Apparatus and methods for treating congestive heart disease

Information

  • Patent Grant
  • 7341570
  • Patent Number
    7,341,570
  • Date Filed
    Thursday, July 3, 2003
    21 years ago
  • Date Issued
    Tuesday, March 11, 2008
    16 years ago
Abstract
Methods and apparatus are provided for treating congestive heart failure using a catheter having an inlet end configured for placement in the source of arterial blood such as the aorta, left ventricle or a femoral artery, and an outlet end having at least one conduit configured to be placed in the renal arteries. The catheter includes a lumen through which blood passes from the aorta or left ventricle directly to the renal artery, means for engaging the first conduit with renal artery. The means for engaging also may reduce backflow of blood into the abdominal aorta. The catheter preferably is configured to permit percutaneous, transluminal implantation. Methods of using and implanting the catheter are also provided.
Description
FIELD OF THE INVENTION

The present invention relates to apparatus for treating congestive heart disease by providing increased perfusion to the kidneys, thereby enhancing renal function.


BACKGROUND OF THE INVENTION

It has long been known that cardiac dysfunction induces a series of events that ultimately contribute to congestive heart failure (“CHF”). One such event is a reduction in renal blood flow due to reduced cardiac output. This reduced flow can in turn result in the retention of excess fluid in the patient's body, leading for example, to pulmonary and cardiac edema.


Chapter 62 of Heart Disease: A Textbook of Cardiovascular Medicine, (E. Braunwald, ed., 5th ed. 1996), published by Saunders, Philadelphia, Pa., reports that for patients with CHF, the fall in effective renal blood flow is proportional to the reduction in cardiac output. Renal blood flow in normal patients in an age range of 20-80 years averages 600 to 660 ml/min/m2, corresponding to about 14 to 20 percent of simultaneously measured cardiac output. Within a wide spectrum of CHF severity, renal blood flow is depressed to an average range of 250 to 450 ml/min/m2.


Previously known methods of treating congestive heart failure and deteriorating renal function in patients having CHF principally involve administering drugs, including diuretics that enhance renal function, such as furosemide and thiazide, vasopressors intended to enhance renal blood flow, such as Dopamine, and vasodilators that reduce vasoconstriction of the renal vessels. Many of these drugs, when administered in systemic doses, have undesirable side-effects.


In addition, for patients with severe CHF (e.g., those awaiting heart transplant), mechanical methods, such as hemodialysis or left ventricular assist devices, may be implemented. Mechanical treatments, such as hemodialysis, however, generally have not been used for long-term management of CHF.


Advanced heart failure (“HF”) requires the combination of potent diuretics and severe restriction of salt intake. Poor patient compliance is a major cause of refractoriness to treatment. On the other hand, as renal urine output decreases with reduced renal perfusion, in the event of dehydration, the required diuretic dosages increase.


In view of the foregoing, it would be desirable to provide methods and apparatus for treating and managing CHF without administering high doses of drugs or dehydrating the patient.


It further would be desirable to provide methods and apparatus for treating and managing CHF by improving blood flow to the kidneys, thereby enhancing renal function.


It also would be desirable to provide methods and apparatus for treating and managing CHF that permit the administration of low doses of drugs, in a localized manner, to improve renal function.


It still further would be desirable to provide methods and apparatus for treating and managing CHF using apparatus that may be percutaneously and transluminally implanted in the patient.


SUMMARY OF THE INVENTION

In view of the foregoing, it is an object of the present invention to provide methods and apparatus for treating and managing CHF without administering high doses of drugs or dehydrating the patient.


It is another object of this invention to provide methods and apparatus for treating and managing CHF by improving blood flow to the kidneys, thereby enhancing renal function.


It is also an object of this invention to provide methods and apparatus for treating and managing CHF that permit the administration of low doses of drugs, in a localized manner, to improve renal function.


It further is an object of the present invention to provide methods and apparatus for treating and managing CHF using apparatus that may be percutaneously and transluminally implanted in the patient.


These and other objects of the present invention are accomplished by providing a catheter having an inlet end configured for placement in a source of arterial blood, such as the aorta, the left ventricle or a femoral artery, and an outlet end having at least one conduit configured to be placed in a renal artery. The catheter includes a lumen through which arterial blood passes directly into a renal artery. The conduit may include means for engaging an interior surface of the renal artery to retain the conduit in position, and may comprise an occluder that reduces backflow of blood exiting the conduit into the abdominal aorta. The catheter preferably is configured to permit percutaneous, transluminal implantation.


