layer 1823 is covered in whole or in part by a dielectric foam 1804 and jacket 1806, which can be constructed from the materials previously described. In an embodiment, the insulation layer 1823 can comprise a dielectric material, such as polyethylene, having a higher dielectric constant than the dielectric foam 1804 (e.g., 2.3 and 1.15, respectively). In an embodiment, the components of the transmission medium 1820 can be coaxially aligned (although not necessary). In an embodiment, a hollow waveguide 1808 having metal plates 1809, which can be separated from the insulation layer 1823 (although not necessary) can be used to launch guided electromagnetic waves that substantially propagate on an outer surface of the insulation layer 1823, however other coupling devices as described herein can likewise be employed. In an embodiment, the guided electromagnetic waves can be sufficiently guided by or bound by the insulation layer 1823 to guide the electromagnetic waves longitudinally along the insulation layer 1823. By adjusting operational parameters of the launcher, an operating frequency of the guided electromagnetic waves launched by the hollow waveguide 1808 can generate an electric field intensity profile 1824 that results in the guided electromagnetic waves being substantially confined within the dielectric foam 1804 thereby preventing the guided electromagnetic waves from being exposed to an environment (e.g., water, soil, etc.) that adversely affects propagation of the guided electromagnetic waves via the transmission medium 1820.



FIG. 18C depicts a transmission medium 1830 that differs from the transmission mediums 1800 and 1820 of FIGS. 18A and 18B, yet provides a further example of the transmission medium 125 presented in conjunction with FIG. 1. The transmission medium 1830 shows similar reference numerals for similar elements of the transmission mediums 1800 and 1820 of FIGS. 18A and 18B, respectively. In contrast to the transmission mediums 1800 and 1820, the transmission medium 1830 comprises a bare (or uninsulated) conductor 1832 surrounded in whole or in part by the dielectric foam 1804 and the jacket 1806, which can be constructed from the materials previously described. In an embodiment, the components of the transmission medium 1830 can be coaxially aligned (although not necessary). In an embodiment, a hollow waveguide 1808 having metal plates 1809 coupled to the bare conductor 1832 can be used to launch guided electromagnetic waves that substantially propagate on an outer surface of the bare conductor 1832, however other coupling devices described herein can likewise be employed. In an embodiment, the guided electromagnetic waves can be sufficiently guided by or bound by the bare conductor 1832 to guide the guided electromagnetic waves longitudinally along the bare conductor 1832. By adjusting operational parameters of the launcher, an operating frequency of the guided electromagnetic waves launched by the hollow waveguide 1808 can generate an electric field intensity profile 1834 that results in the guided electromagnetic waves being substantially confined within the dielectric foam 1804 thereby preventing the guided electromagnetic waves from being exposed to an environment (e.g., water, soil, etc.) that adversely affects propagation of the electromagnetic waves via the transmission medium 1830.


It should be noted that the hollow launcher 1808 used with the transmission mediums 1800, 1820 and 1830 of FIGS. 18A, 18B and 18C, respectively, can be replaced with other launchers or coupling devices. Additionally, the propagation mode(s) of the electromagnetic waves for any of the foregoing embodiments can be fundamental mode(s), a non-fundamental (or asymmetric) mode(s), or combinations thereof.



FIG. 18D is a block diagram illustrating an example, non-limiting embodiment of bundled transmission media 1836 in accordance with various aspects described herein. The bundled transmission media 1836 can comprise a plurality of cables 1838 held in place by a flexible sleeve 1839. The plurality of cables 1838 can comprise multiple instances of cable 1800 of FIG. 18A, multiple instances of cable 1820 of FIG. 18B, multiple instances of cable 1830 of FIG. 18C, or any combinations thereof. The sleeve 1839 can comprise a dielectric material that prevents soil, water or other external materials from making contact with the plurality of cables 1838. In an embodiment, a plurality of launchers, each utilizing a transceiver similar to the one depicted in FIG. 10A or other coupling devices described herein, can be adapted to selectively induce a guided electromagnetic wave in each cable, each guided electromagnetic wave conveys different data (e.g., voice, video, messaging, content, etc.). In an embodiment, by adjusting operational parameters of each launcher or other coupling device, the electric field intensity profile of each guided electromagnetic wave can be fully or substantially confined within layers of a corresponding cable 1838 to reduce cross-talk between cables 1838.


In situations where the electric field intensity profile of each guided electromagnetic wave is not fully or substantially confined within a corresponding cable 1838, cross-talk of electromagnetic signals can occur between cables 1838 as illustrated by signal plots associated with two cables depicted in FIG. 18E. The plots in FIG. 18E show that when a guided electromagnetic wave is induced on a first cable, the emitted electric and magnetic fields of the first cable can induce signals on the second cable, which results in cross-talk. Several mitigation options can be used to reduce cross-talk between the cables 1838 of FIG. 18D. In an embodiment, an absorption material 1840 that can absorb electromagnetic fields, such as carbon, can be applied to the cables 1838 as shown in FIG. 18F to polarize each guided electromagnetic wave at various polarization states to reduce cross-talk between cables 1838. In another embodiment (not shown), carbon beads can be added to gaps between the cables 1838 to reduce cross-talk.


In yet another embodiment (not shown), a diameter of cable 1838 can be configured differently to vary a speed of propagation of guided electromagnetic waves between the cables 1838 in order to reduce cross-talk between cables 1838. In an embodiment (not shown), a shape of each cable 1838 can be made asymmetric (e.g., elliptical) to direct the guided electromagnetic fields of each cable 1838 away from each other to reduce cross-talk. In an embodiment (not shown), a filler material such as dielectric foam can be added between cables 1838 to sufficiently separate the cables 1838 to reduce cross-talk therebetween. In an embodiment (not shown), longitudinal carbon strips or swirls can be applied to on an outer surface of the jacket 1806 of each cable 1838 to reduce radiation of guided electromagnetic waves outside of the jacket 1806 and thereby reduce cross-talk between cables 1838. In yet another embodiment, each launcher can be configured to launch a guided electromagnetic wave having a different frequency, modulation, wave propagation mode, such as an orthogonal frequency, modulation or mode, to reduce cross-talk between the cables 1838.


In yet another embodiment (not shown), pairs of cables 1838 can be twisted in a helix to reduce cross-talk between the pairs and other cables 1838 in a vicinity of the pairs. In some embodiments, certain cables 1838 can be twisted while other cables 1838 are not twisted to reduce cross-talk between the cables 1838. Additionally, each twisted pair cable 1838 can have different pitches (i.e., different twist rates, such as twists per meter) to further reduce cross-talk between the pairs and other cables 1838 in a vicinity of the pairs. In another embodiment (not shown), launchers or other coupling devices can be configured to induce guided electromagnetic waves in the cables 1838 having electromagnetic fields that extend beyond the jacket 1806 into gaps between the cables to reduce cross-talk between the cables 1838. It is submitted that any one of the foregoing embodiments for mitigating cross-talk between cables 1838 can be combined to further reduce cross-talk therebetween.



FIGS. 18G and 18H are block diagrams illustrating example, non-limiting embodiments of a transmission medium with an inner waveguide in accordance with various aspects described herein. In an embodiment, a transmission medium 1841 can comprise a core 1842. In one embodiment, the core 1842 can be a dielectric core 1842 (e.g., polyethylene). In another embodiment, the core 1842 can be an insulated or uninsulated conductor. The core 1842 can be surrounded by a shell 1844 comprising a dielectric foam (e.g., expanded polyethylene material) having a lower dielectric constant than the dielectric constant of a dielectric core, or insulation layer of a conductive core. The difference in dielectric constants enables electromagnetic waves to be bound and guided by the core 1842. The shell 1844 can be covered by a shell jacket 1845. The shell jacket 1845 can be made of rigid material (e.g., high density plastic) or a high tensile strength material (e.g., synthetic fiber). In an embodiment, the shell jacket 1845 can be used to prevent exposure of the shell 1844 and core 1842 from an adverse environment (e.g., water, moisture, soil, etc.). In an embodiment, the shell jacket 1845 can be sufficiently rigid to separate an outer surface of the core 1842 from an inner surface of the shell jacket 1845 thereby resulting in a longitudinal gap between the shell jacket 1854 and the core 1842. The longitudinal gap can be filled with the dielectric foam of the shell 1844.


The transmission medium 1841 can further include a plurality of outer ring conductors 1846. The outer ring conductors 1846 can be strands of conductive material that are woven around the shell jacket 1845, thereby covering the shell jacket 1845 in whole or in part. The outer ring conductors 1846 can serve the function of a power line having a return electrical path similar to the embodiments described in the subject disclosure for receiving power signals from a source (e.g., a transformer, a power generator, etc.). In one embodiment, the outer ring conductors 1846 can be covered by a cable jacket 1847 to prevent exposure of the outer ring conductors 1846 to water, soil, or other environmental factors. The cable jacket 1847 can be made of an insulating material such as polyethylene. The core 1842 can be used as a center waveguide for the propagation of electromagnetic waves. A hallow waveguide launcher 1808, such as the circular waveguide previously described, can be used to launch signals that induce electromagnetic waves guided by the core 1842 in ways similar to those described for the embodiments of FIGS. 18A, 18B, and 18C. The electromagnetic waves can be guided by the core 1842 without utilizing the electrical return path of the outer ring conductors 1846 or any other electrical return path. By adjusting electronics of the launcher 1808, an operating frequency of the electromagnetic waves can be chosen such that a field intensity profile of the guided electromagnetic waves extends nominally (or not at all) outside of the shell jacket 1845.


In another embodiment, a transmission medium 1843 can comprise a hollow core 1842′ surrounded by a shell jacket 1845′. The shell jacket 1845′ can have an inner conductive surface or other surface materials that enable the hollow core 1842′ to be used as a conduit for electromagnetic waves. The shell jacket 1845′ can be covered at least in part with the outer ring conductors 1846 described earlier for conducting a power signal. In an embodiment, a cable jacket 1847 can be disposed on an outer surface of the outer ring conductors 1846 to prevent exposure of the outer ring conductors 1846 to water, soil or other environmental factors. A waveguide launcher 1808 can be used to launch electromagnetic waves guided by the hollow core 1842′ and the conductive inner surface of the shell jacket 1845′. In an embodiment (not shown) the hollow core 1842′ can further include a dielectric foam such as described earlier.


Transmission medium 1841 can represent a multi-purpose cable that conducts power on the outer ring conductors 1846 utilizing an electrical return path and that provides communication services by way of an inner waveguide comprising a combination of the core 1842, the shell 1844 and the shell jacket 1845. The inner waveguide can be used for transmitting or receiving electromagnetic waves (without utilizing an electrical return path) guided by the core 1842. Similarly, transmission medium 1843 can represent a multi-purpose cable that conducts power on the outer ring conductors 1846 utilizing an electrical return path and that provides communication services by way of an inner waveguide comprising a combination of the hollow core 1842′ and the shell jacket 1845′. The inner waveguide can be used for transmitting or receiving electromagnetic waves (without utilizing an electrical return path) guided the hollow core 1842′ and the shell jacket 1845′.


It is submitted that embodiments of FIGS. 18G-18H can be adapted to use multiple inner waveguides surrounded by outer ring conductors 1846. The inner waveguides can be adapted to use to cross-talk mitigation techniques described above (e.g., twisted pairs of waveguides, waveguides of different structural dimensions, use of polarizers within the shell, use of different wave modes, etc.).


For illustration purposes only, the transmission mediums 1800, 1820, 18301836, 1841 and 1843 will be referred to herein as a cable 1850 with an understanding that cable 1850 can represent any one of the transmission mediums described in the subject disclosure, or a bundling of multiple instances thereof. For illustration purposes only, the dielectric core 1802, insulated conductor 1825, bare conductor 1832, core 1842, or hollow core 1842′ of the transmission mediums 1800, 1820, 1830, 1836, 1841 and 1843, respectively, will be referred to herein as transmission core 1852 with an understanding that cable 1850 can utilize the dielectric core 1802, insulated conductor 1825, bare conductor 1832, core 1842, or hollow core 1842′ of transmission mediums 1800, 1820, 1830, 1836, 1841 and/or 1843, respectively.


Turning now to FIGS. 18I and 18J, block diagrams illustrating example, non-limiting embodiments of connector configurations that can be used by cable 1850 are shown. In one embodiment, cable 1850 can be configured with a female connection arrangement or a male connection arrangement as depicted in FIG. 18I. The male configuration on the right of FIG. 18I can be accomplished by stripping the dielectric foam 1804 (and jacket 1806 if there is one) to expose a portion of the transmission core 1852. The female configuration on the left of FIG. 18I can be accomplished by removing a portion of the transmission core 1852, while maintaining the dielectric foam 1804 (and jacket 1806 if there is one). In an embodiment in which the transmission core 1852 is hollow as described in relation to FIG. 18H, the male portion of the transmission core 1852 can represent a hollow core with a rigid outer surface that can slide into the female arrangement on the left side of FIG. 18I to align the hollow cores together. It is further noted that in the embodiments of FIGS. 18G-18H, the outer ring of conductors 1846 can be modified to connect male and female portions of cable 1850.


Based on the aforementioned embodiments, the two cables 1850 having male and female connector arrangements can be mated together. A sleeve with an adhesive inner lining or a shrink wrap material (not shown) can be applied to an area of a joint between cables 1850 to maintain the joint in a fixed position and prevent exposure (e.g., to water, soil, etc.). When the cables 1850 are mated, the transmission core 1852 of one cable will be in close proximity to the transmission core 1852 of the other cable. Guided electromagnetic waves propagating by way of either the transmission core 1852 of cables 1850 traveling from either direction can cross over between the disjoint the transmission cores 1852 whether or not the transmission cores 1852 touch, whether or not the transmission cores 1852 are coaxially aligned, and/or whether or not there is a gap between the transmission cores 1852.


In another embodiment, a splicing device 1860 having female connector arrangements at both ends can be used to mate cables 1850 having male connector arrangements as shown in FIG. 18J. In an alternative embodiment not shown in FIG. 18J, the splicing device 1860 can be adapted to have male connector arrangements at both ends which can be mated to cables 1850 having female connector arrangements. In another embodiment not shown in FIG. 18J, the splicing device 1860 can be adapted to have a male connector arrangement and a female connector arrangement at opposite ends which can be mated to cables 1850 having female and male connector arrangements, respectively. It is further noted that for a transmission core 1852 having a hollow core, the male and female arrangements described in FIG. 18I can be applied to the splicing device 1860 whether the ends of the splicing device 1860 are both male, both female, or a combination thereof.


The foregoing embodiments for connecting cables illustrated in FIGS. 18I-18J can be applied to each single instance of cable 1838 of bundled transmission media 1836. Similarly, the foregoing embodiments illustrated in FIGS. 18I-18J can be applied to each single instance of an inner waveguide for a cable 1841 or 1843 having multiple inner waveguides.


Turning now to FIG. 18K, a block diagram illustrating example, non-limiting embodiments of transmission mediums 1800′, 1800″, 1800′″ and 1800″″ for propagating guided electromagnetic waves is shown. In an embodiment, a transmission medium 1800′ can include a core 1801, and a dielectric foam 1804′ divided into sections and covered by a jacket 1806 as shown in FIG. 18K. The core 1801 can be represented by the dielectric core 1802 of FIG. 18A, the insulated conductor 1825 of FIG. 18B, or the bare conductor 1832 of FIG. 18C. Each section of dielectric foam 1804′ can be separated by a gap (e.g., air, gas, vacuum, or a substance with a low dielectric constant). In an embodiment, the gap separations between the sections of dielectric foam 1804′ can be quasi-random as shown in FIG. 18K, which can be helpful in reducing reflections of electromagnetic waves occurring at each section of dielectric foam 1804′ as they propagate longitudinally along the core 1801. The sections of the dielectric foam 1804′ can be constructed, for example, as washers made of a dielectric foam having an inner opening for supporting the core 1801 in a fixed position. For illustration purposes only, the washers will be referred to herein as washers 1804′. In an embodiment, the inner opening of each washer 1804′ can be coaxially aligned with an axis of the core 1801. In another embodiment, the inner opening of each washer 1804′ can be offset from the axis of the core 1801. In another embodiment (not shown), each washer 1804′ can have a variable longitudinal thickness as shown by differences in thickness of the washers 1804′.


In an alternative embodiment, a transmission medium 1800″ can include a core 1801, and a strip of dielectric foam 1804″ wrapped around the core in a helix covered by a jacket 1806 as shown in FIG. 18K. Although it may not be apparent from the drawing shown in FIG. 18K, in an embodiment the strip of dielectric foam 1804″ can be twisted around the core 1801 with variable pitches (i.e., different twist rates) for different sections of the strip of dielectric foam 1804″. Utilizing variable pitches can help reduce reflections or other disturbances of the electromagnetic waves occurring between areas of the core 1801 not covered by the strip of dielectric foam 1804″. It is further noted that the thickness (diameter) of the strip of dielectric foam 1804″ can be substantially larger (e.g., 2 or more times larger) than diameter of the core 1801 shown in FIG. 18K.


In an alternative embodiment, a transmission medium 1800′″ (shown in a cross-sectional view) can include a non-circular core 1801′ covered by a dielectric foam 1804 and jacket 1806. In an embodiment, the non-circular core 1801′ can have an elliptical structure as shown in FIG. 18K, or other suitable non-circular structure. In another embodiment, the non-circular core 1801′ can have an asymmetric structure. A non-circular core 1801′ can be used to polarize the fields of electromagnetic waves induced on the non-circular core 1801′. The structure of the non-circular core 1801′ can help preserve the polarization of the electromagnetic waves as they propagate along the non-circular core 1801′.


In an alternative embodiment, a transmission medium 1800″″ (shown in a cross-sectional view) can include multiple cores 1801″ (only two cores are shown but more are possible). The multiple cores 1801″ can be covered by a dielectric foam 1804 and jacket 1806. The multiple cores 1801″ can be used to polarize the fields of electromagnetic waves induced on the multiple cores 1801″. The structure of the multiple cores 1801′ can preserve the polarization of the guided electromagnetic waves as they propagate along the multiple cores 1801″.


It will be appreciated that the embodiments of FIG. 18K can be used to modify the embodiments of FIGS. 18G-18H. For example, core 1842 or core 1842′ can be adapted to utilized sectionalized shells 1804′ with gaps therebetween, or one or more strips of dielectric foam 1804″. Similarly, core 1842 or core 1842′ can be adapted to have a non-circular core 1801′ that may have symmetric or asymmetric cross-sectional structure. Additionally, core 1842 or core 1842′ can be adapted to use multiple cores 1801″ in a single inner waveguide, or different numbers of cores when multiple inner waveguides are used. Accordingly, any of the embodiments shown in FIG. 18K can be applied singly or in combination to the embodiments of 18G-18H.


Turning now to FIG. 18L is a block diagram illustrating example, non-limiting embodiments of bundled transmission media to mitigate cross-talk in accordance with various aspects described herein. In an embodiment, a bundled transmission medium 1836′ can include variable core structures 1803. By varying the structures of cores 1803, fields of guided electromagnetic waves induced in each of the cores of transmission medium 1836′ may differ sufficiently to reduce cross-talk between cables 1838. In another embodiment, a bundled transmission media 1836″ can include a variable number of cores 1803′ per cable 1838. By varying the number of cores 1803′ per cable 1838, fields of guided electromagnetic waves induced in the one or more cores of transmission medium 1836″ may differ sufficiently to reduce cross-talk between cables 1838. In another embodiment, the cores 1803 or 1803′ can be of different materials. For example, the cores 1803 or 1803′ can be a dielectric core 1802, an insulated conductor core 1825, a bare conductor core 1832, or any combinations thereof.


It is noted that the embodiments illustrated in FIGS. 18A-18D and 18F-18H can be modified by and/or combined with some of the embodiments of FIGS. 18K-18L. It is further noted that one or more of the embodiments illustrated in FIGS. 18K-18L can be combined (e.g., using sectionalized dielectric foam 1804′ or a helix strip of dielectric foam 1804″ with cores 1801′, 1801″, 1803 or 1803′). In some embodiments guided electromagnetic waves propagating in the transmission mediums 1800′, 1800″, 1800′″, and/or 1800″″ of FIG. 18K may experience less propagation losses than guided electromagnetic waves propagating in the transmission mediums 1800, 1820 and 1830 of FIGS. 18A-18C. Additionally, the embodiments illustrated in FIGS. 18K-18L can be adapted to use the connectivity embodiments illustrated in FIGS. 18I-18J.


Turning now to FIG. 18M, a block diagram illustrating an example, non-limiting embodiment of exposed tapered stubs from the bundled transmission media 1836 for use as antennas 1855 is shown. Each antenna 1855 can serve as a directional antenna for radiating wireless signals directed to wireless communication devices or for inducing electromagnetic wave propagation on a surface of a transmission medium (e.g., a power line). In an embodiment, the wireless signals radiated by the antennas 1855 can be beam steered by adapting the phase and/or other characteristics of the wireless signals generated by each antenna 1855. In an embodiment, the antennas 1855 can individually be placed in a pie-pan antenna assembly for directing wireless signals in various directions.


It is further noted that the terms “core”, “cladding”, “shell”, and “foam” as utilized in the subject disclosure can comprise any types of materials (or combinations of materials) that enable electromagnetic waves to remain bound to the core while propagating longitudinally along the core. For example, a strip of dielectric foam 1804″ described earlier can be replaced with a strip of an ordinary dielectric material (e.g., polyethylene) for wrapping around the dielectric core 1802 (referred to herein for illustration purposes only as a “wrap”). In this configuration an average density of the wrap can be small as a result of air space between sections of the wrap. Consequently, an effective dielectric constant of the wrap can be less than the dielectric constant of the dielectric core 1802, thereby enabling guided electromagnetic waves to remain bound to the core. Accordingly, any of the embodiments of the subject disclosure relating to materials used for core(s) and wrappings about the core(s) can be structurally adapted and/or modified with other dielectric materials that achieve the result of maintaining electromagnetic waves bound to the core(s) while they propagate along the core(s). Additionally, a core in whole or in part as described in any of the embodiments of the subject disclosure can comprise an opaque material (e.g., polyethylene) that is resistant to propagation of electromagnetic waves having an optical operating frequency. Accordingly, electromagnetic waves guided and bound to the core will have a non-optical frequency range (e.g., less than the lowest frequency of visible light).



FIGS. 18N, 18O, 18P, 18Q, 18R, 18S and 18T are block diagrams illustrating example, non-limiting embodiments of a waveguide device for transmitting or receiving electromagnetic waves in accordance with various aspects described herein. In an embodiment, FIG. 18N illustrates a front view of a waveguide device 1865 having a plurality of slots 1863 (e.g., openings or apertures) for emitting electromagnetic waves having radiated electric fields (e-fields) 1861. In an embodiment, the radiated e-fields 1861 of pairs of symmetrically positioned slots 1863 (e.g., north and south slots of the waveguide 1865) can be directed away from each other (i.e., polar opposite radial orientations about the cable 1862). While the slots 1863 are shown as having a rectangular shape, other shapes such as other polygons, sector and arc shapes, ellipsoid shapes and other shapes are likewise possible. For illustration purposes only, the term north will refer to a relative direction as shown in the figures. All references in the subject disclosure to other directions (e.g., south, east, west, northwest, and so forth) will be relative to northern illustration. In an embodiment, to achieve e-fields with opposing orientations at the north and south slots 1863, for example, the north and south slots 1863 can be arranged to have a circumferential distance between each other that is approximately one wavelength of electromagnetic waves signals supplied to these slots. The waveguide 1865 can have a cylindrical cavity in a center of the waveguide 1865 to enable placement of a cable 1862. In one embodiment, the cable 1862 can comprise an insulated conductor. In another embodiment, the cable 1862 can comprise an uninsulated conductor. In yet other embodiments, the cable 1862 can comprise any of the embodiments of a transmission core 1852 of cable 1850 previously described.


In one embodiment, the cable 1862 can slide into the cylindrical cavity of the waveguide 1865. In another embodiment, the waveguide 1865 can utilize an assembly mechanism (not shown). The assembly mechanism (e.g., a hinge or other suitable mechanism that provides a way to open the waveguide 1865 at one or more locations) can be used to enable placement of the waveguide 1865 on an outer surface of the cable 1862 or otherwise to assemble separate pieces together to form the waveguide 1865 as shown. According to these and other suitable embodiments, the waveguide 1865 can be configured to wrap around the cable 1862 like a collar.



FIG. 18O illustrates a side view of an embodiment of the waveguide 1865. The waveguide 1865 can be adapted to have a hollow rectangular waveguide portion 1867 that receives electromagnetic waves 1866 generated by a transmitter circuit as previously described in the subject disclosure (e.g., see FIGS. 1 and 10A). The electromagnetic waves 1866 can be distributed by the hollow rectangular waveguide portion 1867 into in a hollow collar 1869 of the waveguide 1865. The rectangular waveguide portion 1867 and the hollow collar 1869 can be constructed of materials suitable for maintaining the electromagnetic waves within the hollow chambers of these assemblies (e.g., carbon fiber materials). It should be noted that while the waveguide portion 1867 is shown and described in a hollow rectangular configuration, other shapes and/or other non-hollow configurations can be employed. In particular, the waveguide portion 1867 can have a square or other polygonal cross section, an arc or sector cross section that is truncated to conform to the outer surface of the cable 1862, a circular or ellipsoid cross section or cross sectional shape. In addition, the waveguide portion 1867 can be configured as, or otherwise include, a solid dielectric material.


As previously described, the hollow collar 1869 can be configured to emit electromagnetic waves from each slot 1863 with opposite e-fields 1861 at pairs of symmetrically positioned slots 1863 and 1863′. In an embodiment, the electromagnetic waves emitted by the combination of slots 1863 and 1863′ can in turn induce electromagnetic waves 1868 on that are bound to the cable 1862 for propagation according to a fundamental wave mode without other wave modes present—such as non-fundamental wave modes. In this configuration, the electromagnetic waves 1868 can propagate longitudinally along the cable 1862 to other downstream waveguide systems coupled to the cable 1862.


It should be noted that since the hollow rectangular waveguide portion 1867 of FIG. 18O is closer to slot 1863 (at the northern position of the waveguide 1865), slot 1863 can emit electromagnetic waves having a stronger magnitude than electromagnetic waves emitted by slot 1863′ (at the southern position). To reduce magnitude differences between these slots, slot 1863′ can be made larger than slot 1863. The technique of utilizing different slot sizes to balance signal magnitudes between slots can be applied to any of the embodiments of the subject disclosure relating to FIGS. 18N, 18O, 18Q, 18S, 18U and 18V—some of which are described below.


In another embodiment, FIG. 18P depicts a waveguide 1865′ that can be configured to utilize circuitry such as monolithic microwave integrated circuits (MMICs) 1870 each coupled to a signal input 1872 (e.g., coaxial cable that provides a communication signal). The signal input 1872 can be generated by a transmitter circuit as previously described in the subject disclosure (e.g., see reference 101, 1000 of FIGS. 1 and 10A) adapted to provide electrical signals to the MMICs 1870. Each MMIC 1870 can be configured to receive signal 1872 which the MMIC 1870 can modulate and transmit with a radiating element (e.g., an antenna) to emit electromagnetic waves having radiated e-fields 1861. In one embodiment, the MMICs 1870 can be configured to receive the same signal 1872, but transmit electromagnetic waves having e-fields 1861 of opposing orientation. This can be accomplished by configuring one of the MMICs 1870 to transmit electromagnetic waves that are 180 degrees out of phase with the electromagnetic waves transmitted by the other MMIC 1870. In an embodiment, the combination of the electromagnetic waves emitted by the MMICs 1870 can together induce electromagnetic waves 1868 that are bound to the cable 1862 for propagation according to a fundamental wave mode without other wave modes present—such as non-fundamental wave modes. In this configuration, the electromagnetic waves 1868 can propagate longitudinally along the cable 1862 to other downstream waveguide systems coupled to the cable 1862.


A tapered horn 1880 can be added to the embodiments of FIGS. 18O and 18P to assist in the inducement of the electromagnetic waves 1868 on cable 1862 as depicted in FIGS. 18Q and 18R. In an embodiment where the cable 1862 is an uninsulated conductor, the electromagnetic waves induced on the cable 1862 can have a large radial dimension (e.g., 1 meter). To enable use of a smaller tapered horn 1880, an insulation layer 1879 can be applied on a portion of the cable 1862 at or near the cavity as depicted with hash lines in FIGS. 18Q and 18R. The insulation layer 1879 can have a tapered end facing away from the waveguide 1865. The added insulation enables the electromagnetic waves 1868 initially launched by the waveguide 1865 (or 1865′) to be tightly bound to the insulation, which in turn reduces the radial dimension of the electromagnetic fields 1868 (e.g., centimeters). As the electromagnetic waves 1868 propagate away from the waveguide 1865 (1865′) and reach the tapered end of the insulation layer 1879, the radial dimension of the electromagnetic waves 1868 begin to increase eventually achieving the radial dimension they would have had had the electromagnetic waves 1868 been induced on the uninsulated conductor without an insulation layer. In the illustration of FIGS. 18Q and 18R the tapered end begins at an end of the tapered horn 1880. In other embodiments, the tapered end of the insulation layer 1879 can begin before or after the end of the tapered horn 1880. The tapered horn can be metallic or constructed of other conductive material or constructed of a plastic or other non-conductive material that is coated or clad with a dielectric layer or doped with a conductive material to provide reflective properties similar to a metallic horn.


In an embodiment, cable 1862 can comprise any of the embodiments of cable 1850 described earlier. In this embodiment, waveguides 1865 and 1865′ can be coupled to a transmission core 1852 of cable 1850 as depicted in FIGS. 18S and 18T. The waveguides 1865 and 1865′ can induce, as previously described, electromagnetic waves 1868 on the transmission core 1852 for propagation entirely or partially within inner layers of cable 1850.


It is noted that for the foregoing embodiments of FIGS. 18Q, 18R, 18S and 18T, electromagnetic waves 1868 can be bidirectional. For example, electromagnetic waves 1868 of a different operating frequency can be received by slots 1863 or MMICs 1870 of the waveguides 1865 and 1865′, respectively. Once received, the electromagnetic waves can be converted by a receiver circuit (e.g., see reference 101, 1000 of FIGS. 1 and 10A) for generating a communication signal for processing.


Although not shown, it is further noted that the waveguides 1865 and 1865′ can be adapted so that the waveguides 1865 and 1865′ can direct electromagnetic waves 1868 upstream or downstream longitudinally. For example, a first tapered horn 1880 coupled to a first instance of a waveguide 1865 or 1865′ can be directed westerly on cable 1862, while a second tapered horn 1880 coupled to a second instance of a waveguide 1865 or 1865′ can be directed easterly on cable 1862. The first and second instances of the waveguides 1865 or 1865′ can be coupled so that in a repeater configuration, signals received by the first waveguide 1865 or 1865′ can be provided to the second waveguide 1865 or 1865′ for retransmission in an easterly direction on cable 1862. The repeater configuration just described can also be applied from an easterly to westerly direction on cable 1862.


The waveguide 1865 of FIGS. 18N, 18O, 18Q and 18S can also be configured to generate electromagnetic fields having only non-fundamental or asymmetric wave modes. FIG. 18U depicts an embodiment of a waveguide 1865 that can be adapted to generate electromagnetic fields having only non-fundamental wave modes. A median line 1890 represents a separation between slots where electrical currents on a backside (not shown) of a frontal plate of the waveguide 1865 change polarity. For example, electrical currents on the backside of the frontal plate corresponding to e-fields that are radially outward (i.e., point away from a center point of cable 1862) can in some embodiments be associated with slots located outside of the median line 1890 (e.g., slots 1863A and 1863B). Electrical currents on the backside of the frontal plate corresponding to e-fields that are radially inward (i.e., point towards a center point of cable 1862) can in some embodiments be associated with slots located inside of the median line 1890. The direction of the currents can depend on the operating frequency of the electromagnetic waves 1866 supplied to the hollow rectangular waveguide portion 1867 (see FIG. 18O) among other parameters.


For illustration purposes, assume the electromagnetic waves 1866 supplied to the hollow rectangular waveguide portion 1867 have an operating frequency whereby a circumferential distance between slots 1863A and 1863B is one full wavelength of the electromagnetic waves 1866. In this instance, the e-fields of the electromagnetic waves emitted by slots 1863A and 1863B point radially outward (i.e., have opposing orientations). When the electromagnetic waves emitted by slots 1863A and 1863B are combined, the resulting electromagnetic waves on cable 1862 will propagate according to the fundamental wave mode. In contrast, by repositioning one of the slots (e.g., slot 1863B) inside the media line 1890 (i.e., slot 1863C), slot 1863C will generate electromagnetic waves that have e-fields that are approximately 180 degrees out of phase with the e-fields of the electromagnetic waves generated by slot 1863A. Consequently, the e-field orientations of the electromagnetic waves generated by slot pairs 1863A and 1863C will be substantially aligned. The combination of the electromagnetic waves emitted by slot pairs 1863A and 1863C will thus generate electromagnetic waves that are bound to the cable 1862 for propagation according to a non-fundamental wave mode.


To achieve a reconfigurable slot arrangement, waveguide 1865 can be adapted according to the embodiments depicted in FIG. 18V. Configuration (A) depicts a waveguide 1865 having a plurality of symmetrically positioned slots. Each of the slots 1863 of configuration (A) can be selectively disabled by blocking the slot with a material (e.g., carbon fiber or metal) to prevent the emission of electromagnetic waves. A blocked (or disabled) slot 1863 is shown in black, while an enabled (or unblocked) slot 1863 is shown in white. Although not shown, a blocking material can be placed behind (or in front) of the frontal plate of the waveguide 1865. A mechanism (not shown) can be coupled to the blocking material so that the blocking material can slide in or out of a particular slot 1863 much like closing or opening a window with a cover. The mechanism can be coupled to a linear motor controllable by circuitry of the waveguide 1865 to selectively enable or disable individual slots 1863. With such a mechanism at each slot 1863, the waveguide 1865 can be configured to select different configurations of enabled and disabled slots 1863 as depicted in the embodiments of FIG. 18V. Other methods or techniques for covering or opening slots (e.g., utilizing rotatable disks behind or in front of the waveguide 1865) can be applied to the embodiments of the subject disclosure.


In one embodiment, the waveguide system 1865 can be configured to enable certain slots 1863 outside the median line 1890 and disable certain slots 1863 inside the median line 1890 as shown in configuration (B) to generate fundamental waves. Assume, for example, that the circumferential distance between slots 1863 outside the median line 1890 (i.e., in the northern and southern locations of the waveguide system 1865) is one full wavelength. These slots will therefore have electric fields (e-fields) pointing at certain instances in time radially outward as previously described. In contrast, the slots inside the median line 1890 (i.e., in the western and eastern locations of the waveguide system 1865) will have a circumferential distance of one-half a wavelength relative to either of the slots 1863 outside the median line. Since the slots inside the median line 1890 are half a wavelength apart, such slots will produce electromagnetic waves having e-fields pointing radially outward. If the western and eastern slots 1863 outside the median line 1890 had been enabled instead of the western and eastern slots inside the median line 1890, then the e-fields emitted by those slots would have pointed radially inward, which when combined with the electric fields of the northern and southern would produce non-fundamental wave mode propagation. Accordingly, configuration (B) as depicted in FIG. 18V can be used to generate electromagnetic waves at the northern and southern slots 1863 having e-fields that point radially outward and electromagnetic waves at the western and eastern slots 1863 with e-fields that also point radially outward, which when combined induce electromagnetic waves on cable 1862 having a fundamental wave mode.


In another embodiment, the waveguide system 1865 can be configured to enable a northerly, southerly, westerly and easterly slots 1863 all outside the median line 1890, and disable all other slots 1863 as shown in configuration (C). Assuming the circumferential distance between a pair of opposing slots (e.g., northerly and southerly, or westerly and easterly) is a full wavelength apart, then configuration (C) can be used to generate electromagnetic waves having a non-fundamental wave mode with some e-fields pointing radially outward and other fields pointing radially inward. In yet another embodiment, the waveguide system 1865 can be configured to enable a northwesterly slot 1863 outside the median line 1890, enable a southeasterly slot 1863 inside the median line 1890, and disable all other slots 1863 as shown in configuration (D). Assuming the circumferential distance between such a pair of slots is a full wavelength apart, then such a configuration can be used to generate electromagnetic waves having a non-fundamental wave mode with e-fields aligned in a northwesterly direction.


In another embodiment, the waveguide system 1865 can be configured to produce electromagnetic waves having a non-fundamental wave mode with e-fields aligned in a southwesterly direction. This can be accomplished by utilizing a different arrangement than used in configuration (D). Configuration (E) can be accomplished by enabling a southwesterly slot 1863 outside the median line 1890, enabling a northeasterly slot 1863 inside the median line 1890, and disabling all other slots 1863 as shown in configuration (E). Assuming the circumferential distance between such a pair of slots is a full wavelength apart, then such a configuration can be used to generate electromagnetic waves having a non-fundamental wave mode with e-fields aligned in a southwesterly direction. Configuration (E) thus generates a non-fundamental wave mode that is orthogonal to the non-fundamental wave mode of configuration (D).


In yet another embodiment, the waveguide system 1865 can be configured to generate electromagnetic waves having a fundamental wave mode with e-fields that point radially inward. This can be accomplished by enabling a northerly slot 1863 inside the median line 1890, enabling a southerly slot 1863 inside the median line 1890, enabling an easterly slot outside the median 1890, enabling a westerly slot 1863 outside the median 1890, and disabling all other slots 1863 as shown in configuration (F). Assuming the circumferential distance between the northerly and southerly slots is a full wavelength apart, then such a configuration can be used to generate electromagnetic waves having a fundamental wave mode with radially inward e-fields. Although the slots selected in configurations (B) and (F) are different, the fundamental wave modes generated by configurations (B) and (F) are the same.


It yet another embodiment, e-fields can be manipulated between slots to generate fundamental or non-fundamental wave modes by varying the operating frequency of the electromagnetic waves 1866 supplied to the hollow rectangular waveguide portion 1867. For example, assume in the illustration of FIG. 18U that for a particular operating frequency of the electromagnetic waves 1866 the circumferential distance between slot 1863A and 1863B is one full wavelength of the electromagnetic waves 1866. In this instance, the e-fields of electromagnetic waves emitted by slots 1863A and 1863B will point radially outward as shown, and can be used in combination to induce electromagnetic waves on cable 1862 having a fundamental wave mode. In contrast, the e-fields of electromagnetic waves emitted by slots 1863A and 1863C will be radially aligned (i.e., pointing northerly) as shown, and can be used in combination to induce electromagnetic waves on cable 1862 having a non-fundamental wave mode.


Now suppose that the operating frequency of the electromagnetic waves 1866 supplied to the hollow rectangular waveguide portion 1867 is changed so that the circumferential distance between slot 1863A and 1863B is one-half a wavelength of the electromagnetic waves 1866. In this instance, the e-fields of electromagnetic waves emitted by slots 1863A and 1863B will be radially aligned (i.e., point in the same direction). That is, the e-fields of electromagnetic waves emitted by slot 1863B will point in the same direction as the e-fields of electromagnetic waves emitted by slot 1863A. Such electromagnetic waves can be used in combination to induce electromagnetic waves on cable 1862 having a non-fundamental wave mode. In contrast, the e-fields of electromagnetic waves emitted by slots 1863A and 1863C will be radially outward (i.e., away from cable 1862), and can be used in combination to induce electromagnetic waves on cable 1862 having a fundamental wave mode.


In another embodiment, the waveguide 1865′ of FIGS. 18P, 18R and 18T can also be configured to generate electromagnetic waves having only non-fundamental wave modes. This can be accomplished by adding more MMICs 1870 as depicted in FIG. 18W. Each MMIC 1870 can be configured to receive the same signal input 1872. However, MMICs 1870 can selectively be configured to emit electromagnetic waves having differing phases using controllable phase-shifting circuitry in each MMIC 1870. For example, the northerly and southerly MMICs 1870 can be configured to emit electromagnetic waves having a 180 degree phase difference, thereby aligning the e-fields either in a northerly or southerly direction. Any combination of pairs of MMICs 1870 (e.g., westerly and easterly MMICs 1870, northwesterly and southeasterly MMICs 1870, northeasterly and southwesterly MMICs 1870) can be configured with opposing or aligned e-fields. Consequently, waveguide 1865′ can be configured to generate electromagnetic waves with one or more non-fundamental wave modes, electromagnetic waves with one or more fundamental wave modes, or any combinations thereof.


It is submitted that it is not necessary to select slots 1863 in pairs to generate electromagnetic waves having a non-fundamental wave mode. For example, electromagnetic waves having a non-fundamental wave mode can be generated by enabling a single slot from the plurality of slots shown in configuration (A) of FIG. 18V and disabling all other slots. Similarly, a single MMIC 1870 of the MMICs 1870 shown in FIG. 18W can be configured to generate electromagnetic waves having a non-fundamental wave mode while all other MMICs 1870 are not in use or disabled. Likewise other wave modes and wave mode combinations can be induced by enabling other non-null proper subsets of waveguide slots 1863 or the MMICs 1870.


It is further submitted that the e-field arrows shown in FIGS. 18U-18V are illustrative only and represent a static depiction of e-fields. In practice, the electromagnetic waves may have oscillating e-fields, which at one instance in time point outwardly, and at another instance in time point inwardly. For example, in the case of non-fundamental wave modes having e-fields that are aligned in one direction (e.g., northerly), such waves may at another instance in time have e-fields that point in an opposite direction (e.g., southerly). Similarly, fundamental wave modes having e-fields that are radial may at one instance have e-fields that point radially away from the cable 1862 and at another instance in time point radially towards the cable 1862. It is further noted that the embodiments of FIGS. 18U-18W can be adapted to generate electromagnetic waves with one or more non-fundamental wave modes, electromagnetic waves with one or more fundamental wave modes (e.g., TM00 and HE11 modes), or any combinations thereof. It is further noted that such adaptions can be used in combination with any embodiments described in the subject disclosure. It is also noted that the embodiments of FIGS. 18U-18W can be combined (e.g., slots used in combination with MMICs).


It is further noted that in some embodiments, the waveguide systems 1865 and 1865′ of FIGS. 18N-18W may generate combinations of fundamental and non-fundamental wave modes where one wave mode is dominant over the other. For example, in one embodiment electromagnetic waves generated by the waveguide systems 1865 and 1865′ of FIGS. 18N-18W may have a weak signal component that has a non-fundamental wave mode, and a substantially strong signal component that has a fundamental wave mode. Accordingly, in this embodiment, the electromagnetic waves have a substantially fundamental wave mode. In another embodiment electromagnetic waves generated by the waveguide systems 1865 and 1865′ of FIGS. 18N-18W may have a weak signal component that has a fundamental wave mode, and a substantially strong signal component that has a non-fundamental wave mode. Accordingly, in this embodiment, the electromagnetic waves have a substantially non-fundamental wave mode. Further, a non-dominant wave mode may be generated that propagates only trivial distances along the length of the transmission medium.


It is also noted that the waveguide systems 1865 and 1865′ of FIGS. 18N-18W can be configured to generate instances of electromagnetic waves that have wave modes that can differ from a resulting wave mode or modes of the combined electromagnetic wave. It is further noted that each MMIC 1870 of the waveguide system 1865′ of FIG. 18W can be configured to generate an instance of electromagnetic waves having wave characteristics that differ from the wave characteristics of another instance of electromagnetic waves generated by another MMIC 1870. One MMIC 1870, for example, can generate an instance of an electromagnetic wave having a spatial orientation and a phase, frequency, magnitude, electric field orientation, and/or magnetic field orientation that differs from the spatial orientation and phase, frequency, magnitude, electric field orientation, and/or magnetic field orientation of a different instance of another electromagnetic wave generated by another MMIC 1870. The waveguide system 1865′ can thus be configured to generate instances of electromagnetic waves having different wave and spatial characteristics, which when combined achieve resulting electromagnetic waves having one or more desirable wave modes.


From these illustrations, it is submitted that the waveguide systems 1865 and 1865′ of FIGS. 18N-18W can be adapted to generate electromagnetic waves with one or more selectable wave modes. In one embodiment, for example, the waveguide systems 1865 and 1865′ can be adapted to select one or more wave modes and generate electromagnetic waves having a single wave mode or multiple wave modes selected and produced from a process of combining instances of electromagnetic waves having one or more configurable wave and spatial characteristics. In an embodiment, for example, parametric information can be stored in a look-up table. Each entry in the look-up table can represent a selectable wave mode. A selectable wave mode can represent a single wave mode, or a combination of wave modes. The combination of wave modes can have one or dominant wave modes. The parametric information can provide configuration information for generating instances of electromagnetic waves for producing resultant electromagnetic waves that have the desired wave mode.


For example, once a wave mode or modes is selected, the parametric information obtained from the look-up table from the entry associated with the selected wave mode(s) can be used to identify which of one or more MMICs 1870 to utilize, and/or their corresponding configurations to achieve electromagnetic waves having the desired wave mode(s). The parametric information may identify the selection of the one or more MMICs 1870 based on the spatial orientations of the MMICs 1870, which may be required for producing electromagnetic waves with the desired wave mode. The parametric information can also provide information to configure each of the one or more MMICs 1870 with a particular phase, frequency, magnitude, electric field orientation, and/or magnetic field orientation which may or may not be the same for each of the selected MMICs 1870. A look-up table with selectable wave modes and corresponding parametric information can be adapted for configuring the slotted waveguide system 1865.


In some embodiments, a guided electromagnetic wave can be considered to have a desired wave mode if the corresponding wave mode propagates non-trivial distances on a transmission medium and has a field strength that is substantially greater in magnitude (e.g., 20 dB higher in magnitude) than other wave modes that may or may not be desirable. Such a desired wave mode or modes can be referred to as dominant wave mode(s) with the other wave modes being referred to as non-dominant wave modes. In a similar fashion, a guided electromagnetic wave that is said to be substantially without the fundamental wave mode has either no fundamental wave mode or a non-dominant fundamental wave mode. A guided electromagnetic wave that is said to be substantially without a non-fundamental wave mode has either no non-fundamental wave mode(s) or only non-dominant non-fundamental wave mode(s). In some embodiments, a guided electromagnetic wave that is said to have only a single wave mode or a selected wave mode may have only one corresponding dominant wave mode.


It is further noted that the embodiments of FIGS. 18U-18W can be applied to other embodiments of the subject disclosure. For example, the embodiments of FIGS. 18U-18W can be used as alternate embodiments to the embodiments depicted in FIGS. 18N-18T or can be combined with the embodiments depicted in FIGS. 18N-18T.


Turning now to FIGS. 19A and 19B, block diagrams illustrating example, non-limiting embodiments of a dielectric antenna and corresponding gain and field intensity plots in accordance with various aspects described herein are shown. FIG. 19A depicts a dielectric horn antenna 1901 having a conical structure. The dielectric horn antenna 1901 is coupled to one end 1902′ of a feedline 1902 having a feed point 1902″ at an opposite end of the feedline 1902. The dielectric horn antenna 1901 and the feedline 1902 (as well as other embodiments of the dielectric antenna described below in the subject disclosure) can be constructed of dielectric materials such as a polyethylene material, a polyurethane material or other suitable dielectric material (e.g., a synthetic resin, other plastics, etc.). The dielectric horn antenna 1901 and the feedline 1902 (as well as other embodiments of the dielectric antenna described below in the subject disclosure) can be adapted to be substantially or entirely devoid of any conductive materials.


For example, the external surfaces 1907 of the dielectric horn antenna 1901 and the feedline 1902 can be non-conductive or substantially non-conductive with at least 95% of the external surface area being non-conductive and the dielectric materials used to construct the dielectric horn antenna 1901 and the feedline 1902 can be such that they substantially do not contain impurities that may be conductive (e.g., such as less than 1 part per thousand) or result in imparting conductive properties. In other embodiments, however, a limited number of conductive components can be used such as a metallic connector component used for coupling to the feed point 1902″ of the feedline 1902 with one or more screws, rivets or other coupling elements used to bind components to one another, and/or one or more structural elements that do not significantly alter the radiation pattern of the dielectric antenna.


The feed point 1902″ can be adapted to couple to a core 1852 such as previously described by way of illustration in FIGS. 18I and 18J. In one embodiment, the feed point 1902″ can be coupled to the core 1852 utilizing a joint (not shown in FIG. 19A) such as the splicing device 1860 of FIG. 18J. Other embodiments for coupling the feed point 1902″ to the core 1852 can be used. In an embodiment, the joint can be configured to cause the feed point 1902″ to touch an endpoint of the core 1852. In another embodiment, the joint can create a gap between the feed point 1902″ and an end of the core 1852. In yet another embodiment, the joint can cause the feed point 1902″ and the core 1852 to be coaxially aligned or partially misaligned. Notwithstanding any combination of the foregoing embodiments, electromagnetic waves can in whole or at least in part propagate between the junction of the feed point 1902″ and the core 1852.


The cable 1850 can be coupled to the waveguide system 1865 depicted in FIG. 18S or the waveguide system 1865′ depicted in FIG. 18T. For illustration purposes only, reference will be made to the waveguide system 1865′ of FIG. 18T. It is understood, however, that the waveguide system 1865 of FIG. 18S or other waveguide systems can also be utilized in accordance with the discussions that follow. The waveguide system 1865′ can be configured to select a wave mode (e.g., non-fundamental wave mode, fundamental wave mode, a hybrid wave mode, or combinations thereof as described earlier) and transmit instances of electromagnetic waves having a non-optical operating frequency (e.g., 60 GHz). The electromagnetic waves can be directed to an interface of the cable 1850 as shown in FIG. 18T.


The instances of electromagnetic waves generated by the waveguide system 1865′ can induce a combined electromagnetic wave having the selected wave mode that propagates from the core 1852 to the feed point 1902″. The combined electromagnetic wave can propagate partly inside the core 1852 and partly on an outer surface of the core 1852. Once the combined electromagnetic wave has propagated through the junction between the core 1852 and the feed point 1902″, the combined electromagnetic wave can continue to propagate partly inside the feedline 1902 and partly on an outer surface of the feedline 1902. In some embodiments, the portion of the combined electromagnetic wave that propagates on the outer surface of the core 1852 and the feedline 1902 is small. In these embodiments, the combined electromagnetic wave can be said to be guided by and tightly coupled to the core 1852 and the feedline 1902 while propagating longitudinally towards the dielectric antenna 1901.


When the combined electromagnetic wave reaches a proximal portion of the dielectric antenna 1901 (at a junction 1902′ between the feedline 1902 and the dielectric antenna 1901), the combined electromagnetic wave enters the proximal portion of the dielectric antenna 1901 and propagates longitudinally along an axis of the dielectric antenna 1901 (shown as a hashed line). By the time the combined electromagnetic wave reaches the aperture 1903, the combined electromagnetic wave has an intensity pattern similar to the one shown by the side view and front view depicted in FIG. 19B. The electric field intensity pattern of FIG. 19B shows that the electric fields of the combined electromagnetic waves are strongest in a center region of the aperture 1903 and weaker in the outer regions. In an embodiment, where the wave mode of the electromagnetic waves propagating in the dielectric antenna 1901 is a hybrid wave mode (e.g., HE11), the leakage of the electromagnetic waves at the external surfaces 1907 is reduced or in some instances eliminated. It is further noted that while the dielectric antenna 1901 is constructed of a solid dielectric material having no physical opening, the front or operating face of the dielectric antenna 1901 from which free space wireless signals are radiated or received will be referred to as the aperture 1903 of the dielectric antenna 1901 even though in some prior art systems the term aperture may be used to describe an opening of an antenna that radiates or receives free space wireless signals. Methods for launching a hybrid wave mode on cable 1850 is discussed below.


In an embodiment, the far-field antenna gain pattern depicted in FIG. 19B can be widened by decreasing the operating frequency of the combined electromagnetic wave from a nominal frequency. Similarly, the gain pattern can be narrowed by increasing the operating frequency of the combined electromagnetic wave from the nominal frequency. Accordingly, a width of a beam of wireless signals emitted by the aperture 1903 can be controlled by configuring the waveguide system 1865′ to increase or decrease the operating frequency of the combined electromagnetic wave.


The dielectric antenna 1901 of FIG. 19A can also be used for receiving wireless signals, such as free space wireless signals transmitted by either a similar antenna or conventional antenna design. Wireless signals received by the dielectric antenna 1901 at the aperture 1903 induce electromagnetic waves in the dielectric antenna 1901 that propagate towards the feedline 1902. The electromagnetic waves continue to propagate from the feedline 1902 to the junction between the feed point 1902″ and an endpoint of the core 1852, and are thereby delivered to the waveguide system 1865′ coupled to the cable 1850 as shown in FIG. 18T. In this configuration, the waveguide system 1865′ can perform bidirectional communications utilizing the dielectric antenna 1901. It is further noted that in some embodiments the core 1852 of the cable 1850 (shown with dashed lines) can be configured to be collinear with the feed point 1902″ to avoid a bend shown in FIG. 19A. In some embodiments, a collinear configuration can reduce an alteration in the propagation of the electromagnetic due to the bend in cable 1850.


Turning now to FIGS. 19C and 19D, block diagrams illustrating example, non-limiting embodiments of a dielectric antenna 1901 coupled to or integrally constructed with a lens 1912 and corresponding gain and field intensity plots in accordance with various aspects described herein are shown. In one embodiment, the lens 1912 can comprise a dielectric material having a first dielectric constant that is substantially similar or equal to a second dielectric constant of the dielectric antenna 1901. In other embodiments, the lens 1912 can comprise a dielectric material having a first dielectric constant that differs from a second dielectric constant of the dielectric antenna 1901. In either of these embodiments, the shape of the lens 1912 can be chosen or formed so as to equalize the delays of the various electromagnetic waves propagating at different points in the dielectric antenna 1901. In one embodiment, the lens 1912 can be an integral part of the dielectric antenna 1901 as depicted in the top diagram of FIG. 19C and in particular, the lens and dielectric antenna 1901 can be molded, machined or otherwise formed from a single piece of dielectric material. Alternatively, the lens 1912 can be an assembly component of the dielectric antenna 1901 as depicted in the bottom diagram of FIG. 19C, which can be attached by way of an adhesive material, brackets on the outer edges, or other suitable attachment techniques. The lens 1912 can have a convex structure as shown in FIG. 19C which is adapted to adjust a propagation of electromagnetic waves in the dielectric antenna 1901. While a round lens and conical dielectric antenna configuration is shown, other shapes include pyramidal shapes, elliptical shapes and other geometric shapes can likewise be implemented.


In particular, the curvature of the lens 1912 can be chosen in manner that reduces phase differences between near-field wireless signals generated by the aperture 1903 of the dielectric antenna 1901. The lens 1912 accomplishes this by applying location-dependent delays to propagating electromagnetic waves. Because of the curvature of the lens 1912, the delays differ depending on where the electromagnetic waves emanate from at the aperture 1903. For example, electromagnetic waves propagating by way of a center axis 1905 of the dielectric antenna 1901 will experience more delay through the lens 1912 than electromagnetic waves propagating radially away from the center axis 1905. Electromagnetic waves propagating towards, for example, the outer edges of the aperture 1903 will experience minimal or no delay through the lens. Propagation delay increases as the electromagnetic waves get close to the center axis 1905. Accordingly, a curvature of the lens 1912 can be configured so that near-field wireless signals have substantially similar phases. By reducing differences between phases of the near-field wireless signals, a width of far-field signals generated by the dielectric antenna 1901 is reduced, which in turn increases the intensity of the far-field wireless signals within the width of the main lobe as shown by the far-field intensity plot shown in FIG. 19D, producing a relatively narrow beam pattern with high gain.


Turning now to FIGS. 19E and 19F, block diagrams illustrating example, non-limiting embodiments of a dielectric antenna 1901 coupled to a lens 1912 with ridges (or steps) 1914 and corresponding gain and field intensity plots in accordance with various aspects described herein are shown. In these illustration, the lens 1912 can comprise concentric ridges 1914 shown in the side and perspective views of FIG. 19E. Each ridge 1914 can comprise a riser 1916 and a tread 1918. The size of the tread 1918 changes depending on the curvature of the aperture 1903. For example, the tread 1918 at the center of the aperture 1903 can be greater than the tread at the outer edges of the aperture 1903. To reduce reflections of electromagnetic waves that reach the aperture 1903, each riser 1916 can be configured to have a depth representative of a select wavelength factor. For example, a riser 1916 can be configured to have a depth of one-quarter a wavelength of the electromagnetic waves propagating in the dielectric antenna 1901. Such a configuration causes the electromagnetic wave reflected from one riser 1916 to have a phase difference of 180 degrees relative to the electromagnetic wave reflected from an adjacent riser 1916. Consequently, the out of phase electromagnetic waves reflected from the adjacent risers 1916 substantially cancel, thereby reducing reflection and distortion caused thereby. While a particular riser/tread configuration is shown, other configurations with a differing number of risers, differing riser shapes, etc. can likewise be implemented. In some embodiments, the lens 1912 with concentric ridges depicted in FIG. 19E may experience less electromagnetic wave reflections than the lens 1912 having the smooth convex surface depicted in FIG. 19C. FIG. 19F depicts the resulting far-field gain plot of the dielectric antenna 1901 of FIG. 19E.


Turning now to FIG. 19G, a block diagram illustrating an example, non-limiting embodiment of a dielectric antenna 1901 having an elliptical structure in accordance with various aspects described herein is shown. FIG. 19G depicts a side view, top view, and front view of the dielectric antenna 1901. The elliptical shape is achieved by reducing a height of the dielectric antenna 1901 as shown by reference 1922 and by elongating the dielectric antenna 1901 as shown by reference 1924. The resulting elliptical shape 1926 is shown in the front view depicted by FIG. 19G. The elliptical shape can be formed, via machining, with a mold tool or other suitable construction technique.


Turning now to FIG. 19H, a block diagram illustrating an example, non-limiting embodiment of near-field signals 1928 and far-field signals 1930 emitted by the dielectric antenna 1901 of FIG. 19G in accordance with various aspects described herein is shown. The cross section of the near-field beam pattern 1928 mimics the elliptical shape of the aperture 1903 of the dielectric antenna 1901. The cross section of the far-field beam pattern 1930 have a rotational offset (approximately 90 degrees) that results from the elliptical shape of the near-field signals 1928. The offset can be determined by applying a Fourier Transform to the near-field signals 1928. While the cross section of the near-field beam pattern 1928 and the cross section of the far-field beam pattern 1930 are shown as nearly the same size in order to demonstrate the rotational effect, the actual size of the far-field beam pattern 1930 may increase with the distance from the dielectric antenna 1901.


The elongated shape of the far-field signals 1930 and its orientation can prove useful when aligning a dielectric antenna 1901 in relation to a remotely located receiver configured to receive the far-field signals 1930. The receiver can comprise one or more dielectric antennas coupled to a waveguide system such as described by the subject disclosure. The elongated far-field signals 1930 can increase the likelihood that the remotely located receiver will detect the far-field signals 1930. In addition, the elongated far-field signals 1930 can be useful in situations where a dielectric antenna 1901 coupled to a gimbal assembly such as shown in FIG. 19M, or other actuated antenna mount including but not limited to the actuated gimbal mount described in the co-pending application entitled, COMMUNICATION DEVICE AND ANTENNA ASSEMBLY WITH ACTUATED GIMBAL MOUNT, having U.S. patent application Ser. No. 14/873,241, filed on Oct. 2, 2015 the contents of which are incorporated herein by reference for any and all purposes. In particular, the elongated far-field signals 1930 can be useful in situations where such as gimbal mount only has two degrees of freedom for aligning the dielectric antenna 1901 in the direction of the receiver (e.g., yaw and pitch is adjustable but roll is fixed).


Although not shown, it will be appreciated that the dielectric antenna 1901 of FIGS. 19G and 19H can have an integrated or attachable lens 1912 such as shown in FIGS. 19C and 19E to increase an intensity of the far-fields signals 1930 by reducing phase differences in the near-field signals.


Turning now to FIG. 19I, block diagrams of example, non-limiting embodiments of a dielectric antenna 1901 for adjusting far-field wireless signals in accordance with various aspects described herein are shown. In some embodiments, a width of far-field wireless signals generated by the dielectric antenna 1901 can be said to be inversely proportional to a number of wavelengths of the electromagnetic waves propagating in the dielectric antenna 1901 that can fit in a surface area of the aperture 1903 of the dielectric antenna 1901. Hence, as the wavelengths of the electromagnetic waves increases, the width of the far-field wireless signals increases (and its intensity decreases) proportionately. Put another way, when the frequency of the electromagnetic waves decreases, the width of the far-field wireless signals increases proportionately. Accordingly, to enhance a process of aligning a dielectric antenna 1901 using, for example, the gimbal assembly shown in FIG. 19M or other actuated antenna mount, in a direction of a receiver, the frequency of the electromagnetic waves supplied to the dielectric antenna 1901 by way of the feedline 1902 can be decreased so that the far-field wireless signals are sufficiently wide to increase a likelihood that the receiver will detect a portion of the far-field wireless signals.


In some embodiments, the receiver can be configured to perform measurements on the far-field wireless signals. From these measurements the receiver can direct a waveguide system coupled to the dielectric antenna 1901 generating the far-field wireless signals. The receiver can provide instructions to the waveguide system by way of an omnidirectional wireless signal or a tethered interface therebetween. The instructions provided by the receiver can result in the waveguide system controlling actuators in the gimbal assembly coupled to the dielectric antenna 1901 to adjust a direction of the dielectric antenna 1901 to improve its alignment to the receiver. As the quality of the far-field wireless signals improves, the receiver can also direct the waveguide system to increase a frequency of the electromagnetic waves, which in turn reduces a width of the far-field wireless signals and correspondingly increases its intensity.


In an alternative embodiment, absorption sheets 1932 constructed from carbon or conductive materials and/or other absorbers can be embedded in the dielectric antenna 1901 as depicted by the perspective and front views shown in FIG. 19I. When the electric fields of the electromagnetic waves are parallel with the absorption sheets 1932, the electromagnetic waves are absorbed. A clearance region 1934 where absorption sheets 1932 are not present will, however, allow the electromagnetic waves to propagate to the aperture 1903 and thereby emit near-field wireless signals having approximately the width of the clearance region 1934. By reducing the number of wavelengths to a surface area of the clearance region 1932, the width of the near-field wireless signals is decreases, while the width of the far-field wireless signals is increased. This property can be useful during the alignment process previously described.


For example, at the onset of an alignment process, the polarity of the electric fields emitted by the electromagnetic waves can be configured to be parallel with the absorption sheets 1932. As the remotely located receiver instructs a waveguide system coupled to the dielectric antenna 1901 to direct the dielectric antenna 1901 using the actuators of a gimbal assembly or other actuated mount, it can also instruct the waveguide system to incrementally adjust the alignment of the electric fields of the electromagnetic waves relative to the absorption sheets 1932 as signal measurements performed by the receiver improve. As the alignment improves, eventually waveguide system adjusts the electric fields so that they are orthogonal to the absorption sheets 1932. At this point, the electromagnetic waves near the absorption sheets 1932 will no longer be absorbed, and all or substantially all electromagnetic waves will propagate to the aperture 1903. Since the near-field wireless signals now cover all or substantially all of the aperture 1903, the far-field signals will have a narrower width and higher intensity as they are directed to the receiver.


It will be appreciated that the receiver configured to receive the far-field wireless signals (as described above) can also be configured to utilize a transmitter that can transmit wireless signals directed to the dielectric antenna 1901 utilized by the waveguide system. For illustration purposes, such a receiver will be referred to as a remote system that can receive far-field wireless signals and transmit wireless signals directed to the waveguide system. In this embodiment, the waveguide system can be configured to analyze the wireless signals it receives by way of the dielectric antenna 1901 and determine whether a quality of the wireless signals generated by the remote system justifies further adjustments to the far-field signal pattern to improve reception of the far-field wireless signals by the remote system, and/or whether further orientation alignment of the dielectric antenna by way of the gimbal (see FIG. 19M) or other actuated mount is needed. As the quality of a reception of the wireless signals by the waveguide system improves, the waveguide system can increase the operating frequency of the electromagnetic waves, which in turn reduces a width of the far-field wireless signals and correspondingly increases its intensity. In other modes of operation, the gimbal or other actuated mount can be periodically adjusted to maintain an optimal alignment.


The foregoing embodiments of FIG. 19I can also be combined. For example, the waveguide system can perform adjustments to the far-field signal pattern and/or antenna orientation adjustments based on a combination of an analysis of wireless signals generated by the remote system and messages or instructions provided by the remote system that indicate a quality of the far-field signals received by the remote system.


Turning now to FIG. 19J, block diagrams of example, non-limiting embodiments of a collar such as a flange 1942 that can be coupled to a dielectric antenna 1901 in accordance with various aspects described herein is shown. The flange can be constructed with metal (e.g., aluminum) dielectric material (e.g., polyethylene and/or foam), or other suitable materials. The flange 1942 can be utilized to align the feed point 1902″ (and in some embodiments also the feedline 1902) with a waveguide system 1948 (e.g., a circular waveguide) as shown in FIG. 19K. To accomplish this, the flange 1942 can comprise a center hole 1946 for engaging with the feed point 1902″. In one embodiment, the hole 1946 can be threaded and the feedline 1902 can have a smooth surface. In this embodiment, the flange 1942 can engage the feed point 1902″ (constructed of a dielectric material such as polyethylene) by inserting a portion of the feed point 1902″ into the hole 1946 and rotating the flange 1942 to act as a die to form complementary threads on the soft outer surface of the feedline 1902.


Once the feedline 1902 has been threaded by or into the flange 1942, the feed point 1902″ and portion of the feedline 1902 extending from the flange 1942 can be shortened or lengthened by rotating the flange 1942 accordingly. In other embodiments the feedline 1902 can be pre-threaded with mating threads for engagement with the flange 1942 for improving the ease of engaging it with the flange 1942. In yet other embodiments, the feedline 1902 can have a smooth surface and the hole 1946 of the flange 1942 can be non-threaded. In this embodiment, the hole 1946 can have a diameter that is similar to diameter of the feedline 1902 such as to cause the engagement of the feedline 1902 to be held in place by frictional forces.


For alignment purposes, the flange 1942 the can further include threaded holes 1944 accompanied by two or more alignment holes 1947, which can be used to align to complementary alignment pins 1949 of the waveguide system 1948, which in turn assist in aligning holes 1944′ of the waveguide system 1948 to the threaded holes 1944 of the flange 1942 (see FIGS. 19K-19L). Once the flange 1942 has been aligned to the waveguide system 1948, the flange 1942 and waveguide system 1948 can be secured to each other with threaded screws 1950 resulting in a completed assembly depicted in FIG. 19L. In a threaded design, the feed point 1902″ of the feedline 1902 can be adjusted inwards or outwards in relation to a port 1945 of the waveguide system 1948 from which electromagnetic waves are exchanged. The adjustment enables the gap 1943 between the feed point 1902″ and the port 1945 to be increased or decreased. The adjustment can be used for tuning a coupling interface between the waveguide system 1948 and the feed point 1902″ of the feedline 1902. FIG. 19L also shows how the flange 1942 can be used to align the feedline 1902 with coaxially aligned dielectric foam sections 1951 held by a tubular outer jacket 1952. The illustration in FIG. 19L is similar to the transmission medium 1800′ illustrated in FIG. 18K. To complete the assembly process, the flange 1942 can be coupled to a waveguide system 1948 as depicted in FIG. 19L.


Turning now to FIG. 19N, a block diagram of an example, non-limiting embodiment of a dielectric antenna 1901′ in accordance with various aspects described herein is shown. FIG. 19N depicts an array of pyramidal-shaped dielectric horn antennas 1901′, each having a corresponding aperture 1903′. Each antenna of the array of pyramidal-shaped dielectric horn antennas 1901′ can have a feedline 1902 with a corresponding feed point 1902″ that couples to each corresponding core 1852 of a plurality of cables 1850. Each cable 1850 can be coupled to a different (or a same) waveguide system 1865′ such as shown in FIG. 18T. The array of pyramidal-shaped dielectric horn antennas 1901′ can be used to transmit wireless signals having a plurality of spatial orientations. An array of pyramidal-shaped dielectric horn antennas 1901′ covering 360 degrees can enable a one or more waveguide systems 1865′ coupled to the antennas to perform omnidirectional communications with other communication devices or antennas of similar type.


The bidirectional propagation properties of electromagnetic waves previously described for the dielectric antenna 1901 of FIG. 19A are also applicable for electromagnetic waves propagating from the core 1852 to the feed point 1902″ guided by the feedline 1902 to the aperture 1903′ of the pyramidal-shaped dielectric horn antennas 1901′, and in the reverse direction. Similarly, the array of pyramidal-shaped dielectric horn antennas 1901′ can be substantially or entirely devoid of conductive external surfaces and internal conductive materials as discussed above. For example, in some embodiments, the array of pyramidal-shaped dielectric horn antennas 1901′ and their corresponding feed points 1902′ can be constructed of dielectric-only materials such as polyethylene or polyurethane materials or with only trivial amounts of conductive material that does not significantly alter the radiation pattern of the antenna.


