Apparatus for automatic refilling of a low pressure casting machine

Information

  • Patent Grant
  • 6513571
  • Patent Number
    6,513,571
  • Date Filed
    Thursday, May 27, 1999
    25 years ago
  • Date Issued
    Tuesday, February 4, 2003
    21 years ago
Abstract
A low pressure casting machine having a fill line connected between a thermally insulated chamber and a refractory furnace. A solenoid valve is included in the fill line and is selectively opened to allow gravity to fill the thermally insulated chamber to a predetermined level with molten metal. The thermally insulated chamber is subsequently pressurized to force molten metal from the chamber into a mold cavity to cast a metal component.
Description




BACKGROUND OF THE INVENTION




This invention relates in general to low pressure casting machines and in particular to an apparatus and process for automatic refilling of a low pressure casting machine.




Many vehicle components, including wheels and full face wheel discs are cast in permanent multi-piece molds from alloys of light weight metals, such as aluminum, magnesium and titanium. Due to the large volume of parts needed, the casting processes are highly automated. Two frequently utilized casting processes are gravity-poured and low pressure casting. Gravity-poured casting involves pouring a charge of molten metal into a mold cavity. Gravity causes the molten metal to fill the mold cavity while gases within the mold cavity are forced out of mold vents. Riser cavities are formed in the upper portions of the mold cavity to assure that the mold cavity is completely filled and to feed additional molten metal into the mold to compensate for metal shrinkage as the casting cools and solidifies. After the casting is removed from the mold, the risers are removed and re-melted.




Low pressure casting involves forcing molten metal into the cavity mold under a low pressure, which, for casting wheel components, is typically within a range from approximately six psi to approximately seven psi. The pressure assures that the mold cavity is completely filled with molten metal. Typically, because the pressure force-fills the mold, the size of the riser cavities can be reduced, or the riser cavities may be eliminated entirely. Accordingly, less molten metal is needed for each casting and the need to re-melt the risers is reduced or eliminated. Additionally, low pressure casting facilitates casting of more complex shapes since the pressure forces the molten metal into all the portions of the mold cavity. Also, low pressure casting usually runs at lower mold temperatures and shorter cycle times than conventional gravity-poured casting processes. The rapid solidification rates associated with low pressure casting processes result in castings with finer grain size, smaller spacing between dendrite arms and enhanced mechanical properties.




Referring now to the drawings, there is illustrated in

FIG. 1

a typical known low pressure casting machine


10


. The machine


10


includes a thermally insulated lower chamber


11


which holds a pool of molten metal


12


. A filler tube


13


extends through a side of the lower chamber


11


from above the maximum height of the metal pool


12


. A removable filler cap


14


is mounted upon the upper end of the filler tube


13


. When closed, the filler cap


14


forms an air-tight seal for the lower chamber


11


. A pressurization port


14


A is formed through the lower chamber walls to allow pressurization of the chamber


11


. Similarly, a vent port


14


B is formed through the lower chamber walls to allow venting of the chamber


11


.




A multi-piece mold


15


is typically mounted above the lower chamber


11


; however, the chamber


11


is not necessarily positioned below the mold


15


. As illustrated in

FIG. 1

, the mold


15


includes an upper member


16


which cooperates with a lower member


17


to form a mold cavity


18


. For simplicity, a two piece mold


15


is illustrated in

FIG. 1. A

hollow fill tube, or stalk,


19


extends from the mold


15


and through the top of the casting machine's lower chamber


11


. The lower end of the stalk


19


extends into the pool of molten metal contained within the chamber


11


. The upper end of the stalk


19


extends through the lower mold member


17


and communicates with the mold cavity


18


. The upper mold member


16


is attached to a conventional mechanism


20


which raises the upper member


16


to allow removal of the casting from the mold cavity


18


. Once the casting is removed from the mold cavity


18


, the mechanism


20


is reversed to lower the upper member


16


and re-close the mold


15


.




To operate the low pressure casting machine


10


, the filler cap


14


is opened and molten metal poured into the filler tube


13


to fill the lower chamber


11


to the level of the lower end of the filler tube


13


. The filler tube


13


is then cleared of molten metal and the filler cap


14


closed and sealed. The mold


15


is closed and a pressurized gas is introduced through the pressurization port


14


A into the lower chamber


11


. The pressurized gas forces molten metal up the stalk


19


and into the mold cavity


18


, as shown by the small arrows in FIG.


