Apparatus for dispensing a liquid from a liquid storage container

Information

  • Patent Application
  • 20130048681
  • Publication Number
    20130048681
  • Date Filed
    August 29, 2011
    13 years ago
  • Date Published
    February 28, 2013
    11 years ago
Abstract
A liquid dispenser for dispensing a liquid from a liquid storage container operably associated with the liquid dispenser. Preferably, the liquid dispenser includes a main housing having a dispensing location at which liquid from a liquid storage container is dispensed and a storage location for storing a liquid storage container. Preferably, the liquid dispenser includes a removable liquid transport assembly removable from the main housing having a substantially rigid liquid manifold, a valve assembly, a riser tube, a reservoir, a reservoir dip tube, a pump head, a pinch tube and a dispensing nozzle that are removable as a single unit from the main housing. Preferably, the liquid dispenser includes a single self-priming pump. Preferably, the valve assembly includes a non-return valve and a pressure relief valve that act in concert to control the flow of liquid between the liquid storage container and the reservoir.
Description
FIELD OF THE INVENTION

The present invention is directed to a dispensing apparatus for dispensing liquid from a liquid storage container and a replaceable liquid transport assembly for conveying liquid between a liquid storage container and a dispensing location of the dispensing apparatus. The dispensing apparatus may dispense any suitable liquid including but not limited to chilled drinking water, hot water, ambient temperature drinking water, carbonated liquid and/or any combination thereof. The liquid storage container may include but is not limited to a replaceable five (5) gallon water bottle stored in a lower portion of the dispensing apparatus. In its most preferred form, the present invention is directed to a water cooler for dispensing at least chilled drinking water from a replaceable five (5) gallon water bottle stored in a lower portion of the water cooler in an upright orientation.


BACKGROUND OF THE INVENTION

A significant number of existing water dispensers use gravity as the driving force to dispense water from the water dispenser. In this type of water dispenser, the water bottle is positioned above the dispensing location. These dispensers are referred to as “Top-Loading” water dispensers. Top-Loading water dispensers typically include means for receiving a five (5) gallon water bottle at the uppermost portion of the water dispenser. Five (5) gallon water bottles are quite heavy making it difficult for some individuals to mount the water bottle on the uppermost portion of the water cooler. Top-Loading water dispensers typically dispense water for human consumption. Therefore, it is important that the water contact surfaces of the water dispenser be periodically cleaned. The cleaning process is generally known as “sanitization.” Top-Loading water dispensers typically are simple devices with few components in contact with the drinking water. Hence, the sanitization process is relatively easy. A number of Top-Loading water dispensers are designed to improve the sanitization process. U.S. Pat. Nos. 5,361,942 and 5,439,145 disclose Top-Loading water dispensers designed to improve the sanitization process. Ebac Limited sells Top-Loading water dispensers designed to improve the sanitization process utilizing at least some of the features disclosed in U.S. Pat. Nos. 5,361,942 and 5,439,145 including the removable manifold unit, reservoir and associated plastic or rubber tubing. This removable assembly is marketed under the Ebac Limited trademark WATERTRAIL.


To overcome the problems of Top-Loading water dispensers, water dispensers in which the water bottle is stored in the lower portion of the water dispenser have been proposed. Since these systems cannot rely upon gravity to dispense drinking water, pumps are typically employed to pump the drinking water to the dispensing location located above the water bottle. These types of water dispensers are referred to herein as “Bottom-Loading” water dispensers. An example of such a water dispenser is disclosed in U.S. Patent Publication No. 2005/0072813. Bottom-Loading water dispensers address the water bottle installation problems associated with Top-Loading water dispensers. However, Bottom-Loading water dispensers employ significantly more water contact components than Top-Loading water dispensers and, therefore, are more difficult to sanitize effectively. Ebac Limited introduced a Bottom-Loading water dispenser under the trademark EASYLOADER with a removable WATERTRAIL in an effort to make sanitization easier. However, this water dispenser was expensive to produce and has not succeeded commercially.


Therefore, there is a significant need for a Bottom-Loading liquid dispenser that can be readily and easily sanitized while also being relatively inexpensive to manufacture. There is also a significant need for a simplified removable liquid transport assembly that conveys liquid between a liquid storage container, one or more reservoirs and a dispensing nozzle or nozzles of the liquid dispenser that can be manufactured at a relatively low cost and can be readily removed and replaced to ensure effective sanitization of the liquid dispenser.


OBJECTS AND SUMMARY OF THE INVENTION

An object of the present invention is to provide a novel and unobvious apparatus for dispensing liquid from a liquid storage container.


Another object of a preferred embodiment of the present invention is to provide a Bottom-Loading water dispenser that is relatively inexpensive to produce and is also easy to sanitize in a very short period of time.


Still another object of a preferred embodiment of the present invention is to provide a removable liquid transport assembly that is relatively inexpensive to manufacture while allowing for effective sanitization of the water dispenser.


A further object of a preferred embodiment of the present invention is to provide a removable liquid transport assembly configured to reduce the number of components thereof including the number of flexible hoses or conduits associated therewith.


Yet another object of a preferred embodiment of the present invention is to provide a Bottom-Loading water dispenser that requires only a single pump to pump water from a liquid storage container to one or more dispensing nozzles of a water dispenser.