It is further noted that each antenna of the array of pyramidal-shaped dielectric horn antennas 1901′ can have similar gain and electric field intensity maps as shown for the dielectric antenna 1901 in FIG. 19B. Each antenna of the array of pyramidal-shaped dielectric horn antennas 1901′ can also be used for receiving wireless signals as previously described for the dielectric antenna 1901 of FIG. 19A. In some embodiments, a single instance of a pyramidal-shaped dielectric horn antenna can be used. Similarly, multiple instances of the dielectric antenna 1901 of FIG. 19A can be used in an array configuration similar to the one shown in FIG. 19N.


Turning now to FIG. 19O, block diagrams of example, non-limiting embodiments of an array 1976 of dielectric antennas 1901 configurable for steering wireless signals in accordance with various aspects described herein is shown. The array 1976 of dielectric antennas 1901 can be conical shaped antennas 1901 or pyramidal-shaped dielectric antennas 1901′. To perform beam steering, a waveguide system coupled to the array 1976 of dielectric antennas 1901 can be adapted to utilize a circuit 1972 comprising amplifiers 1973 and phase shifters 1974, each pair coupled to one of the dielectric antennas 1901 in the array 1976. The waveguide system can steer far-field wireless signals from left to right (west to east) by incrementally increasing a phase delay of signals supplied to the dielectric antennas 1901.


For example, the waveguide system can provide a first signal to the dielectric antennas of column 1 (“C1”) having no phase delay. The waveguide system can further provide a second signal to column 2 (“C2”), the second signal comprising the first signal having a first phase delay. The waveguide system can further provide a third signal to the dielectric antennas of column 3 (“C3”), the third signal comprising the second signal having a second phase delay. Lastly, the waveguide system can provide a fourth signal to the dielectric antennas of column 4 (“C4”), the fourth signal comprising the third signal having a third phase delay. These phase shifted signals will cause far-field wireless signals generated by the array to shift from left to right. Similarly, far-field signals can be steered from right to left (east to west) (“C4” to “C1”), north to south (“R1” to “R4”), south to north (“R4” to “R1”), and southwest to northeast (“C1-R4” to “C4-R1”).


Utilizing similar techniques beam steering can also be performed in other directions such as southwest to northeast by configuring the waveguide system to incrementally increase the phase of signals transmitted by the following sequence of antennas: “C1-R4”, “C1-R3/C2-R4”, “C1-R2/C2-R3/C3-R4”, “C1-R1/C2-R2/C3-R3/C4-R4”, “C2-R1/C3-R2/C4-R3”, “C3-R1/C4-R2”, “C4-R1”. In a similar way, beam steering can be performed northeast to southwest, northwest to southeast, southeast to northwest, as well in other directions in three-dimensional space. Beam steering can be used, among other things, for aligning the array 1976 of dielectric antennas 1901 with a remote receiver and/or for directivity of signals to mobile communication devices. In some embodiments, a phased array 1976 of dielectric antennas 1901 can also be used to circumvent the use of the gimbal assembly of FIG. 19M or other actuated mount. While the foregoing has described beam steering controlled by phase delays, gain and phase adjustment can likewise be applied to the dielectric antennas 1901 of the phased array 1976 in a similar fashion to provide additional control and versatility in the formation of a desired beam pattern.


Turning now to FIGS. 19P1-19P8, side-view block diagrams of example, non-limiting embodiments of a cable, a flange, and dielectric antenna assembly in accordance with various aspects described herein are shown. FIG. 19P1 depicts a cable 1850 such as described earlier, which includes a transmission core 1852. The transmission core 1852 can comprise a dielectric core 1802, an insulated conductor 1825, a bare conductor 1832, a core 1842, or a hollow core 1842′ as depicted in the transmission mediums 1800, 1820, 1830, 1836, 1841 and/or 1843 of FIGS. 18A-18D, and 18F-18H, respectively. The cable 1850 can further include a shell (such as a dielectric shell) covered by an outer jacket such as shown in FIGS. 18A-18C. In some embodiments, the outer jacket can be conductorless (e.g., polyethylene or equivalent). In other embodiments, the outer jacket can be a conductive shield which can reduce leakage of the electromagnetic waves propagating along the transmission core 1852.


In some embodiments, one end of the transmission core 1852 can be coupled to a flange 1942 as previously described in relation to FIGS. 19J-19L. As noted above, the flange 1942 can enable the transmission core 1852 of the cable 1850 to be aligned with a feed point 1902 of the dielectric antenna 1901. In some embodiments, the feed point 1902 can be constructed of the same material as the transmission core 1852. For example, in one embodiment the transmission core 1852 can comprise a dielectric core, and the feed point 1902 can comprise a dielectric material also. In this embodiment, the dielectric constants of the transmission core 1852 and the feed point 1902 can be similar or can differ by a controlled amount. The difference in dielectric constants can be controlled to tune the interface between the transmission core 1852 and the feed point 1902 for the exchange of electromagnetic waves propagating therebetween. In other embodiments, the transmission core 1852 may have a different construction than the feed point 1902. For example, in one embodiment the transmission core 1852 can comprise an insulated conductor, while the feed point 1902 comprises a dielectric material devoid of conductive materials.


As shown in FIG. 19J, the transmission core 1852 can be coupled to the flange 1942 via a center hole 1946, although in other embodiments it will be appreciated that such a hole could be off-centered as well. In one embodiment, the hole 1946 can be threaded and the transmission core 1852 can have a smooth surface. In this embodiment, the flange 1942 can engage the transmission core 1852 by inserting a portion of the transmission core 1852 into the hole 1946 and rotating the flange 1942 to act as a die to form complementary threads on the outer surface of the transmission core 1852. Once the transmission core 1852 has been threaded by or into the flange 1942, the portion of the transmission core 1852 extending from the flange 1942 can be shortened or lengthened by rotating the flange 1942 accordingly.


In other embodiments the transmission core 1852 can be pre-threaded with mating threads for engagement with the hole 1946 of the flange 1942 for improving the ease of engaging the transmission core 1852 with the flange 1942. In yet other embodiments, the transmission core 1852 can have a smooth surface and the hole 1946 of the flange 1942 can be non-threaded. In this embodiment, the hole 1946 can have a diameter that is similar to the diameter of the transmission core 1852 such as to cause the engagement of the transmission core 1852 to be held in place by frictional forces. It will be appreciated that there can be several other ways of engaging the transmission core 1852 with the flange 1942, including various clips, fusion, compression fittings, and the like. The feed point 1902 of the dielectric antenna 1901 can be engaged with the other side of the hole 1946 of the flange 1942 in the same manner as described for transmission core 1852.


A gap 1943 can exist between the transmission core 1852 and the feed point 1902. The gap 1943, however, can be adjusted in an embodiment by rotating the feed point 1902 while the transmission core 1852 is held in place or vice-versa. In some embodiments, the ends of the transmission core 1852 and the feed point 1902 engaged with the flange 1942 can be adjusted so that they touch, thereby removing the gap 1943. In other embodiments, the ends of the transmission core 1852 or the feed point 1902 engaged with the flange 1942 can intentionally be adjusted to create a specific gap size. The adjustability of the gap 1943 can provide another degree of freedom to tune the interface between the transmission core 1852 and the feed point 1902.


Although not shown in FIGS. 19P1-19P8, an opposite end of the transmission core 1852 of cable 1850 can be coupled to a waveguide device such as depicted in FIGS. 18S and 18T utilizing another flange 1942 and similar coupling techniques. The waveguide device can be used for transmitting and receiving electromagnetic waves along the transmission core 1852. Depending on the operational parameters of the electromagnetic waves (e.g., operating frequency, wave mode, etc.), the electromagnetic waves can propagate within the transmission core 1852, on an outer surface of the transmission core 1852, or partly within the transmission core 1852 and the outer surface of the transmission core 1852. When the waveguide device is configured as a transmitter, the signals generated thereby induce electromagnetic waves that propagate along the transmission core 1852 and transition to the feed point 1902 at the junction therebetween. The electromagnetic waves then propagate from the feed point 1902 into the dielectric antenna 1901 becoming wireless signals at the aperture 1903 of the dielectric antenna 1901.


A frame 1982 can be used to surround all or at least a substantial portion of the outer surfaces of the dielectric antenna 1901 (except the aperture 1903) to improve transmission or reception of and/or reduce leakage of the electromagnetic waves as they propagate towards the aperture 1903. In some embodiments, a portion 1984 of the frame 1982 can extend to the feed point 1902 as shown in FIG. 19P2 to prevent leakage on the outer surface of the feed point 1902. The frame 1982, for example, can be constructed of materials (e.g., conductive or carbon materials) that reduce leakage of the electromagnetic waves. The shape of the frame 1982 can vary based on a shape of the dielectric antenna 1901. For example, the frame 1852 can have a flared straight-surface shape as shown in FIGS. 19P1-19P4. Alternatively, the frame 1852 can have a flared parabolic-surface shape as shown in FIGS. 19P5-19P8. It will be appreciated that the frame 1852 can have other shapes.


The aperture 1903 can be of different shapes and sizes. In one embodiment, for example, the aperture 1903 can utilize a lens having a convex structure 1983 of various dimensions as shown in FIGS. 19P1, 19P4, and 19P6-19P8. In other embodiments, the aperture 1903 can have a flat structure 1985 of various dimensions as shown in FIGS. 19P2 and 19P5. In yet other embodiments, the aperture 1903 can utilize a lens having a pyramidal structure 1986 as shown in FIGS. 19P3 and 19Q1. The lens of the aperture 1903 can be an integral part of the dielectric antenna 1901 or can be a component that is coupled to the dielectric antenna 1901 as shown in FIG. 19C. Additionally, the lens of the aperture 1903 can be constructed with the same or a different material than the dielectric antenna 1901. Also, in some embodiments, the aperture 1903 of the dielectric antenna 1901 can extend outside the frame 1982 as shown in FIGS. 19P7-19P8 or can be confined within the frame 1982 as shown in FIGS. 19P1-19P6.


In one embodiment, the dielectric constant of the lens of the apertures 1903 shown in FIGS. 19P1-19P8 can be configured to be substantially similar or different from that of the dielectric antenna 1901. Additionally, one or more internal portions of the dielectric antenna 1901, such as section 1986 of FIG. 19P4, can have a dielectric constant that differs from that of the remaining portions of the dielectric antenna. The surface of the lens of the apertures 1903 shown in FIGS. 19P1-19P8 can have a smooth surface or can have ridges such as shown in FIG. 19E to reduce surface reflections of the electromagnetic waves as previously described.


Depending on the shape of the dielectric antenna 1901, the frame 1982 can be of different shapes and sizes as shown in the front views depicted in FIGS. 19Q1, 19Q2 and 19Q3. For example, the frame 1982 can have a pyramidal shape as shown in FIG. 19Q1. In other embodiments, the frame 1982 can have a circular shape as depicted in FIG. 19Q2. In yet other embodiments, the frame 1982 can have an elliptical shape as depicted in FIG. 19Q3.


The embodiments of FIGS. 19P1-19P8 and 19Q1-19Q3 can be combined in whole or in part with each other to create other embodiments contemplated by the subject disclosure. Additionally, the embodiments of FIGS. 19P1-19P8 and 19Q1-19Q3 can be combined with other embodiments of the subject disclosure. For example, the multi-antenna assembly of FIG. 20F can be adapted to utilize any one of the embodiments of FIGS. 19P1-19P8 and 19Q1-19Q3. Additionally, multiple instances of a multi-antenna assembly adapted to utilize one of the embodiments of FIGS. 19P1-19P819Q1-19Q3 can be stacked on top of each other to form a phased array that functions similar to the phased array of FIG. 19O. In other embodiments, absorption sheets 1932 can be added to the dielectric antenna 1901 as shown in FIG. 19I to control the widths of near-field and far-field signals. Other combinations of the embodiments of FIGS. 19P1-19P8 and 19Q1-19Q3 and the embodiments of the subject disclosure are contemplated.


Turning now to FIGS. 20A and 20B, block diagrams illustrating example, non-limiting embodiments of the cable 1850 of FIG. 18A used for inducing guided electromagnetic waves on power lines supported by utility poles. In one embodiment, as depicted in FIG. 20A, a cable 1850 can be coupled at one end to a microwave apparatus that launches guided electromagnetic waves within one or more inner layers of cable 1850 utilizing, for example, the hollow waveguide 1808 shown in FIGS. 18A-18C. The microwave apparatus can utilize a microwave transceiver such as shown in FIG. 10A for transmitting or receiving signals from cable 1850. The guided electromagnetic waves induced in the one or more inner layers of cable 1850 can propagate to an exposed stub of the cable 1850 located inside a horn antenna (shown as a dotted line in FIG. 20A) for radiating the electromagnetic waves via the horn antenna. The radiated signals from the horn antenna in turn can induce guided electromagnetic waves that propagate longitudinally on power line such as a medium voltage (MV) power line. In one embodiment, the microwave apparatus can receive AC power from a low voltage (e.g., 220V) power line. Alternatively, the horn antenna can be replaced with a stub antenna as shown in FIG. 20B to induce guided electromagnetic waves that propagate longitudinally on a power line such as the MV power line or to transmit wireless signals to other antenna system(s).


In an alternative embodiment, the hollow horn antenna shown in FIG. 20A can be replaced with a solid dielectric antenna such as the dielectric antenna 1901 of FIG. 19A, or the pyramidal-shaped horn antenna 1901′ of FIG. 19N. In this embodiment the horn antenna can radiate wireless signals directed to another horn antenna such as the bidirectional horn antennas 2040 shown in FIG. 20C. In this embodiment, each horn antenna 2040 can transmit wireless signals to another horn antenna 2040 or receive wireless signals from the other horn antenna 2040 as shown in FIG. 20C. Such an arrangement can be used for performing bidirectional wireless communications between antennas. Although not shown, the horn antennas 2040 can be configured with an electromechanical device to steer a direction of the horn antennas 2040.


In alternate embodiments, first and second cables 1850A′ and 1850B′ can be coupled to the microwave apparatus and to a transformer 2052, respectively, as shown in FIGS. 20A and 20B. The first and second cables 1850A′ and 1850B′ can be represented by, for example, cable 1820 or cable 1830 of FIGS. 18B and 18C, respectively, each having a conductive core. A first end of the conductive core of the first cable 1850A′ can be coupled to the microwave apparatus for propagating guided electromagnetic waves launched therein. A second end of the conductive core of the first cable 1850A′ can be coupled to a first end of a conductive coil of the transformer 2052 for receiving the guided electromagnetic waves propagating in the first cable 1850A′ and for supplying signals associated therewith to a first end of a second cable 1850B′ by way of a second end of the conductive coil of the transformer 2052. A second end of the second cable 1850B′ can be coupled to the horn antenna of FIG. 20A or can be exposed as a stub antenna of FIG. 20B for inducing guided electromagnetic waves that propagate longitudinally on the MV power line.


In an embodiment where cable 1850, 1850A′ and 1850B′ each comprise multiple instances of transmission mediums 1800, 1820, and/or 1830, a poly-rod structure of antennas 1855 can be formed such as shown in FIG. 18K. Each antenna 1855 can be coupled, for example, to a horn antenna assembly as shown in FIG. 20A or a pie-pan antenna assembly (not shown) for radiating multiple wireless signals. Alternatively, the antennas 1855 can be used as stub antennas in FIG. 20B. The microwave apparatus of FIGS. 20A-20B can be configured to adjust the guided electromagnetic waves to beam steer the wireless signals emitted by the antennas 1855. One or more of the antennas 1855 can also be used for inducing guided electromagnetic waves on a power line.


Turning now to FIG. 20C, a block diagram of an example, non-limiting embodiment of a communication network 2000 in accordance with various aspects described herein is shown. In one embodiment, for example, the waveguide system 1602 of FIG. 16A can be incorporated into network interface devices (NIDs) such as NIDs 2010 and 2020 of FIG. 20C. A NID having the functionality of waveguide system 1602 can be used to enhance transmission capabilities between customer premises 2002 (enterprise or residential) and a pedestal 2004 (sometimes referred to as a service area interface or SAI).


In one embodiment, a central office 2030 can supply one or more fiber cables 2026 to the pedestal 2004. The fiber cables 2026 can provide high-speed full-duplex data services (e.g., 1-100 Gbps or higher) to mini-DSLAMs 2024 located in the pedestal 2004. The data services can be used for transport of voice, internet traffic, media content services (e.g., streaming video services, broadcast TV), and so on. In prior art systems, mini-DSLAMs 2024 typically connect to twisted pair phone lines (e.g., twisted pairs included in category 5e or Cat. 5e unshielded twisted-pair (UTP) cables that include an unshielded bundle of twisted pair cables, such as 24 gauge insulated solid wires, surrounded by an outer insulating sheath), which in turn connect to the customer premises 2002 directly. In such systems, DSL data rates taper off at 100 Mbps or less due in part to the length of legacy twisted pair cables to the customer premises 2002 among other factors.


The embodiments of FIG. 20C, however, are distinct from prior art DSL systems. In the illustration of FIG. 20C, a mini-DSLAM 2024, for example, can be configured to connect to NID 2020 via cable 1850 (which can represent in whole or in part any of the cable embodiments described in relation to FIGS. 18A-18D and 18F-18L singly or in combination). Utilizing cable 1850 between customer premises 2002 and a pedestal 2004, enables NIDs 2010 and 2020 to transmit and receive guide electromagnetic waves for uplink and downlink communications. Based on embodiments previously described, cable 1850 can be exposed to rain, or can be buried without adversely affecting electromagnetic wave propagation either in a downlink path or an uplink path so long as the electric field profile of such waves in either direction is confined at least in part or entirely within inner layers of cable 1850. In the present illustration, downlink communications represents a communication path from the pedestal 2004 to customer premises 2002, while uplink communications represents a communication path from customer premises 2002 to the pedestal 2004. In an embodiment where cable 1850 comprises one of the embodiments of FIGS. 18G-18H, cable 1850 can also serve the purpose of supplying power to the NID 2010 and 2020 and other equipment of the customer premises 2002 and the pedestal 2004.


In customer premises 2002, DSL signals can originate from a DSL modem 2006 (which may have a built-in router and which may provide wireless services such as WiFi to user equipment shown in the customer premises 2002). The DSL signals can be supplied to NID 2010 by a twisted pair phone 2008. The NID 2010 can utilize the integrated waveguide 1602 to launch within cable 1850 guided electromagnetic waves 2014 directed to the pedestal 2004 on an uplink path. In the downlink path, DSL signals generated by the mini-DS LAM 2024 can flow through a twisted pair phone line 2022 to NID 2020. The waveguide system 1602 integrated in the NID 2020 can convert the DSL signals, or a portion thereof, from electrical signals to guided electromagnetic waves 2014 that propagate within cable 1850 on the downlink path. To provide full duplex communications, the guided electromagnetic waves 2014 on the uplink can be configured to operate at a different carrier frequency and/or a different modulation approach than the guided electromagnetic waves 2014 on the downlink to reduce or avoid interference. Additionally, on the uplink and downlink paths, the guided electromagnetic waves 2014 are guided by a core section of cable 1850, as previously described, and such waves can be configured to have a field intensity profile that confines the guide electromagnetic waves in whole or in part in the inner layers of cable 1850. Although the guided electromagnetic waves 2014 are shown outside of cable 1850, the depiction of these waves is for illustration purposes only. For this reason, the guided electromagnetic waves 2014 are drawn with “hash marks” to indicate that they are guided by the inner layers of cable 1850.


On the downlink path, the integrated waveguide system 1602 of NID 2010 receives the guided electromagnetic waves 2014 generated by NID 2020 and converts them back to DSL signals conforming to the requirements of the DSL modem 2006. The DSL signals are then supplied to the DSL modem 2006 via a set of twisted pair wires of phone line 2008 for processing. Similarly, on the uplink path, the integrated waveguide system 1602 of NID 2020 receives the guided electromagnetic waves 2014 generated by NID 2010 and converts them back to DSL signals conforming to the requirements of the mini-DSLAM 2024. The DSL signals are then supplied to the mini-DSLAM 2024 via a set of twisted pair wires of phone line 2022 for processing. Because of the short length of phone lines 2008 and 2022, the DSL modem 2006 and the mini-DSLAM 2024 can send and receive DSL signals between themselves on the uplink and downlink at very high speeds (e.g., 1 Gbps to 60 Gbps or more). Consequently, the uplink and downlink paths can in most circumstances exceed the data rate limits of traditional DSL communications over twisted pair phone lines.


Typically, DSL devices are configured for asymmetric data rates because the downlink path usually supports a higher data rate than the uplink path. However, cable 1850 can provide much higher speeds both on the downlink and uplink paths. With a firmware update, a legacy DSL modem 2006 such as shown in FIG. 20C can be configured with higher speeds on both the uplink and downlink paths. Similar firmware updates can be made to the mini-DSLAM 2024 to take advantage of the higher speeds on the uplink and downlink paths. Since the interfaces to the DSL modem 2006 and mini-DSLAM 2024 remain as traditional twisted pair phone lines, no hardware change is necessary for a legacy DSL modem or legacy mini-DSLAM other than firmware changes and the addition of the NIDs 2010 and 2020 to perform the conversion from DSL signals to guided electromagnetic waves 2014 and vice-versa. The use of NIDs enables a reuse of legacy modems 2006 and mini-DSLAMs 2024, which in turn can substantially reduce installation costs and system upgrades. For new construction, updated versions of mini-DSLAMs and DSL modems can be configured with integrated waveguide systems to perform the functions described above, thereby eliminating the need for NIDs 2010 and 2020 with integrated waveguide systems. In this embodiment, an updated version of modem 2006 and updated version of mini-DSLAM 2024 would connect directly to cable 1850 and communicate via bidirectional guided electromagnetic wave transmissions, thereby averting a need for transmission or reception of DSL signals using twisted pair phone lines 2008 and 2022.


In an embodiment where use of cable 1850 between the pedestal 2004 and customer premises 2002 is logistically impractical or costly, NID 2010 can be configured instead to couple to a cable 1850′ (similar to cable 1850 of the subject disclosure) that originates from a waveguide 108 on a utility pole 118, and which may be buried in soil before it reaches NID 2010 of the customer premises 2002. Cable 1850′ can be used to receive and transmit guided electromagnetic waves 2014′ between the NID 2010 and the waveguide 108. Waveguide 108 can connect via waveguide 106, which can be coupled to base station 104. Base station 104 can provide data communication services to customer premises 2002 by way of its connection to central office 2030 over fiber 2026′. Similarly, in situations where access from the central office 2030 to pedestal 2004 is not practical over a fiber link, but connectivity to base station 104 is possible via fiber link 2026′, an alternate path can be used to connect to NID 2020 of the pedestal 2004 via cable 1850″ (similar to cable 1850 of the subject disclosure) originating from pole 116. Cable 1850″ can also be buried before it reaches NID 2020.


Turning now to FIGS. 20D-20F, block diagrams of example, non-limiting embodiments of antenna mounts that can be used in the communication network 2000 of FIG. 20C (or other suitable communication networks) in accordance with various aspects described herein are shown. In some embodiments, an antenna mount 2053 can be coupled to a medium voltage power line by way of an inductive power supply that supplies energy to one or more waveguide systems (not shown) integrated in the antenna mount 2053 as depicted in FIG. 20D. The antenna mount 2053 can include an array of dielectric antennas 1901 (e.g., 16 antennas) such as shown by the top and side views depicted in FIG. 20F. The dielectric antennas 1901 shown in FIG. 20F can be small in dimension as illustrated by a picture comparison between groups of dielectric antennas 1901 and a conventional ballpoint pen. In other embodiments, a pole mounted antenna 2054 can be used as depicted in FIG. 20D. In yet other embodiments, an antenna mount 2056 can be attached to a pole with an arm assembly as shown in FIG. 20E. In other embodiments, an antenna mount 2058, depicted in FIG. 20E, can be placed on a top portion of a pole coupled to a cable 1850 such as the cables as described in the subject disclosure.


The array of dielectric antennas 1901 in any of the antenna mounts of FIGS. 20D-20E can include one or more waveguide systems as described in the subject disclosure by way of FIGS. 1-20. The waveguide systems can be configured to perform beam steering with the array of dielectric antennas 1901 (for transmission or reception of wireless signals). Alternatively, each dielectric antenna 1901 can be utilized as a separate sector for receiving and transmitting wireless signals. In other embodiments, the one or more waveguide systems integrated in the antenna mounts of FIGS. 20D-20E can be configured to utilize combinations of the dielectric antennas 1901 in a wide range of multi-input multi-output (MIMO) transmission and reception techniques. The one or more waveguide systems integrated in the antenna mounts of FIGS. 20D-20E can also be configured to apply communication techniques such as SISO, SIMO, MISO, SISO, signal diversity (e.g., frequency, time, space, polarization, or other forms of signal diversity techniques), and so on, with any combination of the dielectric antennas 1901 in any of the antenna mounts of FIGS. 20D-20E. In yet other embodiments, the antenna mounts of FIGS. 20D-20E can be adapted with two or more stacks of the antenna arrays shown in FIG. 20F.



FIGS. 21A and 21B describe embodiments for downlink and uplink communications. Method 2100 of FIG. 21A can begin with step 2102 where electrical signals (e.g., DSL signals) are generated by a DSLAM (e.g., mini-DSLAM 2024 of pedestal 2004 or from central office 2030), which are converted to guided electromagnetic waves 2014 at step 2104 by NID 2020 and which propagate on a transmission medium such as cable 1850 for providing downlink services to the customer premises 2002. At step 2108, the NID 2010 of the customer premises 2002 converts the guided electromagnetic waves 2014 back to electrical signals (e.g., DSL signals) which are supplied at step 2110 to customer premises equipment (CPE) such as DSL modem 2006 over phone line 2008. Alternatively, or in combination, power and/or guided electromagnetic waves 2014′ can be supplied from a power line 1850′ of a utility grid (having an inner waveguide as illustrated in FIG. 18G or 18H) to NID 2010 as an alternate or additional downlink (and/or uplink) path.


At step 2122 of method 2120 of FIG. 21B, the DSL modem 2006 can supply electrical signals (e.g., DSL signals) via phone line 2008 to NID 2010, which in turn at step 2124, converts the DSL signals to guided electromagnetic waves directed to NID 2020 by way of cable 1850. At step 2128, the NID 2020 of the pedestal 2004 (or central office 2030) converts the guided electromagnetic waves 2014 back to electrical signals (e.g., DSL signals) which are supplied at step 2129 to a DSLAM (e.g., mini-DSLAM 2024). Alternatively, or in combination, power and guided electromagnetic waves 2014′ can be supplied from a power line 1850′ of a utility grid (having an inner waveguide as illustrated in FIG. 18G or 18H) to NID 2020 as an alternate or additional uplink (and/or downlink) path.


Turning now to FIG. 21C, a flow diagram of an example, non-limiting embodiment of a method 2130 for inducing and receiving electromagnetic waves on a transmission medium is shown. At step 2132, the waveguides 1865 and 1865′ of FIGS. 18N-18T can be configured to generate first electromagnetic waves from a first communication signal (supplied, for example, by a communication device such as a base station), and induce at step 2134 the first electromagnetic waves with “only” a fundamental wave mode at an interface of the transmission medium. In an embodiment, the interface can be an outer surface of the transmission medium as depicted in FIGS. 18Q and 18R. In another embodiment, the interface can be an inner layer of the transmission medium as depicted in FIGS. 18S and 18T. At step 2136, the waveguides 1865 and 1865′ of FIGS. 18N-18T can be configured to receive second electromagnetic waves at an interface of a same or different transmission medium described in FIG. 21C. In an embodiment, the second electromagnetic waves can have “only” a fundamental wave mode. In other embodiments, the second electromagnetic waves may have a combination of wave modes such as a fundamental and non-fundamental wave modes. At step 2138, a second communication signal can be generated from the second electromagnetic waves for processing by, for example, a same or different communication device. The embodiments of FIGS. 21C and 21D can be applied to any embodiments described in the subject disclosure.


Turning now to FIG. 21D, a flow diagram of an example, non-limiting embodiment of a method 2140 for inducing and receiving electromagnetic waves on a transmission medium is shown. At step 2142, the waveguides 1865 and 1865′ of FIGS. 18N-18W can be configured to generate first electromagnetic waves from a first communication signal (supplied, for example, by a communication device), and induce at step 2144 second electromagnetic waves with “only” a non-fundamental wave mode at an interface of the transmission medium. In an embodiment, the interface can be an outer surface of the transmission medium as depicted in FIGS. 18Q and 18R. In another embodiment, the interface can be an inner layer of the transmission medium as depicted in FIGS. 18S and 18T. At step 2146, the waveguides 1865 and 1865′ of FIGS. 18N-18W can be configured to receive electromagnetic waves at an interface of a same or different transmission medium described in FIG. 21E. In an embodiment, the electromagnetic waves can have “only” a non-fundamental wave mode. In other embodiments, the electromagnetic waves may have a combination of wave modes such as a fundamental and non-fundamental wave modes. At step 2148, a second communication signal can be generated from the electromagnetic waves for processing by, for example, a same or different communication device. The embodiments of FIGS. 21E and 21F can be applied to any embodiments described in the subject disclosure.



FIG. 21E illustrates a flow diagram of an example, non-limiting embodiment of a method 2150 for radiating signals from a dielectric antenna such as those shown in FIGS. 19A and 19N. Method 2150 can begin with step 2152 where a transmitter such as waveguide system 1865′ of FIG. 18T generates first electromagnetic waves including a first communication signal. The first electromagnetic waves in turn induce at step 2153 second electromagnetic waves on a core 1852 of a cable 1850 coupled to a feed point of any of the dielectric antenna described in the subject disclosure. The second electromagnetic waves are received at the feed point at step 2154 and propagate at step 2155 to a proximal portion of the dielectric antenna. At step 2156, the second electromagnetic waves continue to propagate from the proximal portion of the dielectric antenna to an aperture of the antenna and thereby cause at step 2157 wireless signals to be radiated as previously described in relation to FIGS. 19A-19N.



FIG. 21F illustrates a flow diagram of an example, non-limiting embodiment of a method 2160 for receiving wireless signals at a dielectric antenna such as the dielectric antennas of FIG. 19A or 19N. Method 2160 can begin with step 2161 where the aperture of the dielectric antenna receives wireless signals. At step 2162, the wireless signals induce electromagnetic waves that propagate from the aperture to the feed point of the dielectric antenna. The electromagnetic waves once received at the feed point at step 2163, propagate at step 2164 to the core of the cable coupled to the feed point. At step 2165, a receiver such as the waveguide system 1865′ of FIG. 18T receives the electromagnetic waves and generates therefrom at step 2166 a second communication signal.


Methods 2150 and 2160 can be used to adapt the dielectric antennas of FIGS. 19A, 19C, 19E, 19G-19I, and 19L-19O for bidirectional wireless communications with other dielectric antennas such as the dielectric antennas 2040 shown in FIG. 20C, and/or for performing bidirectional wireless communications with other communication devices such as a portable communication devices (e.g., cell phones, tablets, laptops), wireless communication devices situated in a building (e.g., a residence), and so on. A microwave apparatus such as shown in FIG. 20A can be configured with one or more cables 1850 that couple to a plurality of dielectric antennas 2040 as shown in FIG. 20C. In some embodiments, the dielectric antennas 2040 shown in FIG. 20C can be configured with yet more dielectric antennas (e.g., 19C, 19E, 19G-19I, and 19L-19O) to further expand the region of wireless communications by such antennas.


Methods 2150 and 2160 can be further adapted for use with the phased array 1976 of dielectric antennas 1901 of FIG. 19O by applying incremental phase delays to portions of the antennas to steer far-field wireless signals emitted. Methods 2150 and 2160 can also be adapted for adjusting the far-field wireless signals generated by the dielectric antenna 1901 and/or an orientation of the dielectric antenna 1901 utilizing the gimbal depicted in FIG. 19M (which may have controllable actuators) to improve reception of the far-field wireless signals by a remote system (such as another dielectric antenna 1901 coupled to a waveguide system). Additionally, the methods 2150 and 2160 can be adapted to receive instructions, messages or wireless signals from the remote system to enable the waveguide system receiving such signals by way of its dielectric antenna 1901 to perform adjustments of the far-field signals.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIGS. 21A-21F, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.



FIG. 21G illustrates a flow diagram of an example, non-limiting embodiment of a method 2170 for detecting and mitigating disturbances occurring in a communication network, such as, for example, the system of FIGS. 16A and 16B. Method 2170 can begin with step 2172 where a network element, such as the waveguide system 1602 of FIGS. 16A-16B, can be configured to monitor degradation of guided electromagnetic waves on an outer surface of a transmission medium, such as power line 1610. A signal degradation can be detected according to any number of factors including without limitation, a signal magnitude of the guided electromagnetic waves dropping below a certain magnitude threshold, a signal to noise ratio (SNR) dropping below a certain SNR threshold, a Quality of Service (QoS) dropping below one or more thresholds, a bit error rate (BER) exceeding a certain BER threshold, a packet loss rate (PLR) exceeding a certain PLR threshold, a ratio of reflected electromagnetic waves to forward electromagnetic waves exceeding a certain threshold, an unexpected change or alteration to a wave mode, a spectral change in the guided electromagnetic waves indicating an object or objects are causing a propagation loss or scattering of the guided electromagnetic waves (e.g., water accumulation on an outer surface of the transmission medium, a splice in the transmission medium, a broken tree limb, etc.), or any combinations thereof. A sensing device such as, the disturbance sensor 1604b of FIG. 16A, can be adapted to perform one or more of the above signal measurements and determine thereby whether the electromagnetic waves are experiencing signal degradation. Other sensing devices suitable for performing the above measurements are contemplated by the subject disclosure.


If signal degradation is detected at step 2174, the network element can proceed to step 2176 where it can determine which object or objects may be causing the degradation, and once detected, report the detected object(s) to the network management system 1601 of FIGS. 16A-16B. Object detection can be accomplished by spectral analysis or other forms of signal analysis, environmental analysis (e.g., barometric readings, rain detection, etc.), or other suitable techniques for detecting foreign objects that may adversely affect propagation of electromagnetic waves guided by the transmission medium. For example, the network element can be configured to generate spectral data derived from an electromagnetic wave received by the network element. The network element can then compare the spectral data to a plurality of spectral profiles stored in its memory. The plurality of spectral profiles can be pre-stored in a memory of the network element, and can be used to characterize or identify obstructions that may cause a propagation loss or signal degradation when such obstructions are present on an outer surface of the transmission medium.


For example, an accumulation of water on an outer surface of a transmission medium, such as a thin layer of water and/or water droplets, may cause a signal degradation in electromagnetic waves guided by the transmission medium that may be identifiable by a spectral profile comprising spectral data that models such an obstruction. The spectral profile can be generated in a controlled environment (such as a laboratory or other suitable testing environment) by collecting and analyzing spectral data generated by test equipment (e.g., a waveguide system with spectrum analysis capabilities) when receiving electromagnetic waves over an outer surface of a transmission medium that has been subjected to water (e.g., simulated rain water). An obstruction such as water can generate a different spectral signature than other obstructions (e.g., a splice between transmission mediums). A unique spectral signature can be used to identify certain obstructions over others. With this technique, spectral profiles can be generated for characterizing other obstructions such as a fallen tree limb on the transmission medium, a splice, and so on. In addition to spectral profiles, thresholds can be generated for different metrics such as SNR, BER, PLR, and so on. These thresholds can be chosen by a service provider according to desired performance measures for a communication network that utilizing guided electromagnetic waves for transport of data. Some obstructions may also be detected by other methods. For example, rain water may be detected by a rain detector coupled to a network element, fallen tree limbs may be detected by a vibration detector coupled to the network element, and so on.


If a network element does not have access to equipment to detect objects that may be causing a degradation of electromagnetic waves, then the network element can skip step 2176 and proceed to step 2178 where it notifies one or more neighboring network elements (e.g., other waveguide system(s) 1602 in a vicinity of the network element) of the detected signal degradation. If signal degradation is significant, the network element can resort to a different medium for communicating with neighboring network element(s), such as, for example, wireless communications. Alternatively, the network element can substantially reduce the operating frequency of the guided electromagnetic waves (e.g., from 40 GHz to 1 GHz), or communicate with neighboring network elements utilizing other guided electromagnetic waves operating at a low frequency, such as a control channel (e.g., 1 MHz). A low frequency control channel may be much less susceptible to interference by the object(s) causing the signal degradation at much higher operating frequencies.


Once an alternate means of communication is established between network elements, at step 2180 the network element and neighboring network elements can coordinate a process to adjust the guided electromagnetic waves to mitigate the detected signal degradation. The process can include, for example, a protocol for choosing which of the network elements will perform the adjustments to the electromagnetic waves, the frequency and magnitude of adjustments, and goals to achieve a desired signal quality (e.g., QoS, BER, PLR, SNR, etc.). If, for example, the object causing the signal degradation is water accumulation on the outer surface of the transmission medium, the network elements can be configured to adjust a polarization of the electrical fields (e-fields) and/or magnetic fields (h-fields) of the electromagnetic waves to attain a radial alignment of the e-fields as shown in FIG. 21H. In particular, FIG. 21H presents a block diagram 2101 illustrating an example, non-limiting embodiment of an alignment of e-fields of an electromagnetic wave to mitigate propagation losses due to water accumulation on a transmission medium in accordance with various aspects described herein. In this example, the longitudinal section of a cable, such as an insulated metal cable implementation of transmission medium 125, is presented along with field vectors that illustrate the e-fields associated with guided electromagnetic waves that propagate at 40 GHz. Stronger e-fields are presented by darker field vectors relative to weaker e-fields.


In one embodiment, an adjustment in polarization can be accomplished by generating a specific wave mode of the electromagnetic waves (e.g., transverse magnetic (TM) mode, transverse electric (TE) mode, transverse electromagnetic (TEM) mode, or a hybrid of a TM mode and TE mode also known as an HE mode). Assuming, for example, that the network element comprises the waveguide system 1865′ of FIG. 18W, an adjustment in a polarization of e-fields can be accomplished by configuring two or more MMICs 1870 to alter a phase, frequency, amplitude or combinations thereof of the electromagnetic waves generated by each MMIC 1870. Certain adjustments may cause, for example, the e-fields in the region of the water film shown in FIG. 21H to align perpendicularly to the surface of the water. Electric fields that are perpendicular (or approximately perpendicular) to the surface of water will induce weaker currents in the water film than e-fields parallel to the water film. By inducing weaker currents, the electromagnetic waves propagating longitudinally will experience less propagation loss. Additionally, it is also desirable for the concentration of the e-fields to extend above the water film into the air. If the concentration of e-fields in the air remains high and the majority of the total field strength is in the air instead of being concentrated in the region of the water and the insulator, then propagation losses will also be reduced. For example, e-fields of electromagnetic waves that are tightly bound to an insulation layer such as, Goubau waves (or TM00 waves—see block diagram 2131 of FIG. 21K), will experience higher propagation losses even though the e-fields may be perpendicular (or radially aligned) to the water film because more of the field strength is concentrated in the region of the water.


Accordingly, electromagnetic waves with e-fields perpendicular (or approximately perpendicular) to a water film having a higher proportion of the field strength in a region of air (i.e., above the water film) will experience less propagation loss than tightly bound electromagnetic waves having more field strength in the insulating or water layers or electromagnetic waves having e-fields in the direction of propagation within the region of the water film that generate greater losses.



FIG. 21H depicts, in a longitudinal view of an insulated conductor, e-field for TM01 electromagnetic waves operating at 40 GHz. FIGS. 21I and 21J, in contrast, depict cross-sectional views 2111 and 2121, respectively, of the insulated conductor of FIG. 21H illustrating the field strength of e-fields in the direction of propagation of the electromagnetic waves (i.e., e-fields directed out of the page of FIGS. 21I and 21J). The electromagnetic waves shown in FIGS. 21I and 21J have a TM01 wave mode at 45 GHz and 40 GHz, respectively. FIG. 21I shows that the intensity of the e-fields in the direction of propagation of the electromagnetic waves is high in a region between the outer surface of the insulation and the outer surface of the water film (i.e., the region of the water film). The high intensity is depicted by a light color (the lighter the color the higher the intensity of the e-fields directed out of the page). FIG. 21I illustrates that there is a high concentration of e-fields polarized longitudinally in the region of the water film, which causes high currents in the water film and consequently high propagation losses. Thus, under certain circumstances, electromagnetic waves at 45 GHz (having a TM01 wave mode) are less suitable to mitigate rain water or other obstructions located on the outer surface of the insulated conductor.


In contrast, FIG. 21J shows that the intensity of the e-fields in the direction of propagation of the electromagnetic waves is weaker in the region of the water film. The lower intensity is depicted by the darker color in the region of the water film. The lower intensity is a result of the e-fields being polarized mostly perpendicular or radial to the water film. The radially aligned e-fields also are highly concentrated in the region of air as shown in FIG. 21H. Thus, electromagnetic waves at 40 GHz (having a TM01 wave mode) produce e-fields that induce less current in the water film than 45 GHz waves with the same wave mode. Accordingly, the electromagnetic waves of FIG. 21J exhibit properties more suitable for reducing propagation losses due to a water film or droplets accumulating on an outer surface of an insulated conductor.


Since the physical characteristics of a transmission medium can vary, and the effects of water or other obstructions on the outer surface of the transmission medium may cause non-linear effects, it may not always be possible to precisely model all circumstances so as to achieve the e-field polarization and e-field concentration in air depicted in FIG. 21H on a first iteration of step 2182. To increase a speed of the mitigation process, a network element can be configured to choose from a look-up table at step 2186 a starting point for adjusting electromagnetic waves. In one embodiment, entries of the look-up table can be searched for matches to a type of object detected at step 2176 (e.g., rain water). In another embodiment, the look-up table can be searched for matches to spectral data derived from the affected electromagnetic wave received by the network elements. Table entries can provide specific parameters for adjusting electromagnetic waves (e.g., frequency, phase, amplitude, wave mode, etc.) to achieve at least a coarse adjustment that achieves similar e-field properties as shown in FIG. 21H. A coarse adjustment can serve to improve the likelihood of converging on a solution that achieves the desirable propagation properties previously discussed in relation to FIGS. 21H and 21J.


Once a coarse adjustment is made at step 2186, the network element can determine at step 2184 whether the adjustment has improved signal quality to a desirable target. Step 2184 can be implemented by a cooperative exchange between network elements. For example, suppose the network element at step 2186 generates an adjusted electromagnetic wave according to parameters obtained from the look-up table and transmits the adjusted electromagnetic wave to a neighboring network element. At step 2184 the network element can determine whether the adjustment has improved signal quality by receiving feedback from a neighboring network element receiving the adjusted electromagnetic waves, analyzing the quality of the received waves according to agreed target goals, and providing the results to the network element. Similarly, the network element can test adjusted electromagnetic waves received from neighboring network elements and can provide feedback to the neighboring network elements including the results of the analysis. While a particular search algorithm is discussed above, other search algorithms such as a gradient search, genetic algorithm, global search or other optimization techniques can likewise be employed. Accordingly, steps 2182, 2186 and 2184 represent an adjustment and testing process performed by the network element and its neighbor(s).


With this in mind, if at step 2184 a network element (or its neighbors) determine that signal quality has not achieved one or more desired parametric targets (e.g., SNR, BER, PLR, etc.), then incremental adjustments can begin at step 2182 for each of the network element and its neighbors. At step 2182, the network element (and/or its neighbors) can be configured to adjust a magnitude, phase, frequency, wave mode and/or other tunable features of the electromagnetic waves incrementally until a target goal is achieved. To perform these adjustments, a network element (and its neighbors) can be configured with the waveguide system 1865′ of FIG. 18W. The network element (and its neighbors) can utilize two or more MMICs 1870 to incrementally adjust one or more operational parameters of the electromagnetic waves to achieve e-fields polarized in a particular direction (e.g., away from the direction of propagation in the region of the water film). The two or more MMICs 1870 can also be configured to incrementally adjust one or more operational parameters of the electromagnetic waves that achieve e-fields having a high concentration in a region of air (outside the obstruction).


The iteration process can be a trial-and-error process coordinated between network elements to reduce a time for converging on a solution that improves upstream and downstream communications. As part of the coordination process, for example, one network element can be configured to adjust a magnitude but not a wave mode of the electromagnetic waves, while another network element can be configured to adjust the wave mode and not the magnitude. The number of iterations and combination of adjustments to achieve desirable properties in the electromagnetic waves to mitigate obstructions on an outer surface of a transmission medium can be established by a service provider according to experimentation and/or simulations and programmed into the network elements.


Once the network element(s) detect at step 2184 that signal quality of upstream and downstream electromagnetic waves has improved to a desirable level that achieves one or more parametric targets (e.g. SNR, BER, PLR, etc.), the network elements can proceed to step 2188 and resume communications according to the adjusted upstream and downstream electromagnetic waves. While communications take place at step 2188, the network elements can be configured to transmit upstream and downstream test signals based on the original electromagnetic waves to determine if the signal quality of such waves has improved. These test signals can be transmitted at periodic intervals (e.g., once every 30 seconds or other suitable periods). Each network element can, for example, analyze spectral data of the received test signals to determine if they achieve a desirable spectral profile and/or other parametric target (e.g. SNR, BER, PLR, etc.). If the signal quality has not improved or has improved nominally, the network elements can be configured to continue communications at step 2188 utilizing the adjusted upstream and downstream electromagnetic waves.


If, however, signal quality has improved enough to revert back to utilizing the original electromagnetic waves, then the network element(s) can proceed to step 2192 to restore settings (e.g., original wave mode, original magnitude, original frequency, original phase, original spatial orientation, etc.) that produce the original electromagnetic waves. Signal quality may improve as a result of a removal of the obstruction (e.g., rain water evaporates, field personnel remove a fallen tree limb, etc.). At step 2194, the network elements can initiate communications utilizing the original electromagnetic waves and perform upstream and downstream tests. If the network elements determine at step 2196 from tests performed at step 2194 that signal quality of the original electromagnetic waves is satisfactory, then the network elements can resume communications with the original electromagnetic waves and proceed to step 2172 and subsequent steps as previously described.


A successful test can be determined at step 2196 by analyzing test signals according to parametric targets associated with the original electromagnetic waves (e.g., BER, SNR, PLR, etc.). If the tests performed at step 2194 are determined to be unsuccessful at step 2196, the network element(s) can proceed to steps 2182, 2186 and 2184 as previously described. Since a prior adjustment to the upstream and downstream electromagnetic waves may have already been determined successfully, the network element(s) can restore the settings used for the previously adjusted electromagnetic waves. Accordingly, a single iteration of any one of steps 2182, 2186 and 2184 may be sufficient to return to step 2188.


It should be noted that in some embodiments restoring the original electromagnetic waves may be desirable if, for example, data throughput when using the original electromagnetic waves is better than data throughput when using the adjusted electromagnetic waves. However, when data throughput of the adjusted electromagnetic waves is better or substantially close to the data throughput of the original electromagnetic waves, the network element(s) may instead be configured to continue from step 2188.


It is also noted that although FIGS. 21H and 21K describe a TM01 wave mode, other wave modes (e.g., HE waves, TE waves, TEM waves, etc.) or combination of wave modes may achieve the desired effects shown in FIG. 21H. Accordingly, a wave mode singly or in combination with one or more other wave modes may generate electromagnetic waves with e-field properties that reduce propagation losses as described in relation to FIGS. 21H and 21J. Such wave modes are therefore contemplated as possible wave modes the network elements can be configured to produce.


It is further noted that method 2170 can be adapted to generate at steps 2182 or 2186 other wave modes that may not be subject to a cutoff frequency. For example, FIG. 21L depicts a block diagram 2141 of an example, non-limiting embodiment of electric fields of a hybrid wave in accordance with various aspects described herein. Waves having an HE mode have linearly polarized e-fields which point away from a direction of propagation of electromagnetic waves and can be perpendicular (or approximately perpendicular) to a region of obstruction (e.g., water film shown in FIGS. 21H-21J). Waves with an HE mode can be configured to generate e-fields that extend substantially outside of an outer surface of an insulated conductor so that more of the total accumulated field strength is in air. Accordingly, some electromagnetic waves having an HE mode can exhibit properties of a large wave mode with e-fields orthogonal or approximately orthogonal to a region of obstruction. As described earlier, such properties can reduce propagation losses. Electromagnetic waves having an HE mode also have the unique property that they do not have a cutoff frequency (i.e., they can operate near DC) unlike other wave modes which have non-zero cutoff frequencies.


Turning now to FIG. 21M, a block diagram 2151 illustrating an example, non-limiting embodiment of electric field characteristics of a hybrid wave versus a Goubau wave in accordance with various aspects described herein is shown. Diagram 2158 shows a distribution of energy between HE11 mode waves and Goubau waves for an insulated conductor. The energy plots of diagram 2158 assume that the amount of power used to generate the Goubau waves is the same as the HE11 waves (i.e., the area under the energy curves is the same). In the illustration of diagram 2158, Goubau waves have a steep drop in power when Goubau waves extend beyond the outer surface of an insulated conductor, while HE11 waves have a substantially lower drop in power beyond the insulation layer. Consequently, Goubau waves have a higher concentration of energy near the insulation layer than HE 11 waves. Diagram 2167 depicts similar Goubau and HE 11 energy curves when a water film is present on the outer surface of the insulator. The difference between the energy curves of diagrams 2158 and 2167 is that the drop in power for the Goubau and the HE11 energy curves begins on an outer edge of the insulator for diagram 2158 and on an outer edge of the water film for diagram 2167. The energy curves diagrams 2158 and 2167, however, depict the same behavior. That is, the electric fields of Goubau waves are tightly bound to the insulation layer, which when exposed to water results in greater propagation losses than electric fields of HE11 waves having a higher concentration outside the insulation layer and the water film. These properties are depicted in the HE11 and Goubau diagrams 2168 and 2159, respectively.


By adjusting an operating frequency of HE11 waves, e-fields of HE11 waves can be configured to extend substantially above a thin water film as shown in block diagram 2169 of FIG. 21N having a greater accumulated field strength in areas in the air when compared to fields in the insulator and a water layer surrounding the outside of the insulator. FIG. 21N depicts a wire having a radius of 1 cm and an insulation radius of 1.5 cm with a dielectric constant of 2.25. As the operating frequency of HE11 waves is reduced, the e-fields extend outwardly expanding the size of the wave mode. At certain operating frequencies (e.g., 3 GHz) the wave mode expansion can be substantially greater than the diameter of the insulated wire and any obstructions that may be present on the insulated wire.


By having e-fields that are perpendicular to a water film and by placing most of its energy outside the water film, HE11 waves have less propagation loss than Goubau waves when a transmission medium is subjected to water or other obstructions. Although Goubau waves have radial e-fields which are desirable, the waves are tightly coupled to the insulation layer, which results in the e-fields being highly concentrated in the region of an obstruction. Consequently, Goubau waves are still subject to high propagation losses when an obstruction such as a water film is present on the outer surface of an insulated conductor.


Turning now to FIGS. 22A and 22B, block diagrams illustrating example, non-limiting embodiments of a waveguide system 2200 for launching hybrid waves in accordance with various aspects described herein is shown. The waveguide system 2200 can comprise probes 2202 coupled to a slideable or rotatable mechanism 2204 that enables the probes 2202 to be placed at different positions or orientations relative to an outer surface of an insulated conductor 2208. The mechanism 2204 can comprise a coaxial feed 2206 or other coupling that enables transmission of electromagnetic waves by the probes 2202. The coaxial feed 2206 can be placed at a position on the mechanism 2204 so that the path difference between the probes 2202 is one-half a wavelength or some odd integer multiple thereof. When the probes 2202 generate electromagnetic signals of opposite phase, electromagnetic waves can be induced on the outer surface of the insulated conductor 2208 having a hybrid mode (such as an HE11 mode).


The mechanism 2204 can also be coupled to a motor or other actuator (not shown) for moving the probes 2202 to a desirable position. In one embodiment, for example, the waveguide system 2200 can comprise a controller that directs the motor to rotate the probes 2202 (assuming they are rotatable) to a different position (e.g., east and west) to generate electromagnetic waves that have a horizontally polarized HE11 mode as shown in a block diagram 2300 of FIG. 23. To guide the electromagnetic waves onto the outer surface of the insulated conductor 2208, the waveguide system 2200 can further comprise a tapered horn 2210 shown in FIG. 22B. The tapered horn 2210 can be coaxially aligned with the insulated conductor 2208. To reduce the cross-sectional dimension of the tapered horn 2210, an additional insulation layer (not shown) can placed on the insulated conductor 2208. The additional insulation layer can be similar to the tapered insulation layer 1879 shown in FIGS. 18Q and 18R. The additional insulation layer can have a tapered end that points away from the tapered horn 2210. The tapered insulation layer 1879 can reduce a size of an initial electromagnetic wave launched according to an HE11 mode. As the electromagnetic waves propagate towards the tapered end of the insulation layer, the HE11 mode expands until it reaches its full size as shown in FIG. 23. In other embodiments, the waveguide system 2200 may not need to use the tapered insulation layer 1879.



FIG. 23 illustrates that HE11 mode waves can be used to mitigate obstructions such as rain water. For example, suppose that rain water has caused a water film to surround an outer surface of the insulated conductor 2208 as shown in FIG. 23. Further assume that water droplets have collected at the bottom of the insulated conductor 2208. As illustrated in FIG. 23, the water film occupies a small fraction of the total HE11 wave. Also, by having horizontally polarized HE11 waves, the water droplets are in a least-intense area of the HE11 waves reducing losses caused by the droplets. Consequently, the HE11 waves experience much lower propagation losses than Goubau waves or waves having a mode that is tightly coupled to the insulated conductor 2208 and thus greater energy in the areas occupied by the water.


It is submitted that the waveguide system 2200 of FIGS. 22A-22B can be replaced with other waveguide systems of the subject disclosure capable of generating electromagnetic waves having an HE mode. For example, the waveguide system 1865′ of FIG. 18W can be configured to generate electromagnetic waves having an HE mode. In an embodiment, two or more MMICs 1870 of the waveguide system 1865′ can be configured to generate electromagnetic waves of opposite phase to generate polarized e-fields such as those present in an HE mode. In another embodiment, different pairs of MMICs 1870 can be selected to generate HE waves that are polarized at different spatial positions (e.g., north and south, west and east, northwest and southeast, northeast and southeast, or other sub-fractional coordinates). Additionally, the waveguide systems of FIGS. 18N-18W can be configured to launch electromagnetic waves having an HE mode onto the core 1852 of one or more embodiments of cable 1850 suitable for propagating HE mode waves.


Although HE waves can have desirable characteristics for mitigating obstructions on a transmission medium, it is submitted that certain wave modes having a cutoff frequency (e.g., TE modes, TM modes, TEM modes or combinations thereof) may also exhibit waves that are sufficiently large and have polarized e-fields that are orthogonal (or approximately orthogonal) to a region of an obstruction enabling their use for mitigating propagation losses caused by the obstruction. Method 2070 can be adapted, for example, to generate such wave modes from a look-up table at step 2086. Wave modes having a cutoff frequency that exhibit, for example, a wave mode larger than the obstruction and polarized e-fields perpendicular (or approximately perpendicular) to the obstruction can be determined by experimentation and/or simulation. Once a combination of parameters (e.g., magnitude, phase, frequency, wave mode(s), spatial positioning, etc.) for generating one or more waves with cutoff frequencies having low propagation loss properties is determined, the parametric results for each wave can be stored in a look-up table in a memory of a waveguide system. Similarly, wave modes with cutoff frequencies exhibiting properties that reduce propagation losses can also be generated iteratively by any of the search algorithms previously described in the process of steps 2082-2084.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 21G, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.



FIG. 24 illustrates a flow diagram of an example, non-limiting embodiment of a method 2400 for sending and receiving electromagnetic waves. Method 2400 can be adapted for the waveguides 2522 shown in FIGS. 25A through 25C. Method 2400 can begin at step 2402 where a generator generates a first electromagnetic wave. At step 2404 a waveguide guides the first electromagnetic wave to an interface of a transmission medium, which in turn induces at step 2406 a second electromagnetic wave at the interface of the transmission medium. Steps 2402-2406 can be applied to the waveguides 2522 of FIGS. 25A, 25B and 25C. The generator can be an MMIC 1870 or slot 1863 as shown in FIGS. 18N through 18W. For illustration purposes only, the generator is assumed to be an MMIC 2524 positioned within the waveguide 2522 as shown in FIGS. 25A through 25C. Although FIGS. 25A through 25C illustrate in a longitudinal view of cylindrical waveguides 2522, the waveguides 2522 can be adapted to other structural shapes (e.g., square, rectangular, etc.).


Turning to the illustration of FIG. 25A, the waveguide 2522 covers a first region 2506 of a core 2528. Within the first region 2506, waveguide 2522 has an outer surface 2522A and an inner surface 2523. The inner surface 2523 of the waveguide 2522 can be constructed from a metallic material, carbon, or other material that reflects electromagnetic waves and thereby enables the waveguide 2522 to be configured at step 2404 to guide the first electromagnetic wave 2502 towards the core 2528. The core 2528 can comprise a dielectric core (as described in the subject disclosure) that extends to the inner surface 2523 of the waveguide 2522. In other embodiments, the dielectric core can be surrounded by cladding (such as shown in FIG. 18A), whereby the cladding extends to the inner surface 2523 of the waveguide 2522. In yet other embodiments, the core 2528 can comprise an insulated conductor, where the insulation extends to the inner surface 2523 of the waveguide 2522. In this embodiment, the insulated conductor can be a power line, a coaxial cable, or other types of insulated conductors.


In the first region 2506, the core 2528 comprises an interface 2526 for receiving the first electromagnetic wave 2502. In one embodiment, the interface 2526 of the core 2528 can be configured to reduce reflections of the first electromagnetic wave 2502. In one embodiment, the interface 2526 can be a tapered structure to reduce reflections of the first electromagnetic wave 2502 from a surface of the core 2528. Other structures can be used for the interface 2526. For example, the interface 2526 can be partially tapered with a rounded point. Accordingly, any structure, configuration, or adaptation of the interface 2526 that can reduced reflections of the first electromagnetic wave 2502 is contemplated by the subject disclosure. At step 2406, the first electromagnetic wave 2502 induces (or otherwise generates) a second electromagnetic wave 2504 that propagates within the core 2528 in the first region 2506 covered by the waveguide 2522. The inner surface 2523 of the waveguide 2522 confines the second electromagnetic wave 2504 within the core 2528.


A second region 2508 of the core 2528 is not covered by the waveguide 2522, and is thereby exposed to the environment (e.g., air). In the second region 2508, the second electromagnetic wave 2504 expands outwardly beginning from the discontinuity between the edge of the waveguide 2522 and the exposed core 2528. To reduce the radiation into the environment from the second electromagnetic wave 2504, the core 2528 can be configured to have a tapered structure 2520. As the second electromagnetic wave 2504 propagates along the tapered structure 2520, the second electromagnetic wave 2504 remains substantially bound to the tapered structure 2520 thereby reducing radiation losses. The tapered structure 2520 ends at a transition from the second region 2508 to a third region 2510. In the third region, the core has a cylindrical structure 2529 having a diameter equal to the endpoint of the tapered structure 2520 at the juncture between the second region 2508 and the third region 2510. In the third region 2510 of the core 2528, the second electromagnetic wave 2504 experiences a low propagation loss. In one embodiment, this can be accomplished by selecting a diameter of the core 2528 that enables the second electromagnetic wave 2504 to be loosely bound to the outer surface of the core 2528 in the third region 2510. Alternatively, or in combination, propagation losses of the second electromagnetic wave 2504 can be reduced by configuring the MMICs 2524 to adjust a wave mode, wave length, operating frequency, or other operational parameter of the first electromagnetic wave 2502.



FIG. 25D illustrates a portion of the waveguide 2522 of FIG. 25A depicted as a cylindrical ring (that does not show the MMICs 2524 or the tapered structure 2526 of FIG. 25A). In the simulations, a first electromagnetic wave is injected at the endpoint of the core 2528 shown in FIG. 25D. The simulation assumes no reflections of the first electromagnetic wave based on an assumption that a tapered structure 2526 (or other suitable structure) is used to reduce such reflections. The simulations are shown as two longitudinal cross-sectional views of the core 2528 covered in part by waveguide section 2523A, and an orthogonal cross-sectional view of the core 2528. In the case of the longitudinal cross-sectional views, one of the illustrations is a blown up view of a portion of the first illustration.


As can be seen from the simulations, electromagnetic wave fields 2532 of the second electromagnetic wave 2504 are confined within the core 2528 by the inner surface 2523 of the waveguide section 2523A. As the second electromagnetic wave 2504 enters the second region 2508 (no longer covered by the waveguide section 2523A), the tapered structure 2520 reduces radiation losses of the electromagnetic wave fields 2532 as it expands over the outer tapered surface of the core 2528. As the second electromagnetic wave 2504 enters the third region 2510, the electromagnetic wave fields 2532 stabilize and thereafter remain loosely coupled to the core 2528 (depicted in the longitudinal and orthogonal cross-sectional views), which reduces propagation losses.



FIG. 25B provides an alternative embodiment to the tapered structure 2520 in the second region 2508. The tapered structure 2520 can be avoided by extending the waveguide 2522 into the second region 2508 with a tapered structure 2522B and maintaining the diameter of the core 2528 throughout the first, second and third regions 2506, 2508 and 2510 of the core 2528 as depicted in FIG. 25B. The horn structure 2522B can be used to reduce radiation losses of the second electromagnetic wave 2504 as the second electromagnetic wave 2504 transitions from the first region 2506 to the second region 2508. In the third region 2510, the core 2528 is exposed to the environment. As noted earlier, the core 2528 is configured in the third region 2510 to reduce propagation losses by the second electromagnetic wave 2504. In one embodiment, this can be accomplished by selecting a diameter of the core 2528 that enables the second electromagnetic wave 2504 to be loosely bound to the outer surface of the core 2528 in the third region 2510. Alternatively, or in combination, propagation losses of the second electromagnetic wave 2504 can be reduced by adjusting a wave mode, wave length, operating frequency, or other performance parameter of the first electromagnetic wave 2502.


The waveguides 2522 of FIGS. 25A and 25B can also be adapted for receiving electromagnetic waves. For example, the waveguide 2522 of FIG. 25A can be adapted to receive an electromagnetic wave at step 2412. This can be represented by an electromagnetic wave 2504 propagating in the third region 2510 from east to west (orientation shown at bottom right of FIGS. 25A-25B) towards the second region 2508. Upon reaching the second region 2508, the electromagnetic wave 2504 gradually becomes more tightly coupled to the tapered structure 2520. When it reaches the boundary between the second region 2508 and the first region 2506 (i.e., the edge of the waveguide 2522), the electromagnetic wave 2504 propagates within the core 2528 confined by the inner surface 2523 of the waveguide 2522. Eventually the electromagnetic wave 2504 reaches an endpoint of the tapered interface 2526 of the core 2528 and radiates as a new electromagnetic wave 2502 which is guided by the inner surface 2523 of the waveguide 2522.


One or more antennas of the MMICs 2524 can be configured to receive the electromagnetic wave 2502 thereby converting the electromagnetic wave 2502 to an electrical signal at step 2414 which can be processed by a processing device (e.g., a receiver circuit and microprocessor). To prevent interference between electromagnetic waves transmitted by the MMICs 2524, a remote waveguide system that transmitted the electromagnetic wave 2504 that is received by the waveguide 2522 of FIG. 25A can be adapted to transmit the electromagnetic wave 2504 at a different operating frequency, different wave mode, different phase, or other adjustable operational parameter to avoid interference. Electromagnetic waves can be received by the waveguide 2522 of FIG. 25B in a similar manner as described above.


Turning now to FIG. 25C, the waveguide 2522 of FIG. 25B can be adapted to support transmission mediums 2528 that have no endpoints such as shown in FIG. 25C. In this illustration, the waveguide 2522 comprises a chamber 2525 in a first region 2506 of the core 2528. The chamber 2525 creates a gap 2527 between an outer surface 2521 of the core 2528 and the inner surface 2523 of the waveguide 2522. The gap 2527 provides sufficient room for placement of the MMICs 2524 on the inner surface 2523 of the waveguide 2522. To enable the waveguide 2522 to receive electromagnetic waves from either direction, the waveguide 2522 can be configured with symmetrical regions: 2508 and 2508′, 2510 and 2510′, and 2512, and 2512′. In the first region 2506, the chamber 2525 of the waveguide 2522 has two tapered structures 2522B′ and 2522B″. These tapered structures 2522B′ and 2522B″ enable an electromagnetic wave to gradually enter or exit the chamber 2525 from either direction of the core 2528. The MMICs 2524 can be configured with directional antennas to launch a first electromagnetic wave 2502 directed from east-to-west or from west-to-east in relation to the longitudinal view of the core 2528. Similarly, the directional antennas of the MMICs 2524 can be configured to receive an electromagnetic waves propagating longitudinally on the core 2528 from east-to-west or from west-to-east. The process for transmitting electromagnetic waves is similar to that described for FIG. 25B depending on whether the directional antennas of the MMICs 2524 are transmitting from east-to-west or from west-to-east.


Although not shown, the waveguide 2522 of FIG. 25C can be configured with a mechanism such as one or more hinges that enable splitting the waveguide 2522 into two parts that can be separated. The mechanism can be used to enable installation of the waveguide 2522 onto a core 2528 without endpoints. Other mechanisms for installation of the waveguide 2522 of FIG. 25C on a core 2528 are contemplated by the subject disclosure. For example, the waveguide 2522 can be configured with a slot opening that spans the entire waveguide structure longitudinally. In a slotted design of the waveguide 2522, the regions 2522C′ and 2522C of the waveguide 2522 can be configured so that the inner surface 2523 of the waveguide 2522 is tightly coupled to the outer surface of the core 2528. The tight coupling between the inner surface 2523 of the waveguide 2522 the outer surface of the core 2528 prevents sliding or movement of the waveguide 2522 relative to the core 2528. A tight coupling in the regions 2522C′ and 2522C can also be applied to a hinged design of the waveguide 2522.


The waveguides 2522 shown in FIGS. 25A, 25B and 25C can be adapted to perform one or more embodiments described in other figures of the subject disclosure. Accordingly, it is contemplated that such embodiments can be applied to the waveguide 2522 of FIGS. 25A, 25B and 25C. Additionally, any adaptations in the subject disclosure of a core can be applied to the waveguide 2522 of FIGS. 25A, 25B and 25C.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 24, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


It is further noted that the waveguide launchers 2522 of FIGS. 25A-25D and/or other waveguide launchers described and shown in the figures of the subject disclosure (e.g., FIGS. 7-14, 18N-18W, 22A-22B and other drawings) and any methods thereof can be adapted to generate on a transmission medium having an outer surface composed of, for example, a dielectric material (e.g., insulation, oxidation, or other material with dielectric properties) a single wave mode or combination of wave modes that reduce propagation losses when propagating through a substance, such as a liquid (e.g., water produced by humidity, snow, dew, sleet and/or rain), disposed on the outer surface of the transmission medium.



FIGS. 25E, 25F, 25G, 25H, 25I, 25J, 25K, 25L, 25M, 25N, 25O, 25P, 25Q, 25R, 25S and 25T are block diagrams illustrating example, non-limiting embodiments of wave modes (and electric field plots associated therewith) that can be generated on an outer surface of a transmission medium by one or more of the waveguides of the subject disclosure and adaptations thereof. Turning first to FIG. 25E, an illustration is provided that depicts a longitudinal cross-section of a transmission medium 2542. The transmission medium 2542 can comprise a conductor 2543, a dielectric material 2544 (e.g., insulation, oxidation, etc.) disposed on the conductor 2543, and a substance/water film 2545 (or other accumulation of water, liquid, or other substance) disposed on the outer surface of the dielectric material 2544. The transmission medium 2542 can be exposed to a gaseous substance such as atmosphere or air 2546 (or can be located in a vacuum). The respective thicknesses of the conductor 2543, dielectric material 2544, and water film 2545 are not drawn to scale and are therefore meant only to be illustrative. Although not shown in FIG. 25E, the conductor 2543 can be a cylindrical conductor e.g., single conductor, braided multi-strand conductor, etc.) surrounded by the dielectric material 2544, and air 2546. To simplify the illustration of the subject disclosure, only a portion of the conductor 2543 near the upper (or first) surface is shown. Furthermore, a symmetrical portion of the dielectric material 2544, water film 2545, and air 2546, which would be located under (or on an opposite/bottom side of) the conductor 2543, in the longitudinal cross section of FIG. 25E, is not shown.


