The present invention generally relates to blenders and, more particularly, to apparatus for controlling the blending of drinks.
Very popular beverages today are those commonly referred to as “frozen” drinks, whereby a portion of liquid, which may often include a quantity of liquor and/or a flavored drink mix, and a portion of ice may be mixed together in a blending apparatus or blender to create an almost slush-like drink. In the past, the most typical manner to create such drinks may have required an operator to put a quantity of liquor, flavored drink mix, ice, and possibly other ingredients, such as fruit and the like, in the pitcher of a blender, and, thereafter, operate the blender until the frozen drink is perceived to be adequately mixed. The frozen drink may then be transferred from the pitcher of the blender to a patron's glass for consumption.
Such a procedure may have many disadvantages. For example, this procedure, in the sometimes busy environment of some establishments, may require the constant attention of the operator. Instead of operating the blender, the operator could be giving his or her attention to making other drinks while the frozen drink is being prepared.
Moreover, in the above-described manner, a skilled operator may have difficulty making frozen drinks which are consistent in quantity and quality. That is, dependent on the number of drinks to be made, the operator may be required to estimate the proper portions of liquid and ice to mix in the blender. If too small a quantity of liquid and ice are blended, the patron's glass will not be filled on the first try, and the operator will be required to blend additional portions of liquid and ice. Or, as often is the case, the operator may blend too large a quantity of liquid and ice, which, if not eventually used, is wasteful to the economic detriment of the establishment. Furthermore, there is no way to assure that the quality of the drink is consistent from drink-to-drink. If patrons have enjoyed a good first drink, they expect that their second drink will be of the same quality, which cannot always happen when the operator is required to “eyeball” the portion of liquid relative to the portion of ice to be blended.
In typical devices, attempts may be made to control the amount of ice to be delivered to the blending container by operating an ice shaver for a predetermined amount of time. Then, after a predetermined time delay, the blender may operate for a preselected amount of time. However, repeatably consistent drinks cannot be made by such a device in that there is no correlation between the amount of liquid which is manually placed in the container of the blender and the amount of ice to be delivered.
Alternatively, using time as the operative control parameter does not assure that the correct or precise quantity of ice has been added. For example, the ice machine might be almost empty, thereby not having a sufficient quantity of ice for the drink, yet these types of devices would run for a predetermined time and deliver an incorrect quantity of ice. Moreover, even if there was sufficient ice in the machine, it may not always be delivered at a uniform rate and it might not even be delivered at all, as could happen if the ice delivering blades were operating in a dead air space created by an arching of the ice in the machine.
A blending system is provided, including a base, a housing connected to the base, and an ice bin positioned above the housing. A plurality of load cells, such as three or more, may be positioned between the housing and the ice bin. In an embodiment, the load cells may be positioned on a shaver base positioned between the housing and the ice bin. The blending system may monitor the load cells to determine changes in weight of the ice bin.
In an embodiment, the blending system may include a drive plate positioned above the base. The drive plate may be configured to support a container thereon. A plurality of load cells, such as three or more load cells, may be positioned between the base and the drive plate. The blending system may monitor the load cells to determine changes in the weight of the container.
In an embodiment, the blending system may include a shaver wheel in the ice bin having an opening therein. The opening may be in fluid communication with one or more drain apertures in a shroud positioned on the base.
In an embodiment, the blending system may include a shroud positioned on the base. The shroud may include at least one open side. A front door may be positioned about the open side of the shroud and connected to hinges positioned on either side of the open side. The front door may be opened from either side and may pivot from either hinge.
In an embodiment, the blending system includes a drive plate having a pivot point, a retaining member and a thumb screw. A motor mount may be positioned on the pivot point, attached to the retaining member and secured into position by the thumb screw. A spring may be positioned to connect the drive plate and the motor mount.
Objects and advantages together with the operation of the invention may be better understood by reference to the following detailed description taken in connection with the following illustrations, wherein:
Reference will now be made in detail to exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. It is to be understood that other embodiments may be utilized and structural and functional changes may be made without departing from the respective scope of the invention. As such, the following description is presented by way of illustration only and should not limit in any way the various alternatives and modifications that may be made to the illustrated embodiments and still be within the spirit and scope of the invention.
