A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
The present disclosure relates generally to the field of delivery of digital media data (e.g., text, video, audio, image files, and/or data files such as executables or other data structures) over data delivery networks, and specifically in one exemplary aspect to apparatus and methods for controlling selectable degrees of access of end-user devices to data delivery networks.
In many public and private locations/venues, such as e.g., sports arenas, conference centers, hotels, concert halls, airports, etc., wireless networks are provided for connection of end-user devices (e.g., mobile and/or personal computing devices such as smartphones, tablets, laptops, etc.) to data delivery networks, including unmanaged networks such as the Internet. Such wireless networks may typically employ, e.g., access points (APs) and other infrastructure compliant with one or more IEEE 802.11 standards (so-called “Wi-Fi”). Such provided wireless networks, however, have a limited degree of access and/or consumable bandwidth capacity that can be made available to the users. Moreover, in such locations, there are potentially thousands of users that may attempt to access the provided wireless networks via their personal devices, sometimes at or nearly at the same time (such as where an event occurs, and the wireless users wish to engage in reporting or social media communications regarding the event). Among the pool of users, it may be desirable allow a selected group of users to have a greater degree of access (e.g., greater permissible bandwidth consumption, “head-of-the-line” privileges for the same amount of bandwidth as others, etc.). For example, some subset of the larger group may have valid reasons for requiring such enhanced access (e.g., the types or quantity of information they are sending or receiving may dictate a greater share of available bandwidth, and/or such head-of-the-line privileges due to e.g., urgency or time sensitivity).
Moreover, in that most users of wireless (and in fact other) networks typically are quite asymmetric in their uses (e.g., download bandwidth demanded is typically prevalent over upload bandwidth demanded), extant networks will often allocate more available network and backbone bandwidth to downstream channels for e.g., download, so as to mitigate user delays and loss of user experience. However, the foregoing paradigm may not be applicable in all cases, and in fact, situations may exist where required upstream/upload bandwidth (including that from multiple wireless users to one or more base stations or access points) far outstrips the downstream/download bandwidth, especially at fairly discrete points in time.
Without proper management of network access and parameters relating thereto, such scenarios as noted supra can result in the wireless access corollary of a “traffic jam”; access granted to only a subset of users in e.g., “first come, first served” fashion, with significant bandwidth limitation on each of the users who are lucky enough to obtain access. Clearly, the foregoing approach is not optimal, and results in significant user frustration, especially with the user's service provider.
One current solution for providing a sufficient degree of network access to a selected subset of a larger group of users is to exclude other (non-selected) users from network access. For example, a network can be password protected and the password distributed only to the selected group. These strategies may thus in certain cases provide a necessary degree of access to the selected group of users, yet none of these conventional solutions allows for, inter alia, other users to have a lower degree of access (e.g., access that does not interrupt uplink and/or downlink usage of the selected group of users) to the data network.
Additionally, any extant solutions that could address the foregoing problems require significant “intelligence” at the wireless access point or further up into the supporting distribution network; i.e., the wireless access point must be able to conduct evaluation of the requesting user device and/or user account, which necessitates use of a more complex device, and greater analytical capability in “sniffing” or examining packets and various aspects of the content or other data being transmitted or received by the requesting user (e.g., at higher layers within the protocol stack of the WAP or any associated controller). For example, were access privileges to be determined based on user ID or credentials alone, traffic associated with that user could not be easily identified, especially by a comparatively “dumb” wireless access point (WAP) or controller, and hence would require significant additional signaling and overhead to process selected or high-priority user requests or traffic, such as in maintaining QoS for traffic of the user.
Based on the foregoing, it is clear that while prior art solutions have generally recognized the need for providing network access to a selected group from a pool of users, there is a need for apparatus and methods that provide a greater degree of data network access (e.g., a greater uplink/downlink bandwidth), and control and configurability thereof, to a subset (e.g., selected group) of users, such as within a specific location/venue where many users are aggregated. In certain cases, it would further be desirable to provide a “best effort” degree of data network access (e.g., in some instances, a lesser uplink/downlink bandwidth depending on availability of the network) to other users within the same location/venue as well (as contrasted with provision of a high level of service to the “selected” users, and little or no service to others).
Ideal solutions would also be compatible with standardized hardware/software/operating systems, and be able to be implemented quickly with low development and resource overhead.
The present disclosure addresses the foregoing needs by providing, inter alia, methods and apparatus for providing selectable degrees of data network access to end-user devices within e.g., a location/venue.
In a first aspect, a controller apparatus is disclosed. In one embodiment, the controller apparatus includes a processor apparatus configured to execute at least one computer program; a storage apparatus configured to store data, the comprising a user status that is at least one of (i) a first user status associated with a first permissible bandwidth consumption, and/or (ii) a second user status associated with a second permissible bandwidth consumption, the second permissible consumption being less than the first permissible consumption; a first data interface in data communication with the processor apparatus and configured for signal communication with a local area wireless network; a second interface data communication with the processor apparatus and configured for signal communication with a network entity of managed content delivery network (CDN); and a computer-readable storage apparatus having at least one computer program comprising a plurality of non-transitory computer readable instructions.
In one variant, the instructions are configured to, when executed by the processor apparatus, cause the apparatus to: receive a first connection request from a first user device via the first interface; determine that the first user device has been associated with the first user status; assign the first permissible bandwidth to the first user device when the first user device is associated with the first user status; provide access to the CDN via the second interface for the first user device consistent with the first permissible bandwidth consumption; receive a second connection request from a second user device via the first interface; determine that the second user device has been associated with the second user status; assign the second permissible bandwidth consumption to the second user device when the second user device is associated with the second user status; and provide access to the CDN via the second interface for the second user device consistent with the second permissible bandwidth consumption.
In another variant, the first user status and the second user status are assigned, respectively, based on respective ones of a location within a venue of each of the first user device and the second user device, the respective ones of the location being one of a higher priority area and a lower priority area.
In a further variant, the first and second user requests respectively comprise first and second media access control (MAC) values associated with the first and second user devices, and the first and second user statuses are respectively assigned based at least on the first and second MAC values; and the controller apparatus is further configured to determine the respective ones of the locations of the first and second user devices based at least on MAC data relating to respective wireless access points (WAPs) associated with the first and second user devices.
In yet another variant, the first user device is in signal communication with a first wireless access point located in the higher priority area and the second user device is in signal communication with a second wireless access point located in the lower priority area; and the first user status is associated with the first wireless access point and the second user status is associated with the second wireless access point. The first wireless access point has a first media access control (MAC) address detectable by the controller apparatus and the second wireless access point has a second MAC address detectable by the controller apparatus; and the first user status is associated with the first MAC address and the second user status is associated with the second MAC address.
In another variant, the first user status and the second user status are assigned, respectively, based on a class of end-user application of each of the first user device and the second user device, the class of end user application being one of a higher bandwidth consumption application class and a lower bandwidth consumption application class.
In another embodiment, the controller apparatus includes: a processor apparatus configured to execute at least one computer program; a storage device in data communication with the processor apparatus; a first data interface in data communication with the processor apparatus and configured for signal communication with a wireless local area network (WLAN) access point; a second interface data communication with the processor apparatus and configured for signal communication with a network entity of managed content delivery network (CDN); and a computer-readable storage apparatus having at least one computer program comprising a plurality of non-transitory computer readable instructions.
In one variant, the instructions are configured to, when executed by the processor apparatus, cause the apparatus to: receive a first service request from a first user device via the first interface, the first service request comprising a device-specific identifier of the first user device; utilize at least a portion of the first service request to authenticate, within the CDN, the first user device as having a privilege associated with the WLAN; receive data indicative of the privilege from the CDN and store the data in the storage device; and subsequently utilize the stored data to cause the access point to recognize subsequent service requests from the first user device, and implement one or more policies for data access according to the privilege.
In another variant, the device-specific identifier comprises a MAC address, and the one or more policies comprises increased upstream data bandwidth for the first user device.
In a further variant, the device-specific identifier comprises a MAC address, use of the MAC address obviating the WLAN or CDN from having to evaluate data contained within a payload of the subsequent service requests for determination of policy.
In another aspect, a method of providing wireless local area network (WLAN)-based services to a plurality of users within a prescribed location is disclosed. In one embodiment, the method includes: receiving a first request from a user device of first user of the plurality at the WLAN, the first request comprising data explicitly identifying the user device and requesting access to a content distribution and delivery network via the wireless local-area network; utilizing the data explicitly identifying the user device to access a network entity to determine a privilege of the user device within the WLAN; obtaining data indicative of the privilege from the network entity; utilizing the data indicative of the privilege to selectively implement at least one WLAN access policy with respect to the user device; and applying a second policy to others of the plurality of users.
In one variant of the method, the WLAN comprises a wireless access point (WAP), the receiving the first request comprises receiving the first request at the WAP, and the method further comprises forwarding at least a portion of the first message to the network entity via a managed content delivery network (CDN) infrastructure. The network entity comprises an entity in data communication with a database of user-specific data both (i) associating the user device with the first user, and (ii) identifying the privilege. The data explicitly identifying the user device comprises for instance a media access control (MAC) address, and the utilizing the data to access a network entity to determine a privilege of the user device within the WLAN comprises accessing the database.
In one implementation, the utilizing the data indicative of the privilege to selectively implement at least one WLAN access policy with respect to the user device comprises: providing the data indicative of the privilege to a controller in data communication with the WAP; and utilizing the provided data within at least one of the WAP and the controller to correlate the privilege with the at least one WLAN access policy.
In another variant, the data explicitly identifying the user device comprises a media access control (MAC) address, and the selectively implementing the at least one WLAN access policy comprises: subsequently identifying a plurality of data associated with the user device of the first user based at least on the MAC address; and handling the identified plurality of data according to the at least one WLAN access policy. The handling the identified plurality of data according to the at least one WLAN access policy comprises for example providing the plurality of data head-of-the-line privilege to available data communications bandwidth of the WLAN. Alternatively, the handling the identified plurality of data according to the at least one WLAN access policy comprises reserving a prescribed portion of available data communications bandwidth of the WLAN for use by the user device.
In another variant, the WLAN comprises a plurality of wireless access points (WAPs), and the method further comprises: determining one of the plurality of WAPs with which the user device has associated; and utilizing the data indicative of the privilege and a location associated with the determined one of the plurality of WAPS to selectively implement the at least one WLAN access policy for the location only.
In a further aspect of the disclosure, a method of providing enhanced wireless local area network (WLAN)-based services to a plurality of users within a prescribed location is disclosed. In one embodiment, the WLAN comprises a plurality of wireless access points, only a portion of which are enabled for provision of the enhanced WLAN-based services, and the method includes: receiving a first request from a user device of first user of the plurality at the WLAN, the first request comprising data explicitly identifying the user device and requesting access to a content distribution and delivery network via the wireless local-area network; utilizing the data identifying the user device to access a network entity to determine a privilege of the user device within the WLAN; obtaining data indicative of the privilege from the network entity; obtaining data relating to a one of the plurality of wireless access points with which the user device is associated; determining that the one wireless access point is enabled for provision of the enhanced WLAN-based services; and utilizing the data indicative of the privilege, and the determination that the one wireless access point is enabled for provision of the enhanced WLAN-based services, to selectively implement at least one WLAN access policy with respect to the user device so as to provide the enhanced WLAN-based services.
In another aspect, a system enabling selectable levels of wireless access for individuals via a WLAN is disclosed. In one embodiment, the system utilizes a plurality of WAPs in a given venue to differentiate services to users (e.g., multiple systems operator or MSO subscribers) based on the user's location within the venue. In one variant, the system utilizes one or more WAP controllers on the back end of the WLAN to implement resource allocation policies as enabled or directed by the MSO's authentication and entitlements infrastructure.
In a further aspect, a method of operating a wireless LAN (WLAN) is disclosed. In one embodiment, the method includes utilizing user device-specific data to differentiate access to enhanced wireless access services so as to obviate higher layer data packet evaluation.
In yet another aspect, a computer-readable apparatus is disclosed. In one embodiment, the computer readable apparatus comprises a storage medium configured to store at least one computer program thereon. In one variant, the computer-readable apparatus is part of a WAP controller in a WLAN-enabled MSO infrastructure. In another variant, the computer-readable apparatus is that of a mobile or end-user device of a user (e.g., subscriber) of the network. In yet another variant, the apparatus is part of a CDN policy or authentication/entitlements server.
In still another aspect, a computer program for use on a mobile device is disclosed. In one embodiment, the computer program comprises an application program (e.g., “app”) rendered in a programming language suitable for operation on a mobile or user device operating system (e.g., a Java-based app for use on an Android™ smartphone), and configured to enable the user's device to optimize its operation within a WLAN. In one variant, the WLAN comprises an enhanced-capability WLAN as described above, and is operated by an MSO of a host CDN. The app allows the user device to locate itself (e.g., via GPS receiver of the mobile device) and determine which of a plurality of WAPs within range of the mobile device at that location is appropriate for the user at that location (e.g., a “VIP” (very important person) or press user located in a press box would only want to utilize the enhanced WAP).
In another aspect of the disclosure, a computerized method of providing wireless local area network (WLAN)-based services to a plurality of computerized user devices within a prescribed location is described; wherein the WLAN includes one or more wireless access points (WAPs), and the plurality of computerized user devices include one or more common attributes. In one embodiment, the computerized method includes: receiving first data indicative of a first connection request, the first connection request from a first computerized user device of the plurality of computerized user devices, the first computerized user device including a first end-user application computer program running thereon; receiving second data indicative of a second connection request, the second connection request from a second computerized user device of the plurality of computerized user devices, the second computerized user device including a second end-user application computer program running thereon; identifying the one or more common attributes associated with the first and the second computerized user devices; determining that the first and the second computerized user devices are associated respectively with (i) first data indicative of a first user status and (ii) second data indicative of a second user status; and based at least in part on the determining, allocating a first permissible bandwidth consumption and a second permissible bandwidth consumption, respectively, to the first and the second computerized user devices; and wherein the allocating of the first permissible bandwidth consumption enables a higher data rate than the allocating of the second permissible bandwidth consumption.
In a second embodiment of the method, the allocating of the first permissible bandwidth consumption and the allocating of the second permissible bandwidth consumption include allocating from a finite amount of available bandwidth associated with the WLAN at a then-current time of the allocating.