In certain embodiments, gravitational forces can cause the water film 2545 to be concentrated predominantly on a limited portion of the outer surface of the transmission medium 2542 (e.g., on a bottom side of the transmission medium 2542). It is therefore not necessary in the present illustration for the outer surface of the dielectric material to be completely surrounded by the water film 2545. It is further noted that the water film 2545 can be droplets or beads of water rather than a contiguous water film. Although FIG. 25E illustrates an insulated conductor (i.e., conductor 2543 surrounded by the dielectric material 2544), other configurations of the transmission medium 2542 are possible and applicable to the subject disclosure, such as, for example, a transmission medium 2542 composed of a bare wire or other uninsulated conductor or solely of a dielectric material of various structural shapes (e.g., cylindrical structure, rectangular structure, square structure, etc.).



FIG. 25E further depicts electric fields of a fundamental transverse magnetic wave mode in the form of TM00 wave mode, sometimes referred to as the Goubau wave mode, launched onto the outer surface of the transmission medium 2542 by one of the waveguide launchers described in the subject disclosure or an adaptation thereof and that travels in a longitudinal direction along the transmission medium 2542 corresponding to the direction of wave propagation shown. Electromagnetic waves that propagate along a transmission medium via a transverse magnetic (TM) mode have electric fields with both radial rho-field components that extend radially outward from the transmission medium and are perpendicular to the longitudinal direction and longitudinal z-field components that vary as a function of time and distance of propagation that are parallel to the longitudinal direction but no azimuthal phi-field components that are perpendicular to both the longitudinal direction and the radial direction.


The TM00 Goubau wave mode produces electric fields with predominant radial rho-field components extending away from the conductor at a high field strength throughout the dielectric in the region 2550. The TM00 Goubau wave mode also produces electric fields with predominant radial rho-field components extending into the conductor at a high field strength throughout the dielectric in the region 2550″. Furthermore, in the region 2550′ between regions 2550 and 2550″, electric fields with smaller magnitudes and with predominant longitudinal z-field components are produced. The presence of these electric fields inside the dielectric produces some attenuation, but losses in these regions are insignificant compared with the effects of a thin water film as will be discussed below.


An expanded view 2548 of a small region of the transmission medium 2542 (depicted by a dashed oval) is shown at the bottom right of FIG. 25E. The expanded view 2548 depicts a higher resolution of the electric fields present in the small region of the transmission medium 2542. The expanded view shows electric fields in the dielectric material 2544, the water film 2545 and the air 2546. A substantial portion of the electric fields depicted in region 2547 of the expanded view 2548 has a significant longitudinal component, particularly in the region near the outer surface of the dielectric material 2544 in an area of the water film 2545. As an electromagnetic wave exhibiting a TM00 (Goubau) wave mode propagates longitudinally (left-to-right or right-to-left), the areas of strong longitudinal component of the electric fields shown in region 2547 cause the electric field to traverse a greater portion of the water film 2545 thereby causing substantial propagation losses, which can be in the order of 200 dB/M of attenuation for frequencies in the range of 24-40 GHz, for example.



FIG. 25F depicts a cross-sectional longitudinal view of simulated electromagnetic waves having a TM00 (Goubau) wave mode, and the effects when such waves propagate on a dry versus wet transmission medium 2542 implemented as a 1-meter (in length) insulated conductor. For illustration purposes only, the simulation assumes a lossless insulator to focus the analysis on a degree of attenuation caused by a 0.1 mm water film. As shown in the illustration, when electromagnetic waves having the TM00 (Goubau) wave mode propagate on the dry transmission medium 2452, the waves experience minimal propagation losses. In contrast, when the same electromagnetic waves having the TM00 (Goubau) wave mode propagate in the wet transmission medium 2542, they experience significant propagation losses greater than 200 dB in attenuation over the 1 meter length of the insulated conductor for frequencies in the range of 24-40 GHz, for example.



FIG. 25G illustrates a simulation depicting the magnitude and frequency properties of electromagnetic waves having a TM00 Goubau wave mode that propagate on a dry insulated conductor 2542 versus a wet insulated conductor 2542. For illustration purposes only, the simulation assumes a lossless insulator to focus the analysis on the degree of attenuation caused by a 0.1 mm water film. The plots show that when the transmission medium 2542 is wet, electromagnetic waves having a TM00 Goubau wave mode experience attenuations of approximately 200 dB/M for a range of frequencies of 24-40 GHz. In contrast, the plot for the dry insulated conductor 2542 experiences nearly no attenuation in the same range of frequencies.



FIGS. 25H and 25I illustrate electric field plots of an electromagnetic wave having TM00 Goubau wave mode with an operating frequency of 3.5 GHz and 10 GHz, respectively. Although the vertical axis represents field intensity and not distance, hash lines have been superimposed on the plots of FIGS. 25H and 25I (as well as the plots of FIGS. 25M-25S) to depict the respective portions of the conductor, insulator and water film relative to their position indicated by the x-axis. While the field strengths were calculated in FIGS. 25H and 25I (as well as the plots of FIGS. 25M-25S) based on a condition where no water is present, the plot shown in FIG. 25H nevertheless helps explain why a TM00 Goubau wave mode at lower frequencies has low propagation losses when water is present on the outer surface of the dielectric material 2544 in the position shown.


To understand the plots of FIGS. 25H and 25I, it is important to understand the difference between radial rho-fields and longitudinal z-fields. When viewing a longitudinal cross-section of a transmission medium 2542 such as shown in FIG. 25E, rho-fields represent electric fields that extend radially outward from or inward to (perpendicular to the longitudinal axis) the conductor 2543 through the dielectric material 2544, a water film 2545 that may be present, and the air 2546. In contrast, z-fields are electric fields that are aligned with the dielectric material 2544, the water film 2545, or the air 2546 in a manner that is parallel to the longitudinal axis of the transmission medium 2542. A propagating electromagnetic wave having solely electric field components that are radial or perpendicular to a water film 2545 does not experience a significant loss in field strength as the electromagnetic wave propagates longitudinally (from left-to-right or right-to-left) along the outer surface of the transmission medium 2542. In contrast, a propagating electromagnetic wave having electric field components that are parallel (or longitudinal), i.e., z-fields aligned with the water film 2545, having a field strength substantially greater than 0 will experience a substantial loss in field strength (i.e., propagation loss) as the electromagnetic wave propagates longitudinally (from left-to-right or right-to-left) along the outer surface of the transmission medium 2542.


In the case of a TM00 Goubau wave mode at 3.5 GHz as shown in the plot of FIG. 25H, the z-field component of the electric fields has a field strength that is small relative to the rho-field (radial) component beginning from the outer surface of the dielectric material 2544 and through the position where a water film 2545 could be present as shown in FIG. 25H. In particular, the plot 25H indicates the magnitude of the field strength of the rho-field and z-field components, at a point in time when they are at their peak, as a function of radial distance away from the center of a transmission medium. While the field strengths were calculated based on a condition where no water is present, the plot shown in FIG. 25G nevertheless helps explain why a TM00 Goubau wave mode at lower frequencies has low propagation losses when water is present on the outer surface of the dielectric material 2544 in the position shown. Indeed, according to an embodiment, where the electric fields have large radial components (e.g., radial rho fields) that are perpendicular to the propagation direction, and conversely relatively small longitudinal components (e.g., z-fields) at the region of the substance/water film, then there can be relatively low propagation losses. Consequently, an electromagnetic wave having a TM00 Goubau wave mode at 3.5 GHz will not experience a substantial attenuation when the water film 2545 is disposed on the outer surface of the dielectric material 2544 (due to rain, snow, dew, sleet and/or excess humidity). This is not true for all frequencies however, particularly as frequencies approach the millimeter wave range.


For instance, FIG. 25I depicts a plot of a TM00 wave mode at 10 GHz. In this plot, the field strength of the z-field component in the region of the water film is relatively large when compared to the rho-field (radial) component. Consequently, propagation losses are very high. FIG. 25J shows that when a water film having a thickness of 0.1 mm is present on the external surface of the insulated conductor, a TM00 wave mode at 4 GHz experiences an attenuation of 0.62 dB/M which is significantly lower than a TM00 wave mode at 10 GHz, which experiences an attenuation of 45 dB/M. Accordingly, a TM00 wave mode operating at high frequencies reaching millimeter wave frequencies can experience a substantial propagation loss when a water film is present on the outer surface of a transmission medium.


Turning now to FIG. 25K, an illustration is provided that depicts an electromagnetic wave having a TM01 wave mode (e.g., a non-fundamental wave mode) that propagates on the outer surface of the dielectric material 2544. In the expanded view 2548, region 2547 illustrates that the electric fields of the electromagnetic wave having a TM01 wave mode have a significant radial rho-field component, and insignificant longitudinal z-field component in the region near the outer surface of the dielectric material 2544 in an area of the water film 2545. TM01 wave modes have a cutoff frequency greater than zero Hertz. When the electromagnetic wave having a TM01 wave mode is configured by a waveguide launcher of the subject disclosure (an adaptation thereof or other launcher) to operate in a frequency range near its cutoff frequency, a small fraction of power is carried by the dielectric material 2544, while most of the power is concentrated in the air 2546.


The TM01 wave mode produces electric fields in the region 2551 with predominant radial rho-field components extending away from the conductor that reverse in the dielectric 2544 and point inward from the air into the dielectric 2544 at the surface of the dielectric. The TM01 wave mode also produces electric fields in the region 2551″ with predominant radial rho-field components extending into the conductor that reverse in the dielectric 2544 and point outward into the air from the dielectric 2544 at the surface of the dielectric. Furthermore, in the region 2551′ between regions 2551 and 2551″, electric fields with predominant longitudinal z-field components are produced within the dielectric layer 2544. As in the case of the TM00 mode, the presence of these electric fields inside the dielectric 2544 produces some attenuation, but losses in these regions may not be significant enough to prevent propagation of a TM01 wave over significant distances.


Additionally, the electric fields of the TM01 wave mode in region 2547 of the water film 2545 are predominantly radial and have relatively insignificant longitudinal components. Consequently, the propagating wave does not experience large propagation losses as the electromagnetic wave with this field structure propagates longitudinally (from left-to-right or right-to-left) along the outer surface of the transmission medium 2542.



FIG. 25L depicts a cross-sectional longitudinal view of electromagnetic waves having a TM01 wave mode, and the effects when such waves propagate on a dry versus wet transmission medium 2542 at a millimeter wave frequency or slightly below. As shown in the illustration, when electromagnetic waves having the TM01 wave mode propagate on the dry transmission medium 2452, the waves experience minimal propagation losses. In contrast to the electromagnetic wave having a TM00 Goubau wave mode at similar frequencies, when the electromagnetic waves having TM01 wave mode propagate in the wet transmission medium 2542, they experience only a modest additional attenuation. Electromagnetic waves having a TM01 wave mode in a millimeter frequency range, for example, are therefore much less susceptible to increased propagation losses due to the presence of the water film 2545 than electromagnetic waves having a TM00 Goubau wave mode in this same frequency range.



FIG. 25M provides an illustration of an electric field plot of a radial rho-field component and longitudinal z-field component of the electric fields of a TM01 wave mode having an operating frequency at 30.437 GHz, which is 50 MHz above its cutoff frequency. The cutoff frequency is at 30.387 GHz based on a 4 mm radius of the conductor 2543 and 4 mm thickness of the dielectric material 2544. A higher or lower cutoff frequency for a TM01 wave mode is possible when the dimensions of the conductor 2543 and dielectric material 2544 differ from the present illustration. In particular, the plot indicates the magnitude of the field strength of the rho-field and z-field components, at a point in time when they are at their peak, as a function of radial distance away from the center of a transmission medium. While the field strengths were calculated based on a condition where no water is present, the plot shown in FIG. 25M nevertheless helps explain why a TM01 wave mode has low propagation losses when water is present on the outer surface of the dielectric material 2544 in the position shown. As noted earlier, electric fields that are substantially perpendicular to the water film 2545 do not experience a significant loss in field strength, while electric fields that are parallel/longitudinal to the outer surface of the dielectric material 2544 within the area of the water film 2545 will experience a substantial loss in field strength as the electromagnetic wave having this field structure propagates along the transmission medium 2542.


In the case of a TM01 wave mode, the longitudinal z-field component of the electric fields can have a field strength that is extremely small relative to the magnitude of the radial field beginning from the outer surface of the dielectric material 2544 and through the water film 2545 as shown in FIG. 25M. Consequently, an electromagnetic wave having a TM01 wave mode at 30.437 GHz will experience much less attenuation than a TM00 Goubau wave mode at a frequency greater than 6 GHz (e.g., at 10 GHz—see FIG. 25J) when a water film 2545 is disposed on the outer surface of the dielectric material 2544 (due to rain, dew, snow, sleet and/or excess humidity).



FIG. 25N illustrates a plot depicting the magnitude and frequency properties of electromagnetic waves having a TM01 wave mode that propagate on a dry transmission medium 2542 versus a wet transmission medium 2542. The plots show that when the transmission medium 2542 is wet, electromagnetic waves having a TM01 wave mode experience a modest attenuation when the TM01 wave mode is operating in a frequency range (e.g., 28 GHz-31 GHz) near its cutoff frequency. In contrast, the TM00 Goubau wave mode experiences a significant attenuation of 200 dB/M as shown in the plot of FIG. 25G over this same frequency range. The plot of FIG. 25N thus confirms the results of the dry versus wet simulations shown in FIG. 25L.



FIGS. 25O, 25P, 25Q, 25R and 25S depict other wave modes that can exhibit similar properties like those shown for a TM01 wave mode. For example, FIG. 25O provides an illustration of an electric field plot of a radial rho-field component and a longitudinal z-field component of the electric fields of a TM02 wave mode having an operating frequency at 61.121 GHz, which is 50 MHz above its cutoff frequency. As noted above, the cutoff frequency can be higher or lower when the dimensions of the conductor 2543 and dielectric material 2544 differ from the present illustration. In particular, the plot indicates the magnitude of the field strength of the rho-field and z-field components, at a point in time when they are at their peak, as a function of radial distance away from the center of a transmission medium. While the field strengths were calculated based on a condition where no water is present, the z-field component of the electric fields can have a field strength that is extremely small relative to the magnitude of the radial rho-field beginning from the outer surface of the dielectric material 2544 and through the position that would be occupied by the water film 2545 as shown in FIG. 25O. Consequently, an electromagnetic wave exhibiting a TM02 wave mode will experience much less attenuation due to an accumulation of water on an outer surface of a dielectric layer than wave modes with more significant longitudinal z-field components in a position corresponding to the water film.



FIG. 25P provides an illustration of an electric field plot of a radial rho-field component, a longitudinal z-field component, and an azimuthal phi-field component of the electric fields of a hybrid wave mode; specifically, an EH11 wave mode having an operating frequency at 31.153 GHz, which is 50 MHz above its cutoff frequency. As before, the cutoff frequency in the illustration of FIG. 25P can be higher or lower depending on the dimensions of the conductor 2543 and dielectric material 2544.


Non-TM wave modes such as hybrid EH wave modes can have azimuthal field components that are perpendicular to the radial rho-field and longitudinal z-field components and that tangentially encircle the circumference of the transmission medium 2542 in a clockwise and/or counterclockwise direction. Like the z-field components, phi-field (azimuthal) components at the outer surface of the dielectric 2544 can cause significant propagation losses in the presence of a thin film of water 2545. The plot of FIG. 25P indicates the magnitudes of the field strength of the rho-field, phi-field and z-field components, at a point in time when they are at their peak, as a function of radial distance away from the center of a transmission medium 2542. While the field strengths were calculated based on a condition where no water is present, the z-field and phi-field components of the electric field each have a field strength that is very small relative to the magnitude of the radial field beginning from the outer surface of the dielectric material 2544 and through the position that would be occupied by the water film 2545. Consequently, an electromagnetic wave having an EH11 wave mode will experience much less attenuation due to an accumulation of water on an outer surface of a dielectric layer than wave modes with more significant longitudinal z-field and phi-field components in a position corresponding to the water film.



FIG. 25Q provides an illustration of an electric field plot of a radial rho-field component, a longitudinal z-field component, and an azimuthal phi-field component of the electric fields of a higher order hybrid wave mode; specifically, an EH12 wave mode having an operating frequency at 61.5 GHz, which is 50 MHz above its cutoff frequency. As before, the cutoff frequency can be higher or lower depending on the dimensions of the conductor 2543 and dielectric material 2544. In particular, the plot indicates the magnitudes of the field strength of the rho-field, phi-field and z-field components, at a point in time when they are at their peak, as a function of radial distance away from the center of a transmission medium. While the field strengths were calculated based on a condition where no water is present, the z-field and phi-field components of the electric field each have a field strength that is very small relative to the magnitude of the radial field beginning from the outer surface of the dielectric material 2544 and through the position that would be occupied by the water film 2545. Consequently, an electromagnetic wave exhibiting an EH12 wave mode will experience much less attenuation due to an accumulation of water on an outer surface of a dielectric layer than wave modes with more significant longitudinal z-field and phi-field components in a position corresponding to the water film.



FIG. 25R provides an illustration of an electric field plot of a radial rho-field component, a longitudinal z-field component, and an azimuthal phi-field component of the electric fields of a hybrid wave mode; specifically, an HE22 wave mode having an operating frequency at 36.281 GHz, which is 50 MHz above its cutoff frequency. As before, the cutoff frequency can be higher or lower depending on the dimensions of the conductor 2543 and dielectric material 2544. In particular, the plot indicates the magnitudes of the field strength of the rho-field, phi-field and z-field components, at a point in time when they are at their peak, as a function of radial distance away from the center of a transmission medium. While the field strengths were calculated based on a condition where no water is present, the z-field and phi-field components of the electric field each have a field strength that is small relative to the magnitude of the radial field beginning from the outer surface of the dielectric material 2544 and through the position that would be occupied by the water film 2545. Consequently, an electromagnetic wave exhibiting an EH22 wave mode will experience much less attenuation due to an accumulation of water on an outer surface of a dielectric layer than wave modes with more significant longitudinal z-field and phi-field components in a position corresponding to the water film.



FIG. 25S provides an illustration of an electric field plot of a radial rho-field component, a longitudinal z-field component, and an azimuthal phi-field component of the electric fields of a higher order hybrid wave mode; specifically, an HE23 wave mode having an operating frequency at 64.425 GHz, which is 50 MHz above its cutoff frequency. As before, the cutoff frequency can be higher or lower depending on the dimensions of the conductor 2543 and dielectric material 2544. In particular, the plot indicates the magnitudes of the field strength of the rho-field, phi-field and z-field components, at a point in time when they are at their peak, as a function of radial distance away from the center of a transmission medium. While the field strengths were calculated based on a condition where no water is present, the z-field and phi-field components of the electric field each have a field strength that is small relative to the magnitude of the radial field beginning from the outer surface of the dielectric material 2544 and through the position that would be occupied by the water film 2545. Consequently, an electromagnetic wave exhibiting an HE23 wave mode will experience much less attenuation due to an accumulation of water on an outer surface of a dielectric layer than wave modes with more significant longitudinal z-field and phi-field components in a position corresponding to the water film.


Based on the observations of the electric field plots of FIGS. 25M and 25O, it can be said that electromagnetic waves having a TM0m wave mode, where m>0, will experience less propagation losses than wave modes with more significant longitudinal z-field and/or phi-field components in a position corresponding to the water film. Similarly, based on the observations of the electric field plots of FIGS. 25P-25Q, it can be said that electromagnetic waves having an EH1m wave mode, where m>0, will experience less propagation losses than wave modes with more significant longitudinal z-field and/or phi-field components in a position corresponding to the water film. Additionally, based on the observations of the electric field plots of FIGS. 25R-25S, it can be said that electromagnetic waves having an HE2m wave mode, where m>1, will experience less propagation losses than wave modes with more significant longitudinal z-field and/or phi-field components in a position corresponding to the water film.


It is further noted that the waveguide launchers 2522 of FIGS. 25A-25D and/or other waveguide launchers described and shown in the figures of the subject disclosure (e.g., FIGS. 7-14, 18N-18W, 22A-22B and other drawings) can be adapted to generate or induce on a transmission medium having an outer surface composed of, for example, a dielectric material (e.g., insulation, oxidation, or other material with dielectric properties) an electromagnetic wave having a TM0m wave mode or an EH1m wave mode (where m>0), an HE2m wave mode (where m>1), or any other type of wave mode that exhibits a low field strength for a z-field component (and azimuthal field component if present) in a proximal region above the outer surface of the transmission medium where a water film may be present. Since certain wave modes have electric field structures near an out surface of a transmission medium that are less susceptible to propagation losses, the waveguide launchers of the subject disclosure can be adapted to generate singly, or when suitable, in combination, an electromagnetic wave(s) having the aforementioned wave mode properties to reduce propagation losses when propagating through a substance, such as a liquid (e.g., water produced by humidity and/or rain), disposed on the outer surface of the transmission medium. It is further noted that in certain embodiments the transmission medium used to propagate one or more of the aforementioned wave modes can be composed solely of a dielectric material.


Referring back to the TM01 wave mode of FIG. 25K, it is also noted that the region 2549 in the expanded view 2548 shows electric field vectors exhibiting the behavior of an eddy (e.g., a circular or whirlpool-like pattern). Although it would appear that certain electric field vectors in region 2549 have longitudinal field components located within the water film 2545, such vectors have a very low field strength and are also substantially less in quantity when compared to the higher strength radial field components located within region 2547 (without including region 2549). Nevertheless, the few electric field vectors with non-zero longitudinal components in region 2549 can be a contributing factor to the modest attenuation described earlier in relation to the wet transmission medium 2542 of FIG. 25L. The adverse effects of the electric field vectors in the small eddy region 2549 of FIG. 25K are substantially less than the adverse effects caused by the substantial number of electric field vectors with significant longitudinal components in region 2547 of the TM00 Gaubau wave mode of FIG. 25E, which have a much higher field strength and are within the water film 2545. As noted earlier, the electric field vectors in region 2547 of the TM00 Gaubau wave mode cause a much higher propagation loss (as much as 200 dB/M attenuation) at frequencies above 6 GHz as depicted by the wet transmission medium 2542 of FIGS. 25F-25G, 25I and 25J, which is not the case for a TM01 wave mode.


It is also noted that the electric field depictions in FIGS. 25E and 25K are not static in time and space. That is, as an electromagnetic wave propagates in space longitudinally along a transmission medium, the electric fields associated with the electromagnetic wave change when viewed at a static location of the transmission medium as time progresses. Consequently, the electric field plots shown in FIGS. 25H, 25I, 25M and 25O-25S, are non-static and can expand and contract, as well as, reverse in polarity. Even though the electric field plots are not static, the average field strength of the z-field component (and azimuthal field component when present) for a TM0m wave mode and EH1m wave mode (where m>0), and HE2m wave mode (where m>1) is substantially lower than that exhibited by z-field component of a TM00 Goubau wave mode above 6 GHz. Consequently, a TM0m wave mode and EH1m wave mode (where m>0), and HE2m wave mode (where m>1) experience a much lower propagation loss than a TM00 Goubau wave mode in the range of frequencies above 6 GHz in the presence of a water film 2545.


It is further noted that the electric fields of a TM00 Goubau wave mode differ substantially from a TM0m wave mode and EH1m wave mode (where m>0), and a HE2m wave mode (where m>1). Take for instance the electric fields of a TM00 Goubau wave mode and a TM01 wave mode depicted in an orthogonal cross-sectional view of the transmission medium 2542 shown in FIG. 25T. The TM00 Goubau wave mode depicts radial electric fields extending away from the conductor at a high field strength throughout the dielectric. This behavior is depicted in the region 2550 of FIG. 25E at an instance in time and space of the transmission medium 2542. In contrast, the TM01 wave mode depicts electric fields that extend away from the conductor, decrease substantially in field strength at a midpoint of the dielectric, and reverse in polarity and increase in field strength towards the outer surface of the dielectric. This behavior is depicted in the region 2551 of FIG. 25K at an instance in time and space of the transmission medium 2542.


If the cross-sectional slice shown in FIG. 25T remains the same as time progresses, in the TM00 Goubau wave mode, the electric fields in region 2550′ (of FIG. 25E) will in time reach the cross-sectional slice decreasing in field strength, and suddenly reversing polarity as the electric fields in region 2550″ reach the cross-sectional slice. In contrast, in the TM01 wave mode, the electric fields in region 2551′ (of FIG. 25K) will in time reach the cross-sectional slice becoming longitudinal (i.e., pointing out of the drawing of FIG. 25T), thereby causing the electric fields shown in FIG. 25T for the TM01 wave mode to appear to disappear, and then returning with the polarities reversed from what is shown in FIG. 25T as the electric fields in region 2551″ reach the cross-sectional slice.


It will be appreciated that the electromagnetic wave modes described in FIGS. 25E-25T and in other sections of the subject disclosure can be launched singly or in combination as multiple wave modes in whole or in part on an outer surface, or embedded within any one of the transmission media described in the subject disclosure (e.g., FIGS. 18A-18L). It is further noted that these electromagnetic wave modes can be converted into wireless signals by any of the antennas described in the subject disclosure (e.g., FIGS. 18M, 19A-19F, 20A-20F) or converted from wireless signals received by an antenna back to one or more electromagnetic wave modes that propagate along one of the aforementioned transmission media. The methods and systems described in the subject disclosure can also be applied to these electromagnetic wave modes for purposes of transmission, reception or processing of these electromagnetic wave modes, or adaptation or modification of these electromagnetic wave modes. It is further noted that any of the waveguide launchers (or adaptions thereof) can be configured to induce or generate on a transmission medium one or more electromagnetic waves having a target field structure or target wave mode that exhibits a spatial alignment of electric fields for purposes of reducing propagation losses and/or signal interference. The waveguide device of FIG. 25U provides a non-limiting illustration of an adaptation of the waveguide launchers of the subject disclosure.


Referring now to FIG. 25U, there is illustrated a diagram of an example, non-limiting embodiment of a waveguide device 2522 in accordance with various aspects described herein. The waveguide device 2522 is similar to the waveguide device 2522 shown in FIG. 25C with a few adaptations. In the illustration of FIG. 25U, the waveguide device 2522 is coupled to a transmission medium 2542 comprising a conductor 2543 and insulation layer 2543, which together form an insulated conductor such as the one shown in drawings of FIGS. 25E and 25K. Although not shown, the waveguide device 2522 can be constructed in two halves, which can be connected together at one longitudinal end with one or more mechanical hinges to enable opening a longitudinal edge at an opposite end of the one or more hinges for placement of the waveguide device 2522 over the transmission medium 2542. Once placed, one or more latches at the longitudinal edge opposite the one or more hinges can be used to secure the waveguide device 2522 to the transmission medium 2542. Other embodiments for coupling the waveguide device 2522 to the transmission medium 2542 can be used and are therefore contemplated by the subject disclosure.


The chamber 2525 of the waveguide device 2522 of FIG. 25U includes a dielectric material 2544′. The dielectric material 2544′ in the chamber 2525 can have a dielectric constant similar to the dielectric constant of the dielectric layer 2544 of the insulated conductor. Additionally, a disk 2525′ having a center-hole 2525″ can be used to divide the chamber 2525 in two halves for transmission or reception of electromagnetic waves. The disk 2525′ can be constructed of a material (e.g., carbon, metal or other reflective material) that does not allow electromagnetic waves to progress between the halves of the chamber 2525. The MMICs 2524′ can be located inside the dielectric material 2544′ of the chamber 2525 as shown in FIG. 25U. Additionally, the MMICs 2524′ can be located near an outer surface of the dielectric layer 2543 of the transmission medium 2542. FIG. 25U shows an expanded view 2524A′ of an MMIC 2524′ that includes an antenna 2524B′ (such as a monopole antenna, dipole antenna or other antenna) that can be configured to be longitudinally aligned with the outer surface of the dielectric layer 2543 of the transmission medium 2542. The antenna 2524B′ can be configured to radiate signals that have a longitudinal electric field directed east or west as will be discussed shortly. It will be appreciated that other antenna structures that can radiate signals that have a longitudinal electric field can be used in place of the dipole antenna 2524B′ of FIG. 25U.


It will be appreciated that although two MMICs 2524′ are shown in each half of the chambers 2525 of the waveguide device 2522, more MMICs can be used. For example, FIG. 18W shows a transverse cross-sectional view of a cable (such as the transmission medium 2542) surrounded by a waveguide device with 8 MMICs located in positions: north, south, east, west, northeast, northwest, southeast, and southwest. The two MMICs 2524′ shown in FIG. 25U can be viewed, for illustration purposes, as MMICs 2524′ located in the north and south positions shown in FIG. 18W. The waveguide device 2522 of FIG. 25U can be further configured with MMICs 2524′ at western and eastern positions as shown in FIG. 18W. Additionally, the waveguide device 2522 of FIG. 25U can be further configured with MMICs at northwestern, northeastern, southwestern and southeastern positions as shown in FIG. 18W. Accordingly, the waveguide device 2522 can be configured with more than the 2 MMICs shown in FIG. 25U.


With this in mind, attention is now directed to FIGS. 25V, 25W, 25X, which illustrate diagrams of example, non-limiting embodiments of wave modes and electric field plots in accordance with various aspects described herein. FIG. 25V illustrates the electric fields of a TM01 wave mode. The electric fields are illustrated in a transverse cross-sectional view (top) and a longitudinal cross-sectional view (below) of a coaxial cable having a center conductor with an external conductive shield separated by insulation. FIG. 25W illustrates the electric fields of a TM11 wave mode. The electric fields are also illustrated in a transverse cross-sectional view and a longitudinal cross-sectional view of a coaxial cable having a center conductor with an external conductive shield separated by an insulation. FIG. 25X further illustrates the electric fields of a TM21 wave mode. The electric fields are illustrated in a transverse cross-sectional view and a longitudinal cross-sectional view of a coaxial cable having a center conductor with an external conductive shield separated by an insulation.


As shown in the transverse cross-sectional view, the TM01 wave mode has circularly symmetric electric fields (i.e., electric fields that have the same orientation and intensity at different azimuthal angles), while the transverse cross-sectional views of the TM11 and TM21 wave modes shown in FIGS. 25W-25X, respectively, have non-circularly symmetric electric fields (i.e., electric fields that have different orientations and intensities at different azimuthal angles). Although the transverse cross-sectional views of the TM11 and TM21 wave modes have non-circularly symmetric electric fields, the electric fields in the longitudinal cross-sectional views of the TM01, TM11 and TM21 wave modes are substantially similar with the exception that that the electric field structure of the TM11 wave mode has longitudinal electric fields above the conductor and below the conductor that point in opposite longitudinal directions, while the longitudinal electric fields above the conductor and below the conductor for the TM01 and TM21 wave modes point in the same longitudinal direction.


The longitudinal cross-sectional views of the coaxial cable of FIGS. 25V, 25W and 25X can be said to have a similar structural arrangement to the longitudinal cross-section of the waveguide device 2522 in region 2506′ shown in FIG. 25U. Specifically, in FIGS. 25V, 25W and 25X the coaxial cable has a center conductor and a shield separated by insulation, while region 2506′ of the waveguide device 2522 has a center conductor 2543, a dielectric layer 2544, covered by the dielectric material 2544′ of the chamber 2525, and shielded by the reflective inner surface 2523 of the waveguide device 2522. The coaxial configuration in region 2506′ of the waveguide device 2522 continues in the tapered region 2506″ of the waveguide device 2522. Similarly, the coaxial configuration continues in regions 2508 and 2510 of the waveguide device 2522 with the exception that no dielectric material 2544′ is present in these regions other than the dielectric layer 2544 of the transmission medium 2542. At the outer region 2512, the transmission medium 2542 is exposed to the environment (e.g., air) and thus the coaxial configuration is no longer present.


As noted earlier, the electric field structure of a TM01 wave mode is circularly symmetric in a transverse cross-sectional view of the coaxial cable shown in FIG. 25V. For illustration purposes, it will be assumed that the waveguide device 2522 of FIG. 25U has 4 MMICs located in northern, southern, western and eastern locations as depicted in FIG. 18W. In this configuration, and with an understanding of the longitudinal and transverse electric field structures of the TM01 wave mode shown in FIG. 25V, the 4 MMICs 2524′ of the waveguide device 2522 in FIG. 25U can be configured to launch from a common signal source a TM01 wave mode on the transmission medium 2542. This can be accomplished by configuring the north, south, east and west MMICs 2524′ to launch wireless signals with the same phase (polarity). The wireless signals generated by the 4 MMICs 2524′ combine via superposition of their respective electric fields in the dielectric material 2544′ of the chamber 2525 and the dielectric layer 2544 (since both dielectric materials have similar dielectric constants) to form a TM01 electromagnetic wave 2502′ bound to these dielectric materials with the electric field structure shown in longitudinal and transverse views of FIG. 25V.


The electromagnetic wave 2502′ having the TM01 wave mode in turn propagates toward the tapered structure 2522B of the waveguide device 2522 and thereby becomes an electromagnetic wave 2504′ embedded within the dielectric layer 2544 of the transmission medium 2542′ in region 2508. In the tapered horn section 2522D the electromagnetic wave 2504′ having the TM01 wave mode expands in region 2510 and eventually exits the waveguide device 2522 without change to the TM01 wave mode.


In another embodiment, the waveguide device 2522 can be configured to launch a TM11 wave mode having a vertical polarity in region 2506′. This can be accomplished by configuring the MMIC 2524′ in the northern position to radiate from a signal source a first wireless signal having a phase (polarity) opposite to the phase (polarity) of a second wireless signal radiated from the same signal source by the southern MMIC 2524′. These wireless signals combine via superposition of their respective electric fields to form an electromagnetic wave having a TM11 wave mode (vertically polarized) bound to the dielectric materials 2544′ and 2544 with the electric field structures shown in the longitudinal and transverse cross-sectional views shown in FIG. 25W. Similarly, the waveguide device 2522 can be configured to launch a TM11 wave mode having a horizontal polarity in region 2506′. This can be accomplished by configuring the MMIC 2524′ in the eastern position to radiate a first wireless signal having a phase (polarity) opposite to the phase (polarity) of a second wireless signal radiated by the western MMIC 2524′.


These wireless signals combine via superposition of their respective electric fields to form an electromagnetic wave having a TM11 wave mode (horizontally polarized) bound to the dielectric materials 2544′ and 2544 with the electric field structures shown in the longitudinal and transverse cross-sectional views shown in FIG. 25W (but with a horizontal polarization). Since the TM11 wave mode with horizontal and vertical polarizations are orthogonal (i.e., a dot product of corresponding electric field vectors between any pair of these wave modes at each point of space and time produces a summation of zero), the waveguide device 2522 can be configured to launch these wave modes simultaneously without interference, thereby enabling wave mode division multiplexing. It is further noted that the TM01 wave mode is also orthogonal to the TM11 and TM21 wave modes.


While the electromagnetic wave 2502′ or 2504′ having the TM11 wave mode propagates within the confines of the inner surfaces 2523 of the waveguide device 2522 in regions 2506′, 2506″, 2508 and 2510, the TM11 wave mode remains unaltered. However, when the electromagnetic wave 2504′ having the TM11 wave mode exits the waveguide device 2522 in region 2512 the inner wall 2523 is no longer present and the TM11 wave mode becomes a hybrid wave mode, specifically, an EH11 wave mode (vertically polarized, horizontally polarized, or both if two electromagnetic waves are launched in region 2506′).


In yet other embodiments, the waveguide device 2522 can also be configured to launch a TM21 wave mode in region 2506′. This can be accomplished by configuring the MMIC 2524′ in the northern position to radiate from a signal source a first wireless signal having a phase (polarity) that is in phase (polarity) to a second wireless signal generated from the same signal source by the southern MMIC 2524′. At the same time, the MMIC 2524′ in the western position is configured to radiate from the same signal source a third wireless signal that is in phase with a fourth wireless signal radiated from the same signal source by the MMIC 2524′ located in the eastern position. The north and south MMICs 2524′, however, generate first and second wireless signals of opposite polarity to the polarity of the third and fourth wireless signals generated by the western and eastern MMICs 2524′. The four wireless signals of alternating polarity combine via superposition of their respective electric fields to form an electromagnetic wave having a TM21 wave mode bound to the dielectric materials 2544′ and 2544 with the electric field structures shown in the longitudinal and transverse cross-sectional views shown in FIG. 25X. When the electromagnetic wave 2504′ exits the waveguide device 2522 it may be transformed to a hybrid wave mode such as, for example, an HE21 wave mode, an EH21 wave mode, or a hybrid wave mode with a different radial mode (e.g., HE2m or EH2m, where m>1).



FIGS. 25U-25X illustrate several embodiments for launching TM01, EH11, and other hybrid wave modes utilizing the waveguide device 2522 of FIG. 25U. With an understanding of the electric field structures of other wave modes that propagate on a coaxial cable (e.g., TM12, TM22, and so on), the MMICs 2524′ can be further configured in other ways to launch other wave modes (e.g., EH12, HE22, etc.) that have a low intensity z-field component and phi-field component in the electric field structures near the outer surface of a transmission medium 2542, which is useful for mitigating propagation losses due to a substance such as water, droplets or other substances that can cause an attenuation of the electric fields of an electromagnetic wave propagating along the outer surface of the transmission medium 2542.



FIG. 25Y illustrates a flow diagram of an example, non-limiting embodiment of a method 2560 for sending and receiving electromagnetic waves. Method 2560 can be applied to waveguides 2522 of FIGS. 25A-25D and/or other waveguide systems or launchers described and shown in the figures of the subject disclosure (e.g., FIGS. 7-14, 18N-18W, 22A-22B and other drawings) for purposes of launching or receiving substantially orthogonal wave modes such as those shown in FIG. 25Z. FIG. 25Z depicts three cross-sectional views of an insulated conductor where a TM00 fundamental wave mode, an HE wave mode with horizontal polarization, and an HE wave mode with vertical polarization, propagates respectively. The electric field structure shown in FIG. 25Z can vary over time and is therefore an illustrative representation at a certain instance or snapshot in time. The wave modes shown in FIG. 25Z are orthogonal to each other. That is, a dot product of corresponding electric field vectors between any pair of the wave modes at each point of space and time produces a summation of zero. This property enables the TM00 wave mode, the HE wave mode with horizontal polarization, and the HE wave mode with vertical polarization to propagate simultaneously along a surface of the same transmission medium in the same frequency band without signal interference.


With this in mind, method 2560 can begin at step 2562 where a waveguide system of the subject disclosure can be adapted to receive communication signals from a source (e.g., a base station, a wireless signal transmitted by a mobile or stationary device to an antenna of the waveguide system as described in the subject disclosure, or by way of another communication source.). The communication signals can be, for example, communication signals modulated according to a specific signaling protocol (e.g., LTE, 5G, DOCSIS, DSL, etc.) operating in a native frequency band (e.g., 900 MHz, 1.9 GHz, 2.4 GHz, 5 GHz, etc.), baseband signals, analog signals, other signals, or any combinations thereof. At step 2564, the waveguide system can be adapted to generate or launch on a transmission medium a plurality of electromagnetic waves according to the communication signals by up-converting (or in some instances down-converting) such communication signals to one or more operating frequencies of the plurality of electromagnetic waves. The transmission medium can be an insulated conductor as shown in FIG. 25AA, or an uninsulated conductor that is subject to environmental exposure to oxidation (or other chemical reaction based on environmental exposure) as shown in FIGS. 25AB and 25AC. In other embodiments, the transmission medium can be a dielectric material such as a dielectric core described in FIG. 18A.


To avoid interference, the waveguide system can be adapted to simultaneously launch at step 2564 a first electromagnetic wave using a TM00 wave mode, a second electromagnetic wave using an HE11 wave mode with horizontal polarization, and a third electromagnetic wave using an HE11 wave mode with vertical polarization—see FIG. 25Z. Since the first, second and third electromagnetic waves are orthogonal (i.e., non-interfering) they can be launched in the same frequency band without interference or with a small amount of acceptable interference. The combined transmission of three orthogonal electromagnetic wave modes in the same frequency band constitutes a form of wave mode division multiplexing, which provides a means for increasing the information bandwidth by a factor of three. By combining the principles of frequency division multiplexing with wave mode division multiplexing, bandwidth can be further increased by configuring the waveguide system to launch a fourth electromagnetic wave using a TM00 wave mode, a fifth electromagnetic wave using an HE11 wave mode with horizontal polarization, and a sixth electromagnetic wave using an HE11 wave mode with vertical polarization in a second frequency band that does not overlap with the first frequency band of the first, second and third orthogonal electromagnetic waves. It will be appreciated that other types of multiplexing could be additionally or alternatively used with wave mode division multiplexing without departing from example embodiments.


To illustrate this point, suppose each of three orthogonal electromagnetic waves in a first frequency band supports 1 GHz of transmission bandwidth. And further suppose each of three orthogonal electromagnetic waves in a second frequency band also supports 1 GHz of transmission bandwidth. With three wave modes operating in two frequency bands, 6 GHz of information bandwidth is possible for conveying communication signals by way of electromagnetic surface waves utilizing these wave modes. With more frequency bands, the bandwidth can be increased further.


Now suppose a transmission medium in the form of an insulated conductor (see FIG. 25AA) is used for surface wave transmissions. Further suppose the transmission medium has a dielectric layer with thickness proportional to the conductor radius (e.g., a conductor having a 4 mm radius and an insulation layer with a 4 mm thickness). With this type of transmission medium, the waveguide system can be configured to select from several options for transmitting electromagnetic waves. For example, the waveguide system can be configured at step 2564 to transmit first through third electromagnetic waves using wave mode division multiplexing at a first frequency band (e.g., at 1 GHz), third through fourth electromagnetic waves using wave mode division multiplexing at a second frequency band (e.g., at 2.1 GHz), seventh through ninth electromagnetic waves using wave mode division multiplexing at a third frequency band (e.g., at 3.2 GHz), and so on. Assuming each electromagnetic wave supports 1 GHz of bandwidth, collectively the first through ninth electromagnetic waves can support 9 GHz of bandwidth.


Alternatively, or contemporaneous with transmitting electromagnetic waves with orthogonal wave modes at step 2564, the waveguide system can be configured at step 2564 to transmit on the insulated conductor one or more high frequency electromagnetic waves (e.g., millimeter waves). In one embodiment, the one or more high frequency electromagnetic waves can be configured in non-overlapping frequencies bands according to one or more corresponding wave modes that are less susceptible to a water film such as a TM0m wave mode and EH1m wave mode (where m>0), or an HE2m wave mode (where m>1) as previously described. In other embodiments, the waveguide system can instead be configured to transmit one or more high frequency electromagnetic waves in non-overlapping frequency bands according to one or more corresponding wave modes that have longitudinal and/or azimuthal fields near the surface of the transmission medium that may be susceptible to water, but nonetheless exhibit low propagation losses when the transmission medium is dry. A waveguide system can thus be configured to transmit several combinations of wave modes on an insulated conductor (as well as a dielectric-only transmission medium such as a dielectric core) when the insulated conductor is dry.


Now suppose a transmission medium in the form of an uninsulated conductor (see FIGS. 25AB-25AC) is used for surface wave transmissions. Further consider that the uninsulated conductor or bare conductor is exposed to an environment subject to various levels of moisture and/or rain (as well as air and atmospheric gases like oxygen). Uninsulated conductors, such as overhead power lines and other uninsulated wires, are often made of aluminum which is sometimes reinforced with steel. Aluminum can react spontaneously with water and/or air to form aluminum oxide. An aluminum oxide layer can be thin (e.g., nano to micrometers in thickness). An aluminum oxide layer has dielectric properties and can therefore serve as a dielectric layer. Accordingly, uninsulated conductors can propagate not only TM00 wave modes, but also other wave modes such as an HE wave mode with horizontal polarization, and an HE wave mode with vertical polarization at high frequencies based at least in part on the thickness of the oxide layer. Accordingly, uninsulated conductors having an environmentally formed dielectric layer such as an oxide layer can be used for transmitting electromagnetic waves using wave mode division multiplexing and frequency division multiplexing. Other electromagnetic waves having a wave mode (with or without a cutoff frequency) that can propagate on an oxide layer are contemplated by the subject disclosure and can be applied to the embodiments described in the subject disclosure.


In one embodiment, the term “environmentally formed dielectric layer” can represent an uninsulated conductor that is exposed to an environment that is not artificially created in a laboratory or other controlled setting (e.g., bare conductor exposed to air, humidity, rain, etc. on a utility pole or other exposed environment). In other embodiments, an environmentally formed dielectric layer can be formed in a controlled setting such as a manufacturing facility that exposes uninsulated conductors to a controlled environment (e.g., controlled humidity, or other gaseous substance) that forms a dielectric layer on the outer surface of the uninsulated conductor. In yet another alternative embodiment, the uninsulated conductor can also be “doped” with particular substances/compounds (e.g., a reactant) that facilitate chemical reactions with other substances/compounds that are either available in a natural environment or in an artificially created laboratory or controlled setting, thereby resulting in the creation of the environmentally formed dielectric layer.


Wave mode division multiplexing and frequency division multiplexing can prove useful in mitigating obstructions such as water accumulating on an outer surface of a transmission medium. To determine if mitigating an obstruction is necessary, a waveguide system can be configured at step 2566 to determine if an obstruction is present on the transmission medium. A film of water (or water droplets) collected on an outer surface of the transmission medium due to rain, condensation, and/or excess humidity can be one form of an obstruction that can cause propagation losses in electromagnetic waves if not mitigated. A splicing of a transmission medium or other object coupled to the outer surface of the transmission medium can also serve as an obstruction.


Obstructions can be detected by a source waveguide system that transmits electromagnetic waves on a transmission medium and measures reflected electromagnetic waves based on these transmissions. Alternatively, or in combination, the source waveguide system can detect obstructions by receiving communication signals (wireless or electromagnetic waves) from a recipient waveguide system that receives and performs quality metrics on electromagnetic waves transmitted by the source waveguide system. When an obstruction is detected at step 2566, the waveguide system can be configured to identify options to update, modify, or otherwise change the electromagnetic waves being transmitted.


Suppose, for example, that in the case of an insulated conductor, the waveguide system had launched at step 2564 a high order wave mode such as TM01 wave mode with a frequency band that starts at 30 GHz having a large bandwidth (e.g., 10 GHz) when the insulated conductor is dry such as shown in FIG. 25N. The illustration in FIG. 25N is based on simulations which may not take into account all possible environmental conditions or properties of a specific insulated conductor. Accordingly, a TM01 wave mode may have a lower bandwidth than shown. For illustration purposes, however, a 10 GHz bandwidth will be assumed for an electromagnetic wave having a TM01 wave mode.


Although it was noted earlier in the subject disclosure that a TM01 wave mode has a desirable electric field alignment that is not longitudinal and not azimuthal near the outer surface, it can nonetheless be subject to some signal attenuation which in turn reduces its operating bandwidth when a water film (or droplets) accumulates on the insulated conductor. This attenuation is illustrated in FIG. 25N which shows that an electromagnetic wave having a TM01 wave mode with a bandwidth of approximately 10 GHz (30 to 40 GHz) on a dry insulated conductor drops to a bandwidth of approximately 1 GHz (30 to 31 GHz) when the insulated conductor is wet. To mitigate the loss in bandwidth, the waveguide system can be configured to launch electromagnetic waves at much lower frequencies (e.g., less than 6 GHz) using wave mode division multiplexing and frequency division multiplexing.


For example, the waveguide system can be configured to transmit a first set of electromagnetic waves; specifically, a first electromagnetic wave having a TM00 wave mode, a second electromagnetic wave having an HE11 wave mode with horizontal polarization, and a third electromagnetic wave having an HE wave mode with vertical polarization, each electromagnetic wave having a center frequency at 1 GHz. Assuming a useable frequency band from 500 MHz to 1.5 GHz to convey communication signals, each electromagnetic wave can provide 1 GHz of bandwidth, and collectively 3 GHz of system bandwidth.


Suppose also the waveguide system is configured to transmit a second set of electromagnetic waves; specifically, a fourth electromagnetic wave having a TM00 wave mode, a fifth electromagnetic wave having an HE11 wave mode with horizontal polarization, and a sixth electromagnetic wave having an HE11 wave mode with vertical polarization, each electromagnetic wave having a center frequency at 2.1 GHz. Assuming a frequency band from 1.6 GHz to 2.6 GHz, with a guard band of 100 MHz between the first and second sets of electromagnetic waves, each electromagnetic wave can provide 1 GHz of bandwidth, and collectively 3 GHz of additional bandwidth, thereby now providing up to 6 GHz of system bandwidth.


Further suppose the waveguide system is also configured to transmit a third set of electromagnetic waves; specifically, a seventh electromagnetic wave having a TM00 wave mode, an eighth electromagnetic wave having an HE wave mode with horizontal polarization, and a ninth electromagnetic wave having an HE wave mode with vertical polarization, each electromagnetic wave having a center frequency at 3.2 GHz. Assuming a frequency band from 2.7 GHz to 3.7 GHz, with a guard band of 100 MHz between the second and third sets of electromagnetic waves, each electromagnetic wave can provide 1 GHz of bandwidth, and collectively 3 GHz of additional bandwidth, thereby now providing up to 9 GHz of system bandwidth.


The combination of the TM01 wave mode, and the three sets of electromagnetic waves configured for wave mode division multiplexing and frequency division multiplexing, provide a total system bandwidth of 10 GHz, thereby restoring a bandwidth of 10 GHz previously available when the high frequency electromagnetic wave having the TM01 wave mode was propagating on a dry insulated conductor. FIG. 25AD illustrates a process for performing mitigation of a TM01 wave mode subject to an obstruction such as a water film detected at step 2566. FIG. 25AD illustrates a transition from a dry insulated conductor that supports a high bandwidth TM01 wave mode to a wet insulated conductor that supports a lower bandwidth TM01 wave mode that is combined with low frequency TM00 and HE11 wave modes configured according to wave mode division multiplexing (WMDM) and frequency division multiplexing (FDM) schemes to restore losses in system bandwidth.


Consider now an uninsulated conductor where the waveguide system had launched at step 2564 a TM00 wave mode with a frequency band that starts at 10 GHz having a large bandwidth (e.g., 10 GHz). Suppose now that transmission medium propagating the 10 GHz TM00 wave mode is exposed to an obstruction such as water. As noted earlier, a high frequency TM00 wave mode on an insulated conductor is subject to a substantial amount of signal attenuation (e.g., 45 dB/M at 10 GHz—see FIG. 25J) when a water film (or droplets) accumulates on the outer surface of the insulated conductor. Similar attenuations will be present for a 10 GHz (or greater) TM00 wave mode propagating on an “uninsulated” conductor. An environmentally exposed uninsulated conductor (e.g., aluminum), however, can have an oxide layer formed on the outer surface which can serve as a dielectric layer that supports wave modes other than TM00 (e.g., HE11 wave modes). It is further noted that at lower frequencies a TM00 wave mode propagating on an insulated conductor exhibits a much lower attenuation (e.g., 0.62 dB/M at 4 GHz—see FIG. 25J). A TM00 wave mode operating at less than 6 GHz would similarly exhibit low propagation losses on an uninsulated conductor. Accordingly, to mitigate the loss in bandwidth, the waveguide system can be configured to launch electromagnetic waves having a TM00 wave mode at lower frequencies (e.g., 6 GHz or less) and electromagnetic waves having an HE11 wave mode configured for WMDM and FDM at higher frequencies.


Referring back to FIG. 25Y, suppose then that the waveguide system detects an obstruction such as water at step 2566 on an environmentally exposed uninsulated conductor. A waveguide system can be configured to mitigate the obstruction by transmitting a first electromagnetic wave configured with a TM00 wave mode having a center frequency at 2.75 GHz. Assuming a useable frequency band from 500 MHz to 5.5 GHz to convey communication signals, the electromagnetic waves can provide 5 GHz of system bandwidth.



FIG. 25AF provides an illustration of an electric field plot of an HE11 wave mode at 200 GHz on a bare conductor with a thin aluminum oxide layer (4 um). The plot indicates the magnitude of the field strength of the rho-field, z-field, and phi-field components, at a point in time when they are at their peak, as a function of radial distance away from the center of a bare conductor. While the field strengths were calculated based on a condition where no water is present, the z-field and phi-field components of the electric fields can have a field strength that is extremely small relative to the magnitude of the radial rho-field beginning from the outer surface of the oxide layer and through the position that would be occupied by the water film as shown in FIG. 25AF.


Assuming an oxide layer or other dielectric layer comparable to the size in the plot of FIG. 25AF, the waveguide system can be configured to transmit a second electromagnetic wave having an HE11 wave mode with horizontal polarization, and a third electromagnetic wave having an HE11 wave mode with vertical polarization, each electromagnetic wave having a center frequency at 200 GHz (other lower or higher center frequencies can be used). Further assuming each electromagnetic wave is configured according to an HE vertically polarized wave mode and HE horizontally polarized wave mode, respectively, having a 2.5 GHz bandwidth, these waves collectively provide 5 GHz of additional bandwidth. By combining the low frequency TM00 wave mode with the high frequency HE wave modes, system bandwidth can be restored to 10 GHz. It will be appreciated that HE wave modes at other center frequencies and bandwidth may be possible depending on the thickness of the oxide layer, the characteristics of the uninsulated conductor, and/or other environmental factors.



FIG. 25AE illustrates a process for performing mitigation of a high frequency TM00 wave mode subject to an obstruction such as a water film detected at step 2566. FIG. 25AD illustrates a transition from a dry uninsulated conductor that supports a high bandwidth TM00 wave mode to a wet uninsulated conductor that combines a low frequency TM00 wave mode and high frequency HE11 wave modes configured according to WMDM and FDM schemes to restore losses in system bandwidth.


It will be appreciated that the aforementioned mitigation techniques are non-limiting. For example, the center frequencies described above can differ between systems. Additionally, the original wave mode used before an obstruction is detected can differ from the illustrations above. For example, in the case of an insulated conductor an EH11 wave mode can be used singly or in combination with a TM01 wave mode. It is also appreciated that WMDM and FDM techniques can be used to transmit electromagnetic waves at all times and not just when an obstruction is detected at step 2566. It is further appreciated that other wave modes that can support WMDM and/or FDM techniques can be applied to and/or combined with the embodiments described in the subject disclosure, and are therefore contemplated by the subject disclosure.


Referring back to FIG. 25Y, once a mitigation scheme using WMDM and/or FDM has been determined in accordance with the above illustrations, the waveguide system can be configured at step 2568 to notify one or more other waveguide systems of the mitigation scheme intended to be used for updating one or more electromagnetic waves prior to executing the update at step 2570. The notification can be sent wirelessly to one or more other waveguide systems utilizing antennas if signal degradation in the electromagnetic waves is too severe. If signal attenuation is tolerable, then the notification can be sent via the affected electromagnetic waves. In other embodiments, the waveguide system can be configured to skip step 2568 and perform the mitigation scheme using WMDM and/or FDM at step 2570 without notification. This embodiment can be applied in cases where, for example, other recipient waveguide system(s) know beforehand what kind of mitigation scheme would be used, or the recipient waveguide system(s) are configured to use signal detection techniques to discover the mitigation scheme. Once the mitigation scheme using WMDM and/or FDM has been initiated at step 2570, the waveguide system can continue to process received communication signals at steps 2562 and 2564 as described earlier using the updated configuration of the electromagnetic waves.


At step 2566, the waveguide system can monitor if the obstruction is still present. This determination can be performed by sending test signals (e.g., electromagnetic surface waves in the original wave mode) to other waveguide system(s) and awaiting test results back from the waveguide systems if the situation has improved, and/or by using other obstruction detection techniques such as signal reflection testing based on the sent test signals. Once the obstruction is determined to have been removed (e.g., the transmission medium becomes dry), the waveguide system can proceed to step 2572 and determine that a signal update was performed at step 2568 using WMDM and/or FDM as a mitigation technique. The waveguide system can then be configured to notify recipient waveguide system(s) at step 2568 of the intent to restore transmissions to the original wave mode, or bypass this step and proceed to step 2570 where it restores transmissions to an original wave mode and assumes the recipient waveguide system(s) know the original wave modes and corresponding transmission parameters, or can otherwise detect this change.


A waveguide system can also be adapted to receive electromagnetic waves configured for WMDM and/or FDM. For example, suppose that an electromagnetic wave having a high bandwidth (e.g., 10 GHz) TM01 wave mode is propagating on an insulated conductor as shown in FIG. 25AD and that the electromagnetic wave is generated by a source waveguide system. At step 2582, a recipient waveguide system can be configured to process the single electromagnetic wave with the TM01 wave mode under normal condition. Suppose, however, that the source waveguide system transitions to transmitting electromagnetic waves using WMDM and FDM along with a TM01 wave mode with a lower bandwidth on the insulated conductor, as previously described in FIG. 25AD. In this instance, the recipient waveguide system would have to process multiple electromagnetic waves of different wave modes. Specifically, the recipient waveguide system would be configured at step 2582 to selectively process each of the first through ninth electromagnetic waves using WMDM and FDM and the electromagnetic wave using the TM01 wave mode as shown in FIG. 25AD.


Once the one or more electromagnetic waves have been received at step 2582, the recipient waveguide can be configured to use signal processing techniques to obtain the communication signals that were conveyed by the electromagnetic wave(s) generated by the source waveguide system at step 2564 (and/or step 2570 if an update has occurred). At step 2586, the recipient waveguide system can also determine if the source waveguide system has updated the transmission scheme. The update can be detected from data provided in the electromagnetic waves transmitted by the source waveguide system, or from wireless signals transmitted by the source waveguide system. If there are no updates, the recipient waveguide system can continue to receive and process electromagnetic waves at steps 2582 and 2584 as described before. If, however, an update is detected at step 2586, the recipient waveguide system can proceed to step 2588 to coordinate the update with the source waveguide system and thereafter receive and process updated electromagnetic waves at steps 2582 and 2584 as described before.


It will be appreciated that method 2560 can be used in any communication scheme including simplex and duplex communications between waveguide systems. Accordingly, a source waveguide system that performs an update for transmitting electromagnetic waves according to other wave modes will in turn cause a recipient waveguide system to perform similar steps for return electromagnetic wave transmissions. It will also be appreciated that the aforementioned embodiments associated with method 2560 of FIG. 25Y and the embodiments shown in FIGS. 25Z through 25AE can be combined in whole or in part with other embodiments of the subject disclosure for purposes of mitigating propagation losses caused by an obstruction at or in a vicinity of an outer surface of a transmission medium (e.g., insulated conductor, uninsulated conductor, or any transmission medium having an external dielectric layer). The obstruction can be a liquid (e.g., water), a solid object disposed on the outer surface of the transmission medium (e.g., ice, snow, a splice, a tree limb, etc.), or any other objects located at or near the outer surface of the transmission medium.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 25Y, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Referring now to FIGS. 25AG and 25AH, block diagrams illustrating example, non-limiting embodiments for transmitting orthogonal wave modes according to the method 2560 of FIG. 25Y are shown. FIG. 25AG depicts an embodiment for simultaneously transmitting a TM00 wave mode, an HE11 wave mode with vertical polarization, and an HE11 wave mode with horizontal polarization as depicted in an instance in time in FIG. 25Z. In one embodiment, these orthogonal wave modes can be transmitted with a waveguide launcher having eight (8) MMICs as shown in FIG. 18 located at symmetrical locations (e.g., north, northeast, east, southeast, south, southwest, west, and northwest). The waveguide launcher of FIG. 18R (or FIG. 18T) can be configured with these 8 MMICs. Additionally, the waveguide launcher can be configured with a cylindrical sleeve 2523A and tapered dielectric that wraps around the transmission medium (e.g., insulated conductor, uninsulated conductor, or other cable with a dielectric layer such as dielectric core). The housing assembly of the waveguide launcher (not shown) can be configured to include a mechanism (e.g., a hinge) to enable a longitudinal opening of the waveguide launcher for placement and latching around a circumference of a transmission medium.


With these configurations in mind, the waveguide launcher can include three transmitters (TX1, TX2, and TX3) coupled to MMICs having various coordinate positions (see FIG. 25AG and FIG. 18W). The interconnectivity between the transmitters (TX1, TX2, and TX3) and the MMICs can be implemented with a common printed circuit board or other suitable interconnecting technology. The first transmitter (TX1) can be configured to launch a TM00 wave mode, the second transmitter (TX2) can be configured to launch an HE11 vertical polarization wave mode, and the third transmitter (TX3) can be configured to launch an HE11 horizontal polarization wave mode.


A first signal port (shown as “SP1”) of the first transmitter (TX1) can be coupled in parallel to each of the 8 MMICs. A second signal port (shown as “SP2”) of the first transmitter (TX1) can be coupled to a conductive sleeve 2523A that is placed on the transmission medium by the waveguide launcher as noted above. The first transmitter (TX1) can be configured to receive a first group of the communication signals described in step 2562 of FIG. 25Y. The first group of communication signals can be frequency-shifted by the first transmitter (TX1) from their native frequencies (if necessary) for an orderly placement of the communication signals in channels of a first electromagnetic wave configured according to the TM00 wave mode. The 8 MMICs coupled to the first transmitter (TX1) can be configured to up-convert (or down-convert) the first group of the communication signals to the same center frequency (e.g., 1 GHz for the first electromagnetic wave as described in relation to FIG. 25AD). All 8 MMICs would have synchronized reference oscillators that can be phase locked using various synchronization techniques.


Since the 8 MMICs receive signals from the first signal port of the first transmitter (TX1) based on the reference provided by the second signal port, the 8 MMICs thereby receive signals with the same polarity. Consequently, once these signals have been up-converted (or down-converted) and processed for transmission by the 8 MMICs, one or more antennas of each of the 8 MMICs simultaneously radiates signals with electric fields of the same polarity. Collectively, MMICs that are opposite in location to each other (e.g., MMIC north and MMIC south) will have an electric field structure aligned towards or away from the transmission medium, thereby creating at a certain instance in time an outward field structure like the TM00 wave mode shown in FIG. 25Z. Due to the constant oscillatory nature of the signals radiated by the 8 MMICs, it will be appreciated that at other instances in time, the field structure shown in FIG. 25Z will radiate inward. By symmetrically radiating electric fields with the same polarity the collection of opposing MMICs contribute to the inducement of a first electromagnetic wave having a TM00 wave mode that propagates on a transmission medium with a dielectric layer and can convey the first group of the communication signals to a receiving waveguide system.


Turning now to the second transmitter (TX2) in FIG. 25AG, this transmitter has a first signal port (SP1) coupled to MMICs located in north, northeast and northwest positions, while a second signal port (SP2) of the second transmitter (TX2) is coupled to the MMICs located in south, southeast and southwest positions (see FIG. 18W). The second transmitter (TX2) can be configured to receive a second group of the communication signals described in step 2562 of FIG. 25Y, which differs from the first group of the communication signals received by the first transmitter (TX1). The second group of communication signals can be frequency-shifted by the second transmitter (TX2) from their native frequencies (if necessary) for an orderly placement of the communication signals in channels of a second electromagnetic wave configured according to an HE11 wave mode with vertical polarization. The 6 MMICs coupled to the second transmitter (TX2) can be configured to up-convert (or down-conversion) the second group of the communication signals to the same center frequency as used for the TM00 wave mode (i.e., 1 GHz as described in relation to FIG. 25AD). Since a TM00 wave mode is orthogonal to an HE11 wave mode with vertical polarization, they can share the same center frequency in an overlapping frequency band without interference.


Referring back to FIG. 25AG, the first signal port (SP1) of the second transmitter (TX2) generates signals of opposite polarity to the signals of the second signal port (SP2). As a result, the electric field alignment of signals generated by one or more antennas of the northern MMIC will be of opposite polarity to the electric field alignment of signals generated by one or more antennas of the southern MMIC. Consequently, the electric fields of the north and south MMICs will have an electric field structure that is vertically aligned in the same direction, thereby creating at a certain instance in time a northern field structure like the HE11 wave mode with vertical polarization shown in FIG. 25Z. Due to the constant oscillatory nature of the signals radiated by the north and south MMICs, it will be appreciated that at other instances in time, the HE11 wave mode will have a southern field structure. Similarly, based on the opposite polarity of signals supplied to the northeast and southeast MMICs by the first and second signal ports, respectively, these MMICs will generate at a certain instance in time the curved electric field structure shown on the east side of the HE11 wave mode with vertical polarization depicted in FIG. 25Z. Also, based on the opposite polarity of signals supplied to the northwest and southwest MMICs, these MMICs will generate at a certain instance in time the curved electric field structure shown on the west side of the HE11 wave mode with vertical polarization depicted in FIG. 25Z.


By radiating electric fields with opposite polarity by opposing MMICs (north, northeast and northwest versus south, southeast and southwest), the collection of signals with a directionally aligned field structure contribute to the inducement of a second electromagnetic wave having the HE11 wave mode with vertical polarization shown in FIG. 25Z. The second electromagnetic wave propagates along the “same” transmission medium as previously described for the first transmitter (TX1). Given the orthogonality of a TM00 wave mode and an HE11 wave mode with vertical polarization, there will be ideally no interference between the first electromagnetic wave and the second electromagnetic wave. Consequently, the first and second electromagnetic waves having overlapping frequency bands propagating along the same transmission medium can successfully convey the first and second groups of the communication signals to the same (or other) receiving waveguide system.


Turning now to the third transmitter (TX3) in FIG. 25AG, this transmitter has a first signal port (SP1) coupled to MMICs located in east, northeast and southeast positions, while a second signal port (SP2) of the third transmitter (TX3) is coupled to the MMICs located in west, northwest and southwest positions (see FIG. 18W). The third transmitter (TX3) can be configured to receive a third group of the communication signals described in step 2562 of FIG. 25Y, which differs from the first and second groups of the communication signals received by the first transmitter (TX1) and the second transmitter (TX2), respectively. The third group of communication signals can be frequency-shifted by the third transmitter (TX3) from their native frequencies (if necessary) for an orderly placement of the communication signals in channels of a second electromagnetic wave configured according to an HE11 wave mode with horizontal polarization. The 6 MMICs coupled to the third transmitter (TX3) can be configured to up-convert (or down-conversion) the third group of the communication signals to the same center frequency as used for the TM00 wave mode and HE11 wave mode with vertical polarization (i.e., 1 GHz as described in relation to FIG. 25AD). Since a TM00 wave mode, an HE11 wave mode with vertical polarization, and an HE11 wave mode with horizontal polarization are orthogonal, they can share the same center frequency in an overlapping frequency band without interference.


Referring back to FIG. 25AG, the first signal port (SP1) of the third transmitter (TX3) generates signals of opposite polarity to the signals of the second signal port (SP2). As a result, the electric field alignment of signals generated by one or more antennas of the eastern MMIC will be of opposite polarity to the electric field alignment of signals generated by one or more antennas of the western MMIC. Consequently, the electric fields of the east and west MMICs will have an electric field structure that is horizontally aligned in the same direction, thereby creating at a certain instance in time a western field structure like the HE11 wave mode with horizontal polarization shown in FIG. 25Z. Due to the constant oscillatory nature of the signals radiated by the east and west MMICs, it will be appreciated that at other instances in time, the HE11 wave mode will have an eastern field structure. Similarly, based on the opposite polarity of signals supplied to the northeast and northwest MMICs by the first and second signal ports, respectively, these MMICs will generate at a certain instance in time the curved electric field structure shown on the north side of the HE11 wave mode with horizontal polarization depicted in FIG. 25Z. Also, based on the opposite polarity of signals supplied to the southeast and southwest MMICs, these MMICs will generate at a certain instance in time the curved electric field structure shown on the south side of the HE wave mode with horizontal polarization depicted in FIG. 25Z.


By radiating electric fields with opposite polarity by opposing MMICs (east, northeast and southeast versus west, northwest and southwest), the collection of signals with a directionally aligned field structure contribute to the inducement of a third electromagnetic wave having the HE wave mode with horizontal polarization shown in FIG. 25Z. The third electromagnetic wave propagates along the “same” transmission medium as previously described for the first transmitter (TX1) and the second transmitter (TX2). Given the orthogonality of a TM00 wave mode, an HE11 wave mode with vertical polarization, and an HE wave mode with horizontal polarization, there will be, ideally, no interference between the first electromagnetic wave, the second electromagnetic wave, and the third electromagnetic wave. Consequently, the first, second and third electromagnetic waves having overlapping frequency bands propagating along the same transmission medium can successfully convey the first, second and third groups of the communication signal to the same (or other) receiving waveguide system.


Because of the orthogonality of the electromagnetic waves described above, a recipient waveguide system can be configured to selectively retrieve the first electromagnetic wave having the TM00 wave mode, the second electromagnetic wave having the HE11 wave mode with vertical polarization, and the third electromagnetic wave having the HE11 wave mode with horizontal polarization. After processing each of these electromagnetic waves, the recipient waveguide system can be further configured to obtain the first, second and third group of the communication signals conveyed by these waves. FIG. 25AH illustrates a block diagram for selectively receiving each of the first, second and third electromagnetic waves.