In accordance with the principles of the present invention, high pressure blood passes through the lumen of the catheter during systole and into the conduit disposed in the renal artery. It is expected that blood passing through the catheter will have a higher pressure and higher flow rate than blood reaching the renal artery via the abdominal aorta. This in turn is expected to improve renal function, without administering systemic doses of drugs to improve renal function or renal blood flow. The enhanced renal blood flow is expected to provide a proportional increase in renal function, thereby reducing fluid retention.


In alternative embodiments, the catheter may include first and second conduits for perfusing both kidneys, a one-way valve disposed in the lumen to prevent backflow of blood in the lumen during diastole or a mechanical pump to further enhance the flow of blood through the lumen. Still other embodiments of the catheter may include a drug infusion reservoir that injects a low dose of a drug, e.g., a diuretic or vasodilator, into blood flowing through the lumen, so that the drug-infused blood passes directly into the kidneys. Still further embodiments may comprise separate catheters to perfuse the left and right kidneys, or may draw arterial blood from a peripheral vessel using an external pump.


Methods of implanting the apparatus of the present invention also are provided.





BRIEF DESCRIPTION OF THE DRAWINGS

Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments, in which:



FIG. 1 is a partial sectional view of a human circulatory system having apparatus constructed in accordance with the present invention implanted therein;



FIG. 2 is a side view of an illustrative embodiment of the apparatus of the present invention;



FIG. 3 is an alternative embodiment of the apparatus of FIG. 2 including a one-way valve, a blood pump and a drug infusion device;



FIG. 4 is a detailed perspective view of an occluder employed on the outlet end of the catheter of FIG. 2; and



FIGS. 5A and 5B are partial sectional views depicting an illustrative method of implanting the catheter of FIG. 2.





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a catheter that may be implanted in patients suffering from congestive heart failure (“CHF”) to improve renal blood flow and renal function. In accordance with the principles of the present invention, it is expected that by passing blood from the left ventricle directly to the renal arteries during systole, the blood pressure and flow rate in the kidneys will be increased, resulting in enhanced renal function.


Referring to FIGS. 1 and 2, a first illustrative embodiment of apparatus constructed in accordance with the principles of the present invention is described. Catheter 10 comprises hollow flexible tube having inlet end 11 and outlet end 12. Inlet end 11 includes distal hole 13 and lateral holes 14 that communicate with lumen 15 within catheter 10. Outlet end 12 comprises first and second branch conduits 16 and 17, respectively. Catheter 10 preferably comprises a flexible biocompatible material, such as polyurethane, silicone, or polyethylene.


First branch conduit 16 includes outlet port 18 that communicates with lumen 15, and expandable occluder 19. Likewise, second branch conduit 17 includes outlet port 20 that communicates with lumen 15, and expandable occluder 21. First and second branch conduits 16 and 17 optionally may include radio-opaque marker bands 22 near outlet ports 18 and 20, respectively, to assist in implanting catheter 10.


As depicted in FIG. 1, catheter 10 is implanted in circulatory system C so that inlet end 11 is disposed in left ventricle LV or in the vicinity of aortic root AR, while first and second branch conduits 16 and 17, respectively, are disposed in renal arteries RA. Occluders 19 and 21, described in greater detail hereinafter, engage the walls of the renal arteries and retain first and second branch conduits 16 and 17, respectively in position. The occluders also serve to prevent backflow of high pressure blood exiting through outlet ports 18 and 20 from flowing backwards into abdominal aorta AA. Accordingly, blood entering catheter 10 via distal hole 13 and lateral holes 14 during systole passes directly into renal arteries RA and kidneys K through lumen 15, thereby enhancing renal blood flow and renal function.


Referring now to FIG. 3, an alternative embodiment of the apparatus of the present invention is described. Catheter 30 is similar in construction to catheter 10 of FIG. 1, and includes hollow flexible tube having inlet end 31 and outlet end 32. Inlet end 31 includes distal hole 33 and lateral holes 34 that communicate with lumen 35. Outlet end 32 comprises branch conduit 36 having outlet port 37 configured to be placed in one of the patient's renal arteries. In this embodiment, the occluder of the embodiment of FIG. 2 is omitted and instead the diameter of the branch conduit 36 is selected to provide a close fit with the renal artery. Engagement means, such as small ribs or barbs 38 also may be disposed on the exterior surface of branch conduit 36 to retain the branch conduit in the renal artery.


