Apparatus for dental confocal imaging

Abstract
An apparatus for dental confocal imaging comprises an illumination module for generating an array of light beams, an optics system for confocal focusing of the array of light beams and a probe head with a light-guiding part having an entrance face and an exit face. The illumination module, the optics system and the probe head are arranged such that the array of light beams from the illumination module passes through the optics system, enters the light-guiding part via the entrance face and exits the light-guiding part via the exit face. The optics system is configured such that, after having passed through the optics system, the outermost marginal rays of the outermost light beams with respect to the optical axis of the optics system are parallel or divergent to the optical axis.
Description
FIELD OF THE INVENTION

Embodiments of the present invention are directed to methods and apparatus for dental confocal imaging, such as for measuring surface topology of teeth.


BACKGROUND

In the fields of orthodontics and prosthodontics, different methods are known to determine a current teeth topology in a patient's mouth. One of the methods involves taking an impression of a patient's dentition. Using this impression, a plaster cast is made, representing a (positive) physical teeth model. This physical teeth model may then be used for a subsequent treatment plan.


If CAD (computer-aided design) and/or CAM (computer-aided manufacturing) techniques are to be employed, a digital dataset corresponding to the teeth may be obtained by scanning. For example, the (positive) physical teeth model in form of the plaster cast or a (negative) physical teeth model in form of the impression may be scanned or imaged using x-rays, computed tomography, magnetic resonance imaging, or laser scanning apparatuses. With the thus obtained image data, a computer model of the teeth or a part thereof may be established. However, such methods and apparatus can be somewhat time consuming and more expensive than would be ideal.


As an alternative, teeth in a patient's mouth may be imaged directly. For this purpose, different imaging apparatuses are known.


The prior apparatus for non-contact imaging with a probe having a sensing face have been less than ideal in at least some respects. The prior probe devices can be somewhat larger than would be ideal, and may have a large intraoral front tip which can make the prior devices somewhat cumbersome to use in at least some instances. Although an array of incident light beams passing through focusing optics can be used, the larger than ideal probe heads of such devices can provide less than ideal measurements of the oral cavity of a patient. Also, the prior devices that rely on beams to generate illuminated spots on the structure and the intensity of returning light rays propagating along an optical path can be somewhat cumbersome to use and maintain and can be somewhat more costly to manufacture than would be ideal.


Although three-dimensional (3D) data acquisition using triangulation has been proposed, such devices can be less compact than would be ideal and can be somewhat difficult to place in the mouth of the patient. Also, such devices can require alignment and can be less accurate and reliable than would be ideal in at least some instances.


In light of the above, improved methods and apparatus for measuring surfaces such as the intraoral cavity are needed. Ideally such methods and apparatus will overcome at least some of the deficiencies of the prior methods and apparatus and be more accurate, reliable, compact, easier to use with the patient's mouth and less costly than the prior devices.


SUMMARY

In accordance with embodiments, an apparatus for confocal imaging is provided, which may comprise an illumination module for generating an array of light beams, an optics system for confocal focusing of the array of light beams, and a probe head with a light-guiding part having an entrance face and an exit face. The illumination module, the optics system, and the probe head can be arranged such that the array of light beams from the illumination module passes through the optics system, enters the light-guiding part via the entrance face, and exits the light-guiding part via the exit face. Embodiments disclosed herein provide probes having decreased size which can facilitate measurement of surfaces which can be difficult to reach with prior devices such as an oral cavity of a patient. The embodiments disclosed herein also have the advantage of providing improved accuracy and reliability with decreased manufacturing costs. In many embodiments, a plurality of beams is directed toward a measurement surface in which each of the plurality of beams extends to a focal point and comprises a chief ray. The chief rays of the plurality of beams can diverge from each other between the probe and the focal points in order to decrease the size of the probe and inhibit spread of the outermost marginal rays. In many embodiments, the confocal imaging system comprises a non-telecentric configuration such that the off-axis chief ray angles of the light beams exiting the probe have an opposite orientation with respect to angles of the marginal rays entering the probe, such that a substantially decreased cross-sectional size of the probe can be provided. In many embodiments, laterally outermost marginal rays of each of the outer beams on either side of the optical axis extend along an optical path substantially parallel to the optical axis and substantially parallel to the optical axis, or divergent from the optical axis. In many embodiments, lateral spread of the array of beams is inhibited as each individual beam converges toward the focal point, and this spread can be inhibited when the focal point is shifted.


In a first aspect, embodiments provide an apparatus for confocal imaging, comprising an illumination module for generating an array of light beams, an optics system for confocal focusing of the array of light beams and a probe head with a light-guiding part having an entrance face and an exit face. The illumination module, the optics system and the probe head are arranged such that the array of light beams from the illumination module passes through the optics system, enters the light-guiding part via the entrance face and exits the light-guiding part via the exit face. The optics system is configured such that, after having passed through the optics system, the outermost marginal rays of the outermost light beams with respect to the optical axis of the optics system are parallel or divergent to the optical axis.


In another aspect, embodiments provide an apparatus for confocal imaging comprising an illumination module for generating an array of light beams, an optics system for confocal focusing of the array of light beams and a probe head with a light-guiding part having an entrance face and an exit face. The illumination module, the optics system and the probe head are arranged such that chief rays of the array of light beams are divergent to each other.


In another aspect, embodiments provide a method for confocal imaging. An illumination module is provided for generating an array of light beams. An optics system is provided for confocal focusing of the array of light beams and a probe head with a light-guiding part having an optical axis and an entrance face and an exit face. The optics system is configured such that, after having passed through the optics system, outermost marginal rays of outermost light beams with respect to the optical axis are parallel or divergent with respect to the optical axis between the probe and focal points of the light beams.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 is a schematic view of a confocal imaging apparatus, in accordance with embodiments;



FIG. 2A is a schematic view of the optical path in an optics system of a confocal imaging apparatus in a paraxial design, in accordance with embodiments;



FIG. 2B is a schematic view of the optical path in an optics system of a confocal imaging apparatus in a thick lens design, in accordance with embodiments;



FIG. 3 is a top view of a schematically illustrated probe head, in accordance with embodiments;



FIG. 4 is a longitudinal cross-section through line A-A in FIG. 3; and



FIG. 5 is a longitudinal cross-section through a schematically illustrated probe head in accordance with embodiments.





DETAILED DESCRIPTION

The methods and apparatus disclosed herein can be combined in one or more of many ways and are well suited for combination with many devices related to surface topology such as the measurement of tissue surfaces such as surfaces of the oral cavity. The tissue surfaces may comprise one or more surfaces of teeth of the mouth, for example. The measured surfaces can be used by health care providers such as orthodontists and dentists.


In many embodiments, the optics system can be configured such that, after having passed through the optics system, the outermost marginal rays of the outermost light beams with respect to the optical axis of the optics system are parallel or divergent to the optical axis. In many embodiments, a plurality of light beams exits the probe head with divergent angles. Each of the plurality of light beams may comprise a chief ray divergent from an optical axis of the optics system.


In many embodiments, the outermost marginal rays of the outermost light beams, after exiting the optics system, do not converge towards the optical axis, in order to avoid a lateral spread of the array of beams even when shifting the focal plane of the focusing optics. In many embodiments, the term “outermost” refers to a distance transverse to the optical axis, such as a distance perpendicular to the optical axis. In many embodiments, an outermost light beam or most off-axis light beam comprises a beam having a largest distance to the optical axis in a direction perpendicular thereto.


The apparatus may be configured for intraoral confocal imaging, such as an apparatus for intraoral confocal imaging, which can be used for confocal imaging of positive and/or negative physical teeth models. The apparatus may comprise a scanning apparatus. The focusing optics of the apparatus may comprise non-telecentric optics, such that a reduced ray footprint at the probe head entrance face can be provided.


In many embodiments, the outermost marginal rays of the outermost light beams, after having passed through the optics system, are divergent with respect to the optical axis, and the divergence angle between the outermost marginal rays and the optical axis may be at most 10°, in some embodiments at most 8°, and in specific embodiments at most 5°.


In many embodiments, the light-guiding part comprises a transparent body. The transparent body may comprise one or more of glass or plastics, and may comprise a stiff, solid body, such as a rigid body.


The light-guiding part may be arranged such that the array of light beams enters the light-guiding part at an angle of approximately 90° with respect to the entrance face. In some embodiments, the light guiding part may be arranged such that the array of light beams enters via the entrance face at an angle of 90°±10°, such as 90°±8°, and more particularly of 90°±5°.


The light-guiding part may be bounded by sidewalls, and the sidewalls of the light-guiding part and entrance face may be arranged such that each light beam entering the light-guiding part via the entrance face is reflected at the sidewalls an odd number of times before exiting via the exit face. In many embodiments, each light beam may be reflected at the sidewalls three or five times before exiting via the exit face. Each of the sidewalls and/or the exit face and/or the entrance face may be planar.


The light-guiding part may be configured with an index of refraction and arrangement of the entrance face and sidewalls such that each light beam entering via the entrance face is reflected from at least one of the sidewalls of the light-guiding part by way of internal reflection. In many embodiments, at least some of the reflections at the sidewalls result from internal reflection such as one or more of total internal reflection, attenuated total internal reflection, or frustrated total internal reflection. Alternatively or additionally, at least some reflections may be provided with a minor coating on a sidewall or part of a sidewall.


In many embodiments, the light-guiding part comprises a one-piece body.


In many embodiments, the light-guiding part comprises an upper sidewall being arranged at an acute angle with respect to the entrance face, a lower sidewall being arranged at an obtuse angle with respect to the entrance face, and an end sidewall being arranged at an acute angle with respect to the entrance face and/or the exit face. The upper sidewall may adjoin the entrance face; the lower sidewall may adjoin the entrance face and/or the end sidewall may adjoin the upper sidewall and/or the lower sidewall. The angle between the end sidewall and the upper sidewall may be an obtuse angle. The lower sidewall may comprise the exit face.


In many embodiments, the end sidewall may comprise a mirror. For example, the end sidewall may comprise a mirror coating. In such embodiments, the light-guiding part may be arranged and/or configured such that each light beam entering via the entrance face is reflected at all (remaining) sidewalls except for the end sidewall by way of internal reflection.


The angle between the entrance face and the lower sidewall may lie between 90° and 125°, in particular, between 90° and 115°. The angle between the exit face or the lower sidewall and the end sidewall may lie between 20° and 45°, in particular, between 25° and 35°. The angle between the entrance face and the upper sidewall may lie between 90° and 65°, in particular, between 90° and 80°.


The exit face may be covered by a transparent cover plate. The transparent cover plate may be a glass or plastics plate. The cover plate may be arranged at a distance from the exit face.


