The invention relates to an apparatus for packaging dosed quantities of solid drug portions. In particular, the invention relates to an apparatus for packaging dosed quantities of solid drug portions with enhanced serviceability.
It is advantageous to package dosed quantities of solid drug portions, such as tablets and pills, in bags or other types of packaging, wherein the solid drug portions in each bag are packed separately per ingestion. The bags are provided with user information, such as the day and time of day the solid drug portions have to be taken. The bags for one particular user are usually attached to each other and supplied rolled up in a dispenser box.
The filling of individual packages with dosed quantities of solid drug portions (batches) is increasingly being automated. A known apparatus for dosing solid drug portions for final packaging in individual packages comprises a plurality of supply means respectively provided with different types of solid drug portion. After reading or entering a solid drug portion prescription, the supply means relevant to the prescription are opened in order to allow a dosed quantity of solid drug portions to drop into a central fall duct positioned under the supply means. At the bottom of the fall duct the selectively released solid drug portions are received in a packaging, such as a bag, after which the packaging is closed. Providing the packaging with user information can be realized prior to or following filling of the packaging. 60 packages per minute can be made up in this automated manner. The known apparatus does however have several drawbacks. A significant drawback of the known apparatus is that the filling capacity of the apparatus depends to a considerable extent on, and is limited by, the (longest) drop time of the solid drug portions in the fall duct, whereby the filling capacity of the known apparatus is limited and cannot be increased. However, owing to the permanently increasing demand for solid drug portions there is a need in practice to provide more packages of a dosed quantity of solid drug portions per unit time.
Undisclosed Dutch patent application NL2007384 discloses an apparatus for packaging dosed quantities of solid drug portions, comprising a plurality of dosing stations for dispensing a dosed quantity of solid drug portions, at least one first endless conveyor for moving along at least some of the number of dosing stations a plurality of fall ducts coupled to the first conveyor, wherein each fall duct is adapted to guide a dosed quantity of solid drug portions delivered by at least one supply means, at least one second endless conveyor for displacing a plurality of collecting means coupled to the second conveyor, wherein each collecting means is adapted to receive solid drug portions guided through a fall duct, at least one dispensing station for transferring solid drug portions collected by each collecting means to a packaging for closing, and at least one packaging station for closing the packaging provided with the dosed quantity of solid drug portions.
The apparatus in accordance with NL2007384 has a very high throughput, i.e. a very high number of solid drug portions is guided by the fall ducts. Due to the vast number of solid drug portions guided though the fall ducts, the inner surface of the fall ducts is contaminated with the residues of solid drug portions over time. These residues can be transported to the collecting means and from the collecting means to the bags for the user. To prevent such unwanted transport of residues, the fall ducts have to be cleaned on a regular basis. Before cleaning the fall ducts they have to be removed from the apparatus which is time-consuming and requires a undesirable machine shutdown.
It is therefore the object of the present application to enhance the serviceability of an apparatus for packaging dosed quantities of solid drug portions.
This object is solved by an apparatus for packaging dosed quantities of solid drug portions, comprising
a plurality of dosing stations, each dosing station having an output opening for dispensing solid drug portions, the dosing stations being arranged in a plurality of vertical or inclined columns,
and collecting means for collecting dosed quantities of solid drug portions dispensed by the dosing stations and for forwarding the dosed quantities of solid drug portions to a packaging means,
wherein a plurality of fall ducts is arranged for guiding the solid drug portions from the output openings of the dosing stations of a vertical or inclined column to the collecting means, each fall duct having an outlet and a number of inlet openings, the output openings of the dosing stations being aligned with the inlet openings of the fall ducts when a fall duct is positioned adjacent to a column of dosing stations.
Each fall duct consists of at least a first part and a second part, forming the fall duct when the parts are assembled, wherein the parts being detachably connected together so that the parts can be detached for maintenance and cleaning purposes.
By providing the fall ducts in accordance with the present invention, the serviceability is greatly enhanced as it is no longer necessary to remove the complete fall ducts. For maintenance purposes one part of the fall ducts can be removed and the inner surfaces of the parts can be cleaned.