Because the renal arteries may branch from the abdominal aorta at different levels, the catheter of FIG. 3 advantageously permits separate catheters to be used to each perfuse only a single kidney. In addition, the inlet end of catheter 30 may be configured to be placed in a peripheral vessel rather than the left ventricle.


Catheter 30 further optionally comprises any one or more of the following components: one-way valve 42, blood pump 43 or drug infusion device 44. While catheter 30 illustratively includes all three of the foregoing components, it is to be understood that any combination of such components advantageously may be employed.


One-way valve 42, if provided, is configured to open during systole to permit blood to flow through lumen 35 from left ventricle LV towards the renal artery RA, but closes during diastole to prevent the left ventricle from drawing blood in the opposite direction.


Blood pump 43, if provided, may comprise an implantable blood pump, such as are known in the art, and serves to enhance renal blood flow in those patients suffering from severe cardiac dysfunction. Alternatively, where the inlet end of catheter 30 is configured to be placed in a peripheral vessel, blood pump 30 advantageously may comprise an external blood pump, such as are known in the art.


Drug infusion device 44, if provided, preferably comprises an implantable infusion device, such as are known in the art (e.g., for chelation therapy), and periodically infuses low doses of therapeutic agents into blood flowing through lumen 35. Because the infused drugs are delivered directly into the kidneys, smaller doses may be employed, while achieving enhanced therapeutic action and fewer side-effects.


With respect to FIG. 4, an illustrative embodiment of occluder 50 suitable for use with the catheter of FIGS. 1 and 2 is described. In one embodiment, occluder 50 comprises a low density, biocompatible sponge-like material that may be compressed to a small thickness, and that absorbs and expands when exposed to body fluid. In particular, occluder 50 preferably is compressed to a small thickness and then mounted on the branch conduit so that, when the occluder is deployed in a renal artery, it swells and engages the interior of the renal artery.


Occluder 50 therefore serves to retain the branch conduit in position in a renal artery, and also reduces backflow of blood from the renal artery into the abdominal aorta. Alternatively, occluder 50 may comprise an inflatable member that is inflated and then sealed via a lumen (not shown) extending out of the patient's femoral artery. As a yet further alternative, occluder 50 may comprise a self-expanding hydrogel material that swells when exposed to body fluids to accomplish the functions described hereinabove.


While occluder 50 of FIG. 4 illustratively has an annular shape, it should be understood that other shapes may be employed. For example, occluder 50 may be configured to only partially surround the branch conduit, and may provide only a partial seal with the interior surface of the renal artery. For example, depending upon the relative sizes of the branch conduit and the renal artery, and how far the branch conduit extends into the renal artery, occluder 50 may be omitted altogether.


Referring now to FIGS. 1, 5A and 5B, percutaneous, transluminal implantation of the apparatus of FIG. 2 is described. First, guidewire 100 is inserted in a retrograde manner through abdominal aorta AA via an access site in femoral artery FA until the tip of the guidewire is disposed in the left ventricle, e.g., as determined by fluoroscopy. Catheter 10 is then advanced along guidewire 100, for example, using a push tube (not shown) disposed on guidewire 100, with first and second branch conduits 16 and 17 folded side-by-side. Filament 110 is looped through a small opening at the bifurcation of the first and second branch conduits 16 and 17, so that the free ends 110a and 110b of loop 110 may be manipulated by the surgeon.


As depicted in FIG. 5A, catheter 10 is pushed in a distal direction so that outlet ports 18 and 20 of outlet end 12 clear the renal arteries, and guidewire 100 is withdrawn. Filament 110 then is pulled in the proximal direction so that the ends of the first and second branch conduits move into renal arteries RA, as illustrated in FIG. 5B. Strand 55 of an elastic, high strength material, such as a nickel-titanium alloy, may be embedded in the wall of catheter 10 in the bifurcation to ensure that the first and second conduits open outwardly when catheter 10 is pulled in a proximal direction by filament 110.


Once the position of first and second branch conduits 16 and 17 is confirmed, for example, by observing the location of radio-opaque markers 22 (see FIG. 2) with a fluoroscope, occluders 19 and 21 expand to engage the interior surfaces of the renal arteries. Expansion of the occluders may be accomplished either by holding the occluders in place while they expand (if self-expanding) or, if the occluders are inflatable, by injecting a suitable inflation medium.


Filament 110 then may be pulled completely through the opening in the bifurcation of catheter 10, leaving catheter 10 implanted in position. It is expected that the opening needed to accommodate filament 110 will result in negligible loss of blood through the opening once filament 110 has been withdrawn. Alternatively, or in addition, additional guidewires (not shown) may be disposed through first and second branch conduits to assist in placing the first and second branch conduits in renal arteries RA.