In many embodiments, the illumination module comprises a single light emitter or a plurality of light emitters. The one or more light emitters may emit coherent light. The light emitter may comprise one or a plurality of laser emitters. In embodiments comprising a single light emitter, the illumination module may further comprise a beam-expander element and/or a beam-splitter element for splitting a light beam from the light emitter into a plurality of light beams and/or an array of light beams. The beam-splitter element may comprise diffractive optics or a refractive optics, such as a grating or a microlens array.


Any of the above-described apparatuses may comprise a polarizer for linearly polarizing a light beam, wherein the polarizer is arranged along the optical path between the illumination module and the probe head, in particular, between the illumination module and the optics system.


Any of the above-described apparatuses may comprise a beam splitter being arranged along the optical path between the illumination module and the optics system such that the array of light beams from the illumination module passes through the beam splitter and an array of returning light beams from the optics module is reflected, in particular, towards a detector. The beam splitter may comprise a semi-transparent minor. The light beams from the illumination module passing through the optics system may comprise incident light beams, and light beams following the optical path in an opposite direction through the optics system may comprise returning light beams. The array of returning light beams may comprise an array of light beams having been reflected by an object to be imaged, such as teeth portions, for example.


The described apparatuses may further comprise a detector for detecting an array of returning light beams. The detector may comprise an array of detector elements. The detector elements may comprise a CCD camera or a photodiode array. The detector may comprise a spectrophotometer.


The above-described apparatuses may comprise a focus-shifting mechanism for shifting the focal plane of the optics system. For example, the focus-shifting mechanism may be configured to shift one or more lenses of the optics system along the optical axis. In many embodiments, the focus-shifting mechanism may comprise a translation mechanism for translating the one or more lenses of the optics system.


In many embodiments, the probe heads comprise a housing, wherein the light guiding part and/or the optics system are provided within the housing. In embodiments where a focus-shifting mechanism is provided, the focus shifting mechanism may also be provided within the housing.


In many embodiments, the probe head comprises a part of a handheld device. The optics system and/or a focus-shifting mechanism may comprise part of the handheld device, for example. In particular, the handheld device may be defined by the housing described above.


Further features will be described with reference to the accompanying drawings, in accordance with embodiments.


As used herein, a chief ray encompasses a central ray of a beam of light. In many embodiments, a plurality of beams is directed onto the surface to be measured, in which each of the plurality of beams comprises a chief ray.



FIG. 1 schematically illustrates an example of an apparatus for dental confocal imagining of a teeth segment or teeth portion, in accordance with many embodiments. The teeth segment may comprise one tooth, a plurality of teeth, a tooth stump and/or a portion where one or more teeth are missing. The apparatus may be used, for example, for intraoral imaging of teeth. Alternatively, imaging of a positive or negative teeth model may be performed as well.


The illustrated apparatus comprises a light emitter 1 as a source of coherent light. As an example, the light emitter may be a laser source such as a semiconductor laser.


As indicated by the arrow shown, emitted light passes through a beam expander 2, which may comprise a collimating lens so as to obtain a collimated light beam having a desired width or numerical aperture.


Along the optical path between the light emitter 1 and the beam expander 2, optionally, a polarizer such as a polarization filter may be provided.


The beam expander 2 is followed by a spot array generator element 3 for splitting the beam into an array of light beams. The spot array generator element 3 in the form of diffraction or refraction optics may comprise a grating or a microlens array, for example.


In the illustrated example, the light emitter comprises a single light source from which the array of light beams is generated via the beam expander and the beam splitter element. As an alternative, the light emitter 1 may already comprise a plurality of light sources being arranged in form of an array. In this case, the array of light beams is generated directly at the light emitter 1 so that a beam expander and/or beam splitter may be avoided. As an example, the array of light sources may be provided in the form of an array of laser sources such as semiconductor lasers.


In this example, the light emitter 1, the beam expander 2 and the spot array generator element 3 define an illumination module generating an array of light beams.


The array of light beams, represented here, for ease of illustration, by a single line, passes through a beam splitter 4 in form of a semi-transparent mirror and enters optics system 5. The optics system 5 comprises a non-telecentric, confocal lens arrangement which will be described in more detail below.


The light beams coming from the light emitter 1 and propagating towards the sample to be imaged (e.g. a teeth segment) are called incident light beams, whereas light beams being reflected at the sample and propagating along the optical path of the incident light beams but in opposite direction are called returning light beams.


After the optics system 5, the incident array of light beams enters a probe head 6. In particular, the array of light beams is coupled into a light guiding part of the probe head via the light guiding part's entrance face. Within the light guiding part, each beam is reflected several times before it is coupled out via an exit face onto an object to be imaged, such as a teeth segment 7. In this way, an incident array of light beams is emitted towards the teeth segment 7, thus, resulting in an array of light spots on the teeth surface.


As also illustrated by one of the arrows between a tooth and the probe head, reflected light re-enters the probe head 6, particularly its light guiding part via the exit face. In this way, each reflected or returning light beam travels along the optical path in opposite direction as travelled by the incident light beams. Therefore, the returning light beams are also reflected several times within the light guiding part of probe head 6 and pass through optics system 5 in an inverse direction. At the semi-transparent minor 4, the returned light beams are reflected towards imaging optics 8 comprising one or more lenses, followed by a pinhole array 9.


Then, the array of returning light beams impinges onto a detector 10, comprising an array of detector elements. For example, the detector 10 may be a CCD camera or a photodiode array. Each detector element or sensing element corresponds to a pinhole in the array 9.


The detector 10 is connected to a processing unit 11 where each light intensity measured in each of the detector elements is grabbed and analyzed.


The apparatus further comprises a control unit 12 being connected to the light emitter 1 as well as to a motor 13. Motor 13 is an example of a focus-shifting mechanism for shifting the focal plane of the optics system 5. In particular, motor 13 is coupled to the optics system 5 so as to shift or translate one or more lenses of the optics system along the optical axis. In this way, the focal plane location may be changed or shifted.


After receipt of a feedback signal that the location of the focal plane has changed (or that the one or more lenses have been shifted), control unit 12 triggers light emitter 1 to generate a light pulse. Processing unit 11 will grab data representative of the light intensity as detected by detector 10 corresponding to the light pulse which was reflected at the teeth portion 7. This procedure will be repeated for a plurality of locations for the focal plane.


As outlined in detail in WO 00/08415, the entire disclosure of which is incorporated herein by reference, for example, the surface topology of the image object (e.g. a teeth segment) is determined by determining the focal plane location for which, for a particular pixel, the light intensity is maximal. In this way, a three-dimensional representation of the object, e.g., the teeth segment, may be obtained. It may be displayed and/or further processed.


The array of light beams may comprise light beams having different wavelengths. For this purpose, the light emitter 1 may comprise different light sources emitting light of different wavelengths. In case of an array with beams of different wavelengths, the detector may be a spectrophotometer with color resolution. Examples for spectrophotometers are a three-chip CCD camera or the use of a Bayer mask over a monochrome CCD or other light sensor.


By using light components or light beams with different wavelengths, each being focused simultaneously on a different focal plane, the time for imaging may be reduced as different focal plane ranges can be simultaneously measured.


The probe head 6 may comprise a housing. For example, both the optics system 5 and the light guiding part may be provided within such a housing. The housing may be configured as a handheld device so that the light guiding part and/or optics system 5 and/or motor 13 are included in the handheld device.



FIG. 2A schematically illustrates a paraxial design example of the optics system, showing the first order imaging configuration, in accordance with many embodiments. In this schematic view, probe 6 is illustrated as a single block. In this example, a central beam 14 and an outermost beam 15 (in a direction perpendicular to the optical axis) are emitted from a source plane 16. By way of example, reference numerals 15′ and 15″ denote marginal rays of the outermost beam 15, whereas reference numeral 14″′ denotes the chief ray of central beam 14. Thus, the term “marginal rays” is used in the conventional sense denoting the rays (of a specific light beam) defining the beam's circumference or envelope; the “chief ray” corresponds to the central ray of a beam.


As can be seen in this example, the outermost marginal ray 15″ of outermost light beam 15, after having passed through the optics system 5 and before entering the probe head 6, is parallel to the optical axis 24, and the marginal ray 15″ is parallel to chief ray 14″′ of the central beam that is on the optical axis 24.


In case of the complete array of light beams, the outermost marginal rays of the outer beams of the array (on either side of the optical axis) after having passed through the optics system and before entering probe head, are all parallel to the optical axis. As a consequence of this configuration, there is little or no lateral spread of the array of beams even when shifting the focal plane 17 of the array.


Each of the plurality of light beams may comprise a chief ray. For example, the outer beam 15 may comprise a chief ray 15″′ extending from an outer aperture at source plane 16 to the focus at focal plane 17.


As an alternative to or in combination with the above-described parallelism of the outermost marginal rays of the outermost beams and the chief ray of the central beam, the optics system may be configured such that the outermost marginal rays of the outermost light beams with respect to the optical axis of the optics system are divergent relative to the optical axis. In many embodiments, after having passed through the optics system, the outermost marginal ray of the outermost beams may show an opening angle with respect to the optical axis. This divergence angle or opening angle with respect to the optical axis may be at most 10°, preferably at most 8°.


In many embodiments, the confocal focusing system of the optics system comprises a non-telecentric optical system. The optics system can be configured such that the angle defined by the marginal rays of an outermost beam is complementary to the angle defined by the extreme off-axis chief rays with respect to the optical axis. In such embodiments, a decreased ray footprint at object to be imaged, e.g. the teeth segment, is provided.



FIG. 2B schematically illustrates a thick lens design example corresponding to the embodiments of FIG. 2A. Also in FIG. 2B, from the array of beams generated by the illumination module, only one central beam 14 and one outermost beam 15 are shown with dashed lines for the sake of simplicity, in accordance with embodiments .



FIGS. 3 and 4 schematically illustrate a top view and a cross-sectional view (through line A-A) of a probe head, respectively, in accordance with many embodiments. The probe head 6 has a light-guiding part with an entrance face 18 and an exit face 19. Light coming from the light emitter and the optics system enters the light-guiding part via the entrance face 18 at an angle of about 90°, i.e., substantially normal to the entrance face. The entrance angle may be 90°±10°, preferably 90°±8°, for example. This particularly applies to the embodiments in which the outermost marginal rays of the outermost light beams are divergent with respect to the optical axis after having passed through the optics system.


As schematically illustrated in FIG. 4, the light-guiding part is arranged and light is coupled into the light guiding part in such a way that each light beam entering the light-guiding part via the entrance face 18 is reflected at the sidewalls. In embodiments according to FIG. 4, three reflections occur before a light beam exits the light-guiding part via the exit face 19. A first reflection takes place at an upper sidewall 20, adjoining the entrance face 18 and being arranged at an acute angle with respect to entrance face 18. The second reflection occurs at lower sidewall 21, also adjoining the entrance face 18 and being arranged at an obtuse angle with respect thereto. The last reflection occurs at end sidewall 22, adjoining both the upper and the lower sidewalls. The exit face 19 is part of the lower sidewall 21.


