This application claims the priority of European Application No. 04405785.9-2314, filed on Dec. 20, 2004, the subject matter of which is incorporated herein by reference.
The invention relates to a apparatus for feeding print products in a conveyed flow to a processing device. Such an apparatus comprises an arrangement for supplying print products by a first conveyor and a following second conveyor. A guide arrangement provided with side-adjustable guide members forms a center axis in the longitudinal direction, relative to the flow of conveyed print products, wherein the print products are aligned along the guide arrangement.
Apparatuses of the aforementioned type are used to supply print products to feeder hoppers of systems used for the further processing of print products. As used herein print products are understood to include printed sheets, cards, CD/DVD-ROM, flat goods samples, and the like, which are supplied in the form of bundles and for which the dimensions can vary over a wide format range.
The overlapping function is based, for example, on the principle of frictional adherence. It is known that the frictional value between two surfaces depends on their surface condition and is subject to considerable scattering. Since the color distribution on an imprinted page is generally irregular, it can additionally be concluded that the frictional value within the surface of a print product cannot be regular. A high number of the print products is provided with a fold along at least one edge or, for other reasons, the print products do not have the same thickness across the complete surface. This results in an irregular force distribution which additionally leads to an irregular distribution of the frictional forces. To restrict the influence of the aforementioned irregularities to a degree necessary for an acceptable function, the printed sheets are aligned centrally with respect to the conveyors and the second conveyor operates only in a narrow, central section, meaning in the region where the overlapping flow is formed. The first conveyor consists of at least one driven, circulating conveying means, e.g. chains, belts, or toothed belts, wherein the conveying direction is approximately horizontal or is slightly inclined in the movement direction. The second conveyor also consists of at least one driven, circulating conveying means, for example chains, belts or toothed belts. Alternatively, the conveying means can also be embodied as a roller conveyor, comprising a plurality of driven rollers.
The first and second conveyors are drive-connected, which can be achieved either by installing a gear between the conveyors, or by using separate drives which are connected via a joint control unit.
The thickness of the conveyed flow on the second conveyor is of necessity predetermined by the speed ratio for the two conveyors relative to each other, wherein this ratio is preferably adjusted such that no gaps can develop between the print products, but that at least 2 print products will overlap and result in an overlapping flow that is as continuous as possible. Since the measurements for the print products to be processed can vary in all three dimensions, the hoppers for the further print processing machines as well as the feeding apparatuses are configured such that they can be adapted to the format.
The manner in which the format is adjusted transverse to the conveying direction for the feeding apparatus is determined by the mode of operation of the further print processing machine to be supplied, wherein three adjustment cases are known:
State of the art feeding apparatuses are configured symmetrical with respect to the format adjustment transverse to the conveying direction. The case a) is thus covered. For the cases b) and c), however, the complete conveying arrangement must be displaced to the side so that the longitudinal center axis of the conveyed flow coincides with the center axis of the products positioned inside the hopper for the further print processing machine. In principle this is possible, but it also involves an enormous expenditure in force and time since the feeding apparatus must be securely connected to the floor during the operation.
Furthermore conceivable is the installation of an alignment means between the feeding apparatus and the hopper for the further print processing machine, which alignment means pushes the print products into the correct position on the side. This solution, however, is technically very involved, is not secure with respect to process technology, and furthermore requires additional space in the conveying direction for meeting this function.
The feeding apparatus can also be divided into an immovable lower part and an upper part which can be displaced relative thereto. This solution, which is simple per se, has the serious disadvantage that the system would require more space in the transverse direction, thus occupying the empty space needed for operating the system between two adjacent feeding apparatuses.
It is an object of the present invention to create a feeding apparatus which is locally secured in place and can supply the hoppers, which are displaceable symmetrical to the conveying direction as well as to one side, of further print processing machines, while simultaneously maintaining the functional safety of a feeding apparatus according to prior art. The change in the operating mode should furthermore be easy and not require the replacement of parts.
The above and other objects are accomplished according to the invention by the provision of an apparatus for feeding print products, conveyed in a flow, to a processing device, the apparatus comprising: a feeding device including a first conveyor and a downstream-connected second conveyor; and a guide arrangement including side-adjustable guide members to form a longitudinal center axis relative to the conveyed flow of print products, wherein the print products are aligned along the guide arrangement, and the guide arrangement is configured relative to the longitudinal center axis so that it can be adjusted transverse to the conveying direction of the print products.
Thus, according to the invention, the feeding apparatus is provided with a guide arrangement, relative to the longitudinal center axis, which can be adjusted transverse to the conveying direction of the print products.