The foregoing methods may be readily adapted to implant two catheters of the type illustrated in FIG. 3, so that the branch conduit of each catheter perfuses a separate kidney. In addition, for acute treatment of CHF, the catheter of FIG. 3 (including an external blood pump) may be placed so that the inlet end is disposed in a patient's femoral artery, and the outlet end is disposed in one of the patient's renal arteries.


While preferred illustrative embodiments of the invention are described above, it will be apparent to one skilled in the art that various changes and modifications may be made therein without departing from the invention, and the appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention.

Claims
  • 1. An apparatus for locally perfusing one or more kidneys, comprising: a catheter having: a central lumen;an inlet end that includes at least one hole that communicates with the central lumen; andan outlet end that includes a first branch conduit with a first outlet port that communicates with the central lumen and a second branch conduit with a second outlet port that communicates with the central lumen;a strand of elastic, high strength material;a first engagement member coupled with the first branch conduit, the first engagement member adapted to engage an interior surface of a first renal artery; anda second engagement member coupled with the second branch conduit, the second engagement member adapted to engage an interior surface of a second renal artery,wherein the apparatus can be expanded from a folded configuration where the first branch conduit and the second branch conduit are folded side-by-side, to an expanded configuration where the first branch conduit and the second branch conduit extend outwardly from a bifurcation of the first and second branch conduits, andwherein the strand of elastic, high strength material is embedded in the bifurcation of the first and second branch conduits, and is adapted to ensure that the first and second branch conduits open outwardly when the bifurcation is pulled in a proximal direction.
  • 2. The system of claim 1, wherein the fluid agent comprises a diuretic.
  • 3. The system of claim 1, wherein the fluid agent comprises Furosemide.
  • 4. The system of claim 1, wherein the fluid agent comprises Thiazide.
  • 5. The system of claim 1, wherein the fluid agent comprises a vasopressor.
  • 6. The system of claim 1, wherein the fluid agent comprises Dopamine.
  • 7. The system of claim 1, wherein the fluid agent comprises a vasodilator.
  • 8. The apparatus of claim 1, wherein the first engagement member comprises a rib or a barb.
  • 9. The apparatus of claim 1, wherein the first engagement member comprises an inflatable member.
  • 10. The apparatus of claim 1, wherein the first engagement member comprises a self-expanding hydrogel material.
  • 11. The apparatus of claim 1, wherein the first engagement member comprises a low density, biocompatible sponge-like material.
  • 12. The apparatus of claim 1, wherein the strand comprises a nickel-titanium alloy.
  • 13. The apparatus of claim 1, further comprising a one-way valve that communicates with the lumen.
  • 14. The apparatus of claim 1, further comprising a blood pump that communicates with the lumen, wherein the blood pump comprises a member selected from the group consisting of an implantable blood pump and an external blood pump.
  • 15. The apparatus of claim 1, further comprising a drug infusion device that communicates with the lumen.
  • 16. The apparatus of claim 1, further comprising a filament looped through an opening at a bifurcation of the first and second branch conduits.
  • 17. An apparatus for locally perfusing one or more kidneys, comprising: a catheter having: a central lumen;an inlet end that includes at least one hole that communicates with the central lumen; andan outlet end that includes a first branch conduit with a first outlet port that communicates with the central lumen and a second branch conduit with a second outlet port that communicates with the central lumen;a one-way valve that communicates with the central lumen;a first engagement member coupled with the first branch conduit, the first engagement member adapted to engage an interior surface of a first renal artery; anda second engagement member coupled with the second branch conduit, the second engagement member adapted to engage an interior surface of a second renal artery,wherein the apparatus can be expanded from a folded configuration where the first branch conduit and the second branch conduit are folded side-by-side, to an expanded configuration where first branch conduit and the second branch conduit extend outwardly from a bifurcation of the first and second branch conduits, andwherein the one-way valve is adapted to open in a first configuration to permit flow along the central lumen in a first direction from the inlet end toward the first outlet port, the second outlet port, or both, and to close in a second configuration to inhibit flow along the central lumen in a second direction from the first outlet port, the second outlet port, or both, toward the inlet end.
  • 18. The apparatus of claim 17, further comprising a strand of an elastic, high strength material embedded in the bifurcation.
  • 19. The apparatus of claim 18, wherein the strand comprises a nickel-titanium alloy.
  • 20. The system of claim 17, wherein the fluid agent comprises a diuretic.
  • 21. The system of claim 17, wherein the fluid agent comprises Furosemide.
  • 22. The system of claim 17, wherein the fluid agent comprises Thiazide.
  • 23. The system of claim 17, wherein the fluid agent comprises a vasopressor.
  • 24. The system of claim 17, wherein the fluid agent comprises Dopamine.
  • 25. The system of claim 17, wherein the fluid agent comprises a vasodilator.
  • 26. The apparatus of claim 17, wherein the first engagement member comprises a rib or a barb.
  • 27. The apparatus of claim 17, wherein the first engagement member comprises an inflatable member.
  • 28. The apparatus of claim 17, wherein the first engagement member comprises a self-expanding hydrogel material.
  • 29. The apparatus of claim 17, wherein the first engagement member comprises a low density, biocompatible sponge-like material.
  • 30. The apparatus of claim 17, further comprising a blood pump that communicates with the lumen, wherein the blood pump comprises a member selected from the group consisting of an implantable blood pump and an external blood pump.
  • 31. The apparatus of claim 17, further comprising a drug infusion device that communicates with the lumen.
  • 32. The apparatus of claim 17, further comprising a filament looped through an opening at a bifurcation of the first and second branch conduits.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 09/229,390 filed on Jan. 11, 1999, now U.S. Pat. No. 6,749,598, incorporated herein by reference.