Still a further object of a preferred embodiment of the present invention is to provide a removable liquid manifold that is substantially rigid with minimal flexible hosing associated therewith to expedite removal and replacement.


Yet still another object of a preferred embodiment of the present invention is to provide a removable liquid transport assembly configured to permit removal of a reservoir, reservoir dip tube, pump head, non-return valve, pressure relief valve, riser tube, pinch tube and dispenser nozzle upon removal of a liquid manifold, i.e., the step of removing the liquid manifold simultaneously effectuates the removal of all of the other aforementioned components of the removable liquid transport assembly.


Still yet a further object of a preferred embodiment of the present invention is to provide a removable liquid transport assembly with a liquid storage container dip tube that can be readily separated from the other components of the removable liquid transport assembly to facilitate removal thereof.


Another object of a preferred embodiment of the present invention is to provide a Bottom-Loading water dispenser that employs a self-priming pump with a pump head and drive motor where the pump head can be readily disconnected and securely connected to the drive motor to permit the removal and replacement of the pump head.


A further object of a preferred embodiment of the present invention is to provide a Bottom-Loading water dispenser that allows water in a reservoir to flow back into a liquid storage container in the event that an operating condition occurs which causes the volume of liquid to rise beyond a predetermined maximum value (e.g., a portion of the liquid in the chilled reservoir should freeze) to prevent damage to one or more components of the water dispenser while preventing liquid in the reservoir from flowing back into the liquid storage container when the volume of liquid does not exceed the predetermined maximum value.


Still a further object of a preferred embodiment of the present invention is to provide a Bottom-Loading water dispenser with a non-return valve that is designed to minimize the pressure drop across the non-return valve to reduce the size of the pump and ensure that the non-return valve has little to no effect on the flow of liquid from the liquid storage container to the reservoir.


It must be understood that no one embodiment of the present invention need include all of the aforementioned objects of the present invention. Rather, a given embodiment may include one or none of the aforementioned objects. Accordingly, these objects are not to be used to limit the scope of the claims of the present invention.


In summary, one preferred embodiment of the present invention is directed to an apparatus dispensing a liquid from a liquid storage container operably associated with the apparatus for dispensing a liquid. The apparatus includes a main housing having a dispensing location at which liquid from a liquid storage container is dispensed and a storage location for storing the liquid storage container. The dispensing location is disposed above at least a portion of the storage location. A reservoir is disposed in the housing. The reservoir is configured to receive a liquid from the liquid storage container prior to the liquid being dispensed from the main housing. A removable manifold is operably connected to the reservoir and the liquid storage container for conveying liquid between the reservoir and the liquid storage container. The removable manifold is further operably connected to the dispensing location to convey a liquid from the reservoir towards the dispensing location. The removable manifold has an upper chamber and a lower chamber. The upper chamber and the lower chamber share a common wall portion. The upper chamber is configured to direct a liquid from the reservoir towards the dispensing location in a substantially horizontal path. The lower chamber is configured to convey liquid between the liquid storage container and the reservoir in a substantially horizontal path. The upper chamber is disposed above the lower chamber.


Another preferred embodiment of the present invention is directed to an apparatus for dispensing a liquid from a liquid storage container operably associated with the apparatus for dispensing a liquid. The apparatus includes a main housing having a dispensing location at which liquid from a liquid storage container is dispensed and a storage location for storing a liquid storage container. The dispensing location is disposed above at least a portion of the storage location. A reservoir is disposed in the housing. The reservoir is configured to receive a liquid from the liquid storage container prior to the liquid being dispensed from the main housing. A valve assembly is disposed in a liquid flow path between the liquid storage container and the reservoir. The valve assembly includes a non-return valve and a pressure relief valve. The valve assembly further includes a valve housing for housing the non-return valve and the pressure relief valve. The valve assembly is configured such that when a volume of liquid upstream of the valve assembly exceeds maximum capacity, liquid upstream of the valve assembly can return to the liquid storage container. The valve assembly further is configured such that the non-return valve prevents liquid from flowing from the reservoir to the liquid storage container provided that the maximum capacity has not been exceeded.


A further preferred embodiment of the present invention is directed to an apparatus for dispensing a liquid from a liquid storage container operably associated with the apparatus for dispensing a liquid. The apparatus includes a main housing having a dispensing location at which liquid from a liquid storage container is dispensed and a storage location for storing a liquid storage container. The dispensing location is disposed above at least a portion of the storage location. A reservoir is disposed in the housing. The reservoir is configured to receive a liquid from the storage container prior to the liquid being dispensed from the main housing. A valve assembly is disposed in a liquid flow path between the liquid storage container and the reservoir. The valve assembly includes a non-return valve for preventing liquid from the reservoir to flow back into the liquid storage container. The non-return valve includes means for minimizing pressure drop across the non-return valve to minimize the effect the non-return valve has on liquid flow from the liquid storage container to the reservoir.


