This invention relates to detection systems. In particular, but not exclusively, it relates to detection systems of the type which use light beams, such as infrared beams, in order to sense the position, or the passage of an object.
Systems using infrared or other parts of the electromagnetic spectrum for sensing the position of objects are quite common. These generally comprise one or more transmitting devices and co-operating receiving devices so that, in the simplest aspect, an infrared beam crosses a path and, if the beam is broken, the system recognizes it and therefore senses that a person or object has crossed the path. Systems of this type may be used to control entry to or from a place, for intruder alarms; or for many other purposes.
In many situations where light beams are used to sense the position of an object, it is not convenient to have the transmitting and receiving devices in line with the beam path. This may be for aesthetic, physical or environmental reasons for example. For instance, conventional access systems, known as optical turnstiles, comprise two relatively large bodies, one of them including an array of infrared transmitters and the other having an array of infrared receivers, and each being provided with electronics, control logic, etc. A person has to pass between them. Since these bodies contain electronics and detection circuitry within a metal or plastics shell, they are bulky and very visible. In environments where aesthetics are important, they are obtrusive and unwelcome.
It is one object of the present invention to provide an improved access system of this type, which is more inconspicuous and/or aesthetically attractive.
According to the present invention there is provided an access control or monitoring system comprising one or more transmitters of electromagnetic radiation and one or more co-operating receivers for detecting the presence or absence of transmitted radiation, characterized in that at least one optical element is provided which redirects the path of radiation such that the transmitter is not directly in line with the receiver.
Preferably, total internal reflection is used to redirect the radiation.
Preferably, the optical element comprises a sheet of a generally transparent plastics material (eg Perspex), having one edge adjacent to the transmitter and an opposite edge, to which the light from the transmitter passes through the sheet, being angled at a greater angle than the critical angle of the material such that light is reflected at that edge so as to be redirected.
Preferably, the apparatus has at least one array of transmitters having one or more beam redirection elements such that radiation is redirected by the redirection element substantially perpendicular to the normal path through which a person crosses the apparatus.
The invention enables the infrared transmitters, or other radiators, to be positioned well out of the way and their beams to be taken to a convenient place for passage across the path of a user by plastics sheets or other optical redirection means, which are substantially transparent when viewed normally and thus which present a better appearance to the user. The sheets are preferably of Perspex but may be of many other materials, such as other plastics materials, glass, etc.
In accordance with the invention in a further aspect there is provided a light redirection device for an access control system, comprising a body of material having an edge at an angle greater than the critical angle of the material, against which light may impinge.
According to the invention in a further aspect there is provided a method for imaging fingerprints, comprising; placing a fingertip against a surface of a body of material, the surface being at an angle greater than the critical angle of the material, with respect to an axis of the body; and viewing the fingerprint through the body.
In a further aspect, the invention provides a detection system comprising one or more transmitters of electromagnetic radiation and one or more co-operating receivers, characterized in that at least one optical element is provided which utilizes total internal reflection to redirect the path of radiation such that the transmitter is not directly in line with the receiver.