The input openings can be formed when the first and the second part of the fall ducts are assembled, i.e. each of the parts of the fall ducts provides a number of “partial openings” of the input openings. It is however preferred that one part of the fall ducts comprises the input openings as such a configuration of the parts of the fall ducts eliminates the need of aligning the partial openings of the first and the second parts of the fall ducts.
While the exact configuration of fall ducts depends of the overall structure of the apparatus, it is preferred that the first and the second part of the fall ducts are provided as a base part and a front part, wherein the base part is arranged so as to be connected to a mounting element of the apparatus and the front part is arranged such that it is detachably connected to the base part.
The fall ducts may be stationary, i.e. mounted at specified positions within the apparatus. In this case the collecting means may also be stationary. Using stationary fall ducts/collecting means has the disadvantage that the number of dosing stations assigned to one fall duct/collecting means is limited by the length of the fall duct and/or the size of the dosing station (assuming that the dosing stations are also stationary).
To enhance the number of dosing stations which can dispense a dosed quantity of solid drug portions into a given fall duct, the dosing stations can be movable along a conveyor. However, as it is preferred to use a high number of dosing stations this approach would require a very complex design.
It is therefore preferred that the fall ducts are movable along the columns of dosing stations, wherein the base part of the fall ducts is connected to a mounting element of a first conveyor for moving the fall ducts along the columns of dosing stations, and wherein the collecting means are connected to a second conveyor for moving the collecting means together with the fall ducts.
During the movement, the input openings of the fall ducts are aligned with the output openings of the dosing stations of a column. As soon as the openings are aligned, dosed quantities of solid drug portions can be released from the dosing stations.
The collecting means, which are connected to the second conveyor, are moved, at least as long as portions are received through the fall ducts, in line with the fall ducts, i.e. one fall duct is aligned to one collecting means.
Using mobile collecting means, which in fact function as temporary packages, enables multiple solid drug portion prescriptions to be collected in parallel (simultaneously) instead of serially (successively), whereby the capacity for filling packages can be increased substantially. Particularly advantageous here is that the fall ducts are also given a mobile form and can thus co-displace, preferably at substantially the same movement speed and in the same displacement direction, with the mobile collecting means, this resulting in further time gain and increase in capacity.
While the dosed quantities of solid drug portions drop through the fall duct, the fall duct and an underlying collecting means can be moved further in a continuous manner, usually in the direction of one or more following dosing stations. The following dosing stations can, depending on the prescription to be followed, optionally be activated for the purpose of dispensing a dosed quantity of solid drug portions in the fall duct. In other words, a given fall duct (in line with its collecting means) is moved along the vertical columns of dosing stations and when passing the dosing stations they can be activated. By moving the fall ducts along the vertical columns of dosing stations the number of portions which can dispensed in a given collecting means is greatly enhanced making it possible that even complex and unusual prescriptions can be compiled.
The first conveyor for moving the fall ducts along the vertical columns of dosing stations can comprise one or more conveyor belts, wherein the base parts of the fall ducts are connected to the conveyor belts. Depending on the number of conveyor belts and the length of the fall ducts it is preferred that a mounting beam is arranged between and connected to the base part of each fall duct and the first conveyor. Such a mounting beam can enhance the stability and using the mounting beam allows a wider range of available materials for the fall ducts as the stability requirements for the fall ducts are not that strict when using a mounting beam.
It is preferred that the base part is detachably connected to the mounting beam and/or the mounting beam is detachably connected to the first conveyor to further enhance the serviceability of the apparatus allowing a replacement of separate parts.
The contamination of the fall ducts depends on their length and the number of dosing stations dispensing portions into the fall ducts. In the case that the vertical columns of dosing stations comprise a significant number of dosing stations, the lower section of a fall duct is more contaminated than the upper section of a fall duct as more portions are guided through the lower section. It is therefore preferred that the front parts of the fall ducts comprise a plurality of sub-parts, wherein each sub-part can be detached individually.