Still another preferred embodiment of the present invention is directed to an apparatus for dispensing a liquid from a liquid storage container operably associated with the apparatus for dispensing a liquid. The apparatus includes a main housing having a dispensing location at which liquid from a liquid storage container is dispensed and a storage location for storing a liquid storage container. The dispensing location is disposed above at least a portion of the storage location. A reservoir is disposed in the housing. The reservoir is configured to receive a liquid from the liquid storage container prior to the liquid being dispensed from the main housing. A self-priming pump has a pump head detachably connected to a drive motor. The self-priming pump is configured to pump liquid from the liquid storage container to the reservoir. The pump head is disposed in a removable manifold to allow the pump head to be readily replaced. The pump includes a drive pin and a drive crank. At least one of the drive crank and the drive pin includes means for facilitating mating of the pump head and the drive motor.


Still a further preferred embodiment of the present invention is directed to an apparatus for dispensing a liquid from a liquid storage container operably associated with the apparatus for dispensing a liquid. The apparatus includes a main housing having a dispensing location at which liquid from a liquid storage container is dispensed and a storage location for storing a liquid storage container. The dispensing location is disposed above at least a portion of the liquid storage location. The apparatus further includes a removable liquid transport assembly including a substantially rigid liquid manifold, a valve assembly, a reservoir and a pump head. The removable liquid transport assembly being configured such that the substantially rigid liquid manifold, the valve assembly, the reservoir and the pump head are removable from the main housing as a single unit. The substantially rigid liquid manifold having a liquid flow channel through which liquid traveling between the liquid storage container and the reservoir passes. At least a portion of the pump head is disposed in the liquid flow channel of the substantially rigid manifold. At least a portion of the valve assembly is disposed in the liquid flow channel of the substantially rigid liquid manifold. The liquid flow channel is configured to connect the valve assembly to the pump head without using any flexible tubing. The reservoir is connected to the liquid flow channel of the substantially rigid manifold. The valve assembly includes at least one of a pressure relief valve and a non-return valve.


Another preferred embodiment of the present invention is directed to a liquid transport assembly for a liquid dispenser to convey a liquid between a liquid storage container and a dispensing location of the liquid dispenser. The liquid transport assembly includes a removable liquid transport assembly configured to be readily installed in and removed from a liquid dispenser to permit the liquid dispenser to be readily sanitized. The removable liquid transport assembly includes a substantially rigid liquid manifold, a valve assembly, a reservoir and a pump head. The removable liquid transport assembly is configured such that the substantially rigid liquid manifold, the valve assembly, the reservoir and the pump head are removable from the liquid dispenser as a single unit. The substantially rigid liquid manifold has a liquid flow channel through which liquid travel passes during operation of the liquid dispenser. At least a portion of the pump head is disposed in the liquid flow channel of the substantially rigid manifold. At least a portion of the valve assembly is disposed in the liquid flow channel of the substantially rigid liquid manifold. The liquid flow channel is configured to connect the valve assembly to the pump head without using any flexible tubing. The reservoir is connected to the liquid flow channel of the substantially rigid manifold. The valve assembly includes at least one of a pressure relief valve and a non-return valve.


A further preferred embodiment of the present invention is directed to a liquid transport assembly for a liquid dispenser to convey a liquid between a liquid storage, container and a dispensing location of the liquid dispenser. The liquid transport assembly includes a removable liquid transport assembly configured to be readily installed in and removed from a liquid dispenser to permit the liquid dispenser to be readily sanitized. The removable liquid transport assembly includes a liquid manifold, a valve assembly, a reservoir and a pump head. The removable liquid transport assembly is configured such that the liquid manifold, the valve assembly, the reservoir and the pump head are removable from the liquid dispenser as a single unit. The valve assembly includes at least a pressure relief valve.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a water dispenser formed in accordance with a preferred embodiment of the present invention with the liquid transport assembly removed therefrom.



FIG. 2 is a view similar to that depicted in FIG. 1 with the liquid transport assembly formed in accordance with a preferred embodiment of the present invention installed in the water dispenser.



FIG. 3 is a front elevation view of a water dispenser formed in accordance with a preferred embodiment of the present invention with the water bottle and portions of the main housing removed.



FIG. 4 is fragmentary perspective view of a water dispenser formed in accordance with a preferred embodiment of the present invention.



FIG. 5 is a fragmentary perspective view similar to that depicted in FIG. 4 but from a slightly different vantage point to reveal components not readily seen in FIG. 4.



FIG. 6 is a fragmentary perspective view of a water dispenser formed in accordance with a preferred embodiment of the present invention with various aspects shown in phantom to permit viewing of other components.



FIG. 7 is a cross-sectional view of a liquid transport assembly formed in accordance with a preferred embodiment of the present invention.



FIG. 8 is a fragmentary cross-sectional view of a liquid transport assembly formed in accordance with a preferred embodiment of the present invention.



FIG. 9 is a fragmentary perspective view of a liquid transport assembly formed in accordance with a preferred embodiment of the present invention with various aspects shown in phantom to permit viewing of other components.



FIG. 9A is a perspective view of a portion of the liquid transport assembly formed in accordance with a preferred embodiment of the present invention.



FIG. 9B is a perspective view similar to FIG. 9A with portions removed to permit viewing of the internal cavity of a liquid manifold formed in accordance with a preferred embodiment of the present invention.



FIG. 9C is a perspective view similar to FIG. 9B with the cover plate for one of the lower chambers removed to permit viewing of the internal cavity of the particular lower chamber.