In a third embodiment of the method, the determining that the first and the second computerized user devices are associated respectively with (i) the first data indicative of the first user status and (ii) the second data indicative of the second user status includes utilizing at least the first end-user application computer program and the second end-user application computer program to obtain (i) the first data indicative of the first user status and (ii) the second data indicative of the second user status, respectively.
In one variant thereof, the utilizing at least the first and the second end-user application computer programs further includes identifying respective bandwidth requirements for each of the first and the second end-user application computer programs based at least in part on different application layer software or processes run by the first and the second end-user application computer programs, respectively.
In another variant thereof, the utilizing at least the first and the second end-user application computer programs further includes identifying respective different bandwidth requirements for the first and the second end-user application computer programs based at least in part on respective one or more different peripheral devices utilized by the first and the second end-user application computer programs.
In a fourth embodiment of the method, the computerized method further includes detecting data relating to device types of the first and the second computerized user devices, the data relating to the device types utilized for the allocating of the first permissible bandwidth consumption and the second permissible bandwidth consumption.
In one variant thereof, the detecting of the data relating to the device types includes determining that the first and the second computerized user devices include identical hardware platforms.
In another variant thereof, the detecting of the data relating to the device types includes identifying different air interface configurations of the first and the second computerized user devices.
In further variant thereof, the detecting of the data relating to the device types includes identifying one or more physical limitations associated with the first and the second computerized user devices, at least one of the one or more physical limitations associated with the first computerized user device supporting a prescribed level of permissible bandwidth, the prescribed level of permissible bandwidth different than a level of permissible bandwidth associated with at least another physical limitation, the at least another physical limitation associated with the second computerized user device.
In further aspect of the disclosure, a computerized method of providing wireless services to one or more computerized user devices via one or more wireless access points (WAPs) is described. In one embodiment, the computerized method includes: receiving first data representative of a first connection request, the first connection request from a first one of the one or more computerized user devices; receiving second data representative of a second connection request, the second connection request from a second one of the one or more computerized user devices; identifying (i) at least two WAPs, the at least two WAPs within wireless range of each of the first and the second computerized user devices, and (ii) one or more common attributes associated with the first and the second computerized user devices; determining that a first of the at least two WAPs is capable of providing a prescribed wireless service not available on one or more other ones of the at least two WAPs; identifying a first application and a second application executing on the first and the second computerized user devices, respectively; and based at least in part on the identifying: enabling access to a data network for the first computerized user device via the first of the at least two WAPs; and enabling access to the data network for the second computerized user device via another of the one or more other WAPs.
In a second embodiment of the method, the prescribed wireless service not available on the one or more other WAPs includes a bandwidth level required by the first application.
In one variant thereof, the identifying of the first and the second applications further includes communicating data with a first end-user application program supporting the first application, the communicating the data to determine at least one of a bandwidth requirement or a QoS (quality of service) requirement for the first application.
In a third embodiment of the method, the determining includes: identifying a venue served by at least the first WAP; and identifying a prescribed region within the venue, the prescribed region associated with the prescribed wireless service.
In one variant thereof, the identifying of the prescribed region includes identifying user status data associated with the prescribed region, the user status data including data related to (i) one or more permitted wireless services associated with a user status, and (ii) a requirement for a prescribed level of bandwidth consumption associated with the one or more permitted wireless services.
In a fourth embodiment of the method, the method further includes providing data relating to an option for a user of the first computerized user device to opt out of the prescribed wireless service provided by the first WAP.
In a further aspect of the disclosure, computer readable apparatus is described. In one embodiment, the computer readable apparatus includes a non- transitory storage medium, the non-transitory storage medium including at least one computer program having a plurality of instructions, the plurality of instructions configured to, when executed on digital processing apparatus, cause a computerized network apparatus to: receive first data associated with a first one of a plurality of computerized client devices; receive second data associated with a second one of the plurality of computerized client devices; identify data indicative of one or more common attributes of the first and the second computerized client devices; cause correlation of the received first data and the received second data to a plurality of respective user status data; and based at least on the correlation, determine that the first computerized client device requires a higher bandwidth consumption than the second computerized client device.
In a second embodiment, the first and the second data include respective identifying data associated with the first and the second computerized client devices, the identifying data each including one or more of: (i) a media access control (MAC) address, or (ii) a non-MAC device-specific identifier.
In a third embodiment, each of the first and the second data includes data related to a privilege associated with one or more wireless data services; and at least one of the plurality of user status data include data associated with one or more prescribed wireless data services available to only a subset of the plurality of the computerized client devices, the one or more prescribed wireless data services requiring the higher bandwidth consumption.
In one variant thereof, the causation of the correlation includes access of the data related to the privilege associated with the one or more wireless data services, the data related to the privilege originating from a server or proxy not associated with an operator of a network with which the computerized network apparatus is associated.
In a fourth embodiment, the determination includes identification of (i) a first access pass associated with the user status data of the first computerized client device, and (ii) a second access pass associated with the user status data of the second computerized client device; the first access pass is associated with the higher bandwidth consumption required for the first computerized client device; and the second access pass is associated with a bandwidth consumption required for the second computerized client device.
In one variant thereof, the first access pass includes an access pass requiring a pre-paid fee; and the second access pass includes an access pass without any fee requirement.
These and other aspects shall become apparent when considered in light of the disclosure provided herein.
All figures © Copyright 2015 Time Warner Enterprises LLC. All rights reserved.
Reference is now made to the drawings wherein like numerals refer to like parts throughout.
As used herein, the term “application” refers generally and without limitation to a unit of executable software that implements a certain functionality or theme. The themes of applications vary broadly across any number of disciplines and functions (such as on-demand content management, e-commerce transactions, brokerage transactions, home entertainment, calculator etc.), and one application may have more than one theme. The unit of executable software generally runs in a predetermined environment; for example, the unit could include a downloadable Java Xlet™ that runs within the JavaTV™ environment.
As used herein, the term “client device” includes, but is not limited to, set-top boxes (e.g., DSTBs), gateways, modems, personal computers (PCs), and minicomputers, whether desktop, laptop, or otherwise, and mobile devices such as handheld computers, PDAs, personal media devices (PMDs), tablets, “phablets”, and smartphones.
As used herein, the term “codec” refers to a video, audio, or other data coding and/or decoding algorithm, process or apparatus including, without limitation, those of the MPEG (e.g., MPEG-1, MPEG-2, MPEG-4/H.264, etc.), Real (RealVideo, etc.), AC-3 (audio), DiVX, XViD/ViDX, Windows Media Video (e.g., WMV 7, 8, 9, 10, or 11), ATI Video codec, or VC-1 (SMPTE standard 421M) families.
As used herein, the term “computer program” or “software” is meant to include any sequence or human or machine cognizable steps which perform a function. Such program may be rendered in virtually any programming language or environment including, for example, C/C++, Fortran, COBOL, PASCAL, assembly language, markup languages (e.g., HTML, SGML, XML, VoXML), and the like, as well as object-oriented environments such as the Common Object Request Broker Architecture (CORBA), Java™ (including J2ME, Java Beans, etc.) and the like.
The term “Customer Premises Equipment (CPE)” refers without limitation to any type of electronic equipment located within a customer's or subscriber's premises and connected to or in communication with a network.
As used herein, the term “display” means any type of device adapted to display information, including without limitation CRTs, LCDs, TFTs, plasma displays, LEDs (e.g., OLEDs), incandescent and fluorescent devices, or combinations/integrations thereof. Display devices may also include less dynamic devices such as, for example, printers, e-ink devices, and the like.
As used herein, the term “DOCSIS” refers to any of the existing or planned variants of the Data Over Cable Services Interface Specification, including for example DOCSIS versions 1.0, 1.1, 2.0, 3.0 and 3.1.
As used herein, the term “headend” refers generally to a networked system controlled by an operator (e.g., an MSO) that distributes programming to MSO clientele using client devices. Such programming may include literally any information source/receiver including, inter alia, free-to-air TV channels, pay TV channels, interactive TV, and the Internet.
As used herein, the terms “Internet” and “internet” are used interchangeably to refer to inter-networks including, without limitation, the Internet.
As used herein, the term “memory” includes any type of integrated circuit or other storage device adapted for storing digital data including, without limitation, ROM. PROM, EEPROM, DRAM, SDRAM, DDR/2 SDRAM, EDO/FPMS, RLDRAM, SRAM, “flash” memory (e.g., NAND/NOR), and PSRAM.
As used herein, the terms “microprocessor” and “processor” or “digital processor” are meant generally to include all types of digital processing devices including, without limitation, digital signal processors (DSPs), reduced instruction set computers (RISC), general-purpose (CISC) processors, microprocessors, gate arrays (e.g., FPGAs), PLDs, reconfigurable computer fabrics (RCFs), array processors, secure microprocessors, and application-specific integrated circuits (ASICs). Such digital processors may be contained on a single unitary IC die, or distributed across multiple components.
As used herein, the terms “MSO” or “multiple systems operator” refer to a cable, satellite, or terrestrial network provider having infrastructure required to deliver services including programming and data over those mediums.
As used herein, the terms “network” and “bearer network” refer generally to any type of telecommunications or data network including, without limitation, hybrid fiber coax (HFC) networks, satellite networks, telco networks, and data networks (including MANs, WANs, LANs, WLANs, internets, and intranets). Such networks or portions thereof may utilize any one or more different topologies (e.g., ring, bus, star, loop, etc.), transmission media (e.g., wired/RF cable, RF wireless, millimeter wave, optical, etc.) and/or communications or networking protocols (e.g., SONET, DOCSIS, IEEE Std. 802.3, ATM, X.25, Frame Relay, 3GPP, 3GPP2, WAP, SIP, UDP, FTP, RTP/RTCP, H.323, etc.).
As used herein, the term “network interface” refers to any signal or data interface with a component or network including, without limitation, those of the FireWire (e.g., FW400, FW800, etc.), USB (e.g., USB2), Ethernet (e.g., 10/100, 10/100/1000 (Gigabit Ethernet), 10-Gig-E, etc.), MoCA, Coaxsys (e.g., TVnet™), radio frequency tuner (e.g., in-band or OOB, cable modem, etc.), Wi-Fi (802.11), WiMAX (802.16), Zigbee®, Z-wave, PAN (e.g., 802.15), power line carrier (PLC), or IrDA families.
As used herein, the term “QAM” refers to modulation schemes used for sending signals over cable networks. Such modulation scheme might use any constellation level (e.g. QPSK, 16-QAM, 64-QAM, 256-QAM, etc.) depending on details of a cable network. A QAM may also refer to a physical channel modulated according to the schemes.
As used herein, the term “server” refers to any computerized component, system or entity regardless of form which is adapted to provide data, files, applications, content, or other services to one or more other devices or entities on a computer network.
As used herein, the term “storage” refers to without limitation computer hard drives, DVR device, memory, RAID devices or arrays, optical media (e.g., CD-ROMs, Laserdiscs, Blu-Ray, etc.), or any other devices or media capable of storing content or other information.
As used herein, the term “Wi-Fi” refers to, without limitation, any of the variants of IEEE-Std. 802.11 or related standards including 802.11 a/b/g/n/s/v/ac or 802.11-2012.
As used herein, the term “wireless” means any wireless signal, data, communication, or other interface including without limitation Wi-Fi, Bluetooth, 3G (3GPP/3GPP2), HSDPA/HSUPA, TDMA, CDMA (e.g., IS-95A, WCDMA, etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16), 802.20, Zigbee®, Z-wave, narrowband/FDMA, OFDM, PCS/DCS, LTE/LTE-A, analog cellular, CDPD, satellite systems, millimeter wave or microwave systems, acoustic, and infrared (i.e., IrDA).
Overview
In one aspect, the present disclosure provides a “selectable” data network access system and methods relating thereto. In one exemplary embodiment, the system is intended to reserve or allocate a greater degree of access to a data network, such as for selected users that require and/or request such. Specifically, the exemplary system is configured to provide a greater degree of data network access and/or performance (e.g., a greater uplink/downlink bandwidth, a greater permissible bandwidth consumption, higher priority, better quality/QoS, etc.) to a selected group of users within a location/venue. In one implementation, the foregoing features are provided while also providing a “best effort” data network access (e.g., in some instances a lesser uplink/downlink bandwidth depending on availability of the network, a lesser permissible bandwidth consumption, priority, quality, etc.) to other users; i.e., users other than those in the selected group of users, within the same location/venue after accommodating the higher priority delivery.
Accordingly, in one example scenario, sufficient uplink bandwidth can be selectively provided to members of the media for rapid upload of media content to their respective corporate or third-party servers, while maintaining lower level data network access to other users. In another example scenario, superior wireless service (e.g., faster, better quality, more expansive choices, no advertising, etc.) can be provided to so-called “VIP” users, while maintaining lower-level data network access to other users. In one variant, the user's resource allocation within the wireless access network (e.g., a Wi-Fi WLAN) is determined based on a media access control (MAC) ID or address associated with the user's device, thereby advantageously obviating more detailed or sophisticated analysis required to evaluate the user and his/her needs.
In another variant, the degree and/or “quality” of network access is region- or area-specific, leveraging the ability of the network operator to differentiate location of users based on association of the user's wireless device to a given wireless access point (and hence resolving their range from the access point to within a given region). In one implementation, the user's association with a given WAP is determined by MAC address of the access point hardware.
In addition, security and redundancy schemes may be advantageously deployed consistent with the various aspects disclosed herein.
Methods of operating the foregoing system, including methods of enhancing subscriber satisfaction and conducting business, are also disclosed.
As referenced above, various aspects of the present disclosure are directed to schemes for providing a solution that, in real time, allocates wireless and network resources to particular users and/or locations.
Specifically, exemplary implementations of the foregoing schemes described herein allow the degree of data network access or functionality to be location-specific. For example, the selected group of users may be located in one or more high priority regions of a venue (e.g., a press box, exhibition floor, VIP area, etc.). The selected group of users in such higher priority regions may be assigned a first user status that is associated with a higher permissible bandwidth consumption or other desired functionality (e.g., low latency and/or high throughput data network access, isochronous data transmission, etc.). Other users may be located in one or more lower-priority regions of the venue. Users in the one or more lower-priority regions may be assigned a second user status that is associated with a lower permissible bandwidth consumption and/or less feature-rich service. Thus, sufficient resources (such as upstream bandwidth) are reserved for the selected group of users, despite network activity of other users.