1


. The pressure is maintained while the molten metal in mold cavity


18


solidifies into a casting for a component. The pressurized gas is then vented from the lower chamber


11


through the vent port


14


B and the upper mold member


16


is raised to open the mold


15


opened for removal of the casting from the mold cavity


18


. The upper mold member


16


is lowered to close the mold


15


and the lower chamber


11


re-pressurized to cast another component.




After each casting, the level of molten metal remaining in the lower chamber


11


is reduced. Accordingly, after a number of components are cast, the filler cap


14


is re-opened and the chamber


11


refilled with molten metal. The molten metal is typically manually transported to the individual casting machine from a centrally located refractory furnace in a thermally insulated covered ladle. Because the lower end of the filler tube


13


is some distance above the surface of the remaining metal when refilling occurs, the molten metal being added to the lower chamber


11


tends to cascade into the chamber


11


.




SUMMARY OF THE INVENTION




This invention relates to an apparatus and process for automatic refilling of a low pressure casting machine.




The prior art low pressure casting machine described above has a number of disadvantages. While the lower chamber is being refilled, the casting machine is out of service, which results in a loss of production and loss of mold temperature. Refilling the lower chamber of the casting machine interrupts the production process, causing process variability and corresponding product quality problems. The transport of molten metal to the casting machine for refilling the lower chamber is labor intensive. Because refilling requires pouring molten metal from a ladle and though a filler tube into the lower chamber, there is a chance that some of the molten metal could be spilled. Accordingly, the refilling process is hazardous. Manual refilling of the lower chamber is the last barrier to a fully automated low pressure casting process.




The agitation and turbulence caused by molten metal cascading from the filler tube into an almost empty lower chamber is conductive to generating oxidation byproducts and air bubbles which can be entrapped in the molten metal. When the oxidation byproducts and air bubbles are then cast into the component, the resulting product may have to be scrapped. Such raw material level variations are a source of process variability introduced by the traditional manual refilling process for the lower chamber.




Accordingly, it would be desirable to provide an apparatus for automatically refilling the lower chamber of a low pressure casting machine.




The present invention contemplates a low-pressure casting machine having a thermally insulated chamber adapted to retain a supply of molten metal and a mold having a cavity which communicates with the chamber. The machine also includes a pressurization device communicating with the chamber which is selectively operative to supply a pressurized gas to the chamber to force molten metal from the chamber into the mold cavity. The machine further includes a fill line communicating with the chamber, the fill line being operative to supply molten metal into the chamber. A normally closed fill valve is disposed in the fill line. The fill valve is selectively operative to control the flow of molten metal through the fill line and into the chamber.




In the preferred embodiment, the fill valve is actuated by a solenoid and the fill line communicates with a refractory furnace which supplies molten metal to the fill line. Gravity urges the molten metal from the furnace to the chamber. The fill line can be sloped, or the furnace can be at a higher elevation than the thermally insulated chamber, to enhance the flow of molten metal through the fill line.




Additionally, the casting machine includes a vent which communicates with the chamber. The vent is selectively operable to release the pressurized gas from within the chamber. The casting machine further includes a mechanism attached to a portion of the mold which selectively opens and closes the mold. A level sensor is optionally mounted within the thermally insulated chamber. The sensor is coupled to the fill valve solenoid and is operative, upon said molten metal within the thermally insulated chamber reaching a predetermined level, to cause the fill valve to close.




It is further contemplated that the casting machine is one of a plurality of casting machines. The casting machines are connected by associated fill lines to the refractory furnace. Each of the fill lines includes a fill valve which is selectively operable to control the flow of molten metal from the refractory furnace to the casting machines.




The invention also contemplates a process for casting a metal component which includes providing the above described casting machine. The chamber is pressurized to force molten metal from the chamber into the mold cavity. The molten metal in the mold cavity is allowed to solidify to form a casting. The chamber is then depressurized. The mold and the fill valve are opened to remove the casting and to allow molten metal to flow into the chamber to replace the molten metal used to form the casting. After the casting is removed from the opened mold, the mold and fill valve are closed.