FIG. 10 is cross-sectional view of a preferred form of valve assembly.



FIG. 11 is a cross-sectional view of a preferred form of self-priming pump for a preferred embodiment of the present invention with the drive motor shown detached from the pump head.



FIG. 12 is a cross-sectional view of a preferred form of self-priming pump for a preferred embodiment of the present invention with the drive motor shown connected to the pump head.



FIG. 13 is a perspective view of a preferred form of drive motor.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION

The preferred form of the invention will now be described with reference to FIGS. 1-13. The appended claims are not limited to the preferred form and no term and/or phrase used herein is to be given a meaning other than its ordinary meaning unless it is expressly stated otherwise.


FIGS. 1 Through 13

Referring to FIGS. 1 to 13, a liquid dispenser A employing a preferred form of the invention is illustrated in one of many possible configurations. In the most preferred form, liquid dispenser A dispenses chilled and hot water for human consumption. However, the present invention is not limited to a liquid dispenser that dispenses chilled and hot water for human consumption. Rather, the liquid dispenser may dispense other liquids including but not limited to ambient temperature drinking water and carbonated liquids. Liquid dispenser A includes a main housing B having a substantially hollow internal cavity for housing components of the liquid dispenser, a liquid dispensing location C and a liquid storage location D for receiving and storing a liquid storage container E in an upright orientation. Liquid dispenser A further includes a cover F pivotally connected to main housing B. Any suitable latch mechanism may be used to permit the forward edge of the cover F to be secured to and released from a corresponding front edge of main housing B. Referring to FIGS. 1 and 2, a cup G is shown in the liquid dispensing location C. The liquid storage container E is preferably a conventional five (5) gallon water bottle oriented in an upright manner.


Referring to FIGS. 1 and 2, a reservoir housing 2, a cooling system 3, a pump motor 4 and a riser tube guide member 6 are disposed in the internal cavity of liquid dispenser A. Liquid dispenser A includes a removable liquid transport assembly H as seen, for example, in FIGS. 2 and 6 through 9. The removable liquid transport assembly H includes a substantially rigid conduit housing 8 removably connected to a substantially rigid liquid manifold 10 as seen for example in FIGS. 4 and 5. Conduit housing 8 and manifold 10 may be formed out of any suitable material including plastic. Any suitable fasteners may be used to removably secure conduit housing 8 to liquid manifold 10. Further, it will be readily appreciated that conduit housing 8 may be permanently fixed to liquid manifold 10 or may be formed as one piece with liquid manifold 10.


Conduit housing 8 preferably houses a pinch tube 12 and a dispensing nozzle 14. In the most preferred form, as seen in FIG. 9A, the pinch tube 12 and the dispensing nozzle 14 are formed from a single piece of silicon rubber. However, the pinch tube 12 and the dispensing nozzle 14 could be formed from separate pieces that are connected in a fluid tight manner. Referring to FIGS. 8, 9B and 9C, liquid manifold 10 includes lower chambers 16 and 17, an upper chamber 18 and a small vent hole 20. Liquid manifold 10 further includes an internally threaded collar 22 and a secondary dispensing port 24. Referring to FIGS. 9B and 9C, lower chamber 16 is smaller than lower chamber 17. A cover plate 19 separates lower chamber 16 and lower chamber 17. Opening 21 formed in cover plate 19 allows liquid to pass from lower chamber 16 to lower chamber 17. Referring to FIGS. 9A and 9B, lower chamber 17 and upper chamber 18 share wall portion 23. Further, wall portion 23 forms the lowermost portion of upper chamber 18.


The removable liquid transport assembly H further includes a reservoir 26 having a neck portion with external threads corresponding to the internal threads of collar 22 so that the reservoir 26 can be readily connected to liquid manifold 10. It will be readily appreciated that reservoir 26 may be connected to liquid manifold 10 in numerous other ways. The removable liquid transport assembly H further includes a reservoir dip tube 28, a pump head 30, a valve assembly 32, a riser tube 34 and a liquid storage container dip tube 36 having a connecting member 38 for removably connecting the liquid storage container dip tube 36 to the lower end 40 of riser tube 34. As shown in FIG. 7, the liquid storage container dip tube 36 extends into liquid storage container E through cap 42 of container E.


The secondary dispensing port 24 may be connected to a hot water supply assembly I including a hot water reservoir (not shown), a hot water reservoir dip tube (not shown), a heating element (not shown), one or more conduits (not shown) for conveying hot water from the hot water reservoir to a second dispensing nozzle (not shown). The hot water supply assembly I can be omitted. Where the hot water supply assembly I is omitted, the secondary dispensing port 24 may be plugged to prevent the flow of water through port 24. Alternatively, the secondary dispensing port 24 may be operably connected to a second dispensing nozzle in a well-known manner to dispense water at ambient temperature through the second dispensing nozzle when lever 44 is depressed. Alternatively, the secondary dispensing port 24 can be connected to a carbonated liquid source to dispense a carbonated liquid from the second dispensing nozzle.