Specifically, the first electromagnetic wave having the TM00 wave mode can be selectively received by a first receiver (RX1) shown in FIG. 25AH by taking the difference between the signals received by all 8 MMICs and the signal reference provided by the metal sleeve 2523A as depicted in the block diagram in FIG. 25AI. The second electromagnetic wave having the HE11 wave mode with vertical polarization can be selectively received by a second receiver (RX2) shown in FIG. 25AH by taking the difference between the signals received by the MMICs located in north, northeast and northwest positions and the signals received by the MMICs located in south, southeast and southwest positions as depicted in the block diagram in FIG. 25AJ. The third electromagnetic wave having the HE11 wave mode with horizontal polarization can be selectively received by a third receiver (RX3) shown in FIG. 25AH by taking the difference between the signals received by the MMICs located in east, northeast and southeast positions and the signals received by the MMICs located in west, northwest and southwest positions as depicted in the block diagram in FIG. 25AK.



FIG. 25AL illustrates a simplified functional block diagram of an MMIC. The MMIC can, for example, utilize a mixer coupled to a reference (TX) oscillator that shifts one of the communication signals supplied by one of the signal ports (SP1 or SP2) of one of the transmitters (TX1, TX2 or TX3) to a desired center frequency in accordance with the configurations shown in FIG. 25AG. For example, in the case of TX 1, the communication signal from SP1 is supplied to a transmit path of each of the MMICs (i.e., NE, NW, SE, SW, N, S, E, and W). In the case of TX2, the communication signal from SP1 is supplied to another transmit path of three MMICs (i.e., N, E, and NW). Note the transmit paths used by MMICs N, E and W for the communication signal supplied by SP1 of TX2 are different from the transmit paths used by the MMICs for the communication signal supplied by SP1 of TX1. Similarly, the communication signal from SP2 of TX2 is supplied to another transmit path of three other MMICs (i.e., S, SE, and SW). Again, the transmit paths used by MMICs S, SE and SW for the communication signal supplied by SP2 of TX2 are different from the transmit paths used by the MMICs for the communication signals from SP1 of TX1, and SP1 of TX2. Lastly, in the case of TX3, the communication signal from SP1 is supplied to yet another transmit path of three MMICs (i.e., E, NE, and SE). Note the transmit paths used for MMICs E, NE, and SE for the communication signal from SP1 of TX3 are different from the transmit paths used by the MMICs for the communication signals supplied by SP1 of TX1, SP1 of TX2, and SP2 of TX2. Similarly, the communication signal from SP2 of TX3 is supplied to another transmit path of three other MMICs (i.e., W, NW, and SW). Again, the transmit paths used by MMICs W, NW, and SW for the communication signal supplied by SP2 of TX3 are different from the transmit paths used by the MMICs for the communication signals from SP1 of TX1, SP1 of TX2, and SP2 of TX2, and SP1 of TX3.


Once the communication signals have been frequency-shifted by the mixer shown in the transmit path, he frequency-shifted signal generated by the mixer can then be filtered by a bandpass filter that removes spurious signals. The output of the bandpass filter in turn can be provided to a power amplifier that couples to an antenna by way of a duplexer for radiating signals in the manner previously described. The duplexer can be used to isolate a transmit path from a receive path. The illustration of FIG. 25AL is intentionally oversimplified to enable ease of illustration.


It will be appreciated that other components (not shown) such as an impedance matching circuit, phase lock loop, or other suitable components for improving the accuracy and efficiency of the transmission path (and receive path) is contemplated by the subject disclosure. Furthermore, while a single antenna can be implemented by each MMIC, other designs with multiple antennas can likewise be employed. It is further appreciated that to achieve more than one orthogonal wave mode with overlapping frequency bands (e.g., TM00, HE11 Vertical, and HE11 Horizontal wave modes described above), the transmit path can be repeated N times using the same reference oscillator. N can represent an integer associated with the number of instances the MMIC is used to generate each of the wave modes. For example, in FIG. 25AG, MMIC NE is used three times; hence, MMIC NE has three transmit paths (N=3), MMIC NW is used three times; hence, MMIC NW has three transmit paths (N=3), MMIC N is used twice; hence, MMIC N has two transmit paths (N=2), and so on. If frequency division multiplexing is employed to generate the same wave modes in other frequency band(s) (see FIGS. 25AD and 25AE), the transmit path can be further repeated using different reference oscillator(s) that are centered at the other frequency band(s).


In the receive path shown in FIG. 25AL, N signals supplied by N antennas via the duplexer of each transmit path in the MMIC can be filtered by a corresponding N bandpass filters, which supply their output to N low-noise amplifiers. The N low-noise amplifiers in turn supply their signals to N mixers to generate N intermediate-frequency received signals. As before, N is representative of the number of instances the MMIC is used for receiving wireless signals for different wave modes. For example, in FIG. 25AH, MMIC NE is used in three instances; hence, MMIC NE has three receive paths (N=3), MMIC N is used in two instances; hence, MMIC N has two receive paths (N=2), and so on.


Referring back to FIG. 25AL, to reconstruct a wave mode signal, Y received signals supplied by receiver paths of certain MMICs (or a reference from the metal sleeve 2523A of FIG. 25D) is subtracted from X received signals supplied by other MMICs based on the configurations shown in FIGS. 25AI-25AK. For example, a TM00 signal is reconstructed by supplying the received signals of all MMICs (NE, NW, SE, SW, N, S, E, W) to the plus port of the summer (i.e., X signals), while the reference signal from the metal sleeve 2523A of FIG. 25D is supplied to the negative port of the summer (i.e., Y signal)—see FIG. 25AI. The difference between the X and Y signals results in the TM00 signal. To reconstruct the HE11 Vertical signal, the received signals of MMICs N, NE, and NW are supplied to the plus port of the summer (i.e., X signals), while the received signals of MMICs S, SE, and SW are supplied to the negative port of the summer (i.e., Y signals)—see FIG. 25AJ. The difference between the X and Y signals results in the HE11 vertical signal. Lastly, to reconstruct the HE11 Horizontal signal, the received signals of MMICs E, NE, and SE are supplied to the plus port of the summer (i.e., X signals), while the received signals of MMICs W, NW, and SW are supplied to the negative port of the summer (i.e., Y signals)—see FIG. 25AK. The difference between the X and Y signals results in the HE11 horizontal signal. Since there are three wave mode signals being reconstructed, the block diagram of the summer with the X and Y signals is repeated three times.


Each of these reconstructed signals is at intermediate frequencies. These intermediate-frequency signals are provided to receivers (RX1, RX2 and RX3) which include circuitry (e.g., a DSP, A/D converter, etc.) for processing and to selectively obtain communication signals therefrom. Similar to the transmit paths, the reference oscillators of the three receiver paths can be configured to be synchronized with phase lock loop technology or other suitable synchronization technique. If frequency division multiplexing is employed for the same wave modes in other frequency band(s) (see FIGS. 25AD and 25AE), the receiver paths can be further repeated using a different reference oscillator that is centered at the other frequency band(s).


It will be appreciated that other suitable designs that can serve as alternative embodiments to those shown in FIGS. 25AG-25AL can be used for transmitting and receiving orthogonal wave modes. For example, there can be fewer or more MMICs than described above. In place of the MMICs, or in combination, slotted launchers as shown in FIGS. 18N-18O, 18Q, 18S, 18U and 18V can be used. It is further appreciated that more or fewer sophisticated functional components can be used for transmitting or receiving orthogonal wave modes. Accordingly, other suitable designs and/or functional components are contemplated by the subject disclosure for transmitting and receiving orthogonal wave modes.


Referring now to FIG. 26, a block diagram illustrating an example, non-limiting embodiment of a polyrod antenna 2600 for transmitting wireless signals is shown. The polyrod antenna 2600 can be one of a number of polyrod antennas that are utilized in an antenna array, such as array 1976 of FIG. 19O. The antenna array can facilitate or otherwise enable beam steering which can include beam forming.


In one or more embodiments, the polyrod antenna 2600 can include a core 2628 having a number of different regions or portions. The core 2628 can be connected with a waveguide 2622 configured to confine an electromagnetic wave at least in part within the core (e.g., in a first region of the core covered by the waveguide). In one embodiment (not shown), the waveguide 2622 can have an opening for accepting a transmission medium (e.g., a dielectric cable) or other coupling device. In another embodiment, the waveguide 2622 can have a generator, radiating element or other component therein that generates an electromagnetic waves for propagating along the core 2628.


In one embodiment, another region 2606 of the core 2628 (e.g., outside of the waveguide 2622) is configured to reduce a propagation loss of an electromagnetic wave as the electromagnetic wave propagates into that region, such as by having a non-tapered or otherwise uniform diameter of the core. The particular length and/or diameter of the region 2606 of the core 2628 can be selected to facilitate the reduction of propagation loss of the electromagnetic wave.


In one embodiment, another region 2612 of the core 2628 (e.g., the distal portion or end of the core that is outside of the waveguide 2622) can be tapered and can facilitate transmitting a wireless signal, such as based on the electromagnetic wave propagating along the core 2628. The particular length, diameter, and/or angle of taper of the region 2612 of the core 2628 can be selected to facilitate transmitting of the wireless signals. In one embodiment, the tip or end 2675 of the region 2612 can be truncated (as shown in FIG. 26) or pointed.


In one embodiment, the length and/or diameter of the core 2628 can be selected based on a wavelength of the electromagnetic wave that will be propagating along the dielectric core. For example, a diameter of greater than ¼λ can be used for the region 2606.


In one embodiment, an inner surface of the waveguide 2622 can be constructed from a metallic material, carbon, or other material that reflects electromagnetic waves and thereby enables the waveguide 2622 to be configured to guide the electromagnetic wave towards the core 2628. In one embodiment, the core 2628 can comprise a dielectric core (e.g., as described herein) that extends to, or in proximity of, the inner surface of the waveguide 2622. In another embodiment, the dielectric core can be surrounded by cladding (such as shown in FIG. 18A), whereby the cladding extends to the inner surface of the waveguide 2622. In yet other embodiments, the core 2628 can comprise an insulated conductor, where the insulation extends to the inner surface of the waveguide 2622. In this embodiment, the insulated conductor can be a power line, a coaxial cable, or other types of insulated conductors.


Referring to FIG. 27, an e-field distribution is illustrated for the polyrod antenna 2600. As shown, the electromagnetic wave is confined or substantially confined within the waveguide 2622 and then propagates along the core 2628 until it is transmitted as a wireless signal from the region 2612 of the core. Referring to FIGS. 28A and 28B, an example gain pattern and the corresponding input impedance are illustrated for the example polyrod antenna 2600. It should be understood that other gain patterns can be achieved utilizing polyrod antennas having other characteristics.


Referring now to FIGS. 29A and 29B, block diagrams illustrating an example, non-limiting embodiment of a polyrod antenna array 2900 which utilizes four polyrod antennas 2600 for transmitting wireless signals are shown. In this example, the polyrod antenna array 2900 utilizes the same polyrod antennas 2600, which are uniformly spaced apart, such as 0.8 cm on center. The particular type of polyrod antenna, the number of polyrod antennas, and/or the spacing in the array can be selected according to various factors, such as based on parameters of the wireless signals and/or electromagnetic waves that are being utilized. Referring to FIG. 30, an example gain pattern is illustrated for the example four polyrod antenna array 2900. It should be understood that other gain patterns can be achieved utilizing polyrod antenna arrays having other characteristics. Referring to FIGS. 31A and 31B, e-field distributions are illustrated for the polyrod antenna 2600 and the polyrod antenna array 2900. As shown, the electromagnetic wave(s) is confined or substantially confined within the waveguide(s) 2622 and then propagate along the core(s) 2628 until transmitted as a wireless signal(s) from the region(s) 2612 of the core(s).


Referring now to FIGS. 32A and 32B, block diagrams illustrating an example, non-limiting embodiment of a polyrod antenna array 3200, which utilizes sixteen polyrod antennas 2600 for transmitting wireless signals, is shown. In this example, the polyrod antenna array 3200 is made from the same polyrod antennas 2600, which are uniformly spaced apart, such as 0.8 cm on center. The particular type of polyrod antenna, the number of polyrod antennas and/or the spacing in the array can be selected according to various factors, such as based on parameters of the wireless signals and/or electromagnetic waves that are being utilized. Referring to FIG. 33, an example gain pattern is illustrated for the example sixteen polyrod antenna array 3200. It should be understood that other gain patterns can be achieved utilizing polyrod antenna arrays having other characteristics. Referring to FIG. 34A, a VSWR over a 10 GHz operating frequency is illustrated for a polyrod antenna 2600. Referring to FIG. 34B, S-parameters over the 10 GHz operating frequency is illustrated for the polyrod antenna array 3200. Referring to FIG. 35, e-field distributions are illustrated for the polyrod antenna array 3200. As shown, the electromagnetic waves are confined or substantially confined within the waveguides 2622 and then propagate along the cores 2628 until transmitted as a wireless signals from the regions 2612 of the cores.


Referring now to FIG. 36A, a block diagram illustrating an example, non-limiting embodiment of a hollow horn antenna 3600 is shown. In one embodiment, the hollow horn antenna 3600 can be used in an array. As an example, hollow horn antenna 3600 can be made from teflon and/or can include a cylindrical V-band feed 3622 for generating a signal to be wirelessly transmitted. FIG. 36B illustrates an e-field distribution for the hollow horn antenna 3600. As shown, the electromagnetic waves are confined or substantially confined within the cylinder 3622. FIG. 37 illustrates gain as a function of the internal feed position. The port and feed position can influence the antenna gain.


Turning to FIG. 38, a block diagram illustrating an example, non-limiting embodiment of a polyrod antenna 3800 is shown. Polyrod antenna 3800 can be used in an antenna array to facilitate or otherwise provide for beam steering including beam forming. The polyrod antenna 3800 can have a number of regions, such as first region 3806, second region 3808, third region 3810 and fourth region 3812. In one embodiment, a waveguide 3822 can cover the first region 3806 of the core 3828. Within the first region 3806, the waveguide 3822 can have an outer surface 3822A and an inner surface 3823. The inner surface 3823 of the waveguide 3822 can be constructed from a metallic material, carbon, or other material that reflects electromagnetic waves and thereby enables the waveguide 3822 to be configured to guide first electromagnetic wave 3802 towards the core 3828.


In one embodiment, the core 3828 can comprise a dielectric core (as described herein) that extends to or in proximity of the inner surface 3823 of the waveguide 3822. In other embodiments, the dielectric core 3828 can be surrounded by cladding (such as shown in FIG. 18A), whereby the cladding extends to the inner surface 3823 of the waveguide 3822. In yet other embodiments, the core 3828 can comprise an insulated conductor, where the insulation extends to the inner surface 3823 of the waveguide 3822. In this embodiment, the insulated conductor can be a power line, a coaxial cable, or other types of insulated conductors.


In the first region 3806, the core 3828 can include an interface 3826 for receiving the first electromagnetic wave 3802. In one embodiment, the interface 3826 of the core 3828 can be configured to reduce reflections of the first electromagnetic wave 3802. In one embodiment, the interface 3826 can be a tapered structure to reduce reflections of the first electromagnetic wave 3802 from a surface of the core 3828. Other structures can be used for the interface 3826, such as partially tapered with a rounded point or with a truncated end. Accordingly, other structure, configuration, or adaptation of the interface 3826 that can reduce reflections of the first electromagnetic wave 3802 can be used in this example. The first electromagnetic wave 3802 induces (or otherwise generates) a second electromagnetic wave 3804 that propagates within the core 3828 in the first region 3806 covered by the waveguide 3822. The inner surface 3823 of the waveguide 3822 can confine the second electromagnetic wave 3804 within the core 3828.


In this example, the second region 3808 of the core 3828 is not covered by the waveguide 3822, and is thereby exposed to the environment (e.g., air). In the second region 3808, the second electromagnetic wave 3804 expands outwardly beginning from the discontinuity between the edge of the waveguide 3822 and the exposed portion of the core 3828. In one embodiment to reduce the radiation into the environment from the second electromagnetic wave 3804, the core 3828 can be configured to have a tapered structure 3820. As the second electromagnetic wave 3804 propagates along the tapered structure 3820, the second electromagnetic wave 3804 remains substantially bound to the tapered structure 3820 thereby reducing radiation losses. The tapered structure 3820 can end at a transition from the second region 3808 to the third region 3810. In the third region 3810, the core 3828 can have a cylindrical structure having a diameter equal to the endpoint of the tapered structure 3820 at the juncture between the second region 3808 and the third region (e.g., the third region can be non-tapered with a uniform diameter).


In the third region 3810 of the core 3828, the second electromagnetic wave 3804 experiences a low propagation loss. In one embodiment, this can be accomplished by selecting a diameter of the core 3828 that enables the second electromagnetic wave 3804 to be loosely bound to the outer surface of the core 3828 in the third region 3810. Alternatively, or in combination, propagation losses of the second electromagnetic wave 3804 can be reduced by configuring the MMICs 3824 to adjust a wave mode, wave length, operating frequency, and/or other operational parameter of the first electromagnetic wave 3802.


In one embodiment, one or more antennas of the MMICs 3824 can be configured to receive the electromagnetic wave 3802 thereby converting the electromagnetic wave 3802 to an electrical signal which can be processed by a processing device (e.g., a receiver circuit and microprocessor). To prevent interference between electromagnetic waves transmitted by the MMICs 3824, a remote waveguide system that transmitted the electromagnetic wave 3804 that is received by the waveguide 3822 can be adapted to transmit the electromagnetic wave 3804 at a different operating frequency, different wave mode, different phase, or other adjustable operational parameter to avoid interference.


The fourth region 3812 of the core 3828 can be configured for transmitting wireless signals based on the second electromagnetic wave 3804. For example, the fourth region 3812 can be tapered causing the second electromagnetic wave 3804 to expand outwardly transitioning into a wireless signal 3899. An example e-field for the wireless signal of a polyrod antenna is illustrated in FIGS. 27 and 31B. In one embodiment, the fourth region 3812 of the core 3828 can have a truncated end.



FIG. 39 illustrates another polyrod antenna 3900 having features similar to the features of polyrod antenna 3800 which have the same reference numbers. Polyrod antenna 3900 can provide an alternative embodiment to the tapered structure 3820 in the second region 3808 of FIG. 38. For example, the tapered structure 3820 can be avoided by extending the waveguide 3822 into the second region 3808 (of the core 3828) with a tapered or outwardly flaring structure 3922B and maintaining uniformity or substantial uniformity of the diameter of the core 3828 throughout the first, second and third regions 3806, 3808 and 3810 of the core 3828. The horn structure 3922B can be used to reduce radiation losses of the second electromagnetic wave 3804 as the second electromagnetic wave 3804 transitions from the first region 3806 to the second region 3808. As described above, the fourth region 3812 of the core 3828 can be configured (e.g., tapered) for transmitting wireless signals based on the second electromagnetic wave 3804.



FIG. 40 illustrates another polyrod antenna 4000 having features similar to the features of polyrod antenna 3800 which have the same reference numbers. Polyrod antenna 4000 can provide an alternative embodiment to the MMICs 3824 for generating the electromagnetic wave 3802. For example, the MMICs 3824 can be avoided by providing one or more radiating elements 4024 in the waveguide 3822. In one embodiment, the first region 3806 (of the core 3828) within the waveguide 3822 can be filled with a dielectric material 4026. In one embodiment, the dielectric material 4026 extends to the inner surface 3823 of the waveguide 3822. The first electromagnetic wave 3802 generated by the radiating element(s) 4024 can transition into a second electromagnetic wave 3804 that propagates within the core 3828 in the first region 3806 covered by the waveguide 3822. The inner surface 3823 of the waveguide 3822 can confine the second electromagnetic wave 3804 within the core 3828. As described above, the fourth region 3812 of the core 3828 can be configured (e.g., tapered) for transmitting wireless signals based on the second electromagnetic wave 3804.



FIG. 41A illustrates another polyrod antenna 4100 having features similar to the features of polyrod antenna 3800 which have the same reference numbers. Polyrod antenna 4100 can provide an alternative embodiment to the MMICs 3824 and radiating element(s) 4024 for generating the electromagnetic wave 3802. For example, the MMICs 3824 and radiating element(s) 4024 can be avoided by providing an opening in the waveguide 3822 for insertion of a cable or other transmission medium 4124, which can guide the first electromagnetic wave 3802. In one embodiment, the first region 3806 (of the core 3828) within the waveguide 3822 can abut against or otherwise be in proximity to the cable 4124. The first electromagnetic wave 3802 can be generated by a generator at an opposing end of the cable 4124 and can propagate along the cable 4124 until it transitions into a second electromagnetic wave 3804 that propagates within the core 3828 in the first region 3806 covered by the waveguide 3822. The inner surface 3823 of the waveguide 3822 can confine the second electromagnetic wave 3804 within the core 3828. As described above, the fourth region 3812 of the core 3828 can be configured (e.g., tapered) for transmitting wireless signals based on the second electromagnetic wave 3804.



FIG. 41B illustrates another polyrod antenna 4100′ having features similar to the features of polyrod antennas 4100 and 3800 which have the same reference numbers. Polyrod antenna 4100′ can provide an alternative embodiment to flat end surfaces for the cable 4124 and the first region 3806 of the core 3828. For example, cable 4124 can have an interface 4124A and/or first region 3806 of core 3828 can have an interface 4122, which facilitates the first electromagnetic wave 3802 transitioning into the second electromagnetic wave 3804 that propagates within the core 3828 in the first region 3806 covered by the waveguide 3822. In one embodiment, the interface 4124A and/or the interface 4122 can have a tapered shape to reduce reflections of the first electromagnetic wave 3802 from a surface of the core 3828. Other structures can be used for the interface 4124A and/or the interface 4122, such as partially tapered with a rounded point or with a truncated end. Accordingly, other structure, configuration, or adaptation of the interface 4124A and/or the interface 4122 that can reduce reflections of the first electromagnetic wave 3802 can be used in this example.



FIG. 42A illustrates another polyrod antenna 4200 having features similar to the features of polyrod antenna 3800 which have the same reference numbers. Polyrod antenna 4200 can provide an alternative embodiment to utilizing the waveguide 3822. For example, a cable 4224 can be integrally formed with the second region 3808 of core 3828, which facilitates the first electromagnetic wave 3802 transitioning into the second electromagnetic wave 3804. In one embodiment, the cable 4224 and the second region 3808 or all of core 3828 can be made from a same material(s). In another embodiment, the cable 4224 and the second region 3808 or all of core 3828 can be made from different material(s). As described above, the fourth region 3812 of the core 3828 can be configured (e.g., tapered) for transmitting wireless signals based on the second electromagnetic wave 3804.



FIG. 42B illustrates another polyrod antenna 4200′ having features similar to the features of polyrod antenna 4200 which have the same reference numbers. Polyrod antenna 4200′ can provide an alternative embodiment to utilizing the waveguide 3822. For example, a cable 4224 can be integrally formed with the fourth region 3812 of core 3828 which facilitates the first electromagnetic wave 3802 transitioning into the second electromagnetic wave 3804. As described above, the fourth region 3812 of the core 3828 can be configured (e.g., tapered) for transmitting wireless signals based on the second electromagnetic wave 3804.


Turning to FIG. 43, a block diagram illustrating an example, non-limiting embodiment of a polyrod antenna array 4300 is shown. Polyrod antenna array 4300 can be used to facilitate or otherwise provide for beam steering including beam forming. The polyrod antenna array 4300 can include a plurality of polyrod antennas 4325 that are arranged in various patterns, which can include uniform spacing or non-uniform spacing. In one embodiment, the array 4300 includes a support structure 4350, such as a printed circuit board, where the polyrod antennas 4325 are connected with the support structure. For example, radiating elements can extend from the support structure 4350 into each of the polyrod antennas 4325.



FIG. 44 illustrates a flow diagram of an example, non-limiting embodiment of a method 4400 for sending and/or receiving electromagnetic waves representative of communications. At 4402, communications can be determined that are to be wirelessly transmitted. As an example, the communications can be based on received signals. In another embodiment, the communications can be based on information generated by a processor co-located at the communication device that is to transmit the signals.


At 4404, a first group of transmitters can generate first electromagnetic waves representative of or otherwise associated with the communications and at 4406 a second group of transmitters can generate second electromagnetic waves representative of or otherwise associated with the communications. In one embodiment, the first and second electromagnetic waves can propagate and be guided by dielectric cores without requiring an electrical return path, where each of the dielectric cores is connected with one of the transmitters and is also connected with a corresponding antenna of an antenna array to enable beam steering.


At 4408, the first and second electromagnetic waves can be guided to the antenna array and can transition into, or otherwise provide for transmitting of, wireless signals. In one embodiment, the wireless signals are transmitted, via an array of polyrod antennas, based on the electromagnetic waves, where each polyrod antenna of the array of polyrod antennas is coupled to a corresponding one of the plurality of dielectric cores, and wherein each polyrod antenna converts a corresponding one of the plurality of electromagnetic waves supplied by the corresponding one of the plurality of dielectric cores into a corresponding one of the plurality of wireless signals. The wireless signals can be representative of, or otherwise wirelessly convey, the communications to a receiver device.


In one embodiment, beam steering is performed via the antenna array by providing a phase adjustment to one or more of the wireless signals. As an example, a row of polyrod antennas in the antenna array can have a first phase while another row (or the remaining polyrod antennas) of the array has a second phase that is different from the first array. Any number of polyrod antennas can be provided with phase adjustments to perform the desired beam steering.


Turning to FIG. 45, a block diagram illustrating an example, non-limiting embodiment of a system 4500 is shown. System 4500 can be used to facilitate or otherwise provide communications over a network, including communications between network elements and/or voice, video, data and/or messaging services for end user devices. System 4500 can include any number of communication devices (e.g., network devices); only two of which are shown as communication device 4510 connected with utility pole 4520 and communication device 4550 connected with utility pole 4560. The communication devices of system 4500 can be arranged in various configurations, including a mesh network, primary and secondary node patterns, and so forth, so as to facilitate communications over the network.


In one or more embodiments, communication device 4510 can include an antenna array 4515 for transmitting wireless signals. In one or more embodiments, the antenna array 4515 can perform beam steering. For example, the antenna array 4515 can utilize a first subset of antennas of the antenna array to transmit first wireless signals 4525 directed (as shown by reference number 4527) via beam steering towards the communication device 4550. A second subset of antennas of the antenna array 4515 can transmit second wireless signals 4530 directed (as shown by reference number 4532) via the beam steering towards a transmission medium 4575 (e.g., a power line connected between the utility poles 4520, 4560).


The first and second wireless signals 4525, 4530 can be associated with communication signals that are to be transmitted over the network. For instance, the first and second wireless signals 4525, 4530 can be the same signals. In another example, the first wireless signals 4525 can represent a first subset of the communication signals, while the second wireless signals 4530 represent a second subset of the communication signals. In one embodiment, the first and second wireless signals 4525, 4530 can be different and can be based on interleaving of a group of communication signals, such as video packets, and so forth.


In one or more embodiments, the second wireless signals 4530 induce electromagnetic waves 4540. For example, the electromagnetic waves 4540 are induced at a physical interface of the transmission medium 4575 and propagate (as shown by reference number 4542) without requiring an electrical return path. The electromagnetic waves 4540 are guided by the transmission medium 4575 towards the communication device 4550, which is positioned in proximity to the transmission medium. The electromagnetic waves 4575 can be representative of the second wireless signals 4530 which are associated with the communication signals.


In one or more embodiments, the communication device 4550 can include a receiver that is configured to receive the electromagnetic waves 4540 that are propagating along the transmission medium 4575. Various types of receivers can be used for receiving the electromagnetic waves 4540, such as devices shown in FIGS. 7, 8 and 9A. System 4500 enables the communication device 4510 to transmit information which is received by the communication device 4550 (e.g., another antenna array 4555) via the wireless communication path 4527 and via being guided by the transmission medium 4575.


In one or more embodiments, the antenna arrays 4515, 4555 can include polyrod antennas. For example, each of the polyrod antennas can include a core that is connected with a waveguide that is configured to confine an electromagnetic wave at least in part within the core in a particular region of the core. In one embodiment, each of the polyrod antennas can include a core having a first region, a second region, a third region, and a fourth region, where the core comprises an interface in the first region. One of the plurality of transmitters can generate a first electromagnetic wave that induces a second electromagnetic wave at the interface of the first region. The core can be connected with a waveguide that is configured to confine the second electromagnetic wave at least in part within the core in the first region, where the second region of the core is configured to reduce a radiation loss of the second electromagnetic wave as the second electromagnetic wave propagates into the second region. The third region of the core can be configured to reduce a propagation loss of the second electromagnetic wave as the second electromagnetic wave propagates into the third region. The fourth region of the core can be outside of the waveguide and can be tapered to facilitate transmitting one of the first or second wireless signals based on the second electromagnetic wave.


In one or more embodiments, the communication device 4510 can provide a phase adjustment to the second wireless signals 4530 to accomplish beam steering towards the transmission medium 4575. FIG. 45 illustrates the antenna array 4555 and the receiver 4565 being co-located at communication device 4550, however, in another embodiment the antenna array 4555 and the receiver 4565 can be separate devices that may or may not be in proximity to each other. For example, the first wireless signals 4525 can be received by the antenna array 4555 of the communication device 4550 while the electromagnetic waves 4540 can be received by a receiver of a different communication device (not shown) that is in proximity to the transmission medium 4575.



FIG. 46 illustrates a flow diagram of an example, non-limiting embodiment of a method 4600 for sending and/or receiving electromagnetic waves representative of communications. At 4602, a communication device can utilize an antenna array to transmit first wireless signals that are associated with communication signals. The first wireless signals can be directed via beam steering by the antenna array towards a wireless receiver of another communication device. The communication signals can represent various types of information, including control information, voice, video, data, messaging, and so forth. At 4604, the communication device can transmit second wireless signals associated with the communication signals. The second wireless signals can be directed via the beam steering by the antenna array towards a transmission medium, such as a power line. The first and second wireless signals can be transmitted at a same time or in temporal proximity to each other.


In one embodiment, the first and second wireless signals can be the same signals and can represent or otherwise convey the communication signals, such as providing two different paths for communicating the same information. In another embodiment, the first wireless signals can represent a first subset of the communication signals, while the second wireless signals represent a second subset of the communication signals, such as splitting information (e.g., video packets) over two different communication paths.


At 4606, the second wireless signals can induce electromagnetic waves at a physical interface of the transmission medium that propagate without requiring an electrical return path, wherein the electromagnetic waves are guided by the transmission medium towards a receiver. The electromagnetic waves can represent the second wireless signals which are associated with the communication signals. The electromagnetic waves can be received by a receiver that is in proximity to the transmission medium.


In one embodiment, beam steering can be utilized by the antenna array of the transmitting communication device to provide for the different communication paths, such as by providing a phase adjustment to the first and/or second wireless signals. In one embodiment, the transmission medium can be a power line. In one embodiment, the first wireless signals can be transmitted to and received by a wireless receiver of another communication device that also has a receiver for receiving the electromagnetic waves being guided by the transmission medium. In one embodiment, method 4600 can adjust a transmit power associated with at least one of the first and second wireless signals resulting in different first and second transmit powers of the first and second wireless signals, respectively.



FIGS. 47A, 47B, 47C, 47D, 47E, 47F, 47G, 47H, and 47I are block diagrams illustrating example, non-limiting embodiments of an antenna system 4700 in accordance with various aspects described herein. FIG. 47A depicts an array of polyrod antennas (described above—see FIGS. 26-46) being used to perform beam steering as previously described in relation to FIG. 19O and other figures of the subject disclosure. FIG. 47A depicts that a beam pattern generated by an array of dielectric polyrod antennas will have a reasonably straight path when electromagnetic waves supplied to each dielectric polyrod antenna of the array are in phase. In contrast, when the electromagnetic waves supplied to the array of dielectric polyrod antennas are not in phase, the beam pattern generated by the array of dielectric polyrod antennas will bend in a certain direction in three-dimensional space. The direction the beam pattern bends can be controlled by adjusting the phase of each electromagnetic wave supplied to a corresponding dielectric polyrod of the array of dielectric polyrod antennas utilizing a circuit 1972 such as shown in FIG. 19O and the methods described in the subject disclosure in relation to FIG. 19O. Controlling phase enables beam steering of beam patterns. Other operational parameters of the electromagnetic waves supplied to the array of dielectric polyrod antennas (e.g., frequency, wave mode, electric field structure, etc.) can be adjusted to adjust a shape of the beam pattern generated by the array of dielectric polyrod antennas, and/or also perform additional beam steering of the beam pattern. By adjusting different operational parameters of the electromagnetic waves supplied to the array of dielectric polyrod antennas, the beam pattern generated thereby can be widened, narrowed, can be shaped elliptically, can have a field strength that varies at different points in a near-field wireless signal, and so on.



FIG. 47B depicts different grid patterns of an antenna system 4700 comprising an array of dielectric polyrod antennas. For example, an antenna system 4700 can comprise a 16×16 grid of dielectric polyrod antennas, which can be constructed by combining sixteen 4×4 grids. FIG. 47B further illustrates that a 16×16 grid array can be sectionalized in several ways. In one embodiment, for example, a 16×16 grid array can have 4 sections, each section comprising an 8×8 grid array of dielectric polyrod antennas. In another embodiment, a 16×16 grid array can have 9 sections, which are not all equal in size. For example, the four corners of the 16×16 grid array can have sections of 4×4 grid arrays, the middle section can have an 8×8 grid array, and the 4 middle outer sections can have a 4×8 grid array. Also, shown is a cross and diagonal grid array constructed by combining 4×4 grids. Additionally, shown in FIG. 47B are circular arrays. Based on these illustrations, the subject disclosure contemplates any number of other configurations of grid arrays of dielectric antennas. It is also noted that other types of dielectric antenna structures can be used in place of the array of dielectric polyrod antennas shown in FIGS. 47A-47I, such as, for example, an array of dielectric cone antennas, an array of dielectric pyramidal antennas, or other suitable arrays of dielectric antenna structures. Accordingly, the embodiments that follow can be adapted to other dielectric antenna structures.



FIG. 47C illustrates an array of dielectric polyrod antennas arranged on a printed circuit board (PCB) 4702. In this arrangement, a plurality of transceivers such as shown in FIG. 10A or FIG. 14 can be used to supply (or receive) electromagnetic waves via dielectric cores coupled to the dielectric polyrod antennas. Accordingly, each dielectric polyrod antenna held by the PCB 4702 can be independently controlled by a transmitter section of the transceiver to generate specific radiated signals from electromagnetic waves supplied to a corresponding dielectric core coupled to the dielectric polyrod antenna, which when combined with radiated signals of other dielectric polyrod antennas in the array can form desirable beam patterns. Similarly, each dielectric polyrod antenna can be selectively enabled to receive wireless signals that are converted to electromagnetic waves and supplied to a receiver section of a transceiver by way of a corresponding dielectric core.


Although a linear grid of dielectric polyrod antennas can be useful, a hexagonal grid can have certain advantages as shown in FIG. 47D. For instance, a linear grid is not rotationally symmetric, while a hexagonal grid is. Rotational symmetry enables dielectric polyrod antennas to be equidistant from each other. Consequently, radiated signals from each dielectric polyrod in a hexagonal configuration are also equidistant from each other and thereby combine symmetrically, which is not the case for a linear grid.



FIG. 47E illustrates the structural differences between a 4×4 linear grid versus a 4×4 hexagonal grid. FIG. 47E further illustrates how a large hexagonal array of dielectric polyrod antennas can be constructed by combining 4×4 hexagonal grids. FIG. 47F illustrates that a 1×7 hexagonal grid can be used to generate near-field beam patterns that can be rotated by 30 degrees by selectively choosing adjacent cells in a horizontal plane. FIG. 47F further shows how 1×7 hexagonal grids can be combined (e.g., a 20 element array), and how with such combinations, various shapes of near-field beam patterns can be generated by selectively activating particular cells of a hexagonal dielectric polyrod array. FIG. 47G further illustrates how a large hexagonal dielectric polyrod array can be used to generate different near-field beam pattern configurations by selective activation and synchronization of cells in the hexagonal dielectric polyrod array, while other cells are inactive for transmission purposes, but may be active for reception of wireless signals.



FIG. 47H also illustrates a hexagonal dielectric polyrod array can be configured on a PCB 4702. In certain embodiments, the PCB 4702 can be a flexible PCB that can be folded into a cylinder that enables a dielectric polyrod array to be omnidirectional as shown in FIG. 47I. In one embodiment, the dielectric polyrod array can be configured as an infinite sector array that provides an infinitely selectable horizontal sector, with a range of vertical beam sectoring and steering. In other embodiments, the dielectric polyrod array can be configured in a fixed number of sectors (e.g., 12 sectors) covering a 360 degree area. With beam steering techniques, sections of the dielectric polyrod array shown in FIG. 47I can be configured to generate beam patterns that have a vertical and/or horizontal deflection with omnidirectional capabilities by selective activating different dielectric polyrod antennas in the array. The cylindrical phased array of polyrods of FIG. 47I can have individually addressable polyrods (under the control of a tracking controller or other computing system) able to project one or many beams simultaneously from its clusters of tessellated polyrod cells, each cell being steered independently by phased array means so as to be able to track one or more moving targets such as one or more passing cars and or pedestrians. Thus each beam directed to the moving target (having its own wireless receiver) would be provided a higher gain and signal-to-noise ratio (SNR) and thus associated improvement in data rate.


In some embodiments, a mobile communication device can be adapted to have a similar but modified (smaller array) capable of steering a return beam back to a section of the cylindrical array of polyrods shown in FIG. 47I. In a communication network configuration of a plurality of cylindrical phased array of polyrods, each cylinder located at different locations (herein referred to as communication nodes). While a communication node is utilizing one or more sections of polyrods to communicate with the mobile communication device, other sections of polyrods of the same communication node can be directed to communicate with another communication node in a vicinity of a trajectory of the mobile communication device to provide information associated with handing off the mobile communication device to the other communication node. The information provided can be used by the communication node taking control of communications with the mobile communication device to direct beam patterns from its own polyrods directed to the mobile communication device being tracked. Once the handoff is complete, the communication node can direct polyrods to send wireless signals to the previous communication node to inform it that the handoff has completed, and thereby free the previous communication node to handle other communication devices.



FIG. 47J illustrates a flow diagram of an example, non-limiting embodiment of a method 2750 for utilizing any one of the embodiments of the antenna system 4700 of FIGS. 47A-47I. The antenna system 4700 can comprise a plurality of waveguides coupled to corresponding dielectric polyrod antennas as shown in the illustrations of FIGS. 38-42B. Each waveguide can comprise a transceiver that can be independently controlled to transmit electromagnetic waves to a corresponding dielectric antenna to radiate a specific pattern, or can receive and process electromagnetic waves generated by the dielectric antenna upon receiving a wireless signal. The electromagnetic waves can be configured according to modulated signals that convey data such as voice, streaming data, or other suitable information. In some embodiments, each waveguide can be coupled to a dielectric core that couples to a feed point of the dielectric antenna. In other embodiments, the waveguide device can couple directly to the feed point of the dielectric antenna. For illustration purposes only, the waveguide device will be assumed to be coupled to a dielectric core that couples to a feed point of the dielectric antenna (e.g., FIG. 19L which can be adapted with a dielectric polyrod antenna in place of the dielectric cone antenna). It will be appreciated that the dielectric antenna can be a dielectric polyrod antenna, dielectric cone antenna, dielectric pyramidal antenna, or any other suitable type of dielectric antenna structure.


With this in mind, method 4750 can begin at step 4752 where an array of dielectric antennas (such as dielectric polyrod antennas or other dielectric antenna structures described by the subject disclosure) can be organized in sections such as shown in FIG. 47B. It will be appreciated that step 4752 can be performed multiple times as needed. For example, in one instant, an array of dielectric antennas can be organized in 8 sections, and in another instant the same array of dielectric antennas can be organized in 4 sections. It is further appreciated that the shape and size of the sections can vary each time the organizational step 4752 is invoked. For example, a section can have a circular shape, a square shape, and oval shape, a rectangular shape, and so on. It is further appreciated, that the dielectric antennas assigned to each section can vary. For example, an array of dielectric antennas with 4 sections may have two sections with a certain grid size (e.g., 1×7) and another grid size for the other two sections (e.g., 4×4). The number of dielectric antenna chosen for each section, the size and shape of each section, and the number of sections identified in a grid array can vary based on a communication application the antenna system 4700 is undertaking.


Once the array has been configured in selectable sections at step 4752, the antenna system 4700 can be configured to select at step 4754 first and second sections of the array to communicate with first and second communication devices independently. Step 4754 can be performed by the antenna system 4700 responsive to detecting a first location of the first communication device and a second location of a second communication device, and determining a section of the array to direct beam patterns to the first and second communication devices at their respective locations. In other embodiments, step 4754 can be performed by the antenna system 4700 responsive to detecting that the first or second communication devices are in transit, determining trajectories based on their respective movements, and selecting sections of the array suitable to direct beam patterns using beam steering techniques during transit. The location and/or movement of the first and second communication devices can be determined by triangulation techniques determined from several communication nodes (base stations) or by receiving GPS data from each communication device. It will be appreciated that other location or tracking algorithms and techniques can be used without departing from example embodiments.


At step 4756, the antenna system 4700 can be configured to launch electromagnetic waves across multiple dielectric cores to cause corresponding dielectric antennas of the first and second sections to generate first and second beam patterns directed to the first and second communication devices at their respective locations. The beam patterns generated by each section can be fixed in position or dynamically changing with beam steering techniques to track the movement of each communication device. At step 4758 the antenna system 4700 can be further configured to add more or less beam patterns to enable communications with other communication devices, and/or combine one or more beam patterns of other sections to adjust the shape of existing beam patterns (e.g., expand or contract a shape of a beam pattern in a horizontal, vertical or diagonal planes). The adjustments in step 4758 can be performed to dynamically adjust to changing circumstances of each communication device.


The antenna system 4700 can also be adapted to contemporaneously receive at step 4762 wireless signals at one or more sections of the array of dielectric antennas. The wireless signals can come from communication devices engaged in a communication session, or other antenna systems 4700 of a distributed antenna system for purposes of conveying information between communication nodes of a communication network. At step 4764 wireless signals received by each dielectric antenna are converted to electromagnetic waves that propagate along corresponding dielectric cores to a waveguide that has a receiver circuit of a transceiver as described in the subject disclosure. The receiver circuit in turn can be configured to obtain data from the electromagnetic wave for processing.


It will be appreciated that method 4700 can be adapted to use a single section of an array of dielectric antennas to communicate with more than one communication device at a time. For example, at step 4754, the first section can be selected to communicate with also a third communication device. At step 4756, the launcher can be configured to launch additional electromagnetic waves along a portion of the multiple cores corresponding to the dielectric antennas of the first section to cause a third beam to be generated from the first section of dielectric antennas. The third beam can be directed to the third communication device. The third beam can be configured to not interfere with the first beam of the first section of the array (or the second beam of the second section of the array) by configuring the additional electromagnetic waves supplied to the portion of the multiple cores corresponding to the dielectric antennas of the first section to generate the third beam with a phase and/or frequency that differs from the phase and/or frequency of the first beam (and the second beam). This technique can also be used for generating additional beams at the second section of the array of dielectric antennas for communicating with more than one communication device. This technique can also be used to generate multiple beams directed to multiple communication device from each section of an array of dielectric antennas, such as the sectional configurations shown in FIG. 47B. It will be further appreciated that launcher(s) launching electromagnetic waves directed to each section of the array of dielectric antennas via multiple cores can be configured to adjust the electromagnetic waves to perform beam steering and/or beam forming for each beam generated in each section. Beam steering can be used to track movements of each communication device.


It will be appreciated that each section of an array of dielectric antennas can be configured to exchange wireless message with more than one communication device at a time utilizing suitable communication protocols (e.g., LTE, 5G or future generation protocols).


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 47J, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Referring now to FIG. 48, there is illustrated a block diagram of a computing environment in accordance with various aspects described herein. In order to provide additional context for various embodiments of the embodiments described herein, FIG. 48 and the following discussion are intended to provide a brief, general description of a suitable computing environment 4800 in which the various embodiments of the subject disclosure can be implemented. While the embodiments have been described above in the general context of computer-executable instructions that can run on one or more computers, those skilled in the art will recognize that the embodiments can be also implemented in combination with other program modules and/or as a combination of hardware and software.


Generally, program modules comprise routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the inventive methods can be practiced with other computer system configurations, comprising single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices.


As used herein, a processing circuit includes processor as well as other application specific circuits such as an application specific integrated circuit, digital logic circuit, state machine, programmable gate array or other circuit that processes input signals or data and that produces output signals or data in response thereto. It should be noted that while any functions and features described herein in association with the operation of a processor could likewise be performed by a processing circuit.


The terms “first,” “second,” “third,” and so forth, as used in the claims, unless otherwise clear by context, is for clarity only and doesn't otherwise indicate or imply any order in time. For instance, “a first determination,” “a second determination,” and “a third determination,” does not indicate or imply that the first determination is to be made before the second determination, or vice versa, etc.


The illustrated embodiments of the embodiments herein can be also practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.


Computing devices typically comprise a variety of media, which can comprise computer-readable storage media and/or communications media, which two terms are used herein differently from one another as follows. Computer-readable storage media can be any available storage media that can be accessed by the computer and comprises both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable storage media can be implemented in connection with any method or technology for storage of information such as computer-readable instructions, program modules, structured data or unstructured data.


Computer-readable storage media can comprise, but are not limited to, random access memory (RAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices or other tangible and/or non-transitory media which can be used to store desired information. In this regard, the terms “tangible” or “non-transitory” herein as applied to storage, memory or computer-readable media, are to be understood to exclude only propagating transitory signals per se as modifiers and do not relinquish rights to all standard storage, memory or computer-readable media that are not only propagating transitory signals per se.


Computer-readable storage media can be accessed by one or more local or remote computing devices, e.g., via access requests, queries or other data retrieval protocols, for a variety of operations with respect to the information stored by the medium.


Communications media typically embody computer-readable instructions, data structures, program modules or other structured or unstructured data in a data signal such as a modulated data signal, e.g., a carrier wave or other transport mechanism, and comprises any information delivery or transport media. The term “modulated data signal” or signals refers to a signal that has one or more of its characteristics set or changed in such a manner as to encode information in one or more signals. By way of example, and not limitation, communication media comprise wired media, such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.


With reference again to FIG. 48, the example environment 4800 for transmitting and receiving signals via or forming at least part of a base station (e.g., base station devices 1504, macrocell site 1502, or base stations 1614) or central office (e.g., central office 1501 or 1611). At least a portion of the example environment 4800 can also be used for transmission devices 101 or 102. The example environment can comprise a computer 4802, the computer 4802 comprising a processing unit 4804, a system memory 4806 and a system bus 4808. The system bus 4808 couple's system components including, but not limited to, the system memory 4806 to the processing unit 4804. The processing unit 4804 can be any of various commercially available processors. Dual microprocessors and other multiprocessor architectures can also be employed as the processing unit 4804.


The system bus 4808 can be any of several types of bus structure that can further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. The system memory 4806 comprises ROM 4810 and RAM 4812. A basic input/output system (BIOS) can be stored in a non-volatile memory such as ROM, erasable programmable read only memory (EPROM), EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the computer 4802, such as during startup. The RAM 4812 can also comprise a high-speed RAM such as static RAM for caching data.


The computer 4802 further comprises an internal hard disk drive (HDD) 4814 (e.g., EIDE, SATA), which internal hard disk drive 4814 can also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 4816, (e.g., to read from or write to a removable diskette 4818) and an optical disk drive 4820, (e.g., reading a CD-ROM disk 4822 or, to read from or write to other high capacity optical media such as the DVD). The hard disk drive 4814, magnetic disk drive 4816 and optical disk drive 4820 can be connected to the system bus 4808 by a hard disk drive interface 4824, a magnetic disk drive interface 4826 and an optical drive interface 4828, respectively. The interface 4824 for external drive implementations comprises at least one or both of Universal Serial Bus (USB) and Institute of Electrical and Electronics Engineers (IEEE) 1394 interface technologies. Other external drive connection technologies are within contemplation of the embodiments described herein.


The drives and their associated computer-readable storage media provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For the computer 4802, the drives and storage media accommodate the storage of any data in a suitable digital format. Although the description of computer-readable storage media above refers to a hard disk drive (HDD), a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of storage media which are readable by a computer, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, can also be used in the example operating environment, and further, that any such storage media can contain computer-executable instructions for performing the methods described herein.


A number of program modules can be stored in the drives and RAM 4812, comprising an operating system 4830, one or more application programs 4832, other program modules 4834 and program data 4836. All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 4812. The systems and methods described herein can be implemented utilizing various commercially available operating systems or combinations of operating systems. Examples of application programs 4832 that can be implemented and otherwise executed by processing unit 4804 include the diversity selection determining performed by transmission device 101 or 102.


A user can enter commands and information into the computer 4802 through one or more wired/wireless input devices, e.g., a keyboard 4838 and a pointing device, such as a mouse 4840. Other input devices (not shown) can comprise a microphone, an infrared (IR) remote control, a joystick, a game pad, a stylus pen, touch screen or the like. These and other input devices are often connected to the processing unit 4804 through an input device interface 4842 that can be coupled to the system bus 4808, but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a universal serial bus (USB) port, an IR interface, etc.


A monitor 4844 or other type of display device can be also connected to the system bus 4808 via an interface, such as a video adapter 4846. It will also be appreciated that in alternative embodiments, a monitor 4844 can also be any display device (e.g., another computer having a display, a smart phone, a tablet computer, etc.) for receiving display information associated with computer 4802 via any communication means, including via the Internet and cloud-based networks. In addition to the monitor 4844, a computer typically comprises other peripheral output devices (not shown), such as speakers, printers, etc.


The computer 4802 can operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 4848. The remote computer(s) 4848 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically comprises many or all of the elements described relative to the computer 4802, although, for purposes of brevity, only a memory/storage device 4850 is illustrated. The logical connections depicted comprise wired/wireless connectivity to a local area network (LAN) 4852 and/or larger networks, e.g., a wide area network (WAN) 4854. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which can connect to a global communications network, e.g., the Internet.


When used in a LAN networking environment, the computer 4802 can be connected to the local network 4852 through a wired and/or wireless communication network interface or adapter 4856. The adapter 4856 can facilitate wired or wireless communication to the LAN 4852, which can also comprise a wireless AP disposed thereon for communicating with the wireless adapter 4856.


When used in a WAN networking environment, the computer 4802 can comprise a modem 4858 or can be connected to a communications server on the WAN 4854 or has other means for establishing communications over the WAN 4854, such as by way of the Internet. The modem 4858, which can be internal or external and a wired or wireless device, can be connected to the system bus 4808 via the input device interface 4842. In a networked environment, program modules depicted relative to the computer 4802 or portions thereof, can be stored in the remote memory/storage device 4850. It will be appreciated that the network connections shown are example and other means of establishing a communications link between the computers can be used.


The computer 4802 can be operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone. This can comprise Wireless Fidelity (Wi-Fi) and BLUETOOTH® wireless technologies. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.


Wi-Fi can allow connection to the Internet from a couch at home, a bed in a hotel room or a conference room at work, without wires. Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE 802.11 (a, b, g, n, ac, ag etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which can use IEEE 802.3 or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands for example or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic 10BaseT wired Ethernet networks used in many offices.



FIG. 49 presents an example embodiment 4900 of a mobile network platform 4910 that can implement and exploit one or more aspects of the disclosed subject matter described herein. In one or more embodiments, the mobile network platform 4910 can generate and receive signals transmitted and received by base stations (e.g., base station devices 1504, macrocell site 1502, or base stations 1614), central office (e.g., central office 1501 or 1611), or transmission device 101 or 102 associated with the disclosed subject matter. Generally, wireless network platform 4910 can comprise components, e.g., nodes, gateways, interfaces, servers, or disparate platforms, that facilitate both packet-switched (PS) (e.g., internet protocol (IP), frame relay, asynchronous transfer mode (ATM)) and circuit-switched (CS) traffic (e.g., voice and data), as well as control generation for networked wireless telecommunication. As a non-limiting example, wireless network platform 4910 can be included in telecommunications carrier networks, and can be considered carrier-side components as discussed elsewhere herein. Mobile network platform 4910 comprises CS gateway node(s) 4922 which can interface CS traffic received from legacy networks like telephony network(s) 4940 (e.g., public switched telephone network (PSTN), or public land mobile network (PLMN)) or a signaling system #7 (SS7) network 4970. Circuit switched gateway node(s) 4922 can authorize and authenticate traffic (e.g., voice) arising from such networks. Additionally, CS gateway node(s) 4922 can access mobility, or roaming, data generated through SS7 network 4970; for instance, mobility data stored in a visited location register (VLR), which can reside in memory 4930. Moreover, CS gateway node(s) 4922 interfaces CS-based traffic and signaling and PS gateway node(s) 4918. As an example, in a 3GPP UMTS network, CS gateway node(s) 4922 can be realized at least in part in gateway GPRS support node(s) (GGSN). It should be appreciated that functionality and specific operation of CS gateway node(s) 4922, PS gateway node(s) 4918, and serving node(s) 4916, is provided and dictated by radio technology(ies) utilized by mobile network platform 4910 for telecommunication.


In addition to receiving and processing CS-switched traffic and signaling, PS gateway node(s) 4918 can authorize and authenticate PS-based data sessions with served mobile devices. Data sessions can comprise traffic, or content(s), exchanged with networks external to the wireless network platform 4910, like wide area network(s) (WANs) 4950, enterprise network(s) 4970, and service network(s) 4980, which can be embodied in local area network(s) (LANs), can also be interfaced with mobile network platform 4910 through PS gateway node(s) 4918. It is to be noted that WANs 4950 and enterprise network(s) 4960 can embody, at least in part, a service network(s) like IP multimedia subsystem (IMS). Based on radio technology layer(s) available in technology resource(s) 4917, packet-switched gateway node(s) 4918 can generate packet data protocol contexts when a data session is established; other data structures that facilitate routing of packetized data also can be generated. To that end, in an aspect, PS gateway node(s) 4918 can comprise a tunnel interface (e.g., tunnel termination gateway (TTG) in 3GPP UMTS network(s) (not shown)) which can facilitate packetized communication with disparate wireless network(s), such as Wi-Fi networks.


In embodiment 4900, wireless network platform 4910 also comprises serving node(s) 4916 that, based upon available radio technology layer(s) within technology resource(s) 4917, convey the various packetized flows of data streams received through PS gateway node(s) 4918. It is to be noted that for technology resource(s) 4917 that rely primarily on CS communication, server node(s) can deliver traffic without reliance on PS gateway node(s) 4918; for example, server node(s) can embody at least in part a mobile switching center. As an example, in a 3GPP UMTS network, serving node(s) 4916 can be embodied in serving GPRS support node(s) (SGSN).


For radio technologies that exploit packetized communication, server(s) 4914 in wireless network platform 4910 can execute numerous applications that can generate multiple disparate packetized data streams or flows, and manage (e.g., schedule, queue, format . . . ) such flows. Such application(s) can comprise add-on features to standard services (for example, provisioning, billing, customer support . . . ) provided by wireless network platform 4910. Data streams (e.g., content(s) that are part of a voice call or data session) can be conveyed to PS gateway node(s) 4918 for authorization/authentication and initiation of a data session, and to serving node(s) 4916 for communication thereafter. In addition to application server, server(s) 4914 can comprise utility server(s), a utility server can comprise a provisioning server, an operations and maintenance server, a security server that can implement at least in part a certificate authority and firewalls as well as other security mechanisms, and the like. In an aspect, security server(s) secure communication served through wireless network platform 4910 to ensure network's operation and data integrity in addition to authorization and authentication procedures that CS gateway node(s) 4922 and PS gateway node(s) 4918 can enact. Moreover, provisioning server(s) can provision services from external network(s) like networks operated by a disparate service provider; for instance, WAN 4950 or Global Positioning System (GPS) network(s) (not shown). Provisioning server(s) can also provision coverage through networks associated to wireless network platform 4910 (e.g., deployed and operated by the same service provider), such as the distributed antennas networks shown in FIG. 1 that enhance wireless service coverage by providing more network coverage. Repeater devices such as those shown in FIGS. 7, 8, and 9 also improve network coverage in order to enhance subscriber service experience by way of UE 4975.


It is to be noted that server(s) 4914 can comprise one or more processors configured to confer at least in part the functionality of macro network platform 4910. To that end, the one or more processor can execute code instructions stored in memory 4930, for example. It is should be appreciated that server(s) 4914 can comprise a content manager 4915, which operates in substantially the same manner as described hereinbefore.


In example embodiment 4900, memory 4930 can store information related to operation of wireless network platform 4910. Other operational information can comprise provisioning information of mobile devices served through wireless platform network 4910, subscriber databases; application intelligence, pricing schemes, e.g., promotional rates, flat-rate programs, couponing campaigns; technical specification(s) consistent with telecommunication protocols for operation of disparate radio, or wireless, technology layers; and so forth. Memory 4930 can also store information from at least one of telephony network(s) 4940, WAN 4950, enterprise network(s) 4970, or SS7 network 4960. In an aspect, memory 4930 can be, for example, accessed as part of a data store component or as a remotely connected memory store.


In order to provide a context for the various aspects of the disclosed subject matter, FIG. 49, and the following discussion, are intended to provide a brief, general description of a suitable environment in which the various aspects of the disclosed subject matter can be implemented. While the subject matter has been described above in the general context of computer-executable instructions of a computer program that runs on a computer and/or computers, those skilled in the art will recognize that the disclosed subject matter also can be implemented in combination with other program modules. Generally, program modules comprise routines, programs, components, data structures, etc. that perform particular tasks and/or implement particular abstract data types.



FIG. 50 depicts an illustrative embodiment of a communication device 5000. The communication device 5000 can serve as an illustrative embodiment of devices such as mobile devices and in-building devices referred to by the subject disclosure (e.g., in FIGS. 15, 16A and 16B).


The communication device 5000 can comprise a wireline and/or wireless transceiver 5002 (herein transceiver 5002), a user interface (UI) 5004, a power supply 5014, a location receiver 5016, a motion sensor 5018, an orientation sensor 5020, and a controller 5006 for managing operations thereof. The transceiver 5002 can support short-range or long-range wireless access technologies such as Bluetooth®, ZigBee®, WiFi, DECT, or cellular communication technologies, just to mention a few (Bluetooth® and ZigBee® are trademarks registered by the Bluetooth® Special Interest Group and the ZigBee® Alliance, respectively). Cellular technologies can include, for example, CDMA-1×, UMTS/HSDPA, GSM/GPRS, TDMA/EDGE, EV/DO, WiMAX, SDR, LTE, as well as other next generation wireless communication technologies as they arise. The transceiver 5002 can also be adapted to support circuit-switched wireline access technologies (such as PSTN), packet-switched wireline access technologies (such as TCP/IP, VoIP, etc.), and combinations thereof.


The UI 5004 can include a depressible or touch-sensitive keypad 5008 with a navigation mechanism such as a roller ball, a joystick, a mouse, or a navigation disk for manipulating operations of the communication device 5000. The keypad 5008 can be an integral part of a housing assembly of the communication device 5000 or an independent device operably coupled thereto by a tethered wireline interface (such as a USB cable) or a wireless interface supporting for example Bluetooth®. The keypad 5008 can represent a numeric keypad commonly used by phones, and/or a QWERTY keypad with alphanumeric keys. The UI 5004 can further include a display 5010 such as monochrome or color LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diode) or other suitable display technology for conveying images to an end user of the communication device 5000. In an embodiment where the display 5010 is touch-sensitive, a portion or all of the keypad 5008 can be presented by way of the display 5010 with navigation features.


The display 5010 can use touch screen technology to also serve as a user interface for detecting user input. As a touch screen display, the communication device 5000 can be adapted to present a user interface having graphical user interface (GUI) elements that can be selected by a user with a touch of a finger. The touch screen display 5010 can be equipped with capacitive, resistive or other forms of sensing technology to detect how much surface area of a user's finger has been placed on a portion of the touch screen display. This sensing information can be used to control the manipulation of the GUI elements or other functions of the user interface. The display 5010 can be an integral part of the housing assembly of the communication device 5000 or an independent device communicatively coupled thereto by a tethered wireline interface (such as a cable) or a wireless interface.


The UI 5004 can also include an audio system 5012 that utilizes audio technology for conveying low volume audio (such as audio heard in proximity of a human ear) and high volume audio (such as speakerphone for hands free operation). The audio system 5012 can further include a microphone for receiving audible signals of an end user. The audio system 5012 can also be used for voice recognition applications. The UI 5004 can further include an image sensor 5013 such as a charged coupled device (CCD) camera for capturing still or moving images.


The power supply 5014 can utilize common power management technologies such as replaceable and rechargeable batteries, supply regulation technologies, and/or charging system technologies for supplying energy to the components of the communication device 5000 to facilitate long-range or short-range portable communications. Alternatively, or in combination, the charging system can utilize external power sources such as DC power supplied over a physical interface such as a USB port or other suitable tethering technologies.


The location receiver 5016 can utilize location technology such as a global positioning system (GPS) receiver capable of assisted GPS for identifying a location of the communication device 5000 based on signals generated by a constellation of GPS satellites, which can be used for facilitating location services such as navigation. The motion sensor 5018 can utilize motion sensing technology such as an accelerometer, a gyroscope, or other suitable motion sensing technology to detect motion of the communication device 5000 in three-dimensional space. The orientation sensor 5020 can utilize orientation sensing technology such as a magnetometer to detect the orientation of the communication device 5000 (north, south, west, and east, as well as combined orientations in degrees, minutes, or other suitable orientation metrics).


The communication device 5000 can use the transceiver 5002 to also determine a proximity to a cellular, WiFi, Bluetooth®, or other wireless access points by sensing techniques such as utilizing a received signal strength indicator (RSSI) and/or signal time of arrival (TOA) or time of flight (TOF) measurements. The controller 5006 can utilize computing technologies such as a microprocessor, a digital signal processor (DSP), programmable gate arrays, application specific integrated circuits, and/or a video processor with associated storage memory such as Flash, ROM, RAM, SRAM, DRAM or other storage technologies for executing computer instructions, controlling, and processing data supplied by the aforementioned components of the communication device 5000.


Other components not shown in FIG. 50 can be used in one or more embodiments of the subject disclosure. For instance, the communication device 5000 can include a slot for adding or removing an identity module such as a Subscriber Identity Module (SIM) card or Universal Integrated Circuit Card (UICC). SIM or UICC cards can be used for identifying subscriber services, executing programs, storing subscriber data, and so on.


In the subject specification, terms such as “store,” “storage,” “data store,” data storage,” “database,” and substantially any other information storage component relevant to operation and functionality of a component, refer to “memory components,” or entities embodied in a “memory” or components comprising the memory. It will be appreciated that the memory components described herein can be either volatile memory or nonvolatile memory, or can comprise both volatile and nonvolatile memory, by way of illustration, and not limitation, volatile memory, non-volatile memory, disk storage, and memory storage. Further, nonvolatile memory can be included in read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory can comprise random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Additionally, the disclosed memory components of systems or methods herein are intended to comprise, without being limited to comprising, these and any other suitable types of memory.


Moreover, it will be noted that the disclosed subject matter can be practiced with other computer system configurations, comprising single-processor or multiprocessor computer systems, mini-computing devices, mainframe computers, as well as personal computers, hand-held computing devices (e.g., PDA, phone, smartphone, watch, tablet computers, netbook computers, etc.), microprocessor-based or programmable consumer or industrial electronics, and the like. The illustrated aspects can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network; however, some if not all aspects of the subject disclosure can be practiced on stand-alone computers. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.


Some of the embodiments described herein can also employ artificial intelligence (AI) to facilitate automating one or more features described herein. For example, artificial intelligence can be used in optional training controller 230 evaluate and select candidate frequencies, modulation schemes, MIMO modes, and/or guided wave modes in order to maximize transfer efficiency. The embodiments (e.g., in connection with automatically identifying acquired cell sites that provide a maximum value/benefit after addition to an existing communication network) can employ various AI-based schemes for carrying out various embodiments thereof. Moreover, the classifier can be employed to determine a ranking or priority of the each cell site of the acquired network. A classifier is a function that maps an input attribute vector, x=(x1, x2, x3, x4, . . . , xn), to a confidence that the input belongs to a class, that is, f(x)=confidence (class). Such classification can employ a probabilistic and/or statistical-based analysis (e.g., factoring into the analysis utilities and costs) to prognose or infer an action that a user desires to be automatically performed. A support vector machine (SVM) is an example of a classifier that can be employed. The SVM operates by finding a hypersurface in the space of possible inputs, which the hypersurface attempts to split the triggering criteria from the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical to training data. Other directed and undirected model classification approaches comprise, e.g., naïve Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence can be employed. Classification as used herein also is inclusive of statistical regression that is utilized to develop models of priority.


As will be readily appreciated, one or more of the embodiments can employ classifiers that are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing UE behavior, operator preferences, historical information, receiving extrinsic information). For example, SVMs can be configured via a learning or training phase within a classifier constructor and feature selection module. Thus, the classifier(s) can be used to automatically learn and perform a number of functions, including but not limited to determining according to a predetermined criteria which of the acquired cell sites will benefit a maximum number of subscribers and/or which of the acquired cell sites will add minimum value to the existing communication network coverage, etc.


As used in some contexts in this application, in some embodiments, the terms “component,” “system” and the like are intended to refer to, or comprise, a computer-related entity or an entity related to an operational apparatus with one or more specific functionalities, wherein the entity can be either hardware, a combination of hardware and software, software, or software in execution. As an example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, computer-executable instructions, a program, and/or a computer. By way of illustration and not limitation, both an application running on a server and the server can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components may communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems via the signal). As another example, a component can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic circuitry, which is operated by a software or firmware application executed by a processor, wherein the processor can be internal or external to the apparatus and executes at least a part of the software or firmware application. As yet another example, a component can be an apparatus that provides specific functionality through electronic components without mechanical parts, the electronic components can comprise a processor therein to execute software or firmware that confers at least in part the functionality of the electronic components. While various components have been illustrated as separate components, it will be appreciated that multiple components can be implemented as a single component, or a single component can be implemented as multiple components, without departing from example embodiments.


Further, the various embodiments can be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device or computer-readable storage/communications media. For example, computer readable storage media can include, but are not limited to, magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips), optical disks (e.g., compact disk (CD), digital versatile disk (DVD)), smart cards, and flash memory devices (e.g., card, stick, key drive). Of course, those skilled in the art will recognize many modifications can be made to this configuration without departing from the scope or spirit of the various embodiments.


In addition, the words “example” and “exemplary” are used herein to mean serving as an instance or illustration. Any embodiment or design described herein as “example” or “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the word example or exemplary is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.


Moreover, terms such as “user equipment,” “mobile station,” “mobile,” subscriber station,” “access terminal,” “terminal,” “handset,” “mobile device” (and/or terms representing similar terminology) can refer to a wireless device utilized by a subscriber or user of a wireless communication service to receive or convey data, control, voice, video, sound, gaming or substantially any data-stream or signaling-stream. The foregoing terms are utilized interchangeably herein and with reference to the related drawings.


Furthermore, the terms “user,” “subscriber,” “customer,” “consumer” and the like are employed interchangeably throughout, unless context warrants particular distinctions among the terms. It should be appreciated that such terms can refer to human entities or automated components supported through artificial intelligence (e.g., a capacity to make inference based, at least, on complex mathematical formalisms), which can provide simulated vision, sound recognition and so forth.


As employed herein, the term “processor” can refer to substantially any computing processing unit or device comprising, but not limited to comprising, single-core processors; single-processors with software multithread execution capability; multi-core processors; multi-core processors with software multithread execution capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms with distributed shared memory. Additionally, a processor can refer to an integrated circuit, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a field programmable gate array (FPGA), a programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor logic, discrete hardware components or any combination thereof designed to perform the functions described herein. Processors can exploit nano-scale architectures such as, but not limited to, molecular and quantum-dot based transistors, switches and gates, in order to optimize space usage or enhance performance of user equipment. A processor can also be implemented as a combination of computing processing units.


As used herein, terms such as “data storage,” data storage,” “database,” and substantially any other information storage component relevant to operation and functionality of a component, refer to “memory components,” or entities embodied in a “memory” or components comprising the memory. It will be appreciated that the memory components or computer-readable storage media, described herein can be either volatile memory or nonvolatile memory or can include both volatile and nonvolatile memory.


What has been described above includes mere examples of various embodiments. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing these examples, but one of ordinary skill in the art can recognize that many further combinations and permutations of the present embodiments are possible. Accordingly, the embodiments disclosed and/or claimed herein are intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.