End sidewall 22 comprises a mirror, which may be obtained by a suitable coating of the corresponding surface of the light-guiding part. The light-guiding part as a whole, in these embodiments, may comprise a one-piece body, for example, comprising a glass body or a body composed of a transparent resin. The first and second reflections at upper sidewall 20 and lower sidewall 21 may result from internal reflection.


In view of these embodiments, the light-guiding part of the probe head, in accordance with its one-piece form, may be manufactured in a simple and economical way.


The specific configuration of the optics system as described above allows for a long light-guiding part and probe head while maintaining a small thickness resulting in an improved intraoral use.


In many embodiments, and as illustrated in FIG. 5, the exit face 19 may be covered by a transparent cover plate 23 which is arranged at some distance from the exit face 19. This cover plate 23 may be exchangeable for hygienic reasons, and may comprise a single use component.


The embodiments illustrated in FIG. 5 provides for an even longer light-guiding part along which the light beams are reflected five times before exiting via the exit face 19. In principle, any odd number of reflections is possible.


In many embodiments, the chief rays of each of a plurality of light beams exits the exit face 19 with a divergent angle with respect to the optical axis, for example. This divergence of each of the chief rays of the light beams provides improved measurements and can decrease the overlap of spots imaged onto the oral cavity, for example. The decrease of spread of the marginal rays the light beams as described herein can be combined with the divergence of the chief rays of each of the light beams in order to provide improved the accuracy of measurements as described herein, for example.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. An apparatus for confocal imaging, the apparatus comprising: an illumination module for generating an array of light beams;an optics system for confocal focusing of the array of light beams; and a probe head with a light-guiding part having an entrance face and an exit face,wherein the illumination module, the optics system and the probe head are arranged such that the array of light beams from the illumination module passes through the optics system, enters the light-guiding part via the entrance face and exits the light-guiding part via the exit face, and focuses on a surface external to the light-guiding part, andwherein the optics system is configured such that, after having passed through the optics system and before entering the probe head, an outermost chief ray of the array of light beams with respect to an optical axis is divergent to the optical axis and an outermost marginal ray of an outermost light beam with respect to an optical axis of the optics system are parallel or divergent to the optical axis.
  • 2. The apparatus according to claim 1, wherein the light-guiding part comprises a transparent body.
  • 3. The apparatus according to claim 1, wherein the light-guiding part is arranged such that the array of light beams enters the light-guiding part at an angle of 90±10° with respect to the entrance face.
  • 4. The apparatus according to claim 1, wherein the light-guiding part is bounded by sidewalls and the light-guiding part is arranged such that each light beam entering the light-guiding part via the entrance face is reflected at the sidewalls an odd number of times before exiting via the exit face.
  • 5. The apparatus according to claim 1, wherein the light-guiding part is arranged such that each light beam entering via the entrance face is reflected with at least one sidewall of the light-guiding part by way of internal reflection.
  • 6. The apparatus according to claim 1, wherein the light-guiding part comprises a one-piece body.
  • 7. The apparatus according claim 1, wherein the light-guiding part comprises an upper sidewall arranged at an acute angle with respect to the entrance face, a lower sidewall arranged at an obtuse angle with respect to the entrance face, and an end sidewall arranged at an acute angle with respect to the entrance face or the exit face.
  • 8. The apparatus according to claim 7, wherein the end sidewall comprises a mirror.
  • 9. The apparatus according to claim 7, wherein the obtuse angle between the entrance face and the lower sidewall lies between 90° and 125°.
  • 10. The apparatus according to claim 1, wherein the exit face is covered by a transparent cover plate.
  • 11. The apparatus according to claim 1, wherein the illumination module comprises a plurality of light emitters.
  • 12. The apparatus according to claim 1, further comprising a beam splitter arranged along an optical path between the illumination module and the optics system such that the array of light beams from the illumination module passes through the beam splitter and a returning array of light beams from the optics system is reflected.
  • 13. The apparatus according to claim 1, further comprising a detector for detecting a returning array of light beams.
  • 14. The apparatus according to claim 1, further comprising a focus shifting mechanism for shifting a focal plane of the optics system.
  • 15. The apparatus according to claim 14, wherein the focus shifting mechanism is configured to shift one or more lenses of the optics system along the optical axis.
  • 16. The apparatus according to claim 1, wherein the illumination module comprises a single light emitter.
  • 17. The apparatus according to claim 1, wherein the outermost marginal ray of the outermost light beam with respect to the optical axis of the optics system is at a first angle with an outermost off-axis chief ray that is complementary to a second angle defined by the outermost off-axis chief ray with the optical axis.
  • 18. A method for confocal imaging, the method comprising: providing an illumination module for generating an array of light beams;providing an optics system for confocal focusing of the array of light beams; andproviding a probe head with a light-guiding part having an optical axis and an entrance face and an exit face,wherein the optics system is configured such that, after having passed through the optics system and before entering the probe head, outermost marginal rays of outermost light beams with respect to the optical axis are parallel or divergent with respect to the optical axis and chief rays of the outermost light beams with respect to the optical axis are divergent.
  • 19. The method according to claim 18, wherein the outermost marginal rays of the outermost light beams with respect to the optical axis of the optics system are at a first angle with an outermost off-axis chief ray that is complementary to a second angle defined by the outermost off-axis chief ray with respect to the optical axis.
  • 20. An apparatus for confocal imaging, the apparatus comprising: an illumination module for generating an array of light beams;an optics system for confocal focusing of the array of light beams; anda probe head with a light-guiding part having an entrance face and an exit face, wherein the illumination module, the optics system and the probe head are arranged such that chief rays of the array of light beams before entering the probe head are divergent to each other, and wherein an off-axis chief ray of an outer beam of the array of light beams diverges at a divergence angle with respect to an optical axis and an outer marginal ray of the outer light beam converges at an angle with respect to the off-axis chief ray that is complementary to the divergence angle.
CROSS REFERENCE

This application claims the benefit of U.S. Provisional Application No. 62/021,608, filed Jul. 7, 2014, which application is incorporated herein by reference in its entirety.

