1. Technical Field
The present invention relates to memory devices in general, and more particularly, to a method and apparatus for reducing power consumption in memory devices. Still more particularly, the present invention relates to an apparatus for floating bitlines in static random access memories.
2. Description of Related Art
Static random access memory (SRAM) is a form of volatile semiconductor memory. Typically, multiple SRAM cells are interconnected to each other to form a memory array. Wordlines and bitlines are commonly utilized to access SRAM cells within a SRAM array.
One common SRAM design is to have two SRAM arrays connected to a multiplexor via respective read bitlines. In order to drive a global bitline, the signal of one of two read bitlines, which are coupled to the input of a multiplexor, needs to be pulled up. Since at least one wordline must constantly be active, conventional SRAM arrays have relatively high power consumption levels.
An alternative method of pulling up the signal of one of the two read bitlines is to pre-charge both read bitlines that enter each multiplexor. However, pre-charging bitlines requires more circuitry and still consumes a lot of power.
Consequently, it would be desirable to provide an improved apparatus for enabling the read bitlines of an SRAM array to float (i.e., remain uncharged) during a standby mode.
In accordance with a preferred embodiment of the present invention, a static random access memory (SRAM) includes a first and second SRAM cell columns, a first and second read bitlines, and a multiplexor. The multiplexor is coupled to the first and second SRAM cell columns via the first and second read bitlines, respectively. The multiplexor is capable of selectively transmitting data from the first or second SRAM cell column via the first or second read bitline, respectively, to an output. In addition, the multiplexor allows the first read bitline and/or the second read bitline to remain uncharged when no data are being read from the first SRAM cell column and/or the second SRAM cell column.
All features and advantages of the present invention will become apparent in the following detailed written description.
The invention itself, as well as a preferred mode of use, further objects, and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
Referring now to the drawings, and specifically to
Memory device 180 includes a sense amplifier 183 and a static random access memory (SRAM) cell array 181. SRAM cell array 181 includes a number of wordlines (i.e., WL_1 through WL_m) and a number of bitline pairs (i.e., BL_1 through BL_n and
With reference now to
Since MUX circuits 235 and 240 are substantially identical to each other, only MUX circuit 235 will be further described. Referring now to
Local select processing module 370 includes inverters 350 and 355, voltage pull up transistors 315 and 320, and voltage pull up disable transistors 325 and 330. Inverters 350 and 355 are connected in series to local select 225 (from
Local select processing module 370 enables input signals from local select 225 and/or global select(0) 230 to selectively pull up the voltage of an input signal of either read bitline 215 or read bitline 220.
In an alternative embodiment, inverters 350 and 355 within local select processing module 370 can be substituted by two or more logical NAND gates (not shown). An input of each of the two or more logical NAND gates is connected to the output of inverter 365, rather than inverter 360. With the alternative embodiment, local select processing module 370 does not include voltage pull up disable transistors 325 and 330, the two or more logical NAND gates are utilized to selectively disable the pull up capability of voltage control transistors 320 and 315.
Read bitline processing module 380 includes a logical NAND gate 300 and an NAND gate disable transistor 335. Logical NAND gate 300 is a modified NAND gate containing multiple field effect transistors (FETs) that enable logical NAND gate 300 to receive input from NAND gate disable transistor 335 in addition to the conventional input points, which are coupled to read bitline 215 and read bitline 220. Global select(0) 230, which is coupled to NAND gate disable transistor 335, can thereby selectively disable the logical functionality of logical NAND gate 300, such that MUX circuit 235 will not produce output when read bitline 215 and read bitline 220 are allowed to float (i.e., not have an active input signal). As a result, power within bit column 200 (from
Global select processing module 385 includes inverters 360 and 365, which are coupled to global select(0) 230 in series. The gate of NAND gate disable transistor 335 is connected to the output of inverter 365, and the gates of voltage pull up disable transistors 325 and 330 are connected to the output of inverter 360. Thus, inverter 360 changes the polarity of the voltage of the signal of global select(0) 230, such that the polarity of the input signals to voltage pull up disable transistors 325 and 330 is opposite to the polarity of the input signal of NAND gate disable transistor 335. Global select processing module 385 thereby enables the logical functionality of read bitline processing module 380 to be selectively disabled by local select processing module 370 and/or NAND gate disable transistor 335, according to the value of global select(0) 230.
Output combination module 375 includes a logical NAND gate 305, a logical NOR gate 310, and voltage control transistors 340 and 345. The inputs of logical NAND gate 305 are connected to the outputs of logical NAND gate 300 and inverter 365. The output of logical NAND gate 305 is connected to the gate of voltage control transistor 340. Similarly, the inputs of logical NOR gate 310 are connected to the outputs of logical NAND gate 300 and inverter 360. The output of logical NOR gate 310 is connected to gate of voltage control transistor 345. The node between voltage control transistors 340 and 345 provides data out 245 for output combination module 375.
As has been described, the present invention provides an apparatus for floating bitlines in SRAMs.
While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.