For example, in some instances, a selected group of the user pool may include one or more members of the press, such as reporters, videographers, and/or other media representatives. It may be desirable to provide the members of the press with a greater degree of network access (e.g., uplink bandwidth) so that they may upload media content (e.g., screenshots, photos, video, written content, etc.) in a timely manner, which is critical to news reporting. In another example, a selected group of the user pool may include one or more VIP guests to whom it is desirable to provide a greater degree of network access, such as foreign dignitaries or their support staff, who require timely access to information (both downlink and uplink).
In yet another example, a selected group of the user pool may include users who pay for a greater degree of network access, or who are subscribers of the MSO or other network operator that is providing the network access.
In even another example, a selected group of users can include users having an end-user device (e.g., audio visual recording equipment, high definition camera, etc.) and/or one or more end user applications (e.g., streaming multimedia applications, file transfer protocol (FTP) applications, etc.) that consume a greater degree of bandwidth. Those of ordinary skill in the related arts will readily appreciate that bandwidth is merely one metric for connectivity; other important requirements for network connectivity may include e.g., latency, throughput, QoS, and/or lossless delivery, etc.
In some variants, the degree of data network access is access pass-specific. For instance, the selected group of users may be those having a higher access pass (e.g., pre-paid or pre-issued access pass) associated with their respective end-user devices based on e.g., a device-specific ID such as MAC. The selected group of users having higher access passes may be assigned a first user status that is associated with a higher permissible bandwidth consumption. The selected group of users (e.g., members of the media, VIP users, etc.) may then be provided with a greater degree of network access (e.g., low latency and/or high throughput data network access, isochronous data transmission, etc.). Other users may have a lower access pass (e.g., free access pass) associated with their respective end-user devices, which may then be assigned a second user status that is associated with a lower permissible bandwidth consumption. Users assigned the second user status may then be provided with a lesser degree of network access (e.g., high latency and/or low throughput data network access, asynchronous data transmission, etc.). Thus, as in the example above, sufficient bandwidth is reserved for the selected group of users, despite network activity of other users.
In additional variants, the system may be configured to automatically switch a user to a different access pass upon expiration of the currently in-use pass. Accordingly, if a user device is accessing the network via a higher access pass and the higher access pass expires, the user device can be automatically switched to a lower access pass (e.g., a free access pass). Conversely, if a user device is accessing the network via lower access pass and the lower access pass expires, the user device can automatically switch to a higher access pass (e.g., a pre-paid access pass).
Additionally or alternatively, further variant systems and methods of the present disclosure may include assigning the first user status (associated with the higher permissible bandwidth access) and the second user status (associated with the lower permissible bandwidth access) based on a classification of the end-user device and/or end user application. For example, a higher bandwidth consumption end-user device (e.g., audio visual equipment, high definition (HD) cameras) may be assigned the first user status, while a lower bandwidth consumption end-user device (e.g., text devices, low resolution devices, etc.) may be assigned the second user status. In another example, a higher bandwidth consumption end user application (e.g., streaming multimedia application, file transfer protocol (FTP) applications, etc.) may be assigned the second user status, while a lower bandwidth consumption end user application (e.g., text applications, social media applications, etc.) may be assigned the second user status.
Other variants of the present disclosure envision additional degrees of permissible bandwidth consumption (e.g., a third user status having a medial permissible bandwidth consumption) for scenarios where it is desirable to have more than two tiers of data network access service. Still other variants of the present disclosure may include shared bandwidth amongst a portion of users (e.g., a selected group of the higher priority users share a fixed bandwidth), in-home embodiments (e.g., selected higher priority users designated within a residential network), and/or opt-in/opt-out services (e.g., a user can opt out of higher priority service).
Accordingly, the foregoing aspects and exemplary embodiments of the apparatus and methods of the present disclosure are now described in detail. While these exemplary embodiments are described in the context of a wireless network (e.g., WLAN) in data communication with a managed hybrid fiber coax (HFC) cable architecture having a multiple systems operator (MSO), the general principles and advantages of the disclosure may be extended to other types of networks and architectures that are configured to deliver digital media data (e.g., text, video, audio, executables, data files and archives, etc.). Such other networks or architectures may be broadband, narrowband, wired or wireless, or otherwise, the following therefore being merely exemplary in nature.
As but one example, the methods and apparatus provided herein could be applied to a so-called “Internet-of-things” or IoT system whereby certain types, functions, or classes of wireless-enabled devices are granted access or privileges or features as compared to other non-privileged devices within, e.g., an intra-premises or inter-premises network such as a PAN or Zigbee network.
It will also be appreciated that while described generally in the context of a network providing service to a customer or consumer (i.e., residential) end user domain, the present disclosure may be readily adapted to other types of environments including, e.g., commercial/enterprise, research and development, and government/military applications. Myriad other applications are possible.
Also, while certain aspects are described primarily in the context of the well-known Internet Protocol (described in, inter alia, Internet Protocol DARPA Internet Program Protocol Specification, IETF RCF 791 (September 1981) and Deering, et al., Internet Protocol, Version 6 (IPv6) Specification, IETF RFC 2460 (December 1998) each of which is incorporated herein by reference in its entirety), it will be appreciated that the present disclosure may utilize other types of protocols (and in fact bearer networks to include other internets and intranets) to implement the described functionality.
Other features and advantages of the present disclosure will immediately be recognized by persons of ordinary skill in the art with reference to the attached drawings and detailed description of exemplary embodiments as given below.
Service Provider Network—
Advantageously, the service provider network 100 also allows components at the service location (e.g., Wi-Fi APs and any supporting infrastructure such as routers, switches, MIMO or modulation coding scheme (MCS) or other physical layer (PHY) configurations, etc.) to be remotely reconfigured by the network MSO, based on e.g., prevailing operational conditions in the network, changes in user population and/or makeup of users at the service location, business models (e.g., to maximize profitability), etc. This is especially true in the exemplary context of subscribers of the managed network which, based on subscription level, tenure, client equipment, or other factors may be included or removed from certain subsets of the potential user population at the venue, given access to different features or privileges, etc. (as compared to say, an unaffiliated generic or opportunistic user who just happens to be at the venue with a Wi-Fi-enabled device).
The various components of the exemplary embodiment of the network 100 include (i) one or more data and application origination points 102; (ii) one or more content sources 103, (iii) one or more application distribution servers 104; (iv) one or more VOD servers 105, and (v) customer premises equipment (CPE) 106. The distribution server(s) 104, VOD servers 105 and CPE(s) 106 are connected via a bearer (e.g., HFC) network 101. A simple architecture comprising one of each of the aforementioned components 102, 103, 104, 105, 106 is shown in
Also shown in
The exemplary architecture 150 of
Content (e.g., audio, video, data, files, etc.) is provided in each downstream (in-band) channel associated with the relevant service group. To communicate with the headend or intermediary node (e.g., hub server), the CPE 106 may use the out-of-band (OOB) or DOCSIS channels and associated protocols. The OCAP 1.0, 2.0, 3.0 (and subsequent) specification provides for exemplary networking protocols both downstream and upstream, although the present disclosure is in no way limited to these approaches.
In addition to “broadcast” content (e.g., video programming), the systems of
Referring again to
The edge switch 194 forwards the packets receive from the CMTS 199 to the QAM modulator 189, which transmits the packets on one or more physical (QAM-modulated RF) channels to the CPE. The IP packets are typically transmitted on RF channels (e.g., DOCSIS QAMs) that are different that the RF channels used for the broadcast video and audio programming, although this is not a requirement. The CPE 106 are each configured to monitor the particular assigned RF channel (such as via a port or socket ID/address, or other such mechanism) for IP packets intended for the subscriber premises/address that they serve.
While the foregoing network architectures described herein can (and in fact do) carry packetized content (e.g., IP over MPEG for high-speed data or Internet TV, MPEG2 packet content over QAM for MPTS, etc.), they are often not optimized for such delivery. Hence, in accordance with another embodiment of the disclosure, a “packet optimized” delivery network is used for carriage of the packet content (e.g., IPTV content).
Selectable Data Network Access Architecture—
Moreover, while the architecture 200 of
The architecture of
In the illustrated embodiment, the national data center 208 includes load balancers 216, remote authentication dial-in user service (RADIUS) servers 218, a lightweight directory access protocol (LDAP) 220, a broadband provisioning system (BPS) 222, a cable modem termination system (CMTS) 224, a dynamic host configuration protocol (DHCP) 226, and a trivial file transfer protocol (TFTP)/application server 228. It will be appreciated that in alternate embodiments, the national data center 208 may include fewer or additional protocols, servers, directories, and/or other components, the configuration of
Further, in the illustrated embodiment, the service platform 214 includes a mail exchange server (EES) 230, a personalized server (PS) 232, a streaming/content server 234, a subscriber database 236, an application server 238, a commercial server 240, and a thin client update server 242. Similarly, in alternate embodiments, the service platform 214 may include fewer or additional servers, data bases, and/or other components.
As shown in
The WAPs 246 are in the exemplary embodiment devices that allow the end-user devices 202 to connect to a wired or other network, such as the network 204 shown, using wireless technology (e.g., Wi-Fi or other limited-range wireless multi-user access technology). In some examples, the WAPs are each configured to provide a wireless local area network (WLAN) accessible to user devices within a physical range of the WAP, transmit a beacon frame to announce the presence of the wireless LAN (for use by the wireless-enabled end-user devices within range), and receive probe requests from these end-user devices in order to establish communications between a given WAP and end-user device(s). The range of the WAP can vary depending on placement, obstructions, type of antenna, weather, operating frequency, etc., but is typically limited to a range within approximately a 100 ft. radius of the WAP. Accordingly, end-user devices that are within range of the WAP can access the network via the corresponding provided WLAN, while end-user devices outside of the range of the WAP are unable to access the associated WLAN, and thus are unable to access the network. Thus, in the example depicted in
As stated above, each of the WAP controllers 244 is in signal communication with at least one of the WAPs 246. Additionally, as indicated in
In the illustrated implementation, the WAP controllers 244 are each in direct communication with both of the switches 248 (248a, 248b) so as to permit, inter alia, cross-connect between them if desired. The switches 248 are network switches configured to connect the various wireless LANs (i.e., wireless LANs generated by WAPs 246 and WAP controllers 244) into a combined wired LAN (i.e., a larger LAN), such as for example for serving a specific location/venue, and allow communication between the WAP controllers 244 and the policy servers 250 and the NAT routers 252.
The above described components located within the regional data center 206 (e.g., WAPs 246, WAP controllers 244, NATs 252, policy servers 250, etc.) are in the illustrated embodiment in communication with one or more authentication, authorization, and accounting (AAA) servers (not shown) at the national data center 208 (e.g., a subsection of the RADIUS servers). The AAA servers are configured to provide, inter alia, authorization services and facilitate tracking and/or control of files at the TCP/IP level. In general, the AAA servers accept access control requests, process the requests against a formal set of statements that define allocation of the network 204 resources, and return access control responses. Network resources can be allocated based on client authorization privileges (or so-called “entitlements”, such as via an entitlement management message (EMM); see also e.g., the exemplary methods and apparatus described in co-owned U.S. patent application Ser. No. 12/536,724, filed on Aug. 6, 2009 and entitled “System And Method For Managing Entitlements To Data Over A Network”, now U.S. Pat. No. 8,341,242, which is incorporated herein by reference in its entirety, which may be used consistent with the present disclosure for such functions), availability of network resources, and/or any other factors the network manager may specify when composing the policy. Further, authentication, authorization, and accounting provide a framework for intelligently controlling access to computer resources, enforcing policies, auditing usage, and providing the information necessary to bill for services.
Authentication processes in the illustrated implementation are configured to identify a user, typically by having the user enter a valid user name and valid password before access is granted. The process of authentication may be based on each user having a unique set of criteria or credentials (e.g., unique user name and password, challenge questions, entry of biometric data, entry of “human” verification data such as “Captcha” data, etc.) for gaining access to the network 204 at the TCIP/IP level. Specifically, the AAA servers may compare a user's authentication credentials with user credentials stored in a database. If the authentication credentials match the stored credentials, the user may then be granted access to the network 204. If the credentials are at variance, authentication fails and network access may be denied.
Following authentication, the AAA servers are configured to grant a user authorization for certain features, functions, and/or doing certain tasks. After logging into a system, for instance, the user may try to issue commands. The authorization process determines whether the user has the authority to issue such commands. Simply put, authorization is the process of enforcing policies: determining what types or qualities of activities, resources, or services a user is permitted. Usually, authorization occurs within the context of authentication. Once a user is authenticated, they may be authorized for different types of access or activity. A given user may also have different types, sets, or levels of authorization, depending on any number of aspects. For instance, a given “press” user (described subsequently herein) may only have press-related credentials (and hence access to one or more of the enhanced features described herein) within certain time windows or in certain circumstances, such as when the user is attending an event at a venue in their official capacity as a Press representative. In one variant, the AAA (or other entity) receives data from a third-party server or proxy relating to authorizations to be granted to an individual at certain times/event (e.g., “John Smith is authorized for Press access at Concert A on date xx-yy-zzzz, but not Concert B on date aa-bb-cccc” or the like).
The AAA servers may be further configured for accounting, which measures the resources a user consumes during access. This may include the amount of system time or the amount of data a user has sent and/or received during a session, somewhat akin to cellular data plans based on so many consumed or available Gb of data. Accounting may be carried out by logging of session statistics and usage information, and is used for, inter alia, authorization control, billing, trend analysis, resource utilization, and capacity planning activities. It will be appreciated that in other examples, one or more AAA servers can be located at the regional data center, and may be linked to a third-party or proxy server, such as that of an event management entity.
After a user is granted access to the network 204 via the AAA servers, a unique ID of the user device (e.g., a MAC address) is provided to the policy servers 250 in communication with the WAP controllers 244. The policy servers 250 (i.e. WAP policy servers) are, in the exemplary implementation, substantially security components within regional data center 206 (i.e., local policy servers) for regulating access to the wired LAN and enforcing selectable degree of data network access policies for the WAP controllers. Specifically, policy servers 250 are configured to, in combination with WAP controllers 244, implement the “selectable” degree of data network access protocols (such as by implementing the method 600 shown in
The NAT routers 252 are configured to connect the wired LAN of the location/venue to external networks, such as the network 204, and are in direct communication with the external network. Though not specifically shown, each of the NAT routers 252 may each include a processing apparatus, memory, and/or a storage apparatus with computerized logic such as e.g., computer programs, which may include NAT tables to perform translation/switching capabilities between a source (e.g., one or end the end-user devices 202) and another device.