US Referenced Citations (518)
Number Name Date Kind
2171695 Harper Sep 1939 A
2467432 Kesling Apr 1949 A
2531222 Kesling Nov 1950 A
3379193 Monsghan Apr 1968 A
3385291 Martin May 1968 A
3407500 Kesling Oct 1968 A
3478742 Edward Nov 1969 A
3496936 Kenneth Feb 1970 A
3533163 Stanley Oct 1970 A
3556093 Clifford Jan 1971 A
3600808 Reeve Aug 1971 A
3660900 Andrews May 1972 A
3683502 Wallshein Aug 1972 A
3738005 Cohen Jun 1973 A
3860803 Levine Jan 1975 A
3885310 Northcutt May 1975 A
3916526 Schudy Nov 1975 A
3922786 Lavin Dec 1975 A
3950851 Bergersen Apr 1976 A
3983628 Acevedo Oct 1976 A
4014096 Dellinger Mar 1977 A
4195046 Kesling Mar 1980 A
4253828 Coles et al. Mar 1981 A
4255138 Frohn Mar 1981 A
4324546 Heitlinger et al. Apr 1982 A
4324547 Arcan et al. Apr 1982 A
4348177 Kurz Sep 1982 A
4348178 Kurz Sep 1982 A
4419992 Chorbajian Dec 1983 A
4478580 Barrut Oct 1984 A
4500294 Lewis Feb 1985 A
4504225 Yoshii Mar 1985 A
4505673 Yoshii Mar 1985 A
4526540 Dellinger Jul 1985 A
4575330 Hull Mar 1986 A
4575805 Moermann Mar 1986 A
4591341 Andrews May 1986 A
4609349 Cain Sep 1986 A
4611288 Duret et al. Sep 1986 A
4656860 Orthuber et al. Apr 1987 A
4663720 Duret et al. May 1987 A
4664626 Kesling May 1987 A
4676747 Kesling Jun 1987 A
4742464 Duret et al. May 1988 A
4755139 Abbatte et al. Jul 1988 A
4757824 Chaumet Jul 1988 A
4763791 Halverson et al. Aug 1988 A
4764111 Knierim Aug 1988 A
4793803 Martz Dec 1988 A
4798534 Breads Jan 1989 A
4836778 Baumrind et al. Jun 1989 A
4837732 Brandestini et al. Jun 1989 A
4850864 Diamond Jul 1989 A
4850865 Napolitano Jul 1989 A
4856991 Breads et al. Aug 1989 A
4877398 Kesling Oct 1989 A
4880380 Martz Nov 1989 A
4886451 Cetlin Dec 1989 A
4889238 Batchelor Dec 1989 A
4890608 Steer Jan 1990 A
4935635 O'Harra Jun 1990 A
4936862 Walker et al. Jun 1990 A
4937928 van der Zel Jul 1990 A
4941826 Loran et al. Jul 1990 A
4952928 Carroll et al. Aug 1990 A
4964770 Steinbichler et al. Oct 1990 A
4975052 Spencer et al. Dec 1990 A
4983334 Adeli Jan 1991 A
4997369 Shafir Mar 1991 A
5011405 Lemchen Apr 1991 A
5017133 Miura May 1991 A
5027281 Rekow et al. Jun 1991 A
5035613 Breads et al. Jul 1991 A
5037295 Bergersen Aug 1991 A
5055039 Abbatte et al. Oct 1991 A
5059118 Breads et al. Oct 1991 A
5100316 Wildman Mar 1992 A
5103838 Yousif Apr 1992 A
5121333 Riley et al. Jun 1992 A
5123425 Shannon, Jr. et al. Jun 1992 A
5125832 Kesling Jun 1992 A
5128870 Erdman et al. Jul 1992 A
5130064 Smalley Jul 1992 A
5131843 Hilgers et al. Jul 1992 A
5131844 Marinaccio et al. Jul 1992 A
5139419 Andreiko et al. Aug 1992 A
5145364 Martz et al. Sep 1992 A
5176517 Truax Jan 1993 A
5184306 Erdman et al. Feb 1993 A
5186623 Breads et al. Feb 1993 A
5204670 Stinton Apr 1993 A
5242304 Truax et al. Sep 1993 A
5245592 Kuemmel et al. Sep 1993 A
5257203 Riley et al. Oct 1993 A
5273429 Rekow et al. Dec 1993 A
5278756 Lemchen et al. Jan 1994 A
5306144 Hibst et al. Apr 1994 A
5328362 Watson et al. Jul 1994 A
5335657 Terry, Jr. et al. Aug 1994 A
5338198 Wu et al. Aug 1994 A
5340309 Robertson Aug 1994 A
5342202 Deshayes Aug 1994 A
5368478 Andreiko et al. Nov 1994 A
5372502 Massen Dec 1994 A
5382164 Stern Jan 1995 A
5395238 Andreiko et al. Mar 1995 A
5440326 Quinn Aug 1995 A
5440496 Andersson et al. Aug 1995 A
5447432 Andreiko et al. Sep 1995 A
5452219 Dehoff et al. Sep 1995 A
5454717 Andreiko et al. Oct 1995 A
5456600 Andreiko et al. Oct 1995 A
5431562 Andreiko et al. Nov 1995 A
5474448 Andreiko et al. Dec 1995 A
RE35169 Lemchen et al. Mar 1996 E
5499633 Fenton Mar 1996 A
5518397 Andreiko et al. May 1996 A
5528735 Strasnick et al. Jun 1996 A
5533895 Andreiko et al. Jul 1996 A
5540732 Testerman Jul 1996 A
5542842 Andreiko et al. Aug 1996 A
5543780 McAuley et al. Aug 1996 A
5549476 Stern Aug 1996 A
5562448 Mushabac Oct 1996 A
5570182 Nathel et al. Oct 1996 A
5587912 Andersson et al. Dec 1996 A
5605459 Kuroda et al. Feb 1997 A
5607305 Andersson et al. Mar 1997 A
5614075 Andre Mar 1997 A
5621648 Crump Apr 1997 A
5626537 Danyo et al. May 1997 A
5645420 Bergersen Jul 1997 A
5645421 Slootsky Jul 1997 A
5651671 Seay et al. Jul 1997 A
5655653 Chester Aug 1997 A
5659420 Wakai et al. Aug 1997 A
5683243 Andreiko et al. Nov 1997 A
5683244 Truax Nov 1997 A
5691539 Pfeiffer Nov 1997 A
5692894 Schwartz et al. Dec 1997 A
5725376 Poirier Mar 1998 A
5725378 Wang Mar 1998 A
5733126 Andersson et al. Mar 1998 A
5737084 Ishihara Apr 1998 A
5740267 Echerer et al. Apr 1998 A
5742700 Yoon et al. Apr 1998 A
5774425 Ivanov et al. Jun 1998 A
5790242 Stern et al. Aug 1998 A
5799100 Clarke et al. Aug 1998 A
5800174 Andersson Sep 1998 A
5816800 Brehm et al. Oct 1998 A
5818587 Devaraj et al. Oct 1998 A
5823778 Schmitt et al. Oct 1998 A
5848115 Little et al. Dec 1998 A
5857853 van Nifterick et al. Jan 1999 A
5866058 Batchelder et al. Feb 1999 A
5879158 Doyle et al. Mar 1999 A
5880961 Crump Mar 1999 A
5880962 Andersson et al. Mar 1999 A
5904479 Staples May 1999 A
5934288 Avila et al. Aug 1999 A
5957686 Anthony Sep 1999 A
5964587 Sato Oct 1999 A
5971754 Sondhi et al. Oct 1999 A
5975893 Chishti et al. Nov 1999 A
5980246 Ramsay et al. Nov 1999 A
5989023 Summer et al. Nov 1999 A
6015289 Andreiko et al. Jan 2000 A
6044309 Honda Mar 2000 A
6049743 Baba Apr 2000 A
6053731 Heckenberger Apr 2000 A
6062861 Andersson May 2000 A
6068482 Snow May 2000 A
6099303 Gibbs et al. Aug 2000 A
6099314 Kopelman et al. Aug 2000 A
6123544 Cleary Sep 2000 A
6152731 Jordon et al. Nov 2000 A
6154676 Levine Nov 2000 A
6183248 Chishti et al. Feb 2001 B1
6186780 Hibst et al. Feb 2001 B1
6190165 Andreiko et al. Feb 2001 B1
6200133 Kittelsen Mar 2001 B1
6201880 Elbaum et al. Mar 2001 B1
6212435 Lattner et al. Apr 2001 B1
6217325 Chishti et al. Apr 2001 B1
6217334 Hultgren Apr 2001 B1
6231338 De Josselin et al. May 2001 B1
6239705 Glen May 2001 B1
6243601 Wist Jun 2001 B1
6244861 Andreiko et al. Jun 2001 B1
6263234 Engelhardt Jul 2001 B1
6309215 Phan et al. Oct 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6322359 Jordan et al. Nov 2001 B1
6334073 Levine Dec 2001 B1
6350120 Sachdeva et al. Feb 2002 B1
6364660 Durbin et al. Apr 2002 B1
6382975 Poirier May 2002 B1
6398548 Muhammad et al. Jun 2002 B1
6402510 Williams Jun 2002 B1
6402707 Ernst Jun 2002 B1
6405729 Thornton Jun 2002 B1
6436058 Krahner et al. Aug 2002 B1
6450807 Chishti et al. Sep 2002 B1
6482298 Bhatnagar Nov 2002 B1
6515593 Stark et al. Feb 2003 B1
6516805 Thornton Feb 2003 B1
6520772 Williams Feb 2003 B2
6524101 Phan et al. Feb 2003 B1
6540707 Stark et al. Apr 2003 B1
6554611 Chishti et al. Apr 2003 B2
6572372 Phan et al. Jun 2003 B1
6573998 Cohen-Sabban Jun 2003 B2
6594539 Geng Jul 2003 B1
6597934 De Jong et al. Jul 2003 B1
6602070 Miller et al. Aug 2003 B2
6611783 Kelly et al. Aug 2003 B2
6613001 Dworkin Sep 2003 B1
6616579 Reinbold et al. Sep 2003 B1
6623698 Kuo Sep 2003 B2
6624752 Klitsgaard et al. Sep 2003 B2
6629840 Chishti et al. Oct 2003 B2
6640128 Vilsmeier et al. Oct 2003 B2
6697164 Babayoff Feb 2004 B1
6702765 Robbins et al. Mar 2004 B2
6702804 Ritter et al. Mar 2004 B1
6705863 Phan et al. Mar 2004 B2
6722880 Chishti et al. Apr 2004 B2
6830450 Knopp et al. Dec 2004 B2
6885464 Pfeiffer et al. Apr 2005 B1
6890285 Rahman et al. May 2005 B2
6940611 Babayoff et al. Sep 2005 B2
7036514 Heck et al. May 2006 B2
7092107 Babayoff et al. Aug 2006 B2
7106233 Schroeder et al. Sep 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7138640 Delgado Nov 2006 B1
7142312 Quadling et al. Nov 2006 B2
7166063 Rahman et al. Jan 2007 B2
7184150 Quadling et al. Feb 2007 B2
7192273 McSurdy et al. Mar 2007 B2
7220124 Taub et al. May 2007 B2
7230725 Babayoff et al. Jun 2007 B2
7286954 Kopelman et al. Oct 2007 B2
7292759 Boutoussov et al. Nov 2007 B2
7302842 Biester et al. Dec 2007 B2
7338327 Sticker et al. Mar 2008 B2
D565509 Fechner et al. Apr 2008 S
7351116 Dold Apr 2008 B2
7357637 Liechtung et al. Apr 2008 B2
7450231 Johs et al. Nov 2008 B2
7460230 Johs et al. Dec 2008 B2
7462076 Walter et al. Dec 2008 B2
7463929 Simmons Dec 2008 B2
7477402 Babayoff et al. Jan 2009 B2
7488174 Kopelman et al. Feb 2009 B2
D594413 Palka et al. Jun 2009 S
7544103 Walter et al. Jun 2009 B2
7553157 Abolfathi et al. Jun 2009 B2
7561273 Stautmeister et al. Jul 2009 B2
7577284 Wong et al. Aug 2009 B2
7596253 Wong et al. Sep 2009 B2
7597594 Stadler et al. Oct 2009 B2
7609875 Liu et al. Oct 2009 B2
D603796 Sticker et al. Nov 2009 S
7616319 Woollam et al. Nov 2009 B1
7626705 Altendorf Dec 2009 B2
7630089 Babayoff et al. Dec 2009 B2
7632216 Rahman et al. Dec 2009 B2
7633625 Woollam et al. Dec 2009 B1
7637262 Bailey Dec 2009 B2
7668355 Wong et al. Feb 2010 B2
7670179 Muller et al. Mar 2010 B2
7695327 Bauerle et al. Apr 2010 B2
7698068 Babayoff Apr 2010 B2
7724378 Babayoff May 2010 B2
D618619 Walter Jun 2010 S
7731508 Borst Jun 2010 B2
7735217 Borst Jun 2010 B2
7780460 Walter Aug 2010 B2
7787132 Korner et al. Aug 2010 B2
7791810 Powell Sep 2010 B2
7796243 Choo-Smith Sep 2010 B2
7796277 Babayoff et al. Sep 2010 B2
7806727 Dold et al. Oct 2010 B2
7813787 De Josselin et al. Oct 2010 B2
7824180 Abolfathi et al. Nov 2010 B2