The front parts of the fall ducts comprise a plurality of input opening and these input openings are, at least temporarily, aligned with the output openings of corresponding dosing stations. To prevent portions from higher dosing stations entering the output openings of lower dosing stations via an input opening of the front part, the base parts of the fall ducts comprise a number of constrictions, arranged above corresponding input openings in the front parts of the fall ducts to guide falling portions away from the input openings of the front parts and the output openings of dosing stations. Furthermore, the constrictions reduce the fall speed of the individual portions within the fall ducts reducing the risk of damage to the portions.
Maintenance of the fall ducts can be initiated after a given period of time. However, such a constant period might be too short or too long with regards to some of the fall ducts (e.g. for those fall ducts guiding common solid drug portions like mild painkillers). It is therefore preferred that a fall duct comprises a sensor for monitoring the surface characteristics within the fall duct, the sensor being coupled with a control unit arranged within the apparatus.
Alternatively, the number of portions guided through a fall duct can be counted, and depending on the number of guided portions, maintenance can be initiated. For this alternative, a sensor is arranged at the base of a fall duct monitoring the number of solid drug portions being guided through it, the sensor being coupled with a control unit arranged within the apparatus.
To prevent the deposition of solid drug portion residues or other residues, it is preferred that the inner surfaces of the fall ducts are coated with a non-stick coating.
Each collecting means is adapted to collect one prescription associated with one patient. A prescription consists of a predefined quantity and type of solid drug portions formed by tablets or pills and the like. A supply of different types of solid drug portions is held in different dosing stations. The distance between each dosing station and fall ducts co-acting with each dosing station is preferably substantially constant, so that the (fall) time required for transferring solid drug portions from the dosing stations to the adjacent fall ducts is substantially the same, this making it possible to move the collecting means at substantially constant speed. It is however also possible to envisage having the transport speed of the fall ducts and the collecting means depend on the prescriptions to be compiled, and therefore on the dosing stations to be addressed, which can also result in a further increase in the filling capacity.
The dosing stations generally take a stationary form. It is advantageous here for the plurality of dosing stations to be positioned adjacent to each other, this enabling simultaneous filling of the plurality of collecting means. It is also advantageous for the plurality of dosing stations to be positioned above each other, whereby multiple types of solid drug portion can be dispensed simultaneously to the same fall duct and subsequently to the same collecting means, this also enhancing the filling frequency of the apparatus.
It is particularly advantageous here for at least a number of the dosing stations to be arranged in a matrix structure with dosing stations arranged in multiple horizontal rows and dosing stations arranged in multiple vertical columns. It is advantageous here for the dosing stations to be positioned as closely as possible to each other, which in addition to saving volume also results in time gains during filling of the collecting means.
It is further possible to envisage applying a plurality of matrix structures of dosing stations in order to further increase capacity. In a particular embodiment the apparatus comprises two matrix structures, wherein each matrix structure comprises a plurality of dosing stations arranged in rows and columns, and wherein dispensing sides of the dosing stations of the two matrix structures face toward each other. Owing to such an orientation at least a number of fall ducts are enclosed by the two matrix structures.
By causing movement of the fall ducts along the two matrix structures of dosing stations, and in this way along all dosing stations, the required drug portions can be collected in relatively efficient manner.
In one embodiment, the first endless conveyor comprises two parallel endless conveyor belts. In order to stabilize the movement of the fall ducts it is usually advantageous for the apparatus to comprise a plurality of substantially parallel oriented first conveyor belts, wherein each fall duct is connected to a plurality of first conveyor belts. This stability, and particularly the stability in the vertical direction, can be further increased when the apparatus comprises at least one stationary guide, such as a rail, for guiding the movement of the fall ducts.
In one embodiment, the system comprises drive means for driving the first endless conveyor and the second endless conveyor with the same transport speed.
The drive means preferably comprise at least one electric motor. It is advantageous for the drive means to be adapted for simultaneous driving both the first conveyor and the second conveyor. It is possible for this purpose to envisage the at least one first conveyor and the at least one second conveyor being coupled mechanically to each other. This coupling is preferably such that both types of conveyor are moved in the same direction and at the same movement speed. In this way a constant alignment between the fall ducts and the collecting means can be guaranteed as far as possible.