In addition, a flow diagram may include a “start” and/or “continue” indication. The “start” and “continue” indications reflect that the steps presented can optionally be incorporated in or otherwise used in conjunction with other routines. In this context, “start” indicates the beginning of the first step presented and may be preceded by other activities not specifically shown. Further, the “continue” indication reflects that the steps presented may be performed multiple times and/or may be succeeded by other activities not specifically shown. Further, while a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained.


As may also be used herein, the term(s) “operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via one or more intervening items. Such items and intervening items include, but are not limited to, junctions, communication paths, components, circuit elements, circuits, functional blocks, and/or devices. As an example of indirect coupling, a signal conveyed from a first item to a second item may be modified by one or more intervening items by modifying the form, nature or format of information in a signal, while one or more elements of the information in the signal are nevertheless conveyed in a manner than can be recognized by the second item. In a further example of indirect coupling, an action in a first item can cause a reaction on the second item, as a result of actions and/or reactions in one or more intervening items.


Although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement which achieves the same or similar purpose may be substituted for the embodiments described or shown by the subject disclosure. The subject disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, can be used in the subject disclosure. For instance, one or more features from one or more embodiments can be combined with one or more features of one or more other embodiments. In one or more embodiments, features that are positively recited can also be negatively recited and excluded from the embodiment with or without replacement by another structural and/or functional feature. The steps or functions described with respect to the embodiments of the subject disclosure can be performed in any order. The steps or functions described with respect to the embodiments of the subject disclosure can be performed alone or in combination with other steps or functions of the subject disclosure, as well as from other embodiments or from other steps that have not been described in the subject disclosure. Further, more than or less than all of the features described with respect to an embodiment can also be utilized.