A blending apparatus 10 is illustrated in
The housing 12 may include a frame 14, a top frame 16, a pair of side panels 22, a back panel 24 and a base plate 34 (
The top frame 16 may be of any appropriate shape, size, type or configuration, such as of a generally hollow rectangular configuration. The top frame 16 may be located at any appropriate position on the blending apparatus 10, such as located above the frame 14 (
The central aperture 18 may be of any appropriate shape, size, type or configuration, such as of a generally circular shape. The central aperture 18 may be located at any appropriate position on the top frame 16, such as at an approximate central location on the top frame 16. The top frame 16 may include any appropriate number of mounting apertures, such as four mounting apertures. The mounting apertures may be located at any appropriate position on the top frame 16, such as located adjacent each corner of the top frame 16 (
There may be any appropriate number of side panels 22, such as a pair of side panels 22. The side panels 22 may be of any appropriate shape, size, type or configuration, such as of a generally rectangular or square planar configuration. The side panels 22 may be located at any appropriate position on the blending apparatus 10, such as generally located on each side of the frame 14 (
The back panel 24 may be of any appropriate shape, size, type or configuration, such as of a generally rectangular or square planar configuration. The back panel 24 may be located at any appropriate position on the blending apparatus 10, such as located behind the frame 14 (
The base plate 34 may be of any appropriate shape, size, type or configuration, such as of a generally square or rectangular configuration. The base plate 34 may be located at any appropriate position on the blending apparatus 10, such as located below the frame 14 (FIGS. 5 and 7-9). The base plate 34 may include at least one leg 36 (FIGS. 5 and 7-9). The base plate 34 may include any appropriate number of legs 36, such as four legs 36. The legs 36 may be of any appropriate shape, size, type or configuration, such as a generally cylindrical or rectangular tubular configuration. The legs 36 may be located at any appropriate position on the base plate 34, such as located adjacent each corner of the base plate 34 and extending outwardly from the base plate 34.
The housing 12 may also include a door gasket 26 and at least one panel seal 32 (
The housing 12 may include any appropriate number of panel seals 32, such as three panel seals 32 (
The door 30 may be of any appropriate shape, size, type or configuration, such as of a generally C-shaped or U-shaped configuration (
The door 30 may include at least one attachment feature 118 (
The blending apparatus 10 may include at least one door hinge 28 (
In this embodiment, the door 30 may utilize magnetic hinges. The magnets located within the hinges 28 may lock each side of the door 30 in place. The magnetic hinges 28 may also act as a hinge, whereby the door 30 may open to either side or be pulled completely off from the front (
In an alternative embodiment, the door 30 may be hinged or spring loaded, whereby the door 30 may be pulled up or lifted up to open (
The shaver base 42 may be of any appropriate shape, size, type or configuration, such as of a generally rectangular or square configuration. For example, the shaver base 42 may generally be a four sided hollow box (
The shaver base 42 may include an ice bin 44 (
The ice bin 44 may include any appropriate number of walled layers, such as a plurality of walls or walled layers. For example, the ice bin 44 may be a double walled ice bin 44, whereby the ice bin 44 may also include a bin liner 46 (
The lid 60 may be of any appropriate shape, size, type or configuration, such as of a generally rectangular and planar configuration. The lid 60 may be located at any appropriate position on the blending apparatus 10, such as located above the shaver base 42 (
The flange 62 may be of any appropriate shape, size, type or configuration, such as of a generally planar configuration. The flange 62 may be located at any appropriate position on the lid 60, such as located adjacent to or along a portion of an edge of the lid 60 (
The blending apparatus 10 may also include a control panel 66 (
The blending apparatus 10 may include a shaver 52 (
The ice bin 44 may include an ice funnel 48 and a shaver wheel 50 (
The shaver wheel 50 may be of any appropriate shape, size, type or configuration, such as of a generally circular configuration. The shaver wheel 50 may be located at any appropriate position on the ice bin 44, such as generally located above and at a central location to the ice bin 44 and positioned within the ice funnel 48 (
The shaver wheel 50 may move the shaved ice to help it exit the ice bin 44. For example, the ice bin 44 may include an ice chute 45 (
The shaver wheel 50 may include a paddle nut 51 (
The blending apparatus 10 may include a container housing 70 (
The bottom liner 72 may be of any appropriate shape, size, type or configuration, such as of a generally C-shaped or U-shaped configuration. The bottom liner 72 may be located at any appropriate position on the blending apparatus 10, such as beneath the top liner 74 and above the base plate 34 (FIGS. 5 and 7-10). The bottom liner 72 may include a drain 78 (
The top liner 74 may be of any appropriate shape, size, type or configuration, such as of a generally C-shaped or U-shaped configuration. The top liner 74 may be located at any appropriate position on the blending apparatus 10, such as above the bottom liner 72 and beneath a portion of the shaver base 42 (FIGS. 5 and 7-10). The top liner 74 may include at least one drain aperture 76.