The process further includes, prior to pressurizing the chamber, opening the fill valve to initially fill the chamber with molten metal and allowing the temperature of the casting machine to stabilize. In the preferred embodiment, the mold is for casting a vehicle wheel component.




Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a sectional view of a prior art low pressure casting machine.





FIG. 2

is a sectional view of a low pressure casting machine in accordance with the present invention.





FIG. 3

is an elevation view of the low pressure casting machine shown in

FIG. 2

connected to a refractory furnace.





FIG. 4

is a plan view of the low pressure casting machine and refractory furnace shown in FIG.


3


.





FIG. 5

is a detail sectional view of an automatic refilling apparatus which is included in the low pressure casting machine shown in FIG.


2


.





FIG. 6

is a flow chart for a low pressure casting process which utilizes the machine shown in FIG.


2


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring again to the drawings, there is illustrated in

FIG. 2

an improved low pressure casting machine


24


which includes an automatic refilling apparatus


25


in accordance with the present invention. Components shown in

FIG. 2

which are similar to components shown in

FIG. 1

have the same numerical designators. The automatic refilling apparatus


25


includes a thermally insulated fill line


26


which, as shown in

FIG. 3

, extends from the lower chamber of the casting machine


24


to a conventional refractory furnace


30


.




The refractory furnace


30


, which is illustrated in

FIGS. 3 and 4

, includes a main chamber


31


which is lined with a refractory material


32


and heated by combustion burners


33


fed by natural gas or fuel oil. The furnace


30


also includes a charge well


34


and a circulation well


35


which communicate through passageways


36


with one another and the main chamber


31


. Metal is inserted through an opening


37


into the charge well


34


and is melted into a pool which is contained within the main chamber


31


. A pump


38


powered by an electric motor


39


circulates the molten metal between the main chamber


31


and the charge and circulation wells


34


and


35


as shown by the dashed arrows in

FIGS. 3 and 4

.




The end of the fill line


26


, which is to the right in

FIG. 2

, is connected to the refractory furnace circulation well


35


and thereby communicates with the pool of metal which is maintained in a molten state within the refractory furnace


30


. In the preferred embodiment, the refractory furnace pool of molten metal is maintained at a slightly higher elevation than the lower chamber


11


of the casting machine


24


. Accordingly, gravity urges the molten metal through the fill line


26


from the refractory furnace and into the lower chamber


11


. Also in the preferred embodiment, the refractory furnace


30


is connected though multiple fill lines


26


to a plurality of low pressure casting machines


24


, as illustrated by the plan view in FIG.


4


.




The automatic refilling apparatus


25


also includes a normally closed solenoid operated fill valve


40


which is disposed in the fill line


26


and controls the flow of molten metal therethrough. A sectional view of the automatic refilling apparatus


25


is shown in

FIG. 5

, where components which are similar to components shown in

FIG. 2

have the same numerical designators. As shown in

FIG. 5

, the lower chamber


11


includes a vessel


45


having a lining


46


formed from a refractory material. A cover


47


extends across the top of the vessel


45


. The fill line


26


includes an outer housing


50


which is attached to the wall of the vessel


45


by a plurality of fasteners


51


(one shown). The fill line housing


50


has a lining


52


formed from a refractory material. A channel


53


is formed in the fill line lining


52


. The channel


53


extends through a side wall of the vessel


45


and the refractory lining


46


of the lower chamber


11


to communicate with the pool of molten metal


12


contained therein. A removable cover


54


extends over the channel


53


. The cover


54


is removed when the casting machine


24


is out of service to allow cleaning the channel


53


. The fill line


26


also can include optional electric heating elements (not shown) embedded within the refractory material. Such heating elements assure that the metal contained in the channel


53


remains in a molten state.




The fill valve


40


includes an annular valve seat


55


which is disposed within the fill line channel


53


and an axially movable valve stem


56


. The valve seat


55


and valve stem


56


are formed from a highly heat resistant material, such as, for example, a ceramic. The valve stem


56


is supported by a mounting structure


57


which is attached to the top of the fill line


50


and the wall of the lower chamber


11


by a plurality of fasteners


57


(one shown). As shown by the double headed arrow in

FIG. 5

, the valve stem


56


is movable in upward and downward directions. A conventional solenoid actuator (not shown) is attached to the upper end of the valve stem


56


to move the valve stem


56


. When moved down, the valve stem


56


co-operates with the valve seat


55


to block the flow of molten metal from the fill line


26


into the lower chamber


11


. Similarly, when the solenoid actuator raises the valve stem


56


from the valve seat


56


, gravity urges molten metal to flow from the fill line


26


into the lower chamber


11


to replenish the pool contained therein. The present invention contemplates that the solenoid for operating the fill valve


53


is electrically connected to the casting machine controller (not shown) to allow automatic operation of the valve


53


during casting operations, as will be described below.