US Referenced Citations (142)
Number Name Date Kind
1696018 Schellberg Dec 1928 A
2499045 Walker et al. Feb 1950 A
3455298 Anstadt Jul 1969 A
3516408 Montanti Jun 1970 A
3667069 Blackshear et al. Jun 1972 A
3730186 Edmunds, Jr. et al. May 1973 A
3791374 Guarino Feb 1974 A
3841331 Wilder et al. Oct 1974 A
3995623 Blake et al. Dec 1976 A
4248224 Jones Feb 1981 A
4309994 Grunwald Jan 1982 A
4345602 Yoshimura et al. Aug 1982 A
4407271 Schiff Oct 1983 A
4423725 Baran et al. Jan 1984 A
4459977 Pizon et al. Jul 1984 A
4490374 Bandurco et al. Dec 1984 A
4493697 Krause et al. Jan 1985 A
4536893 Parravicini Aug 1985 A
4546759 Solar Oct 1985 A
4554284 Stringer et al. Nov 1985 A
4685446 Choy Aug 1987 A
4705502 Patel Nov 1987 A
4705507 Boyles Nov 1987 A
4712551 Rayhanabad Dec 1987 A
4714460 Calderon Dec 1987 A
4723939 Anaise Feb 1988 A
4753221 Kensey et al. Jun 1988 A
4781716 Richelsoph Nov 1988 A
4817586 Wampler Apr 1989 A
4834707 Evans May 1989 A
4846831 Skillin Jul 1989 A
4861330 Voss Aug 1989 A
4863461 Jarvik Sep 1989 A
4888011 Kung et al. Dec 1989 A
4902272 Milder et al. Feb 1990 A
4902291 Kolff Feb 1990 A
4906229 Wampler Mar 1990 A
4909252 Goldberger Mar 1990 A
4911163 Fina Mar 1990 A
4919647 Nash Apr 1990 A
4925377 Inacio et al. May 1990 A
4925443 Heilman et al. May 1990 A
4927407 Dorman May 1990 A
4927412 Menasche May 1990 A
4938766 Jarvik Jul 1990 A
4950226 Barron Aug 1990 A
4957477 Lundback Sep 1990 A
4964864 Summers et al. Oct 1990 A
4976691 Sahota Dec 1990 A
4976692 Atad Dec 1990 A
4990139 Jang Feb 1991 A
4995864 Bartholomew et al. Feb 1991 A
5002531 Bonzel Mar 1991 A
5002532 Gaiser et al. Mar 1991 A
5053023 Martin Oct 1991 A
5059178 Ya Oct 1991 A
5067960 Grandjean Nov 1991 A
5069680 Grandjean Dec 1991 A
5073094 Dorman et al. Dec 1991 A
5089019 Grandjean Feb 1992 A
5098370 Rahat et al. Mar 1992 A
5098442 Grandjean Mar 1992 A
5112301 Fenton et al. May 1992 A
5112349 Summers et al. May 1992 A
5119804 Anstadt Jun 1992 A
5129883 Black Jul 1992 A
5131905 Grooters Jul 1992 A
5135474 Swan et al. Aug 1992 A
5158540 Wijay et al. Oct 1992 A
5163910 Schwartz et al. Nov 1992 A
5167628 Boyles Dec 1992 A
5180364 Ginsburg Jan 1993 A
5205810 Guiraudon et al. Apr 1993 A
5226888 Arney Jul 1993 A
5256141 Gencheff et al. Oct 1993 A
5257974 Cox Nov 1993 A
5282784 Willard Feb 1994 A
5290227 Pasque Mar 1994 A
5308319 Ide et al. May 1994 A
5308320 Safar et al. May 1994 A
5312343 Krog et al. May 1994 A
5320604 Walker et al. Jun 1994 A