Cold water tap lever 46 controls the flow of chilled water from reservoir 26 through dispensing nozzle 14. Referring to FIG. 4, a pinch valve 48 is operably associated with cold water tap lever 46 to control the flow of chilled water out dispensing nozzle 14. Specifically, pinch valve 48 acts on pinch tube 12 in a well-known manner to prevent the flow of chilled water out dispensing nozzle 14 until such time as lever 46 is depressed. Spring 49 biases lever 46 upwardly causing pinch valve 48 to close off pinch tube 12. Once the biasing force of spring 49 is overcome by a person depressing lever 46, a micro switch 51 activates self-priming pump J to pump water from container E upwardly through dip tube 36 and riser tube 34 into lower chamber 16 of liquid manifold 10. The liquid travels through valve assembly 32 and pump head 30 and passes into lower chamber 17 through opening 21. Liquid flowing through chamber 17 empties into reservoir 26 (which chills the water stored therein) which in turn causes chilled water stored in reservoir 26 to pass upwardly through dip tube 28 into upper chamber 18 and out dispensing nozzle 14. The flow of liquid when lever 46 is depressed is shown by the arrows in FIG. 8.


Pinch valve 50 is operably associated with lever 44 to act in a similar manner to permit and prevent liquid to flow out a second dispensing nozzle (not shown). In the most preferred form, the liquid dispensed from the second dispensing nozzle is hot water. When lever 44 is depressed, pump J pumps liquid from container E through dip tube 36 and riser tube 34 into lower chamber 16 of liquid manifold 10 and out secondary dispensing port 24 into a hot water reservoir which in turn causes the hot water stored in the water heating reservoir to flow through a dip tube into one or more conduits connecting the hot water reservoir to the second dispensing nozzle (not shown) and ultimately out the second dispensing nozzle (not shown).


Referring to FIGS. 8 and 10, the valve assembly 32 will be described in greater detail. Valve assembly 32 includes a valve housing 52 having a lower valve housing member 54 and an upper valve housing member 56. Preferably, a non-return valve 58 and a pressure relief valve 60 are disposed in housing 52. Non-return valve 58 includes a spring 62, a spring follower 64, a diaphragm 66 and a sealing ring 68. In the closed position, diaphragm 66 seats on annular seat 67 of sealing ring 68 as illustrated in FIG. 10. When lever 46 is depressed, pump J sucks liquid upwardly causing the liquid to pass through dip tube 36, through the riser tube 34 and through openings 70 in lower valve housing member 54. When the force of the liquid is sufficient to overcome the force of spring 62, diaphragm 66 moves upwardly off the annular seat 67 of sealing ring 68 which in turn causes the liquid to pass through flow hole 72 formed in diaphragm 66 out openings 74 in upper valve housing member 56. The liquid in turn passes through pump head 30 and enters reservoir 26 forcing chilled water stored in reservoir 26 to ultimately pass out through dispensing nozzle 46 as previously described. When lever 46 is released, the pump deactivates ceasing the flow of liquid from container E which allows spring 62 to reseat diaphragm 66 on annular seat 67 of sealing ring 68 as shown in FIG. 10. When the sealing valve assembly 52 is in the position illustrated in FIG. 10, liquid in reservoir 26 cannot flow back into container E.


The non-return valve 58 is designed to minimize the pressure drop across the non-return valve to prevent the non-return valve from adversely affecting the flow of liquid from container E to reservoir 26. By designing the valve 58 to have minimal effect on the flow of liquid, the preferred embodiment can minimize the size of the pump. The pressure drop is minimized by the fact that to open the valve 58 flow in the forward direction must pull against the full area of the diaphragm 66 while to close the valve 58 spring 62 need only overcome the annular seat 67 of sealing ring 68. As is readily evident from FIG. 10, the outer diameter of the diaphragm 66 is significantly greater than the diameter of the annular seat 67 of sealing ring 68: In a most preferred form, the outer diameter of the diaphragm 66 is approximately 32 mm while the diameter of the annular seat 67 of the sealing ring 68 is approximately 8 mm. This relationship provides an advantageous pressure ratio of 16:1.


Vent hole 20 allows air to escape through dispensing nozzle 46. When the supply of liquid in container E is exhausted, a small amount of air will be pumped through the liquid transport assembly and vented through vent hole 20 effectively stopping the liquid dispenser A from dispensing liquid until the exhausted container E is replaced.


The pressure relief valve 60 includes a sealing element 76, a spring 78 and vent hole 80 formed in sealing ring 68. Should the volume of the liquid upstream of valve assembly 52 increase beyond a predetermined maximum volume, the upstream liquid will exert a downward force on sealing element 76 which in turn opens vent hole 80 allowing upstream liquid to return to container E. Once a sufficient amount of upstream liquid has returned to container E, the force of spring 78 will return sealing element 76 to the closed position preventing any additional upstream liquid from flowing back into container E. It should be noted that when liquid flows upwardly from container E in route to reservoir 26 the liquid does not pass through pressure relief valve 60 as the sealing element 76 is in the position shown in FIG. 10 to close off the vent hole 80. One condition that could cause pressure relief valve 60 to open is where a portion of the liquid in reservoir 26 freezes causing an increase in the effective volume of the liquid upstream of valve assembly 52. Without pressure relief valve 60, one or more components of the liquid dispenser A could be irreparably damaged.