The casting machine


24


also can include an optional level sensor


58


for determining the depth of the molten metal contained in the lower chamber


11


. The sensor


58


is of a conventional design and generates an electrical signal upon the molten metal reaching the sensor lever. The function of the level sensor


58


will be described below.




The operation of the improved low pressure casting machine


24


will now be described. A flow chart for the operation is shown in FIG.


6


. In functional block


60


, the solenoid valve


40


is opened for an initial filling of the lower chamber


11


. Gravity will fill the lower chamber


11


of the casting machine


24


until the depth is equal to the height of the molten metal in the fill line


26


. The fill valve


40


is closed and the temperature of the casting machine


24


is allowed to stabilize in functional block


61


. The lower chamber


11


is pressurized through the pressurization vent


14


A with a gas in functional block


62


to force molten metal up the stalk


19


and into the mold cavity


18


. While the lower chamber


11


is pressurized, the closed fill valve


40


also functions to prevent the back flow of molten metal through the fill line


26


. In functional block


63


, the mold


15


is allowed to cool sufficiently for the molten metal in the mold cavity


18


to solidify. The pressurized gas is vented from the lower chamber


11


through the vent port


14


B of the casting machine in functional block


64


. Next, in functional block


65


, the fill valve


40


is opened to allow molten metal to flow into the lower chamber


11


. As explained above, gravity will replace the amount of molten metal used to cast the component in functional block


62


.




At the same time that the fill valve


40


is opened, the mold


15


is opened and the casting removed, as shown in functional block


66


. After a sufficient time has passed to allow replenishment of the molten metal in the lower chamber


11


of the casting machine, the fill valve


40


is closed in functional block


67


. At the same time that the fill valve is closed, the mold


15


is re-closed in functional block


68


. The process then returns to functional block


62


for casting another component.




The simultaneous opening of the mold


15


and fill valve


40


reduces casting cycle time and thus improves casting machine efficiency. Similarly, the simultaneous closing of the mold


15


and fill valve


40


also reduces casting cycle time. While the preferred embodiment of the process has been described with the fill valve


40


and mold


15


being opened and closed together, it will be appreciated that the process also can be practiced with these steps occurring sequentially.




As indicated above, in the preferred embodiment, the refractory furnace circulation well


38


is at a higher elevation than the casting machine lower chamber


11


to facilitate the flow of molten metal from the circulation well


38


to the lower chamber


11


. Accordingly, the level sensor


58


described above is connected though a conventional control circuit, or controller


59


, to the fill valve


40


, as illustrated in FIG.


4


. During a fill cycle, the level sensor would generate a chamber full signal upon the molten metal in the lower chamber


11


reaching the sensor


58


. The chamber full signal would cause to control circuit to close the fill valve


40


and thereby prevent overfilling the lower chamber


11


.




Alternately, the fill level for the lower chamber


11


can be at the same elevation as the level of molten metal in the refractory furnace


30


with the fill line


26


sloped in a downward direction from the furnace


30


to the casting machine


24


. The downward slope of the fill line


26


would enhance the urging of the force of gravity upon the molten metal in the fill line


26


. Accordingly, the level of the molten metal in the lower chamber


11


would rise to the level of the molten metal in the furnace


30


without the necessity of a level sensor


58


to prevent overfilling.




It will be further appreciated that the invention also may be practiced with a horizontal fill line


26


, as illustrated in FIG.


3


. Gravity would urge the molten metal though the fill line


26


to refill the lower chamber


11


.