Claims
  • 1. A device, comprising: an array of dielectric antennas;a plurality of dielectric cores coupled to the array of dielectric antennas;a processing system including a processor; anda memory that stores executable instructions that, when executed by the processing system, facilitate performance of operations, the operations comprising:organizing the array of dielectric antennas into a plurality of sections, each section comprising one or more dielectric antennas that differs from other dielectric antennas in other sections of the array of dielectric antennas;detecting a first trajectory of a first communication device;selecting a first section from the plurality of sections to direct a first beam pattern to the first communication device based on the first trajectory, wherein the first section corresponds to a first set of one or more dielectric antennas from the array of dielectric antennas coupled to a first set of one or more dielectric cores from the plurality of dielectric cores;launching first electromagnetic waves along the first set of one or more dielectric cores that causes the first set of one or more dielectric antennas to generate the first beam pattern;detecting a second trajectory of a second communication device;selecting a second section from the plurality of sections to direct a second beam pattern to the second communication device based on the second trajectory, wherein the second section corresponds to a second set of one or more dielectric antennas from the array of dielectric antennas coupled to a second set of one or more dielectric cores from the plurality of dielectric cores, wherein the first set of one or more dielectric antennas differs from the second set of one or more dielectric antennas, and wherein the first set of one or more dielectric cores differs from the second set of one or more dielectric cores; andlaunching second electromagnetic waves along the second set of one or more dielectric cores that cause the second set of one or more dielectric antennas to generate the second beam pattern.
  • 2. The device of claim 1, wherein the first electromagnetic waves conveys first data, wherein the second electromagnetic waves conveys second data, and wherein the first data differs from the second data.
  • 3. The device of claim 1, wherein launchers, coupled to dielectric antennas associated with a remainder of the plurality of sections that are not in use, are disabled.
  • 4. The device of claim 1, wherein the first electromagnetic waves comprise a plurality of electromagnetic waves, and wherein each electromagnetic wave of the plurality of electromagnetic waves is launched in a different dielectric core of the first set of one or more dielectric cores.
  • 5. The device of claim 4, wherein the operations further comprise adjusting the plurality of electromagnetic waves to steer a direction of the first beam pattern.
  • 6. The device of claim 4, wherein the operations further comprise adjusting the plurality of electromagnetic waves to adjust a shape of the first beam pattern.
  • 7. The device of claim 1, wherein the second electromagnetic waves comprise a plurality of electromagnetic waves, wherein each electromagnetic wave of the plurality of electromagnetic waves is launched in a different dielectric core of the second set of one or more dielectric cores.
  • 8. The device of claim 7, wherein the operations further comprise adjusting the plurality of electromagnetic waves to steer a direction of the second beam pattern.
  • 9. The device of claim 7, wherein the operations further comprise adjusting the plurality of electromagnetic waves to adjust a shape of the second beam pattern.
  • 10. The device of claim 1, wherein the operations further comprise: selecting a third section from the plurality of sections, wherein the third section corresponds to a third set of one or more dielectric antennas from the array of dielectric antennas coupled to a third set of one or more dielectric cores from the plurality of dielectric cores; andlaunching third electromagnetic waves along the third set of one or more dielectric cores that cause the third set of one or more dielectric antennas to generate a beam pattern that combines with the first beam pattern to form a third beam pattern.
  • 11. The device of claim 1, wherein the operations further comprise: selecting a third section from the plurality of sections, wherein the third section corresponds to a third set of one or more dielectric antennas from the array of dielectric antennas coupled to a third set of one or more dielectric cores from the plurality of dielectric cores; andlaunching third electromagnetic waves along the third set of one or more dielectric cores that cause the third set of one or more dielectric antennas to generate a beam pattern that combines with the second beam pattern to form a third beam pattern.
  • 12. The device of claim 1, wherein the array of dielectric antennas comprises an array of dielectric polyrod antennas.
  • 13. The device of claim 12, wherein each dielectric polyrod antenna of the array of dielectric polyrod antennas is independently selectable via a printed circuit board, and wherein the array of dielectric polyrod antennas is configured in a circular configuration to enable generation of beam patterns from the plurality of sections having different angular directions.
  • 14. A method, comprising: detecting, by a processing system including a processor, a first trajectory of a first communication device;selecting, by the processing system, a first section from a plurality of selectable sections of an array of dielectric antennas, wherein the first section corresponds to a first set of one or more dielectric antennas from the array of dielectric antennas coupled to a first set of launchers to direct a first beam pattern to the first communication device based on the first trajectory;directing, by the processing system, the first set of launchers to launch first electromagnetic waves directed to the first set of one or more dielectric antennas to generate the first beam pattern;detecting, by the processing system, a second trajectory of a second communication device;selecting, by the processing system, a second section from the plurality of selectable sections, wherein the second section corresponds to a second set of one or more dielectric antennas from the array of dielectric antennas coupled to a second set of launchers to direct a second beam pattern to the second communication device based on the second trajectory; anddirecting, by the processing system, the second set of launchers to launch second electromagnetic waves directed to the second set of one or more dielectric antennas to generate the second beam pattern, wherein the first beam pattern conveys first data, wherein the second beam pattern conveys second data.
  • 15. The method of claim 14, wherein the first electromagnetic waves comprise a plurality of electromagnetic waves, wherein each electromagnetic wave of the plurality of electromagnetic waves is launched by a different one of the first set of launchers, and wherein the method further comprises directing the first set of launchers to adjust the plurality of electromagnetic waves to steer a direction of the first beam pattern or adjust a shape of the first beam pattern.
  • 16. The method of claim 14, wherein the second electromagnetic waves comprise a plurality of electromagnetic waves, wherein each electromagnetic wave of the plurality of electromagnetic waves is launched by a different one of the second set of launchers, and wherein the method further comprises directing the second set of launchers to adjust the plurality of electromagnetic waves to steer a direction of the second beam pattern or adjust a shape of the second beam pattern.
  • 17. The method of claim 14, further comprising: selecting, by the processing system, a third section from the plurality of selectable sections, wherein the third section corresponds to a third set of one or more dielectric antennas from the array of dielectric antennas coupled to a third set of launchers; anddirecting, by the processing system, the third set of launchers to launch third electromagnetic waves directed to the third set of one or more dielectric antennas to generate a beam pattern that combines with the first beam pattern or the second beam pattern to form a third beam pattern.
  • 18. The method of claim 14, further comprising: receiving at a third section of the plurality of selectable sections a wireless signal supplied by a communication device, wherein the wireless signal conveys third data, and wherein the third section corresponds to a third set of one or more dielectric antennas from the array of dielectric antennas coupled to receivers; anddirecting the receivers to obtain the third data from third electromagnetic waves generated by the third set of one or more dielectric antennas responsive to receiving the wireless signal.
  • 19. A device, comprising: means for detecting a first trajectory of a first communication device and a second trajectory of a second communication device;means for selecting a first segment from a plurality of selectable segments of an array of dielectric antennas to direct a first beam pattern to the first communication device based on the first trajectory, wherein the first segment corresponds to a first set of one or more dielectric antennas from the array of dielectric antennas coupled to a first set of launchers;means for directing the first set of launchers to launch first electromagnetic waves directed to the first set of one or more dielectric antennas to generate the first beam pattern; andmeans for selecting a second segment from the plurality of selectable segments of the array of dielectric antennas to direct a second beam pattern to the second communication device based on the second trajectory, wherein the second segment corresponds to a second set of one or more dielectric antennas from the array of dielectric antennas coupled to a second set of launchers;means for directing the second set of launchers to launch second electromagnetic waves directed to the second set of one or more dielectric antennas to generate the second beam pattern directed to the second communication device based on the second trajectory, wherein the first electromagnetic waves differ from the second electromagnetic waves based on frequency or phase.
  • 20. The device of claim 19, further comprising means for steering the first beam pattern or the second beam pattern, or adjusting a shape of the first beam pattern or adjusting the second beam pattern, wherein the array of dielectric antennas comprises an array of dielectric polyrod antennas.
US Referenced Citations (2850)
Number Name Date Kind
395814 Henry et al. Jan 1889 A
529290 Harry et al. Nov 1894 A
1721785 Meyer Jul 1929 A
1798613 Manson et al. Mar 1931 A
1860123 Yagi May 1932 A
2058611 Merkle et al. Oct 1936 A
2106770 Southworth et al. Feb 1938 A
2129711 Southworth Sep 1938 A
2129714 Southworth et al. Sep 1938 A
2147717 Schelkunoff Feb 1939 A
2187908 McCreary Jan 1940 A
2199083 Schelkunoff Apr 1940 A
2232179 King Feb 1941 A
2283935 King May 1942 A
2398095 Katzin Apr 1946 A
2402622 Hansen Jun 1946 A
2405242 Southworth et al. Aug 1946 A
2407068 Fiske et al. Sep 1946 A
2407069 Fiske Sep 1946 A
2410113 Jr. Oct 1946 A
2411338 Roberts Nov 1946 A
2415089 Feldman et al. Feb 1947 A
2415807 Barrow et al. Feb 1947 A
2419205 Feldman et al. Apr 1947 A
2420007 Olden May 1947 A
2422058 Whinnery Jun 1947 A
2432134 Bagnall Dec 1947 A
2461005 Southworth Feb 1949 A
2471021 Bradley May 1949 A
2488400 Harder Nov 1949 A
2513205 Roberts et al. Jun 1950 A
2514679 Southworth Jul 1950 A
2519603 Reber Aug 1950 A
2540839 Southworth Feb 1951 A
2541843 Tiley et al. Feb 1951 A
2542980 Barrow Feb 1951 A
2557110 Jaynes Jun 1951 A
2562281 Mumford Jul 1951 A
2596190 Wiley May 1952 A
2599864 Robertson-Shersby-Ha et al. Jun 1952 A
2659817 Cutler et al. Nov 1953 A
2667578 Carlson et al. Jan 1954 A
2677055 Allen Apr 1954 A
2685068 Goubau Jul 1954 A
2688732 Kock Sep 1954 A
2691766 Clapp Oct 1954 A
2706279 Aron Apr 1955 A
2711514 Rines Jun 1955 A
2723378 Clavier et al. Nov 1955 A
2727232 Pryga Dec 1955 A
2735092 Brown Feb 1956 A
2737632 Grieg et al. Mar 1956 A
2740826 Bondon Apr 1956 A
2745101 Marie May 1956 A
2748350 Miller et al. May 1956 A
2749545 Kostriza Jun 1956 A
2754513 Goubau Jul 1956 A
2761137 Atta et al. Aug 1956 A
2769147 Black et al. Oct 1956 A
2769148 Clogston et al. Oct 1956 A
2770783 Thomas et al. Nov 1956 A
2794959 Fox Jun 1957 A
2805415 Berkowitz Sep 1957 A
2806177 Haeff et al. Sep 1957 A
2806972 Sensiper Sep 1957 A
2810111 Cohn Oct 1957 A
2819451 Sims et al. Jan 1958 A
2820083 Hendrix Jan 1958 A
2825060 Ruze et al. Feb 1958 A
2835871 Raabe May 1958 A
2851686 Hagaman et al. Sep 1958 A
2852753 Walter et al. Sep 1958 A
2867776 Wilkinson, Jr. Jan 1959 A
2883135 Smalley et al. Apr 1959 A
2883136 Smalley et al. Apr 1959 A
2900558 Watkins et al. Aug 1959 A
2910261 Ward et al. Oct 1959 A
2912695 Cutler Nov 1959 A
2914741 Unger Nov 1959 A
2915270 Gladsden et al. Dec 1959 A
2921277 Goubau Jan 1960 A
2925458 Lester et al. Feb 1960 A
2933701 Lanctot et al. Apr 1960 A
2946970 Hafner et al. Jul 1960 A
2949589 Hafner Aug 1960 A
2960670 Marcatili et al. Nov 1960 A
2970800 Smalley et al. Feb 1961 A
2972148 Rupp et al. Feb 1961 A
2974297 Ros Mar 1961 A
2981949 Elliott et al. Apr 1961 A
2990151 Phillips et al. Jun 1961 A
2993205 Cooper et al. Jul 1961 A
3016520 Adam et al. Jan 1962 A
3025478 Marcatili et al. Mar 1962 A
3028565 Walker et al. Apr 1962 A
3040278 Griemsmann et al. Jun 1962 A
3045238 Cheston et al. Jul 1962 A
3046550 Schlaud et al. Jul 1962 A
3047822 Lakatos et al. Jul 1962 A
3065945 Newsome et al. Nov 1962 A
3072870 Walker Jan 1963 A
3077569 Ikrath et al. Feb 1963 A
3087130 Marcatili et al. Apr 1963 A
3096462 Joseph et al. Jul 1963 A
3101472 Goubau Aug 1963 A
3109175 Lloyd Oct 1963 A
3129356 Phillips Apr 1964 A
3134951 Huber et al. May 1964 A
3146297 Hahne Aug 1964 A
3146453 Hagaman Aug 1964 A
3201724 Hafner Aug 1965 A
3205462 Meinke Sep 1965 A
3218384 Shaw Nov 1965 A
3219954 Rutelli Nov 1965 A
3234559 Bartholoma et al. Feb 1966 A
3255454 Walter et al. Jun 1966 A
3296364 Jefferson et al. Jan 1967 A
3296685 Menahem et al. Jan 1967 A
3310808 Friis et al. Mar 1967 A
3316344 Toms et al. Apr 1967 A
3316345 Toms et al. Apr 1967 A
3318561 Robertson, Jr. et al. May 1967 A
3321763 Ikrath et al. May 1967 A
3329958 Anderson et al. Jul 1967 A
3351947 Hart et al. Nov 1967 A
3355738 Algeo et al. Nov 1967 A
3369788 Eisele Feb 1968 A
3389394 Lewis et al. Jun 1968 A
3392388 Tsuneo et al. Jul 1968 A
3392395 Hannan Jul 1968 A
3411112 Honig et al. Nov 1968 A
3413637 Goebels, Jr. et al. Nov 1968 A
3413642 Cook Nov 1968 A
3414903 Bartlett et al. Dec 1968 A
3419827 Webb et al. Dec 1968 A
3420596 Osterberg Jan 1969 A
3427573 White et al. Feb 1969 A
3448455 Alfandari et al. Jun 1969 A
3453617 Brickey et al. Jul 1969 A
3459873 Harris et al. Aug 1969 A
3465346 Patterson et al. Sep 1969 A
3474995 Amidon et al. Oct 1969 A
3482251 Bowes Dec 1969 A
3487158 Killian Dec 1969 A
3495262 Robert et al. Feb 1970 A
3500422 Grady et al. Mar 1970 A
3509463 Woodward et al. Apr 1970 A
3522560 Hayany Aug 1970 A
3524192 Sakiotis et al. Aug 1970 A
3529205 Miller Sep 1970 A
3530481 Tanaka et al. Sep 1970 A
3531803 Hudspeth et al. Sep 1970 A
3536800 Hubbard Oct 1970 A
3555553 Boyns Jan 1971 A
3557341 Sochilin et al. Jan 1971 A
3566317 Theodore Feb 1971 A
3568204 Blaisdell Mar 1971 A
3569979 Munk et al. Mar 1971 A
3573838 Ajioka Apr 1971 A
3588754 Theodore Jun 1971 A
3588755 Kunio et al. Jun 1971 A
3589121 Mulvey Jun 1971 A
3594494 Ross et al. Jul 1971 A
3599219 Hansen et al. Aug 1971 A
3603904 Theodore Sep 1971 A
3603951 Bracken et al. Sep 1971 A
3609247 Halstead Sep 1971 A
3623114 Seaton Nov 1971 A
3624655 Yamada et al. Nov 1971 A
3638224 Bailey et al. Jan 1972 A
3653622 Farmer Apr 1972 A
3666902 Owen et al. May 1972 A
3668459 Symons et al. Jun 1972 A
3668574 Barlow Jun 1972 A
3672202 Barber et al. Jun 1972 A
3683299 Vzyatyshev et al. Aug 1972 A
3686596 Albee Aug 1972 A
3693922 Gueguen Sep 1972 A
3699574 Plunk et al. Oct 1972 A
3703690 Ravenscroft et al. Nov 1972 A
3704001 Sloop Nov 1972 A
3725937 Schreiber Apr 1973 A
3753086 Shoemaker et al. Aug 1973 A
3760127 Grossi et al. Sep 1973 A
3765021 Chiron et al. Oct 1973 A
3772528 Anderson et al. Nov 1973 A
3775769 Heeren et al. Nov 1973 A
3787872 Kauffman Jan 1974 A
3796970 Snell Mar 1974 A
3806931 Wright Apr 1974 A
3833909 Schaufelberger Sep 1974 A
3835407 Yariv et al. Sep 1974 A
3845426 Barlow Oct 1974 A
3858214 Jones Dec 1974 A
3877032 Rosa Apr 1975 A
3888446 O'Brien et al. Jun 1975 A
3896380 Martin Jul 1975 A
3906508 Foldes Sep 1975 A
3911415 Whyte Oct 1975 A
3921949 Coon Nov 1975 A
3925763 Wadhwani Dec 1975 A
3935577 Hansen et al. Jan 1976 A
3936836 Wheeler et al. Feb 1976 A
3936838 Foldes et al. Feb 1976 A
3952984 Dimitry et al. Apr 1976 A
3956751 Herman May 1976 A
3959794 Chrepta et al. May 1976 A
3973087 Fong et al. Aug 1976 A
3973240 Fong et al. Aug 1976 A
3976358 Thompson et al. Aug 1976 A
3983560 MacDougall et al. Sep 1976 A
4010799 Kern et al. Mar 1977 A
4012743 Maciejewski et al. Mar 1977 A
4020431 Saunders et al. Apr 1977 A
4026632 Hill et al. May 1977 A
4030048 Foldes et al. Jun 1977 A
4030953 Rutschow et al. Jun 1977 A
4031536 Alford et al. Jun 1977 A
4035054 Lattanzi et al. Jul 1977 A
4047180 Kuo et al. Sep 1977 A
4079361 Woode et al. Mar 1978 A
4080600 Toman et al. Mar 1978 A
4099184 Rapshys et al. Jul 1978 A
4114121 Barlow et al. Sep 1978 A
4115782 Han et al. Sep 1978 A
4123759 Hines et al. Oct 1978 A
4125768 Jackson et al. Nov 1978 A
4129841 Hildebrand et al. Dec 1978 A
4129872 Toman et al. Dec 1978 A
4141015 Wong et al. Feb 1979 A
4149170 Campbell et al. Apr 1979 A
4155108 Tuttle et al. May 1979 A
4156241 Mobley et al. May 1979 A
4166669 Leonberger et al. Sep 1979 A
4175257 Smith et al. Nov 1979 A
4188595 Cronson et al. Feb 1980 A
4190137 Shimada et al. Feb 1980 A
4191953 Woode et al. Mar 1980 A
4195302 Leupelt et al. Mar 1980 A
4210357 Adachi et al. Jul 1980 A
4216449 Kach Aug 1980 A
4220957 Britt et al. Sep 1980 A
4231042 Turrin et al. Oct 1980 A
4234753 Clutter et al. Nov 1980 A
4238974 Fawcett et al. Dec 1980 A
4246584 Noerpel et al. Jan 1981 A
4247858 Eichweber et al. Jan 1981 A
4250489 Dudash et al. Feb 1981 A
4268804 Spinner et al. May 1981 A
4274097 Krall et al. Jun 1981 A
4274112 Leysieffer et al. Jun 1981 A
4278955 Lunden et al. Jul 1981 A
4293833 Popa et al. Oct 1981 A
4298877 Sletten et al. Nov 1981 A
4300242 Nava et al. Nov 1981 A
4307938 Dyott et al. Dec 1981 A
4316646 Siebens et al. Feb 1982 A
4319074 Yaste et al. Mar 1982 A
4329690 Parker et al. May 1982 A
4333082 Susman et al. Jun 1982 A
4335613 Luukkala et al. Jun 1982 A
4336719 Lynnworth Jun 1982 A
4345256 Rainwater et al. Aug 1982 A
4366565 Herskowitz Dec 1982 A
4367446 Hall et al. Jan 1983 A
4378143 Winzer et al. Mar 1983 A
4384289 Fernandes et al. May 1983 A
4398058 Gerth et al. Aug 1983 A
4398121 Chodorow et al. Aug 1983 A
4413263 Amitay et al. Nov 1983 A
4447811 Hamid et al. May 1984 A
4458250 Bodnar et al. Jul 1984 A
4463329 Suzuki et al. Jul 1984 A
4468672 Dragone et al. Aug 1984 A
4475209 Udren Oct 1984 A
4477814 Brumbaugh et al. Oct 1984 A
4482899 Dragone et al. Nov 1984 A
4488156 DuFort et al. Dec 1984 A
4491386 Negishi et al. Jan 1985 A
4495498 Petrelis et al. Jan 1985 A
4516130 Dragone May 1985 A
4525432 Saito et al. Jun 1985 A
4525693 Suzuki et al. Jun 1985 A
4533875 Lau et al. Aug 1985 A
4541303 Kuzunishi et al. Sep 1985 A
4550271 Lau et al. Oct 1985 A
4553112 Saad et al. Nov 1985 A
4556271 Hubbard Dec 1985 A
4558325 Stroem Dec 1985 A
4565348 Larsen Jan 1986 A
4566012 Choung et al. Jan 1986 A
4567401 Barnett et al. Jan 1986 A
4568943 Bowman Feb 1986 A
4573215 Oates et al. Feb 1986 A
4580116 Ballato et al. Apr 1986 A
4589424 Vaguine et al. May 1986 A
4598262 Chen et al. Jul 1986 A
4599598 Komoda et al. Jul 1986 A
4604551 Moeller et al. Aug 1986 A
4604624 Amitay et al. Aug 1986 A
4604627 Saad et al. Aug 1986 A
4605914 Harman et al. Aug 1986 A
4618867 Gans et al. Oct 1986 A
4634858 Gerdt et al. Jan 1987 A
4636753 Geller et al. Jan 1987 A
4638322 Lamberty et al. Jan 1987 A
4641916 Oestreich et al. Feb 1987 A
4642651 Kuhn et al. Feb 1987 A
4644365 Horning et al. Feb 1987 A
4647329 Oono et al. Mar 1987 A
4660050 Phillips et al. Apr 1987 A
4665660 Krall et al. May 1987 A
4672384 Roy et al. Jun 1987 A
4673943 Hannan Jun 1987 A
4680558 Ghosh et al. Jul 1987 A
4694599 Hart et al. Sep 1987 A
4704611 Edwards et al. Nov 1987 A
4715695 Nishimura et al. Dec 1987 A
4717974 Baumeister et al. Jan 1988 A
4728910 Owens et al. Mar 1988 A
4730172 Bengeult Mar 1988 A
4730888 Darcie et al. Mar 1988 A
4731810 Watkins Mar 1988 A
4735097 Lynnworth et al. Apr 1988 A
4743915 Rammos et al. May 1988 A
4743916 Bengeult May 1988 A
4745377 Stern et al. May 1988 A
4746241 Burbank, III et al. May 1988 A
4749244 Luh Jun 1988 A
4755830 Plunk et al. Jul 1988 A
4757324 Dhanjal et al. Jul 1988 A
4758962 Fernandes Jul 1988 A
4764738 Fried et al. Aug 1988 A
4772891 Svy Sep 1988 A
4777457 Ghosh et al. Oct 1988 A
4785304 Stern et al. Nov 1988 A
4786911 Svy et al. Nov 1988 A
4786913 Barendregt et al. Nov 1988 A
4788553 Phillips et al. Nov 1988 A
4792771 Siu et al. Dec 1988 A
4792812 Rinehart et al. Dec 1988 A
4799031 Lang et al. Jan 1989 A
4800350 Bridges et al. Jan 1989 A
4801937 Fernandes Jan 1989 A
4808950 Apostolos et al. Feb 1989 A
4818963 Green et al. Apr 1989 A
4818990 Fernandes Apr 1989 A
4821006 Ishikawa et al. Apr 1989 A
4825221 Suzuki et al. Apr 1989 A
4829310 Losee et al. May 1989 A
4829314 Barbier et al. May 1989 A
4831346 Brooker et al. May 1989 A
4832148 Becker et al. May 1989 A
4835517 Van et al. May 1989 A
4839659 Stern et al. Jun 1989 A
4845508 Krall et al. Jul 1989 A
4847610 Ozawa et al. Jul 1989 A
4849611 Whitney et al. Jul 1989 A
4851788 Ives et al. Jul 1989 A
4855749 DeFonzo et al. Aug 1989 A
4866454 Droessler et al. Sep 1989 A
4873534 Wohlleben et al. Oct 1989 A
4875026 Walter et al. Oct 1989 A
4879544 Maki et al. Nov 1989 A
4881028 Bright et al. Nov 1989 A
4886980 Fernandes et al. Dec 1989 A
4897663 Kusano et al. Jan 1990 A
4904996 Fernandes Feb 1990 A
4915468 Kim et al. Apr 1990 A
4916460 Powell et al. Apr 1990 A
4922180 Saffer et al. May 1990 A
4929962 Begout et al. May 1990 A
4931808 Munson et al. Jun 1990 A
4932620 Foy Jun 1990 A
4946202 Perricone et al. Aug 1990 A
4956620 Moeller et al. Sep 1990 A
4965856 Swanic Oct 1990 A
4977593 Ballance Dec 1990 A
4977618 Allen Dec 1990 A
4989011 Rosen et al. Jan 1991 A
4998095 Shields Mar 1991 A
5003318 Hall et al. Mar 1991 A
5006846 Granville et al. Apr 1991 A
5006859 Wong et al. Apr 1991 A
5015914 Ives et al. May 1991 A
5017936 Massey et al. May 1991 A
5017937 Newham et al. May 1991 A
5018180 Shoulders May 1991 A
5019832 Ekdahl et al. May 1991 A
5036335 Jairam et al. Jul 1991 A
H956 Reindel Aug 1991 H
5042903 Jakubowski et al. Aug 1991 A
5043538 Hughey et al. Aug 1991 A
5043629 Doane et al. Aug 1991 A
5044722 Voser et al. Sep 1991 A
5045820 Oehlerking et al. Sep 1991 A
5057106 Kasevich et al. Oct 1991 A
5065760 Krause et al. Nov 1991 A
5065969 McLean et al. Nov 1991 A
5072228 Kuwahara et al. Dec 1991 A
5082349 Cordova-Plaza et al. Jan 1992 A
5086467 Malek Feb 1992 A
5107231 Knox et al. Apr 1992 A
5109232 Monte et al. Apr 1992 A
5113197 Luh et al. May 1992 A
5117237 Legg May 1992 A
5121129 Lee et al. Jun 1992 A
5126750 Wang et al. Jun 1992 A
5132968 Cephus Jul 1992 A
5134251 Martin et al. Jul 1992 A
5134423 Haupt et al. Jul 1992 A
5134965 Tokuda et al. Aug 1992 A
5136671 Dragone et al. Aug 1992 A
5142767 Adams et al. Sep 1992 A
5148509 Kannabiran et al. Sep 1992 A
5152861 Hann Oct 1992 A
5153676 Bergh et al. Oct 1992 A
5166698 Ashbaugh et al. Nov 1992 A
5174164 Wilheim et al. Dec 1992 A
5175560 Lucas et al. Dec 1992 A
5182427 McGaffigan et al. Jan 1993 A
5187409 Ito et al. Feb 1993 A
5193774 Rogers et al. Mar 1993 A
5198823 Litchford et al. Mar 1993 A
5212755 Holmberg et al. May 1993 A
5214394 Wong et al. May 1993 A
5214438 Smith et al. May 1993 A
5216616 Masters Jun 1993 A
5218657 Tokudome et al. Jun 1993 A
5235662 Prince et al. Aug 1993 A
5239537 Sakauchi Aug 1993 A
5241321 Tsao et al. Aug 1993 A
5241701 Andoh et al. Aug 1993 A
5248876 Kerstens et al. Sep 1993 A
5254809 Martin Oct 1993 A
5265266 Trinh Nov 1993 A
5266961 Milroy et al. Nov 1993 A
5276455 Fitzsimmons et al. Jan 1994 A
5278687 Jannson et al. Jan 1994 A
5280297 Profera et al. Jan 1994 A
5291211 Tropper et al. Mar 1994 A
5298911 Li et al. Mar 1994 A
5299773 Bertrand et al. Apr 1994 A
5304999 Roberts et al. Apr 1994 A
5311596 Scott et al. May 1994 A
5327149 Kuffer et al. Jul 1994 A
5329285 McCandless et al. Jul 1994 A
5341088 Davis Aug 1994 A
5345522 Vali et al. Sep 1994 A
5347287 Speciale et al. Sep 1994 A
5352984 Piesinger et al. Oct 1994 A
5353036 Baldry Oct 1994 A
5359338 Hatcher et al. Oct 1994 A
5371623 Eastmond et al. Dec 1994 A
5379455 Koschek et al. Jan 1995 A
5380224 Dicicco Jan 1995 A
5381160 Landmeier Jan 1995 A
5389442 Kathiresan et al. Feb 1995 A
5400040 Lane et al. Mar 1995 A
5402140 Rodeffer et al. Mar 1995 A
5402151 Duwaer Mar 1995 A
5404146 Rutledge et al. Apr 1995 A
5410318 Wong et al. Apr 1995 A
5412654 Perkins May 1995 A
5428364 Lee et al. Jun 1995 A
5428818 Meidan et al. Jun 1995 A
5434575 Jelinek et al. Jul 1995 A
5440660 Dombrowski et al. Aug 1995 A
5446470 Avignon et al. Aug 1995 A
5451969 Toth et al. Sep 1995 A
5457469 Diamond et al. Oct 1995 A
5473336 Harman et al. Dec 1995 A
5479176 Zavrel et al. Dec 1995 A
5481268 Higgins Jan 1996 A
5482525 Kajioka et al. Jan 1996 A
5486839 Rodeffer et al. Jan 1996 A
5488380 Harvey et al. Jan 1996 A
5495546 Bottoms et al. Feb 1996 A
5499308 Arai et al. Mar 1996 A
5499311 DeCusatis et al. Mar 1996 A
5502392 Arjavalingam et al. Mar 1996 A
5512906 Speciale et al. Apr 1996 A
5513176 Dean et al. Apr 1996 A
5514965 Westwood et al. May 1996 A
5515059 How et al. May 1996 A
5519408 Schnetzer et al. May 1996 A
5528208 Kobayashi et al. Jun 1996 A
5539421 Hong et al. Jul 1996 A
5543000 Lique Aug 1996 A
5557283 Sheen Sep 1996 A
5559359 Reyes Sep 1996 A
5566022 Segev Oct 1996 A
5566196 Scifres Oct 1996 A
5576721 Hwang et al. Nov 1996 A
5586054 Jensen et al. Dec 1996 A
5592183 Henf Jan 1997 A
5600630 Takahashi et al. Feb 1997 A
5603089 Searle et al. Feb 1997 A
5610617 Gans et al. Mar 1997 A
5619015 Kirma Apr 1997 A
5621421 Kolz et al. Apr 1997 A
5627879 Russell et al. May 1997 A
5628050 McGraw et al. May 1997 A
5630223 Bahu et al. May 1997 A
5637521 Rhodes et al. Jun 1997 A
5640168 Heger et al. Jun 1997 A
5646936 Shah et al. Jul 1997 A
5650788 Jha Jul 1997 A
5652554 Krieg et al. Jul 1997 A
5663693 Doughty et al. Sep 1997 A
5671304 Duguay Sep 1997 A
5677699 Strickland Oct 1997 A
5677909 Heide Oct 1997 A
5680139 Huguenin et al. Oct 1997 A
5682256 Motley et al. Oct 1997 A
5684450 Brown Nov 1997 A
5684495 Dyott et al. Nov 1997 A
5686930 Brydon Nov 1997 A
5724168 Oschmann et al. Mar 1998 A
5726980 Rickard et al. Mar 1998 A
5748153 McKinzie et al. May 1998 A
5750941 Ishikawa et al. May 1998 A
5757323 Spencer et al. May 1998 A
5767807 Pritchett et al. Jun 1998 A
5768689 Borg Jun 1998 A
5769879 Levay et al. Jun 1998 A
5784033 Boldissar, Jr. et al. Jul 1998 A
5784034 Konishi et al. Jul 1998 A
5784683 Sistanizadeh et al. Jul 1998 A
5787673 Noble Aug 1998 A
5793334 Harrison et al. Aug 1998 A
5800494 Campbell et al. Sep 1998 A
5805983 Naidu et al. Sep 1998 A
5809395 Hamilton-Piercy et al. Sep 1998 A
5812524 Moran et al. Sep 1998 A
5818390 Hill Oct 1998 A
5818396 Harrison et al. Oct 1998 A
5818512 Fuller Oct 1998 A
5845391 Miklosko et al. Dec 1998 A
5848054 Mosebrook et al. Dec 1998 A
5850199 Wan et al. Dec 1998 A
5854608 Leisten Dec 1998 A
5859618 Miller, II et al. Jan 1999 A
5861843 Sorace et al. Jan 1999 A
5867763 Dean et al. Feb 1999 A
5870060 Chen et al. Feb 1999 A
5872544 Schay et al. Feb 1999 A
5872547 Martek Feb 1999 A
5872812 Saito et al. Feb 1999 A
5873324 Kaddas et al. Feb 1999 A
5886666 Schellenberg et al. Mar 1999 A
5889449 Fiedziuszko Mar 1999 A
5890055 Chu et al. Mar 1999 A
5892480 Killen et al. Apr 1999 A
5898133 Bleich et al. Apr 1999 A
5898830 Wesinger, Jr. et al. Apr 1999 A
5900847 Ishikawa et al. May 1999 A
5903373 Welch et al. May 1999 A
5905438 Weiss et al. May 1999 A
5905949 Hawkes et al. May 1999 A
5910790 Ohmuro et al. Jun 1999 A
5917977 Barrett et al. Jun 1999 A
5922081 Seewig et al. Jul 1999 A
5926128 Brash et al. Jul 1999 A
5929750 Brown Jul 1999 A
5933071 Brown Aug 1999 A
5933422 Suzuki et al. Aug 1999 A
5936589 Kawahata Aug 1999 A
5948044 Varley et al. Sep 1999 A
5948108 Lu et al. Sep 1999 A
5952964 Chan et al. Sep 1999 A
5952972 Ittipiboon et al. Sep 1999 A
5952984 Kuramoto et al. Sep 1999 A
5955992 Shattil Sep 1999 A
5959578 Kreutel et al. Sep 1999 A
5959590 Sanford et al. Sep 1999 A
5973641 Smith et al. Oct 1999 A
5977650 Rickard et al. Nov 1999 A
5978738 Brown et al. Nov 1999 A
5982276 Stewart Nov 1999 A
5986331 Letavic et al. Nov 1999 A
5987099 O'Neill et al. Nov 1999 A
5990848 Annamaa et al. Nov 1999 A
5994984 Stancil et al. Nov 1999 A
5994998 Fisher et al. Nov 1999 A
6005694 Liu Dec 1999 A
6005758 Spencer et al. Dec 1999 A
6009124 Smith Dec 1999 A
6011520 Howell et al. Jan 2000 A
6011524 Jervis et al. Jan 2000 A
6014110 Bridges et al. Jan 2000 A
6018659 Ayyagari et al. Jan 2000 A
6023619 Kaminsky Feb 2000 A
6026173 Svenson et al. Feb 2000 A
6026208 Will et al. Feb 2000 A
6026331 Feldberg et al. Feb 2000 A
6031455 Grube et al. Feb 2000 A
6034638 Thiel et al. Mar 2000 A
6037894 Pfizenmaier et al. Mar 2000 A
6038425 Jeffrey et al. Mar 2000 A
6049647 Register et al. Apr 2000 A
6057802 Nealy May 2000 A
6061035 Kinasewitz et al. May 2000 A
6063234 Chen et al. May 2000 A
6075451 Lebowitz et al. Jun 2000 A
6075493 Sugawara et al. Jun 2000 A
6076044 Brown et al. Jun 2000 A
6078297 Kormanyos et al. Jun 2000 A
6088001 Burger et al. Jul 2000 A
6095820 Luxon et al. Aug 2000 A
6100846 Li et al. Aug 2000 A
6103031 Aeschbacher et al. Aug 2000 A
6107897 Hewett et al. Aug 2000 A
6111553 Steenbuck et al. Aug 2000 A
6114998 Schefte et al. Sep 2000 A
6121885 Masone et al. Sep 2000 A
6122753 Masuo et al. Sep 2000 A
6140911 Fisher et al. Oct 2000 A
6140976 Locke et al. Oct 2000 A
6142434 Brinkman et al. Nov 2000 A
6144292 Brown Nov 2000 A
6146330 Tujino et al. Nov 2000 A
6150612 Grandy et al. Nov 2000 A
6151145 Srivastava et al. Nov 2000 A
6154488 Hunt Nov 2000 A
6158383 Watanabe et al. Dec 2000 A
6163296 Lier et al. Dec 2000 A
6166694 Ying et al. Dec 2000 A
6167055 Ganek et al. Dec 2000 A
6172597 Brown et al. Jan 2001 B1
6175917 Arrow et al. Jan 2001 B1
6177801 Chong et al. Jan 2001 B1
6184828 Shoki et al. Feb 2001 B1
6195058 Nakamura et al. Feb 2001 B1
6195395 Frodsham et al. Feb 2001 B1
6198440 Krylov et al. Mar 2001 B1
6208161 Suda et al. Mar 2001 B1
6208308 Lemons Mar 2001 B1
6208903 Richards et al. Mar 2001 B1
6211836 Manasson et al. Apr 2001 B1
6211837 Crouch et al. Apr 2001 B1
6215443 Komatsu et al. Apr 2001 B1
6219006 Rudish et al. Apr 2001 B1
6222503 Gietema et al. Apr 2001 B1
6225960 Collins et al. May 2001 B1
6229327 Boll et al. May 2001 B1
6236365 Karr et al. May 2001 B1
6239377 Nishikawa et al. May 2001 B1
6239379 Cotter et al. May 2001 B1
6239761 Guo et al. May 2001 B1
6241045 Reeve et al. Jun 2001 B1
6243049 Chandler et al. Jun 2001 B1
6246821 Hemken et al. Jun 2001 B1
6252553 Solomon et al. Jun 2001 B1
6259337 Wen et al. Jul 2001 B1
6266016 Bergstedt et al. Jul 2001 B1
6266025 Popa et al. Jul 2001 B1
6268835 Toland et al. Jul 2001 B1
6271790 Smith et al. Aug 2001 B2
6271799 Rief et al. Aug 2001 B1
6271952 Epworth et al. Aug 2001 B1
6278357 Croushore et al. Aug 2001 B1
6278370 Underwood et al. Aug 2001 B1
6281769 Fiedziuszko et al. Aug 2001 B1
6281855 Aoki et al. Aug 2001 B1
6282354 Jones et al. Aug 2001 B1
6282405 Brown et al. Aug 2001 B1
6283425 Liljevik Sep 2001 B1
6285325 Nalbandian et al. Sep 2001 B1
6292139 Yamamoto et al. Sep 2001 B1
6292143 Romanofsky et al. Sep 2001 B1
6292153 Aiello et al. Sep 2001 B1
6300898 Schneider et al. Oct 2001 B1
6300906 Rawnick et al. Oct 2001 B1
6301420 Greenaway et al. Oct 2001 B1
6308085 Shoki et al. Oct 2001 B1
6311288 Heeren et al. Oct 2001 B1
6317028 Valiulis et al. Nov 2001 B1
6317092 de Schweinitz et al. Nov 2001 B1
6320509 Brady et al. Nov 2001 B1
6320553 Ergene et al. Nov 2001 B1
6323819 Ergene et al. Nov 2001 B1
6329959 Varadan et al. Dec 2001 B1
6335993 Takahashi et al. Jan 2002 B1
6348683 Verghese et al. Feb 2002 B1
6351247 Linstrom et al. Feb 2002 B1
6357709 Parduhn et al. Mar 2002 B1
6362788 Louzir Mar 2002 B1
6362789 Trumbull et al. Mar 2002 B1
6366238 DeMore et al. Apr 2002 B1
6373436 Chen et al. Apr 2002 B1
6373441 Porath et al. Apr 2002 B1
6376824 Michenfelder et al. Apr 2002 B1
6380822 Lindgren et al. Apr 2002 B1
6388564 Piercy et al. May 2002 B1
6388634 Ramanujam et al. May 2002 B1
6396440 Chen et al. May 2002 B1
6404773 Williams et al. Jun 2002 B1
6404775 Leslie Jun 2002 B1
6421021 Rupp et al. Jul 2002 B1
6433736 Timothy et al. Aug 2002 B1
6433741 Tanizaki et al. Aug 2002 B2
6436536 Peruzzotti et al. Aug 2002 B2
6441723 Mansfield, Jr. et al. Aug 2002 B1
6445351 Baker et al. Sep 2002 B1
6445774 Kidder et al. Sep 2002 B1
6452467 McEwan Sep 2002 B1
6452569 Park et al. Sep 2002 B1
6452923 Gerszberg et al. Sep 2002 B1
6455769 Belli et al. Sep 2002 B1
6456251 Rao et al. Sep 2002 B1
6462700 Schmidt et al. Oct 2002 B1
6463295 Yun et al. Oct 2002 B1
6469676 Fehrenbach et al. Oct 2002 B1
6473049 Takeuchi et al. Oct 2002 B2
6480168 Lam et al. Nov 2002 B1
6483470 Hohnstein et al. Nov 2002 B1
6489928 Sakurada Dec 2002 B2
6489931 Liu Dec 2002 B2
6492957 Carillo, Jr. et al. Dec 2002 B2
6501433 Popa et al. Dec 2002 B2
6507573 Brandt et al. Jan 2003 B1
6510152 Gerszberg et al. Jan 2003 B1
6515635 Chiang et al. Feb 2003 B2
6522305 Sharman et al. Feb 2003 B2
6531991 Adachi et al. Mar 2003 B2
6532215 Muntz et al. Mar 2003 B1
6534996 Amrany et al. Mar 2003 B1
6535169 Fourdeux et al. Mar 2003 B2
6542739 Garner Apr 2003 B1
6549106 Martin et al. Apr 2003 B2
6549173 King et al. Apr 2003 B1
6552693 Leisten et al. Apr 2003 B1
6559811 Cash et al. May 2003 B1
6563981 Weisberg et al. May 2003 B2
6567573 Domash et al. May 2003 B1
6573803 Ziegner et al. Jun 2003 B1
6573813 Joannopoulos et al. Jun 2003 B1
6580295 Takekuma et al. Jun 2003 B2
6584084 Barany et al. Jun 2003 B1
6584252 Schier et al. Jun 2003 B1
6587077 Vail et al. Jul 2003 B2
6593893 Hou et al. Jul 2003 B2
6594238 Wallentin et al. Jul 2003 B1
6596944 Clark et al. Jul 2003 B1
6600456 Gothard et al. Jul 2003 B2
6606057 Chiang et al. Aug 2003 B2
6606066 Fawcett et al. Aug 2003 B1
6606077 Ebling et al. Aug 2003 B2
6611252 DuFaux et al. Aug 2003 B1
6614237 Ademian et al. Sep 2003 B2
6628859 Huang et al. Sep 2003 B2
6631229 Norris et al. Oct 2003 B1
6634225 Reime et al. Oct 2003 B1
6639484 Tzuang et al. Oct 2003 B2
6639566 Knop et al. Oct 2003 B2
6642887 Owechko et al. Nov 2003 B2
6643254 Abe et al. Nov 2003 B1
6650296 Wong et al. Nov 2003 B2
6653598 Sullivan et al. Nov 2003 B2
6653848 Adamian et al. Nov 2003 B2
6657437 LeCroy et al. Dec 2003 B1
6659655 Dair et al. Dec 2003 B2
6661391 Ohara et al. Dec 2003 B2
6668104 Mueller-Fiedler et al. Dec 2003 B1
6670921 Sievenpiper et al. Dec 2003 B2
6671824 Hyland et al. Dec 2003 B1
6677899 Lee et al. Jan 2004 B1
6680903 Moriguchi et al. Jan 2004 B1
6683580 Kuramoto Jan 2004 B2
6686832 Abraham et al. Feb 2004 B2
6686873 Patel et al. Feb 2004 B2
6686875 Wolfson et al. Feb 2004 B1
6697027 Mahon et al. Feb 2004 B2
6697030 Gleener et al. Feb 2004 B2
6703981 Meitzler et al. Mar 2004 B2
6714165 Verstraeten Mar 2004 B2
6720935 Lamensdorf et al. Apr 2004 B2
6725035 Jochim et al. Apr 2004 B2
6727470 Reichle et al. Apr 2004 B2
6727891 Moriya et al. Apr 2004 B2
6728439 Weisberg et al. Apr 2004 B2
6728552 Chatain et al. Apr 2004 B2
6731210 Swanson et al. May 2004 B2
6731649 Silverman May 2004 B1
6737934 Yamada May 2004 B2
6741705 Nelson et al. May 2004 B1
6747557 Petite et al. Jun 2004 B1
6750827 Manasson et al. Jun 2004 B2
6751441 Murray Jun 2004 B1
6753813 Kushihi et al. Jun 2004 B2
6754470 Hendrickson et al. Jun 2004 B2
6755312 Dziedzic et al. Jun 2004 B2
6756538 Murga-Gonzalez et al. Jun 2004 B1
6763195 Willebrand et al. Jul 2004 B1
6765479 Stewart et al. Jul 2004 B2
6768454 Kingsley et al. Jul 2004 B2
6768456 Lalezari et al. Jul 2004 B1
6768471 Bostwick et al. Jul 2004 B2
6768474 Hunt et al. Jul 2004 B2
6771216 Patel et al. Aug 2004 B2
6771225 Tits et al. Aug 2004 B2
6771739 Beamon et al. Aug 2004 B1
6774859 Schantz et al. Aug 2004 B2
6778729 Guy et al. Aug 2004 B1
6788865 Kawanishi et al. Sep 2004 B2
6788951 Aoki et al. Sep 2004 B2
6789119 Zhu et al. Sep 2004 B1
6791507 Johansson et al. Sep 2004 B2
6792290 Proctor, Jr. et al. Sep 2004 B2
6798223 Huang et al. Sep 2004 B2
6806710 Renz et al. Oct 2004 B1
6809633 Cern et al. Oct 2004 B2
6809695 Le Bayon et al. Oct 2004 B2
6812895 Anderson et al. Nov 2004 B2
6819744 Galli et al. Nov 2004 B1
6822615 Quan et al. Nov 2004 B2
6839032 Teshirogi et al. Jan 2005 B2
6839160 Tsuda et al. Jan 2005 B2
6839846 Mangold et al. Jan 2005 B2
6842157 Phelan et al. Jan 2005 B2
6842430 Melnik et al. Jan 2005 B1
6850128 Park Feb 2005 B2
6853351 Mohuchy et al. Feb 2005 B1
6856273 Bognar et al. Feb 2005 B1
6859185 Royalty et al. Feb 2005 B2
6859187 Ohlsson et al. Feb 2005 B2
6859590 Zaccone Feb 2005 B1
6861998 Louzir Mar 2005 B2
6864851 McGrath et al. Mar 2005 B2
6864853 Judd et al. Mar 2005 B2
6867744 Toncich et al. Mar 2005 B2
6868258 Hayata et al. Mar 2005 B2
6870465 Song et al. Mar 2005 B1
6873265 Bleier et al. Mar 2005 B2
6885674 Hunt et al. Apr 2005 B2
6886065 Sides et al. Apr 2005 B2
6888623 Clements May 2005 B2
6901064 Billhartz et al. May 2005 B2
6904218 Sun et al. Jun 2005 B2
6906676 Killen et al. Jun 2005 B2
6906681 Hoppenstein et al. Jun 2005 B2
6909893 Aoki et al. Jun 2005 B2
6917974 Stytz et al. Jul 2005 B1
6920289 Zimmerman et al. Jul 2005 B2
6920315 Wilcox et al. Jul 2005 B1
6920407 Phillips et al. Jul 2005 B2
6922135 Abraham et al. Jul 2005 B2
6924732 Yokoo et al. Aug 2005 B2
6924776 Le et al. Aug 2005 B2
6928194 Mai et al. Aug 2005 B2
6933887 Regnier et al. Aug 2005 B2
6934655 Jones et al. Aug 2005 B2
6937595 Barzegar et al. Aug 2005 B2
6943553 Zimmermann et al. Sep 2005 B2
6944555 Blackett et al. Sep 2005 B2
6947147 Motamedi et al. Sep 2005 B2
6947376 Deng et al. Sep 2005 B1
6947635 Kohns et al. Sep 2005 B2
6948371 Tanaka et al. Sep 2005 B2
6950567 Kline et al. Sep 2005 B2
6952143 Kinayman et al. Oct 2005 B2
6952183 Yuanzhu et al. Oct 2005 B2
6956506 Koivumaeki et al. Oct 2005 B2
6958729 Metz et al. Oct 2005 B1
6961025 Chethik et al. Nov 2005 B1
6965302 Mollenkopf et al. Nov 2005 B2
6965355 Durham et al. Nov 2005 B1
6965784 Kanamaluru et al. Nov 2005 B2
6967627 Roper et al. Nov 2005 B2
6970502 Kim et al. Nov 2005 B2
6970682 Crilly, Jr. et al. Nov 2005 B2
6972729 Wang et al. Dec 2005 B2
6980091 White, II et al. Dec 2005 B2
6982611 Cope et al. Jan 2006 B2
6982679 Kralovec et al. Jan 2006 B2
6983174 Hoppenstein et al. Jan 2006 B2
6985118 Killen et al. Jan 2006 B2
6992639 Lier et al. Jan 2006 B1
6999667 Jang et al. Feb 2006 B2
7008120 Zaborsky et al. Mar 2006 B2
7009471 Elmore Mar 2006 B2
7012489 Fisher et al. Mar 2006 B2
7012572 Schaffner et al. Mar 2006 B1
7016585 Diggle, III et al. Mar 2006 B2
7019704 Weiss et al. Mar 2006 B2
7023400 Hill et al. Apr 2006 B2
7026917 Berkman et al. Apr 2006 B2
7027003 Sasaki et al. Apr 2006 B2
7027454 Dent et al. Apr 2006 B2
7032016 Cerami et al. Apr 2006 B2
7038636 Larouche et al. May 2006 B2
7039048 Monta et al. May 2006 B1
7042403 Sievenpiper et al. May 2006 B2
7042416 Kingsley et al. May 2006 B2
7042420 Ebling et al. May 2006 B2
7043271 Seto et al. May 2006 B1
7054286 Ertel et al. May 2006 B2
7054376 Rubinstain et al. May 2006 B1
7054513 Herz et al. May 2006 B2
7055148 Marsh et al. May 2006 B2
7057558 Yasuho et al. Jun 2006 B2
7057573 Ohira et al. Jun 2006 B2
7058524 Hayes et al. Jun 2006 B2
7061370 Cern et al. Jun 2006 B2
7061891 Kilfoyle et al. Jun 2006 B1
7064726 Kitamori et al. Jun 2006 B2
7068998 Zavidniak et al. Jun 2006 B2
7069163 Gunther et al. Jun 2006 B2
7075414 Giannini et al. Jul 2006 B2
7075485 Song et al. Jul 2006 B2
7075496 Hidai et al. Jul 2006 B2
7082321 Kuwahara et al. Jul 2006 B2
7084742 Haines et al. Aug 2006 B2
7088221 Chan Aug 2006 B2
7088306 Chiang et al. Aug 2006 B2
7098405 Glew et al. Aug 2006 B2
7098773 Berkman et al. Aug 2006 B2
7102581 West et al. Sep 2006 B1
7106265 Robertson et al. Sep 2006 B2
7106270 Iigusa et al. Sep 2006 B2
7106273 Brunson et al. Sep 2006 B1
7109939 Lynch et al. Sep 2006 B2
7110678 Willebrand et al. Sep 2006 B2
7113002 Otsuka et al. Sep 2006 B2
7113134 Berkman et al. Sep 2006 B1
7119755 Harvey et al. Oct 2006 B2
7120338 Gunn, III et al. Oct 2006 B2
7120345 Naitou et al. Oct 2006 B2
7122012 Bouton et al. Oct 2006 B2
7123191 Goldberg et al. Oct 2006 B2
7123801 Fitz et al. Oct 2006 B2
7125512 Crump et al. Oct 2006 B2
7126557 Warnagiris et al. Oct 2006 B2
7126711 Fruth et al. Oct 2006 B2
7127348 Smitherman et al. Oct 2006 B2
7130516 Wu et al. Oct 2006 B2
7132950 Stewart et al. Nov 2006 B2
7133930 Sabio et al. Nov 2006 B2
7134012 Doyle et al. Nov 2006 B2
7134135 Cerami et al. Nov 2006 B2
7136397 Sharma et al. Nov 2006 B2
7136772 Duchi et al. Nov 2006 B2
7137605 Guertler et al. Nov 2006 B1
7138767 Chen et al. Nov 2006 B2
7138958 Syed et al. Nov 2006 B2
7139328 Thomas et al. Nov 2006 B2
7145440 Gerszberg et al. Dec 2006 B2
7145552 Hollingsworth et al. Dec 2006 B2
7151497 Crystal et al. Dec 2006 B2
7151508 Schaffner et al. Dec 2006 B2
7155238 Katz et al. Dec 2006 B2
7161934 Buchsbaum et al. Jan 2007 B2
7164354 Panzer et al. Jan 2007 B1
7167139 Kim et al. Jan 2007 B2
7171087 Takahashi et al. Jan 2007 B2
7171308 Campbell et al. Jan 2007 B2
7171493 Shu et al. Jan 2007 B2
7176589 Rouquette et al. Feb 2007 B2
7180459 Damini et al. Feb 2007 B2
7180467 Fabrega-Sanchez Feb 2007 B2
7183922 Mendolia et al. Feb 2007 B2
7183991 Bhattacharyya et al. Feb 2007 B2
7183998 Wilhelm et al. Feb 2007 B2
7193562 Kish et al. Mar 2007 B2
7194528 Davidow et al. Mar 2007 B1
7199680 Fukunaga et al. Apr 2007 B2
7200391 Chung et al. Apr 2007 B2
7200658 Goeller et al. Apr 2007 B2
7205950 Imai et al. Apr 2007 B2
7212163 Huang et al. May 2007 B2
7215220 Jia et al. May 2007 B1
7215928 Gage et al. May 2007 B2
7218285 Davis et al. May 2007 B2
7224170 Graham et al. May 2007 B2
7224243 Cope et al. May 2007 B2
7224272 White, II et al. May 2007 B2
7224320 Cook et al. May 2007 B2
7224985 Caci et al. May 2007 B2
7228123 Moursund et al. Jun 2007 B2
7234413 Suzuki et al. Jun 2007 B2
7234895 Richardson et al. Jun 2007 B2
7239284 Staal et al. Jul 2007 B1
7243610 Ishii et al. Jul 2007 B2
7248148 Kline et al. Jul 2007 B2
7250772 Furse et al. Jul 2007 B2
7255821 Priedeman, Jr. et al. Aug 2007 B2
7259657 Mollenkopf et al. Aug 2007 B2
7260424 Schmidt et al. Aug 2007 B2
7266154 Gundrum et al. Sep 2007 B2
7266275 Hansen et al. Sep 2007 B2
7268722 Gottwald et al. Sep 2007 B2
7272281 Stahulak et al. Sep 2007 B2
7272362 Jeong et al. Sep 2007 B2
7274305 Luttrell Sep 2007 B1
7274936 Stern-Berkowitz et al. Sep 2007 B2
7276990 Sievenpiper et al. Oct 2007 B2
7280033 Berkman et al. Oct 2007 B2
7280803 Nelson et al. Oct 2007 B2
7282922 Lo et al. Oct 2007 B2
7286099 Lier et al. Oct 2007 B1
7289449 Rubinstein et al. Oct 2007 B1
7289704 Wagman et al. Oct 2007 B1
7289828 Cha et al. Oct 2007 B2
7292125 Mansour et al. Nov 2007 B2
7292196 Waterhouse et al. Nov 2007 B2
7295161 Gaucher et al. Nov 2007 B2
7297869 Hiller et al. Nov 2007 B2
7301440 Mollenkopf Nov 2007 B2
7301508 O'Loughlin et al. Nov 2007 B1
7307357 Kopp et al. Dec 2007 B2
7307596 West et al. Dec 2007 B1
7308264 Stern-Berkowitz et al. Dec 2007 B2
7308370 Mason, Jr. et al. Dec 2007 B2
7309873 Ishikawa Dec 2007 B2
7310065 Anguera et al. Dec 2007 B2
7310335 Garcia-Luna-Aceves et al. Dec 2007 B1
7311605 Moser Dec 2007 B2
7312686 Bruno Dec 2007 B2
7313087 Patil et al. Dec 2007 B2
7313312 Kimball et al. Dec 2007 B2
7315224 Gurovich et al. Jan 2008 B2
7315678 Siegel Jan 2008 B2
7318564 Marshall et al. Jan 2008 B1
7319717 Zitting et al. Jan 2008 B2
7321291 Gidge et al. Jan 2008 B2
7321707 Noda et al. Jan 2008 B2
7324046 Wu et al. Jan 2008 B1
7324817 Iacono et al. Jan 2008 B2
7329815 Johnston et al. Feb 2008 B2
7333064 Timothy et al. Feb 2008 B1
7333593 Beamon et al. Feb 2008 B2
7339466 Mansfield et al. Mar 2008 B2
7339897 Larsson et al. Mar 2008 B2
7340768 Rosenberger et al. Mar 2008 B2
7345623 McEwan et al. Mar 2008 B2
7346244 Gowan et al. Mar 2008 B2
7346359 Damarla et al. Mar 2008 B2
7353293 Hipfinger et al. Apr 2008 B2
7355560 Nagai et al. Apr 2008 B2
7358808 Berkman et al. Apr 2008 B2
7358921 Snyder et al. Apr 2008 B2
7369085 Jacomb-Hood et al. May 2008 B1
7369095 Thudor et al. May 2008 B2
7376191 Melick et al. May 2008 B2
7380272 Sharp et al. May 2008 B2
7381089 Hosler, Sr. Jun 2008 B2
7382232 Gidge et al. Jun 2008 B2
7383577 Hrastar et al. Jun 2008 B2
7388450 Camiade et al. Jun 2008 B2
7397422 Tekawy et al. Jul 2008 B2
7398946 Marshall Jul 2008 B1
7400304 Lewis et al. Jul 2008 B2
7403169 Svensson et al. Jul 2008 B2
7406337 Kim et al. Jul 2008 B2
7408426 Broyde et al. Aug 2008 B2
7408507 Paek et al. Aug 2008 B1
7408923 Khan et al. Aug 2008 B1
7410606 Atkinson et al. Aug 2008 B2
7417587 Iskander et al. Aug 2008 B2
7418178 Kudou et al. Aug 2008 B2
7418273 Suyama et al. Aug 2008 B2
7420474 Elks et al. Sep 2008 B1
7420525 Colburn et al. Sep 2008 B2
7423604 Nagai et al. Sep 2008 B2
7426554 Kennedy et al. Sep 2008 B2
7427927 Borleske et al. Sep 2008 B2
7430257 Shattil et al. Sep 2008 B1
7430932 Mekhanoshin et al. Oct 2008 B2
7443334 Rees et al. Oct 2008 B2
7444404 Wetherall et al. Oct 2008 B2
7446567 Otsuka et al. Nov 2008 B2
7450000 Gidge et al. Nov 2008 B2
7450001 Berkman Nov 2008 B2
7453352 Kline et al. Nov 2008 B2
7453393 Duivenvoorden et al. Nov 2008 B2
7456650 Lee et al. Nov 2008 B2
7459834 Knowles et al. Dec 2008 B2
7460834 Johnson et al. Dec 2008 B2
7463877 Iwamura Dec 2008 B2
7465879 Glew et al. Dec 2008 B2
7466225 White, II et al. Dec 2008 B2
7468657 Yaney Dec 2008 B2
7477285 Johnson et al. Jan 2009 B1
7479776 Renken et al. Jan 2009 B2
7479841 Stenger et al. Jan 2009 B2
7486247 Ridgway et al. Feb 2009 B2
7490275 Zerbe et al. Feb 2009 B2
7492317 Tinsley et al. Feb 2009 B2
7496674 Jorgensen et al. Feb 2009 B2
7498822 Lee et al. Mar 2009 B2
7502619 Katz et al. Mar 2009 B1
7504938 Eiza et al. Mar 2009 B2
7508834 Berkman et al. Mar 2009 B2
7509009 Suzuki et al. Mar 2009 B2
7509675 Aaron et al. Mar 2009 B2
7511662 Mathews et al. Mar 2009 B2
7512090 Benitez Pelaez et al. Mar 2009 B2
7515041 Eisold et al. Apr 2009 B2
7516487 Szeto et al. Apr 2009 B1
7518529 O'Sullivan et al. Apr 2009 B2
7518952 Padden et al. Apr 2009 B1
7519323 Mohebbi et al. Apr 2009 B2
7522115 Waltman et al. Apr 2009 B2
7522812 Zitting Apr 2009 B2
7525501 Black et al. Apr 2009 B2
7525504 Song et al. Apr 2009 B1
7531803 Mittleman et al. May 2009 B2
7532792 Skovgaard et al. May 2009 B2
7535867 Kilfoyle et al. May 2009 B1
7539381 Li et al. May 2009 B2
7541981 Piskun et al. Jun 2009 B2
7545818 Chen et al. Jun 2009 B2
7546214 Rivers, Jr. et al. Jun 2009 B2
7548212 Chekroun et al. Jun 2009 B2
7551921 Petermann et al. Jun 2009 B2
7554998 Simonsson et al. Jun 2009 B2
7555182 Martin et al. Jun 2009 B2
7555186 De et al. Jun 2009 B2
7555187 Bickham et al. Jun 2009 B2
7557563 Cowan et al. Jul 2009 B2
7561025 Gerszberg et al. Jul 2009 B2
7567154 Elmore Jul 2009 B2
7567740 Bayindir et al. Jul 2009 B2
7570137 Kintis et al. Aug 2009 B2
7570470 Holley Aug 2009 B2
7577398 Tennant et al. Aug 2009 B2
7580643 Moore et al. Aug 2009 B2
7581702 Wheeler et al. Sep 2009 B2
7583074 Lynch et al. Sep 2009 B1
7583233 Goldberg et al. Sep 2009 B2
7584470 Barker et al. Sep 2009 B2
7589470 Oksuz et al. Sep 2009 B2
7589630 Drake et al. Sep 2009 B2
7589686 Balzovsky et al. Sep 2009 B2
7590404 Johnson Sep 2009 B1
7591020 Kammer et al. Sep 2009 B2
7591792 Bouton et al. Sep 2009 B2
7593067 Taguchi et al. Sep 2009 B2
7596222 Jonas et al. Sep 2009 B2
7598844 Corcoran et al. Oct 2009 B2
7602333 Hiramatsu et al. Oct 2009 B2
7602815 Houghton et al. Oct 2009 B2
7605768 Ebling et al. Oct 2009 B2
7620370 Barak et al. Nov 2009 B2
7625131 Zienkewicz et al. Dec 2009 B2
7626489 Berkman et al. Dec 2009 B2
7626542 Kober et al. Dec 2009 B2
7627300 Abramov et al. Dec 2009 B2
7633442 Lynch et al. Dec 2009 B2
7634250 Prasad et al. Dec 2009 B1
7639201 Marklein et al. Dec 2009 B2
7640562 Bouilloux-Lafont et al. Dec 2009 B2
7640581 Brenton et al. Dec 2009 B1
7653363 Karr et al. Jan 2010 B2
RE41147 Pang et al. Feb 2010 E
7656167 McLean et al. Feb 2010 B1
7656358 Haziza et al. Feb 2010 B2
7660244 Kadaba et al. Feb 2010 B2
7660252 Huang et al. Feb 2010 B1
7660328 Oz et al. Feb 2010 B1
7664117 Lou et al. Feb 2010 B2
7669049 Wang et al. Feb 2010 B2
7671701 Radtke Mar 2010 B2
7671820 Tokoro et al. Mar 2010 B2
7672271 Lee et al. Mar 2010 B2
7676679 Weis et al. Mar 2010 B2
7680478 Willars et al. Mar 2010 B2
7680516 Lovberg et al. Mar 2010 B2
7680561 Rodgers et al. Mar 2010 B2
7683848 Musch et al. Mar 2010 B2
7684383 Thompson et al. Mar 2010 B1
7693079 Cerami et al. Apr 2010 B2
7693162 McKenna et al. Apr 2010 B2
7693939 Wu et al. Apr 2010 B2
7697417 Chen et al. Apr 2010 B2
7701931 Kajiwara Apr 2010 B2
7705747 Twitchell, Jr. Apr 2010 B2
7710346 Bloss et al. May 2010 B2
7714536 Silberg et al. May 2010 B1
7714709 Daniel et al. May 2010 B1
7714725 Medve et al. May 2010 B2
7715672 Dong et al. May 2010 B2
7716660 Mackay et al. May 2010 B2
7724782 Wang et al. May 2010 B2
7728772 Mortazawi et al. Jun 2010 B2
7729285 Yoon et al. Jun 2010 B2
7733094 Bright et al. Jun 2010 B2
7734717 Saarimäki et al. Jun 2010 B2
7737903 Rao et al. Jun 2010 B1
7739402 Graham et al. Jun 2010 B2
7743403 McCarty et al. Jun 2010 B2
7747356 Andarawis et al. Jun 2010 B2
7747774 Aaron et al. Jun 2010 B2
7750244 Melding et al. Jul 2010 B1
7750763 Praßmayer et al. Jul 2010 B2
7751054 Backes et al. Jul 2010 B2
7760978 Fishteyn et al. Jul 2010 B2
7761079 Mollenkopf et al. Jul 2010 B2
7764943 Radtke et al. Jul 2010 B2
7773664 Myers et al. Aug 2010 B2
7782156 Woods et al. Aug 2010 B2
7783195 Riggsby et al. Aug 2010 B2
7786894 Polk et al. Aug 2010 B2
7786945 Baldauf et al. Aug 2010 B2
7786946 Diaz et al. Aug 2010 B2
7791549 Clymer et al. Sep 2010 B2
7792016 Arai et al. Sep 2010 B2
7795877 Radtke et al. Sep 2010 B2
7795994 Radtke et al. Sep 2010 B2
7796025 Berkman et al. Sep 2010 B2
7796122 Shih et al. Sep 2010 B2
7796890 Johnson Sep 2010 B1
7797367 Girod et al. Sep 2010 B1
7805029 Bayindir et al. Sep 2010 B2
7808441 Parsche et al. Oct 2010 B2
7809223 Miyabe et al. Oct 2010 B2
7812686 Woods et al. Oct 2010 B2
7812778 Hasegawa et al. Oct 2010 B2
7813344 Cheswick Oct 2010 B2
7817063 Hawkins et al. Oct 2010 B2
7825793 Spillman et al. Nov 2010 B1
7825867 Tuttle et al. Nov 2010 B2
7826602 Hunyady et al. Nov 2010 B1
7827610 Wang et al. Nov 2010 B2
7830228 Evans et al. Nov 2010 B2
7834270 Zhu et al. Nov 2010 B2
7835128 Divan et al. Nov 2010 B2
7835600 Yap et al. Nov 2010 B1
7843375 Rennie et al. Nov 2010 B1
7844081 McMakin et al. Nov 2010 B2
7848517 Britz et al. Dec 2010 B2
7852752 Kano Dec 2010 B2
7852837 Au et al. Dec 2010 B1
7853267 Jensen et al. Dec 2010 B2
7855612 Zienkewicz et al. Dec 2010 B2
7856007 Corcoran et al. Dec 2010 B2
7869391 Lee et al. Jan 2011 B2
7872610 Motzer et al. Jan 2011 B2
7872611 Müller et al. Jan 2011 B2
7873249 Kachmar et al. Jan 2011 B2
7876174 Radtke et al. Jan 2011 B2
7884285 Spencer Feb 2011 B2
7884648 Broyde et al. Feb 2011 B2
7885542 Riggsby et al. Feb 2011 B2
7889129 Fox et al. Feb 2011 B2
7889148 Diaz et al. Feb 2011 B2
7889149 Peebles et al. Feb 2011 B2
7890053 Washiro Feb 2011 B2
7893789 Paynter et al. Feb 2011 B2
7894770 Washiro et al. Feb 2011 B2
7898480 Rebeiz et al. Mar 2011 B2
7899403 Aaron Mar 2011 B2
7903918 Bickham et al. Mar 2011 B1
7903972 Riggsby et al. Mar 2011 B2
7906973 Orr et al. Mar 2011 B1
7907097 Syed et al. Mar 2011 B2
7915980 Hardacker et al. Mar 2011 B2
7916081 Lakkis et al. Mar 2011 B2
7928750 Miller et al. Apr 2011 B2
7929940 Dianda et al. Apr 2011 B1
7930750 Gauvin et al. Apr 2011 B1
7937699 Schneider et al. May 2011 B2
7940207 Kienzle et al. May 2011 B1
7940731 Gao et al. May 2011 B2
7956818 Hsu et al. Jun 2011 B1
7958120 Muntz et al. Jun 2011 B2
7961710 Lee et al. Jun 2011 B2
7962957 Keohane et al. Jun 2011 B2
7965842 Whelan et al. Jun 2011 B2
7970365 Martin et al. Jun 2011 B2
7970937 Shuster et al. Jun 2011 B2
7971053 Gibson, Sr. et al. Jun 2011 B2
7973296 Quick et al. Jul 2011 B2
7974387 Lutz et al. Jul 2011 B2
7983740 Culver et al. Jul 2011 B2
7986711 Horvath et al. Jul 2011 B2
7990146 Lazar et al. Aug 2011 B2
7990329 Deng et al. Aug 2011 B2
7991877 Keohane et al. Aug 2011 B2
7992014 Langgood et al. Aug 2011 B2
7994996 Rebeiz et al. Aug 2011 B2
7994999 Maeda et al. Aug 2011 B2
7997546 Andersen et al. Aug 2011 B1
8010116 Scheinert Aug 2011 B2
8013694 Sagala et al. Sep 2011 B2
8019288 Yu et al. Sep 2011 B2
8022885 Smoyer et al. Sep 2011 B2
8022887 Zarnaghi et al. Sep 2011 B1
8023410 O'Neill et al. Sep 2011 B2
8027391 Matsubara et al. Sep 2011 B2
8036207 Chen et al. Oct 2011 B2
8049576 Broyde et al. Nov 2011 B2
8054199 Addy et al. Nov 2011 B2
8059576 Vavik et al. Nov 2011 B2
8059593 Shih et al. Nov 2011 B2
8060308 Breed et al. Nov 2011 B2
8063832 Weller et al. Nov 2011 B1
8064744 Atkins et al. Nov 2011 B2
8064944 Yun et al. Nov 2011 B2
8065099 Gibala et al. Nov 2011 B2
8069483 Matlock et al. Nov 2011 B1
8072323 Kodama et al. Dec 2011 B2
8072386 Lier et al. Dec 2011 B2
8073810 Maes Dec 2011 B2
8077049 Yaney et al. Dec 2011 B2
8077113 Renilson et al. Dec 2011 B2
8081854 Yoon et al. Dec 2011 B2
8089356 Moore et al. Jan 2012 B2
8089404 Nichols et al. Jan 2012 B2
8089952 Spade et al. Jan 2012 B2
8090258 DeLew et al. Jan 2012 B2
8090379 Lambert et al. Jan 2012 B2
8094081 Boone et al. Jan 2012 B1
8094985 Imamura et al. Jan 2012 B2
8095093 Takinami et al. Jan 2012 B2
8098198 Thiesen et al. Jan 2012 B2
8102324 Tuau et al. Jan 2012 B2
8102779 Kim et al. Jan 2012 B2
8106749 Ina et al. Jan 2012 B2
8106849 Suddath et al. Jan 2012 B2
RE43163 Anderson Feb 2012 E
8111148 Parker et al. Feb 2012 B2
8112649 Potkonjak et al. Feb 2012 B2
8116598 Shutter et al. Feb 2012 B2
8120488 Bloy et al. Feb 2012 B2
8121624 Cai et al. Feb 2012 B2
8125282 Bao et al. Feb 2012 B2
8125399 McKinzie et al. Feb 2012 B2
8126393 Wu et al. Feb 2012 B2
8129817 Jou et al. Mar 2012 B2
8131125 Molin et al. Mar 2012 B2
8131266 Cai et al. Mar 2012 B2
8132239 Wahl Mar 2012 B2
8134424 Kato et al. Mar 2012 B2
8134458 Lund Mar 2012 B2
8135050 Stadler et al. Mar 2012 B1
8140113 Rofougaran et al. Mar 2012 B2
8150311 Hart et al. Apr 2012 B2
8151306 Rakib Apr 2012 B2
8156520 Casagrande et al. Apr 2012 B2
8159316 Miyazato et al. Apr 2012 B2
8159342 Medina, III et al. Apr 2012 B1
8159385 Farneth et al. Apr 2012 B2
8159394 Hayes et al. Apr 2012 B2
8159742 McKay et al. Apr 2012 B2
8159933 Henry Apr 2012 B2
8159955 Larsson et al. Apr 2012 B2
8160064 Kokernak et al. Apr 2012 B2
8160530 Corman et al. Apr 2012 B2
8160825 Roe, Jr. et al. Apr 2012 B1
8164531 Lier et al. Apr 2012 B2
8171146 Chen et al. May 2012 B2
8172173 Carlson et al. May 2012 B2
8173943 Vilo et al. May 2012 B2
8175535 Mu et al. May 2012 B2
8175649 Saban May 2012 B2
8179787 Knapp et al. May 2012 B2
8180917 Yan et al. May 2012 B1
8184015 Lilien et al. May 2012 B2
8184059 Bunch et al. May 2012 B2
8184311 Sakai et al. May 2012 B2
8184523 Belotserkovsky et al. May 2012 B2
8185062 Rofougaran et al. May 2012 B2
8188855 Sharma et al. May 2012 B2
8199762 Michelson et al. Jun 2012 B2
8203501 Kim et al. Jun 2012 B2
8212635 Miller, II et al. Jul 2012 B2
8212722 Ngo et al. Jul 2012 B2
8213758 Dong et al. Jul 2012 B2
8218929 Bickham et al. Jul 2012 B2
8222919 Broyde et al. Jul 2012 B2
8222977 Oyama et al. Jul 2012 B2
8225379 van de Groenendaal et al. Jul 2012 B2
8233905 Vaswani et al. Jul 2012 B2
8237617 Johnson et al. Aug 2012 B1
8238824 Washiro Aug 2012 B2
8238840 Iio et al. Aug 2012 B2
8242358 Park et al. Aug 2012 B2
8243603 Gossain et al. Aug 2012 B2
8249028 Porras et al. Aug 2012 B2
8251307 Goossen et al. Aug 2012 B2
8253516 Miller, II et al. Aug 2012 B2
8255952 Boylan, III et al. Aug 2012 B2
8258743 Tyler et al. Sep 2012 B2
8259028 Hills et al. Sep 2012 B2
8264417 Snow et al. Sep 2012 B2
8269583 Miller, II et al. Sep 2012 B2
8284102 Hayes et al. Oct 2012 B2
8287323 Kiesow et al. Oct 2012 B2
8295301 Yonge, III et al. Oct 2012 B2
8300538 Kim et al. Oct 2012 B2
8300640 Al-Banna et al. Oct 2012 B2
8316228 Winslow et al. Nov 2012 B2
8316364 Stein et al. Nov 2012 B2
8324990 Vouloumanos Dec 2012 B2
8325034 Moore et al. Dec 2012 B2
8325636 Binder Dec 2012 B2
8325693 Binder et al. Dec 2012 B2
8330259 Soler et al. Dec 2012 B2
8335596 Raman et al. Dec 2012 B2
8340438 Anderson et al. Dec 2012 B2
8343145 Brannan et al. Jan 2013 B2
8344829 Miller, II et al. Jan 2013 B2
8354970 Armbrecht et al. Jan 2013 B2
8359124 Zhou et al. Jan 2013 B2
8362775 Speckner et al. Jan 2013 B2
8363313 Nakaguma et al. Jan 2013 B2
8369667 Rose et al. Feb 2013 B2
8373095 Huynh et al. Feb 2013 B2
8373597 Schadler et al. Feb 2013 B2
8374821 Rousselle et al. Feb 2013 B2
8384600 Huang et al. Feb 2013 B2
8385978 Leung et al. Feb 2013 B2
8386198 Lancaster Feb 2013 B2
8390307 Slupsky et al. Mar 2013 B2
8390402 Kunes et al. Mar 2013 B2
8405567 Park et al. Mar 2013 B2
8406239 Hurwitz et al. Mar 2013 B2
8406593 Molin et al. Mar 2013 B2
8407687 Moshir et al. Mar 2013 B2
8412130 Suematsu et al. Apr 2013 B2
8414326 Bowman Apr 2013 B2
8415884 Chen et al. Apr 2013 B2
8428033 Hettstedt et al. Apr 2013 B2
8433168 Filippov et al. Apr 2013 B2
8433338 Flynn et al. Apr 2013 B1
8434103 Tsuchida et al. Apr 2013 B2
8437383 Wiwel et al. May 2013 B2
8452101 Ishikawa et al. May 2013 B2
8452555 Hayward et al. May 2013 B2
8457027 Dougherty et al. Jun 2013 B2
8458453 Mahalingaiah Jun 2013 B1
8462063 Gummalla et al. Jun 2013 B2
8467363 Lea et al. Jun 2013 B2
8468244 Redlich et al. Jun 2013 B2
8471513 Han Jun 2013 B2
8472327 DelRegno et al. Jun 2013 B2
8484137 Johnson et al. Jul 2013 B2
8484511 Tidwell et al. Jul 2013 B2
8495718 Han et al. Jul 2013 B2
8497749 Elmore Jul 2013 B2
8503845 Winzer et al. Aug 2013 B2
8504135 Bourqui et al. Aug 2013 B2
8505057 Rogers Aug 2013 B2
8509114 Szajdecki Aug 2013 B1
8514980 Kuhtz Aug 2013 B2
8515383 Prince et al. Aug 2013 B2
8516129 Skene et al. Aug 2013 B1
8516470 Joshi et al. Aug 2013 B1
8516474 Lamba et al. Aug 2013 B2
8519892 Ding et al. Aug 2013 B2
8520578 Rayment et al. Aug 2013 B2
8520636 Xu Aug 2013 B2
8520931 Tateno et al. Aug 2013 B2
8528059 Saluzzo et al. Sep 2013 B1
8532023 Buddhikot et al. Sep 2013 B2
8532046 Hu et al. Sep 2013 B2
8532492 Sadowski et al. Sep 2013 B2
8536857 Nero, Jr. et al. Sep 2013 B2
8537068 Call et al. Sep 2013 B2
8537705 Afkhamie et al. Sep 2013 B2
8538428 Bartlett et al. Sep 2013 B2
8539540 Zenoni Sep 2013 B2
8539569 Mansour Sep 2013 B2
8542968 Dong et al. Sep 2013 B2
8545322 George et al. Oct 2013 B2
8548294 Toge et al. Oct 2013 B2
8553646 Kumar Oct 2013 B2
8561104 Dow et al. Oct 2013 B1
8561181 Sobel et al. Oct 2013 B1
8565568 Bigot-Astruc et al. Oct 2013 B2
8566058 Pupalaikis et al. Oct 2013 B2
8572247 Larson et al. Oct 2013 B2
8572639 Ficco Oct 2013 B2
8572661 Strong et al. Oct 2013 B2
8578076 van der Linden et al. Nov 2013 B2
8578486 Lifliand et al. Nov 2013 B2
8582502 Conte et al. Nov 2013 B2
8584195 Sherlock et al. Nov 2013 B2
8587490 Niver et al. Nov 2013 B2
8587492 Runyon et al. Nov 2013 B2
8588567 Kamps et al. Nov 2013 B2
8588840 Truong et al. Nov 2013 B2
8588991 Forbes, Jr. Nov 2013 B1
8593238 Miller, II et al. Nov 2013 B2
8594956 McBee et al. Nov 2013 B2
8595141 Hao et al. Nov 2013 B2
8599150 Philipp Dec 2013 B2
8600602 Watson et al. Dec 2013 B1
8604982 Gummalla et al. Dec 2013 B2
8604999 Abumrad et al. Dec 2013 B2
8605361 Batchko et al. Dec 2013 B2
8605579 Abraham et al. Dec 2013 B2
8612550 Yoo et al. Dec 2013 B2
8613020 Knudson et al. Dec 2013 B2
8615190 Lu Dec 2013 B2
8625547 Miller et al. Jan 2014 B1
8629811 Gaynor et al. Jan 2014 B2
8639260 Fox et al. Jan 2014 B2
8639390 Tamarkin et al. Jan 2014 B2
8639934 Kruglick Jan 2014 B2
8644219 Nishizaka et al. Feb 2014 B2
8653906 Mahon et al. Feb 2014 B2
8654034 Legare Feb 2014 B2
8655396 Malladi et al. Feb 2014 B2
8656458 Heffez et al. Feb 2014 B2
8660526 Heiderscheit et al. Feb 2014 B1
8660698 Phillips et al. Feb 2014 B2
8665102 Salewske et al. Mar 2014 B2
8666553 Phillips et al. Mar 2014 B2
8670946 Salazar et al. Mar 2014 B2
8674630 Cornelius et al. Mar 2014 B1
8676186 Niu Mar 2014 B2
8680450 Pritchard et al. Mar 2014 B2
8680706 Zyren et al. Mar 2014 B2
8681463 Franks et al. Mar 2014 B2
8686911 Kim et al. Apr 2014 B2
8687650 King Apr 2014 B2
8688153 Komori et al. Apr 2014 B2
8699454 Hapsari et al. Apr 2014 B2
8699461 Qian et al. Apr 2014 B2
8705925 Terada et al. Apr 2014 B2
8706026 Truong et al. Apr 2014 B2
8707432 Rathi et al. Apr 2014 B1
8711538 Woodworth et al. Apr 2014 B2
8711732 Johnson et al. Apr 2014 B2
8711806 Lim et al. Apr 2014 B2
8711857 Jackson et al. Apr 2014 B2
8712200 Abernathy et al. Apr 2014 B1
8719938 Demeter et al. May 2014 B2
8723730 Lu et al. May 2014 B2
8724102 Urban et al. May 2014 B2
8729857 Stählin et al. May 2014 B2
8731358 Pare et al. May 2014 B2
8732476 Van et al. May 2014 B1
8736502 Mehr et al. May 2014 B1
8737793 Imamura et al. May 2014 B2
8738318 Spillane May 2014 B2
8742997 McPeak et al. Jun 2014 B2
8743004 Haziza Jun 2014 B2
8749449 Caldwell et al. Jun 2014 B2
8750097 Maenpaa et al. Jun 2014 B2
8750664 Huang et al. Jun 2014 B2
8754852 Lee et al. Jun 2014 B2
8755659 Imamura et al. Jun 2014 B2
8760354 Flannery et al. Jun 2014 B2
8761792 Sennett et al. Jun 2014 B2
8763097 Bhatnagar et al. Jun 2014 B2
8766657 DeJean et al. Jul 2014 B2
8767071 Marshall Jul 2014 B1
8769622 Chang et al. Jul 2014 B2
8773312 Diaz et al. Jul 2014 B1
8780012 Llombart Juan et al. Jul 2014 B2
8782195 Foti Jul 2014 B2
8786284 Sirigiri et al. Jul 2014 B2
8786514 Dickie et al. Jul 2014 B2
8789091 Eldering et al. Jul 2014 B2
8792760 Choi et al. Jul 2014 B2
8792933 Chen et al. Jul 2014 B2
8793363 Sater et al. Jul 2014 B2
8793742 Macrae et al. Jul 2014 B2
8797207 Kienzle et al. Aug 2014 B2
8797848 Kim et al. Aug 2014 B2
8804667 Wang Aug 2014 B2
8806202 Shoemake et al. Aug 2014 B2
8810404 Bertoncini et al. Aug 2014 B2
8810421 Deaver, Sr. et al. Aug 2014 B2
8810468 Cannon et al. Aug 2014 B2
8811278 Hori et al. Aug 2014 B2
8811912 Austin et al. Aug 2014 B2
8812050 Bencheikh et al. Aug 2014 B1
8812154 Vian et al. Aug 2014 B2
8817741 Shaheen Aug 2014 B2
8824380 Jetcheva et al. Sep 2014 B2
8825239 Cooper et al. Sep 2014 B2
8829934 Sellathamby et al. Sep 2014 B2
8830112 Buehler et al. Sep 2014 B1
8831506 Claret et al. Sep 2014 B2
8836503 Girod et al. Sep 2014 B2
8836607 Cook et al. Sep 2014 B2
8839350 Shapcott et al. Sep 2014 B1
8847840 Diaz et al. Sep 2014 B1
8847846 Diaz et al. Sep 2014 B1
8856239 Oliver et al. Oct 2014 B1
8856530 Lamberg et al. Oct 2014 B2
8863245 Abhyanker Oct 2014 B1
8866691 Montgomery et al. Oct 2014 B2
8866695 Jefferson et al. Oct 2014 B2
8867226 Colomb et al. Oct 2014 B2
8867798 Shuster Oct 2014 B2
8872032 Su et al. Oct 2014 B2
8875224 Gross et al. Oct 2014 B2
8878740 Coupland et al. Nov 2014 B2
8880765 Seal et al. Nov 2014 B2
8881588 Baer et al. Nov 2014 B2
8885689 Blasco et al. Nov 2014 B2
8886229 Agrawal et al. Nov 2014 B2
8887212 Dua Nov 2014 B2
8890759 Pantea et al. Nov 2014 B2
8893246 El-Moussa et al. Nov 2014 B2
8897215 Hazani et al. Nov 2014 B2
8897499 Rekimoto Nov 2014 B2
8897695 Becker et al. Nov 2014 B2
8897697 Bennett Nov 2014 B1
8901916 Rodriguez et al. Dec 2014 B2
8903214 Alkeskjold Dec 2014 B2
8907222 Stranskky Dec 2014 B2
8907845 Jones Dec 2014 B2
8908502 Hayashitani Dec 2014 B2
8908573 Wang et al. Dec 2014 B1
8913862 Emmerich et al. Dec 2014 B1
8917210 Shamim et al. Dec 2014 B2
8917215 Pohl Dec 2014 B2
8917964 Blew et al. Dec 2014 B2
8918108 Van et al. Dec 2014 B2
8918135 Kang et al. Dec 2014 B2
8922447 Gao et al. Dec 2014 B2
8925079 Miyake et al. Dec 2014 B2
8929841 Rofougaran et al. Jan 2015 B2
8934747 Smith et al. Jan 2015 B2
8937577 Gerini et al. Jan 2015 B2
8938144 Hennink et al. Jan 2015 B2
8938255 Dalla et al. Jan 2015 B2
8941912 Ichii et al. Jan 2015 B2
8947258 Reid et al. Feb 2015 B2
8948235 Proctor, Jr. et al. Feb 2015 B2
8948690 Duerksen et al. Feb 2015 B2
8952678 Giboney et al. Feb 2015 B2
8955051 Marzii Feb 2015 B2
8955075 Smith et al. Feb 2015 B2
8957818 Chen et al. Feb 2015 B2
8957821 Matyas et al. Feb 2015 B1
8958356 Lu et al. Feb 2015 B2
8958665 Ziari et al. Feb 2015 B2
8958812 Weiguo Feb 2015 B2
8958980 Hagan et al. Feb 2015 B2
8963424 Neilson et al. Feb 2015 B1
8963790 Brown et al. Feb 2015 B2
8964433 Hai-Maharsi Feb 2015 B2
8966609 Lee et al. Feb 2015 B2
8968287 Shroff et al. Mar 2015 B2
8970438 Hager et al. Mar 2015 B2
8984113 Li et al. Mar 2015 B2
8989788 Kim et al. Mar 2015 B2
8994473 Levi et al. Mar 2015 B2
8994474 Mahon et al. Mar 2015 B2
8996188 Frader-thompson et al. Mar 2015 B2
8996728 Cochinwala et al. Mar 2015 B2
9000353 Seo et al. Apr 2015 B2
9001689 Ponnampalam et al. Apr 2015 B1
9001717 Chun et al. Apr 2015 B2
9003492 Katar Apr 2015 B2
9008208 Khandani Apr 2015 B2
9008513 Kim et al. Apr 2015 B2
9009460 Chen Apr 2015 B2
9013361 Lam et al. Apr 2015 B1
9014621 Mohebbi Apr 2015 B2
9015139 Wong Apr 2015 B2
9015467 Buer Apr 2015 B2
9019164 Syed et al. Apr 2015 B2
9019595 Jain et al. Apr 2015 B2
9019846 Shetty et al. Apr 2015 B2
9019892 Zhou et al. Apr 2015 B2
9020555 Sheik et al. Apr 2015 B2
9021251 Chawla Apr 2015 B2
9021575 Martini Apr 2015 B2
RE45514 Brown May 2015 E
9024831 Wang et al. May 2015 B2
9031725 Diesposti et al. May 2015 B1
9037516 Abhyanker May 2015 B2
9042245 Tzannes et al. May 2015 B2
9042812 Bennett et al. May 2015 B1
9054782 Hunter et al. Jun 2015 B2
9065172 Lewry et al. Jun 2015 B2
9065177 Alexopoulos Jun 2015 B2
9066224 Schwengler Jun 2015 B2
9070962 Kobayashi Jun 2015 B2
9070964 Schuss et al. Jun 2015 B1
9079349 Slafer Jul 2015 B2
9082307 Sharawi Jul 2015 B2
9083083 Hills et al. Jul 2015 B2
9083425 Moussouris et al. Jul 2015 B1
9083581 Addepalli et al. Jul 2015 B1
9084124 Nickel et al. Jul 2015 B2
9092962 Merrill et al. Jul 2015 B1
9092963 Fetzer et al. Jul 2015 B2
9094407 Matthieu Jul 2015 B1
9094840 Liu et al. Jul 2015 B2
9098325 Reddin Aug 2015 B2
9099787 Blech Aug 2015 B2
9103864 Ali Aug 2015 B2
9105981 Syed Aug 2015 B2
9106617 Kshirsagar et al. Aug 2015 B2
9112281 Bresciani et al. Aug 2015 B2
9113347 Paul Shala Aug 2015 B2
9119127 Henry et al. Aug 2015 B1
9119179 Firoiu et al. Aug 2015 B1
9128941 Shulman Sep 2015 B2
9130641 Mohebbi Sep 2015 B2
9134945 Husain Sep 2015 B2
9137485 Bar-Niv et al. Sep 2015 B2
9142334 Muto et al. Sep 2015 B2
9143084 Perez et al. Sep 2015 B2
9143196 Schwengler Sep 2015 B2
9148186 Murphy et al. Sep 2015 B1
9154641 Shaw Oct 2015 B2
9157954 Nickel Oct 2015 B2
9158418 Oda et al. Oct 2015 B2
9158427 Wang Oct 2015 B1
9167535 Christoffersson et al. Oct 2015 B2
9171458 Salter Oct 2015 B2
9173217 Teng et al. Oct 2015 B2
9178282 Mittleman et al. Nov 2015 B2
9194930 Pupalaikis Nov 2015 B2
9201556 Free et al. Dec 2015 B2
9202371 Jain Dec 2015 B2
9203149 Henderson et al. Dec 2015 B2
9204112 Pasteris et al. Dec 2015 B2
9204418 Siomina et al. Dec 2015 B2
9207168 Lovely et al. Dec 2015 B2
9209902 Willis, III et al. Dec 2015 B2
9210192 Pathuri et al. Dec 2015 B1
9210586 Catovic et al. Dec 2015 B2
9213905 Lange et al. Dec 2015 B2
9219307 Takahashi et al. Dec 2015 B2
9219594 Khlat Dec 2015 B2
9225396 Maltsev et al. Dec 2015 B2
9229956 Ke et al. Jan 2016 B2
9235763 Brown et al. Jan 2016 B2
9240835 Cune et al. Jan 2016 B2
9244117 Khan et al. Jan 2016 B2
9246231 Ju Jan 2016 B2
9246334 Lo et al. Jan 2016 B2
9253588 Schmidt et al. Feb 2016 B2
9260244 Cohn Feb 2016 B1
9264204 Seo et al. Feb 2016 B2
9265078 Lim et al. Feb 2016 B2
9270013 Ley Feb 2016 B2
9271185 Abdelmonem et al. Feb 2016 B2
9276303 Chang et al. Mar 2016 B2
9276304 Behan et al. Mar 2016 B2
9277331 Chao et al. Mar 2016 B2
9281564 Vincent Mar 2016 B2
9282144 Tebay et al. Mar 2016 B2
9285461 Townley et al. Mar 2016 B2
9287605 Daughenbaugh et al. Mar 2016 B2
9288844 Akhavan-saraf et al. Mar 2016 B1
9289177 Samsudin et al. Mar 2016 B2
9293798 Ye Mar 2016 B2
9293801 Courtney et al. Mar 2016 B2
9302770 Cohen et al. Apr 2016 B2
9306682 Singh Apr 2016 B2
9312919 Barzegar et al. Apr 2016 B1
9312929 Forenza et al. Apr 2016 B2
9315663 Appleby Apr 2016 B2
9319311 Wang et al. Apr 2016 B2
9324003 France et al. Apr 2016 B2
9324020 Nazarov Apr 2016 B2
9325067 Ali et al. Apr 2016 B2
9325516 Frei et al. Apr 2016 B2
9326316 Yonge et al. Apr 2016 B2
9334052 Ubhi et al. May 2016 B2
9337895 Turner et al. May 2016 B2
9338823 Saban et al. May 2016 B2
9346560 Wang May 2016 B2
9350063 Herbsommer et al. May 2016 B2
9351182 Elliott et al. May 2016 B2
9356358 Hu et al. May 2016 B2
9362629 Miller et al. Jun 2016 B2
9363333 Basso et al. Jun 2016 B2
9363690 Suthar et al. Jun 2016 B1
9363761 Venkatraman Jun 2016 B2
9366743 Doshi et al. Jun 2016 B2
9368275 McBee et al. Jun 2016 B2
9369177 Hui et al. Jun 2016 B2
9372228 Gavin et al. Jun 2016 B2
9379527 Jean et al. Jun 2016 B2
9379556 Haensgen et al. Jul 2016 B2
9380857 Davis et al. Jul 2016 B2
9391874 Corti et al. Jul 2016 B2
9393683 Kimberlin et al. Jul 2016 B2
9394716 Butler et al. Jul 2016 B2
9397380 Kudela et al. Jul 2016 B2
9400941 Meier et al. Jul 2016 B2
9401863 Hui et al. Jul 2016 B2
9404750 Rios et al. Aug 2016 B2
9413519 Khoshnood et al. Aug 2016 B2
9414126 Zinevich Aug 2016 B1
9417731 Premont et al. Aug 2016 B2
9419712 Heidler Aug 2016 B2
9421869 Ananthanarayanan et al. Aug 2016 B1
9422139 Bialkowski et al. Aug 2016 B1
9432478 Gibbon et al. Aug 2016 B2
9432865 Jadunandan et al. Aug 2016 B1
9439092 Chukka et al. Sep 2016 B1
9443417 Wang Sep 2016 B2
9458974 Townsend, Jr. et al. Oct 2016 B2
9459746 Zarraga et al. Oct 2016 B2
9461706 Bennett et al. Oct 2016 B1
9465397 Forbes, Jr. et al. Oct 2016 B2
9467219 Vilhar Oct 2016 B2
9467870 Bennett Oct 2016 B2
9476932 Furse et al. Oct 2016 B2
9478865 Willis et al. Oct 2016 B1
9479241 Pabla Oct 2016 B2
9479266 Henry et al. Oct 2016 B2
9479299 Kim et al. Oct 2016 B2
9479392 Anderson et al. Oct 2016 B2
9479535 Cohen et al. Oct 2016 B2
9490869 Henry Nov 2016 B1
9490913 Berlin Nov 2016 B2
9495037 King-Smith Nov 2016 B2
9496921 Corum Nov 2016 B1
9497572 Britt et al. Nov 2016 B2
9503170 Vu Nov 2016 B2
9503189 Henry et al. Nov 2016 B2
9509415 Henry et al. Nov 2016 B1
9510203 Jactat et al. Nov 2016 B2
9515367 Herbsommer et al. Dec 2016 B2
9520945 Gerszberg et al. Dec 2016 B2
9525524 Barzegar et al. Dec 2016 B2
9544006 Henry et al. Jan 2017 B2
9564947 Stuckman et al. Feb 2017 B2
9577306 Willis, III et al. Feb 2017 B2
9608740 Henry et al. Mar 2017 B2
9627768 Henry et al. Apr 2017 B2
9628854 Fuchs et al. Apr 2017 B2
9635619 Liu et al. Apr 2017 B2
9640850 Henry et al. May 2017 B2
9653770 Henry et al. May 2017 B2
9653816 Ferreri et al. May 2017 B2
9680670 Henry et al. Jun 2017 B2
9705561 Henry et al. Jul 2017 B2
9705571 Gerszberg et al. Jul 2017 B2
9742462 Bennett et al. Aug 2017 B2
9748626 Henry et al. Aug 2017 B2
9749053 Henry et al. Aug 2017 B2
9768833 Fuchs et al. Sep 2017 B2
9769020 Henry et al. Sep 2017 B2
9780834 Henry et al. Oct 2017 B2
9793951 Henry et al. Oct 2017 B2