As seen in FIGS. 8, 9B and 9C, valve assembly 52 extends into lower chamber 16 of liquid manifold 10 and is secured thereto such that the valve assembly moves with liquid manifold 10.


The self-priming pump J will now be described in greater detail with reference being made to FIGS. 11 to 13. In the most preferred form, self-priming pump J is a three cylinder swash-plate diaphragm pump having a drive motor 4 and a pump head 30. The pump head 30 can be readily disconnected from the drive motor 4 by merely moving the pump head 30 upwardly from the engaged position shown in FIG. 12 to the disengaged position shown in FIG. 11. Drive motor 4 includes a drive crank 82 that rotates upon activation of drive motor 4 by micro switch 51. The drive crank 82 preferably includes a sloping surface 84 that drive pin 86 of pump head 30 strikes when the pump head 30 is connected to the drive motor 4. The sloping surface 84 facilitates the mating of drive motor 4 and pump head 30 by guiding the drive pin 86 into the angled socket 88 thereby orienting swash plate 90 at the desired angle. Swash plate 90 is connected to piston 92 that moves in cylinder 94 formed in pump head 30. Pump head 30 further includes an inlet valve 96, an inlet chamber 98, an outlet valve 100 and an outlet chamber 102. As is readily seen in FIG. 8, pump head 30 extends into lower chamber 16 of liquid manifold 10 and secured thereto such that the pump head 30 moves with liquid manifold 10.


To readily replace the bulk of the liquid transport assembly H, one need only raise lid F, raise latch 104 to the position shown in FIGS. 3, 5 and 6 to free conduit housing 8, turn rotating clamps 105 and 107 to the positions shown in FIG. 5 to free manifold 10, disconnect riser tube 34 from dip tube 36 and raise liquid manifold 10 upwardly which in turn causes all of the elements of the liquid transport assembly shown in FIGS. 8 and 9 connected to liquid manifold 10 to move upwardly with liquid manifold 10. Hence, the portions of the liquid transport assembly H illustrated in FIGS. 8 and 9 can be readily removed and replaced as a unit. Once removed the portion of the liquid transport assembly H shown in FIGS. 8 and 9 can be replaced with a new, sanitized assembly having, the same components as the removed portion of the liquid transport assembly H. Guide member 6 having a hollow cavity generally conforming to the shape of riser tube 34 and having slightly larger dimensions facilitates insertion of the sanitized riser tube 34. Once separated from riser tube 34, dip tube 36 can easily and readily be removed and replaced with a sanitized dip tube.


While this invention has been described as having a preferred design, it is understood that the preferred design can be further modified or adapted following in general the principles of the invention and including but not limited to such departures from the present invention as come within the known or customary practice in the art to which the invention pertains. The claims are not limited to the preferred embodiment and have been written to preclude such a narrow construction using the principles of claim differentiation.