A collecting means and a fall duct lying above may be physically connected to each other or even manufactured in one piece. Alternatively, a collecting means and a fall duct lying above may not be physically connected to each as the decoupling of the two components enhances the flexibility of the apparatus.
Physically separating the collecting means from the fall ducts makes it possible to guide the collecting means away from the fall ducts. In a preferred embodiment, the physical length of the second conveyor is greater than the length of the first conveyor so that the number of collecting means coupled to the second conveyor is greater than the number of fall ducts coupled to the first conveyor. This makes it possible to guide the collecting means along one or more other types of (special) dosing stations for direct dispensing of solid drug portions to the collecting means, that is to say not via the fall ducts.
A collecting means will generally be deemed as a solid drug portion carriage functioning for the purpose of collecting a prescription and transporting the collected solid drug portions to the dispensing and packaging station. It is usually advantageous here for an upper side of each collecting means to take an open form and be adapted to receive a dosed quantity of solid drug portions falling out of a dosing station via a fall duct. The collecting means hereby also serve the function of a collecting tray.
An underside of each collecting means preferably comprises a controllable closing element to enable removal of the solid drug portions from the collecting means. The closing element can be mechanically controllable in the dispensing station. The closing element is however preferably controllable in contactless manner, more preferably by applying magnetism. At least a part of the closing element must however be given a magnetic or magnetisable form for this purpose. Operation of the closing element of such a type can for instance be realized by applying an electromagnet or permanent magnet in the packaging station. In an advantageous embodiment the collecting means comprises biasing means, such as for instance a compression spring, for urging the closing element in the direction of a closed state, whereby erroneous opening of the closing element can be prevented. The dispensing station can in fact form part of the packaging station, wherein dispensing of solid drug portions collected in a collecting means to a packaging for closing can be followed almost immediately by closing of said packaging.
Since each collecting means collects its own prescription, it is desirable to know the location of the fall ducts and the collecting means relative to the dosing stations. For this purpose, use can be made of a calibrating module for calibrating the position of at least one fall duct relative to the first conveyor and/or at least one collecting means relative to the second conveyor. The apparatus can be calibrated by determining a reference or calibration point of at least one fall duct and/or collecting means, since the sequence and the transport speed of the fall ducts and the collecting means are pre-known, as is the length of the first conveyor and the second conveyor. Recognition of a fall duct and/or collecting means by the calibrating module can for instance take place by providing the fall duct and/or collecting means with a unique label. It is however also possible to deem the fall duct and/or collecting means detected at a determined moment by the calibrating module as fall duct and/or collecting means serving as reference.
The packaging station is preferably adapted to seal the packaging. Sealing is understood to mean substantially medium-tight closure of the packaging in order to enable the best possible preservation of the packaged solid drug portions. A (plastic) foil will generally be applied as packaging material and the seal will be formed by a welding process. A separate adhesive, in particular glue, can optionally be applied instead of a weld for the purpose of sealing the packaging. The packaging station is more preferably adapted to realize at least one longitudinal seal and at least one transverse seal, whereby bags are formed which are mutually connected and which in this way form a strip. Because the packaging station is preferably adapted to realize a transverse seal, the length of the bag to be formed can be determined and preferably made dependent on the number and/or the type of solid drug portions to be packaged in a bag. The packaging station will generally be placed a (horizontal) distance from the dosing stations, whereby heat generated by the packaging station will not be transferred, or hardly so, to the dosing stations and the solid drug portions held therein, this increasing the shelf-life of the solid drug portions. The packaging station is usually also provided with a printer for arranging a specific label on each formed packaging.
Each dosing station preferably comprises at least one supply means for solid drug portions, e.g. in tablet form or capsule form or the like, and a dosing element connecting to the at least one supply means. The dosing station as such is usually also referred to as a canister. The dosing element is adapted to separate one or more single solid drug portions from the solid drug portions present in the supply means. Dosing can take place by selectively removing the separated solid drug portions, generally by allowing them to fall, from the dosing element.