7828601 Pyczak Nov 2010 B2
7845969 Stadler et al. Dec 2010 B2
7854609 Chen et al. Dec 2010 B2
7872760 Ertl Jan 2011 B2
7874836 McSurdy et al. Jan 2011 B2
7874849 Sticker et al. Jan 2011 B2
7878801 Abolfathi et al. Feb 2011 B2
7907280 Johs et al. Mar 2011 B2
7929151 Liang et al. Apr 2011 B2
7942671 Taub et al. May 2011 B2
7944569 Babayoff et al. May 2011 B2
7947508 Tricca et al. May 2011 B2
7959308 Freeman et al. Jun 2011 B2
7986415 Thiel et al. Jul 2011 B2
7990548 Babayoff et al. Aug 2011 B2
8026916 Wen Sep 2011 B2
8027709 Arnone et al. Sep 2011 B2
8054556 Chen Nov 2011 B2
8077949 Liang et al. Dec 2011 B2
8083556 Stadler et al. Dec 2011 B2
D652799 Mueller Jan 2012 S
8126025 Takeda Feb 2012 B2
8144954 Quadling et al. Mar 2012 B2
8160334 Thiel et al. Apr 2012 B2
8215312 Garabadian et al. Jul 2012 B2
8240018 Walter et al. Aug 2012 B2
8279450 Oota Oct 2012 B2
8294657 Kim et al. Oct 2012 B2
8297286 Smernoff Oct 2012 B2
8306608 Mandelis et al. Nov 2012 B2
8310683 Babayoff et al. Nov 2012 B2
8314764 Kim et al. Nov 2012 B2
8332015 Ertl Dec 2012 B2
8354588 Sticker et al. Jan 2013 B2
8363228 Babayoff Jan 2013 B2
8366479 Borst et al. Feb 2013 B2
8451456 Babayoff May 2013 B2
8454364 Taub et al. Jun 2013 B2
8465280 Sachdeva et al. Jun 2013 B2
8477320 Stock et al. Jul 2013 B2
8488113 Thiel Jul 2013 B2
8520922 Wang et al. Aug 2013 B2
8520925 Duret Aug 2013 B2
8556625 Lovely Oct 2013 B2
8570530 Liang Oct 2013 B2
8573224 Thornton Nov 2013 B2
8577212 Thiel et al. Nov 2013 B2
8594408 Alpern Nov 2013 B2
8638447 Babayoff et al. Jan 2014 B2
8638448 Babayoff et al. Jan 2014 B2
8650586 Lee et al. Feb 2014 B2
8675706 Seurin et al. Mar 2014 B2
8723029 Pyczak et al. May 2014 B2
8743923 Geske et al. Jun 2014 B2
8767270 Curry et al. Jul 2014 B2
8768016 Pan et al. Jul 2014 B2
8771149 Rahman et al. Jul 2014 B2
8839476 Adachi Sep 2014 B2
8870566 Bergersen Oct 2014 B2
8878905 Fisker Nov 2014 B2
8899976 Chen et al. Dec 2014 B2
8936463 Mason et al. Jan 2015 B2
8948482 Levin Feb 2015 B2
8956058 Roesch et al. Feb 2015 B2
8992216 Karazivan Mar 2015 B2
9022792 Sticker et al. May 2015 B2
9039418 Rubbert May 2015 B1
9084535 Girkin et al. Jul 2015 B2
9089277 Babayoff et al. Jul 2015 B2
9144512 Wagner Sep 2015 B2
9192305 Levin Nov 2015 B2
9204952 Lampalzer Dec 2015 B2
9242118 Brawn Jan 2016 B2
9261358 Atiya Feb 2016 B2
9299192 Kopelman Mar 2016 B2
9408743 Wagner Aug 2016 B1
9433476 Khardekar et al. Sep 2016 B2
9439568 Atiya et al. Sep 2016 B2
9444981 Bellis Sep 2016 B2
9500635 Islam et al. Nov 2016 B2
9506808 Jeon et al. Nov 2016 B2
9513470 Weaver Dec 2016 B1
9545331 Ingemarsson-Matzen et al. Jan 2017 B2
9584771 Mandelis et al. Feb 2017 B2
9675430 Verker et al. Jun 2017 B2
9693839 Atiya et al. Jul 2017 B2
9744006 Ross Aug 2017 B2
9936186 Jesenko et al. Apr 2018 B2
20010038705 Rubbert et al. Nov 2001 A1
20020006597 Andreiko et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020015934 Rubbert et al. Feb 2002 A1
20030009252 Pavlovskaia et al. Jan 2003 A1
20030048540 Xie et al. Mar 2003 A1
20030139834 Nikolskiy et al. Jul 2003 A1
20030207224 Lotte Nov 2003 A1
20030224311 Cronauer Dec 2003 A1
20040019262 Perelgut Jan 2004 A1
20040058295 Bergersen Mar 2004 A1
20040090638 Babayoff et al. May 2004 A1
20040128010 Pavlovskaia et al. Jul 2004 A1
20050031196 Moghaddam et al. Feb 2005 A1
20050055118 Nikolskiy et al. Mar 2005 A1
20050080503 Kopelman et al. Apr 2005 A1
20050100333 Kerschbaumer May 2005 A1
20050181333 Karazivan et al. Aug 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050250075 Taub et al. Nov 2005 A1
20050264828 Babayoff et al. Dec 2005 A1
20060001739 Babayoff Jan 2006 A1
20060084024 Farrell Apr 2006 A1
20060099546 Bergersen May 2006 A1
20060154198 Durbin et al. Jul 2006 A1
20060158665 Babayoff et al. Jul 2006 A1
20060223032 Fried et al. Oct 2006 A1
20060223342 Borst et al. Oct 2006 A1
20060234179 Wen et al. Oct 2006 A1
20060275737 Kopelman et al. Dec 2006 A1
20070046865 Umeda et al. Mar 2007 A1
20070053048 Kumar et al. Mar 2007 A1
20070077537 Taub et al. Apr 2007 A1
20070109559 Babayoff et al. May 2007 A1
20070154867 Taub et al. Jul 2007 A1
20070184402 Boutoussov et al. Aug 2007 A1
20070253059 Johs et al. Nov 2007 A1
20070296959 Schwotzer Dec 2007 A1
20080045053 Stadler et al. Feb 2008 A1
20080062429 Liang et al. Mar 2008 A1
20080063998 Liang et al. Mar 2008 A1
20080090208 Rubbert Apr 2008 A1
20080100842 Johs et al. May 2008 A1
20080115791 Heine May 2008 A1
20080176448 Muller et al. Jul 2008 A1
20080242144 Dietz Oct 2008 A1
20090030347 Cao Jan 2009 A1
20090040740 Muller et al. Feb 2009 A1
20090061379 Yamamoto et al. Mar 2009 A1
20090061381 Durbin et al. Mar 2009 A1
20090075228 Kumada et al. Mar 2009 A1
20090091758 Johs et al. Apr 2009 A1
20090148807 Babayoff et al. Jun 2009 A1
20090153879 Babayoff et al. Jun 2009 A1
20090210032 Beiski et al. Aug 2009 A1
20090218514 Klunder et al. Sep 2009 A1
20090305540 Stadler et al. Dec 2009 A1
20100045902 Ikeda et al. Feb 2010 A1
20100085636 Berner Apr 2010 A1
20100152599 Duhamel et al. Jun 2010 A1
20100165275 Tsukamoto et al. Jul 2010 A1
20100165357 Babayoff et al. Jul 2010 A1
20100165358 Babayoff et al. Jul 2010 A1
20100202034 Freeman et al. Aug 2010 A1
20100231577 Kim et al. Sep 2010 A1
20100312484 Duhamel et al. Dec 2010 A1
20110045428 Boltunov et al. Feb 2011 A1
20110081625 Fuh Apr 2011 A1
20110102549 Takahashi et al. May 2011 A1
20110102566 Zakian et al. May 2011 A1
20110143673 Landesman et al. Jun 2011 A1
20110183294 Taub et al. Jul 2011 A1
20110229840 Liang et al. Sep 2011 A1
20110235045 Koerner et al. Sep 2011 A1
20120081786 Mizuyama et al. Apr 2012 A1
20120086681 Kim et al. Apr 2012 A1
20120092461 Fisker Apr 2012 A1
20120147912 Moench et al. Jun 2012 A1
20120172678 Logan et al. Jul 2012 A1
20120281293 Gronenborn et al. Nov 2012 A1
20120295216 Dykes et al. Nov 2012 A1
20120322025 Ozawa et al. Dec 2012 A1
20130094031 Babayoff et al. Apr 2013 A1
20130103176 Kopelman et al. Apr 2013 A1
20130163627 Seurin et al. Jun 2013 A1
20130177866 Babayoff et al. Jul 2013 A1
20130201488 Ishihara Aug 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130252195 Popat Sep 2013 A1
20130266326 Joseph et al. Oct 2013 A1
20130280671 Brawn et al. Oct 2013 A1
20130286174 Urakabe et al. Oct 2013 A1
20130293824 Yoneyama et al. Nov 2013 A1
20130323664 Parker Dec 2013 A1
20130323671 Dillon et al. Dec 2013 A1
20130323674 Hakomori et al. Dec 2013 A1
20140081091 Abolfathi et al. Mar 2014 A1
20140104620 Babayoff et al. Apr 2014 A1
20140272774 Dillon et al. Sep 2014 A1
20140294273 Jaisson et al. Oct 2014 A1
20140313299 Gebhardt et al. Oct 2014 A1
20150002649 Nowak et al. Jan 2015 A1
20150029309 Michaeli et al. Jan 2015 A1
20150140502 Brawn et al. May 2015 A1
20150164335 Van Der Poel et al. Jun 2015 A1
20150230885 Wucher et al. Aug 2015 A1
20150238280 Wu et al. Aug 2015 A1
20150238283 Tanugula et al. Aug 2015 A1
20150306486 Logan et al. Oct 2015 A1
20150320320 Kopelman et al. Nov 2015 A1
20150325044 Lebovitz Nov 2015 A1
20150338209 Knüttel et al. Nov 2015 A1
20150348320 Pesach et al. Dec 2015 A1
20160000332 Atiya et al. Jan 2016 A1
20160003610 Lampert et al. Jan 2016 A1
20160015489 Atiya et al. Jan 2016 A1
20160045291 Verker et al. Feb 2016 A1
20160051345 Levin et al. Feb 2016 A1
20160064898 Atiya et al. Mar 2016 A1
20160067013 Morton et al. Mar 2016 A1
20160081768 Kopelman et al. Mar 2016 A1
20160081769 Kimura et al. Mar 2016 A1
20160135925 Mason et al. May 2016 A1
20160163115 Furst Jun 2016 A1
20160217708 Levin et al. Jul 2016 A1
20160296303 Parker Oct 2016 A1
20160328843 Graham et al. Nov 2016 A1
20160330355 Tchouprakov et al. Nov 2016 A1
20170007366 Kopelman et al. Jan 2017 A1
20170007367 Li et al. Jan 2017 A1
20170049311 Borovinskih et al. Feb 2017 A1
20170049326 Alfano et al. Feb 2017 A1
20170056131 Alauddin et al. Mar 2017 A1
20170325690 Salah et al. Nov 2017 A1
20180000563 Shanjani et al. Jan 2018 A1
20180000565 Shanjani et al. Jan 2018 A1
20180028063 Elbaz et al. Feb 2018 A1
20180028064 Elbaz et al. Feb 2018 A1
20180028065 Elbaz et al. Feb 2018 A1
20180125610 Carrier, Jr. et al. May 2018 A1
20180153648 Shanjani et al. Jun 2018 A1
20180153649 Wu et al. Jun 2018 A1
20180153733 Kuo Jun 2018 A1
Foreign Referenced Citations (76)
Number Date Country
3031677 May 1979 AU
517102 Jul 1981 AU
9150082 Jun 1984 AU
5598894 Jun 1994 AU
1121955 Apr 1982 CA
102802520 Nov 2012 CN
2749802 May 1978 DE
69327661 Jul 2000 DE
102005043627 Mar 2007 DE
102011051443 Jan 2013 DE
102014225457 Jun 2016 DE
0091876 Oct 1983 EP
0299490 Jan 1989 EP
0376873 Jul 1990 EP
0490848 Jun 1992 EP
0541500 May 1993 EP
0667753 Aug 1995 EP
0731673 Sep 1996 EP
0714632 May 1997 EP
0774933 May 1997 EP
1941843 Jul 2008 EP
2213223 Aug 2010 EP
2437027 Apr 2012 EP
2447754 May 2012 EP
1989764 Jul 2012 EP
2332221 Nov 2012 EP
2596553 Dec 2013 EP
2612300 Feb 2015 EP
2848229 Mar 2015 EP
463897 Jan 1980 ES
2369828 Jun 1978 FR
2652256 Mar 1991 FR
2930334 Oct 2009 FR
15500777 Aug 1979 GB
53-058191 May 1978 JP
04-028359 Jan 1992 JP
08-508174 Sep 1996 JP
2003290133 Oct 2003 JP
2008523370 Jul 2008 JP