The NAT routers 252 may for example map multiple private IP addresses (e.g., IP addresses for each of WAPs 246 provided by a DHCP server residing in a CMTS environment such as that of
In one exemplary implementation of the present disclosure, as data passes from the LAN to the external network (i.e., network 204), the source address in each data packet may be translated from a private address to the public address via the NAT routers. Further, the NAT routers may track basic data about each active connection (particularly the destination address and port). When a reply returns to the NAT routers, they may use the connection tracking data stored during the outbound phase to determine the private address on the internal network to which to forward the reply. Furthermore, the NAT routers 252 may be configured to establish Transmission Control Protocol (TCP)/IP connections. These connections may utilize, e.g., Real Time Protocol (RTP) or Real Time Streaming Protocol (RTSP) via User Datagram Protocol (UDP).
Exemplary WAP Controller and WAP Policy Server—
Referring now to
The processing apparatus 302 is configured to execute at least one computer program stored in memory 304 (e.g., non-transitory computer readable storage media). The computer program may include a plurality of computer readable instructions for operating the WAP controller 244, such as e.g., using the method shown in
As shown in
In one embodiment, the policy server 250 comprises a processing apparatus 310 (i.e., a processor), memory 312 (i.e., a storage apparatus), and is in communication with the backbone of the CDN 204, switches 248, policy servers 250, the NAT routers 252, wireless access points (WAPs) 246, and/or the end-user device 202, via one or more interfaces 314.
In one embodiment, the processing apparatus 310 of the policy server is configured to execute at least one computer program stored in memory 312 (e.g., non-transitory computer readable storage media). The computer program may e.g., implement the exemplary methods for operating the WAP controller 244 and/or the policy server 250 as shown in
The operation of the WAP controller(s) 244 and the policy server(s) 250 are described elsewhere herein, such as, inter alia, in reference to methods 400, 500, and 600 shown in
Methods—
Referring now to
One exemplary method 400 for associating an end-user device with a WAP is shown in
At step 404, an end-user device receives and/or detects the beacon frame, and in turn sends a probe request to the WAP, requesting information from the specific access point. In response to receipt of the probe request, at step 406, the WAP sends a probe response to the requesting end-user device. The end-user device then sends an authentication request to the WAP at step 408, and the authentication data (e.g., a local WAP password such as a guest password) from the user device is verified by the WAP at step 410.
In response to receipt of an unacceptable authentication request, at step 412, the WAP denies access to the wireless LAN for end-user device. Alternatively, if the WAP receives an acceptable authentication request, at step 414, the WAP sends an approved authentication response to the requesting end-user device.
At step 416, the end-user device then sends an association response to the WAP. In response to receipt of the association request, at step 418, the WAP sends an association response to the requesting end-user device in order to complete association of the end-user device and the WAP.
It will be appreciated that method 400 is just one example method for association of an end-user device and a WAP, and other methods having fewer or additional steps can alternatively be included.
Moreover, different types of authentication or “credentialing” can be utilized consistent with the methodology of
It will also be recognized that access to one or more functions can be gated or conditional on various information. For example, in one implementation, a user attempting to associate with a given WAP will be first challenged to provide credentials to authenticate to the AAA server (e.g., user ID, password, biometric data such as a thumb print on a smartphone capacitive touch screen, facial recognition, etc.). Once the identity of the user is verified, for example as being a valid MSO subscriber, the MAC address or other data indicative of the particular user device is passed upstream as described elsewhere herein in order to verify that the particular user device is in fact associated with the user, and in fact is authorized for the enhanced policy implementation by the WAP/WAP controller.
In another implementation, the MAC address is utilized by itself to authenticate the user; i.e., the presumption being that the user is in fact in possession of their own device, and the unique device MAC address (presumably registered in the MSO authentication database) need only be validated as being associated with an MSO subscriber who has enhanced policy privileges.
In another implementation, the MAC address and information about the associated WAP are used by the MSO to authenticate the user (e.g., as an MSO subscriber validate) and to validate their access to the enhanced wireless access policy at the particular WAP—this is in contrast to a “blanket” authorization as described elsewhere herein (i.e., authentication as an MSO customer with privilege enables immediate access to the enhanced wireless services, wherever they may be offered). For instance, the MSO AAA server may be consulted for (i) the authentication, (ii) to verify that the MAC address of the user's device is registered with the user (MSO subscriber), and (iii) that the MAC address or location data associated with the WAP which the user device is attempting to access is in fact authorized for that user (e.g., a particular press member is authorized by U.S. Secret Service for entry into the Press Box at a Presidential debate, and attendant access to a WAP covering that Press Box).
In yet another implementation, the MAC address can be used by itself in authenticating to a third party authentication server (whether directly or via the MSO CDN). For instance, at the aforementioned Presidential debate, press members may need to be cleared by U.S. Secret Service, including their media or personal electronic devices being validated/identified by the MAC address in a database maintained by the Secret Service. Hence, when the user associates with a WAP in the “Press Box”, the MAC address is used by the WAP/WAP controller to access the Secret Service database to verify that the particular device is authorized in that area. The MSO database may also be used in tandem to verify that the user has privilege for the enhanced wireless access policies provided by the WAP in the Press Box, separate from the user's right to be in the Press Box.
Referring now to
After association of the end-user device and the WAP is established, at step 504 the WAP is then synchronized and in communication with the WAP controller, this being accomplished using well known techniques such as those specified in the Wi-Fi Standards.
Next, at step 506, the WAP controller and WAP policy server perform accounting and registration for the requesting end-user device (e.g., the user's smartphone, tablet, Wi-Fi enabled camera, media device, etc.), and communicate the registration to the AAA server. Accounting and registration information communicated to the AAA server may include for example an authentication of the service provider and/or user account. The AAA server may perform any of the previously described authentication, authorization, and/or accounting procedures in order to verify access to the network for the requesting end-user device at step 508.
In response to receipt of unacceptable accounting and registration information, at step 510, the AAA server denies access to the wired LAN for the end-user device. Alternatively, in response to receipt of acceptable accounting and registration information, at step 512, the AAA server grants access for the end-user device and an accounting response such as a message rendered according to a given communications protocol (e.g., a lightweight communications protocol implemented specifically for this purpose, or alternatively a generalized messaging protocol) from the AAA server is tagged with identifying information (e.g., media access control (MAC) address) for the end-user device and/or the associated WAP. At step 514, the WAP controller receives the accounting response from the AAA server.
In response to verification by the AAA server and receipt of the accounting response message, the WAP policy server and/or the WAP controller determines and assigns a “user status” to the requesting end-user device, and associates the assigned user status with the unique identifier of the end-user device (e.g., “MAC” address such as MAC-48, EUI-48, EUI-64, or other format) at step 516. It will be appreciated that the term “user status” as used in the present context is intended broadly, and may include any number of different implementations which communicate information to entities elsewhere in the network (e.g., the WAPs/WAP controllers at the network edge) indicative of or useful in provisioning and providing the desired services or functions to the requesting end-user device(s). For example, in one such implementation, one or more data elements or codes are used to indicate to the recipient network entity (e.g., WAP/controller), based on entry into a locally-maintained lookup table of policies, which policy or policies to apply to communications or service requests of the particular end-user device (based on MAC). As a simple illustration, a given code or data value may be indicative of a “VIP Press” user (i.e., the end-user device thereof), which should be granted “head-of-the-line” on bandwidth requests, additional bandwidth under an extant bandwidth allocation scheme, implementation of a asymmetric bandwidth policy (e.g., same downstream, but enhanced upstream), certain QoS rules, and so forth.
As described elsewhere herein, such status may also be associated with or indicative of a location of the requesting user device, such as in the “press box” at a given event, such that the user, by virtue of their location, is granted additional or enhanced functionality or privileges.
In another approach, the WAP/controller may utilize the received “user status” (e.g., code or data structure) to access one of the policy servers (
The access request of
As shown in
If one or more of the decisions made at steps 604-610 is true (i.e., YES), then the WAP controller/policy server may assign a first user status granting and/or being associated with a higher permissible bandwidth consumption to the end-user device identifying information at step 612. Alternatively, if one or more of the decisions made at steps 604-610 is false (i.e., NO), then the WAP controller/policy server may assign a second user status granting and/or being associated with a lower permissible bandwidth consumption to the end-user device identifying information at step 614. It will be appreciated that steps 604-610 are substantially a formal set of statements that define allocation of the LAN's resources. It will be further appreciated that in alternate embodiments the set of formal statements can include more or fewer control statements and/or the control statements can be alternately employed as instructed by a network administrator. It will be still further appreciated that in alternate embodiments the formal statements can include additional user status assignments for varying degrees of permissible bandwidth consumption (e.g., a third user status associated with a medial permissible bandwidth consumption, etc.).
Returning again to
In another example methodology, the WAP controller 244 (i.e., controller apparatus) the set of formal statements of the WAP policy server in its memory 304. Thus, the memory 304 may include storing at least a first user status associated with a first permissible bandwidth consumption and a second user status associated with a second permissible bandwidth consumption. The processor 302 of the WAP controller 244 is configured to execute a computer program (including non-transitory computer readable instructions) that cause the WAP controller 244 to: receive a request for connection from an end-user device 202 and determine if the requesting end-user device is associated with the first user status (e.g., located in a higher priory region, associated with a higher access pass, of a higher bandwidth consumption device class, and/or uses a higher bandwidth consumption application, etc.) or the second user status (e.g., located in a lower priory region, associated with a lower access pass, of a lower bandwidth consumption device class, and/or uses a lower bandwidth consumption application, etc.).
If the WAP controller 244 determines that the end-user device 202 meets criteria for the first user status, the end-user device is assigned the first user status associated with the first permissible bandwidth consumption (i.e., a higher permissible bandwidth consumption) and is provided access to the network 204 based on the first permissible bandwidth consumption. Thus, the end-user device 202, in this instance, is a higher priority user and has greater access to the network 204 (e.g., access including low latency, high throughput, and/or isochronous data transmission, etc.) than other users.
Alternatively, if the WAP 244 determines that the end-user device 202 meets criteria for the second user status, the end-user device is assigned with second user status associated with the second permissible bandwidth consumption (i.e., a lower permissible bandwidth consumption) and is provided access to the network 204 based on the second permissible bandwidth consumption. Thus, the end-user device 202, in this instance, is a lower priority user and has less access to the network 204 (e.g., access including high latency, low throughput, and/or asynchronous data transmission, etc.) than other higher priority users. It will be appreciated that in examples including a third user status associated with a medial permissible bandwidth consumption, a similar method may be carried out to determine if an end-user device meets criteria for the third user status and provide network access to the end-user device based on the medial permissible bandwidth consumption.
For purposes of further illustration, specific use cases for the “selectable” data network access systems and methods are now described in reference to the venues 800 and 900 shown in
Example Location/Venue Uses Cases—
In one example, when requesting network access, the user devices 202a may be associated with a higher access pass and/or a location (i.e., a higher priority region) of the venue, such as may be determined by a unique identifier (e.g., MAC address) or other data of the particular WAP 246a with which the user device associates. Thus, a first user status may be assigned to the user devices 202a in order to provide network access according to the first policy (e.g., higher permissible bandwidth consumption). Further, the type and/or classification of the end-user device can be detected by the system 200, and the specific end-user device 202a can be assigned a greater permissible bandwidth (i.e., greater than the higher permissible bandwidth associated with the first user status). For example, an 802.11g-compliant device may have less upstream bandwidth capability by virtue of e.g., its air interface configuration, such as selected modulation/coding scheme, use or absence of diversity antennae, etc., as compared to say another user's 802.11AC-compliant device. By correlating the MAC address of the particular user device, the network 200 can detect situations where additional allocations of e.g., upstream bandwidth will be useless to the end user based on the physical limitations of that user's device. Hence, in one variant, a given MSO subscriber or user registers their end-user devices on an individual basis, such registration including provision (or e.g., automated discovery of) the hardware/firmware/software configuration of the given device along with it MAC address. Accordingly, the AAA or other MSO network entity can, upon receiving a request initiated from the end-user device, not only associate the user status (e.g., available bandwidth to be allocated) with that MAC, but also apply one or more logical policies thereto, such as allocation of bandwidth by the WAP/WAP controller only to the “physical” limits of the specific user device. In this fashion, no WAP/network bandwidth is “stranded” within individual subscriber requests for service, wherein such requests can never feasibly use all of the bandwidth allocated to them.
Additionally or alternatively, the type and/or classification of the end-user device application can be detected by the system 200, and the specific end-user device 202a can be assigned a given policy based thereon (e.g., greater permissible bandwidth). For example, two identical pieces of user equipment might run different application layer software or processes (e.g., FTP, HTTP, etc.), utilize different peripherals or media devices, etc. such that one type of application requires greater bandwidth resources than the other. Consider for example a streaming HD or 4K quality video encoding application used by a press member to generate and upload video content (for e.g., a news story) would be allocated more bandwidth or other resources than an audio-only press member performing an audio interview for a radio station, regardless of the fact that the hardware platforms that the different users were utilizing are identical. The present disclosure also contemplates signaling to the end user device (such as initiated at the WAP controller) to modify or adjust its upload behavior, such as e.g., “clamping” bit rate on its codecs to a constant bit rate, so as to obviate allocating bandwidth for (comparatively) limited instances where the codec demands a high “peak” bit rate, but otherwise remains well below that peak.
Further, when requesting network access, the user devices 202c may be associated with a lower access pass and/or a location (i.e., a lower priority region) of the user devices, which may be determined by a unique identifier (e.g., MAC address) of the WAPs 246c. Thus, a second user status may be assigned to the user devices 202c in order to provide network access according to a second permissible bandwidth consumption or other feature. Further, as noted above, the type and/or classification of the end-user device can be detected by the system 200, and the specific end-user device 202c can be assigned a greater permissible bandwidth (i.e., greater than the lower permissible bandwidth associated with the second user status). Additionally or alternatively, the type and/or classification of the end-user device application can be detected by the system 200 and the specific end-user device 202c can be allocated resources based thereon.
Hence, as noted in the examples above, there can be several sub-classifications within any given tier of service if desired, and moreover, several different combinations of bases on which the user access privileges are determined (e.g., user device MAC (and user authentication) only, user device MAC (and authentication) and location within the venue, location (and user authentication) only, and so forth).