These and other features and advantages of the invention will be further understood from the following detailed description of the exemplary embodiments with reference to the accompanying drawing, to which reference is made for all details not mentioned in the description.
As shown in
The bundles 40 are placed onto the first conveyor 2 of the feeding apparatus 1, preferably a lifting apparatus which is not shown herein, and/or they are positioned so as to adjoin the back end, in the processing direction, of the untied bundle already positioned on the first conveyor 2. Following this, the encasing strap 42 and the end boards 41 are removed. A supporting apparatus (not shown) that can be displaced in the conveying direction is provided to support the print products 6 positioned at the very back.
If the print products 6 are supplied in the form of light bundles or loose stacks, they can also be deposited manually.
The print products 6 are subsequently positioned upright on one side edge 43 on the first conveyor 2, which essentially comprises the following components:
1. a first circulating conveying element 19, attached to a support 7, on which the print products 6 are transported to a second conveyor 3 in the direction of arrow 16 while standing upright on the side edge 43;
2. side guides 8, 9 for positioning the print products 6 during the depositing of the bundles 40 and the transport of the print products 6 with the aid of a conveying element 19;
3. lateral conveying elements 10, 11, which move at approximately the same speed as the conveying element 19 in the conveying direction, between which the print products 6 can be transported;
4. conveying element 12 and guide members 17, 18, such guide members supporting the conveying elements 10, 11, during the further transport of print products 6, wherein the speed of the conveying element 12 is at least nearly as high as the speed of the conveying members 10, 11. The support 7 and conveying elements 12 and 19 constitute a conveying element 29 of the first conveyor; and
5. a drive system, not shown herein, connected to the conveying elements 10, 11, 12 and 19 and which drives these elements with the necessary operating speeds in the direction of arrow 16. A drive system of this type could, for example, consist of a mechanical gear with several outputs, respectively connected to the conveying elements 10, 11, 12, and 19, and an electric motor for driving the mechanical gear. An electronic control unit can be used to control the electric motor, such that the speed of the first conveyor is changed continuously. Individual electric drives that are controlled jointly can also be used in place of a central drive.
The first conveyor 2 is followed by a second, ascending conveyor 3. The conveying planes for the two conveyors thus form an obtuse angle α. The second conveyor 3 transforms the stack taken from the first conveyor 2 in the conveying direction of arrow 16 into an overlapping flow 47 of horizontally conveyed print products 6, as shown with arrow 32.
The second conveyor 3 essentially comprises the following components:
1. a lower conveying system 15 which uses friction to pick up the print products 6, supplied by the first conveyor 2, in the region of their longitudinal center axis and conveys these products to the hopper 5. For the exemplary embodiment, the lower conveying system 15 in the area where the overlapping flow is formed includes a first conveying section 49, formed by belts 27, 28, and an adjoining second conveying means 14, which forms a fixed, second conveying section 48 and is embodied as a single wide belt. Several parallel belts can also be used in place of the conveying means 14. The first conveying section 49 is connected to the conveying element 29 so as to be adjustable transverse to the direction of conveyance; and
2. an upper conveying section 50, formed with belts 30, 31 which hold the print products 6 against the lower conveying system 15, wherein the upper conveying section 50 and the lower conveying system 15 are operated at the same speed. The lower conveying system 15 extends to the hopper 5 in which the conveyed print products 6 are deposited in stacks. The upper conveying section 50 is connected to be adjustable to the position of the conveying element 29.
Each support 7, 21, 22 can furthermore be adjusted by separate spindles, which are positioned in the machine frame 39 and can be operated manually or with the aid of a motor. The displacement distances, which depend on the mode of operation and the format, are preferably computed in the machine control and are displayed as desired values on a display apparatus or are transmitted to adjustment drives.
It will be understood that the above description of the present invention is by way of example and is susceptible to various modifications, changes and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
04405785 | Dec 2004 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3690650 | Maier et al. | Sep 1972 | A |
3945633 | Knopp | Mar 1976 | A |
4089517 | Marass | May 1978 | A |
4607831 | Raybuck | Aug 1986 | A |
4618136 | Pessina et al. | Oct 1986 | A |
5197590 | Prim et al. | Mar 1993 | A |
5411252 | Lowell | May 1995 | A |
6120239 | Roskam | Sep 2000 | A |
6231039 | Chung | May 2001 | B1 |
6419218 | Hartsoe et al. | Jul 2002 | B1 |
6427999 | Christofferson | Aug 2002 | B1 |
Number | Date | Country |
---|---|---|
102 29 322 | Jan 2004 | DE |
202 15 218 | Feb 2004 | DE |
Number | Date | Country | |
---|---|---|---|
20060180979 A1 | Aug 2006 | US |