In an advantageous embodiment the dosing element is displaceable relative to the supply means between a loading state, in which a receiving space of the dosing element connects to a delivery opening of the supply means, and an unloading state in which the dosing element covers the delivery opening and is adapted to deliver the separated solid drug portion to a collecting means coupled to the conveyor. The dosing element will generally be of substantially cylindrical form, wherein the one or more receiving spaces are arranged in the cylindrical dosing element, wherein each receiving space is generally adapted to temporarily hold one solid drug portion. Such a dosing element is usually also referred to as an individualizing wheel. By means of axial rotation of the cylindrical dosing element the dosing element can be displaced between a loading state, in which a receiving space of the dosing element is aligned with a delivery opening of the supply means, and an unloading state in which the dosing element covers the delivery opening and is adapted to deliver the separated tablet to a fall duct coupled to the first conveyor.
The number of collecting means is preferably greater than the number of columns of dosing stations. In a typical embodiment of the apparatus according to the invention the apparatus comprises up to 3,000 columns of dosing stations and up to 4,500 collecting means. In a preferred embodiment the apparatus comprises 500 columns of dosing stations and 750 collecting means.
The apparatus comprises a control unit for controlling at least the packaging station, the dosing stations, the at least one first conveyor and the at least one second conveyor and the sensors which might be arranged in the fall ducts. It is advantageous here for the control unit to be adapted to determine, on the basis of a desired dosed quantity of solid drug portions, a dosed quantity of solid drug portions to be successively dispensed through time by a plurality of dosing stations via the fall ducts to the collecting means. Because prescriptions are taken as starting point, a logistical conversion must be made to a most efficient method of filling the collecting means, which conversion can be made using the control unit. The control unit can here be coupled or even form part of a computer provided with a computer program, the computer program being adapted to determine a filling schedule for filling the collecting means and subsequently the packages in the packaging station.
The invention will be described on the basis of non-limitative exemplary embodiments shown in the following figures. Herein:
The first conveyor belts 6a, 6b are driven by drive wheels 9 which are coupled by means of a vertical shaft 10 to an electric motor 11. In order to be able to counter slippage of conveyor belts 6a, 6b the running surfaces 12 of the drive wheels take a profiled form. Through driving of the first conveyor belts 6a, 6b the fall ducts 7 can be guided along the dosing stations 2 arranged in matrix structures 5 for the purpose of receiving dosed quantities of solid drug portions dispensed by dosing stations 2.
In the shown embodiment each fall duct 7 comprises two parts, a front part 7a and a base part 7b, and is adapted for simultaneous co-action with a plurality of dosing stations 2 positioned above each other. Each front part 7a is provided with a number of input openings 13 (see
The apparatus 1 also comprises a second conveyor belt 15 provided with mounting elements 16 on which a plurality of collecting means 17, also referred to as solid drug portion carriages, are releasably mounted. Each mounting element 16 will generally be provided here with a collecting means 17 adapted for temporary storage of a dosed quantity of solid drug portions made up in accordance with a prescription. Not all collecting means 17 are shown in the figures. The second conveyor belt 15 is coupled mechanically to first conveyor belts 6a, 6b and is also driven by electric motor 11, wherein the direction of displacement and displacement speed of conveyor belts 6a, 6b, 15 are the same. It is moreover advantageous for the first conveyor belts 6a, 6b and the second conveyor belt 15 to be mutually aligned, wherein mounting elements 8, 16 lie in a substantially vertical line (directly under each other). The distance between adjacent mounting elements 8, 16 amounts to 80 mm, this substantially corresponding to the width of collecting means 17, fall ducts 7 and dosing stations 2.