The top liner 74 may include any appropriate number of drain apertures 76, such as a pair of drain apertures 76 (
The container shroud 75 may be of any appropriate shape, size, type or configuration, such as of a generally C-shaped or U-shaped configuration. The shroud 75 may include at least one open side, as illustrated in the figures. The open side may be covered by the front door 30. The opening of the open side may further extend to portions of the sides of the container shroud 75, as illustrated. The shroud 75 may be located at any appropriate position on the container housing 70, such as adjacent the bottom liner 74 and top liner 72 and located above the base plate 34 (
The shaver 52 may include at least one shaver drain 53, such as a pair of drains 53. The shaver drains 53 may be of any appropriate shape, size, type or configuration, such as of a generally cylindrical configuration. The shaver drains 53 may be located at any appropriate position on the shaver 52, such as aligned with the drain apertures 76 of the top liner 74 (
The blending apparatus 10 may include a drain cup 80 and a drain coupling 82 (
The drain coupling 82 may be of any appropriate shape, size, type or configuration, such that the drain coupler 82 may be coupled to a hose or tube (not shown). The drain coupling 82 may be located at any appropriate position on the blending apparatus 10, such as attached to the drain cup 80 and located beneath the base plate 34 (
Any water resulting from melted ice within the blending apparatus 10 may be drained from the ice bin 44, through the funnel 48, down trough the drain 53 located in the shaver 52, into the aperture 76 of the top liner 74, down the back of the bottom liner 72 and through the drain 78 of the bottom liner 72 to the drain cup 80 (
The container housing 70 may include a splash mount 84 and a splash guard 86. The splash mount 84 may be of any appropriate shape, size, type or configuration, such as of a generally circular, triangular or square configuration. The splash mount 84 may be located at any appropriate position on the container housing 70, such as adjacent to a top end of the top liner 74 (
The container housing 70 may include a container pad 88 and a container 90 (
The container 90 may be of any appropriate shape, size, type or configuration, such as of a generally multi-walled configuration with an upper open end. The container 90 may be located at any appropriate position on the container housing 70, such as adjacent to and within the bottom liner 72 and the top liner 74 (
The blending apparatus 10 may include a drive plate 68 (
The drive plate 68 may include a motor mount plate 98 (
The base plate 34 may include at least one foam damper 64 (
The blending apparatus 10 may include an enclosure 108 (
The blending apparatus 10 may include a motor 100 (FIGS. 5 and 7-10). The motor 100 may be of any appropriate shape, size, type or configuration. The motor 100 may be located at any appropriate position on the blending apparatus 10, such as located on the motor mount plate 98, whereby the motor 100 is located within the housing 12. The motor 100 may include an air tube 106.
The air tube 106 may be of any appropriate shape, size, type or configuration, such as of a generally triangular and tubular configuration. The air tube 106 may be located at any appropriate position, such as located on top of the motor 100 (FIGS. 5 and 7-10). For example, the air tube 106 may be located between and engage the motor 100 for cooling air flow purposes to the enclosure 108, whereby air may flow through the enclosure 108, along the S-shaped aperture through the air tube 106 to the motor 100.
The air tube 106 and the enclosure 108 may not be physically secured to one another. For example, the air tube 106 and the enclosure 108 may engage one anther while being physically disconnected from one another. The air tube 106 may be a part of the weighing sensor system, whereby the air tube 106 may be weighed, and the enclosure 108 may be mounted to the rigid structure, which may not be weighed. If the components were physically secured to each other, problems may result in terms of providing an accurate weighing system and reading the load cells.
The blending apparatus 10 may include a holding system for the motor 100 (
The thumb screw 92 may be of any appropriate shape, size, type or configuration, such as of a generally circular configuration. The thumb screw 92 may be located at any appropriate position, such as adjacent a side of the drive plate 68 (
The pivot point 96 may be of any appropriate shape, size, type or configuration, such as of a generally cylindrical configuration. The pivot point 96 may be located at any appropriate position on the blending apparatus 10, such as located on and adjacent to a side of the drive plate 68 (
The drive plate 68 may also include a retainer 94 (
Removal of the drive plate 68 and/or motor 100 may be accomplished by any appropriate means. For example, the drive plate 68 may be removed via fasteners, such as wing nuts or thumb screws, which may or may not require tools for removal. The side panel 22 closest to a tensioning mechanism may be removed in order to provide greater access to the motor 100 in order to access, remove or replace the motor 100.