9793954 Bennett et al. Oct 2017 B2
9847566 Henry et al. Dec 2017 B2
9853342 Henry et al. Dec 2017 B2
9860075 Gerszberg et al. Jan 2018 B1
9865911 Henry et al. Jan 2018 B2
9866309 Bennett et al. Jan 2018 B2
9871282 Henry et al. Jan 2018 B2
9871283 Henry et al. Jan 2018 B2
9876264 Barnickel et al. Jan 2018 B2
9876570 Henry et al. Jan 2018 B2
9876605 Henry et al. Jan 2018 B1
9882257 Henry et al. Jan 2018 B2
9893795 Willis et al. Feb 2018 B1
9912381 Bennett et al. Mar 2018 B2
9917341 Henry et al. Mar 2018 B2
9991580 Henry et al. Jun 2018 B2
9997819 Bennett et al. Jun 2018 B2
9998172 Barzegar et al. Jun 2018 B1
9998870 Bennett et al. Jun 2018 B1
9999038 Barzegar et al. Jun 2018 B2
10003364 Willis, III et al. Jun 2018 B1
10009063 Gerszberg et al. Jun 2018 B2
10009065 Henry et al. Jun 2018 B2
10009901 Gerszberg Jun 2018 B2
10027397 Kim Jul 2018 B2
10027427 Vannucci et al. Jul 2018 B2
10033107 Henry et al. Jul 2018 B2
10033108 Henry et al. Jul 2018 B2
10044409 Barzegar et al. Aug 2018 B2
10051483 Barzegar et al. Aug 2018 B2
10051488 Vannucci et al. Aug 2018 B1
10062970 Vannucci et al. Aug 2018 B1
10069535 Vannucci et al. Sep 2018 B2
10079661 Gerszberg et al. Sep 2018 B2
10090606 Henry et al. Oct 2018 B2
10096883 Henry et al. Oct 2018 B2
10103777 Henry et al. Oct 2018 B1
10103801 Bennett et al. Oct 2018 B2
10123217 Barzegar et al. Nov 2018 B1
10129057 Willis, III et al. Nov 2018 B2
10135145 Henry et al. Nov 2018 B2
10136434 Gerszberg et al. Nov 2018 B2
10142086 Bennett et al. Nov 2018 B2
10148016 Johnson et al. Dec 2018 B2
10154493 Bennett et al. Dec 2018 B2
10170840 Henry et al. Jan 2019 B2
10171158 Barzegar et al. Jan 2019 B1
20010030789 Jiang et al. Oct 2001 A1
20010045914 Bunker et al. Nov 2001 A1
20020002040 Kline et al. Jan 2002 A1
20020008672 Gothard et al. Jan 2002 A1
20020011960 Yuanzhuet al. Jan 2002 A1
20020021716 Terk et al. Feb 2002 A1
20020024424 Burns et al. Feb 2002 A1
20020027481 Fiedziuszko et al. Mar 2002 A1
20020040439 Kellum et al. Apr 2002 A1
20020057223 Hook et al. May 2002 A1
20020061217 Hillman et al. May 2002 A1
20020069417 Kliger et al. Jun 2002 A1
20020076188 Kimerling et al. Jun 2002 A1
20020083194 Bak et al. Jun 2002 A1
20020091807 Goodman et al. Jul 2002 A1
20020099949 Fries et al. Jul 2002 A1
20020101852 Say et al. Aug 2002 A1
20020111997 Herlihy et al. Aug 2002 A1
20020156917 Nye et al. Oct 2002 A1
20020186694 Mahajan et al. Dec 2002 A1
20020197979 Vanderveen et al. Dec 2002 A1
20030002125 Fuse et al. Jan 2003 A1
20030002476 Chung et al. Jan 2003 A1
20030010528 Niles Jan 2003 A1
20030022694 Olsen et al. Jan 2003 A1
20030038753 Mahon et al. Feb 2003 A1
20030043071 Lilly et al. Mar 2003 A1
20030049003 Ahmad et al. Mar 2003 A1
20030054793 Manis et al. Mar 2003 A1
20030054811 Han et al. Mar 2003 A1
20030061346 Pekary et al. Mar 2003 A1
20030094976 Miyashita et al. May 2003 A1
20030095208 Chouraqui et al. May 2003 A1
20030134660 Himmel et al. Jul 2003 A1
20030137464 Foti et al. Jul 2003 A1
20030151548 Kingsley et al. Aug 2003 A1
20030152331 Dair et al. Aug 2003 A1
20030164794 Haynes et al. Sep 2003 A1
20030188308 Kizuka Oct 2003 A1
20030189974 Ferry et al. Oct 2003 A1
20030190110 Kline et al. Oct 2003 A1
20030193365 Loheit et al. Oct 2003 A1
20030202756 Hurley et al. Oct 2003 A1
20030210197 Cencich et al. Nov 2003 A1
20030224784 Hunt et al. Dec 2003 A1
20040005039 White et al. Jan 2004 A1
20040015725 Boneh et al. Jan 2004 A1
20040023640 Ballai et al. Feb 2004 A1
20040024913 Ikeda et al. Feb 2004 A1
20040037566 Willebrand et al. Feb 2004 A1
20040048596 Wyrzykowska et al. Mar 2004 A1
20040054425 Elmore Mar 2004 A1
20040084582 Kralic et al. May 2004 A1
20040085153 Fukunaga et al. May 2004 A1
20040090312 Manis et al. May 2004 A1
20040091032 Duchi et al. May 2004 A1
20040100343 Tsu et al. May 2004 A1
20040104410 Gilbert et al. Jun 2004 A1
20040108963 Clymer et al. Jun 2004 A1
20040109608 Love et al. Jun 2004 A1
20040110469 Judd et al. Jun 2004 A1
20040113756 Mollenkopf et al. Jun 2004 A1
20040113757 White, II et al. Jun 2004 A1
20040119564 Itoh et al. Jun 2004 A1
20040131310 Walker et al. Jul 2004 A1
20040163135 Giaccherini et al. Aug 2004 A1
20040165669 Otsuka et al. Aug 2004 A1
20040169572 Elmore et al. Sep 2004 A1
20040196784 Larsson et al. Oct 2004 A1
20040198228 Raghothaman et al. Oct 2004 A1
20040208591 Willebrand et al. Oct 2004 A1
20040212481 Abraham et al. Oct 2004 A1
20040213147 Wiese et al. Oct 2004 A1
20040213189 Alspaugh et al. Oct 2004 A1
20040213294 Hughes et al. Oct 2004 A1
20040242185 Lee et al. Dec 2004 A1
20040250069 Kosamo et al. Dec 2004 A1
20040266332 Lang et al. Dec 2004 A1
20050002408 Lee et al. Jan 2005 A1
20050005854 Suzuki et al. Jan 2005 A1
20050017825 Hansen Jan 2005 A1
20050031267 Sumimoto et al. Feb 2005 A1
20050042989 Ho et al. Feb 2005 A1
20050046511 Stenberg et al. Mar 2005 A1
20050063422 Lazar et al. Mar 2005 A1
20050068223 Vavik et al. Mar 2005 A1
20050069321 Sullivan et al. Mar 2005 A1
20050074208 Badcock et al. Apr 2005 A1
20050097396 Wood May 2005 A1
20050102185 Barker et al. May 2005 A1
20050111533 Berkman et al. May 2005 A1
20050141808 Cheben et al. Jun 2005 A1
20050143868 Whelan et al. Jun 2005 A1
20050151659 Donovan et al. Jul 2005 A1
20050159187 Mendolia et al. Jul 2005 A1
20050164666 Lang et al. Jul 2005 A1
20050168326 White et al. Aug 2005 A1
20050169056 Berkman Aug 2005 A1
20050169401 Abraham et al. Aug 2005 A1
20050175113 Okuyama et al. Aug 2005 A1
20050177463 Crutchfield et al. Aug 2005 A1
20050190101 Hiramatsu et al. Sep 2005 A1
20050208949 Chiueh et al. Sep 2005 A1
20050212626 Takamatsu et al. Sep 2005 A1
20050219126 Rebeiz et al. Oct 2005 A1
20050219135 Lee et al. Oct 2005 A1
20050220180 Barlev Oct 2005 A1
20050226353 Gebara et al. Oct 2005 A1
20050249245 Hazani et al. Nov 2005 A1
20050258920 Elmore Nov 2005 A1
20060034724 Hamano et al. Feb 2006 A1
20060038660 Doumuki et al. Feb 2006 A1
20060053486 Wesinger et al. Mar 2006 A1
20060071776 White et al. Apr 2006 A1
20060077906 Maegawa et al. Apr 2006 A1
20060082516 Strickland et al. Apr 2006 A1
20060085813 Giraldin et al. Apr 2006 A1
20060094439 Christian et al. May 2006 A1
20060106741 Janarthanan et al. May 2006 A1
20060111047 Louberg et al. May 2006 A1
20060113425 Rader et al. Jun 2006 A1
20060114925 Gerszberg et al. Jun 2006 A1
20060119528 Bhattacharyya et al. Jun 2006 A1
20060120399 Claret et al. Jun 2006 A1
20060128322 Igarashi et al. Jun 2006 A1
20060132380 Imai et al. Jun 2006 A1
20060153878 Savarino et al. Jul 2006 A1
20060172781 Mohebbi et al. Aug 2006 A1
20060176124 Mansour et al. Aug 2006 A1
20060181394 Clarke et al. Aug 2006 A1
20060187023 Iwamura et al. Aug 2006 A1
20060192672 Gidge et al. Aug 2006 A1
20060220833 Berkman et al. Oct 2006 A1
20060221995 Berkman et al. Oct 2006 A1
20060232493 Huang et al. Oct 2006 A1
20060238347 Parkinson et al. Oct 2006 A1
20060239501 Petrovic et al. Oct 2006 A1
20060244672 Avakian et al. Nov 2006 A1
20060249622 Steele et al. Nov 2006 A1
20060255930 Berkman et al. Nov 2006 A1
20060286927 Berkman et al. Dec 2006 A1
20070002771 Berkman et al. Jan 2007 A1
20070022475 Rossi et al. Jan 2007 A1
20070025265 Porras et al. Feb 2007 A1
20070025386 Riedel et al. Feb 2007 A1
20070040628 Kanno et al. Feb 2007 A1
20070041464 Kim et al. Feb 2007 A1
20070041554 Newman Feb 2007 A1
20070054622 Berkman Mar 2007 A1
20070063914 Becker et al. Mar 2007 A1
20070090185 Lewkowitz et al. Apr 2007 A1
20070103333 Michalski et al. May 2007 A1
20070105508 Tong et al. May 2007 A1
20070135044 Rhodes et al. Jun 2007 A1
20070144779 Vicente et al. Jun 2007 A1
20070164908 Turchinetz et al. Jul 2007 A1
20070185621 Gilmore et al. Aug 2007 A1
20070189182 Berkman et al. Aug 2007 A1
20070201540 Berkman et al. Aug 2007 A1
20070202913 Ban et al. Aug 2007 A1
20070211689 Campero et al. Sep 2007 A1
20070211786 Shattil et al. Sep 2007 A1
20070216596 Lewis et al. Sep 2007 A1
20070223381 Radtke et al. Sep 2007 A1
20070226779 Yokomitsu et al. Sep 2007 A1
20070229184 Liu et al. Oct 2007 A1
20070229231 Hurwitz et al. Oct 2007 A1
20070252998 Berthold et al. Nov 2007 A1
20070257858 Liu et al. Nov 2007 A1
20070258484 Tolaio et al. Nov 2007 A1
20070268124 Berkman et al. Nov 2007 A1
20070268846 Proctor et al. Nov 2007 A1
20070300280 Turner et al. Dec 2007 A1
20080002652 Gupta et al. Jan 2008 A1
20080003872 Chen et al. Jan 2008 A1
20080007416 Cern et al. Jan 2008 A1
20080008116 Buga et al. Jan 2008 A1
20080043655 Lee et al. Feb 2008 A1
20080055149 Rees et al. Mar 2008 A1
20080060832 Razavi et al. Mar 2008 A1
20080064331 Washiro et al. Mar 2008 A1
20080077336 Fernandes et al. Mar 2008 A1
20080080389 Hart et al. Apr 2008 A1
20080084937 Barthold et al. Apr 2008 A1
20080094298 Kralovec et al. Apr 2008 A1
20080101798 Healey et al. May 2008 A1
20080113616 Kim et al. May 2008 A1
20080120667 Zaltsman May 2008 A1
20080122723 Rofougaran et al. May 2008 A1
20080130639 Costa-Requena et al. Jun 2008 A1
20080133922 Williams et al. Jun 2008 A1
20080143491 Deaver et al. Jun 2008 A1
20080150790 Voigtlaender et al. Jun 2008 A1
20080151916 Jetcheva et al. Jun 2008 A1
20080153416 Washiro et al. Jun 2008 A1
20080177678 Di Martini et al. Jul 2008 A1
20080191851 Koga et al. Aug 2008 A1
20080211727 Elmore et al. Sep 2008 A1
20080238796 Rofougaran et al. Oct 2008 A1
20080247716 Thomas et al. Oct 2008 A1
20080252522 Asbridge et al. Oct 2008 A1
20080252541 Diaz et al. Oct 2008 A1
20080253723 Stokes et al. Oct 2008 A1
20080255782 Bilac et al. Oct 2008 A1
20080258993 Gummalla et al. Oct 2008 A1
20080266060 Takei et al. Oct 2008 A1
20080267076 Laperi et al. Oct 2008 A1
20080279199 Park et al. Nov 2008 A1
20080279292 Tanabe et al. Nov 2008 A1
20080280574 Rofougaran et al. Nov 2008 A1
20080313691 Cholas Dec 2008 A1
20090002137 Radtke et al. Jan 2009 A1
20090007189 Gutknecht Jan 2009 A1
20090007190 Weber et al. Jan 2009 A1
20090007194 Brady, Jr. et al. Jan 2009 A1
20090009408 Rofougaran et al. Jan 2009 A1
20090015239 Georgiou et al. Jan 2009 A1
20090054056 Gil et al. Feb 2009 A1
20090054737 Magar et al. Feb 2009 A1
20090061940 Scheinert et al. Mar 2009 A1
20090067441 Ansari et al. Mar 2009 A1
20090079660 Elmore Mar 2009 A1
20090085726 Radtke et al. Apr 2009 A1
20090088907 Lewis et al. Apr 2009 A1
20090093267 Ariyur et al. Apr 2009 A1
20090109981 Keselman Apr 2009 A1
20090125351 Davis, Jr. et al. May 2009 A1
20090129301 Belimpasakis et al. May 2009 A1
20090135848 Chan et al. May 2009 A1
20090138931 Lin et al. May 2009 A1
20090140852 Stolarczyk et al. Jun 2009 A1
20090144417 Kisel et al. Jun 2009 A1
20090171780 Aldrey et al. Jul 2009 A1
20090175195 Macauley et al. Jul 2009 A1
20090181664 Kuruvilla et al. Jul 2009 A1
20090201133 Bruns et al. Aug 2009 A1
20090202020 Hafeez et al. Aug 2009 A1
20090210901 Hawkins et al. Aug 2009 A1
20090212938 Swaim et al. Aug 2009 A1
20090250449 Petrenko et al. Oct 2009 A1
20090254971 Herz et al. Oct 2009 A1
20090258652 Lambert et al. Oct 2009 A1
20090284435 Elmore et al. Nov 2009 A1
20090286482 Gorokhov et al. Nov 2009 A1
20090289863 Lier et al. Nov 2009 A1
20090304124 Graef et al. Dec 2009 A1
20090311960 Farahani et al. Dec 2009 A1
20090311964 Yamamoto et al. Dec 2009 A1
20090315668 Leete, III et al. Dec 2009 A1
20090320058 Wehmeyer et al. Dec 2009 A1
20090325479 Chakrabarti et al. Dec 2009 A1
20090325628 Becker et al. Dec 2009 A1
20100002618 Eichinger et al. Jan 2010 A1
20100002731 Kimura et al. Jan 2010 A1
20100013696 Schmitt et al. Jan 2010 A1
20100026607 Imai et al. Feb 2010 A1
20100039339 Kuroda et al. Feb 2010 A1
20100045447 Mollenkopf et al. Feb 2010 A1
20100052799 Watanabe et al. Mar 2010 A1
20100053019 Ikawa et al. Mar 2010 A1
20100057894 Glasser Mar 2010 A1
20100080203 Reynolds et al. Apr 2010 A1
20100085036 Banting et al. Apr 2010 A1
20100090887 Cooper et al. Apr 2010 A1
20100091712 Lu et al. Apr 2010 A1
20100100918 Egan, Jr. et al. Apr 2010 A1
20100111521 Kim et al. May 2010 A1
20100119234 Suematsu et al. May 2010 A1
20100121945 Gerber et al. May 2010 A1
20100127848 Mustapha et al. May 2010 A1
20100141527 Lalezari et al. Jun 2010 A1
20100142435 Kim et al. Jun 2010 A1
20100150215 Black et al. Jun 2010 A1
20100153990 Ress et al. Jun 2010 A1
20100159823 Smith et al. Jun 2010 A1
20100169937 Atwal et al. Jul 2010 A1
20100175080 Yuen et al. Jul 2010 A1
20100176894 Tahara et al. Jul 2010 A1
20100177894 Yasuma et al. Jul 2010 A1
20100185614 O'Brien et al. Jul 2010 A1
20100188301 Kishimoto et al. Jul 2010 A1
20100201313 Vorenkamp et al. Aug 2010 A1
20100214183 Stoneback et al. Aug 2010 A1
20100214185 Sammoura et al. Aug 2010 A1
20100220024 Snow et al. Sep 2010 A1
20100224732 Olson et al. Sep 2010 A1
20100225426 Unger et al. Sep 2010 A1
20100232539 Han et al. Sep 2010 A1
20100243633 Huynh et al. Sep 2010 A1
20100253450 Kim et al. Oct 2010 A1
20100256955 Pupalaikis et al. Oct 2010 A1
20100265877 Foxworthy et al. Oct 2010 A1
20100266063 Harel et al. Oct 2010 A1
20100277003 Von et al. Nov 2010 A1
20100283693 Xie et al. Nov 2010 A1
20100284446 Mu et al. Nov 2010 A1
20100319068 Abbadessa et al. Dec 2010 A1
20100327880 Stein et al. Dec 2010 A1
20110018704 Burrows et al. Jan 2011 A1
20110040861 Van der Merwe et al. Feb 2011 A1
20110042120 Otsuka et al. Feb 2011 A1
20110043051 Meskens et al. Feb 2011 A1
20110053498 Nogueira-Nine Mar 2011 A1
20110068893 Lahiri et al. Mar 2011 A1
20110068988 Monte et al. Mar 2011 A1
20110080301 Chang et al. Apr 2011 A1
20110083399 Lettkeman et al. Apr 2011 A1
20110103274 Vavik et al. May 2011 A1
20110107364 Lajoie et al. May 2011 A1
20110109499 Kienzle et al. May 2011 A9
20110109936 Coffee et al. May 2011 A1
20110110404 Washiro May 2011 A1
20110118888 White et al. May 2011 A1
20110130135 Trigui et al. Jun 2011 A1
20110132658 Miller, II et al. Jun 2011 A1
20110133865 Miller, II et al. Jun 2011 A1
20110133867 Miller, II et al. Jun 2011 A1
20110136432 Miller, II et al. Jun 2011 A1
20110140911 Pant et al. Jun 2011 A1
20110141555 Fermann et al. Jun 2011 A1
20110143673 Landesman et al. Jun 2011 A1
20110148578 Aloi et al. Jun 2011 A1
20110148687 Wright et al. Jun 2011 A1
20110164514 Afkhamie et al. Jul 2011 A1
20110165847 Kawasaki et al. Jul 2011 A1
20110169336 Yerazunis et al. Jul 2011 A1
20110172000 Quigley et al. Jul 2011 A1
20110173447 Zhang et al. Jul 2011 A1
20110182174 Pi et al. Jul 2011 A1
20110187578 Farneth et al. Aug 2011 A1
20110199265 Lin et al. Aug 2011 A1
20110201269 Hobbs et al. Aug 2011 A1
20110208450 Salka et al. Aug 2011 A1
20110214176 Burch et al. Sep 2011 A1
20110219402 Candelore et al. Sep 2011 A1
20110220394 Szylakowski et al. Sep 2011 A1
20110225046 Eldering et al. Sep 2011 A1
20110228814 Washiro et al. Sep 2011 A1
20110235536 Nishizaka et al. Sep 2011 A1
20110268085 Barany et al. Nov 2011 A1
20110274396 Nakajima et al. Nov 2011 A1
20110286506 Libby et al. Nov 2011 A1
20110291878 Mclaughlin et al. Dec 2011 A1
20110294509 Kim et al. Dec 2011 A1
20110311231 Ridgway et al. Dec 2011 A1
20110316645 Takeuchi et al. Dec 2011 A1
20120002973 Bruzzi et al. Jan 2012 A1
20120015382 Weitz et al. Jan 2012 A1
20120015654 Palanki et al. Jan 2012 A1
20120019420 Caimi et al. Jan 2012 A1
20120019427 Ishikawa et al. Jan 2012 A1
20120038520 Cornwell et al. Feb 2012 A1
20120039366 Wood et al. Feb 2012 A1
20120044113 Satoh et al. Feb 2012 A1
20120046891 Yaney et al. Feb 2012 A1
20120054571 Howard Mar 2012 A1
20120068903 Thevenard et al. Mar 2012 A1
20120077485 Shin et al. Mar 2012 A1
20120078452 Daum et al. Mar 2012 A1
20120084807 Thompson et al. Apr 2012 A1
20120091820 Campanella et al. Apr 2012 A1
20120092161 West et al. Apr 2012 A1
20120093078 Perlman et al. Apr 2012 A1
20120102568 Tarbotton et al. Apr 2012 A1
20120105246 Sexton et al. May 2012 A1
20120105637 Yousefi et al. May 2012 A1
20120109545 Meynardi et al. May 2012 A1
20120109566 Adamian et al. May 2012 A1
20120117584 Gordon May 2012 A1
20120129566 Lee et al. May 2012 A1
20120133373 Ali et al. May 2012 A1
20120137332 Kumar et al. May 2012 A1
20120144420 Del Sordo et al. Jun 2012 A1
20120146861 Armbrecht et al. Jun 2012 A1
20120153087 Collette et al. Jun 2012 A1
20120154239 Bar-Sade et al. Jun 2012 A1
20120161543 Reuven et al. Jun 2012 A1
20120176906 Hartenstein et al. Jul 2012 A1
20120181258 Shan et al. Jul 2012 A1
20120190386 Anderson Jul 2012 A1
20120197558 Henig et al. Aug 2012 A1
20120201145 Ree et al. Aug 2012 A1
20120214538 Kim et al. Aug 2012 A1
20120224807 Winzer et al. Sep 2012 A1
20120226394 Marcus et al. Sep 2012 A1
20120235864 Lu et al. Sep 2012 A1
20120235881 Pan et al. Sep 2012 A1
20120250534 Langer et al. Oct 2012 A1
20120250752 McHann et al. Oct 2012 A1
20120263152 Fischer et al. Oct 2012 A1
20120267863 Kiest et al. Oct 2012 A1
20120268340 Capozzoli et al. Oct 2012 A1
20120270507 Qin et al. Oct 2012 A1
20120272741 Xiao et al. Nov 2012 A1
20120274528 McMahon et al. Nov 2012 A1
20120287922 Heck et al. Nov 2012 A1
20120299671 Ikeda et al. Nov 2012 A1
20120304294 Fujiwara et al. Nov 2012 A1
20120306587 Strid et al. Dec 2012 A1
20120306708 Henderson et al. Dec 2012 A1
20120313895 Haroun et al. Dec 2012 A1
20120319903 Huseth et al. Dec 2012 A1
20120322380 Nannarone et al. Dec 2012 A1
20120322492 Koo et al. Dec 2012 A1
20120324018 Metcalf et al. Dec 2012 A1
20120327908 Gupta et al. Dec 2012 A1
20120329523 Stewart et al. Dec 2012 A1
20120330756 Morris et al. Dec 2012 A1
20130002409 Molina et al. Jan 2013 A1
20130003876 Bennett Jan 2013 A1
20130010679 Ma et al. Jan 2013 A1
20130015922 Liu et al. Jan 2013 A1
20130016022 Heiks et al. Jan 2013 A1
20130023302 Sivanesan et al. Jan 2013 A1
20130039624 Scherer et al. Feb 2013 A1
20130063317 Jonsson et al. Mar 2013 A1
20130064178 CS et al. Mar 2013 A1
20130064311 Turner et al. Mar 2013 A1
20130070621 Marzetta et al. Mar 2013 A1
20130077612 Khorami et al. Mar 2013 A1
20130077664 Lee et al. Mar 2013 A1
20130080290 Kamm Mar 2013 A1
20130086639 Sondhi et al. Apr 2013 A1
20130093638 Shoemaker et al. Apr 2013 A1
20130095875 Reuven et al. Apr 2013 A1
20130108206 Sasaoka et al. May 2013 A1
20130109317 Kikuchi et al. May 2013 A1
20130117852 Stute et al. May 2013 A1
20130120548 Li et al. May 2013 A1
20130122828 Choi et al. May 2013 A1
20130124365 Pradeep May 2013 A1
20130127678 Chandler et al. May 2013 A1
20130136410 Sasaoka et al. May 2013 A1
20130144750 Brown Jun 2013 A1
20130148194 Altug et al. Jun 2013 A1
20130159153 Lau et al. Jun 2013 A1
20130159856 Ferren Jun 2013 A1
20130160122 Choi et al. Jun 2013 A1
20130162490 Blech et al. Jun 2013 A1
20130166690 Shatzkamer et al. Jun 2013 A1
20130169499 Lin Jul 2013 A1
20130173807 De et al. Jul 2013 A1
20130178998 Gadiraju et al. Jul 2013 A1
20130182790 Jalali et al. Jul 2013 A1
20130182804 Yutaka et al. Jul 2013 A1
20130185552 Steer et al. Jul 2013 A1
20130187636 Kast et al. Jul 2013 A1
20130191052 Fernandez et al. Jul 2013 A1
20130201006 Kummetz et al. Aug 2013 A1
20130201904 Toskala et al. Aug 2013 A1
20130205370 Kalgi et al. Aug 2013 A1
20130207681 Slupsky et al. Aug 2013 A1
20130207859 Legay et al. Aug 2013 A1
20130219308 Britton et al. Aug 2013 A1
20130230235 Tateno et al. Sep 2013 A1
20130234904 Blech et al. Sep 2013 A1
20130234961 Garfinkel et al. Sep 2013 A1
20130235845 Kovvali et al. Sep 2013 A1
20130235871 Brzozowski et al. Sep 2013 A1
20130241726 Hunter et al. Sep 2013 A1
20130262656 Cao et al. Oct 2013 A1
20130262857 Neuman et al. Oct 2013 A1
20130263263 Narkolayev et al. Oct 2013 A1
20130265732 Herbsommer et al. Oct 2013 A1
20130266026 McCormack et al. Oct 2013 A1
20130268414 Lehtiniemi Oct 2013 A1
20130271349 Wright et al. Oct 2013 A1
20130278464 Xia et al. Oct 2013 A1
20130279523 Denney et al. Oct 2013 A1
20130279561 Jin et al. Oct 2013 A1
20130279868 Zhang et al. Oct 2013 A1
20130279914 Brooks et al. Oct 2013 A1
20130285864 Clymer et al. Oct 2013 A1
20130303089 Wang et al. Nov 2013 A1
20130305369 Karta et al. Nov 2013 A1
20130306351 Lambert et al. Nov 2013 A1
20130307645 Mita et al. Nov 2013 A1
20130311661 McPhee et al. Nov 2013 A1
20130314182 Takeda et al. Nov 2013 A1
20130321225 Pettus et al. Dec 2013 A1
20130326063 Burch et al. Dec 2013 A1
20130326494 Nunez et al. Dec 2013 A1
20130330050 Yang et al. Dec 2013 A1
20130335165 Arnold et al. Dec 2013 A1
20130336370 Jovanovic et al. Dec 2013 A1
20130336418 Tomeba et al. Dec 2013 A1
20130341094 Taherian et al. Dec 2013 A1
20130342287 Randall et al. Dec 2013 A1
20130343213 Reynolds et al. Dec 2013 A1
20130343351 Sambhwani et al. Dec 2013 A1
20140003394 Rubin et al. Jan 2014 A1
20140003775 Ko et al. Jan 2014 A1
20140007076 Kim et al. Jan 2014 A1
20140009270 Yamazaki et al. Jan 2014 A1
20140009822 Dong et al. Jan 2014 A1
20140015705 Ebihara Jan 2014 A1
20140019576 Lobo et al. Jan 2014 A1
20140026170 Francisco et al. Jan 2014 A1
20140028184 Voronin et al. Jan 2014 A1
20140028190 Voronin et al. Jan 2014 A1
20140028532 Ehrenberg et al. Jan 2014 A1
20140032005 Iwamura Jan 2014 A1
20140036694 Courtice et al. Feb 2014 A1
20140041925 Siripurapu et al. Feb 2014 A1
20140043189 Lee et al. Feb 2014 A1
20140043977 Wiley et al. Feb 2014 A1
20140044139 Dong et al. Feb 2014 A1
20140050212 Braz et al. Feb 2014 A1
20140052810 Osorio et al. Feb 2014 A1
20140056130 Grayson et al. Feb 2014 A1
20140057576 Liu et al. Feb 2014 A1
20140062784 Rison et al. Mar 2014 A1
20140071818 Wang et al. Mar 2014 A1
20140072064 Lemson et al. Mar 2014 A1
20140072299 Stapleton et al. Mar 2014 A1
20140077995 Artemenko et al. Mar 2014 A1
20140086080 Hui et al. Mar 2014 A1
20140086152 Bontu et al. Mar 2014 A1
20140102743 Doneker et al. Apr 2014 A1
20140112184 Chai Apr 2014 A1
20140114635 Sato et al. Apr 2014 A1
20140124236 Vu et al. May 2014 A1
20140126914 Berlin et al. May 2014 A1
20140130111 Nulty et al. May 2014 A1
20140132728 Verano et al. May 2014 A1
20140139375 Faragher et al. May 2014 A1
20140143055 Johnson May 2014 A1
20140146902 Liu et al. May 2014 A1
20140148107 Maltsev et al. May 2014 A1
20140155054 Henry et al. Jun 2014 A1
20140165145 Baentsch et al. Jun 2014 A1
20140169186 Zhu et al. Jun 2014 A1
20140177692 Yu et al. Jun 2014 A1
20140179302 Polehn et al. Jun 2014 A1
20140189677 Curzi et al. Jul 2014 A1
20140189732 Shkedi et al. Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140204000 Sato et al. Jul 2014 A1
20140204754 Jeong et al. Jul 2014 A1
20140207844 Mayo et al. Jul 2014 A1
20140208272 Vats et al. Jul 2014 A1
20140211883 Chai et al. Jul 2014 A1
20140222997 Mermoud et al. Aug 2014 A1
20140223527 Bortz et al. Aug 2014 A1
20140225129 Inoue et al. Aug 2014 A1
20140227905 Knott et al. Aug 2014 A1
20140227966 Artemenko et al. Aug 2014 A1
20140233900 Hugonnot et al. Aug 2014 A1
20140241718 Jiang et al. Aug 2014 A1
20140254516 Lee et al. Sep 2014 A1
20140254896 Zhou et al. Sep 2014 A1
20140254979 Zhang et al. Sep 2014 A1
20140266946 Stevenson et al. Sep 2014 A1
20140266953 Yen et al. Sep 2014 A1
20140267700 Wang et al. Sep 2014 A1
20140269260 Xue Sep 2014 A1
20140269691 Xue et al. Sep 2014 A1
20140269972 Rada et al. Sep 2014 A1
20140273873 Huynh et al. Sep 2014 A1
20140285277 Herbsommer et al. Sep 2014 A1
20140285293 Schuppener et al. Sep 2014 A1
20140285294 Haroun et al. Sep 2014 A1
20140285373 Kuwahara et al. Sep 2014 A1
20140285389 Fakharzadeh et al. Sep 2014 A1
20140286189 Kang et al. Sep 2014 A1
20140286235 Chang et al. Sep 2014 A1
20140286284 Lim et al. Sep 2014 A1
20140287702 Schuppener et al. Sep 2014 A1
20140299349 Yamaguchi et al. Oct 2014 A1
20140304498 Gonuguntla et al. Oct 2014 A1
20140317229 Hughes et al. Oct 2014 A1
20140320364 Gu et al. Oct 2014 A1
20140321273 Morrill et al. Oct 2014 A1
20140325594 Klein et al. Oct 2014 A1
20140327570 Beyer Nov 2014 A1
20140334773 Mathai et al. Nov 2014 A1
20140334789 Matsuo et al. Nov 2014 A1
20140340271 Petkov et al. Nov 2014 A1
20140343883 Libby et al. Nov 2014 A1
20140349696 Hyde et al. Nov 2014 A1
20140351571 Jacobs Nov 2014 A1
20140355525 Barzegar et al. Dec 2014 A1
20140355989 Finckelstein Dec 2014 A1
20140357269 Zhou et al. Dec 2014 A1
20140359275 Murugesan et al. Dec 2014 A1
20140362374 Santori Dec 2014 A1
20140362694 Rodriques Dec 2014 A1
20140368301 Herbsommer et al. Dec 2014 A1
20140369430 Parnell Dec 2014 A1
20140372068 Seto et al. Dec 2014 A1
20140373053 Leley et al. Dec 2014 A1
20140376655 Ruan et al. Dec 2014 A1
20150008996 Jessup et al. Jan 2015 A1
20150009068 Gregoire et al. Jan 2015 A1
20150009089 Pesa Jan 2015 A1
20150016260 Chow et al. Jan 2015 A1
20150017473 Verhoeven et al. Jan 2015 A1
20150022399 Clymer et al. Jan 2015 A1
20150026460 Walton Jan 2015 A1
20150029065 Cheng Jan 2015 A1
20150036610 Kim et al. Feb 2015 A1
20150042526 Zeine Feb 2015 A1
20150048238 Kawai Feb 2015 A1
20150049998 Dumais Feb 2015 A1
20150061859 Matsuoka et al. Mar 2015 A1
20150065166 Ward et al. Mar 2015 A1
20150070231 Park et al. Mar 2015 A1
20150071594 Register Mar 2015 A1
20150073594 Trujillo et al. Mar 2015 A1
20150077740 Fuse Mar 2015 A1
20150078756 Soto et al. Mar 2015 A1
20150084660 Knierim et al. Mar 2015 A1
20150084703 Sanduleanu Mar 2015 A1
20150084814 Rojanski et al. Mar 2015 A1
20150091650 Nobbe Apr 2015 A1
20150094104 Wilmhoff et al. Apr 2015 A1
20150098387 Garg et al. Apr 2015 A1
20150099555 Krishnaswamy et al. Apr 2015 A1
20150102972 Scire-Scappuzzo et al. Apr 2015 A1
20150103685 Butchko et al. Apr 2015 A1
20150104005 Holman Apr 2015 A1
20150105115 Hata et al. Apr 2015 A1
20150109178 Hyde et al. Apr 2015 A1
20150116154 Artemenko Apr 2015 A1
20150185425 Gundel et al. Apr 2015 A1
20150122886 Koch May 2015 A1
20150126107 Bennett et al. May 2015 A1
20150130675 Parsche May 2015 A1
20150138022 Takahashi May 2015 A1
20150138144 Tanabe May 2015 A1
20150153248 Hayward et al. Jun 2015 A1
20150156266 Gupta Jun 2015 A1
20150162988 Henry et al. Jun 2015 A1
20150171517 Grandfield et al. Jun 2015 A1
20150171522 Liu et al. Jun 2015 A1
20150172036 Katar et al. Jun 2015 A1
20150181449 Didenko et al. Jun 2015 A1
20150195349 Cardamore Jul 2015 A1
20150195719 Rahman Jul 2015 A1
20150201228 Hasek Jul 2015 A1
20150207527 Eliaz et al. Jul 2015 A1
20150214615 Patel et al. Jul 2015 A1
20150215268 Dinha Jul 2015 A1
20150222019 Robson et al. Aug 2015 A1
20150223078 Bennett et al. Aug 2015 A1
20150223113 Matsunaga Aug 2015 A1
20150223160 Ho Aug 2015 A1
20150230109 Turner et al. Aug 2015 A1
20150234122 Andle Aug 2015 A1
20150236778 Jalali Aug 2015 A1
20150236779 Jalali Aug 2015 A1
20150237519 Ghai Aug 2015 A1
20150249965 Dussmann et al. Sep 2015 A1
20150263424 Sanford Sep 2015 A1
20150266436 Erb Sep 2015 A1
20150271830 Shin et al. Sep 2015 A1
20150276577 Ruege et al. Oct 2015 A1
20150277569 Sprenger Oct 2015 A1
20150280328 Sanford et al. Oct 2015 A1
20150284079 Matsuda Oct 2015 A1
20150288532 Veyseh et al. Oct 2015 A1
20150289247 Liu et al. Oct 2015 A1
20150303892 Desclos Oct 2015 A1
20150304045 Henry et al. Oct 2015 A1
20150304869 Johnson et al. Oct 2015 A1
20150311951 Hariz Oct 2015 A1
20150312774 Lau Oct 2015 A1
20150318610 Lee et al. Nov 2015 A1
20150323948 Jeong Nov 2015 A1
20150325913 Vagman Nov 2015 A1
20150326274 Flood Nov 2015 A1
20150326287 Kazmi et al. Nov 2015 A1
20150333386 Kaneda et al. Nov 2015 A1
20150333804 Yang et al. Nov 2015 A1
20150334769 Kim et al. Nov 2015 A1
20150339912 Farrand et al. Nov 2015 A1
20150344136 Dahlstrom Dec 2015 A1
20150349415 Iwanaka Dec 2015 A1
20150356482 Whipple et al. Dec 2015 A1
20150356848 Hatch Dec 2015 A1
20150369660 Yu Dec 2015 A1
20150370251 Siegel et al. Dec 2015 A1
20150373557 Bennett et al. Dec 2015 A1
20150380814 Boutayeb et al. Dec 2015 A1
20150382208 Elliott et al. Dec 2015 A1
20150382363 Wang et al. Dec 2015 A1
20160006129 Haziza Jan 2016 A1
20160012460 Kruglick Jan 2016 A1
20160014749 Kang et al. Jan 2016 A1
20160021545 Shaw Jan 2016 A1
20160026301 Zhou et al. Jan 2016 A1
20160029009 Lu et al. Jan 2016 A1
20160038074 Brown et al. Feb 2016 A1
20160043478 Hartenstein Feb 2016 A1
20160044705 Gao Feb 2016 A1
20160050028 Henry et al. Feb 2016 A1
20160056543 Kwiatkowski Feb 2016 A1
20160063642 Luciani et al. Mar 2016 A1
20160064794 Henry et al. Mar 2016 A1
20160065252 Preschutti Mar 2016 A1
20160065335 Koo et al. Mar 2016 A1
20160066191 Li Mar 2016 A1
20160068265 Hoareau et al. Mar 2016 A1
20160068277 Manitta Mar 2016 A1
20160069934 Saxby et al. Mar 2016 A1
20160069935 Kreikebaum et al. Mar 2016 A1
20160070265 Liu et al. Mar 2016 A1
20160072173 Herbsommer et al. Mar 2016 A1
20160072191 Iwai Mar 2016 A1
20160072287 Jia Mar 2016 A1
20160079769 Corum et al. Mar 2016 A1
20160079771 Corum Mar 2016 A1
20160079809 Corum et al. Mar 2016 A1
20160080035 Fuchs et al. Mar 2016 A1
20160080839 Fuchs et al. Mar 2016 A1
20160082460 McMaster et al. Mar 2016 A1
20160087344 Artemenko et al. Mar 2016 A1
20160088498 Sharawi Mar 2016 A1
20160094420 Clemm et al. Mar 2016 A1
20160094879 Gerszberg et al. Mar 2016 A1
20160099749 Bennett et al. Apr 2016 A1
20160100324 Henry et al. Apr 2016 A1
20160103199 Rappaport Apr 2016 A1
20160105218 Henry et al. Apr 2016 A1
20160105233 Jalali Apr 2016 A1
20160105239 Henry et al. Apr 2016 A1
20160105255 Henry et al. Apr 2016 A1
20160111890 Corum et al. Apr 2016 A1
20160112092 Henry et al. Apr 2016 A1
20160112093 Barzegar Apr 2016 A1
20160112094 Stuckman et al. Apr 2016 A1
20160112115 Henry et al. Apr 2016 A1
20160112132 Henry et al. Apr 2016 A1
20160112133 Henry et al. Apr 2016 A1
20160112135 Henry et al. Apr 2016 A1
20160112263 Henry et al. Apr 2016 A1
20160116914 Mucci Apr 2016 A1
20160118717 Britz et al. Apr 2016 A1
20160124071 Baxley et al. May 2016 A1
20160127931 Baxley et al. May 2016 A1
20160131347 Hill et al. May 2016 A1
20160134006 Ness et al. May 2016 A1
20160135132 Donepudi et al. May 2016 A1
20160135184 Zavadsky et al. May 2016 A1
20160137311 Peverill et al. May 2016 A1
20160139731 Kim May 2016 A1
20160149312 Henry et al. May 2016 A1
20160149614 Barzegar May 2016 A1
20160149636 Gerszberg et al. May 2016 A1
20160149665 Henry et al. May 2016 A1
20160149731 Henry et al. May 2016 A1
20160149753 Gerszberg et al. May 2016 A1
20160150427 Ramanath May 2016 A1
20160153938 Balasubramaniam et al. Jun 2016 A1
20160161644 Verschuuren et al. Jun 2016 A1
20160164571 Bennett et al. Jun 2016 A1
20160164573 Birk et al. Jun 2016 A1
20160165472 Gopalakrishnan et al. Jun 2016 A1
20160165478 Yao et al. Jun 2016 A1
20160174040 Roberts et al. Jun 2016 A1
20160179134 Ryu Jun 2016 A1
20160181701 Sangaran et al. Jun 2016 A1
20160182096 Panioukov et al. Jun 2016 A1
20160182161 Barzegar Jun 2016 A1
20160182981 Minarik et al. Jun 2016 A1
20160188291 Vilermo et al. Jun 2016 A1
20160189101 Kantor et al. Jun 2016 A1
20160197392 Henry et al. Jul 2016 A1
20160197409 Henry et al. Jul 2016 A1
20160197630 Kawasaki Jul 2016 A1
20160197642 Henry et al. Jul 2016 A1
20160207627 Hoareau et al. Jul 2016 A1
20160211566 Kikuchi et al. Jul 2016 A1
20160212065 To et al. Jul 2016 A1
20160212641 Kong et al. Jul 2016 A1
20160214717 De Silva Jul 2016 A1
20160218407 Henry et al. Jul 2016 A1
20160218437 Guntupalli Jul 2016 A1
20160221039 Fuchs et al. Aug 2016 A1
20160224235 Forsstrom Aug 2016 A1
20160226681 Henry et al. Aug 2016 A1
20160244165 Patrick et al. Aug 2016 A1
20160248149 Kim et al. Aug 2016 A1
20160248165 Henry Aug 2016 A1
20160248509 Henry Aug 2016 A1
20160249233 Murray Aug 2016 A1
20160252970 Dahl Sep 2016 A1
20160261309 Henry Sep 2016 A1
20160261310 Fuchs et al. Sep 2016 A1
20160261311 Henry et al. Sep 2016 A1
20160261312 Fuchs et al. Sep 2016 A1
20160269156 Barzegar et al. Sep 2016 A1
20160276725 Barnickel et al. Sep 2016 A1
20160277934 Olcott et al. Sep 2016 A1
20160278094 Henry et al. Sep 2016 A1
20160285508 Bennett et al. Sep 2016 A1
20160285512 Henry et al. Sep 2016 A1
20160294444 Gerszberg et al. Oct 2016 A1
20160294517 Barzegar et al. Oct 2016 A1
20160295431 Henry et al. Oct 2016 A1
20160306361 Shalom et al. Oct 2016 A1
20160315659 Henry Oct 2016 A1
20160315660 Henry Oct 2016 A1
20160315661 Henry Oct 2016 A1
20160315662 Henry Oct 2016 A1
20160322691 Bennett et al. Nov 2016 A1
20160323015 Henry et al. Nov 2016 A1
20160329957 Schmid et al. Nov 2016 A1
20160336091 Henry et al. Nov 2016 A1
20160336092 Henry et al. Nov 2016 A1
20160336636 Henry et al. Nov 2016 A1
20160336996 Henry Nov 2016 A1
20160336997 Henry Nov 2016 A1
20160351987 Henry Dec 2016 A1
20160359523 Bennett Dec 2016 A1
20160359524 Bennett et al. Dec 2016 A1
20160359529 Bennett et al. Dec 2016 A1
20160359530 Bennett Dec 2016 A1
20160359541 Bennett Dec 2016 A1
20160359542 Bennett Dec 2016 A1
20160359543 Bennett et al. Dec 2016 A1
20160359544 Bennett Dec 2016 A1
20160359546 Bennett Dec 2016 A1
20160359547 Bennett et al. Dec 2016 A1
20160359649 Bennett et al. Dec 2016 A1
20160360511 Barzegar Dec 2016 A1
20160360533 Bennett et al. Dec 2016 A1
20160365175 Bennett et al. Dec 2016 A1
20160365893 Bennett et al. Dec 2016 A1
20160365894 Bennett et al. Dec 2016 A1
20160365897 Gross Dec 2016 A1
20160365916 Bennett et al. Dec 2016 A1
20160365943 Henry et al. Dec 2016 A1
20160365966 Bennett et al. Dec 2016 A1
20160366586 Gross et al. Dec 2016 A1
20160366587 Gross Dec 2016 A1
20160373164 Kawasaki et al. Dec 2016 A1
20160373937 Bennett et al. Dec 2016 A1
20160380327 Henry Dec 2016 A1
20160380328 Henry Dec 2016 A1
20160380358 Henry Dec 2016 A1
20160380701 Henry et al. Dec 2016 A1
20160380702 Henry et al. Dec 2016 A1
20170012667 Bennett Jan 2017 A1
20170018174 Gerszberg Jan 2017 A1
20170018332 Barzegar et al. Jan 2017 A1
20170018830 Henry et al. Jan 2017 A1
20170018831 Henry et al. Jan 2017 A1
20170018832 Henry et al. Jan 2017 A1
20170018833 Henry et al. Jan 2017 A1
20170018851 Henry et al. Jan 2017 A1
20170018852 Adriazola et al. Jan 2017 A1
20170018856 Henry Jan 2017 A1
20170019130 Henry et al. Jan 2017 A1
20170019131 Henry et al. Jan 2017 A1
20170019150 Henry Jan 2017 A1
20170019189 Henry et al. Jan 2017 A1
20170023710 Kuznetsov et al. Jan 2017 A1
20170025728 Henry et al. Jan 2017 A1
20170025732 Henry et al. Jan 2017 A1
20170025734 Henry et al. Jan 2017 A1
20170025839 Henry et al. Jan 2017 A1
20170026063 Henry Jan 2017 A1
20170026082 Henry et al. Jan 2017 A1
20170026084 Henry et al. Jan 2017 A1
20170026129 Henry Jan 2017 A1
20170033464 Henry et al. Feb 2017 A1
20170033465 Henry et al. Feb 2017 A1
20170033466 Henry et al. Feb 2017 A1
20170033834 Gross Feb 2017 A1
20170033835 Bennett et al. Feb 2017 A1
20170033953 Henry et al. Feb 2017 A1
20170033954 Henry et al. Feb 2017 A1
20170034042 Gross et al. Feb 2017 A1
20170041081 Henry et al. Feb 2017 A1
20170047662 Henry et al. Feb 2017 A1
20170063430 Shala Mar 2017 A1
20170064715 Niewczas Mar 2017 A1
20170069944 Henry Mar 2017 A1
20170075677 Gross et al. Mar 2017 A1
20170077998 Gerszberg et al. Mar 2017 A1
20170078063 Gerszberg Mar 2017 A1
20170078064 Gerszberg et al. Mar 2017 A1
20170079024 Gerszberg Mar 2017 A1
20170079036 Gerszberg Mar 2017 A1
20170079037 Gerszberg et al. Mar 2017 A1
20170079038 Gerszberg et al. Mar 2017 A1
20170079039 Gerszberg et al. Mar 2017 A1
20170085003 Johnson et al. Mar 2017 A1
20170085295 Stuckman Mar 2017 A1
20170085336 Henry Mar 2017 A1
20170093693 Barzegar et al. Mar 2017 A1
20170093807 Gross et al. Mar 2017 A1
20170098881 Barnickel et al. Apr 2017 A1
20170098884 Barnickel et al. Apr 2017 A1
20170098889 Henry Apr 2017 A1
20170099079 Gross Apr 2017 A1
20170110795 Henry Apr 2017 A1
20170110804 Henry et al. Apr 2017 A1
20170111805 Barzegar et al. Apr 2017 A1
20170117937 Henry Apr 2017 A1
20170117938 Henry Apr 2017 A1
20170117939 Gerszberg et al. Apr 2017 A1
20170117941 Gerszberg et al. Apr 2017 A1
20170127290 Uelk et al. May 2017 A1
20170141856 Barzegar May 2017 A1
20170149489 Bennett May 2017 A1
20170163526 Henry Jun 2017 A1
20170179563 Henry et al. Jun 2017 A1
20170179608 Henry et al. Jun 2017 A1
20170179609 Henry Jun 2017 A1
20170180801 Gerszberg et al. Jun 2017 A1
20170222689 Bennett Aug 2017 A1
20170222690 Barzegar et al. Aug 2017 A1
20170222691 Gross Aug 2017 A1
20170229755 Henry et al. Aug 2017 A1
20170229782 Adriazola et al. Aug 2017 A1
20170230077 Henry et al. Aug 2017 A1
20170230083 Adriazola et al. Aug 2017 A1
20170230842 Bennett Aug 2017 A1
20180048497 Henry et al. Feb 2018 A1
20180054232 Henry et al. Feb 2018 A1
20180054233 Henry et al. Feb 2018 A1
20180054234 Stuckman et al. Feb 2018 A1
20180062886 Paul et al. Mar 2018 A1
20180069594 Henry et al. Mar 2018 A1
20180069731 Henry et al. Mar 2018 A1
20180076982 Henry et al. Mar 2018 A1
20180076988 Willis, III et al. Mar 2018 A1
20180077709 Gerszberg Mar 2018 A1
20180108997 Henry et al. Apr 2018 A1
20180108998 Henry et al. Apr 2018 A1
20180108999 Henry et al. Apr 2018 A1
20180115040 Bennett et al. Apr 2018 A1
20180115044 Henry et al. Apr 2018 A1
20180115058 Henry et al. Apr 2018 A1
20180115060 Bennett et al. Apr 2018 A1
20180115075 Bennett et al. Apr 2018 A1
20180115081 Johnson et al. Apr 2018 A1
20180123207 Henry et al. May 2018 A1
20180123208 Henry et al. May 2018 A1
20180123643 Henry et al. May 2018 A1
20180123836 Henry et al. May 2018 A1
20180151957 Bennett et al. May 2018 A1
20180159195 Henry et al. Jun 2018 A1
20180159228 Britz et al. Jun 2018 A1
20180159229 Britz Jun 2018 A1
20180159230 Henry et al. Jun 2018 A1
20180159232 Henry et al. Jun 2018 A1
20180159235 Wolniansky Jun 2018 A1
20180159238 Wolniansky Jun 2018 A1
20180159240 Henry et al. Jun 2018 A1
20180159243 Britz et al. Jun 2018 A1
20180166761 Henry et al. Jun 2018 A1
20180166784 Johnson et al. Jun 2018 A1
20180166785 Henry et al. Jun 2018 A1
20180167130 Vannucci Jun 2018 A1
20180167927 Beattie, Jr. et al. Jun 2018 A1
20180302162 Gerszberg et al. Oct 2018 A1
20190013577 Henry et al. Jan 2019 A1
20190013837 Henry et al. Jan 2019 A1
Foreign Referenced Citations (572)
Number Date Country
565039 Sep 1987 AU
582630 Apr 1989 AU
606303 Jan 1991 AU
7261000 Apr 2001 AU
760272 May 2003 AU
2005227368 Feb 2009 AU
2010101079 Nov 2010 AU
2007215252 Jan 2011 AU
2014200748 Mar 2014 AU
1136267 Nov 1982 CA
1211813 Sep 1986 CA
1328009 Mar 1994 CA
2260380 Dec 2000 CA
2348614 Mar 2001 CA
2449596 Jun 2005 CA
2515560 Feb 2007 CA
2664573 Apr 2008 CA
2467988 Nov 2010 CA
2777147 Apr 2011 CA
2814529 Apr 2012 CA
2787580 Feb 2013 CA
2927054 May 2015 CA
2940976 Sep 2015 CA
2116969 Sep 1992 CN
1155354 Jul 1997 CN
1411563 Apr 2003 CN
1126425 Oct 2003 CN
2730033 Sep 2005 CN
1833397 Sep 2006 CN
1885736 Dec 2006 CN
201048157 Apr 2008 CN
201146495 Nov 2008 CN
201207179 Mar 2009 CN
100502181 Jun 2009 CN
201282193 Jul 2009 CN
101834011 Apr 2010 CN
1823275 May 2010 CN
101785201 Jul 2010 CN
1820482 Dec 2010 CN
101075702 Feb 2011 CN
101978613 Feb 2011 CN
102130698 Jul 2011 CN
102136634 Jul 2011 CN
201985870 Sep 2011 CN
102208716 Oct 2011 CN
102280704 Dec 2011 CN
102280709 Dec 2011 CN
202093126 Dec 2011 CN
102351415 Feb 2012 CN
102396111 Mar 2012 CN
202253536 May 2012 CN
102544736 Jul 2012 CN
102590893 Jul 2012 CN
102694351 Sep 2012 CN
202424729 Sep 2012 CN
101662076 Nov 2012 CN
102780058 Nov 2012 CN
102017692 Apr 2013 CN
103078673 May 2013 CN
103117118 May 2013 CN
103163881 Jun 2013 CN
203204743 Sep 2013 CN
1863244 Oct 2013 CN
101958461 Nov 2013 CN
103700442 Apr 2014 CN
103943925 Jul 2014 CN
104052742 Sep 2014 CN
104064844 Sep 2014 CN
203813973 Sep 2014 CN
104091987 Oct 2014 CN
104092028 Oct 2014 CN
203931626 Nov 2014 CN
203950607 Nov 2014 CN
104181552 Dec 2014 CN
204538183 Aug 2015 CN
102412442 Oct 2015 CN
204760545 Nov 2015 CN
105262551 Jan 2016 CN
205265924 Jan 2016 CN
105359572 Feb 2016 CN
105453340 Mar 2016 CN
105594138 May 2016 CN
104162995 Jun 2016 CN
105813193 Jul 2016 CN
3504546 Aug 1986 DE
3533204 Mar 1987 DE
3533211 Mar 1987 DE
3827956 Mar 1989 DE
4027367 Jul 1991 DE
4225595 Sep 1993 DE
19501448 Jul 1996 DE
19939832 Feb 2001 DE
10043761 Nov 2002 DE
102004024356 Sep 2005 DE
69732676 Apr 2006 DE
4337835 May 2008 DE
102007049914 Apr 2009 DE
102012004998 Jul 2013 DE
102012203816 Sep 2013 DE
0102846 Mar 1984 EP
0110478 Jun 1984 EP
0136818 Apr 1985 EP
0280379 Aug 1988 EP
0330303 Aug 1989 EP
0331248 Sep 1989 EP
0342149 Nov 1989 EP
0391719 Apr 1990 EP
425979 May 1991 EP
0485467 May 1992 EP
272785 Feb 1994 EP
0651487 Oct 1994 EP
0371660 Apr 1996 EP
0756392 Jan 1997 EP
834722 Apr 1998 EP
0840464 May 1998 EP
0871241 Oct 1998 EP
0890132 Jan 1999 EP
755092 Apr 1999 EP
0896380 Oct 1999 EP
676648 May 2000 EP
1085599 Mar 2001 EP
0907983 Jun 2001 EP
0756786 Aug 2001 EP
1127283 Aug 2001 EP
1129550 Sep 2001 EP
1184930 Mar 2002 EP
1195847 Apr 2002 EP
1237303 Sep 2002 EP
1296146 Mar 2003 EP
0772061 Jul 2003 EP
1346431 Sep 2003 EP
1249056 Jan 2004 EP
1376755 Jan 2004 EP
1401048 Mar 2004 EP
1454422 Sep 2004 EP
1488397 Dec 2004 EP
1509970 Mar 2005 EP
1371108 Jun 2005 EP
1550327 Jul 2005 EP
1341255 Aug 2005 EP
1577687 Sep 2005 EP
1312135 Nov 2005 EP
1608110 Dec 2005 EP
1624685 Feb 2006 EP
1642468 Apr 2006 EP
1647072 Apr 2006 EP
1608110 Oct 2006 EP
1793508 Jun 2007 EP
1842265 Oct 2007 EP
1898532 Mar 2008 EP
1930982 Jun 2008 EP
1953940 Aug 2008 EP
1696509 Oct 2009 EP
2159749 Mar 2010 EP
2165550 Mar 2010 EP
1166599 May 2010 EP
1807950 Jan 2011 EP
2404347 Jan 2012 EP
2472671 Jul 2012 EP
1817855 Jan 2013 EP
2568528 Mar 2013 EP
2302735 Sep 2013 EP
2472737 Sep 2013 EP
2640115 Sep 2013 EP
2016643 Jul 2014 EP
2760081 Jul 2014 EP
2804259 Nov 2014 EP
2507939 Dec 2014 EP
2680452 Jan 2015 EP
2838155 Feb 2015 EP
2846480 Mar 2015 EP
2849524 Mar 2015 EP
2850695 Mar 2015 EP
2853902 Apr 2015 EP
2854361 Apr 2015 EP
2870802 May 2015 EP
2710400 Jun 2015 EP
3076482 Oct 2016 EP
2120893 Nov 1998 ES
2119804 Aug 1972 FR
2214161 Aug 1974 FR
2416562 Aug 1979 FR
2583226 Dec 1986 FR
2691602 Nov 1993 FR
2849728 Jul 2004 FR
2841387 Apr 2006 FR
2893717 May 2007 FR
2946466 Mar 2012 FR
2986376 Oct 2014 FR
3034203 Sep 2016 FR
175489 Feb 1922 GB
462804 Mar 1937 GB
529290 Nov 1940 GB
603119 Oct 1945 GB
589603 Jun 1947 GB
640181 Jul 1950 GB
663166 Dec 1951 GB
667290 Feb 1952 GB
668827 Mar 1952 GB
682115 Nov 1952 GB
682817 Nov 1952 GB
731473 Jun 1955 GB
746111 Mar 1956 GB
751153 Jun 1956 GB
767506 Feb 1957 GB
835976 Jun 1960 GB
845492 Aug 1960 GB
859951 Jan 1961 GB
889856 Feb 1962 GB
905417 Sep 1962 GB
926958 May 1963 GB
993561 May 1965 GB
1004318 Sep 1965 GB
1076772 Jul 1967 GB
1141390 Jan 1969 GB
1298387 Nov 1972 GB
1383549 Feb 1974 GB
1370669 Oct 1974 GB
1422956 Jan 1976 GB
1424351 Feb 1976 GB
1468310 Mar 1977 GB
1469840 Apr 1977 GB
1527228 Oct 1978 GB
2010528 Jun 1979 GB
2045055 Oct 1980 GB
1580627 Dec 1980 GB
1584193 Feb 1981 GB
2227369 Jul 1990 GB
2247990 Mar 1992 GB
2368468 May 2002 GB
2362472 Oct 2003 GB
2393370 Mar 2004 GB
2394364 Jun 2005 GB
2414862 Dec 2005 GB
2411554 Jan 2006 GB
705192 Apr 2007 GB
714974 Sep 2007 GB
718597 Oct 2007 GB
2474037 Apr 2011 GB
2476787 Jul 2011 GB
2474605 Sep 2011 GB
2485355 May 2012 GB
2481715 Jan 2014 GB
2507269 Apr 2014 GB
2476149 Jul 2014 GB
2532207 May 2016 GB
261253 Jun 2014 IN
7352CHENP2015 Jul 2016 IN
201647015348 Aug 2016 IN
S50109642 Sep 1975 JP
55124303 Sep 1980 JP
55138902 Oct 1980 JP
574601 Jan 1982 JP
61178682 Nov 1986 JP
61260702 Nov 1986 JP
62110303 Jul 1987 JP
62190903 Aug 1987 JP
02214307 Aug 1990 JP
03167906 Jul 1991 JP
0653894 Aug 1991 JP
04369905 Dec 1992 JP
3001844 Sep 1994 JP
077769 Jan 1995 JP
7212126 Nov 1995 JP
0829545 Feb 1996 JP
08167810 Jun 1996 JP
08196022 Jul 1996 JP
08316918 Nov 1996 JP
2595339 Apr 1997 JP
2639531 Aug 1997 JP
10206183 Aug 1998 JP
10271071 Oct 1998 JP
116928 Jan 1999 JP
1114749 Jan 1999 JP
11239085 Aug 1999 JP
11313022 Nov 1999 JP
2000077889 Mar 2000 JP
2000216623 Aug 2000 JP
2000244238 Sep 2000 JP
2001217634 Aug 2001 JP
2002029247 Jan 2002 JP
2002111579 Apr 2002 JP
2002236174 Aug 2002 JP
200328219 Jan 2003 JP
2003008336 Jan 2003 JP
2003057464 Feb 2003 JP
2003511677 Mar 2003 JP
3411428 Jun 2003 JP
2003324309 Nov 2003 JP
3480153 Dec 2003 JP
2003344883 Dec 2003 JP
2004521379 Jul 2004 JP
2004253853 Sep 2004 JP
2004274656 Sep 2004 JP
2004297107 Oct 2004 JP
2004304659 Oct 2004 JP
2005503709 Feb 2005 JP
2005110231 Apr 2005 JP
2005182469 Jul 2005 JP
3734975 Jan 2006 JP
2006153878 Jun 2006 JP
2006163886 Jun 2006 JP
2006166399 Jun 2006 JP
2007042009 Feb 2007 JP
2007072945 Mar 2007 JP
2007079882 Mar 2007 JP
3938315 Jun 2007 JP
2007174017 Jul 2007 JP
2007259001 Oct 2007 JP
4025674 Dec 2007 JP
2008017263 Jan 2008 JP
2008021483 Jan 2008 JP
4072280 Apr 2008 JP
4142062 Aug 2008 JP
2008209965 Sep 2008 JP
2008218362 Sep 2008 JP
2009004986 Jan 2009 JP
4252573 Apr 2009 JP
4259760 Apr 2009 JP
2009124229 Jun 2009 JP
2010045471 Feb 2010 JP
2010192992 Sep 2010 JP
2010541468 Dec 2010 JP
2011160446 Aug 2011 JP
2012058162 Mar 2012 JP
2012090242 May 2012 JP
2012175680 Sep 2012 JP
2012205104 Oct 2012 JP
2012248035 Dec 2012 JP
2013046412 Mar 2013 JP
2013110503 Jun 2013 JP
5230779 Jul 2013 JP
2014045237 Mar 2014 JP
5475475 Apr 2014 JP
5497348 May 2014 JP
5618072 Nov 2014 JP
2015095520 May 2015 JP
2015188174 Oct 2015 JP
20000074034 Dec 2000 KR
20020091917 Dec 2002 KR
100624049 Sep 2006 KR
200425873 Sep 2006 KR
100636388 Oct 2006 KR
100725002 Jun 2007 KR
100849702 Jul 2008 KR
100916077 Aug 2009 KR
100952976 Apr 2010 KR
100989064 Oct 2010 KR
101060584 Aug 2011 KR
101070364 Sep 2011 KR
101212354 Dec 2012 KR
101259715 Apr 2013 KR
101288770 Jul 2013 KR
20140104097 Aug 2014 KR
101435538 Sep 2014 KR
101447809 Oct 2014 KR
20150087455 Jul 2015 KR
101549622 Sep 2015 KR
200479199 Dec 2015 KR
101586236 Jan 2016 KR
101606803 Jan 2016 KR
101607420 Mar 2016 KR
69072 Jan 1945 NL
2129746 Apr 1999 RU
2432647 Oct 2011 RU
201537432 Oct 2015 TW
8301711 Jan 1983 WO
9116770 Oct 1991 WO
9210014 Jun 1992 WO
9323928 Nov 1993 WO
9424467 Oct 1994 WO
9523440 Aug 1995 WO
9529537 Nov 1995 WO
199529537 Nov 1995 WO
9603801 Feb 1996 WO
199619089 Jun 1996 WO
9639729 Dec 1996 WO
9641157 Dec 1996 WO
9735387 Sep 1997 WO
9737445 Oct 1997 WO
9829853 Jul 1998 WO
9857207 Dec 1998 WO
9859254 Dec 1998 WO
9923848 May 1999 WO
9948230 Sep 1999 WO
199945310 Sep 1999 WO
9967903 Dec 1999 WO
0070891 Nov 2000 WO
200074428 Dec 2000 WO
2001014985 Mar 2001 WO
0128159 Apr 2001 WO
0131746 May 2001 WO
0145206 Jun 2001 WO
0192910 Dec 2001 WO
02061467 Aug 2002 WO
02061971 Aug 2002 WO
03005629 Jan 2003 WO
2003009083 Jan 2003 WO
03012614 Feb 2003 WO
200326166 Mar 2003 WO
03026462 Apr 2003 WO
03044981 May 2003 WO
2003088418 Oct 2003 WO
03099740 Dec 2003 WO
2004011995 Feb 2004 WO
2004038891 May 2004 WO
2004051804 Jun 2004 WO
2004054159 Jun 2004 WO
2004077746 Sep 2004 WO
2005015686 Feb 2005 WO
2005072469 Aug 2005 WO
2005122328 Dec 2005 WO
2006012610 Feb 2006 WO
2006061865 Jun 2006 WO
2006085804 Aug 2006 WO
2006102419 Sep 2006 WO
2006111809 Oct 2006 WO
2006116396 Nov 2006 WO
2006122041 Nov 2006 WO
2006125279 Nov 2006 WO
2007000777 Feb 2007 WO
2006050331 Mar 2007 WO
2007031435 Mar 2007 WO
2007071797 Jun 2007 WO
2007148097 Dec 2007 WO
2008003939 Jan 2008 WO
2007094944 Mar 2008 WO
2007149746 Apr 2008 WO
2008044062 Apr 2008 WO
2008055084 May 2008 WO
2008061107 May 2008 WO
2008069358 Jun 2008 WO
2008070957 Jun 2008 WO
2008102987 Aug 2008 WO
2008117973 Oct 2008 WO
2008155769 Dec 2008 WO
2009014704 Jan 2009 WO
2007098061 Feb 2009 WO
2009031794 Mar 2009 WO
2009035285 Mar 2009 WO
2009090602 Jul 2009 WO
2009123404 Oct 2009 WO
2009131316 Oct 2009 WO
2010017549 Feb 2010 WO
2010050892 May 2010 WO
2010147806 Dec 2010 WO
2011006210 Jan 2011 WO
2011032605 Mar 2011 WO
2011085650 Jul 2011 WO
2011137793 Nov 2011 WO
2012007831 Jan 2012 WO
2012038816 Mar 2012 WO
2012050069 Apr 2012 WO
2012064333 May 2012 WO
2012113219 Aug 2012 WO
2012171205 Dec 2012 WO
2012172565 Dec 2012 WO
2013013162 Jan 2013 WO
2013013465 Jan 2013 WO
2013017822 Feb 2013 WO
2013023226 Feb 2013 WO
2013028197 Feb 2013 WO
2013035110 Mar 2013 WO
2013073548 May 2013 WO
2013100912 Jul 2013 WO
2013112353 Aug 2013 WO
2013115802 Aug 2013 WO
2013121682 Aug 2013 WO
2013123445 Aug 2013 WO
2013138627 Sep 2013 WO
2013136213 Sep 2013 WO
2013157978 Oct 2013 WO
2013172502 Nov 2013 WO
2014018434 Jan 2014 WO
2014011438 Jan 2014 WO
2014045236 Mar 2014 WO
2014065952 May 2014 WO
2014069941 May 2014 WO
2014083500 Jun 2014 WO
2014092644 Jun 2014 WO
2014094559 Jun 2014 WO
2014096868 Jun 2014 WO
2014099340 Jun 2014 WO
2013076499 Jul 2014 WO
2014112994 Jul 2014 WO
2014128253 Aug 2014 WO
2014137546 Sep 2014 WO
2014145862 Sep 2014 WO
2014147002 Sep 2014 WO
2014197926 Dec 2014 WO
2015002658 Jan 2015 WO
2015006636 Jan 2015 WO
2015008442 Jan 2015 WO
2015024006 Feb 2015 WO
2015027033 Feb 2015 WO
2015035463 Mar 2015 WO
2015055230 Apr 2015 WO
2015052478 Apr 2015 WO
2015052480 Apr 2015 WO
2015069090 May 2015 WO
2015069431 May 2015 WO
2015077644 May 2015 WO
2015088650 Jun 2015 WO
2015120626 Aug 2015 WO
2015123623 Aug 2015 WO
2015132618 Sep 2015 WO
2015167566 Nov 2015 WO
2015175054 Nov 2015 WO
2015197580 Dec 2015 WO
2016003291 Jan 2016 WO
2016004003 Jan 2016 WO
2016009402 Jan 2016 WO
2016012889 Jan 2016 WO
2016027007 Feb 2016 WO
2016028767 Feb 2016 WO
2016043949 Mar 2016 WO
2016032592 Mar 2016 WO
2016036951 Mar 2016 WO
2016043949 Mar 2016 WO
2016048214 Mar 2016 WO
2016048257 Mar 2016 WO
2016064502 Apr 2016 WO
2016053572 Apr 2016 WO
2016053573 Apr 2016 WO
2016060761 Apr 2016 WO
2016060762 Apr 2016 WO
2016061021 Apr 2016 WO
2016064502 Apr 2016 WO
2016064505 Apr 2016 WO
2016064516 Apr 2016 WO
2016064700 Apr 2016 WO
2016073072 May 2016 WO
2016081125 May 2016 WO
2016081128 May 2016 WO
2016081129 May 2016 WO
2016081134 May 2016 WO
2016081136 May 2016 WO
2015090382 Jun 2016 WO
2016086306 Jun 2016 WO
2016089491 Jun 2016 WO
2016089492 Jun 2016 WO
2016096029 Jun 2016 WO
2016125161 Aug 2016 WO
2016133509 Aug 2016 WO
2016122409 Aug 2016 WO
2016133672 Aug 2016 WO
2016137982 Sep 2016 WO
2016145411 Sep 2016 WO
2016161637 Oct 2016 WO
2016169058 Oct 2016 WO
2016171907 Oct 2016 WO
2016176030 Nov 2016 WO
2016200492 Dec 2016 WO
2016200579 Dec 2016 WO
2017011099 Jan 2017 WO
2017011100 Jan 2017 WO
2017011101 Jan 2017 WO
2017011102 Jan 2017 WO
2017011103 Jan 2017 WO
2017011227 Jan 2017 WO
2017014840 Jan 2017 WO
2017014842 Jan 2017 WO
2017023412 Feb 2017 WO
2017023413 Feb 2017 WO
2017023417 Feb 2017 WO
WO 2017048417 Mar 2017 WO
2017058468 Apr 2017 WO
2017058477 Apr 2017 WO
2017065898 Apr 2017 WO
2018106455 Jun 2018 WO
2018106684 Jun 2018 WO
2018106915 Jun 2018 WO
Non-Patent Literature Citations (670)
Entry
PCT/US16/30964, International Preliminary Report on Patentability, dated Jun. 28, 2017, 134 pages.
PCT/US16/36289, International Preliminary Report on Patentability, dated Jun. 29, 2017, 18 pages.
PCT/US16/40992, International Preliminary Report on Patentability, dated Jun. 29, 2017, 13 pages.
International Preliminary Report on Patentability for PCT/US2015/056626 dated Jun. 15, 2017.
International Preliminary Report on Patentability for PCT/US2015/056632 dated Jun. 15, 2017.
International Preliminary Report on Patentability for PCT/US16/36285 dated Jun. 21, 2017.
International Preliminary Report on Patentability for PCT/US16/36284 dated Jul. 14, 2017.
International Preliminary Report on Patentability for PCT/US16/36292 dated Jul. 14, 2017.
PCT/US16/40992 Corrected IPRP dated Jul. 17, 2017.
International Preliminary Report on Patentability for PCT/US16/36290 dated Jul. 26, 2017.
PCT/US16/36293 International Preliminary Report on Patentability dated Jul. 3, 2017.
PCT/US16/50346 Article 34 Amendment filed, Aug. 1, 2017.
PCT/US16/50039, Amendment Under Article 34 / Response to Written Opinion, filed Jul. 26, 2017, 12 pages.
PCT/US16/50488, Article 34 Amendment/Response to Written Opinion, filed Jul. 25, 2017, 8 pages.
PCT/US16/28197 International Preliminary Report on Patentability, dated Jul. 3, 2017, pp. 1-113.
PCT/US16/50347, Article 34 Amendment, filed Aug. 1, 2017, pp. 1-7.
PCT/US16/35384 Int'l Preliminary Report on Patentability, dated Jun. 9, 2017, pp. 1-106.
“Article 34 Amendment and Demand filed Jul. 14, 2017”, PCT Application No. PCT/US16/46315 filed Aug. 10, 2016, 1-15.
“Article 34 Amendment and Response to Written Opinion filed Jul. 14, 2017”, PCT Application No. PCT/US16/46323 filed Aug. 10, 2016, 1-21.
“Article 34 Amendment Filed Aug. 1, 2017”, PCT Application No. PCT/US16/50860 filed Sep. 9, 2016, 10 pages.
“Article 34 Amendment Filed Jul. 11, 2017”, PCT Application No. PCT/US16/51429 filed Sep. 13, 2016, 1-37.
“International Prelimiary Report on Patentability dated Aug. 10, 2017”, PCT Application No. PCT/US16/13988 filed Jan. 20, 2016, Aug. 10, 2017, 8 pages.
“International Preliminary Report on Patentability”, PCT/US16/36388, dated Jul. 21, 2017, 11 pages.
“International Preliminary Report on Patentability”, PCT/US16/36798, dated Jun. 9, 2017, 20 pages.
“International Preliminary Report on Patentability”, PCT/US16/36551, dated Jun. 30, 2017, 30 pages.
“International Preliminary Report on Patentability”, PCT/US16/35383, dated Jun. 15, 2017, 32 pages.
“International Preliminary Report on Patentability”, PCT Application No. PCT/US16/32289 filed May 13, 2016, dated Aug. 2, 2017, pp. 1-12.
Patent Cooperation Treaty, “International Preliminary Report on Patentability dated Jun. 15, 2017”, PCT Application No. PCT/US16/36254 filed Jun. 7, 2016, 1-21.
Patent Cooperation Treaty, “International Preliminary Report on Patentability dated Jun. 16, 2017”, PCT Application No. PCT/US16/36553 filed Jun. 16, 2016, 25 pages.
Patent Cooperation Treaty, “International Preliminary Report on Patentability dated Jun. 26, 2017”, PCT Application No. PCT/US16/36303 filed Jun. 8, 2016, 1-21.
Patent Cooperation Treaty, “International Preliminary Report on Patentability dated Jun. 26, 2017”, PCT Application No. PCT/US16/36295 filed Jun. 8, 2016, 1-10.
Patent Cooperation Treaty, “International Preliminary Report on Patentability dated Jun. 15, 2017”, PCT Application No. PCT/US16/33182 filed May 19, 2016, dated Jun. 15, 2017, 52 pages.
International Preliminary Report on Patentability for PCT/US2015/049927 dated Apr. 20, 2017.
Amendment Under Article 34 / Response to Written Opinion for PCT/US16/36290 filed on, May 15, 2017.
Amendment Under Article 34 / Response to Written Opinion for PCT/US16/36292 filed on, May 15, 2017.
Amendment Under Article 34 / Response to Written Opinion for PCT/US16/36293 filed on, May 15, 2017.
PCT/US16/36284 Article 34 Amendment filed, May 19, 2017.
PCT/US16/36285 Article 34 Amendment filed, May 19, 2017.
PCT/US16/36288 Article 34 Amendment filed, May 19, 2017.
International Report on Patentability for PCT/US15/056365 dated Jun. 1, 2017.
Article 34 Amendment, PCT/US16/36556, filed May 31, 2017, 1-13.
International Preliminary Report on Patentability, PCT/US2015/051194, dated May 4, 2017, 1-7.
International Preliminary Report on Patentability, PCT/US2015/056368, dated Jun. 1, 2017, 1-8.
International Preliminary Report on Patentability, PCT/US2015/056320, dated Jun. 1, 2017, 1-9.
International Preliminary Report on Patentability PCT/US16/28412, dated May 19, 2017, pp. 1-21.
International Preliminary Report on Patentability PCT/US16/26860, dated May 19, 2017, pp. 1-95.
“Amendment Under Article 34—Response to Written Opinion Filed May 15, 2017”, Application No. PCT/US16/36303 filed Jun. 8, 2016, 1-10.
“Article 34 Amendment Filed May 19, 2017”, PCT Application No. PCT/US16/36286 filed Jun. 8, 2016, 1-8.
“Article 34 Amendment Filed”, PCT Application No. PCT/US16/36553 Filed Jun. 9, 2016, 1-11.
“Amendment Under Article 34 and Response to Written Opinion Filed May 15, 2017”, Application No. PCT/US16/41561 filed Jul. 8, 2016, 1-14.
“PCT Amendment Under Article 34 Response to Written Opinion Filed May 15, 2017”, PCT Application PCT/US16/36254 filed Jun. 8, 2016, 1-11.
“Amendment Under Article 34 / Response to Written Opinion”, PCT/US16/36295, filed May 4, 2017.
“Amendment Under Article 34 / Response to Written Opinion”, PCT/US16/36297, filed May 31, 2017, 12 pages.
“Amendment Under Article 34, Response to Written Opinion”, PCT/US16/36289, Filed May 11, 2017, 8 pages.
“Article 34 Amendment”, PCT/US16/36798, dated May 15, 2017.
“Article 34 Amendment”, PCT Application No. PCT/US16/30964, dated Apr. 25, 2017, 13 pages.
“Article 34 Amendment”, PCT/US16/36551, dated May 23, 2017, 14 pages.
“Article 34 Amendment”, PCT/US16/35383, dated Apr. 14, 2017, 15 pages.
“Article 34 Amendment”, PCT/US16/36388, dated May 31, 2017, 9 pages.
“Article 34 Amendment Filed Apr. 18, 2017 in PCT Application No. PCT/US16/57161”.
“Article 34 Amendment for”, PCT/US16/40992 filed on, May 5, 2017.
“International Preliminary Report on Patentability”, PCT/US15/51583, dated May 4, 2017.
“International Preliminary Report on Patentability”, PCT/US2015/049932, dated Apr. 27, 2017.
“International Preliminary Report on Patentability”, PCT/US15/056598, dated Jun. 1, 2017.
“International Preliminary Report on Patentability”, PCT/US15/48458, dated Apr. 13, 2017.
“International Preliminary Report on Patentability”, PCT/US16/27398, dated May 1, 2017.
“International Preliminary Report on Patentability”, PCT/US16/28207, dated May 16, 2017.
“International Preliminary Report on Patentability”, PCT/US16/27403, dated May 19, 2017.
“International Preliminary Report on Patentability”, PCT/US2015/051146, dated May 4, 2017.
“International Preliminary Report on Patentability”, PCT/US2015/051163, dated May 4, 2017.
“International Preliminary Report on Patentability”, PCT/US15/56316, dated Jun. 1, 2017, 8 pages.
“International Preliminary Report on Patentability”, PCT/US15/51213, dated May 4, 2017, 9 pages.
“International Preliminary Report on Patentability”, PCT/US2015/048454, dated Apr. 13, 2007, pp. 1-9.
“International Preliminary Report on Patentability & Written Opinion”, PCT/US16/32430, dated May 25, 2017, 122 pages.
“International Preliminary Report on Patentability & Written Opinion”, PCT/US16/28206, dated May 16, 2017, 23 pages.
“International Preliminary Report on Patentability & Written Opinion”, PCT/US2015/051578, dated May 4, 2017, 6 pages.
“International Preliminary Report on Patentability & Written Opinion”, PCT/US2015/051193, dated May 4, 2017, 8 pages.
“International Preliminary Report on Patentability dated May 23, 2017”, PCT Application No. PCT/US2015/056615 filed Oct. 21, 2015, dated May 23, 2017, 1-7.
“PCT Article 34 Amendment filed Apr. 12, 2017”, PCT Application PCT/US16/32289 filed May 13, 2016, 1-11.
“Response to Written Opinion and Article 34 Amendment”, PCT/US2016/035384, filed Apr. 12, 2017, 10 pages.
Patent Cooperation Treaty, “International Preliminary Report on Patentability dated Apr. 25, 2017”, Application No. PCT/US2015/051183, dated Apr. 25, 2017, 1-8.
Patent Cooperation Treaty (PCT), “International Preliminary Report on Patentability”, Application No. PCT/US2015/049928, dated Apr. 27, 2017, 1-9.
Yeh, W.H. C., “Electromagnetic Surface-Wave Propagation Along a Dielectric Cylinder of Elliptical Cross Section”, Thesis, California Institute of Technology, Pasadena, CA, 1962, 182 pgs.
Article 34 Amendment/Response to Written Opinion filed Apr. 3, 2017, PCT/US16/28197, pp. 1-10.
Article 34 Amendment/Response to Written Opinion PCT/US16/28412, filed Apr. 4, 2017, pp. 1-10.
PCT/US2015/047225 International Preliminary Report on Patentability, dated Mar. 30, 2017, pp. 1-5.
Int'l Preliminary Report on Patentability for PCT/US15/034827 dated Mar. 9, 2017.
Article 34 Amendment filed for PCT/US16/32441 dated Mar. 14, 2017.
Article 34 Amendment for PCT/US16/27398 filed on, Mar. 14, 2017.
“Article 34 Amendment”, PCT/US16/33182, 1-12.
“AirCheck G2 Wireless Tester”, NetScout®, enterprise.netscout.com, Dec. 6, 2016, 10 pages.
“Amendment Under Article 34 / Response to Written Opinion”, PCT/US16/28207, Filed Apr. 3, 2017, pp. 1-12.
“Amendment Under Article 34 / Response to Written Opinion”, PCT Application No. PCT/US16/27403, dated Mar. 24, 2017, 11 pages.
“Amendment Under Article 34 / Response to Written Opinion”, PCT Application No. PCT/US16/32430, dated Mar. 14, 2017, 19 pages.
“Amendment Under Article 34 / Response to Written Opinion”, PCT Application No. PCT/US16/26193, dated Feb. 24, 2017, 6 pages.
“Amendment Under Article 34 / Response to Written Opinion”, PCT Application No. PCT/US16/26860, dated Feb. 28, 2017, 6 pages.
“Amendment Under Article 34 / Response to Written Opinion”, PCT Application No. PCT/US16/26318, dated Feb. 24, 2017, 7 pages.
“Amendment Under Article 34/Response to Written Opinion”, PCT Application No. PCT/US2016/020001, dated Jan. 13, 2017, 6 pages.
“Article 34 Amendment filed Apr. 3, 2017”, PCT Application No. PCT/US16/28206, dated Apr. 3, 2017, 9 pages.
“Brackets, Conduit Standoff”, Hubbell Power Systems, Inc., hubbellpowersystems.com, Dec. 2, 2010, 2 pages.
“Broadband Negligible Loss Metamaterials”, Computer Electmagnetics and Antennas Research Laboratory, cearl.ee.psu.edu., May 15, 2012, 3 pages.
“Broadband Over Power Lines (BPL): Developments and Policy Issues”, Organisation for Economic Co-operation and Development, Directorate for Science, Technology and Industry, Committee for Information, Computer and Communications Policy, Jun. 2, 2009, 35 pages.
“Broadband: Bringing Home the Bits: Chapter 4 Technology Options and Economic Factors”, The National Academies Press, nap.edu, 2002, 61 pages.
“Cisco Aironet 1500 Series Access Point Large Pole Mounting Kit Instructions”, www.cisco.com/c/en/us/td/docs/wireless/antenna/installation/guide/18098.html, 2008, 9 pages.
“Cisco IP VSAT Satellite WAN Network Module for Cisco Integrated Services Routers”, www.cisco.com/c/en/us/products/collateral/interfaces-modules/ip-vsatsatellite-wan-module/product_data_sheet0900aecd804bbf6f.html, Jul. 23, 2014, 6 pages.
“Cloud Management”, Cisco Meraki, cisco.com., Sep. 11, 2015, 2 pages.
“Decryption: Identify & Control Encrypted Traffic”, Palo Alto Networks, paloaltonetworks.com, Mar. 7, 2011, 4 pages.
“Delivering broadband over existing wiring”, Cabling Installation & Maintenance, cablinginstall.com, May 1, 2002, 6 pages.
“Directional Couplers—Coaxial and Waveguide”, Connecticut Microwave Corporation, http://connecticutmicrowave.com, Accessed Aug. 2016, 21 pages.
“Doubly-fed Cage-cone Combined Broadband Antennas for Marine Applications”, http://www.edatop.com/down/paper/antenna/%E5%A4%A9%E7%BA%BF%E8%AE%BE%E8%AE%A1-890w5nebp5ilpq.pdf, 2007, 7 pages.
“Dual Band Switched-Parasitic Wire Antennas for Communications and Direction Finding”, www.researchgate.net/profile/David_Thiel2/publication/3898574_Dual_band_switched-parasitic_wire_antennas_for_communications_and_direction_finding/links/0fcfd5091b4273ce54000000.pdf, 2000, 5 pages.
“Electronic Countermeasure (ECM) Antennas”, vol. 8, No. 2, Apr. 2000, 2 pages.
“Elliptical Polarization”, Wikipedia, http://en.wikipedia.org/wiki/Elliptical_polarization, Apr. 21, 2015, 3 pages.
“Harvest energy from powerline”, www.physicsforums.com/threads/harvest-energy-from-powerline.685148/, Discussion thread about harvesting power from powerlines that includes the suggestion of clamping a device to the power line., 2013, 8 pages.
“Identity Management”, Tuomas Aura CSE-C3400 Information Security, Aalto University, Autumn 2014, 33 pgs.
“IEEE Standard for Information technology—Local and metropolitan area networks—Specific requirements, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs),” in IEEE Std 802.15.4, (Revision of IEEE Std 802.15.4-2003), Sep. 7, 2006, 1-320.
“International Preliminary Report on Patentability”, PCT/US2014/039746, dated Dec. 10, 2015.
“International Preliminary Report on Patentability”, PCT/US16/20001, dated Feb. 17, 2017, 1-14.
“International Preliminary Report on Patentability”, PCT/US2014/060841, dated May 19, 2016, 8 pages.
“International Preliminary Report on Patentability & Written Opinion”, PCT/US2015/047315, dated Mar. 30, 2017, 8 pages.
“International Preliminary Report on Patentability & Written Opinion”, PCT/US2014/061445, dated Jun. 23, 2016, 9 pages.
“International Search Report & Written Opinion”, PCT/US2015/034827, dated Sep. 30, 2015.
“International Search Report & Written Opinion”, PCT/US2015/056316, dated Jan. 21, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056320, dated Jan. 29, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056365, dated Jan. 22, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056368, dated Jan. 25, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056598, dated Jan. 28, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056615, dated Jan. 21, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056626, dated Jan. 21, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056632, dated Jan. 26, 2016.
“International Search Report & Written Opinion”, PCT/US2016/013988, dated Apr. 8, 2016.
“International Search Report & Written Opinion”, PCT/US2016/035384, dated Oct. 31, 2016.
“International Search Report & Written Opinion”, PCT/US2016/020001, dated May 23, 2016.
“International Search Report & Written Opinion”, PCT/US2016/026193, dated Jun. 1, 2016.
“International Search Report & Written Opinion”, PCT/US2016/026860, dated Jun. 1, 2016.
“International Search Report & Written Opinion”, PCT/US2016/026318, dated Jun. 15, 2016.
“International Search Report & Written Opinion”, PCT/US16/027397, dated Jun. 24, 2016.
“International Search Report & Written Opinion”, PCT/US2016/028412, dated Jun. 27, 2016.
“International Search Report & Written Opinion”, PCT/US2016/028206, dated Jun. 29, 2016.
“International Search Report & Written Opinion”, PCT/US16/033182, dated Jul. 12, 2016.
“International Search Report & Written Opinion”, PCT/US2016/036290, dated Aug. 11, 2016.
“International Search Report & Written Opinion”, PCT/US2016/036551, dated Aug. 11, 2016.
“International Search Report & Written Opinion”, PCT/US2016/036798, dated Aug. 11, 2016.
“International Search Report & Written Opinion”, PCT/US2016/028205, dated Aug. 16, 2016.
“International Search Report & Written Opinion”, PCT/US2016/032460, dated Aug. 17, 2016.
“International Search Report & Written Opinion”, PCT/US2016/036303, dated Aug. 24, 2016.
“International Search Report & Written Opinion”, PCT/US2016/036288, dated Sep. 1, 2016.
“International Search Report & Written Opinion”, PCT/2016/035383, dated Sep. 2, 2016.
“International Search Report & Written Opinion”, PCT/US16/036284, dated Sep. 8, 2016.
“International Search Report & Written Opinion”, PCT/US2016/036286, dated Sep. 13, 2016.
“International Search Report & Written Opinion”, PCT/US2016/036293, dated Sep. 15, 2016.
“International Search Report & Written Opinion”, PCT/US2014/039746, dated Jan. 12, 2015.
“International Search Report & Written Opinion”, PCT/US2014/060841, dated Jan. 7, 2015.
“International Search Report & Written Opinion”, PCT/US2016/040992, dated Oct. 17, 2006.
“International Search Report & Written Opinion”, PCT/US2015/039848, dated Oct. 20, 2015.
“International Search Report & Written Opinion”, PCT/US2015/047315, dated Oct. 30, 2015.
“International Search Report & Written Opinion”, PCT/US2015/048454, dated Nov. 11, 2015.
“International Search Report & Written Opinion”, PCT/US16/050488, dated Nov. 11, 2016.
“International Search Report & Written Opinion”, PCT/US16/50345, dated Nov. 15, 2016.
“International Search Report & Written Opinion”, PCT/US2015/049928, dated Nov. 16, 2015.
“International Search Report & Written Opinion”, PCT/US2015/049932, dated Nov. 16, 2015.
“International Search Report & Written Opinion”, PCT/US2016/050346, dated Nov. 17, 2016.
“International Search Report & Written Opinion”, PCT/US2015/049927, dated Nov. 24, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051193, dated Nov. 27, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051146, dated Dec. 15, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051183, dated Dec. 15, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051194, dated Dec. 15, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051578, dated Dec. 17, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051583, dated Dec. 21, 2015.
“International Search Report & Written Opinion”, PCT/US2015/048458, dated Dec. 23, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051213, dated Dec. 4, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051163, dated Dec. 7, 2015.
“International Search Report & Written Opinion”, PCT/US2014/061445, dated Feb. 10, 2015.
“International Search Report & Written Opinion”, PCT/US16/28207, dated Jun. 15, 2016.
“International Search Report & Written Opinion”, PCT/US16/027403, dated Jun. 22, 2016.
“International Search Report & Written Opinion”, PCT/US2016/015501, dated Apr. 29, 2016, 11 pages.
“International Search Report & Written Opinion”, PCT/US2016/050860, dated Nov. 17, 2016, 11 pages.
“International Search Report & Written Opinion”, PCT/US2016/050344, dated Nov. 25, 2016, 16 pages.
“International Search Report & Written Opinion”, PCT/US2015/047225, dated Nov. 6, 2015, dated Nov. 6, 2015.
“International Search Report and Written Opinion”, PCT/US16/027398, dated Jun. 24, 2016.
“International Search Report and Written Opinion”, PCT/US16/028395, dated Jun. 29, 2016.
“International Search Report and Written Opinion”, PCT/US2016/028417, Authorized officer Brigitte Bettiol, dated Jul. 5, 2016.
“International Search Report and Written Opinion”, PCT/US16/032441, dated Jul. 29, 2016.
“International Search Report and Written Opinion”, PCT/US2016/036285, dated Aug. 23, 2016.
“International Search Report and Written Opinion”, PCT/US16/036388, dated Aug. 30, 2016.
“International Search Report and Written Opinion”, PCT/US2016/036297, dated Sep. 5, 2016.
“International Search Report and Written Opinion”, PCT/US2016/036292, dated Sep. 13, 2016.
“International Search Report and Written Opinion”, PCT/US2016/046315, dated Nov. 3, 2016.
“International Search Report and Written Opinion”, PCT/US2016/050039, dated Nov. 14, 2016.
“International Search Report and Written Opinion”, PCT/US2016/050347, dated Nov. 15, 2016.
“International Search Report and Written Opinion”, PCT/US2016/051217, dated Nov. 29, 2016.
“International Search Report and Written Opinion”, PCT/US2016/028197, dated Jun. 24, 2016.
“International Search Report and Written Opinion”, PCT/US2016/036289, dated Aug. 11, 2016.
“International Search Report and Written Opinion”, PCT/US2016/036295, dated Aug. 30, 2016.
“International Search Report and Written Opinion”, PCT/US2016/030964, dated Aug. 4, 2016.
“International Search Report and Written Opinion”, PCT/US2016/036553, dated Aug. 30, 2016, 1-14.
“International Search Report and Written opinion”, PCT/US2016/036556, dated Sep. 22, 2016.
“International Searching Authority”, International Search Report and Written Opinion, dated Sep. 28, 2016, 1-12.
“Invitation to Pay Additional Fees & Partial Search Report”, PCT/US2016/028205, dated Jun. 22, 2016.
“Invitation to Pay Additional Fees & Partial Search Report”, PCT/US2016/032430, dated Jun. 22, 2016.
“Invitation to Pay Additional Fees and, Where Applicable, Protest Fee”, PCT/US2016/035384, dated Aug. 31, 2016, 7 pages.
“Ipitek All-Optical Sensors”, www.ipitek.com/solutions-by-industry/all-optical-sensors, Jun. 2, 2014, 3 pages.
“Micromem Demonstrates UAV Installation of Power Line Monitoring Mounting System”, MicroMem, micromem.com, Mar. 4, 2015, 1-3.
“Newsletter 4.4—Antenna Magus version 4.4 released!”, antennamagus.com, Aug. 10, 2013, 8 pages.
“PCT International Search Report”, PCT/US2016/057161, PCT International Search Report and Written Opinion, dated Jan. 12, 2017, 1-13, dated Jan. 12, 2017, 1-13.
“PCT/US2016/041561, PCT International Search Report and Written Opinion”, dated Oct. 10, 2016, 1-15.
“PCT/US2016/046323, PCT International Search Report”, dated Oct. 24, 2016, 1-13.
“Quickly identify malicious traffics: Detect”, lancope.com, Mar. 15, 2015, 8 pages.
“Radar at St Andrews”, mmwaves.epr, st-andrews.ac.uk, Feb. 4, 2011, 2 pages.
“Resilience to Smart Meter Disconnect Attacks”, ADSC Illinois at Singapore PTE Ltd., http://publish.illinois.edu/integrativesecurityassessment/resiliencetosmartmeterdisconnectattacks, 2015, 2 pages.
“RF Sensor Node Development Platform for 6LoWPAN and 2.4 GHz Applications”, www.ti.com/tool/TIDM-RF-SENSORNODE, Jun. 2, 2014, 3 pages.
