The present invention relates to apparatus for treating congestive heart disease by providing increased perfusion to the kidneys, thereby enhancing renal function.
It has long been known that cardiac dysfunction induces a series of events that ultimately contribute to congestive heart failure (“CHF”). One such event is a reduction in renal blood flow due to reduced cardiac output. This reduced flow can in turn result in the retention of excess fluid in the patient's body, leading for example, to pulmonary and cardiac edema.
Chapter 62 of Heart Disease: A Textbook of Cardiovascular Medicine, (E. Braunwald, ed., 5th ed. 1996), published by Saunders, Philadelphia, Pa., reports that for patients with CHF, the fall in effective renal blood flow is proportional to the reduction in cardiac output. Renal blood flow in normal patients in an age range of 20-80 years averages 600 to 660 ml/min/m2, corresponding to about 14 to 20 percent of simultaneously measured cardiac output. Within a wide spectrum of CHF severity, renal blood flow is depressed to an average range of 250 to 450 ml/min/m2.
Previously known methods of treating congestive heart failure and deteriorating renal function in patients having CHF principally involve administering drugs, including diuretics that enhance renal function, such as furosemide and thiazide, vasopressors intended to enhance renal blood flow, such as Dopamine, and vasodilators that reduce vasoconstriction of the renal vessels. Many of these drugs, when administered in systemic doses, have undesirable side-effects.
In addition, for patients with severe CHF (e.g., those awaiting heart transplant), mechanical methods, such as hemodialysis or left ventricular assist devices, may be implemented. Mechanical treatments, such as hemodialysis, however, generally have not been used for long-term management of CHF.
Advanced heart failure (“HF”) requires the combination of potent diuretics and severe restriction of salt intake. Poor patient compliance is a major cause of refractoriness to treatment. On the other hand, as renal urine output decreases with reduced renal perfusion, in the event of dehydration, the required diuretic dosages increase.
In view of the foregoing, it would be desirable to provide methods and apparatus for treating and managing CHF without administering high doses of drugs or dehydrating the patient.
It further would be desirable to provide methods and apparatus for treating and managing CHF by improving blood flow to the kidneys, thereby enhancing renal function.
It also would be desirable to provide methods and apparatus for treating and managing CHF that permit the administration of low doses of drugs, in a localized manner, to improve renal function.
It still further would be desirable to provide methods and apparatus for treating and managing CHF using apparatus that may be percutaneously and transluminally implanted in the patient.
In view of the foregoing, it is an object of the present invention to provide methods and apparatus for treating and managing CHF without administering high doses of drugs or dehydrating the patient.
It is another object of this invention to provide methods and apparatus for treating and managing CHF by improving blood flow to the kidneys, thereby enhancing renal function.
It is also an object of this invention to provide methods and apparatus for treating and managing CHF that permit the administration of low doses of drugs, in a localized manner, to improve renal function.
It further is an object of the present invention to provide methods and apparatus for treating and managing CHF using apparatus that may be percutaneously and transluminally implanted in the patient.
These and other objects of the present invention are accomplished by providing a catheter having an inlet end configured for placement in a source of arterial blood, such as the aorta, the left ventricle or a femoral artery, and an outlet end having at least one conduit configured to be placed in a renal artery. The catheter includes a lumen through which arterial blood passes directly into a renal artery. The conduit may include means for engaging an interior surface of the renal artery to retain the conduit in position, and may comprise an occluder that reduces backflow of blood exiting the conduit into the abdominal aorta. The catheter preferably is configured to permit percutaneous, transluminal implantation.
In accordance with the principles of the present invention, high pressure blood passes through the lumen of the catheter during systole and into the conduit disposed in the renal artery. It is expected that blood passing through the catheter will have a higher pressure and higher flow rate than blood reaching the renal artery via the abdominal aorta. This in turn is expected to improve renal function, without administering systemic doses of drugs to improve renal function or renal blood flow. The enhanced renal blood flow is expected to provide a proportional increase in renal function, thereby reducing fluid retention.