In one example, when requesting network access, the user devices 202a may be associated with a higher access pass and/or a location (i.e., a higher priority region) which may be determined by a unique identifier (e.g., MAC address) of the WAPs 246a. Thus, a first user status may be assigned to the user devices 202a in order to provide network access according to the first permissible bandwidth consumption (such as a higher permissible bandwidth consumption). Further, as noted above, the type and/or classification of the end-user device can be detected by the system 200 and the specific end-user device 202a can be assigned a greater permissible bandwidth (such as a value greater than the higher permissible bandwidth associated with the first user status). Additionally or alternatively, the type and/or classification of the end-user device application can be detected by the system 200 and the specific end-user device 202a can be assigned a greater permissible bandwidth.
Further, when requesting network access, the user devices 202c may be associated with a lower access pass and/or a location (i.e., a lower priority region) of the user devices may be determined by a unique identifier (e.g., MAC address) of the WAPs 246c. Thus, a second user status may be assigned to the user devices 202c in order to provide network access according to the second permissible bandwidth consumption (i.e., a lower permissible bandwidth consumption). Further, the type and/or classification of the end-user device can be detected by the system 200 and the specific end-user device 202c can be assigned a greater permissible bandwidth (i.e., greater than the lower permissible bandwidth associated with the second user status). Additionally or alternatively, the type and/or classification of the end-user device application can be detected by the system 200 and the specific end-user device 202c can be assigned a greater permissible bandwidth (i.e., greater than the lower permissible bandwidth associated with the second user status).
Furthermore, when requesting network access, the user devices 202b may be associated with a medial access pass and/or a location (i.e., a medial priority region) of the user devices may be determined by a unique identifier (e.g., MAC address) of the WAPs 246b. Thus, a third user status may be assigned to the user devices 202b in order to provide network access according to a third permissible bandwidth consumption (i.e., a medial permissible bandwidth consumption). Further, as previously noted, the type and/or classification of the end-user device can be detected by the system 200 and the specific end-user device 202b can be assigned a greater permissible bandwidth (i.e., greater than the medial permissible bandwidth associated with the third user status). Additionally or alternatively, the type and/or classification of the end-user device application can be detected by the system 200 and the specific end-user device 202b can be assigned a greater permissible bandwidth (i.e., greater than the medial permissible bandwidth associated with the third user status).
It is recognized that in certain use cases, “conflicts” may arise, such as where a given user device is within wireless range of two or more WAPs simultaneously, while none-the-less being located in the prescribed area of interest (e.g., VIP seating or Press Box of
Accordingly, in one embodiment of the present disclosure, the “enhanced” WAP in the foregoing example is configured to advertise itself to prospective clients as “Enhanced”, “High Bandwidth”, “VIP” or the like, thereby tending to cause the user to select it over other possibilities.
In another embodiment, the user's device may be equipped with an “app” (e.g., for the appropriate operating system of the mobile or user device, such as Android or Microsoft O/S) authored or provided by the MSO for download onto the user's device such that it can intelligently screen WAPs within the venue. For instance, in one variant, the app can be configured to allow the user device to locate itself (e.g., via GPS receiver of the mobile device) and determine which of a plurality of WAPs within range of the mobile device at that location is appropriate for the user at that location (e.g., a “VIP” or press user located in a press box would only want to utilize the enhanced WAP, so as to e.g., enable high-bandwidth uploads). In another variant, the app is configured to display a graphical or other representation of the venue (such as may be provided automatically to the app from the WAP controller via a WAP, or by other means such as a link to a third-party mapping service such as a Google™ indoor maps API) such that the user can merely select their actual location by, e.g., touching their capacitive touch screen in an appropriate location, to “anchor” their mobile device and allow for determination of the best WAP option for the user, given their privileges for enhanced access (or lack thereof).
In yet another variant, the WAPs can be used to provide positioning location data such as via “time of flight” (TOF) or similar calculations based on reception of wireless signals from the user's device at two or more of the WAPs. In this fashion, the user's location can be used by the WAP controller to “map” the user into a known region for which enhanced service is to be provided (e.g., VIP or press box), and force the association with the enhanced-capability WAP, such as by disabling association by the particular user device (based on e.g., MAC address) with any other WAPs in the WLAN for at least a period of time. In this fashion, no app or other user device-side functions or processes need be employed; the WLAN automatically forces the user to the correct (i.e., highest bandwidth) WAP that is in range.
It will be recognized that while certain aspects of the disclosure are described in terms of a specific sequence of steps of a method, these descriptions are only illustrative of the broader methods of the disclosure, and may be modified as required by the particular application. Certain steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps permuted. All such variations are considered to be encompassed within the disclosure disclosed and claimed herein.
Moreover, it is appreciated that each of the foregoing set of steps or methods are such that they may be readily reduced to one or more computer programs by those of ordinary skill given the present disclosure.
Additionally, while the above detailed description has shown, described, and pointed out novel features of the disclosure as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the disclosure. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the disclosure. The scope of the disclosure should be determined with reference to the claims.
It will be further appreciated that while certain steps and aspects of the various methods and apparatus described herein may be performed by a human being, the disclosed aspects and individual methods and apparatus are generally computerized/computer-implemented. Computerized apparatus and methods are necessary to fully implement these aspects for any number of reasons including, without limitation, commercial viability, practicality, and even feasibility (i.e., certain steps/processes simply cannot be performed by a human being in any viable fashion).
The present application is a divisional of and claims priority to co-owned U.S. patent application Ser. No. 15/990,427 of the same title and filed on May 25, 2018, issuing as U.S. Pat. No. 10,560,772 on Feb. 11, 2020, which is a divisional of and claims priority to co-owned U.S. patent application Ser. No. 14/959,885 of the same title and filed on Dec. 4, 2015, issued as U.S. Pat. No. 9,986,578 on May 29, 2018, each of which is herein incorporated by reference in its entirety. Further, the present application is generally related to the subject matter of co-owned U.S. patent application Ser. No. 14/534,067 filed Nov. 5, 2014, entitled “METHODS AND APPARATUS FOR DETERMINING AN OPTIMIZED WIRELESS INTERFACE INSTALLATION CONFIGURATION,” issued as U.S. Pat. No. 9,935,833 on Apr. 3, 2018, and Ser. No. 14/959,948 filed on Dec. 4, 2015, entitled “APPARATUS AND METHOD FOR WIRELESS NETWORK EXTENSIBILITY AND ENHANCEMENT,” issued as U.S. Pat. No. 10,327,187 on Jun. 18, 2019, as well as the subject matter of co-pending and co-owned U.S. patent application Ser. No. 14/302,313 filed Jun. 11, 2014 and entitled “METHODS AND APPARATUS FOR ACCESS POINT LOCATION,” each of the foregoing incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5313454 | Bustini et al. | May 1994 | A |
5369707 | Follendore | Nov 1994 | A |
5528284 | Iwami et al. | Jun 1996 | A |
5577209 | Boyle et al. | Nov 1996 | A |
5708961 | Hylton et al. | Jan 1998 | A |
5715403 | Stefik | Feb 1998 | A |
5774170 | Hite et al. | Jun 1998 | A |
5787172 | Arnold | Jul 1998 | A |
5818438 | Howe et al. | Oct 1998 | A |
5828832 | Holden et al. | Oct 1998 | A |
5862312 | Mann et al. | Jan 1999 | A |
5870474 | Wasilewski et al. | Feb 1999 | A |
5878324 | Borth et al. | Mar 1999 | A |
5897635 | Torres et al. | Apr 1999 | A |
5926205 | Krause et al. | Jul 1999 | A |
5935206 | Dixon et al. | Aug 1999 | A |
5982412 | Nulty | Nov 1999 | A |
6002393 | Hite et al. | Dec 1999 | A |
6009103 | Woundy | Dec 1999 | A |
6092178 | Jindal et al. | Jul 2000 | A |
6128316 | Takeda et al. | Oct 2000 | A |
6134532 | Lazarus et al. | Oct 2000 | A |
6148400 | Arnold | Nov 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6157719 | Wasilewski et al. | Dec 2000 | A |
6167432 | Jiang | Dec 2000 | A |
6167521 | Smith et al. | Dec 2000 | A |
6169728 | Perreault et al. | Jan 2001 | B1 |
6181697 | Nurenberg et al. | Jan 2001 | B1 |
6211901 | Imajima et al. | Apr 2001 | B1 |
6212636 | Boyle et al. | Apr 2001 | B1 |
6219710 | Gray et al. | Apr 2001 | B1 |
6219840 | Corrigan et al. | Apr 2001 | B1 |
6233341 | Riggins | May 2001 | B1 |
6233687 | White | May 2001 | B1 |
6240553 | Son et al. | May 2001 | B1 |
6249680 | Wax et al. | Jun 2001 | B1 |
6256393 | Safadi et al. | Jul 2001 | B1 |
6259701 | Shur et al. | Jul 2001 | B1 |
6266421 | Domyo et al. | Jul 2001 | B1 |
6330609 | Garofalakis et al. | Dec 2001 | B1 |
6353626 | Sunay et al. | Mar 2002 | B1 |
6378130 | Adams | Apr 2002 | B1 |
6434141 | Oz et al. | Aug 2002 | B1 |
6456716 | Arnold | Sep 2002 | B1 |
6463585 | Hendricks et al. | Oct 2002 | B1 |
6498783 | Lin | Dec 2002 | B1 |
6519062 | Yoo | Feb 2003 | B1 |
6523696 | Saito et al. | Feb 2003 | B1 |
6590865 | Ibaraki et al. | Jul 2003 | B1 |
6601171 | Carter et al. | Jul 2003 | B1 |
6640145 | Hoffberg et al. | Oct 2003 | B2 |
6657991 | Akgun et al. | Dec 2003 | B1 |
6687735 | Logston et al. | Feb 2004 | B1 |
6694145 | Riikonen et al. | Feb 2004 | B2 |
6711148 | Hills | Mar 2004 | B1 |
6718551 | Swix et al. | Apr 2004 | B1 |
6738978 | Hendricks et al. | May 2004 | B1 |
6742116 | Matsui et al. | May 2004 | B1 |
6760768 | Holden et al. | Jul 2004 | B2 |
6763391 | Ludtke | Jul 2004 | B1 |
6782550 | Cao | Aug 2004 | B1 |
6785810 | Lirov et al. | Aug 2004 | B1 |