5326374 Ilbawi et al. Jul 1994 A
5328470 Nabel et al. Jul 1994 A
5332403 Kolff Jul 1994 A
5345927 Bonutti Sep 1994 A
5358519 Grandjean Oct 1994 A
5364337 Guiraudon et al. Nov 1994 A
5370617 Sahota Dec 1994 A
5383840 Heilman et al. Jan 1995 A
5397307 Goodin Mar 1995 A
5421826 Crocker et al. Jun 1995 A
5429584 Chiu Jul 1995 A
5453084 Moses Sep 1995 A
5464449 Ryan et al. Nov 1995 A
5476453 Mehta Dec 1995 A
5478331 Helflin et al. Dec 1995 A
5484385 Rishton Jan 1996 A
5505701 Anaya Fernandez de Lomana Apr 1996 A
5509428 Dunlop Apr 1996 A
5536250 Klein et al. Jul 1996 A
5558617 Heilman et al. Sep 1996 A
5599306 Klein et al. Feb 1997 A
5609628 Keranen Mar 1997 A
5613949 Miraki Mar 1997 A
5613980 Chauhan Mar 1997 A
5617878 Taheri Apr 1997 A
5643171 Bradshaw et al. Jul 1997 A
5643215 Fuhrman et al. Jul 1997 A
5702343 Alferness Dec 1997 A
5713860 Kaplan et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5755779 Horiguchi May 1998 A
5762599 Sohn Jun 1998 A
5766151 Valley et al. Jun 1998 A
5776190 Jarvik Jul 1998 A
5797876 Spears et al. Aug 1998 A
5807895 Stratton et al. Sep 1998 A
5902229 Tsitlik et al. May 1999 A
5902336 Mishkin May 1999 A
5913852 Magram Jun 1999 A
5928132 Leschinsky Jul 1999 A
5935924 Bunting et al. Aug 1999 A
5968013 Smith et al. Oct 1999 A
5971910 Tsitlik et al. Oct 1999 A
5984955 Wisselink Nov 1999 A
6039721 Johnson et al. Mar 2000 A
6068629 Haissaguerre et al. May 2000 A
6077256 Mann Jun 2000 A
6086527 Talpade Jul 2000 A
6117117 Mauch Sep 2000 A
6165120 Schweich et al. Dec 2000 A
6287608 Levin et al. Sep 2001 B1
6387037 Bolling et al. May 2002 B1
6390969 Bolling et al. May 2002 B1
6468241 Gelfand et al. Oct 2002 B1
6482211 Choi Nov 2002 B1
6508787 Erbel et al. Jan 2003 B2
6733474 Kusleika May 2004 B2
20010029349 Leschinsky Oct 2001 A1
20020169413 Keren et al. Nov 2002 A1
20040064089 Kesten et al. Apr 2004 A1
Foreign Referenced Citations (17)
Number Date Country
43 24 637 Mar 1995 DE
0 654 283 May 1995 EP
0 884 064 Dec 1998 EP
2 239 675 Jul 1991 GB
WO 9711737 Apr 1997 WO
WO 9803213 Jan 1998 WO
WO 9817347 Apr 1998 WO
WO 9852639 Nov 1998 WO
WO 9922784 May 1999 WO
WO 9933407 Jul 1999 WO
WO 9951286 Oct 1999 WO
WO 0041612 Jul 2000 WO
WO 0183016 Apr 2001 WO
WO 0141861 Jun 2001 WO
WO 0141861 Jun 2001 WO
WO 0197687 Dec 2001 WO
WO 0197717 Dec 2001 WO
Related Publications (1)
Number Date Country
20040097900 A1 May 2004 US
Continuations (1)
Number Date Country
Parent 09229390 Jan 1999 US
Child 10613654 US