2009-018173 Jan 2009 JP
2011087733 May 2011 JP
2012526977 Nov 2012 JP
2013007645 Jan 2013 JP
2016528972 Sep 2016 JP
101266966 May 2013 KR
20160041632 Apr 2016 KR
WO 9008512 Aug 1990 WO
WO 9104713 Apr 1991 WO
WO 9410935 May 1994 WO
WO 9832394 Jul 1998 WO
WO 9844865 Oct 1998 WO
WO 9858596 Dec 1998 WO
WO 9924786 May 1999 WO
WO 0008415 Feb 2000 WO
WO-0217776 Mar 2002 WO
WO-02062252 Aug 2002 WO
WO 02095475 Nov 2002 WO
WO-2006133548 Dec 2006 WO
WO 2007090865 Aug 2007 WO
WO-2009085752 Jul 2009 WO
WO-2009089129 Jul 2009 WO
WO-2009146788 Dec 2009 WO
WO-2009146789 Dec 2009 WO
WO-2010145669 Dec 2010 WO
WO-2012007003 Jan 2012 WO
WO-2012064684 May 2012 WO
WO-2012074304 Jun 2012 WO
WO 2014091865 Jun 2014 WO
WO-2015015289 Feb 2015 WO
WO-2015063032 May 2015 WO
WO-2015176004 Nov 2015 WO
WO-2016061279 Apr 2016 WO
WO-2016084066 Jun 2016 WO
WO-2016099471 Jun 2016 WO
WO-2016113745 Jul 2016 WO
WO-2016116874 Jul 2016 WO
Non-Patent Literature Citations (188)
Entry
US 8,553,966 B1, 10/2013, Alpern et al. (withdrawn)
U.S. Appl. No. 14/323,215, filed Jul. 3, 2014, Atiya et al.
U.S. Appl. No. 14/323,225, filed Jul. 3, 2014, Atiya et al.
U.S. Appl. No. 14/323,237, filed Jul. 3, 2014, Lampert et al.
U.S. Appl. No. 14/334,527, filed Jul. 17, 2014, Atiya et al.
U.S. Appl. No. 14/470,832, filed Aug. 27, 2014, Atiya et al.
AADR. American Association for Dental Research, Summary of Activities, Mar. 20-23, 1980, Los ngeles, CA, p. 195.
Alcaniz, et al, “An Advanced System for the Simulation and Planning of Orthodontic Treatments,” Karl Heinz Hohne and Ron Kikinis (eds.), Visualization in Biomedical Computing, 4th Intl. Conf., VBC '96, Hamburg, Germany, Sep. 22-25, 1996, Springer-Verlag, pp. 511-520.
Alexander et al., “The DigiGraph Work Station Part 2 Clinical Management,” JCO, pp. 402-407 (Jul. 1990).
Altschuler et al., “Analysis of 3-D Data for Comparative 3-D Serial Growth Pattern Studies of Oral-Facial Structures,” AADR Abstracts, Program and Abstracts of Papers, 57th General Session, IADR Annual Session, Mar. 29, 1979-Apr. 1, 1979, New Orleans Marriot, Journal of Dental Research, vol. 58, Jan. 1979, Special Issue A, p. 221.
Altschuler et al., “Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces,” Optical Engineering, 20(6):953-961 (1981).
Altschuler et al., “Measuring Surfaces Space-Coded by a Laser-Projected Dot Matrix,” SPIE Imaging q Applications for Automated Industrial Inspection and Assembly, vol. 182, p. 187-191 (1979).
Altschuler, “3D Mapping of Maxillo-Facial Prosthesis,” AADR Abstract #607, 2 pages total, (1980).
Andersson et al., “Clinical Results with Titanium Crowns Fabricated with Machine Duplication and Spark Erosion,” Acta. Odontol. Scand., 47:279-286 (1989).
Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, pp. 13-24 (1989).
Bartels, et al., An Introduction to Splines for Use in Computer Graphics and Geometric Modeling, Morgan Kaufmann Publishers, pp. 422-425 (1987).
Baumrind et al., “A Stereophotogrammetric System for the Detection of Prosthesis Loosening in Total Hip Arthroplasty,” NATO Symposium on Applications of Human Biostereometrics, Jul. 9-13, 1978, SPIE, vol. 166, pp. 112-123.
Baumrind et al., “Mapping the Skull in 3-D,” reprinted from J. Calif. Dent. Assoc., 48(2), 11 pages total, (1972 Fall Issue).
Baumrind, “A System for Craniofacial Mapping Through the Integration of Data from Stereo X-Ray Films and Stereo Photographs,” an invited paper submitted to the 1975 American Society of Photogram Symposium on Close-Range Photogram Systems, University of III., Aug. 26-30, 1975, pp. 142-166.
Baumrind, “Integrated Three-Dimensional Craniofacial Mapping: Background, Principles, and Perspectives,” Semin. in Orthod., 7(4):223-232 (Dec. 2001).
Begole et al., “A Computer System for the Analysis of Dental Casts,” The Angle Orthod., 51(3):253-259 (Jul. 1981).
Bernard et al.,“Computerized Diagnosis in Orthodontics for Epidemiological Studies: A ProgressReport,” Abstract, J. Dental Res. Special Issue, vol. 67, p. 169, paper presented at International Association for Dental Research 66th General Session, Mar. 9-13, 1988, Montreal, Canada.
Bhatia et al., “A Computer-Aided Design for Orthognathic Surgery,” Br. J. Oral Maxillofac. Surg., 22:237-253 (1984).
Biggerstaff et al., “Computerized Analysis of Occlusion in the Postcanine Dentition,” Am. J. Orthod., 61(3): 245-254 (Mar. 1972).
Biggerstaff, “Computerized Diagnostic Setups and Simulations,” Angle Orthod., 40(1):28-36 (Jan. 1970).
Biostar Opeation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive,Tonawanda, New York. 14150-5890, 20 pages total (1990).
Blu, et al., “Linear interpolation revitalized”, IEEE Trans. Image Proc., 13(5):710-719 (May 2004).
Bourke, “Coordinate System Transformation,” (Jun. 1996), p. 1, retrieved from the Internet Nov. 5, 2004, URL <http://astronomy.swin.edu.au/-pbourke/prolection/coords>.
Boyd et al., “Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions With the Invisalipn Appliance,” Semin. Orthod., 7(4):274-293 (Dec. 2001).
Brandestini et al., “Computer Machined Ceramic Inlays: In Vitro Marginal Adaptation,” J. Dent. Res. Special Issue, Abstract 305, vol. 64, p. 208 (1985).
Brook et al., “An Image Analysis System for the Determination of Tooth Dimensions from Study Casts: Comparison with Manual Measurements of Mesio-distal Diameter,” J. Dent. Res., 65(3):428-431 (Mar. 1986).
Burstone (interview), “Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 1),” J. Clin. Orthod., 13(7):442-453 (Jul. 1979).
Burstone (interview), “Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 2),” J. Clin. Orthod., 13(8):539-551 (Aug. 1979).
Burstone et al., Precision Adjustment of the Transpalatal Lingual Arch: Computer Arch Form Predetermination, Am, Journal of Orthodontics, vol. 79, No. 2 (Feb. 1981), pp. 115-133.
Cardinal Industrial Finishes, Powder Coatings information posted at <http://www.cardinalpaint.com> on Aug. 25, 2000, 2 pages.
Carnaghan, “An Alternative to Holograms for the Portrayal of Human Teeth,” 4th Int'l. Conf. on Holographic Systems, Components and Applications, Sep. 15, 1993, pp. 228-231.
CEREC Omnicam and CEREC Bluecam brochure. The first choice in every case. The Dental Company Sirona. 2014.
Chaconas et al., “The DigiGraph Work Station, Part 1, Basic Concepts,” JCO, pp. 360-367 (Jun. 1990).
Chafetz et al., “Subsidence of the Femoral Prosthesis, A Stereophotogrammetric Evaluation,” Clin. Orthop. Relat. Res., No. 201, pp. 60-67 (Dec. 1985).
Chiappone, (1980). Constructing the Gnathologic Setup and Positioner, J. Clin. Orthod, vol. 14, pp. 121-133.
Cottingham, (1969). Gnathologic Clear Plastic Positioner, Am. J. Orthod, vol. 55, pp. 23-31.
Crawford, “CAD/CAM in the Dental Office: Does It Work?”, Canadian Dental Journal, vol. 57, No. 2, pp. 121-123 (Feb. 1991).
Crawford, “Computers in Dentistry: Part 1: CAD/CAM: The Computer Moves Chairside,” “Part 2: F. Duret—A Man With A Vision,” “Part 3: The Computer Gives New Vision- Literally,” “Part 4: Bytes 'N Bites” The Computer Moves From The Front Desk To The Operatory, Canadian Dental Journal, vol. 54(9), pp. 661-666 (1988).
Crooks, “CAD/CAM Comes to USC,” USC Dentistry, pp. 14-17 (Spring 1990).
Cureton, Correcting Malaligned Mandibular Incisors with Removable Retainers, J. Clin. Orthod, vol. 30, No. 7 (1996) pp. 390-395.
Curry et al., “Integrated Three-Dimensional Craniofacial Mapping at the Craniofacial Research Instrumentation Laboratory/University of the Pacific,” Semin. Orthod., 7(4):258-265 (Dec. 2001).
Cutting et al., “Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures: Optimization and Interaction with Cephalometric and CT-Based Models,” Plast. 77(6):877-885 (Jun. 1986).
DCS Dental AG, “The CAD/CAM ‘DCS Titan System’ for Production of Crowns/Bridges,” DSC Production, pp. 1-7 (Jan. 1992.
Definition for gingiva. Dictionary.com p. 1-3. Retrieved from the internet Nov. 5, 2004 <http://reference.com/search/search?q=gingiva>.
Defranco et al., “Three-Dimensional Large Displacement Analysis of Orthodontic Appliances,” J. Biomechanics, 9:793-801 (1976).
Dental Institute University of Zurich Switzerland, Program for International Symposium on Computer Restorations: State of the Art of the CEREC-Method, May 1991, 2 pages total.
Dentrac Corporation, Dentrac document, pp. 4-13 (1992).
Dent-X posted on Sep. 24, 1998 at <http://www.dent-x.com/DentSim.htm>, 6 pages.
Doyle, “Digital Dentistry,” Computer Graphics World, pp. 50-52, 54 (Oct. 2000).
Dummer, et al. Computed Radiography Imaging Based on High-Density 670 nm VCSEL Arrays. Proceedings of SPIE vol. 7557, 75570H (2010)http://vixarinc.com/pdf/SPIE_radiography_manuscript_submission1.pdf.
DuraClearTM product information, Allesee Orthodontic Appliances-Pro Lab, 1 page (1997).
Duret et al, “CAD-CAM in Dentistry,” J. Am. Dent. Assoc. 117:715-720 (Nov. 1988).
Duret et al., “CAD/CAM Imaging in Dentistry,” Curr. Opin. Dent., 1:150-154 (1991).
Duret, “The Dental CAD/CAM, General Description of the Project,” Hennson International Product Brochure, 18 pages total, Jan. 1986.