Collecting means 17 are adapted to receive solid drug portions falling through fall ducts 7. Each fall duct 7 is provided for this purpose with a passage opening for falling solid drug portions on the underside. In accordance with this embodiment, for a part of the conveying route each collecting means 17 will be positioned here directly under a fall duct 7. In order to be able to prevent as far as possible sagging of conveyor belts 6a, 6b, 15 due to the weight of fall ducts 7 and collecting means 17 respectively, conveyor belts 6a, 6b are tensioned under a bias of about 600 N. Conveyor belts 6a, 6b, 15 are generally manufactured from a relatively strong plastic such as nylon. As shown in the figures, the second conveyor belt 15 is longer than each of the first conveyor belts 6a, 6b.
Collecting means 17 will then be guided in the direction of the dispensing and packaging station 3 where the solid drug portions collected in accordance with prescription are removed from collecting means 17, wherein the solid drug portions are transferred to an opened foil packaging 18. In packaging station 3 the foil packaging 18 will be successively sealed and provided with specific (user) information. The overall control of apparatus 1 is realized by applying a control unit 19.
The front part 7a of the shown fall duct is detachably connected to the base part 7b of the fall duct 7. In the shown embodiment the front part 7a comprises a number of retainer means 50a and the base part 7b comprises a number of mating openings 50b which have a shape of a long hole in the shown embodiment. The front part 7a is also secured by a latching element 50c located at the upper part of the fall duct.
To detach the front part 7a, the latching element is released and the front part is raised and drawn away from the base part 7b. To assemble the fall duct (for example after both parts have been cleaned) the procedure is performed in reverse.
The base part 7b of the fall duct 7 comprises a number of constrictions 14 which limit the falling speed of the solid drug portion and prevent falling solid drug portion from entering an output opening of a dosing station by guiding the falling solid drug portion away from the input openings of the front part/the output openings of the dosing stations.
In the shown embodiment the base part 7b of a fall duct comprises two sensors 53, 54 (see
The sensor 53 is arranged somewhere within the base part 7b of a fall duct and is adapted to monitor the contamination of the inner surface of the base part. As soon as such contamination exceeds a predetermined limit, the control unit, to which the sensor 53 is also coupled, may initiate maintenance.
It will be apparent that the invention is not limited to the exemplary embodiments shown and described here, but that numerous variants which will be self-evident to the skilled person in this field are possible within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
12182632 | Aug 2012 | EP | regional |
This application is a continuation of U.S. patent application Ser. No. 16/277,688, filed on Feb. 15, 2019, which issued as U.S. Pat. No. 11,021,285 on Jun. 1, 2021, entitled “APPARATUS FOR PACKAGING DOSED QUANTITIES OF SOLID DRUG PORTIONS,” which is a continuation of U.S. patent application Ser. No. 14/424,494, filed on Feb. 27, 2015, entitled “APPARATUS FOR PACKAGING DOSED QUANTITIES OF SOLID DRUG PORTIONS,” which issued on Apr. 9, 2019, as U.S. Pat. No. 10,252,826, which is the U.S. National Phase under 35 U.S.C. § 371 of International Application No. PCT/EP2013/067523, filed on Aug. 23, 2013, which claims the benefit of European Application No. 12 182 632.5, filed on Aug. 31, 2012, the disclosures of which are incorporated herein in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3028713 | Kennedy et al. | Apr 1962 | A |