6788676 | Partanen et al. | Sep 2004 | B2 |
6799047 | Bahl et al. | Sep 2004 | B1 |
6807573 | Saito et al. | Oct 2004 | B2 |
6813505 | Walley et al. | Nov 2004 | B2 |
6842783 | Boivie et al. | Jan 2005 | B1 |
6859535 | Tatebayashi et al. | Feb 2005 | B1 |
6891841 | Leatherbury et al. | May 2005 | B2 |
6898708 | Hori et al. | May 2005 | B2 |
6910064 | Astarabadi et al. | Jun 2005 | B1 |
6925257 | Yoo | Aug 2005 | B2 |
6944150 | McConnell et al. | Sep 2005 | B1 |
6948183 | Peterka | Sep 2005 | B1 |
6954632 | Kobayashi | Oct 2005 | B2 |
6957261 | Lortz | Oct 2005 | B2 |
6957328 | Goodman et al. | Oct 2005 | B2 |
6973576 | Giobbi | Dec 2005 | B2 |
6975730 | Kuroiwa et al. | Dec 2005 | B1 |
6985355 | Allirot | Jan 2006 | B2 |
6986156 | Rodriguez et al. | Jan 2006 | B1 |
6996544 | Sellars et al. | Feb 2006 | B2 |
7006881 | Hoffberg et al. | Feb 2006 | B1 |
7007170 | Morten | Feb 2006 | B2 |
7009972 | Maher et al. | Mar 2006 | B2 |
7016963 | Judd et al. | Mar 2006 | B1 |
7017189 | Demello et al. | Mar 2006 | B1 |
7027460 | Iyer et al. | Apr 2006 | B2 |
7039048 | Monta et al. | May 2006 | B1 |
7054443 | Jakubowski et al. | May 2006 | B1 |
7054902 | Toporek et al. | May 2006 | B2 |
7055040 | Klemba et al. | May 2006 | B2 |
7065216 | Benaloh et al. | Jun 2006 | B1 |
7068639 | Varma et al. | Jun 2006 | B1 |
7069449 | Weaver et al. | Jun 2006 | B2 |
7069573 | Brooks et al. | Jun 2006 | B1 |
7072950 | Toft | Jul 2006 | B2 |
7073199 | Raley | Jul 2006 | B1 |
7075945 | Arsenault et al. | Jul 2006 | B2 |
7086077 | Giammaressi | Aug 2006 | B2 |
7092397 | Chandran et al. | Aug 2006 | B1 |
7099308 | Merrill et al. | Aug 2006 | B2 |
7103181 | Ananth | Sep 2006 | B2 |
7106382 | Shiotsu | Sep 2006 | B2 |
7107326 | Fijolek et al. | Sep 2006 | B1 |
7143431 | Eager et al. | Nov 2006 | B1 |
7149772 | Kalavade | Dec 2006 | B1 |
7154912 | Chong et al. | Dec 2006 | B2 |
7165268 | Moore et al. | Jan 2007 | B1 |
7174126 | McElhatten et al. | Feb 2007 | B2 |
7174127 | Otten et al. | Feb 2007 | B2 |
7174371 | Elo et al. | Feb 2007 | B2 |
7174385 | Li | Feb 2007 | B2 |
7194756 | Addington et al. | Mar 2007 | B2 |
7209458 | Ahvonen et al. | Apr 2007 | B2 |
7225333 | Peinado et al. | May 2007 | B2 |
7228427 | Fransdonk | Jun 2007 | B2 |
7228555 | Schlack | Jun 2007 | B2 |
7237112 | Ishiguro et al. | Jun 2007 | B1 |
7242960 | Van et al. | Jul 2007 | B2 |
7248694 | Husemann et al. | Jul 2007 | B2 |
7254608 | Yeager et al. | Aug 2007 | B2 |
7257227 | Chen et al. | Aug 2007 | B2 |
7266726 | Ladd et al. | Sep 2007 | B1 |
7289534 | Bailey et al. | Oct 2007 | B1 |
7299502 | Schmeling et al. | Nov 2007 | B2 |
7305460 | Park | Dec 2007 | B2 |
7308415 | Kimbrel et al. | Dec 2007 | B2 |
7313611 | Jacobs et al. | Dec 2007 | B1 |
7324531 | Cho | Jan 2008 | B2 |
7325073 | Shao et al. | Jan 2008 | B2 |
7330483 | Peters et al. | Feb 2008 | B1 |
7330967 | Pujare et al. | Feb 2008 | B1 |
7334044 | Allen | Feb 2008 | B1 |
7340759 | Rodriguez | Mar 2008 | B1 |
7346688 | Allen et al. | Mar 2008 | B2 |
7353543 | Ohmori et al. | Apr 2008 | B2 |
7363371 | Kirby et al. | Apr 2008 | B2 |
7373506 | Asano et al. | May 2008 | B2 |
7376386 | Phillips et al. | May 2008 | B2 |
7376976 | Fierstein et al. | May 2008 | B2 |
7379494 | Raleigh et al. | May 2008 | B2 |
7409546 | Platt | Aug 2008 | B2 |
7453844 | Lee | Nov 2008 | B1 |
7457520 | Rosetti et al. | Nov 2008 | B2 |
7464179 | Hodges et al. | Dec 2008 | B2 |
7472280 | Giobbi | Dec 2008 | B2 |
7477621 | Loc | Jan 2009 | B1 |
7486869 | Alexander et al. | Feb 2009 | B2 |
7487363 | Alve et al. | Feb 2009 | B2 |
7506367 | Ishibashi | Mar 2009 | B1 |
7551574 | Peden et al. | Jun 2009 | B1 |
7567565 | La | Jul 2009 | B2 |
7577118 | Haumonte et al. | Aug 2009 | B2 |
7592912 | Hasek et al. | Sep 2009 | B2 |
7602820 | Helms et al. | Oct 2009 | B2 |
7673004 | Sherstinsky et al. | Mar 2010 | B1 |
7690020 | Lebar | Mar 2010 | B2 |
7693171 | Gould | Apr 2010 | B2 |
7707644 | Choi et al. | Apr 2010 | B2 |
7721314 | Sincaglia et al. | May 2010 | B2 |
7730321 | Gasparini et al. | Jun 2010 | B2 |
7742074 | Minatogawa | Jun 2010 | B2 |
7752617 | Blinick et al. | Jul 2010 | B2 |
7757101 | Nonaka et al. | Jul 2010 | B2 |
7783891 | Perlin et al. | Aug 2010 | B2 |
7809942 | Baran et al. | Oct 2010 | B2 |
7860507 | Kalika et al. | Dec 2010 | B2 |
7865440 | Jaquette | Jan 2011 | B2 |
7870599 | Pemmaraju | Jan 2011 | B2 |
7925592 | Issa et al. | Apr 2011 | B1 |
7930558 | Hori | Apr 2011 | B2 |
7930715 | Hendricks et al. | Apr 2011 | B2 |
7954131 | Cholas et al. | May 2011 | B2 |
7983418 | Oyama et al. | Jul 2011 | B2 |
8041785 | Mazur et al. | Oct 2011 | B2 |
8084792 | Lehmann et al. | Dec 2011 | B2 |
8166508 | Mitsuji et al. | Apr 2012 | B2 |
8181262 | Cooper et al. | May 2012 | B2 |
8234387 | Bradley et al. | Jul 2012 | B2 |
8280982 | La et al. | Oct 2012 | B2 |
8306634 | Nguyen et al. | Nov 2012 | B2 |
8332370 | Gattegno et al. | Dec 2012 | B2 |
8341242 | Dillon et al. | Dec 2012 | B2 |
8442265 | Bosworth et al. | May 2013 | B1 |
8583484 | Chalawsky et al. | Nov 2013 | B1 |
8713623 | Brooks | Apr 2014 | B2 |
8838863 | Henriksson | Sep 2014 | B2 |
8842615 | Kalbag et al. | Sep 2014 | B1 |
8862155 | Stern et al. | Oct 2014 | B2 |
8866911 | Sivertsen | Oct 2014 | B1 |
8898270 | Stack et al. | Nov 2014 | B1 |
9003436 | Tidwell et al. | Apr 2015 | B2 |
9027062 | Patel et al. | May 2015 | B2 |
9071859 | Lajoie | Jun 2015 | B2 |
9115997 | Poduri et al. | Aug 2015 | B2 |
9215423 | Kimble et al. | Dec 2015 | B2 |
9264861 | Arastafar | Feb 2016 | B1 |
9300919 | Cholas et al. | Mar 2016 | B2 |
9609617 | Arslan et al. | Mar 2017 | B2 |
9648466 | Astrom et al. | May 2017 | B2 |
9906838 | Cronk et al. | Feb 2018 | B2 |
9918345 | Gunasekara et al. | Mar 2018 | B2 |
20010004768 | Hodge et al. | Jun 2001 | A1 |
20010014946 | Ichinoi et al. | Aug 2001 | A1 |
20010019614 | Madoukh et al. | Sep 2001 | A1 |
20010029581 | Knauft | Oct 2001 | A1 |
20010030785 | Pangrac et al. | Oct 2001 | A1 |
20010053223 | Ishibashi et al. | Dec 2001 | A1 |
20010053226 | Akins et al. | Dec 2001 | A1 |
20010056541 | Matsuzaki et al. | Dec 2001 | A1 |
20020013772 | Peinado | Jan 2002 | A1 |
20020026575 | Wheeler et al. | Feb 2002 | A1 |
20020027883 | Belaiche | Mar 2002 | A1 |
20020032754 | Logston et al. | Mar 2002 | A1 |
20020049902 | Rhodes | Apr 2002 | A1 |
20020054589 | Ethridge et al. | May 2002 | A1 |
20020055978 | Joon-Bo et al. | May 2002 | A1 |
20020056125 | Hodge et al. | May 2002 | A1 |
20020059619 | Lebar | May 2002 | A1 |
20020062440 | Akama | May 2002 | A1 |
20020063621 | Tseng et al. | May 2002 | A1 |
20020066033 | Dobbins et al. | May 2002 | A1 |
20020077984 | Ireton | Jun 2002 | A1 |
20020087976 | Kaplan et al. | Jul 2002 | A1 |
20020123928 | Eldering et al. | Sep 2002 | A1 |
20020126654 | Preston et al. | Sep 2002 | A1 |
20020129358 | Buehl et al. | Sep 2002 | A1 |
20020129378 | Cloonan et al. | Sep 2002 | A1 |
20020147771 | Traversat et al. | Oct 2002 | A1 |
20020152299 | Traversat et al. | Oct 2002 | A1 |
20020152393 | Thoma et al. | Oct 2002 | A1 |
20020183985 | Hori et al. | Dec 2002 | A1 |
20020188744 | Mani | Dec 2002 | A1 |
20020188869 | Patrick | Dec 2002 | A1 |
20020199105 | Ishiguro et al. | Dec 2002 | A1 |
20030002862 | Rodriguez et al. | Jan 2003 | A1 |
20030003909 | Keronen et al. | Jan 2003 | A1 |
20030005453 | Rodriguez et al. | Jan 2003 | A1 |
20030007516 | Abramov et al. | Jan 2003 | A1 |
20030009681 | Harada et al. | Jan 2003 | A1 |
20030021421 | Yokota et al. | Jan 2003 | A1 |
20030041336 | Del et al. | Feb 2003 | A1 |
20030046560 | Inomata et al. | Mar 2003 | A1 |
20030046704 | Laksono et al. | Mar 2003 | A1 |
20030048380 | Tamura | Mar 2003 | A1 |
20030056217 | Brooks | Mar 2003 | A1 |
20030061619 | Giammaressi | Mar 2003 | A1 |
20030069965 | Ma et al. | Apr 2003 | A1 |
20030071117 | Meade | Apr 2003 | A1 |
20030074571 | Fujiwara et al. | Apr 2003 | A1 |
20030084003 | Pinkas et al. | May 2003 | A1 |
20030097340 | Okamoto et al. | May 2003 | A1 |
20030099212 | Anjum et al. | May 2003 | A1 |
20030114162 | Chheda et al. | Jun 2003 | A1 |
20030115267 | Hinton et al. | Jun 2003 | A1 |
20030139980 | Hamilton | Jul 2003 | A1 |
20030140227 | Asano et al. | Jul 2003 | A1 |
20030163697 | Pabla et al. | Aug 2003 | A1 |
20030163739 | Armington et al. | Aug 2003 | A1 |
20030165241 | Fransdonk | Sep 2003 | A1 |
20030166401 | Combes et al. | Sep 2003 | A1 |
20030174838 | Bremer | Sep 2003 | A1 |
20030179773 | Mocek et al. | Sep 2003 | A1 |
20030187799 | Sellars et al. | Oct 2003 | A1 |
20030205763 | Park et al. | Nov 2003 | A1 |
20030208763 | McElhatten et al. | Nov 2003 | A1 |
20030208767 | Williamson et al. | Nov 2003 | A1 |
20030210710 | Odman | Nov 2003 | A1 |
20030217137 | Roese et al. | Nov 2003 | A1 |
20030217365 | Caputo | Nov 2003 | A1 |
20040019691 | Daymond et al. | Jan 2004 | A1 |
20040024688 | Bl et al. | Feb 2004 | A1 |
20040034877 | Nogues | Feb 2004 | A1 |
20040045032 | Cummings et al. | Mar 2004 | A1 |
20040045035 | Cummings et al. | Mar 2004 | A1 |
20040045037 | Cummings et al. | Mar 2004 | A1 |
20040078602 | Rothbarth et al. | Apr 2004 | A1 |
20040088558 | Candelore | May 2004 | A1 |
20040106403 | Mori et al. | Jun 2004 | A1 |
20040109569 | Ellison et al. | Jun 2004 | A1 |
20040117836 | Karaoguz et al. | Jun 2004 | A1 |
20040123129 | Ginter et al. | Jun 2004 | A1 |
20040128499 | Peterka et al. | Jul 2004 | A1 |
20040133907 | Rodriguez et al. | Jul 2004 | A1 |
20040133923 | Watson et al. | Jul 2004 | A1 |
20040137918 | Varonen et al. | Jul 2004 | A1 |
20040146006 | Jackson | Jul 2004 | A1 |
20040181800 | Rakib et al. | Sep 2004 | A1 |
20040187159 | Gaydos et al. | Sep 2004 | A1 |
20040193609 | Phan et al. | Sep 2004 | A1 |
20040193680 | Gibbs et al. | Sep 2004 | A1 |
20040224425 | Gjerde et al. | Nov 2004 | A1 |
20040240478 | Goren et al. | Dec 2004 | A1 |
20040250273 | Swix et al. | Dec 2004 | A1 |
20040260798 | Addington et al. | Dec 2004 | A1 |
20040261093 | Rebaud et al. | Dec 2004 | A1 |
20040268386 | Logan et al. | Dec 2004 | A1 |
20050005287 | Claussen | Jan 2005 | A1 |
20050007278 | Anson et al. | Jan 2005 | A1 |
20050015810 | Gould et al. | Jan 2005 | A1 |
20050021985 | Ono et al. | Jan 2005 | A1 |
20050022227 | Shen et al. | Jan 2005 | A1 |
20050034171 | Benya | Feb 2005 | A1 |
20050039205 | Riedl | Feb 2005 | A1 |
20050039212 | Baran et al. | Feb 2005 | A1 |
20050049886 | Grannan et al. | Mar 2005 | A1 |
20050055220 | Lee et al. | Mar 2005 | A1 |
20050058112 | Lahey et al. | Mar 2005 | A1 |
20050060742 | Riedl et al. | Mar 2005 | A1 |
20050060745 | Riedl et al. | Mar 2005 | A1 |
20050065888 | Benaloh | Mar 2005 | A1 |
20050086683 | Meyerson | Apr 2005 | A1 |
20050086691 | Dudkiewicz et al. | Apr 2005 | A1 |
20050091173 | Alve | Apr 2005 | A1 |
20050097006 | Nyako | May 2005 | A1 |
20050108763 | Baran et al. | May 2005 | A1 |
20050111844 | Compton et al. | May 2005 | A1 |
20050114686 | Ball et al. | May 2005 | A1 |
20050114900 | Ladd et al. | May 2005 | A1 |
20050125832 | Jost et al. | Jun 2005 | A1 |
20050138357 | Swenson et al. | Jun 2005 | A1 |
20050168323 | Lenoir et al. | Aug 2005 | A1 |
20050169468 | Fahrny et al. | Aug 2005 | A1 |
20050172127 | Hartung et al. | Aug 2005 | A1 |