Duret,“Vers Une Prosthese Informatisee,” (English translation attached), Tonus, vol. 75, pp. 55-57 (Nov. 15, 1985).
Economides, “The Microcomputer in the Orthodontic Office,” JCO, pp. 767-772 (Nov. 1979).
Elsasser, Some Observations on the History and Uses of the Kesling Positioner, Am. J. Orthod. (1950) 36:368-374.
English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7.
Felton et al., “A Computerized Analysis of the Shape and Stability of Mandibular Arch Form,” Am. J. Orthod. Dentofacial Orthop., 92(6):478-483 (Dec. 1987).
Friede et al., “Accuracy of Cephalometric Prediction in Orthognathic Surgery,” Abstract of Papers, J. Dent. Res., 70:754-760 (1987).
Futterling et al., “Automated Finite Element Modeling of a Human Mandible with Dental Implants,” JS WSCG '98 -Conference Program, retrieved from the Internet: <http://wscg.zcu.cz/wscg98/papers98/Strasser 98.pdf>, 8 pages.
Gao et a/., “3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure,” Proc. Intl Workshop on Medical Imaging and Augmented Reality, pp. 267-271 (Jun. 12, 2001).
Gim-Alldent Deutschland, “Das DUX System: Die Technik,” 2 pages total (2002).
Gottleib et al., “JCO Interviews Dr. James A. McNamura, Jr., on the Frankel Appliance: Part 2: Clinical 1-1 Management,” J. Clin. Orthod., 16(6):390-407 (Jun. 1982).
Grayson, “New Methods for Three Dimensional Analysis of Craniofacial Deformity, Symposium: Computerized Facial Imaging in Oral and Maxiiofacial Surgery,” AAOMS, 3 pages total, (Sep. 13, 1990).
Guess et al., “Computer Treatment Estimates In Orthodontics and Orthognathic Surgery,” JCO, pp. 262-280 (Apr. 1989).
Heaven et al. “Computer-Based Image Analysis of Artificial Root Surface Caries,” Abstracts of Papers, J. Dent. Res., 70:528 (Apr. 17-21, 1991).
Highbeam Research, “Simulating Stress Put on Jaw,” Tooling & Production [online], Nov. 1996, n pp. 1-2, retrieved from the Internet on Nov. 5, 2004, URL http://static.highbeam.com/t/toolingampproduction/november011996/simulatingstressputonfa...>.
Hikage, “Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning”, Journal of Japan KA Orthodontic Society, Feb. 1987, English translation, pp. 1-38, Japanese version, 46(2), pp. 248-269 (60 pages total).
Hoffmann, et al., “Role of Cephalometry for Planning of Jaw Orthopedics and Jaw Surgery Procedures,” (Article Summary in English, article in German), lnformatbnen, pp. 375-396 (Mar. 1991).
Hojjatie et al., “Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns,” J. Biomech., 23(11):1157-1166 (1990).
Huckins, “CAD-CAM Generated Mandibular Model Prototype from MRI Data,” AAOMS, p. 96 (1999).
Important Tip About Wearing the Red White & Blue Active Clear Retainer System, Allesee Orthodontic Appliances-Pro Lab, 1 page 1998).
JCO Interviews, Craig Andreiko , DDS, MS on the Elan and Orthos Systems, JCO, pp. 459-468 (Aug. 1994).
JCO, Interviews, Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2, JCO. 1997; 1983:819-831.
Jerrold, “The Problem, Electronic Data Transmission and the Law,” AJO-DO, pp. 478-479 (Apr. 1988).
Jones et al., “An Assessment of the Fit of a Parabolic Curve to Pre- and Post-Treatment Dental Arches,” Br. J. Orthod., 16:85-93 (1989).
JP Faber et al., “Computerized Interactive Orthodontic Treatment Planning,” Am. J. Orthod., 73(1):36-46 (Jan. 1978).
Kamada et.al., Case Reports On Tooth Positioners Using LTV Vinyl Silicone Rubber, J. Nihon University School of Dentistry (1984) 26(1): 11-29.
Kamada et.al., Construction of Tooth Positioners with LTV Vinyl Silicone Rubber and Some Case KJ Reports, J. Nihon University School of Dentistry (1982) 24(1):1-27.
Kanazawa et al., “Three-Dimensional Measurements of the Occlusal Surfaces of Upper Molars in a Dutch Population,” J. Dent Res., 63(11):1298-1301 (Nov. 1984).
Kesling et al., The Philosophy of the Tooth Positioning Appliance, American Journal of Orthodontics and Oral surgery. 1945; 31:297-304.
Kesling, Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment, Am. J. Orthod. Oral Surg. (1946) 32:285-293.
Kleeman et al., The Speed Positioner, J. Clin. Orthod. (1996) 30:673-680.
Kochanek, “Interpolating Splines with Local Tension, Continuity and Bias Control,” Computer Graphics, 18(3):33-41 (Jul. 1984). Oral Surgery (1945) 31 :297-30.
Kunii et al., “Articulation Simulation for an Intelligent Dental Care System,” Displays 15:181-188 (1994).
Kuroda et al., Three-Dimensional Dental Cast Analyzing System Using Laser Scanning, Am. J. Orthod. Dentofac. Orthop. (1996) 110:365-369.
Laurendeau, et al., “A Computer-Vision Technique for the Acquisition and Processing of 3-D Profiles of 7 Dental Imprints: An Application in Orthodontics,” IEEE Transactions on Medical Imaging, 10(3):453-461 (Sep. 1991).
Leinfelder, et al., “A New Method for Generating Ceramic Restorations: a CAD-CAM System,” J. Am. 1-1 Dent. Assoc., 118(6):703-707 (Jun. 1989).
Manetti, et al., “Computer-Aided Cefalometry and New Mechanics in Orthodontics,” (Article Summary in English, article in German), Fortschr Kieferorthop. 44, 370-376 (Nr. 5), 1983.
Mccann, “Inside the ADA,” J. Amer. Dent. Assoc., 118:286-294 (Mar. 1989).
Mcnamara et al., “Invisible Retainers,” J. Cfin. Orthod., pp. 570-578 (Aug. 1985).
Mcnamara et al., Orthodontic and Orthopedic Treatment in the Mixed Dentition, Needham Press, pp. 347-353 (Jan. 1993).
Moermann et al., “Computer Machined Adhesive Porcelain Inlays: Margin Adaptation after Fatigue Stress,” IADR Abstract 339, J. Dent. Res., 66(a):763 (1987).
Moles, “Correcting Mild Malalignments—As Easy As One, Two, Three,” AOA/Pro Corner, vol. 11, No. 1, 2 pages (2002).
Mormann et al., “Marginale Adaptation von adhasuven Porzellaninlays in vitro,” Separatdruck aus:Schweiz. Mschr. Zahnmed. 95: 1118-1129, 1985.
Nahoum, “The Vacuum Formed Dental Contour Appliance,” N. Y. State Dent. J., 30(9):385-390 (Nov. 1964).
Nash, “CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment,” Dent. Today, 9(8):20, 22-23 (Oct. 1990).
Nishiyama et al., “A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber,” J. Nihon Univ. Sch. Dent., 19(2):93-102 (1977).
Paul et al., “Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics, Oral Surgery and Forensic Medicine” Proc. of the 24th Annual Conf. of the IEEE Industrial Electronics Society (IECON '98), Sep. 4, 1998, pp. 2415-2418.
Pellin Broca Prisms—Specifications. Thor Labs. Updated Nov. 30, 2012. www.thorlabs.com.
Pinkham, “Foolish Concept Propels Technology,” Dentist, 3 pages total, Jan./Feb. 1989.
Pinkham, “Inventor's CAD/CAM May Transform Dentistry,” Dentist, 3 pages total, Sep. 1990.
Ponitz, “Invisible Retainers,” Am. J. Orthod., 59(3):266-272 (Mar. 1971).
Procera Research Projects, “Procera Research Projects 1993—Abstract Collection,” pp. 3-7 28 (1993).
Proffit et al., Contemporary Orthodontics, (Second Ed.), Chapter 15, Mosby Inc., pp. 470-533 (Oct. 1993).
Raintree Essix & ARS Materials, Inc., Raintree Essix, Technical Magazine Table of contents and Essix Appliances, <http://www.essix.com/magazine/defaulthtml> Aug. 13, 1997.
Redmond et al., “Clinical Implications of Digital Orthodontics,” Am. J. Orthod. Dentofacial Orthop., 117(2):240-242 (2000).
Rekow et al. “CAD/CAM for Dental Restorations—Some of the Curious Challenges,” IEEE Trans. Biomed. Eng., 38(4):314-318 (Apr. 1991).
Rekow et al., “Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 13(1):344-345 1991.
Rekow, “A Review of the Developments in Dental CAD/CAM Systems,” (contains references to Japanese efforts and content of the papers of particular interest to the clinician are indicated with a one line summary of their content in the bibliography), Curr. Opin. Dent., 2:25-33 (Jun. 1992).
Rekow, “CAD/CAM in Dentistry: A Historical Perspective and View of the Future,” J. Can. Dent. Assoc., 58(4):283, 287-288 (Apr. 1992).
Rekow, “Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art,” J. Prosthet. Dent., 58(4):512-516 (Oct. 1987).
Rekow, “Dental CAD-CAM Systems: What is the State of the Art?”, J. Amer. Dent. Assoc., 122:43-48 1991.
Rekow, “Feasibility of an Automated System for Production of Dental Restorations, Ph.D. Thesis,” Univ. of Minnesota, 244 pages total, Nov. 1988.
Richmond et al., “The Development of a 3D Cast Analysis System,” Br. J. Orthod., 13(1):53-54 (Jan. 1986).
Richmond et al., “The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity,” Eur. J. Orthod., 14:125-139 (1992).
Richmond, “Recording The Dental Cast In Three Dimensions,” Am. J. Orthod. Dentofacial Orthop., 92(3):199-206 (Sep. 1987).
Rudge, “Dental Arch Analysis: Arch Form, A Review of the Literature,” Eur. J. Orthod., 3(4):279-284 1981.
Sakuda et al., “Integrated Information-Processing System In Clinical Orthodontics: An Approach with Use of a Computer Network System,” Am. J. Orthod. Dentofacial Orthop., 101(3): 210-220 (Mar. 1992).
Schellhas et al., “Three-Dimensional Computed Tomography in Maxillofacial Surgical Planning,” Arch. Otolamp!. Head Neck Surg., 114:438-442 (Apr. 1988).
Schroeder et al., Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey (1998) Chapters 6, 8 & 9, (pp. 153-210,309-354, and 355-428, respectively).