To remove and/or service the motor 100, the thumb screw 92 may be loosened and tensioning or spring mechanism may be unhooked. The drive plate 68 and motor 100 may then be slid or rotated towards the container housing 70, whereby the thumb screw 92 slides out from the slot 102. On the opposite side of the drive plate 68, as the drive plate 68 is moved towards the container housing 70 and away from the thumb screw 92, the drive plate 68 may also rotate on the pivot point 96 and move away from the retainer 94. The drive plate 68 and motor 100 may then be pulled upwards and away from the base plate 34 for service or removal. To assemble, the pivot bushing 104 may be aligned with the pivot point 96 and the thumb screw may be slid back into the slot 102. The holding system may provide for the motor 100 to be easily removed from the blending apparatus 10 for ease of service, which may provide for consistency of belt tension. Further, the motor may be set to the desired tension using the tensioning system (
The blending apparatus 10 may include an interlock system (
The interlock rod 110 may be of any appropriate shape, size, type or configuration, such as of a generally cylindrical and tubular configuration. The interlock rod 110 may be located at any appropriate position on the blending apparatus 10, such as located within a corner of the shaver base 42 (
The rod magnet 114 may be of any appropriate shape, size, type or configuration, such as of a generally cylindrical configuration. The rod magnet 114 may be located at any appropriate position on the interlock rod 110, such as near an upper end of the rod magnet 114 (
When the lid 60 is engaged with the ice bin 44, the attraction forces between the magnets 114, 116 may cause the rod 110 to move upwards. The mounting plate 112 may also include a sensor or read switch (not shown) that may be able to determine the position of the rod 110 (i.e. whether the rod is up or down), thereby determining when the lid 60 is attached or detached from the ice bin 44. The blending apparatus 10 may lock out use of selected or all components of the system when the lid 60 is removed from the ice bin 44. The mounting plate 112 may also include a dog leg. The dog leg may act as a stop to prevent the rod 110 from falling out of the shaver base 42, whereby the rod 110 may drop down and stop on the dog leg to stay within the shaver base 42.
The blending apparatus 10 may include a weighing system. The weighing system may include at least one sensor or base plate load cell 38 and at least one sensor and/or shaver base load cell 56. The blending apparatus 10 may include any appropriate number of base plate load cells 38, such as three or more load cells 38 or four load cells 38 (
The blending apparatus 10 may include any appropriate number of shaver base load cells 56, such as three or more load cells 56 or four load cells 56 (
The blending apparatus may be configured to isolate the ice bin 44 from the drive plate 68 and container housing 70, such that the ice bin 44 may be weighed by the shaver base load cells 56 and the drive plate 68 and container housing 70 may be weighed by the base plate load cells 38. For example, the housing 12, including frame 14 and top frame 16, that supports the ice bin 44 may be arranged to be isolated from the load cells 38. The housing 12 may be supported directly by an outer lip of base plate 34 to distribute the weight of the ice bin 44 directly onto the base plate 34 and through the legs 36, thereby bypassing load cells 38. Accordingly, the base plate load cells 38 may be arranged to weigh only the drive plate 68 and container housing 70. Likewise, the shaver base load cells 56 may be arranged to weigh only the ice bin 44.
The weighing system may utilize any appropriate type of weighing method. For example, the weighing system may utilize an additive weighing method, a subtractive weighing method, or a combination of the two. For example, the drive plate 68 may be weighed by utilizing an additive weighing method. Here, the operator may tare out the weight before dispensing, whereby any ice added may be summed up. The added weight after you tare is how much ice has been dispensed. The load cells 38 may be mounted to the base plate 34 (
In another example, the ice bin 44 may be weighed by utilizing a subtractive weighing method. Here, the operator may tare out the ice bin 44 and then determine any drop or reduction in weight as the ice is dispensed. The load cells 56 may be moutned to the shaver base 52 (
In a further example, the operator may utilize both an additive weighing method and a subtractive weighing method. For example, the load cells 38 may measure the amount of mass added to the container 90 while the load cells 56 may measure the amount of ice dispersed from the ice bin 44. The weights from load cells 38 and 56 may be used as a check to verify measurements. The separate weights may also be used to measure the amount of both ice and another substance added to the container 90 while still measuring the amount of ice dispersed from the ice bin 44.
Utilizing weight to determine the amount of ice needed may permit the operator to make the same drink every time, since the operator is identifying the amount of ice needed by weight. In addition, by allowing the melted water in the ice bin 44 to drain from the ice bin 44 and out from the blending apparatus 10 into the drain cup 80 may further aid the sensors or load cells 38, 56 to accurately measure the ice in the shaver base 42. Alternatively, the cup 80 may be replaced with a tray 81 (
Although the embodiments of the present invention have been illustrated in the accompanying drawings and described in the foregoing detailed description, it is to be understood that the present invention is not to be limited to the embodiments disclosed, but that the invention described herein is capable of numerous rearrangements, modifications and substitutions without departing from the scope of the claims hereafter.
This application claims benefit from U.S. Provisional Patent Application No. 61/523,676, entitled “Apparatus for Controlling the Blending of Drinks,” filed on Aug. 15, 2011, which is hereby incorporated in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
61523676 | Aug 2011 | US |