20050176444 | Tanaka | Aug 2005 | A1 |
20050177740 | Athaide et al. | Aug 2005 | A1 |
20050177741 | Chen et al. | Aug 2005 | A1 |
20050177855 | Maynard et al. | Aug 2005 | A1 |
20050182931 | Robert et al. | Aug 2005 | A1 |
20050188210 | Perlin et al. | Aug 2005 | A1 |
20050190912 | Hopkins et al. | Sep 2005 | A1 |
20050195975 | Kawakita | Sep 2005 | A1 |
20050198693 | Choi et al. | Sep 2005 | A1 |
20050268107 | Harris et al. | Dec 2005 | A1 |
20050271133 | Waxman et al. | Dec 2005 | A1 |
20050273629 | Abrams et al. | Dec 2005 | A1 |
20050278259 | Gunaseelan et al. | Dec 2005 | A1 |
20050289618 | Hardin | Dec 2005 | A1 |
20050289619 | Melby | Dec 2005 | A1 |
20060002551 | Brown et al. | Jan 2006 | A1 |
20060004662 | Nadalin et al. | Jan 2006 | A1 |
20060008256 | Khedouri et al. | Jan 2006 | A1 |
20060020786 | Helms et al. | Jan 2006 | A1 |
20060020950 | Ladd et al. | Jan 2006 | A1 |
20060021004 | Moran et al. | Jan 2006 | A1 |
20060036750 | Ladd et al. | Feb 2006 | A1 |
20060041903 | Kahn et al. | Feb 2006 | A1 |
20060047801 | Haag et al. | Mar 2006 | A1 |
20060047957 | Helms et al. | Mar 2006 | A1 |
20060064583 | Birnbaum et al. | Mar 2006 | A1 |
20060095940 | Yearwood | May 2006 | A1 |
20060130099 | Rooyen | Jun 2006 | A1 |
20060130107 | Gonder et al. | Jun 2006 | A1 |
20060130113 | Carlucci et al. | Jun 2006 | A1 |
20060136964 | Diez et al. | Jun 2006 | A1 |
20060137005 | Park | Jun 2006 | A1 |
20060137015 | Fahrny et al. | Jun 2006 | A1 |
20060148362 | Bridges | Jul 2006 | A1 |
20060149850 | Bowman | Jul 2006 | A1 |
20060154674 | Landschaft et al. | Jul 2006 | A1 |
20060161635 | Lamkin et al. | Jul 2006 | A1 |
20060165090 | Kalliola et al. | Jul 2006 | A1 |
20060165197 | Morita et al. | Jul 2006 | A1 |
20060168219 | Ahluwalia et al. | Jul 2006 | A1 |
20060171390 | La | Aug 2006 | A1 |
20060171423 | Helms et al. | Aug 2006 | A1 |
20060179138 | Van et al. | Aug 2006 | A1 |
20060184972 | Rafey et al. | Aug 2006 | A1 |
20060187900 | Akbar | Aug 2006 | A1 |
20060200856 | Salowey et al. | Sep 2006 | A1 |
20060206712 | Dillaway et al. | Sep 2006 | A1 |
20060209799 | Gallagher et al. | Sep 2006 | A1 |
20060212400 | Kamperman et al. | Sep 2006 | A1 |
20060218604 | Riedl et al. | Sep 2006 | A1 |
20060218632 | Corley et al. | Sep 2006 | A1 |
20060236131 | Vauclair | Oct 2006 | A1 |
20060248553 | Mikkelson et al. | Nov 2006 | A1 |
20060248555 | Eldering | Nov 2006 | A1 |
20060253328 | Kohli et al. | Nov 2006 | A1 |
20060253864 | Easty | Nov 2006 | A1 |
20060259927 | Acharya et al. | Nov 2006 | A1 |
20060277569 | Smith | Dec 2006 | A1 |
20060291506 | Cain | Dec 2006 | A1 |
20070011335 | Burns et al. | Jan 2007 | A1 |
20070019645 | Menon | Jan 2007 | A1 |
20070022459 | Gaebel, Jr. et al. | Jan 2007 | A1 |
20070022469 | Cooper et al. | Jan 2007 | A1 |
20070033531 | Marsh | Feb 2007 | A1 |
20070046791 | Wang et al. | Mar 2007 | A1 |
20070049245 | Lipman | Mar 2007 | A1 |
20070067851 | Fernando et al. | Mar 2007 | A1 |
20070076728 | Rieger et al. | Apr 2007 | A1 |
20070079381 | Hartung et al. | Apr 2007 | A1 |
20070086383 | Watanabe et al. | Apr 2007 | A1 |
20070089127 | Flickinger et al. | Apr 2007 | A1 |
20070094691 | Gazdzinski | Apr 2007 | A1 |
20070098178 | Raikar | May 2007 | A1 |
20070113243 | Brey | May 2007 | A1 |
20070115900 | Liang et al. | May 2007 | A1 |
20070121678 | Brooks et al. | May 2007 | A1 |
20070124488 | Baum et al. | May 2007 | A1 |
20070157295 | Mangalore et al. | Jul 2007 | A1 |
20070174888 | Rubinstein | Jul 2007 | A1 |
20070192615 | Varghese et al. | Aug 2007 | A1 |
20070195727 | Kinder et al. | Aug 2007 | A1 |
20070204314 | Hasek et al. | Aug 2007 | A1 |
20070206799 | Wingert et al. | Sep 2007 | A1 |
20070209059 | Moore et al. | Sep 2007 | A1 |
20070217436 | Markley et al. | Sep 2007 | A1 |
20070219910 | Martinez | Sep 2007 | A1 |
20070220024 | Putterman et al. | Sep 2007 | A1 |
20070233857 | Cheng et al. | Oct 2007 | A1 |
20070237077 | Patwardhan | Oct 2007 | A1 |
20070250872 | Dua | Oct 2007 | A1 |
20070250880 | Hainline | Oct 2007 | A1 |
20070261116 | Prafullchandra et al. | Nov 2007 | A1 |
20070263818 | Sumioka | Nov 2007 | A1 |
20070266395 | Lee et al. | Nov 2007 | A1 |
20070276925 | La et al. | Nov 2007 | A1 |
20070276926 | Lajoie et al. | Nov 2007 | A1 |
20070294178 | Pinder et al. | Dec 2007 | A1 |
20080008321 | Gagnon et al. | Jan 2008 | A1 |
20080008371 | Woods et al. | Jan 2008 | A1 |
20080021836 | Lao | Jan 2008 | A1 |
20080022012 | Wang | Jan 2008 | A1 |
20080037493 | Morton | Feb 2008 | A1 |
20080046542 | Sano et al. | Feb 2008 | A1 |
20080059804 | Shah et al. | Mar 2008 | A1 |
20080066112 | Bailey et al. | Mar 2008 | A1 |
20080084887 | Proctor et al. | Apr 2008 | A1 |
20080091805 | Malaby et al. | Apr 2008 | A1 |
20080091807 | Strub et al. | Apr 2008 | A1 |
20080098212 | Helms et al. | Apr 2008 | A1 |
20080101460 | Rodriguez | May 2008 | A1 |
20080103976 | Read et al. | May 2008 | A1 |
20080103977 | Khosravy et al. | May 2008 | A1 |
20080104634 | Gajdos et al. | May 2008 | A1 |
20080109307 | Ullah | May 2008 | A1 |
20080112405 | Cholas et al. | May 2008 | A1 |
20080117920 | Tucker | May 2008 | A1 |
20080123862 | Rowley | May 2008 | A1 |
20080133551 | Wensley et al. | Jun 2008 | A1 |
20080134274 | Derrenberger et al. | Jun 2008 | A1 |
20080141317 | Radloff et al. | Jun 2008 | A1 |
20080141353 | Brown | Jun 2008 | A1 |
20080148362 | Gilder et al. | Jun 2008 | A1 |
20080155059 | Hardin et al. | Jun 2008 | A1 |
20080155614 | Cooper et al. | Jun 2008 | A1 |
20080162353 | Tom et al. | Jul 2008 | A1 |
20080165460 | Whitby-Strevens | Jul 2008 | A1 |
20080177998 | Apsangi et al. | Jul 2008 | A1 |
20080182591 | Krikorian | Jul 2008 | A1 |
20080183705 | Shivaji-Rao et al. | Jul 2008 | A1 |
20080188253 | Chong et al. | Aug 2008 | A1 |
20080192820 | Brooks et al. | Aug 2008 | A1 |
20080212945 | Khedouri et al. | Sep 2008 | A1 |
20080222684 | Mukraj et al. | Sep 2008 | A1 |
20080229354 | Morris et al. | Sep 2008 | A1 |
20080235746 | Peters et al. | Sep 2008 | A1 |
20080244667 | Osborne | Oct 2008 | A1 |
20080256510 | Auerbach | Oct 2008 | A1 |
20080270307 | Olson et al. | Oct 2008 | A1 |
20080273591 | Brooks et al. | Nov 2008 | A1 |
20080281979 | Keeler | Nov 2008 | A1 |
20080282299 | Koat et al. | Nov 2008 | A1 |
20080288618 | Vardi et al. | Nov 2008 | A1 |
20090007234 | Birger et al. | Jan 2009 | A1 |
20090013210 | McIntosh et al. | Jan 2009 | A1 |
20090025027 | Craner | Jan 2009 | A1 |
20090025075 | Chow et al. | Jan 2009 | A1 |
20090028182 | Brooks et al. | Jan 2009 | A1 |
20090031371 | Munsell et al. | Jan 2009 | A1 |
20090064251 | Savoor et al. | Mar 2009 | A1 |
20090077620 | Ravi et al. | Mar 2009 | A1 |
20090083813 | Dolce et al. | Mar 2009 | A1 |
20090094648 | Patel et al. | Apr 2009 | A1 |
20090098861 | Kalliola et al. | Apr 2009 | A1 |
20090100459 | Riedl et al. | Apr 2009 | A1 |
20090102983 | Malone et al. | Apr 2009 | A1 |
20090116587 | Kwasinski et al. | May 2009 | A1 |
20090119751 | Koga | May 2009 | A1 |
20090125374 | Deaton et al. | May 2009 | A1 |
20090151006 | Saeki et al. | Jun 2009 | A1 |
20090170479 | Jarenskog | Jul 2009 | A1 |
20090182815 | Czechowski, III et al. | Jul 2009 | A1 |
20090185576 | Kisel et al. | Jul 2009 | A1 |
20090187939 | Lajoie | Jul 2009 | A1 |
20090201917 | Maes et al. | Aug 2009 | A1 |
20090210899 | Lawrence-Apfelbaum et al. | Aug 2009 | A1 |
20090210912 | Cholas et al. | Aug 2009 | A1 |
20090225760 | Foti | Sep 2009 | A1 |
20090244290 | McKelvey et al. | Oct 2009 | A1 |
20090265750 | Jones et al. | Oct 2009 | A1 |
20090282241 | Prafullchandra et al. | Nov 2009 | A1 |
20090282449 | Lee | Nov 2009 | A1 |
20090292922 | Park | Nov 2009 | A1 |
20090293101 | Carter et al. | Nov 2009 | A1 |
20100014496 | Kalika et al. | Jan 2010 | A1 |
20100020683 | Gummalla | Jan 2010 | A1 |
20100030578 | Siddique et al. | Feb 2010 | A1 |
20100031299 | Harrang et al. | Feb 2010 | A1 |
20100042478 | Reisman | Feb 2010 | A1 |
20100070867 | Lemmers | Mar 2010 | A1 |
20100081416 | Cohen | Apr 2010 | A1 |
20100082983 | Shah et al. | Apr 2010 | A1 |
20100083329 | Joyce et al. | Apr 2010 | A1 |
20100088236 | Karabulut et al. | Apr 2010 | A1 |
20100088292 | Tirpak et al. | Apr 2010 | A1 |
20100106846 | Noldus et al. | Apr 2010 | A1 |
20100122288 | Minter et al. | May 2010 | A1 |
20100131973 | Dillon et al. | May 2010 | A1 |
20100138900 | Peterka et al. | Jun 2010 | A1 |
20100144340 | Sudak | Jun 2010 | A1 |
20100150027 | Atwal et al. | Jun 2010 | A1 |
20100151816 | Besehanic et al. | Jun 2010 | A1 |
20100159951 | Shkedi | Jun 2010 | A1 |
20100167743 | Palanki et al. | Jul 2010 | A1 |
20100169977 | Dasher et al. | Jul 2010 | A1 |
20100185855 | Margolus et al. | Jul 2010 | A1 |
20100198888 | Blomstedt et al. | Aug 2010 | A1 |
20100217837 | Ansari et al. | Aug 2010 | A1 |
20100232355 | Richeson | Sep 2010 | A1 |
20100251305 | Kimble et al. | Sep 2010 | A1 |
20100287609 | Gonzalez et al. | Nov 2010 | A1 |
20100303022 | Maas | Dec 2010 | A1 |
20100309051 | Moshfeghi | Dec 2010 | A1 |
20100312826 | Sarosi et al. | Dec 2010 | A1 |
20100313225 | Cholas et al. | Dec 2010 | A1 |
20100313226 | Cholas et al. | Dec 2010 | A1 |
20110015989 | Tidwell et al. | Jan 2011 | A1 |
20110034179 | David et al. | Feb 2011 | A1 |
20110071841 | Fomenko et al. | Mar 2011 | A1 |
20110078721 | Wang et al. | Mar 2011 | A1 |
20110093900 | Patel et al. | Apr 2011 | A1 |
20110098076 | Kim et al. | Apr 2011 | A1 |
20110103374 | Lajoie et al. | May 2011 | A1 |
20110107389 | Chakarapani | May 2011 | A1 |
20110112717 | Resner | May 2011 | A1 |
20110116428 | Seong et al. | May 2011 | A1 |
20110138064 | Rieger et al. | Jun 2011 | A1 |
20110158095 | Alexander | Jun 2011 | A1 |
20110163888 | Goedde | Jul 2011 | A1 |
20110164753 | Dubhashi et al. | Jul 2011 | A1 |
20110167440 | Greenfield | Jul 2011 | A1 |
20110169977 | Masuda | Jul 2011 | A1 |
20110179184 | Breau | Jul 2011 | A1 |
20110182250 | Shin et al. | Jul 2011 | A1 |
20110197070 | Mizrah | Aug 2011 | A1 |
20110206136 | Bekedam et al. | Aug 2011 | A1 |
20110213688 | Santos et al. | Sep 2011 | A1 |
20110219229 | Cholas et al. | Sep 2011 | A1 |
20110225619 | Kesireddy et al. | Sep 2011 | A1 |
20110235577 | Hintermeister et al. | Sep 2011 | A1 |
20110247029 | Yarvis et al. | Oct 2011 | A1 |
20110252236 | De et al. | Oct 2011 | A1 |
20110252243 | Brouwer et al. | Oct 2011 | A1 |
20110285542 | Amsterdam et al. | Nov 2011 | A1 |
20110286437 | Austin et al. | Nov 2011 | A1 |
20110299411 | Chen | Dec 2011 | A1 |
20110299422 | Kim et al. | Dec 2011 | A1 |
20120008786 | Cronk et al. | Jan 2012 | A1 |
20120011567 | Cronk et al. | Jan 2012 | A1 |
20120023535 | Brooks | Jan 2012 | A1 |
20120030716 | Zhang et al. | Feb 2012 | A1 |
20120046049 | Curtis et al. | Feb 2012 | A1 |
20120054785 | Yang et al. | Mar 2012 | A1 |
20120079531 | Hasek et al. | Mar 2012 | A1 |
20120079546 | Kalidindi et al. | Mar 2012 | A1 |
20120115501 | Zheng | May 2012 | A1 |
20120151549 | Kumar et al. | Jun 2012 | A1 |
20120159603 | Queck | Jun 2012 | A1 |
20120167173 | Nadalin et al. | Jun 2012 | A1 |
20120202447 | Edge et al. | Aug 2012 | A1 |
20120203822 | Floyd et al. | Aug 2012 | A1 |