Shilliday, (1971). Minimizing finishing problems with the mini-positioner, Am. J. Orthod. 59:596-599.
Siemens, “CEREC—Computer-Reconstruction,” High Tech in der Zahnmedizin, 14 pages total (2004).
Sinclair, “The Readers' Corner,” J. Clin. Orthod., 26(6):369-372 (Jun. 1992).
Sirona Dental Systems GmbH, CEREC 3D, Manuel utiiisateur, Version 2.0X (in French), 2003,114 pages total.
Stoll et al., “Computer-aided Technologies in Dentistry,” (article summary in English, article in German), Dtsch Zahna'rztl Z 45, pp. 314-322 (1990).
Sturman, “Interactive Keyframe Animation of 3-D Articulated Models,” Proceedings Graphics Interface '84, May-Jun. 1984, pp. 35-40.
The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment, Allesee Orthodontic Appliances-Pro Lab product information for doctors. http://ormco.com/aoa/appliancesservices/RWB/doctorhtml>, 5 pages (May 19, 2003).
The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment, Allesee Orthodontic Appliances-Pro Lab product information for patients, <http://ormco.com/aoa/appliancesservices/RWB/patients.html>, 2 pages (May 19, 2003).
The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment, Allesee Orthodontic Appliances-Pro Lab product information, 6 pages (2003).
The Red, White & Blue Way to Improve Your Smile! Allesee Orthodontic Appliances-Pro Lab product information for patients, 2 pages 1992.
Truax L., “Truax Clasp-Less(TM) Appliance System,” Funct. Orthod., 9(5):22-4, 26-8 (Sep.-Oct. 1992).
Tru-Tain Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages total (1996).
U.S. Department of Commerce, National Technical Information Service, “Automated Crown Replication Using Solid Photography SM,” Solid Photography Inc., Melville NY, Oct. 1977, 20 pages total.
U.S. Department of Commerce, National Technical Information Service, “Holodontography: An Introduction to Dental Laser Holography,” School of Aerospace Medicine Brooks AFB Tex, Mar. 1973, 37 pages total.
U.S. Appl. No. 60/050,342, filed Jun. 20, 1997, 41 pages total.
Van Der Linden et al., “Three-Dimensional Analysis of Dental Casts by Means of the Optocom,” J. Dent. Res., p. 1100 (Jul.-Aug. 1972).
Van Der Linden, “A New Method to Determine Tooth Positions and Dental Arch Dimensions,” J. Dent. Res., 51(4):1104 (Jul.-Aug. 1972).
Van Der Zel, “Ceramic-Fused-to-Metal Restorations with a New CAD/CAM System,” Quintessence Int., 24(11):769-778 (1993).
Varady et al., “Reverse Engineering of Geometric Models—An Introduction,” Computer-Aided Design, 29(4):255-268,1997.
Verstreken et al., “An Image-Guided Planning System for Endosseous Oral Implants,” IEEE Trans. Med. Imaging, 17(5):842-852 (Oct. 1998).
Warunek et al., Physical and Mechanical Properties of Elastomers in Orthodonic Positioners, Am J. Orthod. Dentofac. Orthop, vol. 95, No. 5, (May 1989) pp. 399-400.
Warunek et.al., Clinical Use of Silicone Elastomer Applicances, JCO (1989) XXIII(10):694-700.
Wells, Application of the Positioner Appliance in Orthodontic Treatment, Am. J. Orthodont. (1970) 58:351-366.
Williams, “Dentistry and CAD/CAM: Another French Revolution,” J. Dent. Practice Admin., pp. 2-5 (Jan./Mar. 1987).
Williams, “The Switzerland and Minnesota Developments in CAD/CAM,” J. Dent. Practice Admin., pp. 50-55 (Apr./Jun. 1987).
Wishan, “New Advances in Personal Computer Applications for Cephalometric Analysis, Growth Prediction, Surgical Treatment Planning and Imaging Processing,” Symposium: Computerized Facial Imaging in Oral and Maxilofacial Surgery Presented on Sep. 13, 1990.
WSCG'98—Conference Program, “The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98,” Feb. 9-13, 1998, pp. 1-7, retrieved from the Internet on Nov. 5, 2004, URL<http://wscg.zcu.cz/wscg98/wscg98.h>.
Xia et al., “Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery,” IEEE Trans. Inf. Technol. Biomed., 5(2):97-107 (Jun. 2001).
Yamamoto et al., “Optical Measurement of Dental Cast Profile and Application to Analysis of Three-Dimensional Tooth Movement in Orthodontics,” Front. Med. Biol. Eng., 1(2):119-130 (1988).
Yamamoto et al., “Three-Dimensional Measurement of Dental Cast Profiles and Its Applications to Orthodontics,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 12(5):2051-2053 (1990).
Yamany et al., “A System for Human Jaw Modeling Using Intra-Oral Images,” Proc. of the 20th Annual Conf. of the IEEE Engineering in Medicine and Biology Society, Nov. 1, 1998, vol. 2, pp. 563-566.
Yoshii, “Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Concept and Implementation of Transparent Silicone Resin (Orthocon),” Nippon Dental Review, 452:61-74 (Jun. 1980).
Yoshii, “Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); II. The D.P. Manufacturing Procedure and Clinical Applications,” Nippon Dental Review, 454:107-130 (Aug. 1980).
Yoshii, “Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III.—The General Concept of the D.P. Method and Its Therapeutic Effect, Part 2. Skeletal Reversed Occlusion Case Reports,” Nippon Dental Review, 458:112-129 (Dec. 1980).
Yoshii, “Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III. The General Concept of the D.P. Method and Its Therapeutic Effect, Part 1, Dental and Functional Reversed Occlusion Case Reports,” Nippon Dental Review, 457:146-164 (Nov. 1980).
You May Be A Candidate For This Invisible No-Braces Treatment, Allesee Orthodontic Appliances-Pro Lab product infollnation for patients, 2 pages (2002).
International search report and written opinion dated Sep. 25, 2015 for PCT/IB2015/054949.
Invitation to pay additional fees dated Oct. 7, 2015 for PCT/IB2015/054950.
Office action dated Oct. 2, 2015 for U.S. Appl. No. 14/334,527.
Office action dated Mar. 22, 2016 for U.S. Appl. No. 14/334,527.
Office action dated Jul. 20, 2016 for U.S. Appl. No. 14/334,527.
International search report and written opinion dated Jan. 4, 2016 for PCT/IB2015/054950.
Doruk et al. The role of the headgear timer in extraoral co-operation; European Journal of Orthodontics; 26 (Jun. 1, 2004): pp. 289-291.
Friedrich et al. Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy. J. Biomech. 32.1, (Jan. 1999); pp. 81-85; (Abstract Only).
Grest, Daniel., Marker-Free Human Motion Capture in Dynamic Cluttered Environments from a Single View-Point, PhD Thesis. Dec. 2007, 171 pages.
Grove et al. U.S. Appl. No. 15/726,243 entitled “Interproximal reduction templates,” filed Oct. 5, 2017.
International Search Report and Written Opinion for PCT Application No. PCT/162015/001400 dated Feb. 9, 2016.
Invisalign., You were made to move. There's never been a better time to straighten your teeth with the most advanced clear aligner in the world'; Product webpage; 2 pages; retrieved from the internet (www.invisalign.com/) on Dec. 28, 2017.
Kumar et al.; Rapid maxillary expansion: A unique treatment modality in dentistry, J. Clin. Diagn. Res. 5.4, Aug. 2011, pp. 906-911.
Nedelcu et al. Scanning Accuracy and Precision in 4 Intraoral Scanners: An In Vitro Comparison Based on 3-Dimensional Analysis. J. Prosthet. Dent.; 112.6 (Dec. 2014): pp. 1461-71.
Sahm et al. Micro-Electronic Monitoring of Functional Appliance Wear. Eur J Orthod.; 12.3 (Aug. 1990): pp. 297-301.
Sahm., Presentation of a wear timer for the clarification of scientific questions in orthodontic orthopedics. Fortschritte der Kieferorthopadie, 51.4 (Jul. 1990): pp. 243-247, (Translation Included).
Schafer, et al. Quantifying patient adherence during active orthodontic treatment with removable appliances using microelectronic wear-time documentation. European Journal of Orthodontics. 2014; 1-8.
Thera Mon., “Microsensor”, “2 pages”, retrieved from the internet (www.english.thera-mon.com/the-product/transponder/index.html), Sep. 19, 2016.
Tiziani H. J. et al., Confocal principle for macro—and microscopic surface and defect analysis. Optical Engineering, vol. 39.1 (Jan. 1, 2000), pp. 32-39. Society of Photo-Optical Instrumentation Engineers.
Wikipedia, Palatal expansion, 3 pages, retrieved from the internet (https://en.wikipedia.org/wiki/Palatal_expansion) Mar. 5, 2018.
Wireless Sensor Networks Magazine, Embedded Teeth for Oral Activity Recognition, 2 pages, retrievedon Sep. 19, 2016 from the internet (www.wsnmagazine.com/embedded-teeth/), Jul. 29,2013.
Witt et al. The wear-timing measuring device in orthodontics-cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics, Fortschr Kieferorthop. 52.3 (Jun. 1991), pp. 117-125. (Translation Included).
Yamada et al. Simulation of fan-beam type optical computed-tomography imaging of strongly scattering and weakly absorbing media, Applied Optics; 32.25 (Sep. 1, 1993): pp. 4808-4814.
Park, et al. Development of High Speed and High Accuracy 3D Dental Intra Oral Scanner. Procedia Engineering. vol. 100, 2015, pp. 1174-1181.
International search report with written opinion dated Apr. 26, 2018 for PCT/US2018/013321.
Related Publications (1)
Number Date Country
20160000332 A1 Jan 2016 US
Provisional Applications (1)
Number Date Country
62021608 Jul 2014 US