The improved low pressure casting machine


24


provides an increased throughput since the casting machine does not have to be stopped for refilling the lower chamber


11


. Little, if any, labor is required to move molten metal from a centrally located refractory furnace to the casting machine. Additionally, the hazardous process of refilling the lower chamber from a ladle is eliminated. The absence of interruptions to refill the lower chamber eliminates mold cool down and thereby provides a more robust process. The flow of the molten metal from the refractory furnace to the lower chamber is absolutely quiescent. The casting process can be: fully automated which results in process consistency, higher throughput of castings and higher quality castings produced with an improved quality yield. Because the lower chamber is refilled after every component is cast, the level of molten metal within the lower chamber is essentially constant, which eliminates one more variable in the casting process. Refilling the lower chamber after each casting cycle assures maintenance of a uniform molten metal temperature within the lower chamber.




In accordance with the provisions of the patent statutes, the principle and mode of operation of this invention have been explained and illustrated in its preferred embodiment. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope. For example, while the preferred embodiment of the process has been illustrated and explained in terms of casting vehicle wheel components, it will be appreciated that the process also can be practiced for casting other components.



Claims
  • 1. A low-pressure casting machine for casting wheel components, the machine comprising:a thermally insulated chamber adapted to retain a supply of molten metal; a mold having a cavity which communicates with said chamber; a pressurization device communicating with said chamber, said pressurization device being selectively operative to apply a pressure within said chamber to force molten metal from said chamber into said mold cavity; a vent communicating with said chamber, said vent being selectively operable to release said pressure from within said chamber after said mold cavity has filled and said mold has cooled sufficiently for the molten metal within said mold cavity to solidify; a fill line having a first end and a second end, said first end of said fill line communicating with said chamber; a central source of molten metal that is separated from said chamber, said source of molten metal communicating with said second end of said fill line, said source of molten metal and said fill line being positioned relative to said chamber such that gravity urges said molten metal through said fill line from said source of molten metal and directly into said chamber with a non-turbulent flow; a normally closed fill valve disposed in said fill line, said valve being selectively operative to control the flow of molten metal through said fill line and into said chamber; and a solenoid connected to said fill valve, said solenoid operative to open said fill valve while said vent is actuated to release said pressure from within said chamber and to close said fill valve while said pressurization device is actuated whereby the flow of molten metal into said thermally insulated chamber is controlled.
  • 2. The casting machine according to claim 1 wherein said fill line communicates with a refractory furnace, said refractory furnace containing a supply of molten metal.
  • 3. The casting machine according to claim 2 further including a mechanism attached to a portion of said mold, said mechanism selectively operable to open and close said mold.
  • 4. The casting machine according to claim 3 further including a level sensor mounted within said thermally insulated chamber, said sensor coupled to said fill valve solenoid and operative, upon said molten metal within said thermally insulated chamber reaching a predetermined level, to cause said fill valve to close.
  • 5. The casting machine according to claim 3 wherein said mold is for casting a wheel component.
  • 6. The casting machine according to claim 3 wherein the casting machine is one of a plurality of casting machines, said casting machines connected by associated fill lines to said single refractory furnace, each of said fill lines including a fill valve which is selectively operable to control the flow of molten metal from said refractory furnace to said casting machines.
  • 7. The casting machine according to claim 1 wherein said fill line communicates with a refractory furnace which contains a pool of molten metal at a higher elevation than said molten metal retained within said thermally insulated chamber, whereby gravity urges said molten metal to flow through said fill line from said refractory furnace to said thermally insulated chamber.
  • 8. The casting machine according to claim 1 wherein said fill line communicates with a refractory furnace which contains a pool of molten metal and further wherein said fill line slopes between said refractory furnace and said thermally insulated chamber, whereby gravity urges said molten metal to flow through said fill line from said refractory furnace to said thermally insulated chamber.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/086,923, filed on May 27, 1998.

US Referenced Citations (12)
Number Name Date Kind
3989088 Weissman et al. Nov 1976 A
4076070 Lefebvre et al. Feb 1978 A
4431046 Phillips Feb 1984 A
4436500 Allen et al. Mar 1984 A
4450981 Haig May 1984 A
4635706 Behrens Jan 1987 A
5125450 Kidd et al. Jun 1992 A
5174361 Kursfeld Dec 1992 A
5590681 Schaefer et al. Jan 1997 A
5657812 Walter Aug 1997 A
5725043 Schaefer et al. Mar 1998 A
5913358 Chadwick Jun 1999 A
Provisional Applications (1)
Number Date Country
60/086923 May 1998 US