In a yet further aspect, the invention provides an access control or monitoring apparatus having at least one array of transmitters adjacent to one or more beam redirection elements such that radiation is redirected by each redirection element across the normal path through which a person crosses the apparatus.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings, in which:
The present invention arose in an attempt to develop an improved access control system in which optical means are used to detect the passage of persons entering or leaving an environment such as a building or stadium for example, rather than using the conventional method of turnstiles. The present invention allows an array of infrared transmitters to be placed discreetly where they are not easily viewed directly and for their transmitted infrared beams to be directed by an optical redirecting element across the path through which persons are required to travel. One such optical redirectional element is shown in
The element is most preferably made of a generally transparent material of plastics or glass for example, which has a suitable reflective index and thereby critical angle relative to air. As shown, in one embodiment the element comprises a flat octagonal sheet, the edges being of two different lengths. The sheet may be of any desired shape and the particular shape shown is one that was chosen for a specific purpose which also presents an interesting and useful effect when illuminated with white light, as described further below. Three of the edges 1, 2 and 3 are formed (eg cut) at an angle of 45° relative to the major faces. The remaining edges are formed to be perpendicular to the major faces. In one embodiment, the sheet is made of Perspex which has a critical angle of just less than 45°. The effect of this is that any light which is incident upon one of the angle edges of the element from an opposed ‘plain’ edge, and is thereby in a generally parallel line to the major faces of the element, is reflected by the angled face and emerges from the element at a different angle. This is shown more clearly in
Accordingly, if a person is walking past a device as shown in
As shown by the dashed lines in the figure, the respective light elements 14 and 15 direct light from the substantially hidden array of infrared transmitters to their angled faces 19, 20 and then re-direct them across the path P through which a person is constrained to walk. Similarly, the angled faces 21 and 22 of respective elements 16 and 17 serve to redirect the received beams to receivers within columns 12 and 13.
A person who is traveling along path P breaks various ones of the beam paths. This is used, in a known manner, which does not form part of the invention, to detect the presence of that person. By using arrays of elements and control logic, and/or software, it is possible to differentiate between different types of object, or to ensure that only one person passes the apparatus at any time (perhaps in conjunction with an identity reader such as a smart card reader such that when a person's identify has been verified only one person is allowed to pass through, other people may not “tailgate” with him). Many other functions may be used with the system.
Although infrared transmission is preferred, the terms light transmission and electromagnetic transmission are used herein and these are intended to encompass infrared and other types of light or radiation within the electromagnetic spectrum. The concepts of the invention may be used with other systems than person detection systems, such as the detection of other types of objects and the redirecting element need not necessarily be a flat sheet but may be of any suitable shape. It is only required that it has an angle at an appropriate face which is greater than the critical angle of the particular substance so as to induce total internal reflection when light at an appropriate angle is instant upon that face. Polycarbonate may be used (critical angle 39°) or many other types of plastic, glass or other materials. For some embodiments, the directing element need not be one which is generally transparent.
One property of elements of the shape shown in
This effect can be used to advantage. By suitably shaping the redirecting element a desired shape can be illuminated. In the examples shown, shape 30 is achieved (edges 1, 2 and 3—FIG. 1). Accordingly, in an embodiment of the invention, when a person has been allowed access (eg by authorization through a smart card, fingerprint recognition, etc), a source of white light is applied through elements 14 and 16—causing a chevron to be displayed indicating that the person is authorized and also indicating the direction in which he must pass. The elements also pass the infrared transmission as usual to detect the actual passage of the person.
By applying filtering or other means, different colors may be obtained, to indicate different conditions. Also, as two elements ‘edge to edge’ are provided in
Embodiments of the invention may alternatively or additionally be used for access monitoring, for example they can be equipped with means for counting persons (or articles) passing through a space.
In other embodiments, means such as reflectors (eg silvered or mirrored surfaces) may be used, to redirect radiation, so that the transmitters and/or receivers need not be in line with one another.
Number | Date | Country | Kind |
---|---|---|---|
9823186 | Oct 1998 | GB | national |
This application is a continuation of U.S. application Ser. No. 09/830,100, filed Jul. 23, 2001, ABN which claims priority of International application number PCT/GB99/03455, filed Oct. 19, 1999, which in turn claims priority to British patent application number 9823186.3, filed Oct. 23, 1998.
Number | Name | Date | Kind |
---|---|---|---|
5191219 | Linke | Mar 1993 | A |
5233185 | Whitaker | Aug 1993 | A |
5524460 | Michetti et al. | Jun 1996 | A |
5831529 | Pantus | Nov 1998 | A |
5845692 | Kellem et al. | Dec 1998 | A |
6012252 | Kocznar et al. | Jan 2000 | A |
Number | Date | Country | |
---|---|---|---|
20040135072 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09830100 | US | |
Child | 10683802 | US |