3139713 | Merrill | Jul 1964 | A |
3556342 | Guarr | Jan 1971 | A |
4092990 | Bayne | Jun 1978 | A |
4664289 | Shimizu | May 1987 | A |
4801045 | Barnhart | Jan 1989 | A |
4930289 | Fransson | Jun 1990 | A |
5361937 | Wiese | Nov 1994 | A |
5481855 | Yuyama | Jan 1996 | A |
5651476 | Percy | Jul 1997 | A |
5709063 | Yuyama | Jan 1998 | A |
5787678 | Koike | Aug 1998 | A |
5791516 | Witten | Aug 1998 | A |
6012602 | Yuyama | Jan 2000 | A |
6170203 | Chudy | Jan 2001 | B1 |
6170230 | Chudy | Jan 2001 | B1 |
6202385 | Kim | Mar 2001 | B1 |
6481180 | Takahashi | Nov 2002 | B1 |
6497083 | Garwood | Dec 2002 | B1 |
6644504 | Yuyama | Nov 2003 | B2 |
6690998 | Yuyama | Feb 2004 | B1 |
6732498 | Keen | May 2004 | B2 |
6792736 | Takahashi | Sep 2004 | B1 |
6898919 | Kim | May 2005 | B2 |
6928790 | Takahashi | Aug 2005 | B2 |
7040070 | Yuyama | May 2006 | B2 |
7225597 | Knoth | Jun 2007 | B1 |
7277776 | Kim | Oct 2007 | B2 |
7284578 | Monti | Oct 2007 | B2 |
7360668 | Yuyama | Apr 2008 | B2 |
7398895 | Kim | Jul 2008 | B2 |
7455163 | Yuyama | Nov 2008 | B2 |
7637078 | Ishiwatari | Dec 2009 | B2 |
7770355 | Inamura | Aug 2010 | B2 |
7832591 | Karwacki, Jr. | Nov 2010 | B2 |
8234838 | Yasunaga | Aug 2012 | B2 |
8235248 | Kim | Aug 2012 | B2 |
8281955 | Farnsworth | Oct 2012 | B2 |
8406916 | Bentele | Mar 2013 | B2 |
8579153 | Yuyama | Nov 2013 | B2 |
8745961 | Terzini | Jun 2014 | B2 |
9309013 | Elias | Apr 2016 | B2 |
9399543 | Longley | Jul 2016 | B2 |
9790017 | Yuyama | Oct 2017 | B2 |
9796496 | Van De Koot | Oct 2017 | B2 |
9914554 | Lokkers | Mar 2018 | B2 |
10099809 | Van Wijngaarden | Oct 2018 | B2 |
10252826 | Lokkers | Apr 2019 | B2 |
10427809 | Holmes | Oct 2019 | B2 |
10589883 | Van Wijngaarden | Mar 2020 | B2 |
20010001358 | Yuyama | May 2001 | A1 |
20020162850 | Yuyama | Nov 2002 | A1 |
20040026442 | Hutchinson | Feb 2004 | A1 |
20040261357 | Takahashi | Dec 2004 | A1 |
20050217208 | Cicognani | Oct 2005 | A1 |
20050234591 | Kim | Oct 2005 | A1 |
20060070352 | Momich | Apr 2006 | A1 |
20070084150 | Siegel | Apr 2007 | A1 |
20070289660 | Aylward | Dec 2007 | A1 |
20080222999 | Monti | Sep 2008 | A1 |
20080223001 | Monti | Sep 2008 | A1 |
20090056283 | Monti | Mar 2009 | A1 |
20090133362 | Bentele | May 2009 | A1 |
20110178634 | Yuyama | Jul 2011 | A1 |
20140298754 | Van Wijngaarden | Oct 2014 | A1 |
20150083744 | Vogler | Mar 2015 | A1 |
20150090733 | Park | Apr 2015 | A1 |
20150225101 | Van Wijngaarden | Aug 2015 | A1 |
20150251789 | Lokkers | Sep 2015 | A1 |
20150298839 | Van De Koot | Oct 2015 | A1 |
20170197739 | Ha | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
102319695 | Jan 2012 | CN |
1612146 | Jan 2006 | EP |
10-338318 | Dec 1998 | JP |
2001-170136 | Jun 2001 | JP |
2004-284680 | Oct 2004 | JP |
2009-261932 | Nov 2009 | JP |
Entry |
---|
International Search Report dated Oct. 30, 2013 for International Application No. PCT/EP2013/067523. |
Japanese Office Action dated Dec. 13, 2016 issued in Japanese Application No. 2015-528971 (7 pages). |
Written Opinion dated Oct. 30, 2013 for International Application No. PCT/EP2013/067523. |
Number | Date | Country | |
---|---|---|---|
20210229846 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16277688 | Feb 2019 | US |
Child | 17233354 | US | |
Parent | 14424494 | US | |
Child | 16277688 | US |