Claims
  • 1. An apparatus for dispensing a liquid from a liquid storage container operably associated with the apparatus for dispensing a liquid, said apparatus comprising: (a) a main housing having a dispensing location at which liquid from a liquid storage container is dispensed and a storage location for storing said liquid storage container, said dispensing location being disposed above at least a portion of said storage location;(b) a reservoir disposed in said housing, said reservoir being configured to receive a liquid from said liquid storage container prior to said liquid being dispensed from said main housing; and,(c) a removable manifold operably connected to said reservoir and said liquid storage container for conveying liquid between said reservoir and said liquid storage container, said removable manifold being further operably connected to said dispensing location to convey a liquid from said reservoir towards said dispensing location, said removable manifold having an upper chamber and a lower chamber, said upper chamber and said lower chamber share a common wall portion, said upper chamber being configured to direct a liquid from said reservoir towards said dispensing location in a substantially horizontal path, said lower chamber being configured to convey liquid between said liquid storage container and said reservoir in a substantially horizontal path, said upper chamber being disposed above said lower chamber.
  • 2. An apparatus as set forth in claim 1, wherein: (a) said common wall portion forms a lowermost portion of said upper chamber.
  • 3. An apparatus as set forth in claim 1, wherein: (a) said removable manifold includes a vent hole for connecting said lower chamber to said upper chamber to allow air to pass from said lower chamber to said upper chamber so that air can exit said main housing at said dispensing location, said vent hole being sized such that little or no liquid can pass through said vent hole.
  • 4. An apparatus as set forth in claim 1, further including: (a) a pump head operably associated with a pump motor, at least a portion of said pump head is disposed in one of said upper chamber and said lower chamber of said removable manifold.
  • 5. An apparatus as set forth in claim 4, wherein: (a) at least a portion of said pump head is disposed in said lower chamber of said removable manifold.
  • 6. An apparatus as set forth in claim 1, further including: (a) a valve assembly operably associated with said removable manifold, said valve assembly including at least one of a non-return valve and a pressure relief valve.
  • 7. An apparatus as set forth in claim 6, wherein: (a) at least a portion of said valve assembly is disposed in one of said upper chamber and said lower chamber of said removable manifold.
  • 8. An apparatus as set forth in claim 7, wherein: (a) said valve assembly includes a non-return valve and a pressure relief valve.
  • 9. An apparatus as set forth in claim 8, wherein: (a) said non-return valve is located upstream of said pressure relief valve in a liquid path traveling from said liquid storage container to said reservoir.
  • 10. An apparatus as set forth in claim 6, wherein: (a) said valve assembly includes a pressure relief valve configured to permit liquid upstream of said pressure relief valve to return to said liquid storage container should the volume of liquid upstream of said pressure relief valve exceed a predetermined capacity.
  • 11. An apparatus as set forth in claim 8, wherein: (a) said valve assembly includes a valve housing for housing said non-return valve and said pressure relief valve.
  • 12. An apparatus as set forth in claim 10, wherein: (a) said non-return valve is disposed above said pressure relief valve, said valve assembly further being configured such that liquid passing from said liquid storage container to said reservoir does not pass through said pressure relief valve.
  • 13. An apparatus as set forth in claim 12, wherein: (a) said non-return valve and said pressure relief valve have an open position and a closed position, when said non-return valve is in said open position and said pressure relief valve is in said closed position, liquid can travel from said storage container to said reservoir through only said non-return valve, when said non-return valve is in said closed position and said pressure relief valve is in said open position, liquid upstream of said valve assembly can flow back into said liquid storage container through said non-return valve and said pressure relief valve.
  • 14. An apparatus as set forth in claim 1, wherein: (a) said removable manifold is substantially rigid.
  • 15. An apparatus as set forth in claim 1, further including: (a) a conduit housing for housing a pinch tube and dispensing nozzle, said conduit housing being operably associated with said removable manifold such that said conduit housing is removable from said main housing upon removal of said removable manifold.
  • 16. An apparatus as set forth in claim 15, wherein: (a) said conduit housing is substantially rigid.
  • 17. An apparatus for dispensing a liquid from a liquid storage container operably associated with the apparatus for dispensing a liquid, said apparatus comprising: (a) a main housing having a dispensing location at which liquid from a liquid storage container is dispensed and a storage location for storing a liquid storage container, said dispensing location being disposed above at least a portion of said storage location;(b) a reservoir disposed in said housing, said reservoir being configured to receive a liquid from said liquid storage container prior to said liquid being dispensed from said main housing; and,(c) a valve assembly disposed in a liquid flow path between said liquid storage container and said reservoir, said valve assembly including a non-return valve and a pressure relief valve, said valve assembly further including a valve housing for housing said non-return valve and said pressure relief valve, said valve assembly being configured such that when a volume of liquid upstream of said valve assembly exceeds maximum capacity, liquid upstream of said valve assembly can return to said liquid storage container, said valve assembly further being configured such that said non-return valve prevents liquid from flowing from said reservoir to said liquid storage container provided that said maximum capacity has not been exceeded.
  • 18. An apparatus as set forth in claim 17, further including: (a) a removable liquid manifold operably connected to said reservoir and said liquid storage container for conveying liquid between said reservoir and said liquid storage container, said removable manifold being further operably connected to said dispensing location to convey a liquid from said reservoir towards said dispensing location, at least a portion of said valve assembly is disposed in said removable liquid manifold such that said valve assembly is removable from said main housing upon removal of said removable liquid manifold; and,(b) a liquid transport assembly for conveying liquid between said liquid storage container and said removable liquid manifold, said liquid transport assembly including a liquid storage container dip tube extending into said liquid storage container, said liquid transport assembly further including a riser tube connecting said liquid storage container dip tube to said valve assembly, said liquid storage container dip tube being removably connected to said riser tube so that said liquid storage container dip tube can be readily detached from said riser tube and removed from said main housing separately from said riser tube, said riser tube being configured to be removed from said main housing upon removal of said removable liquid manifold.
  • 19. An apparatus as set forth in claim 18, wherein: (a) said reservoir is connected to said removable liquid manifold in such a manner that said reservoir is removed from said main housing upon removal of said removable liquid manifold.