20120222081 | Schaefer et al. | Aug 2012 | A1 |
20120230193 | Fang | Sep 2012 | A1 |
20120278654 | Shen et al. | Nov 2012 | A1 |
20120291062 | Pearson et al. | Nov 2012 | A1 |
20120302259 | Busch | Nov 2012 | A1 |
20120330759 | Aggarwal et al. | Dec 2012 | A1 |
20130016648 | Koskela et al. | Jan 2013 | A1 |
20130017794 | Kloper et al. | Jan 2013 | A1 |
20130045681 | Dua | Feb 2013 | A1 |
20130046623 | Moritz et al. | Feb 2013 | A1 |
20130081097 | Park et al. | Mar 2013 | A1 |
20130095848 | Gold et al. | Apr 2013 | A1 |
20130100818 | Qiu et al. | Apr 2013 | A1 |
20130132789 | Watford et al. | May 2013 | A1 |
20130145152 | Maino et al. | Jun 2013 | A1 |
20130163505 | Lysejko et al. | Jun 2013 | A1 |
20130176885 | Lee et al. | Jul 2013 | A1 |
20130235774 | Jo et al. | Sep 2013 | A1 |
20130242812 | Khoryaev | Sep 2013 | A1 |
20130254787 | Cox et al. | Sep 2013 | A1 |
20130260820 | Schmandt et al. | Oct 2013 | A1 |
20130308622 | Uhlik | Nov 2013 | A1 |
20130317892 | Heerboth | Nov 2013 | A1 |
20130322415 | Chamarti et al. | Dec 2013 | A1 |
20130342710 | Kanma | Dec 2013 | A1 |
20130347089 | Bailey et al. | Dec 2013 | A1 |
20140010219 | Dor et al. | Jan 2014 | A1 |
20140010225 | Puregger | Jan 2014 | A1 |
20140019635 | Reznik | Jan 2014 | A1 |
20140046624 | Miettinen | Feb 2014 | A1 |
20140056209 | Park et al. | Feb 2014 | A1 |
20140066098 | Stern et al. | Mar 2014 | A1 |
20140105061 | Kannan | Apr 2014 | A1 |
20140106779 | Arslan et al. | Apr 2014 | A1 |
20140177611 | Corrales | Jun 2014 | A1 |
20140213256 | Meylan et al. | Jul 2014 | A1 |
20140215506 | Kalmes et al. | Jul 2014 | A1 |
20140242991 | Yanover et al. | Aug 2014 | A1 |
20140274110 | Mehta et al. | Sep 2014 | A1 |
20140280901 | Balachandran et al. | Sep 2014 | A1 |
20140281489 | Peterka et al. | Sep 2014 | A1 |
20140282721 | Kuncl et al. | Sep 2014 | A1 |
20140283137 | Rebaud et al. | Sep 2014 | A1 |
20140287778 | Jones et al. | Sep 2014 | A1 |
20140288980 | Lee et al. | Sep 2014 | A1 |
20140308923 | Faulkner et al. | Oct 2014 | A1 |
20140309868 | Ricci | Oct 2014 | A1 |
20140328257 | Kamlani | Nov 2014 | A1 |
20140359649 | Cronk et al. | Dec 2014 | A1 |
20150009869 | Clegg | Jan 2015 | A1 |
20150036514 | Zhu et al. | Feb 2015 | A1 |
20150058883 | Tidwell et al. | Feb 2015 | A1 |
20150058909 | Miller et al. | Feb 2015 | A1 |
20150094098 | Stern et al. | Apr 2015 | A1 |
20150103685 | Butchko et al. | Apr 2015 | A1 |
20150106501 | Malets et al. | Apr 2015 | A1 |
20150106846 | Chen et al. | Apr 2015 | A1 |
20150140981 | Balasaygun | May 2015 | A1 |
20150146537 | Panaitopol et al. | May 2015 | A1 |
20150156129 | Tsuruoka | Jun 2015 | A1 |
20150189377 | Wheatley et al. | Jul 2015 | A1 |
20150215367 | Hayes et al. | Jul 2015 | A1 |
20150242889 | Zamer et al. | Aug 2015 | A1 |
20150288617 | Dasher et al. | Oct 2015 | A1 |
20150288732 | Phillips et al. | Oct 2015 | A1 |
20150305082 | Elliott et al. | Oct 2015 | A1 |
20150334625 | Banks et al. | Nov 2015 | A1 |
20150350820 | Son et al. | Dec 2015 | A1 |
20150365833 | Stafford et al. | Dec 2015 | A1 |
20160019103 | Basra | Jan 2016 | A1 |
20160057794 | Morita | Feb 2016 | A1 |
20160066234 | Cho et al. | Mar 2016 | A1 |
20160066313 | Sun et al. | Mar 2016 | A1 |
20160105691 | Zucchetta | Apr 2016 | A1 |
20160119939 | Himayat et al. | Apr 2016 | A1 |
20160127185 | McAllister et al. | May 2016 | A1 |
20160143005 | Ghosh | May 2016 | A1 |
20160204934 | Smith et al. | Jul 2016 | A1 |
20160242071 | Chen et al. | Aug 2016 | A1 |
20160261986 | Nord et al. | Sep 2016 | A1 |
20160301525 | Canard et al. | Oct 2016 | A1 |
20160315672 | Patwardhan et al. | Oct 2016 | A1 |
20160316334 | Lection et al. | Oct 2016 | A1 |
20170099327 | Negalaguli et al. | Apr 2017 | A1 |
20170164378 | Gunasekara et al. | Jun 2017 | A1 |
20170164416 | Yeddala et al. | Jun 2017 | A1 |
20170208632 | Gunasekara et al. | Jul 2017 | A1 |
20170223536 | Gupta et al. | Aug 2017 | A1 |
20170257750 | Gunasekara et al. | Sep 2017 | A1 |
20170265084 | Clegg | Sep 2017 | A1 |
20170303138 | Barmettler et al. | Oct 2017 | A1 |
20170366983 | Gunasekara et al. | Dec 2017 | A1 |
20180132060 | Dhulipalla et al. | May 2018 | A1 |
20180218464 | Anzalota et al. | Aug 2018 | A1 |
20180352386 | Gunasekara et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
1139198 | Oct 2001 | EP |
2113860 | Nov 2009 | EP |
2381709 | May 2003 | GB |
H08263440 | Oct 1996 | JP |
2000156676 | Jun 2000 | JP |
2000332746 | Nov 2000 | JP |
2001243707 | Sep 2001 | JP |
2001274786 | Oct 2001 | JP |
2001274788 | Oct 2001 | JP |
2001285821 | Oct 2001 | JP |
2002163396 | Jun 2002 | JP |
2002352094 | Dec 2002 | JP |
2003058657 | Feb 2003 | JP |
2003162600 | Jun 2003 | JP |
2003233690 | Aug 2003 | JP |
2003248508 | Sep 2003 | JP |
2003296484 | Oct 2003 | JP |
2003348508 | Dec 2003 | JP |
2004030111 | Jan 2004 | JP |
2004072721 | Mar 2004 | JP |
2004120736 | Apr 2004 | JP |
2004120738 | Apr 2004 | JP |
2004303111 | Oct 2004 | JP |
2005506627 | Mar 2005 | JP |
2005519365 | Jun 2005 | JP |
2005519501 | Jun 2005 | JP |
2005339093 | Dec 2005 | JP |
2006185473 | Jul 2006 | JP |
2006311267 | Nov 2006 | JP |
2007020144 | Jan 2007 | JP |
2008005047 | Jan 2008 | JP |
2008015936 | Jan 2008 | JP |
2008021293 | Jan 2008 | JP |
2008507905 | Mar 2008 | JP |
2008167018 | Jul 2008 | JP |
2008186272 | Aug 2008 | JP |
2008206039 | Sep 2008 | JP |
2009071786 | Apr 2009 | JP |
2009515238 | Apr 2009 | JP |
2009176060 | Aug 2009 | JP |
2009211632 | Sep 2009 | JP |
2010502109 | Jan 2010 | JP |
2010079902 | Apr 2010 | JP |
2012505436 | Mar 2012 | JP |
2012523614 | Oct 2012 | JP |
WO-0103410 | Jan 2001 | WO |
WO-0110125 | Feb 2001 | WO |
WO-0137479 | May 2001 | WO |
WO-0169842 | Sep 2001 | WO |
WO-0177778 | Oct 2001 | WO |
WO-0213032 | Feb 2002 | WO |
WO-0221841 | Mar 2002 | WO |
WO-0242966 | May 2002 | WO |
WO-02080556 | Oct 2002 | WO |
WO-03038704 | May 2003 | WO |
WO-03087799 | Oct 2003 | WO |
WO-03093944 | Nov 2003 | WO |
WO-2004027622 | Apr 2004 | WO |
WO-2005015422 | Feb 2005 | WO |
WO-2006020141 | Feb 2006 | WO |
WO-2008080556 | Jul 2008 | WO |
WO-2009020476 | Feb 2009 | WO |
WO-2012021245 | Feb 2012 | WO |
Entry |
---|
5C Digital Transmission Content Protection White Paper, Hitachi, Ltd., et al., dated Jul. 14, 1998, 15 pages. |
Cantor, et al., Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0, OASIS Standard, Mar. 15, 2005. Document ID: saml-core-2.0-os (http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf). |
Cantor, et al., Bindings for the OASIS Security Assertion Markup Language (SAML) V2.0, OASIS Standard, Mar. 2005, Document ID saml-bindings-2.0-os ,(http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf). |
Cisco Intelligent Network Architecture for Digital Video—SCTE Cable-Tec Expo 2004 information page, Orange County Convention Center, Jun. 2004, 24 pages. |
DCAS Authorized< gwmw class=“ginger-module-highlighter-mistake-type-3” id=“gwmw-15487095474138963691403”>Service Domain</gwmw>, Version 1.2, dated Nov. 4, 2008, 58 pages. |
DCAS Licensed Specification Abstracts, CableLabs Confidential Information, Jan. 12, 2006, 4 pages. |
Deering et al., Internet Protocol, Version 6 (IPv6) Specification, Dec. 1998, 39 pages. |
DVB (Digital Video Broadcasting), DVB Document A045 Rev. 3, Jul. 2004, “Head-end Implementation of SimulCrypt,” 289 pages. |
DVB (Digital Video Broadcasting); DVB SimulCrypt; Part 1: “Head-end architecture and synchronization” Technical Specification—ETSI TS 101 197 V1.2.1 (Feb. 2002), 40 pages. |
Federal Information Processing Standards Publication, US FIPS PUB 197, Nov. 26, 2001, “Advanced Encryption Standards (AES),” 47 pages. |
Gomez, Conserving Transmission Power in Wireless Ad Hoc Networks, 2001, Network Protocols. |
Griffith D.W., et al., “Resource Planning and Bandwidth Allocation in Hybrid Fiber-Coax Residential Networks,” National Institute of Standards and Technology (NIST), Oct. 1, 2005, 10 pages. |
Gupta V., et al., “Bit-Stuffing in 802.11 Beacon Frame: Embedding Non-Standard Custom Information,” International Journal of Computer Applications, Feb. 2013, vol. 63 (2), pp. 6-12. |
High-bandwidth Digital Content Protection System, Revision 1.091, dated Apr. 22, 2003, Digital Content< gwmw class=“ginger-module-highlighter-mistake-type-3” id=“gwmw-15487095483507149357216”>Protection LLC</gwmw> Draft, 78 pages. |
Internet Protocol DARPA Internet Program Protocol Specification, Sep. 1981, 51 pages. |
Kanouff, Communications Technology: Next-Generation Bandwidth Management—The Evolution of the Anything-to-Anywhere Network, 8 pages, Apr. 1, 2004. |
Marusic, et al., “Share it!—Content Transfer in Home-to-Home Networks.” IEEE MELECON 2004, May 12-15, 2004, Dubrovnik, Croatia. |
Media Server; 1 Device Template Version 1.01 Jun. 25, 2002. |
Miao , et al., “Distributed interference-aware energy-efficient power optimization,” IEEE Transactions on Wireless Communications, Apr. 2011, vol. 10 (4), pp. 1323-1333. |
Motorola DOCSIS Cable Module DCM 2000 specifications, 4 pages, copyright 2001. |
OpenCable Application Platform Specification, OCAP 2.0 Profile, OC-SP-OCAP2.0-I01-020419, Apr. 19, 2002. |
OpenCable Application Platform Specifications, OCAP Extensions, OC-SP-OCAP-HNEXT-I03-080418, 2005-2008. |
OpenCable Host Device, Core Functional Requirements, OC-SP-HOST-CFR-I13-030707, Jul. 7, 2003. |
Opencable, HOST-POD Interface Specification, OC-SP-HOSTPOD-IF-113-030707, Jul. 7, 2003. |
OpenCable Specification, Home Networking Protocol 2.0, OC-SP-HNP2.0-I01-08418, 2007. |
OpenCable Specifications, Home Networking Security Specification, OC-SP-HN-SEC-D01-081027, draft (Oct. 27, 2008). |
OpenVision Session Resource Manager—Open Standards-Based Solution Optimizes Network Resources by Dynamically Assigning Bandwidth in the Delivery of Digital Services article, 2 pages, (copyright 2006), (http://www.imake.com/hopenvision). |
OpenVision Session Resource Manager features and information, 2 pages, (http://www.imake.com/hopenvision). |
PRIMERGY BX300 Switch Blade user's manual, Fujitsu Corp., Sep. 30, 2002, first edition, pp. 1 to 20. |
Real< gwmw class=“ginger-module-highlighter-mistake-type-3” id=“gwmw-15487095583627948787141”>System Media</gwmw> Commerce Suite (Technical White Paper), at http://docs.real.com/docs/drm/DRM.sub-WP1.pdf, 12 pages, Nov. 2001. |
Van Moffaert, A., et al.< gwmw class=“ginger-module-highlighter-mistake-type-3” id=“gwmw-15487095623201874158750”>(</gwmw>“Digital Rights Management: DRM is a key enabler for the future growth of the broadband access market and the telecom/networking market in general”, Alcatel Telecommunications Review, Alcatel, Paris Cedex FR, Apr. 1, 2003, XP007005930ISSN; 8 pages. |
Zhang, et al., “A Flexible Content Protection System for Media-On-Demand” Multimedia Software Engineering, 2002 Proceedings. Fourth International Symposium on Dec. 11-13, 2002, Piscataway, NJ, USAA, IEEE, Dec. 11, 2002, pp. 272-277, XP010632760ISBN: 978-0-7695-1857-2. |
Number | Date | Country | |
---|---|---|---|
20200252712 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15990427 | May 2018 | US |
Child | 16786825 | US | |
Parent | 14959885 | Dec 2015 | US |
Child | 15990427 | US |