In alternative embodiments, the catheter may include first and second conduits for perfusing both kidneys, a one-way valve disposed in the lumen to prevent backflow of blood in the lumen during diastole or a mechanical pump to further enhance the flow of blood through the lumen. Still other embodiments of the catheter may include a drug infusion reservoir that injects a low dose of a drug, e.g., a diuretic or vasodilator, into blood flowing through the lumen, so that the drug-infused blood passes directly into the kidneys. Still further embodiments may comprise separate catheters to perfuse the left and right kidneys, or may draw arterial blood from a peripheral vessel using an external pump.
Methods of implanting the apparatus of the present invention also are provided.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments, in which:
The present invention provides a catheter that may be implanted in patients suffering from congestive heart failure (“CHF”) to improve renal blood flow and renal function. In accordance with the principles of the present invention, it is expected that by passing blood from the left ventricle directly to the renal arteries during systole, the blood pressure and flow rate in the kidneys will be increased, resulting in enhanced renal function.
Referring to
First branch conduit 16 includes outlet port 18 that communicates with lumen 15, and expandable occluder 19. Likewise, second branch conduit 17 includes outlet port 20 that communicates with lumen 15, and expandable occluder 21. First and second branch conduits 16 and 17 optionally may include radio-opaque marker bands 22 near outlet ports 18 and 20, respectively, to assist in implanting catheter 10.
As depicted in
Referring now to
Because the renal arteries may branch from the abdominal aorta at different levels, the catheter of
Catheter 30 further optionally comprises any one or more of the following components: one-way valve 42, blood pump 43 or drug infusion device 44. While catheter 30 illustratively includes all three of the foregoing components, it is to be understood that any combination of such components advantageously may be employed.
One-way valve 42, if provided, is configured to open during systole to permit blood to flow through lumen 35 from left ventricle LV towards the renal artery RA, but closes during diastole to prevent the left ventricle from drawing blood in the opposite direction.
Blood pump 43, if provided, may comprise an implantable blood pump, such as are known in the art, and serves to enhance renal blood flow in those patients suffering from severe cardiac dysfunction. Alternatively, where the inlet end of catheter 30 is configured to be placed in a peripheral vessel, blood pump 30 advantageously may comprise an external blood pump, such as are known in the art.
Drug infusion device 44, if provided, preferably comprises an implantable infusion device, such as are known in the art (e.g., for chelation therapy), and periodically infuses low doses of therapeutic agents into blood flowing through lumen 35. Because the infused drugs are delivered directly into the kidneys, smaller doses may be employed, while achieving enhanced therapeutic action and fewer side-effects.
With respect to
Occluder 50 therefore serves to retain the branch conduit in position in a renal artery, and also reduces backflow of blood from the renal artery into the abdominal aorta. Alternatively, occluder 50 may comprise an inflatable member that is inflated and then sealed via a lumen (not shown) extending out of the patient's femoral artery. As a yet further alternative, occluder 50 may comprise a self-expanding hydrogel material that swells when exposed to body fluids to accomplish the functions described hereinabove.
While occluder 50 of
Referring now to
As depicted in
Once the position of first and second branch conduits 16 and 17 is confirmed, for example, by observing the location of radio-opaque markers 22 (see
Filament 110 then may be pulled completely through the opening in the bifurcation of catheter 10, leaving catheter 10 implanted in position. It is: expected that the opening needed to accommodate filament 110 will result in negligible loss of blood through the opening once filament 110 has been withdrawn. Alternatively, or in addition, additional guidewires (not shown) may be disposed through first and second branch conduits to assist in placing the first and second branch conduits in renal arteries RA.
The foregoing methods may be readily adapted to implant two catheters of the type illustrated in
While preferred illustrative embodiments of the invention are described above, it will be apparent to one skilled in the art that various changes and modifications may be made therein without departing from the invention, and the appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention.
This application is a divisional of U.S. patent application Ser. No. 10/613,654, entitled “APPARATUS AND METHODS FOR TREATING CONGESTIVE HEART DISEASE,” filed Jul. 3, 2003 by Gad Keren et al, which is a continuation of U.S. patent application Ser. No. 09/229,390 entitled “APPARATUS AND METHODS FOR TREATING CONGESTIVE HEART DISEASE,” filed Jan. 11, 1999 by Gad Keren et al., the entire disclosures of which are incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 10613654 | Jul 2003 | US |
Child | 11562124 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09229390 | Jan 1999 | US |
Child | 10613654 | Jul 2003 | US |