  • 20. An apparatus as set forth in claim 19, wherein: (a) said removable liquid manifold includes an upper chamber and a lower chamber, said upper chamber and said lower chamber share a common wall portion, said upper chamber being configured to direct a liquid from said reservoir towards said dispensing location in a substantially horizontal path, said lower chamber being configured to convey liquid between said liquid storage container and said reservoir in a substantially horizontal path, said upper chamber being disposed above said lower chamber; and,(b) a reservoir dip tube having first and second ends, said first end is disposed in said reservoir, said second end is connected to said upper chamber of said removable liquid manifold, at least a portion of said reservoir dip tube extends into said lower chamber of said removable liquid manifold.
  • 21. An apparatus as set forth in claim 20, wherein: (a) at least a portion of said valve assembly is disposed in said lower chamber; and,(b) a pump head operably connected to said removable liquid manifold such that said pump head is removed from said main housing upon removal of said removable liquid manifold, at least a portion of said pump head is disposed in said lower chamber of said removable liquid manifold.
  • 22. An apparatus for dispensing a liquid from a liquid storage container operably associated with the apparatus for dispensing a liquid, said apparatus comprising: (a) a main housing having a dispensing location at which liquid from a liquid storage container is dispensed and a storage location for storing a liquid storage container, said dispensing location being disposed above at least a portion of said storage location;(b) a reservoir disposed in said housing, said reservoir being configured to receive a liquid from said storage container prior to said liquid being dispensed from said main housing; and,(c) a valve assembly disposed in a liquid flow path between said liquid storage container and said reservoir, said valve assembly including a non-return valve for preventing liquid from said reservoir to flow back into said liquid storage container, said non-return valve including means for minimizing pressure drop across said non-return valve to minimize the effect said non-return valve has on liquid flow from said liquid storage container to said reservoir.
  • 23. An apparatus as set forth in claim 22, wherein: (a) said means for minimizing pressure drop across said non-return valve includes a spring, a spring follower, a diaphragm and a sealing ring, said diaphragm is biased by said spring and said spring follower to seat on said sealing ring when said non-return valve is in a closed position, said diaphragm assembly unseats from said sealing ring when sufficient force is exerted by a liquid flowing upwardly from said liquid storage container, said diaphragm has a first diameter and said sealing ring has a second diameter, said first diameter is sized relative to said second diameter to minimize pressure drop across said non-return valve.
  • 24. An apparatus as set forth in claim 23, wherein: (a) said first diameter is sized relative to said second diameter to create a pressure ratio of unseating said diaphragm to seating said diaphragm of approximately 16 to 1.
  • 25. An apparatus for dispensing a liquid from a liquid storage container operably associated with the apparatus for dispensing a liquid, said apparatus comprising: (a) a main housing having a dispensing location at which liquid from a liquid storage container is dispensed and a storage location for storing a liquid storage container, said dispensing location being disposed above at least a portion of said storage location;(b) a reservoir disposed in said housing, said reservoir being configured to receive a liquid from said storage container prior to said liquid being dispensed from said main housing; and,(c) a self-priming pump having a pump head detachably connected to a drive motor, said self-priming pump being configured to pump liquid from said liquid storage container to said reservoir, said pump head being disposed in a removable manifold to allow said pump head to be readily replaced, said pump including a drive pin, said pump further including a drive crank, at least one of said drive crank and said drive pin including means for facilitating mating of said pump head and said drive motor.
  • 26. An apparatus for dispensing a liquid from a liquid storage container operably associated with the apparatus for dispensing a liquid, said apparatus comprising: (a) a main housing having a dispensing location at which liquid from a liquid storage container is dispensed and a storage location for storing a liquid storage container, said dispensing location being disposed above at least a portion of said liquid storage location; and,(b) a removable liquid transport assembly including a substantially rigid liquid manifold, a valve assembly, a reservoir and a pump head, said removable liquid transport assembly being configured such that said substantially rigid liquid manifold, said valve assembly, said reservoir and said pump head are removable from said main housing as a single unit, said substantially rigid liquid manifold having a liquid flow channel through which liquid traveling between said liquid storage container and said reservoir passes, at least a portion of said pump head being disposed in said liquid flow channel of said substantially rigid manifold, at least a portion of said valve assembly being disposed in said liquid flow channel of said substantially rigid liquid manifold, said liquid flow channel being configured to connect said valve assembly to said pump head without using any flexible tubing, said reservoir being connected to said liquid flow channel of said substantially rigid manifold, said valve assembly including at least one of a pressure relief valve and a non-return valve.
  • 27. An apparatus as set forth in claim 26, wherein: (a) said valve assembly includes a non-return valve and a pressure relief valve, said valve assembly includes a valve housing for housing said non-return valve and said pressure relief valve to permit said non-return valve and said pressure relief valve to operate in a cooperative manner.
  • 28. An apparatus as set forth in claim 26, wherein: (a) said substantially rigid liquid manifold includes a secondary dispensing port.
  • 29. A liquid transport assembly for a liquid dispenser to convey a liquid between a liquid storage container and a dispensing location of the liquid dispenser, said liquid transport assembly comprising: (a) removable liquid transport assembly configured to be readily installed in and removed from a liquid dispenser to permit the liquid dispenser to be readily sanitized, said removable liquid transport assembly including a substantially rigid liquid manifold, a valve assembly, a reservoir and a pump head, said removable liquid transport assembly being configured such that said substantially rigid liquid manifold, said valve assembly, said reservoir and said pump head are removable from the liquid dispenser as a single unit, said substantially rigid liquid manifold having a liquid flow channel through which liquid travel passes during operation of the liquid dispenser, at least a portion of said pump head being disposed in said liquid flow channel of said substantially rigid manifold, at least a portion of said valve assembly being disposed in said liquid flow channel of said substantially rigid liquid manifold, said liquid flow channel being configured to connect said valve assembly to said pump head without using any flexible tubing, said reservoir being connected to said liquid flow channel of said substantially rigid manifold, said valve assembly including at least one of a pressure relief valve and a non-return valve.
  • 30. A liquid transport assembly for a liquid dispenser to convey a liquid between a liquid storage container and a dispensing location of the liquid dispenser, said liquid transport assembly comprising: (a) a removable liquid transport assembly configured to be readily installed in and removed from a liquid dispenser to permit the liquid dispenser to be readily sanitized, said removable liquid transport assembly including a liquid manifold, a valve assembly, a reservoir and a pump head, said removable liquid transport assembly being configured such that said liquid manifold, said valve assembly, said reservoir and said pump head are removable from the liquid dispenser as a single unit, said valve assembly including a pressure relief valve.