“Technology Brief 13: Touchscreens and Active Digitizers”, https://web.archive.org/web/20100701004625/http://web.engr.oregonstate.edu/˜moon/engr203/read/read4.pdf, 2010, 289-311.
“The world's first achievement of microwave electric-field measurement utilizing an optical electric-field sensor mounted on an optical fiber, within a microwave discharge ion engine boarded on asteroid explorers etc.”, Investigation of internal phenomena and performance improvement in microwave discharge ion engines, Japan Aerospace Exploration Agency (JAXA), Nippon Telegraph and Telephone Corporation, Aug. 7, 2013, 4 pages.
“Transducer”, IEEE STD 100-2000, Sep. 21, 2015, 1154.
“Wireless powerline sensor”, wikipedia.org, http://en.wikipedia.org/wiki/Wireless_powerline_sensor, 2014, 3 pages.
Ace, “Installing Satellite Accessories”, www.acehardware.com, May 8, 2006, 4 pages.
Adabo, Geraldo J., “Long Range Unmanned Aircraft System for Power Line Inspection of Brazilian Electrical System”, Journal of Energy and Power Engineering 8 (2014), Feb. 28, 2014, 394-398.
Aerohive Networks, “HiveManager Network Management System”, www.aerohive.com, Sep. 2015, 3 pages.
Akiba, Shigeyuki et al., “Photonic Architecture for Beam Forming of RF Phased Array Antenna”, Optical Fiber Communication Conference, Optical Society of America, Abstract Only, 2014, 1 page.
Al-Ali, A.R. et al., “Mobile RFID Tracking System”, Information and Communication Technologies: From Theory to Applications, ICTTA 2008, 3rd International Conference on IEEE, 2008, 4 pages.
Alam, M. N. et al., “Novel Surface Wave Exciters for Power Line Fault Detection and Communications”, Department of Electrical Engineering, University of South Carolina, Antennas and Propagation (APSURSI), 2011 IEEE International Symposium, IEEE, 2011, 1-4.
Alam, MD N. et al., “Design and Application of Surface Wave Sensors for nonintrusive Power Line Fault Detection”, IEEE Sensors Journal, IEEE Service Center, New York, NY, US, vol. 13, No. 1, Jan. 1, 2013, 339-347.
Alaridhee, T. et al., “Transmission properties of slanted annular aperture arrays. Giant energy deviation over sub-wavelength distance”, Optics express 23.9, 2015, 11687-11701.
Ali, Muhammad Q. et al., “Randomizing AMI configuration for proactive defense in smart grid”, Smart Grid Communications (SmartGridComm), IEEE International Conference on. IEEE, Abstract Only, 2013, 2 pages.
Ali, Tariq et al., “Diagonal and Vertical Routing Protocol for Underwater Wireless Sensor Network”, Procedia—Social and Behavioral Sciences 129, 2014, 372-379.
Allen, Jeffrey et al., “New Concepts in Electromagnetic Materials and Antennas”, Air Force Research Laboratory, Jan. 2015, 80 pages.
Amirshahi, P. et al., “Transmission channel model and capacity of overhead multiconductor mediumvoltage powerlines for broadband communications”, Consumer Communications and Networking Conference, 2005, 5 pages.
Amt, John H. et al., “Flight Testing of a Pseudolite Navigation System on a UAV”, Air Force Institute of Technology: ION Conference, Jan. 2007, 9 pages.
Angove, Alex, “How the NBN Differs from ADSL2+, Cable and Wireless”, www.whistleout.com.au/Broadband/Guides/How-the-NBN-Differs-from-ADSL2-Cable-and-Wireless, Jul. 30, 2014, 4 pages.
Antenna Magus, “Waveguide-fed Conical Horn”, www.antennamagnus.com, Aug. 2015, 1 page.
AntennaMagus, “Parabolic focus pattern fed reflector with shroud”, antennamagus.com, Jul. 4, 2014, 2 pages.
Arage, Alebel et al., “Measurement of wet antenna effects on millimetre wave propagation”, 2006 IEEE Conference on Radar, Abstract Only, 2006, 1 page.
Ares-Pena, Francisco J. et al., “A simple alternative for beam reconfiguration of array antennas”, Progress in Electromagnetics Research 88, 2008, 227-240.
Arthur, Joseph Kweku et al., “Improving QoS in UMTS Network in ACCRA Business District Using Tower-Less Towers”, IPASJ International Journal of Electrical Engineering (IIJEE), vol. 2, Issue 11, Nov. 2014, 11 pages.
Asadallahi, Sina et al., “Performance comparison of CSMA/CA Advanced Infrared (AIr) and a new pointtomultipoint optical MAC protocol”, 2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC), Abstract Only, Aug. 2012, 2 pages.
Ascom, “TEMS Pocket—a Complete Measurement Smartphone System in your Hand”, http://www.ascom.us/us-en/tems_pocket_14.0_feature_specific_datasheet.pdf, 2014, 2 pages.
A-Tech Fabrication, “Dual Antenna Boom Assembly”, http://web.archive.org/web/20090126192215/http://atechfabrication.com/products/dual_antenna_boom.htm, 2009, 2 pages.
Atlas Sound, “Bi-Axial PA Horn with Gimbal Mount”, MCM Electronics, mcmelectronics.com, 2011, 555-13580.
Atmel, “Power Line Communications”, www.atmel.com/products/smartenergy/powerlinecommunications/default.aspx, 2015, 3 pages.
Atwater, Harry A., “The promise of plasmonics”, Scientific American 296.4, 2007, 56-62.
Baanto, “Surface Acoustive Wave (SAW) Touch Screen”, http://baanto.com/surface-acoustic-wave-saw-touch-screen, 2016, 4 pages.
Babakhani, Aydin, “Direct antenna modulation (DAM) for on-chip mm-wave transceivers”, Diss. California Institute of Technology, 2008, 2 pages.
Bach, Christian, “Current Sensor—Power Line Monitoring for Energy Demand Control”, Application Note 308, http://www.enocean.com/fileadmin/redaktion/pdf/app_notes/AN308_CURRENT_SENSOR_Jan09.pdf, Jan. 2009, 4 pages.
Barlow, H. M. et al., “Surface Waves”, 621.396.11 : 538.566, Paper No. 1482 Radio Section, 1953, pp. 329-341.
Barnes, Heidi et al., “DeMystifying the 28 Gb/s PCB Channel: Design to Measurement”, Design Con. 2014, Feb. 28, 2014, 54 pages.
Barron, Ashleigh L., “Integrated Multicore Fibre Devices for Optical Trapping”, Diss. Heriot-Watt University, 2014, 11-15.
Beal, J.C. et al., “Coaxial-slot surface-wave launcher”, Electronics Letters 4.25: 557559, Abstract Only, Dec. 13, 1968, 1 page.
Benevent, Evangéline, “Transmission lines in MMIC technology”, Universitá Mediterranea di Reggio Calabria, Jan. 28, 2010, 63 pages.
Beninca, “Flashing Light: IR Lamp”, www.beninca.com/en/news/2015/02/23/lampeggiante-irlamp.html, Feb. 23, 2015, 4 pages.
Benkhelifa, Elhadj, “User Profiling for Energy Optimisation in Mobile Cloud Computing”, 2015, 1159-1165.
Berweger, Samuel et al., “Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale”, The Journal of Physical Chemistry Letters; pubs.acs.org/JPCL, 2012, 945-952.
Bhushan, Naga et al., “Network densification: the dominant theme for wireless evolution into 5G”, IEEE Communications Magazine, 52.2:, Feb. 2014, 82-89.
Bing, Benny, “Ubiquitous Broadband Access Networks with Peer-to-Peer Application Support”, Evolving the Access Network, 2006, 27-36.
Blanco-Redondo, Andrea et al., “Coupling midinfrared light from a photonic crystal waveguide to metallic transmission lines”, Applied Physics Letters 104.1, 2014, 6 pages.
Blattenberger, Kirt, “DroneBased Field Measurement System (dBFMS)”, RF Cafe, rfcafe.com, Jul. 29, 2014, 3 pages.
Bock, James et al., “Optical coupling”, Journal of Physics: Conference Series. vol. 155. No. 1, IOP Publishing, 2009, 32 pages.
Bowen, Leland H. et al., “A Solid Dielectric Lens Impulse Radiating Antenna with High Dielectric Constant Surrounded by a Cylindrical Shroud”, Sensor and Simulation Note 498, Introduction, Apr. 2005, 3 pages.
Brambilla, Gilberto et al., “Ultra-low-loss optical fiber nanotapers”, Optoelectronics Research Centre, University of Southampton; http://www.orc.soton.ac.uk, vol. 12, No. 10, May 7, 2004, 2258-2263.
Bridges, Greg E. et al., “Plane wave coupling to multiple conductor transmission lines above a lossy earth”, Compatibility, IEEE Transactions on 31.1, Abstract Only, 1989, 21-33.
Bridges, William B., “Low-Loss Flexible Dielectric Waveguide for Millimeter-Wave Transmission and Its Application to Devices”, California Institute of Technology, Office of Naval Research, Mar. 1981, 91 pages.
Briso-Rodriguez, “Measurements and Modeling of Distributed Antenna Systems in Railway Tunnels”, IEEE Transactions on Vehicular Technology, vol. 56, No. 5, Sep. 2007, 2870-2879.
Brooke, Gary H., “Properties of surface waveguides with discontinuities and perturbations in cross-section”, Diss. University of British Columbia, 1977, 42 pages.
Brown, J. et al., “The launching of radial cylindrical surface waves by a circumferential slot”, Proceedings of the IEEE Part B: Radio and Electronic Engineering, vol. 106, Issue 26, Abstract Only, Mar. 1959, 1 page.
Brown-Iposs, “Integrated Radio Masts Fully camouflaged Outdoor-Wi-Fi APs in GRP-lamp poles”, www.brown-iposs.com, Mar. 21, 2014, 4 pages.
Bruno, Joseph, “Interference Reduction in Wireless Networks”, Computing Research Topics, Computing Sciences Department, Villanova University, Nov. 14, 2007, 8 pages.
Budde, Matthias, “Using a 2DST Waveguide for Usable, Physically Constrained Out-of-Band Wi-Fi Authentication”, https://pdfs.semanticscholar.org/282e/826938ab7170c198057f9236799e92e21219.pdf, 2013, 8 pages.
Burkhart, Martin et al., “Does Topology Control Reduce Interference?”, Department of Computer Science, ETH Zurich, Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing, 2004, 11 pages.
Callis, R.W. et al., “An In-Line Power Monitor for HE11 Low Loss Transmission Lines”, Proceedings of the 29th International Conference on Infrared and Millimeter Waves (IRMMW), Karlsruhe, Germany, Jun. 2004, 7 pages.
Campista, Miguel E. et al., “Improving the Data Transmission Throughput Over the Home Electrical Wiring”, The IEEE Conference on Local Computer Networks 30th Anniversary, 2005, 1-8.
Capece, P. et al., “FDTD Analysis of a Circular Coaxial Feeder for Reflector Antenna”, Antennas and Propagation Society International Symposium, IEEE Digest, vol. 3, 1997, pp. 1570-1573.
Carroll, John M. et al., “Developing the Blacksburg Electronic Village”, Communications of the ACM, vol. 39, No. 12, Dec. 1996, 69-74.
Chaimae, Elmakfalji et al., “New Way of Passive RFID Deployment for Smart Grid”, Journal of Theoretical and Applied Information Technology 82.1, Dec. 10, 2015, 81-84.
Chen, Dong et al., “A trust management model based on fuzzy reputation for internet of things”, Computer Science and Information Systems 8.4: 12071228, Abstract Only, 2011, 1 page.
Chen, KE et al., “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusionlike scattering”, Scientific Reports 6, 2016, 1-10.
Chen, Yingying, “Detecting and Localizing Wireless Spoofing Attacks”, Sensor, Mesh and Ad Hoc Communications and Networks, SECON'07, 4th Annual IEEE Communications Society Conference on IEEE, 2007, 10 pages.
Chiba, Jiro, “Experimental Studies of the Losses and Radiations Due to Bends in the Goubau Line”, IEEE Transactions on Microwave Theory and Techniques, Feb. 1977, 94-100.
Chiba, Jiro, “On the Equivalent Circuit for the G-Line Above Ground”, International Wroclaw Symposium on Electromagnetic Compatibility, 1998, 78-82.
Choudhury, Romit R., “Utilizing Beamforming Antennas for Wireless Mult-hop Networks”, www.slideserve.com, Sep. 20, 2012, 4 pages.
Chu, Eunmi et al., “Self-organizing and self-healing mechanisms in cooperative small cell networks”,PIMRC, 2013, 6 pages.
Cimini, Carlos Alberto et al., “Temperature profile of progressive damaged overhead electrical conductors”, Journal of Electrical Power & Energy Systems 49, 2013, 280-286.
CIPO, “Office Action dated Feb. 3, 2017 for Canadian application 2,928,355”, 1-4.
Cisco, “Troubleshooting Problems Affecting Radio Frequency Communication”, cisco.com, Oct. 19, 2009, 5 pages.
Cliff, Oliver M. et al., “Online localization of radio-tagged wildlife with an autonomous aerial robot system”, Proceedings of Robotics Science and Systems XI, 2015, 1317.
Collins, D.D. et al., “Final Report on Advanced Antenna Design Techniques”, GER 11246, Report No. 4, Sep. 6, 1963, 1-70.
Communication Power Solutions, I, “Power Communication”, www.cpspower.biz/services/powercommunications, Oct. 2013, 6 pages.
Comsol, “Fast Numerical Modeling of a Conical Horns Lens Antenna”, comsol.com, Application ID: 18695, Sep. 16, 2016, 3 pages.
Corridor Systems, “A New Approach to Outdoor DAS Network Physical Layer Using E-Line Technology”, Mar. 2011, 5 pages.
Costantine, Joseph et al., “The analysis of a reconfigurable antenna with a rotating feed using graph models”, Antennas and Wireless Propagation Letters, vol. 8, 2009, 943-946.
Covington, Michael J. et al., “Threat implications of the internet of things”, 2013 5th International Conference on IEEE Cyber Conflict (CyCon), Abstract Only, 2013, 1 page.
Cradle Point, “Out-of-Band Management”, www.cradlepoint.com, Sep. 2015, 7 pages.
Crane, Robert K., “Analysis of the effects of water on the ACTS propagation terminal antenna”, Antennas and Propagation, IEEE Transactions on 50.7: 954965, Abstract Only, 2002, 1 page.
Crisp, “Uplink and Downlink Coverage Improvements of 802.11g Signals Using a Distributed Antenna Network”, Journal of Lightwave Technology (vol. 25, Issue: 11), Dec. 6, 2007, 1-4.
Crosswell, “Aperture excited dielectric antennas”, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740017567.pdf, 1974, 128 pages.
CST, “A Dielectric Lens Antenna with Enhanced Aperture Efficiency for Industrial Radar Applications”, Computer Simulation Technology, cst.com, May 10, 2011, 3 pages.
Curry, James M., “A Web of Drones: A 2040 Strategy to Reduce the United States Dependance on Space Based Capabilities”, Air War College, Feb. 17, 2015, 34 pages.
Cypress Perform, “Powerline Communication”, www.cypress.com, Apr. 23, 2015, 2 pages.
Daniel, Kai et al., “Using Public Network Infrastructures for UAV Remote Sensing in Civilian Security Operations”, Homeland Security Affairs, Supplement 3, Mar. 2011, 11 pages.
Darktrace, “www.darktrace.com”, Jul. 10, 2014, 4 pages.
De Freitas, Carvalho et al., “Unmanned Air Vehicle Based Localization and Range Estimation of WiFi Nodes”, 2014, 109 pages.
De Sabata, Aldo et al., “Universitatea “Politehnica””, din Timişoara Facultatea de Electronic{hacek over (a)} şi Telecomunicaţii, 2012, 149 pages.
DEA +, “24 Volt D.C Flashing Light With Built-in Antenna 433Mhz, DEA+ Product Guide”, Meteor electrical, meteorelectrical.com, Code: LUMY/24A, Jul. 28, 2010, 3 pages.
Debord, Benoit et al., “Generation and confinement of microwave gas-plasma in photonic dielectric microstructure”, Optics express 21.21, 2013, 25509-25516.
Deilmann, Michael, “Silicon oxide permeation barrier coating and sterilization of PET bottles by pulsed low-pressure microwave plasmas”, Dissertation, 2008, 142 pages.
Deng, Chuang et al., “Unmanned Aerial Vehicles for Power Line Inspection: A Cooperative Way in Platforms and Communications”, Journal of Communicatinos vol. No. 9, No. 9, Sep. 2014, 687-692.
Denso, Winn & Coales (Denso) Ltd. UK, www.denso.net, 2015, 1 page.
Dini, Gianluca et al., “MADAM: A Multilevel Anomaly Detector for Android Malware”, MMMACNS. vol. 12, 2012, 16 pages.
Doane, J.L. et al., “Oversized rectangular waveguides with modefree bends and twists for broadband applications”, Microwave Journal 32(3), Abstract Only, 1989, 153-160.
Doelitzscher, Frank et al., “ViteraaS: Virtual cluster as a Service”, Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference, 2011, 8 pages.
Dooley, Kevin, “Out-of-Band Management”, auvik, auvik.com, Apr. 12, 2014, 5 pages.
Doshi, D.A. et al., “Real Time Fault Failure Detection in Power Distribution Line using Power Line Communication”, International Journal of Engineering Science, vol. 6, Issue No. 5, May 2016, 4834-4837.
Dostert, Klaus, “Frequency-hopping spread-spectrum modulation for digital communications over electrical power lines”, Selected Areas in Communications, IEEE Journal on 8.4, Abstract Only, 1990, 700-710.
Dragoo, R.E. et al., “Fiber Optic Data Bus for the AN/GYQ21(V)”, Harris Corp, U.S. Communications Syst. Div. Chart, Microcopy Resolution Test, 1980, 115 pages.
Dutton, Harry J., “Understanding Optical Communications”, International Technical Support Organization, SG24-5230-00, Sep. 1998, 55 pages.
Dyson, John D., “The Equiangular Spiral Antenna”, IRE Transactions on Antennas and Propagation, 1959, 181-187.
Earth Data, “Remote Sensors”, NASA, earthdata.nasa.gov, Oct. 17, 2016, 36 pages.
Ehyaie, Danial, “Novel Approaches to the Design of Phased Array Antennas”, Diss., The University of Michigan, 2011, 153 pages.
Eizo, “How can a screen sense touch? A basic understanding of touch panels”, www.eizo.com/library/basics/basic_understanding_of_touch_panel, Sep. 27, 2010, 8 pages.
Ekstrom, “Slot-line end-fire antennas for THz frequencies”, Third International Symposium on Space Terahertz Technology, 280-290.
Electric Power Research Institut, “Examination of the Exacter Outage-Avoidance System”, www.epri.com/abstracts/pages/ProductAbstract.aspx?ProductId=000000000001020393, Nov. 30, 2009, 2 pages.
ELine Corridor Systems, “How is ELine Different?”, www.corridor.biz/ELine_is_different.html, Apr. 23, 2015, 1 page.
Elmore, Glenn et al., “A Surface Wave Transmission Line”, QEX, May/Jun. 2012, pp. 3-9.
Elmore, Glenn, “Introduction to the Propagating Wave on a Single Conductor”, www.corridor.biz, Jul. 27, 2009, 30 pages.
Emerson, “About Rosemount 5300 Level Transmitter”, www.emerson.com, Nov. 2016, 6 pages.
Eom, Seung-Hyun et al., “Pattern switchable antenna system using inkjet-printed directional bow-tie for bi-direction sensing applications”, Sensors 15.12, 2015, 31171-31179.
EPRI—Electronic Power Research, “Product Abstract—Program on Technology Innovation: Study on the Integration of High Temperature Superconducting DC Cables Within the Eastern and Westurn North American Power Grids”, epri.com, Product ID:10203, Nov. 25, 2009, 2 pages.
Erickson, Katherine, “Conductive cylindrical surface waveguides”, www.ideals.illinois.edu/bitstream/handle/2142/30914/Erickson_Katherine.pdf?sequence=1, 2012, 74 pages.
Ericsson, “Direct Bury Duct Assemblies, MPB 302 3+—Ribbonet Microducts”, www.archive.ericsson.net, Jul. 30, 2014, 2 pages.
Eskelinen, Harri et al., “DFM (A)—aspects for a horn antenna design”, Lappeenranta University of Technology, 2004, 34 pages.
Eskelinen, P., “A low-cost microwave rotary joint”, International Radar Conference, 13-17, Abstract Only, Oct. 2014, 1-4.
Faggiani, Adriano, “Smartphone-based crowdsourcing for network monitoring: opportunities, challenges, and a case study”, http://vecchio.iet.unipi.it/vecchio/files/2010/02/article.pdf, 2014, 8 pages.
Farr Research, Inc., “An Improved Solid Dielectric Lens Impulse Radiating Antenna”, SBIR/STTR, DoD, sbir.gov, 2004, 3 pages.
Farzaneh, Masoud et al., “Systems for Prediction and Monitoring of Ice Shedding, Anti-Cicing and De-Icing for Power Line Conductors and Ground Wires”, Dec. 1, 2010, 1-100.
Fattah, E. Abdel et al., “Numerical 3D simulation of surface wave excitation in planar-type plasma processing device with a corrugated dielectric plate”, Elsevier, Vacuum 86, 2011, 330-334.
Feko, “Lens Antennas”, Altair, feko.info, Jun. 30, 2014, 2 pages.
Feko, “mmWave Axial Choke Horn Antenna with Lens”, Sep. 24, 2013, 2 pages.
Feng, Taiming et al., “Design of a survivable hybrid wireless-optical broadband-access network”, Journal of Optical Communications and Networking 3.5, 2011, 458-464.
Feng, Wei et al., “Downlink power allocation for distributed antenna systems in a multi-cell environment”, 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009, 2 pages.
Fenn, Alan J. et al., “A Terrestrial Air Link for Evaluating Dual-Polarization Techniques in Satellite Communications”, vol. 9, No. 1, The Lincoln Laboratory Journal, 1996, 3-18.
Fenye, Bao et al., “Dynamic trust management for internet of things applications”, Proceedings of the 2012 international workshop on Selfaware internet of things. ACM, Abstract Only, 2012, 1 page.
Fiorelli, Riccardo et al., “ST7580 power line communication systemonchip design guide”, Doc ID 022923 Rev 2, Jul. 2012, 63 pages.
Firelight Media Group, “About Firelight Media Group”, www.insurancetechnologies.com/Products/Products_firelight_overview.html, Apr. 19, 2015, 4 pages.
Firelight Media Group LLC, “Electronic Business Fulfillment FireLight”, www.firelightmedia.net/fmg/index.php/home, Apr. 19, 2015, 2 pages.
Fitzgerald, William D., “A 35-GHz Beam Waveguide System for the Millimeter-Wave Radar”, The Lincoln Laboratory Journal, vol. 5, No. 2, 1992, 245-272.
Ford, Steven, “AT&T's new antenna system will boost cellular coverage at Walt Disney World”, Orlando Sentinel, orlandosentinel.com, Mar. 9, 2014, 4 pages.
Freyer, Dan et al., “Combating the Challenges of Ka-Band Signal Degradation”, SatMagazine, satmagzine.com, Sep. 2014, 9 pages.
Friedman, M et al., “Low-loss RF transport over long distances”, IEEE Transactions on Microwave Theory and Techniques, Jan. 1, 2001, 341-348.
Friedman, M et al., “Low-Loss RF Transport Over Long Distances”, IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 2, Feb. 2001, 8 pages.
Friedman, M. et al., “Low-Loss RF Transport Over Long Distances”, IEEE Transactions on Microwave Theory an Techniques, vol. 49, No. 2, Feb. 2001, 341-348.
Fromm, W. et al., “A new microwave rotary joint”, 1958 IRE International Convention Record, 21-25, 6:78-82, Abstract Only, Mar. 1966, 2 pages.
Galli, “For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid”, Proceedings of the IEEE 99.6, Jun. 2011, 1-26.
Garcia-Etxarri, Aitzol et al., “A combination of concave/convex surfaces for fieldenhancement optimization: the indented nanocone”, Optics express 20.23, 2012, 2520125212.
Gerini, Giampiero, “Multilayer array antennas with integrated frequency selective surfaces conformal to a circular cylindrical surface”, http://alexandria.tue.nl/openaccess/Metis248614.pdf, 2005, 2020-2030.
Geterud, Erik G., “Design and Optimization of Wideband Hat-Fed Reflector Antenna with Radome for Satellite Earth Station”, http://publications.lib.chalmers.se/records/fulltext/163718.pdf, Discloses Frequency Selective Surfaces for antenna coverings for weather protection (table of materials on p. 29-30; pp. 37-46), 2012, 70 pages.
Ghazisaidi, Navid et al., “Survivability analysis of next-generation passive optical networks and fiber-wireless access networks”, Reliability, IEEE Transactions on 60.2, 2011, 479-492.
Gigamon, “Out-of-Band Security Solution”, www.gigamon.com, Aug. 3, 2014, 7 pages.
Gilbert, Barrie et al., “The Gears of Genius”, IEEE SolidState Circuits Newsletter 4.12, 2007, 10-28.
Glockler, Roman, “Phased Array for Millimeter Wave Frequencies”, International Journal of Infrared and Millimeter Waves, Springer, vol. 11, No. 2, Feb. 1, 1990, 10 pages.
Godara, “Applications of Antenna Arrays to Mobile Communications, Part I: Performance Improvement, Feasibility, and System Considerations”, Proceedings of the IEEE, vol. 85, No. 7, Jul. 1997, 1031-1060.
Goldsmith, Paul F., “Quasi-optical techniques”, Proceedings of the IEEE., vol . 80, No. 11, Nov. 1, 1992, 1729-1747.
Golrezaei, Negin et al., “FemtoCaching: Wireless Video Content Delivery through Distributed Caching Helpers”, INFOCOM, Proceedings IEEE, 2012, 9 pages.
Gomes, Nathan J. et al., “Radio-over-fiber transport for the support of wireless broadband services”, Journal of Optical Networking, vol. 8, No. 2, 2009, 156-178.
Gonthier, François et al., “Mode coupling in nonuniform fibers: comparison between coupled-mode theory and finite-difference beam-propagation method simulations”, JOSA B 8.2: 416421, Abstract Only, 1991, 3 pages.
Goubau, Georg et al., “Investigation of a Surface-Wave Line for Long Distance Transmission”, 1952, 263-267.
Goubau, Georg et al., “Investigations with a Model Surface Wave Transmission Line”, IRE Transactions on Antennas and Propagation, 1957, 222-227.
Goubau, Georg, “Open Wire Lines”, IRE Transactions on Microwave Theory and Techniques, 1956, 197-200.
Goubau, Georg, “Single-Conductor Surface-Wave Transmission Lines”, Proceedings of the I.R.E., 1951, 619-624.
Goubau, Georg, “Surface Waves and Their Application to Transmission Lines”, Radio Communication Branch, Coles Signal Laboratory, Mar. 10, 1950, 1119-1128.
Goubau, Georg, “Waves on Interfaces”, IRE Transactions on Antennas and Propagation, Dec. 1959, 140-146.
Greco, R., “Soil water content inverse profiling from single TDR waveforms”, Journal of hydrology 317.3, 2006, 325-339.
Gritzalis, Dimitris et al., “The Sphinx enigma in critical VoIP infrastructures: Human or botnet?”, Information, Intelligence, Systems and Applications (IISA), 2013 Fourth International Conference, IEEE, 2013, 6 pages.
Gunduz, Deniz et al., “The multiway relay channel”, IEEE Transactions on Information Theory 59.1, 2013, 5163.
Guo, Shuo et al., “Detecting Faulty Nodes with Data Errors for Wireless Sensor Networks”, 2014, 25 pages.
Hadi, Ghozali S. et al., “Autonomous UAV System Development for Payload Dropping Mission”, The Journal of Instrumentation, Automation and Systems, vol. 1, No. 2, 2014, pp. 72-22.
Hafeez, “Smart Home Area Networks Protocols within the Smart Grid Context”, Journal of Communications vol. 9, No. 9, Sep. 2014, 665-671.
Haider, Muhammad Kumail et al., “Mobility resilience and overhead constrained adaptation in directional 60 GHz WLANs: protocol design and system implementation”, Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2016, 10 pages.
Halder, Achintya et al., “Low-cost alternate EVM test for wireless receiver systems”, 23rd IEEE VLSI Test Symposium (VTS'05), 2005, 6 pages.
Hale, Paul et al., “A statistical study of deembedding applied to eye diagram analysis”, IEEE Transactions on Instrumentation and Measurement 61.2, 2012, 475-488.
Halligan, Matthew S., “Maximum crosstalk estimation and modeling of electromagnetic radiation from PCB/highdensity connector interfaces”, http://scholarsmine.mst.edu/cgi/viewcontent.cgiarticle=3326&context=doctoral_dissertations, 2014, 251 pages.
Han, Chong et al., “crosslayer communication module for the Internet of Things”, Computer Networks 57.3: 622633, Abstract Only, 2013, 1 page.
Hanashi, Abdalla M. et al., “Effect of the Dish Angle on the Wet Antenna Attenuation”, IEEE, 2014, 1-4.
Haroun, Ibrahim et al., “WLANs meet fiber optics-Evaluating 802.11 a WLANs over fiber optics links”, www.rfdesign.com, 2003, 36-39.
Hassan, Karim, “Fabrication and characterization of thermo-plasmonic routers for telecom applications”, Diss. Univ. de Bourgogne., 2014, 59 pages.
Hassan, Maaly A., “Interference reduction in mobile ad hoc and sensor networks”, Journal of Engineering and Computer Innovations vol. 2(7), Sep. 2011, 138-154.
Hassani, Alireza et al., “Porous polymer fibers for low-loss Terahertz guiding”, Optics express 16.9, 2008, 6340-6351.
Hautakorpi, Jani et al., “Requirements from Session Initiation Protocol (SIP) Session Border Control (SBC) Deployments”, RFC5853, IETF, 2010, 27 pages.
Hawrylyshen, A. et al., “SIPPING Working Group”, J. Hautakorpi, Ed. Internet-Draft G. Camarillo Intended status: Informational Ericsson Expires: Dec. 18, 2008 R. Penfield Acme Packet, Oct. 23, 2008, 26 pages.
Hays, Phillip, “SPG-49 Tracking Radar”, www.okieboat.com/SPG-49%20description.html, 2015, 15 pages.
Heo, Joon et al., “Identity-Based Mutual Device Authentication Schemes for PLC Systems”, IEEE International Symposium on Power Line Communications and Its Applications, 2008, pp. 47-51.
Hoss, R.J. et al., “Manufacturing Methods and Technology Program for Ruggedized Tactical Fiber Optic Cable”, No. ITT-80-03-078. ITT Electrooptical Products Div Roanoke VA., 1980, 69 pages.
Howard, Courtney, “UAV command, control & communications”, Military & Aerospace Electronics, militaryaerospace.com, Jul. 11, 2013, 15 pages.
Hussain, Mohamed T. et al., “Closely Packed Millimeter-Wave MIMO Antenna Arrays with Dielectric Resonator Elements”, Antennas and Propagation (EuCAP) 2016 10th European Conference, Apr. 2016, 1-5.
Huth, G. K., “Integrated source and channel encoded digital communication system design study”, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750003064.pdf, 1974, 65 pages.
Ikrath, K. et al., “Antenna Innovation Glass-Fiber Tube Focuses Microwave Beam”, Electronics, vol. 35, No. 38, Sep. 21, 1962, 44-47.
Illinois Historic Archive, “Antennas on the Web”, Photo Archive of Antennas, ece.illinois.ed, 1-18, Dec. 2016.
Industrial Fiber Optics, “Asahi Multi-Core Fiber Cable”, http://i-fiberoptics.com/multi-core-fiber-cable.php, Apr. 26, 2015, 2 pages.
Infoexpress, “Detecting and Preventing MAC Spoofing”, Network Access Control Solutions, 2014, 1 page.
Ippolito, Louis J., “Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design”, 1989, Abstract Only, 1989, 1 page.
Islam, M. T., “Coplanar Waveguide Fed Microstrip Patch Antenna”, Information Technology Journal 9.2 (2010): 367-370., 2010, 367-370.
Izumiyama, Hidetaka et al., “Multicast over satellite”, Applications and the Internet, (SAINT 2002), IEEE Proceedings, 2002, 4 pages.
Jackson, Mark, “Timico CTO Hit by Slow FTTC Broadband Speeds After Copper Corrosion”, www.ispreview.co.uk, Mar. 5, 2013, 2 pages.
Jaeger, Raymond et al., “Radiation Performance of Germanium Phosphosilicate Optical Fibers”, RADC-TR-81-69: Final Technical Report, Galileo Electro-Optical Corp, May 1981, 101 pages.
James, Graeme L. et al., “Diplexing Feed Assemblies for Application to Dual-Reflector Antennas”, IEEE Transactions on Antennas and Propagation, vol. 51, No. 5, May 2003, 1024-1029.
James, J. R. et al., “Investigations and Comparisons of New Types of Millimetre-Wave Planar Arrays Using Microstrip and Dielectric Structures”, Royal Military College of Science, Apr. 1985, 122 pages.
Jang, Hung-Chin, “Applications of Geometric Algorithms to Reduce Interference in Wireless Mesh Network”, Journal on Applications of Graph Theory in Wireless Ad hoc Networks and Sensor Networks (JGRAPH-HOC) vol. 2, No. 1, Abstract Only, Mar. 2010, 1 page.
Japan Patent Office, “JP Office Action dated Feb. 14, 2017”, dated Feb. 14, 2017, 1-12.
Jawhar, Imad et al., “A hierarchical and topological classification of linear sensor networks”, Wireless Telecommunications Symposium, WTS, IEEE, http://faculty.uaeu.ac.ae/Nader_M/papers/WTS2009.pdf, 2009, 8 pages.
Jee, George et al., “Demonstration of the Technical Viability of PLC Systems on Medium- and Low-Voltage Lines in the United States”, Broadband is Power: Internet Access Via Power Line Networks, IEEE Communication Magazine, May 2003, 5 pages.
Jensen, Michael, “Data-Dependent Fingerprints for Wireless Device Authentication”, www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA626320, 2014, 15 pages.
Jeong, et al., “Study of elliptical polarization requirement of KSTAR 84-GHz ECH system”, Journal of the Korean Physical Society, vol. 49, Dec. 2006, 201-205.
Jiang, Peng, “A New Method for Node Fault Detection in Wireless Sensor Networks”, 2009, 1282-1294.
Jiang, Y.S. et al., “Electromagnetic orbital angular momentum in remote sensing”, PIERS Proceedings, Moscow, Russia, Aug. 18-21, 2009, 1330-1337.
Jin, “Quasi-optical mode converter for a coaxial cavity gyrotron”, Forschungszentrum Karlsruhe, Mar. 2007, 107 pages.
Jin, Yu et al., “NEVERMIND, the Problem Is Already Fixed: Proactively Detecting and Troubleshooting Customer DSL Problems”, ACM CoNEXT, Philadelphia, USA, Nov.-Dec. 2010, 12 pages.
Jones, Jr., Howard S., “Conformal and Small Antenna Designs”, U.S. Army Electronics Research and Development Command, Harry Diamond Laboratories, Apr. 1981, 32 pages.
Kado, Yuichi et al., “Exploring SubTHz Waves for Communications, Imaging, and Gas Sensing”, Fog 2: O2, PIERS Proceedings, Beijing, China, Mar. 23-27, 2009, 42-47.
Kamilaris, Andreas et al., “Exploring the Use of DNS as a Search Engine for the Web of Things”, Internet of Things (WF-IoT), 2014 IEEE World Forum, 2014, 6 pages.
Kang, Eyung W., “Chapter 6: Array Antennas”, www.globalspec.com/reference/75109/203279/chapter-6-array-antennas, Apr. 22, 2015, 2 pages.
Karbowiak, A. E. et al., “Characteristics of Waveguides for Long-Distance Transmission”, Journal of Research of the National Bureau of Standards, vol. 65D, No. 1, Jan.-Feb. 1961, May 23, 1960, 75-88.
Katkovnik, Vladimir et al., “High-resolution signal processing for a switch antenna array FMCW radar with a single channel receiver”, 2002 IEEE Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002, 6 pages.
Katrasnik, Jaka, “New Robot for Power Line Inspection”, 2008 IEEE Conference on Robotics, Automation and Mechatronics, 2008, 1-6.
Kedar, “Wide Beam Tapered Slot Antenna for Wide Angle Scanning Phased Array Antenna”, Progress in Electromagnetics Research B, vol. 27, 2011, 235-251.
Khan, Kaleemullah, “Authentication in Multi-Hop Wireless Mesh Networks”, World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering vol. 2, No. 10, 2008, 2406-2411.
Khan, Mohammed R., “A beam steering technique using dielectric wedges”, Diss. University of London, Dec. 1985, 3 pages.
Khan, Ubaid Mahmood et al., “Dual polarized dielectric resonator antennas”, Chalmers University of Technology, Jun. 2010, 128 pages.
Kikuchi, H. et al., “Hybrid transmission mode of Goubau lines”, J.Inst.Electr.Comm.Engrs., Japan,vol. 43, 1960, 39-45.
Kim, Jong-Hyuk et al., “Real-time Navigation, Guidance, and Control of a UAV using Low-cost Sensors”, Australian Centre for Field Robotics, Mar. 5, 2011, 6 pages.
Kim, Myungsik et al., “Automated RFID-based identification system for steel coils”, Progress in Electromagnetics Research 131, 2012, 1-17.
Kima, Yi-Gon et al., “Generating and detecting torsional guided waves using magnetostrictive sensors of crossed coils”, Chonnam National University, Republic of Korea, Elsevier Ltd,, 2010, 145-151.
Kirkham, H. et al., “Power system applications of fiber optics (Jet Propulsion Lab”, JPL Publication 84-28, Electric Energy Systems Division, U.S. DoE, 1984, 180.
Kleinrock, Leonard et al., “On measured behavior of the ARPA network”, National Computer Conference, 1974, 767-780.
Kliros, George S., “Dielectric-EBG covered conical antenna for UWB applications”, www.researchgate.net/profile/George_Kliros/publication/23532284_Dielectric-EBG_covered_conical_antenna_for_UWB_applications/links/54329e410cf225bddcc7c037.pdf, 2010, 10 pages.
Koga, Hisao et al., “High-Speed Power Line Communication System Based on Wavelet OFDM”, 7th International Symposium on Power-Line Communications and Its Applications, Mar. 26-28, 2003, 226-231.
Kolpakov, Stanislav A. et al., “Toward a new generation of photonic humidity sensors”, Sensors 14.3, 2014, 3986-4013.
Koshiba, Masanori et al., “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers”, Photonics Journal, IEEE 4.5, 2012, 1987-1995.
Kroon, Barnard et al., “Steady state RF fingerprinting for identity verification: one class classifier versus customized ensemble”, Artificial Intelligence and Cognitive Science. Springer Berlin Heidelberg, 198206, Abstract Only, 2010, 3 pages.
Kroyer, Thomas, “A Waveguide High Order Mode Reflectometer for the Large Hadron Collider Beam-pipe”, Diss. TU Wien., 2003, 76 pages.
Kuehn, E, “Self-configuration and self-optimization of 4G Radio Access Networks”, http://wirelessman.org/tgm/contrib/S80216m-07_169.pdf, 2007, 13 pages.
Kuhn, Marc et al., “Power Line Enhanced Cooperative Wireless Communications”, IEEE Journal on Selected Areas in Communications, vol. 24, No. 7, Jul. 2006, 10 pages.
Kumar, Sailesh, “Survey of Current Network Intrusion Detection Techniques”, Washington Univ. in St. Louis, Dec. 2007, 18 pages.
Kumar, Sumeet et al., “Urban street lighting infrastructure monitoring using a mobile sensor platform”, IEEE Sensors Journal, 16.12, 2016, 4981-4994.
Kune, Denis F. et al., “Ghost Talk: Mitigating EMI Signal Injection Attacks against Analog Sensors”, IEEE Symposium on Security and Privacy, 2013, 145-159.
Laforte, J.L. et al., “State-of-the-art on power line de-icing”, Atmospheric Research 46, 1998, 143-158.
Lairdtech, “Allpurpose Mount Kit”, www.lairdtech.com, Mar. 29, 2015, 2 pages.
Lappgroupusa, “Selection of Number of Cable Cores With Emphasis on Sizing Parameters”, Industrial Cable & Connector Technology News, lappconnect.blogspot.com, http://lappconnect.blogspot.com/2014_10_01_archive.html, Oct. 30, 2014, 4 pages.
Lazaropoulos, Athanasios, “TowardsModal Integration of Overhead and Underground Low-Voltage and Medium-Voltage Power Line Communication Channels in the Smart Grid Landscape:Model Expansion, Broadband Signal Transmission Characteristics, and Statistical Performance Metrics”, International Scholarly Research Network, ISRN Signal Processing, vol. 2012, Article ID 121628, 17 pages, Mar. 26, 2012, 18 pages.
Lazaropoulos, Athanasios G., “Wireless sensor network design for transmission line monitoring, metering, and controlling: introducing broadband over power lines-enhanced network model (BPLeNM)”, ISRN Power Engineering, 2014, 23 pages.
Lee, Joseph C., “A Compact Q-/K-Band Dual Frequency Feed Horn”, No. TR-645, Massachusetts Institute of Technology, Lincoln Laboratory, May 3, 1983, 40 pages.
Lee, Sung-Woo, “Mutual Coupling Considerations in the Development of Multi-feed Antenna Systems”, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750003064.pdf, 2008, 127 pages.
Leech, Jamie et al., “Experimental investigation of a low-cost, high performance focal-plane horn array”, Terahertz Science and Technology, IEEE Transactions on 2.1, 2012, 61-70.
Li, Mo et al., “Underground structure monitoring with wireless sensor networks”, Proceedings of the 6th international conference on Information processing in sensor networks, ACM, 2007, 69-78.
Li, Xi et al., “A FCM-Based peer grouping scheme for node failure recovery in wireless P2P file sharing”, 2009 IEEE International Conference on Communications, 2009, 2 pages.
Li, Xiang-Yang et al., “Interference-Aware Topology Control for Wireless Sensor Networks”, SECON. vol. 5, 2005, 12 pages.
Li, Xiaowei et al., “Integrated plasmonic semi-circular launcher for dielectric-loaded surface plasmonpolariton waveguide”, Optics Express, vol. 19, Issue 7, 2011, 6541-6548.
Li, Xu et al., “Smart community: an internet of things application”, Communications Magazine, IEEE 49.11, Nov. 2011, 68-75.
Liang, Bin, “Cylindrical Slot FSS Configuration for Beam-Switching Applications”, IEEE Transactions on Antennas and Propagation, vol. 63, No. 1, Jan. 2015, 166-173.
Lier, E. et al., “Simple hybrid mode horn feed loaded with a dielectric cone”, Electronics Letters 21.13: 563564, 1985, 563-564.
Lier, Erik, “A Dielectric Hybrid Mode Antenna Feed: A Simple Alternative to the Corrugated Horn”, IEEE Transactions on Antennas and Propagation, vol. AP-34, No. 1, Jan. 1986, 21-30.
Lim, Christina et al., “Fiber-wireless networks and subsystem technologies”, Lightwave Technology, Journal of 28.4, Feb. 5, 2010, 390-405.
Liu, et al., “A 25 Gb/s (/km 2) urban wireless network beyond IMTadvanced”, IEEE Communications Magazine 49.2, 2011, 122-129.
Lou, Tiancheng, “Minimizing Average Interference through Topology Control”, Algorithms for Sensor Systems, Springer Berlin Heidelberg, 2012, 115-129.
L-TEL: Quanzhou L-TEL Communicat, “Products: GSM Mircro Repeater”, www.l-tel.com, Apr. 24, 2015, 3 pages.
Lucyszyn, S. et al., “Novel RF MEMS Switches”, Proceedings of Asia-Pacific Microwave Conference 2007, 2007, 55-58.
Lucyszyn, Stepan et al., “RF MEMS for antenna applications”, 7th European Conference on Antennas and Propovation (EEUCAP 2103), 2013, 1988-1992.
Lumerical Solutions, Inc., “Tapered waveguide”, www.docs.lumerical.com, 2010, 3 pages.
Lumerical Solutions, Inc., “Waveguide Bragg Microcavity”, www.lumerical.com, Sep. 2016, 6 pages.
Luo, Hailu et al., “Reversed propagation dynamics of Laguerre-Gaussian beams in left-handed materials”, Physical Review A 77.2, 023812., Feb. 20, 2008, 1-7.
Luo, Qi et al., “Circularly polarized antennas”, John Wiley & Sons, Book—description only, 2013, 1 page.
Mahato, Suvranshu Sekhar, “Studies on an Infrared Sensor Based Wireless Mesh Network. Diss.”, Abstract Only, 2010, 2 pages.
Maier, Martin et al., “The Audacity of Fiberwireless (FiWi) Networks”, AccessNets, 2009, 16-35.
Makwana, G. D. et al., “Wideband Stacked Rectangular Dielectric Resonator Antenna at 5.2 GHz”, International Journal of Electromagnetics and Applications 2012, 2(3), 2012, 41-45.
Marcatili, E.A. et al., “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers”, Bell System Technical Journal 43(4), Abstract Only, 2 pages, 1964, 1783-1809.
Marin, Leandro, “Optimized ECC Implementation for Secure Communication between Heterogeneous IoT Devices”, www.mdpi.com/1424-8220/15/9/21478/pdf, 2015, 21478-21499.
Marrucci, Lorenzo, “Rotating light with light: Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals”, International Congress on Optics and Optoelectronics. International Society for Optics and Photonics, 2007, 12 pages.
Marzetta, “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas”, IEEE Transactions on Wireless Communications, vol. 9, No. 11, Nov. 2010, 3590-3600.
Matikainen, Leena et al., “Remote sensing methods for power line corridor surveys”, ISPRS Journal of Photogrammetry and Remote Sensing, 119, 2016, 10-31.
Matsukawa, et al., “A dynamic channel assignment scheme for distributed antenna networks”, Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th, 2012, 5 pages.
McAllister, M.W. et al., “Resonant hemispherical dielectric antenna”, Electronics Letters 20.16: 657659, Abstract Only, 1984, 1 page.
McKeown, David M. et al., “Rulebased interpretation of aerial imagery”, IEEE Transactions on Pattern Analysis and Machine Intelligence 5, 1985, 570-585.
Meessen, A., “Production of EM Surface Waves by Superconducting Spheres: A New Type of Harmonic Oscillators”, Progress in Electromagnetics Research Symposium Proceedings, Moscow, Russia, Aug. 19-23, 2012, pp. 529-533.
Mehta, “Advance Featuring Smart Energy Meter With Bi-directional Communication”, Electronics & Communication MEFGI, Feb. 9, 2014, 169-174.
Mena, F.P. et al., “Design and Performance of a 600720GHz SidebandSeparating Receiver Using and AIN SIS Junctions”, IEEE Transactions on Microwave Theory and Techniques 59.1, 2011, 166-177.
Meng, H. et al., “A transmission line model for high-frequency power line communication channel”, Power System Technology, PowerCon 2002, International Conference on IEEE, vol. 2, 2002, 6 pages.
Menon, S.S. et al., “Propagation characteristics of guided modes in a solid dielectric pyramidal horn”, Proceedings of the 2012 International Conference on Communication Systems and Network Technologies, IEEE Computer Society, Abstract Only, 2012, 2 pages.
Microwave Technologies, Ind, , “Dielectric Antenna”, www.microwavetechnologiesinc.co.in/microwavecommunicationlabproducts.html#dielectricantenna, May 21, 2015, 13 pages.
Miller, Ashley et al., “Pathway to Ubiquitous Broadband: Environments, Policies, and Technologies to Implementation”, Oct. 2016, 20 pages.
Miller, David A., “Establishing Optimal Wave Communication Channels Automatically”, Journal of Lightwave Technology, vol. 31, No. 24, Dec. 15, 2013, 3987-3994.
Mishra, Sumita et al., “Load Balancing Optimization in LTE/LTEA Cellular Networks: A Review”, arXiv preprint arXiv:1412.7273 (2014), 2014, 1-7.
Mitchell, John E., “Integrated Wireless Backhaul Over Optical Access Networks”, Journal of Lightwave Technology 32.20, 2014, 3373-3382.
Miyagi, M., “Bending losses in hollow and dielectric tube leaky waveguides”, Applied Optics 20(7), Abstract Only, 2 pages, 1981, 1221-1229.
Moaveni-Nejad, Kousha et al., “Low-Interference Topology Control for Wireless Ad Hoc Networks”, Department of Computer Science, Illinois Institute of Technology, Ad Hoc & Sensor Wireless Networks 1.1-2, 2005, 41-64.
Moisan, M. et al., “Plasma sources based on the propagation of electromagnetic surface waves”, Journal of Physics D: Applied Physics 24, 1991, 1025-1048.
Mokhtarian, Kianoosh et al., “Caching in Video CDNs: Building Strong Lines of Defense”, EuroSys, Amsterdam, Netherlands, 2014, 13 pages.
Mori, A. et al., “The Power Line Transmission Characteristics for an OFDM Signal”, Progress in Electromagnetics Research, PIER 61, Musashi Institute of Technology, 2006, 279-290.
Morse, T.F., “Research Support for the Laboratory for Lightwave Technology”, Brown Univ Providence RI Div of Engineering, 1992, 32 pages.
Mruk, Joseph Rene, “Wideband monolithically integrated frontend subsystems and components”, Diss. University of Colorado, 2011, 166 pages.
Mueller, G.E. et al., “Polyrod Antennas”, Bell System Technical Journal, vol. 26., No. 4, Oct. 29, 1947, 837-851.
Mushref, Muhammad, “Matrix solution to electromagnetic scattering by a conducting cylinder with an eccentric metamaterial coating”, www.sciencedirect.com/science/article/pii/S0022247X06011450/pdf?md5=4823be0348a3771b5cec9ffb7f326c2c&pid=1-s2.0-S0022247X06011450-main.pdf, Discloses controlling antenna radiation pattern with coatings, 2007, 356-366.
Mwave, “Dual Linear C-Band Horn”, www.mwavellc.com/custom-Band-LS-BandTelemetryHornAntennas.php, Jul. 6, 2012, 1 page.
Nakano, Hisamatsu, “A Low-Profile Conical Beam Loop Antenna with an Electromagnetically Coupled Feed System”, http://repo.lib.hosei.ac.jp/bitstream/10114/3835/1/31_TAP(Low-Profile).pdf, Dec. 2000, 1864-1866.
Nakano, Hisamatsu et al., “A Spiral Antenna Backed by a Conducting Plane Reflector”, IEEE Transactions on Antennas and Propagation, vol. AP-34 No. 6, Jun. 1986, 791-796.
Nandi, Somen et al., “Computing for rural empowerment: enabled by last-mile telecommunications”, IEEE Communications Magazine 54.6, 2016, 102-109.
Narayanan, Arvind, “Fingerprinting of RFID Tags and HighTech Stalking”, 33 Bits of Entropy, 33bits.org, Oct. 4, 2011, 4 pages.
Nassa, Vinay Kumar, “Wireless Communications: Past, Present and Future”, Dronacharya Research Journal: 50. vol. III, Issue-II, Jul.-Dec. 2011, 2011, 96 pages.
Nassar, “Local Utility Powerline Communications in the 3-500 kHz Band: Channel Impairments, Noise, and Standards”, IEEE Signal Processing Magazine, 2012, 1-22.
NBNTM, “Network technology”, nbnco.com.au, Jun. 27, 2014, 2 pages.
Netgear, “Powerline—Juice Up Your Network With Powerline”, www.netgear.com/home/products/networking/powerline, Apr. 21, 2015, 3 pages.
Newmark System, Inc, “GM-12 Gimbal Mount”, newmarksystems.com, 2015, 1 page.
Nibarger, John P., “An 84 pixel all-silicon corrugated feedhorn for CMB measurements”, Journal of Low Temperature Physics 167.3-4, 2012, 522-527.
Nicholson, Basil J., “Microwave Rotary Joints for X-, C-, and S-Band”, Battelle Memorial Inst Columbus OH, 1965, 51 pages.
Niedermayer, Uwe et al., “Analytic modeling, simulation and interpretation of broadband beam coupling impedance bench measurements”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 776, 2015, 129-143.
Nikitin, A. Y. et al., “Efficient Coupling of Light to Graphene Plasmons by Compressing Surface Polaritons with Tapered Bulk Materials”, NanoLetters; pubs.acs.org/NanoLett, Apr. 28, 2014, 2896-2901.
Nikitin, Pavel V. et al., “Propagation Model for the HVAC Duct as a Communication Channel”, IEEE Transactions on Antennas and Propagation 51.5, 2003, 7 pages.
Norse Appliance, “Block attacks before they target your network, and dramatically improve the ROI on your entire security infrastructure”, norsecorp.com, 2015, 4 pages.
Nuvotronics, “PolyStrata—Phased Arrays & Antennas”, Nuvotronics, www.nuvotronics.com/antennas.php, Apr. 26, 2015, 1 page.
NWClimate, “Weather Instruments and Equipment Explained”, nwclimate.org, May 7, 2015, 22 pages.
OECD, “Alternative Local Loop Technologies: A Review”, Organisation for Economic Co-Operation and Development, Paris, https://www.oecd.org/sti/2090965.pdf, 1996, 25 pages.
Ohliger, Michael, “An introduction to coil array design for parallel MRI”, http://mriquestions.com/uploads/3/4/5/7/34572113/intro_to_coil_design_parallel.pdf, 2006, 16 pages.
Olver, A. D., “Microwave horns and feeds”, vol. 39. IET, Book—description only, 1994, 1 page.
Olver, A.D. et al., “Dielectric cone loaded horn antennas”, Microwaves, Antennas and Propagation, IEEE Proceedings H. vol. 135. No. 3. IET, Abstract Only, 1988, 1 page.
Opengear, “Smart Out-of-Band Management”, www.opengear.com, Sep. 2015, 2 pages.
Orfanidis, Sophocles J., “Antenna Arrays”, Rutgers University, 2002, 910-939.
Pahlavan, Kaveh et al., “Wireless data communications”, Proceedings of the IEEE 82.9, 1994, 1398-1430.
Paruchuri, et al., “Securing Powerline Communication”, IEEE, 2008, 64-69.
Patel, Pinak S. et al., “Sensor Fault Detection in Wireless Sensor Networks and Avoiding the Path Failure Nodes”, International Journal of Industrial Electronics and Electrical Engineering, vol. 2, Issue—3, Mar. 2014, 2347-6982.
Patel, Shwetak N. et al., “The Design and Evaluation of an End-User-Deployable, Whole House, Contactless Power Consumption Sensor”, CHI 2010: Domestic Life, Apr. 2010, 10 pages.
Pato, Silvia et al., “On building a distributed antenna system with joint signal processing for next generation wireless access networks: The FUTON approach”, 7th Conference on Telecommunications, Portugal, 2008, 4 pages.
Paul, Sanjoy et al., “The Cache-and-Forward Network Architecture for Efficient Mobile Content Delivery Services in the Future Internet”, Innovations in NGN: Future Network and Services, First ITU-T Kaleidoscope Academic Conference, 2008, 8 pages.
PCT, “International Search Report”, dated Oct. 25, 2016, 1-12.
Perkons, Alfred R. et al., “TM surface-wave power combining by a planar active-lens amplifier”, IEEE Transactions on Microwave Theory and Techniques, 46.6, Jun. 1998, 775-783.
Péter, Zsolt et al., “Assessment of the current intensity for preventing ice accretion on overhead conductors”, Power Delivery, IEEE Transactions on 22.1: 4, 2007, 565-57.
Petrovsky, Oleg, “The Internet of Things: A Security Overview”, www.druva.com, Mar. 31, 2015, 3 pages.
Pham, Tien-Thang et al., “A WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation”, Photonics Journal, IEEE 3.1, 2011, 13-19.
Pike, Kevin J. et al., “A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission”, Journal of Magnetic Resonance, 2012, 9 pages.
Piksa, Petr et al., “Elliptic and hyperbolic dielectric lens antennas in mmwaves”, Radioengineering 20.1, 2011, 271.
Pixel Technologies, “PRO 600 SIRIUS XM Radio Amplified Outdoor Antenna”, Oct. 3, 2014, 1 page.
Plagemann, Thomas et al., “Infrastructures for Community Networks”, Content Delivery Networks. Springer Berlin Heidelberg, 2008, 367-388.
Pohl, Nils, “A dielectric lens-based antenna concept for high-precision industrial radar measurements at 24GHz”, Radar Conference (EuRAD), 2012 9th European, IEEE, 2012, 5 pages.
Ponchak, George E. et al., “A New Model for Broadband Waveguide to Microstrip Transition Design”, NASA TM-88905, Dec. 1, 1986, 18 pgs.
Potlapally, Nachiketh R. et al., “Optimizing Public-Key Encryption for Wireless Clients”, Proceedings of the IEEE International Conference on Communications, 2002, 1050-1056.
Pranonsatit, S. et al., “Sectorised horn antenna array using an RF MEMS rotary switch”, Asia-Pacific Microwave Conference, 2010, 1909-1913.
Pranonsatit, Suneat et al., “Single-pole eight-throw RF MEMS rotary switch”, Journal of Microelectromechanical Systems 15.6, 2006, 1735-1744.
Prashant, R.R. et al., “Detecting and Identifying the Location of Multiple Spoofing Adversaries in Wireless Network”, International Journal of Computer Science and Mobile Applications, vol. 2 Issue. 5, May 2014, 1-6.
Qi, Xue et al., “Ad hoc QoS ondemand routing (AQOR) in mobile ad hoc networks”, Journal of parallel and distributed computing 63.2, 2003, 154-165.
Qiu, Lili et al., “Fault Detection, Isolation, and Diagnosis in Multihop Wireless Networks”, Dec. 2003, 16 pages.
Quan, Xulin, “Analysis and Design of a Compact Dual-Band Directional Antenna”, IEEE Antennas and Wireless Propagation Letters, vol. 11, 2012, 547-550.
Quinstar Technology, Inc. “Prime Focus Antenna (QRP series)”, quinstar.com, Aug. 19, 2016, 2 pages.
Rahim, S. K. A. et al., “Measurement of wet antenna losses on 26 GHz terrestrial microwave link in Malaysia”, Wireless Personal Communications 64.2, 2012, 225-231.
Rambabu, K. et al., “Compact single-channel rotary joint using ridged waveguide sections for phase adjustment”, IEEE TransacCompact single-channel rotary joint using ridged waveguide sections for phase adjustmenttions on Microwave Theory and Techniques, 51(8):1982-1986, Abstract Only, Aug. 2003, 2 pages.
Ranga, Yogesh et al., “An ultra-wideband quasi-planar antenna with enhanced gain”, Progress in Electromagnetics Research C 49, 2014, 59-65.
Rangan, Sundeep et al., “Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges”, Proceedings of the IEEE, vol. 102, No. 3, Mar. 2014, 366-385.
Rangel, Rodrigo K. et al., “Sistema de Inspecao de Linhas de Transmissao de Energia Electrica Utilizando Veiculos Aereos Nao-Tripulados”, Sep. 14-16, 2009, 1-9.
Rappaport, Theodore S. et al., “Mobile's Millimeter-Wave Makeover”, Spectrum.IEEE.Org, Sep. 2014, 8 pages.
Raychaudhuri, Dipankar et al., “Emerging Wireless Technologies and the Future Mobile Internet”, Cambridge University Press, Abstract Only, Mar. 2011, 1 page.
Rekimoto, Jun, “SmartSkin: An Infrastructure for Freehand Manipulation on Interactive Surfaces”, https://vs.inf.ethz.ch/edu/SS2005/DS/papers/surfaces/rekimoto-smartskin.pdf, 2002, 8 pages.
Ren-Bin, Zhong et al., “Surface plasmon wave propagation along single metal wire”, Chin. Phys. B, vol. 21, No. 11, May 2, 2012, 9 pages.
Reynet, Olivier et al., “Effect of the magnetic properties of the inclusions on the high-frequency dielectric response of diluted composites”, Physical Review B66.9: 094412, 2002, 10 pages.
RF Check, “Examples of Cell Antennas”, https://web.archive.org/web/20100201214318/http//www.rfcheck.com/Examplesof-Cell-Antennas.php, Feb. 1, 2010, 1 page.
Ricardi, L. J., “Some Characteristics of a Communication Satellite Multiple-Beam Antenna”, Massachusetts Institute of Technology, Lincoln Laboratory, Technical Note 1975-3, Jan. 28, 1975, 62 pages.
Rieke, M. et al., “High-Precision Positioning and Real-Time Data Processing of UAV Systems”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-1/C22, 2011, 119-124.
Robinson, D.A. et al., “Advancing processbased watershed hydrological research using nearsurface geophysics: A vision for, and review of, electrical and magnetic geophysical methods”, Hydrological Processes 22.18, Mar. 11, 2008, 3604-3635.
Robles, Rosslin John et al., “A Review on Security in Smart Home Development”, International Journal of Advanced Science and Technology 15, Feb. 2010, 13-22.
Rosenberg, Uwe et al., “A novel frequency-selective power combiner/divider in single-layer substrate integrated waveguide technology”, IEEE Microwave and Wireless Components Letters, vol. 23, No. 8, Aug. 2013, 406-408.
Rouse, Margaret, “Transport Layer Security (TLS)”, TechTarget, searchsecurity.techtarget.com, Jul. 2006, 4 pages.
Rousstia, M. W., “Switched-beam antenna array design for millimeter-wave applications”, https://pure.tue.nl/ws/files/4418145/599448877400424.pdf, Jan. 1, 2011, 148 pages.
Roze, Mathieu et al., “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance”, Optics express 19.10, 2011, 9127-9138.
Sagar, Nishant, “Powerline Communications Systems: Overview and Analysis”, Thesis, May 2011, 80 pages.
Sagues, Mikel et al., “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering”, Optics express 16.1, 2008, 295-303.
Sahoo, Srikanta, “Faulty Node Detection in Wireless Sensor Networks Using Cluster”, Apr. 2013, 212-223.
Saied, Yosra Ben et al., “Trust management system design for the internet of things: a contextaware and multiservice approach”, Computers & Security 39: 351365, Abstract Only, 2013, 2 pages.
Salema, Carlos et al., “Solid Dielectric Horn Antennas”, Artech House Publishers, Amazon, Book—description only, 1998, 3 pages.
Sarafi, Angeliki et al., “Hybrid wireless-broadband over power lines: A promising broadband solution in rural areas”, Communications Magazine, IEEE 47.11, 2009, 140-147.
Sarnecki, Joseph et al., “Microcell design principles”, Communications Magazine, IEEE 31.4, 1993, 76-82.
Saruhan, Ibrahim Halil, “Detecting and Preventing Rogue Devices on the Network”, SANS Institute InfoSec Reading Room, sans.org, Aug. 8, 2007, 1 page.
Scarfone, Karen et al., “Technical Guide to Information Security Testing and Assessment”, National Institute of Standards and Technology, csrc.nist.gov, Special Publication, Sep. 2008, 800-115.
Scerri, Paul et al., “Geolocation of RF emitters by many UAVs”, AIAA Infotech, Aerospace 2007 Conference and Exhibit, 2007, 1-13.
Schoning, Johannes et al., “Multi-Touch Surfaces: A Technical Guide”, Johannes Schöning, Institute for Geoinformatics University of Munster, Technical Report TUM-10833, 2008, 19 pages.
Sciencedaily, “New Wi-Fi antenna enhances wireless coverage”, www.sciencedaily.com, Apr. 29, 2015, 2 pages.
Security Matters, “Product Overview: Introducing SilentDefense”, secmatters.com, Nov. 9, 2013, 1 page.
Sembiring, Krisantus, “Dynamic Resource Allocation for Cloud-based Media Processing”, http://www.chinacloud.cn/upload/2013-04/13042109511919.pdf, 2013, 49-54.
Sengled, “Boost: the world's first WI-FI extending led bulb”, www.sengled.com/sites/default/files/field/product/downloads/manual/a01-a60_na_user_manual.pdf, Dec. 2014, 32 pages.
Shafai, Lotfollah, “Dielectric Loaded Antennas”, John Wiley & Sons, Inc, www.researchgate.net/publication/227998803_Dielectric_Loaded_Antennas, Apr. 15, 2005, 82 pages.
Shafi, Mansoor et al., “Advances in Propagation Modeling for Wireless Systems”, EURASIP Journal on Wireless Communications and Networking. Hindawi Publishing Corp, 2009, p. 5.
Shankland, Steven, “Lowly DSL poised for gigabit speed boost”, www.cnet.com, Oct. 21, 2014, 5 pages.
Sharma, Archana et al., “Dielectric Resonator Antenna for X band Microwave Application”, Research & Reviews, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Oct. 2016, 9 pages.
Shekar, Chandra P., “Transmission Line Fault Detection & Indication through GSM”, IRD India, ISSN (Online): 2347-2812, vol. 2, Issue 5, 2014, 28-30.
Shila, Devu M., “Load-Aware Traffic Engineering for Mesh Networks”, Computer Communications 31.7, 2008, 1460-1469.
Shimabukuko, F.I. et al., “Attenuation measurement of very low-loss dielectric waveguides by the cavity resonator method in the millimeter/submillimeter wavelength range”, No. TR-0086A (2925-06)-1, Aerospace Corp El Segundo CA Electronics Research Lab, Mar. 20, 1989, 35 pages.
Shin, Donghoon et al., “10 Gbps Millimeter-Wave OFDM Experimental System with Iterative Phase Noise Compensation”, Tokyo Institute of Technology, IEEE, 2013, 184-186.
Shindo, Shuichi et al., “Attenuation measurement of cylindrical dielectric-rod waveguide”, Electronics Letters 12.5, 1976, 117-118.
Shumate, Paul W. et al., “Evolution of fiber in the residential loop plant”, IEEE Communications Magazine 29.3, 1991, 68-74.
Sievenpiper, D.F. et al., “Two-dimensional beam steering using an electrically tunable impedance surface”, IEEE Transactions on Antennas and Propagation, vol. 51, No. 10, Nov. 2003, pp. 2713-2722.
Silver, Ralph U., “Local Loop Overview”, National Communications System (NCS), BellSouth Network Training, newnetworks.com, Aug. 2016, 100 pages.
Silvonen, Kimmo, “Calibration and DeEmbedding of Microwave Measurements Using Any Combination of Oneor TwoPort Standards”, Publication of the Circuit Theory Laboratory, CT4, 1987, 1-28.
Simionovici, Ana-Maria et al., “Predictive Modeling in a VoIP System”, 2013, 32-40.
Simons, Rainee N., “Coplanar Waveguide Feeds for Phased Array Antennas”, Solid State Technology Branch of NASA Lewis Research Center Fourth Annual Digest, Conference on Advanced Space Exploration Initiative Technologies cosponsored by AIAA, NASA and OAI, 1992, 1-9.
Singh, Sapana et al., “Key Concepts and Network Architecture for 5G Mobile Technology”, International Journal of Scientific Research Engineering & Technology (IJSRET), IIMT Engineering College, Meerut, India, vol. 1, Issue 5, Aug. 2012, 165-170.
Singh, Seema M. et al., “Broadband Over Power Lines A White Paper”, State of New Jersey, Division of the Ratepayer Advocate, NJ, Oct. 2016, 67 pages.
Sommerfeld, A., “On the propagation of electrodynamic waves along a wire”, Annals of Physics and Chemistry New Edition, vol. 67, No. 2, 1899, 72 pages.
Song, Kaijun et al., “Broadband radial waveguide power amplifier using a spatial power combining technique”, www.mtech.edu/academics/mines/geophysical/xzhou/publications/songfanzhou_2009b_impa.pdf, 2009, 7 pages.
Sospedra, Joaquim et al., “Badalona Oil PierBased Met-Ocean Monitoring Station”, Campbell Scientific, www.campbellsci.com, Nov. 2016, 2 pages.
Souryal, Michael R. et al., “Rapidly Deployable Mesh Network Testbed”, https://pdfs.semanticscholar.org/f914/1ce6999c4095eab3bdea645745761ebe5141.pdf, 2009, 6 pages.
Sowmya, Arcot et al., “Modelling and representation issues in automated feature extraction from aerial and satellite images”, ISPRS journal of photogrammetry and remote sensing, 55.1, 2000, 34-47.
Spencer, D G., “Novel Millimeter ACC Antenna Feed”, IEEE Colloquium on Antennas for Automotives, Mar. 10, 2000, 10 pages.
Stancil, Daniel D. et al., “High-speed internet access via HVAC ducts: a new approach”, Global Telecommunications Conference, IEEE vol. 6, 2001, 4 pages.
Steatite, “Custom Horn Antennas”, Steatite QPar Antennas, steatiteqparantennas.co.uk, May 21, 2015, 1 page.
Strahler, Olivier, “Network Based VPNs”, SANS Institute InfoSec Reading Room, www.sans.org, Aug. 2002, 18 pages.
Strieby, M.E. et al., “Television transmission over wire lines”, American Institute of Electrical Engineers, Transactions of the 60.12: 1090-1096, Abstract Only, 1941, 2 pages.
STUF, “How to Use STUF”, STUF Page Link Info, www.crossdevices.com, http://www.crossdevices.com/cross_devices_010.htm, 2015, 1 page.
Sun, Zhi et al., “Magnetic Induction Communications for Wireless Underground Sensor Networks”, IEEE Transactions on Antennas and Propagation, vol. 58, No. 7, Jul. 2010, 2426-2435.
Sundqvist, Lassi, “Cellular Controlled Drone Experiment: Evaluation of Network Requirements”, 2015, 71 pages.
Szabó, Csaba A., “European Broadband Initiatives with Public Participation”, Broadband Services: 255, 2005, 305 pages.
Szczys, Mike, “Cameras Perch on Power Lines, Steal Electricity”, http://hackaday.com/2010/06/28/cameras-perch-on-power-lines-steal-electricity/, Discloses cameras that clamp on to power lines and use induction as a power source., 2010, 1 page.
Taboada, John M. et al., “Thermo-optically tuned cascaded polymer waveguide taps”, Applied physics letters 75.2, 1999, 163-165.
Talbot, David, “Adapting Old-Style Phone Wires for Superfast Internet”, Jul. 30, 2013, 3 pages.
Tantawi, Sami G. et al., “High-power multimode X-band rf pulse compression system for future linear colliders”, Physical Review Special Topics—Accelerators and Beams, 1098-4402/05/8(4)/042002, 2005, 19 pages.
Tech Briefs Media Group, “Tapered Waveguides Improve Fiber Light Coupling Efficiency”, www.techbriefs.com, Jan. 1, 2006, 2 pages.
Templeton, Steven J. et al., “Detecting Spoofed Packets”, DARPA Information Survivability Conference and Exposition, vol. 1, IEEE, 2003, 12 page.
Teng, Ervin et al., “Aerial Sensing and Characterization of ThreeDimensional RF Fields”, Univ. at Buffalo, cse.buffalo.edu, Sep. 2016, 6 pages.
Tesoriero, Ricardo et al., “Tracking autonomous entities using RFID technology”, IEEE Transactions on Consumer Electronics 55.2, 2009, 650-655.
Theoleyr, Fabrice, “Internet of Things and M2M Communications”, books.google.com, ISBN13: 9788792982483, Book—description only, Apr. 17, 2013, 1 page.
Thornton, John et al., “Modern lens antennas for communications engineering”, vol. 39, 2013, 48 pages.
Thota, Saigopal et al., “Computing for Rural Empowerment: Enabled by Last-Mile Telecommunications (Extended Version)”, Technical Report, 2013, 14 pages.
Thottapan, M., “Design and simulation of metal PBG waveguide mode launcher”, www.researchgate.net/profile/Dr_M_Thottappan/publication/262415753_Design_and_Simulation_of_Metal_PBG_Waveguide_Mode_Launcher/links/0f317537ad93a5e2a4000000.pdf, 2014, 383-387.
Tillack, M. S. et al., “Configuration and engineering design of the ARIES-RS tokamak power plant”, https://www.researchgate.net/publication/222496003_Configuration_and_engineering_design_of _the_ARIES-RS_tokamak_power_plant, 1997, 87-113.
Tucson Electric Power, “Energy-Harvesting Power Supply”, http://sdpm.arizona.edu/projects/project-publi/upid/38a8cf3b42f35576de25de1f6dcc20f3, Discloses a project to harvest energy from a power line and that a device was built that clamps onto a power line., 2016, 1 page.
Tyco Electronics, “RAYCHEM: Wire and Cable”, Dimensions 2:1, 1996, 58 pages.
UK Essays, “Beam Adaptive Algorithms for Smart Antennas Computer Science Essay”, www.ukessays.com, Mar. 23, 2015, 21 pages.
Valladares, Cindy, “20 Critical Security Controls: Control 7—Wireless Device Control”, Tripwire—The State of Security, www.tripwire.com, Mar. 21, 2013, 10 pages.
Van Atta, L.C., “Contributions to the antenna field during World War II”, www.nonstopsystems.com/radio/pdf-hell/article-IRE-5-1962.pdf, 1962, 692-697.
Vogelgesang, Ralf et al., “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM)”, physica status solidi (b) 245.10, 2008, 2255-2260.
Volat, C. et al., “De-icing/anti-icing techniques for power lines: current methods and future direction”, Proceedings of the 11th International Workshop on Atmospheric Icing of Structures, Montreal, Canada, Jun. 2005, 11 pages.
Wade, Paul, “Multiple Reflector Dish Antennas”, www.w1ghz.org/antbook/conf/Multiple_reflector_antennas.pdf, 2004, 45 pages.
Wagter, Herman, “Fiber-to-the-X: the economics of last-mile fiber”, ARS Technica, www.arstechnica.com, Mar. 31, 2010, 3 pages.
Wake, David et al., “Radio over fiber link design for next generation wireless systems”, Journal of Lightwave Technology 28.16, 2010, 2456-2464.
Wang, Hao et al., “Dielectric Loaded Substrate Integrated Waveguide (SIW)—Plan Horn Antennas”, IEEE Transactions on Antennas and Propagation, IEEE Service Center, Piscataway, NJ, US, vol. 56, No. 3, Mar. 1, 2010, 640-647.
Wang, Jing et al., “The influence of optical fiber bundle parameters on the transmission of laser speckle patterns”, Optics express 22.8, 2014, 8908-8918.
Wang, Wei, “Optimization Design of an Inductive Energy Harvesting Device for Wireless Power Supply System Overhead High-Voltage Power Lines”, https://pdfs.semanticscholar.org/3941/601af7a21d55e8b57ab0c50d5f1d9f9f6868.pdf, Discloses an induction based energy harvesting device that takes energy from overhead powerlines (Figure 4)., 2016, 16 pages.
Wang, Xingfu et al., “Zigzag coverage scheme algorithm & analysis for wireless sensor networks”, Network Protocols and Algorithms 5.4, 2013, 19-38.
Washiro, Takanori, “Applications of RFID over power line for Smart Grid”, Power Line Communications and Its Applications (ISPIC), 2012 16th IEEE International Symposium on. IEEE, 2012, 83-87.
Wenger, N., “The launching of surface waves on an axial-cylindrical reactive surface”, IEEE Transactions on Antennas and Propagation 13.1, 1965, 126-134.
Werner, Louis B. et al., “Operation Greenhouse”, Scientific Director's Report of Atomic Weapon Tests at Eniwetok, Annex 6.7 Contimation-Decontamination Studies Naval Radiological Defense Lab, 1951, 209 pages.
Wikipedia, “Angular Momentum of Light”, https://en.wikipedia.org/wiki/Angular_momentum_of_light, Nov. 10, 2016, 1-7.
Wilkes, Gilbert, “Wave Length Lenses”, Dec. 5, 1946, 49 pages.
Wilkins, George A., “Fiber Optic Telemetry in Ocean Cable Systems”, Chapter in new edition of Handbook of Oceanographic Winch, Wire and Cable Technology, Alan H. Driscoll, Ed, 1986, 50 pages.
Wolfe, Victor et al., “Feasibility Study of Utilizing 4G LTE Signals in Combination With Unmanned Aerial Vehicles for the Purpose of Search and Rescue of Avalanche Victims (Increment 1)”, University of Colorado at Boulder, Research Report, 2014, 26 pages.
Wolff, Christian, “Phased Array Antenna”, Radar Tutorial, web.archive.org, radartutorial.eu, Oct. 21, 2014, 2 pages.
Won Jung, Chang et al., “Reconfigurable Scan-Beam Single-Arm Spiral Antenna Integrated With RF-MEMS Switches”, IEEE Transactions on Antennas and Propagation, vol. 54, No. 2, Feb. 2006, 455-463.
Woodford, Chris, “How do touchscreens work?”, www.explainthatstuff.com/touchscreens.html, Aug. 23, 2016, 8 pages.
Wu, Xidong et al., “Design and characterization of singleand multiplebeam mmwave circularly polarized substrate lens antennas for wireless communications”, Microwave Theory and Techniques, IEEE Transactions on 49.3, 2001, 431-441.
Xi, Liu Xiao, “Security services in SoftLayer”, Sep. 21, 2015, 18 pages.
Xia, Cen et al., “Supermodes for optical transmission”, Optics express 19.17, 2011, 16653-16664.
Xiao, Shiyi et al., “Spin-dependent optics with metasurfaces”, Nanophotonics 6.1, 215-234., 2016, 215-234.
Yang, et al., “Power line sensornet—a new concept for power grid monitoring”, IEEE Power Engineering Society General Meeting, Abstract Only, 2006, pp. 8.
Yang, Yi, “Power Line Sensor Networks for Enhancing Power Line Reliability and Utilization”, Georgia Institute of Technology, https://smartech.gatech.edu/bitstream/handle/1853/41087/Yang_Yi_201108_phd.pdf, Apr. 26, 2011, 264 pages.
Yeh, C. et al., “Ceramic Waveguides”, Interplanetary Network Progress Report 141.26: 1, May 15, 2000, 21 pages.
Yeh, C. et al., “Thin-Ribbon Tapered Coupler for Dielectric Waveguides”, May 15, 1994, 42-48.
Yilmaz, et al., “Self-optimization of coverage and capacity in LTE using adaptive antenna systems”, Aalto University, Feb. 2010, 72 pages.
Yousuf, Muhammad Salman, “Power line communications: An Overview Part I”, King Fand University of Petroleum and Minerals, Dhahran, KSA, 2008, 5 pages.
Yu, Shui et al., “Predicted packet padding for anonymous web browsing against traffic analysis attacks”, Information Forensics and Security, IEEE Transactions on 7.4, http://nsp.org.au/syu/papers/tifs12.pdf, 2012, 1381-1393.
Zelby, Leon W., “Propagation Modes on a Dielectric Coated Wire”, Journal of the Franklin Institute, vol. 274(2), Aug. 1962, pp. 85-97.
Zhang, “Modified Tapered Slot-line Antennas for Special Applications”, REV Journal on Electronics and Communications, vol. 2, Jul.-Dec. 2012, 106-112.
Zhang, Ming et al., “PlanetSeer: Internet Path Failure Monitoring and Characterization in Wide Area Services”, OSDI, vol. 4, 2004, 33 pages.
Zhao, et al., “Energy harvesting for a wireless-monitoring system of overhead high-voltage power lines”, IET Generation, Transmission & Distribution 7, IEEE Xplore Abstract, 2013, 2 pages.
Zheng, Zhu et al., “Efficient coupling of propagating broadband terahertz radial beams to metal wires”, Optics express 21.9, 2013, 10642-10650.
Zucker, Francis J., “Surface-Wave Antennas”, Antenna Engineering Handbook, Chapter 10, 2007, 32 pages.
“Article 34 Amendment and Demand filed May 2, 2018”, for PCT Application No. PCT/US17/63403 filed Nov. 28, 2017, 15 pages.
Patent Cooperation Treaty, “International Search Report and Written Opinion dated Mar. 5, 2018”, for PCT Application No. PCT/US17/63403, dated Mar. 5, 2018, 18 pages.
Akalin, Tahsin et al., “Single-Wire Transmission Lines at Terahertz Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. 54, No. 6, 2006, 2762-2767.
Wang, Kanglin, “Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range”, Physical Review Letters, PRL 96, 157401, 2006, 4 pages.
“International Search Report and Written Opinion”, PCT/US2018/015634, dated Jun. 25, 2018, 8 pages.
Related Publications (1)
Number Date Country
20180166787 A1 Jun 2018 US